WO2017110244A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2017110244A1
WO2017110244A1 PCT/JP2016/082008 JP2016082008W WO2017110244A1 WO 2017110244 A1 WO2017110244 A1 WO 2017110244A1 JP 2016082008 W JP2016082008 W JP 2016082008W WO 2017110244 A1 WO2017110244 A1 WO 2017110244A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
conditioned air
changing unit
vehicle
detected
Prior art date
Application number
PCT/JP2016/082008
Other languages
English (en)
French (fr)
Inventor
伊藤 大
大賀 啓
竹田 弘
古川 淳
正喬 木下
熊田 辰己
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680074817.0A priority Critical patent/CN108473021B/zh
Priority to DE112016005926.4T priority patent/DE112016005926B4/de
Priority to US16/063,709 priority patent/US10618375B2/en
Publication of WO2017110244A1 publication Critical patent/WO2017110244A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00742Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by detection of the vehicle occupants' presence; by detection of conditions relating to the body of occupants, e.g. using radiant heat detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00792Arrangement of detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00807Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a specific way of measuring or calculating an air or coolant temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00828Ventilators, e.g. speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00871Air directing means, e.g. blades in an air outlet

Definitions

  • the present disclosure relates to a vehicle air conditioner provided in a vehicle.
  • a vehicle air conditioner that measures the surface temperature of an occupant with an infrared sensor and performs air conditioning control based on the surface temperature is known.
  • an infrared sensor is disposed on a swing louver provided at the air outlet, and the surface temperature of the occupant is calculated by the infrared sensor.
  • the direction of the infrared sensor changes within a certain range with the swing of the swing louver. For this reason, it is possible to measure a wide range of temperatures including passengers while using an inexpensive infrared sensor with a relatively narrow detection range.
  • the vehicle air conditioner described in Patent Document 1 does not measure the surface temperature of the entire occupant at a time, but gradually moves the range while measuring the local range. It detects temperature distribution. That is, the measurement timing of the surface temperature differs depending on the measured location.
  • a part of the surface temperature may be detected as if it is different from the surface temperature of other parts.
  • the air volume of the air-conditioning wind hitting the passenger increases temporarily, only the part that was the surface temperature measurement point at that time is low temperature, and the other part (when the air volume is small) The temperature of the measured part) may be detected as if it were high.
  • Such an apparent temperature distribution is different from the actual temperature distribution.
  • the temperature tends to change as the air volume changes. For this reason, if the measurement of the surface temperature is performed at different timings depending on the location, erroneous detection of the temperature distribution is likely to occur.
  • the average temperature is not accurately calculated if the above-described erroneous detection occurs, so the air conditioning control performed is inappropriate. End up.
  • control is performed such that air conditioning air is intensively applied to a local high-temperature portion and cooling is performed, the entire temperature is uniform, but the temperature distribution is detected due to erroneous detection. There is a possibility that intensive cooling to the part will be performed.
  • the present disclosure has been made in view of such problems, and an object of the present disclosure is to prevent erroneous detection of a temperature distribution while adopting a configuration in which air conditioning control is performed while moving a surface temperature measurement point.
  • An object of the present invention is to provide a vehicle air conditioner that can be used.
  • a vehicle air conditioner includes a wind change unit (200, 452) that changes at least one of an air volume and a wind direction of air-conditioned air blown into a passenger compartment (RM). And a detection position that changes the position of the detected area, which is a temperature detection section (300) that detects the surface temperature of the object based on radiation from the object, and an area in which the surface temperature is detected by the temperature detection section A changing unit (301), and a control unit (100) for controlling the operations of the wind changing unit and the detection position changing unit.
  • the control unit includes a wind changing unit and a detection position changing unit so that a change in the air volume of the conditioned air is suppressed in the detected region when a part of the passenger's surface is the detected region. Control at least one of the operations.
  • control when a part of the occupant's surface is a detected area, control is performed so that the air volume change of the conditioned air is suppressed in the detected area.
  • the state in which the change in the air volume is suppressed means that the rate of change in the air volume in the portion that has become the detected area is smaller than the rate of change in the air volume when the area does not become the detected area. State. Such a state also includes a state in which the conditioned air does not reach the detected area.
  • the direction of the temperature detection unit may be adjusted so that a region that does not overlap with a region directly exposed to the conditioned air becomes a detection region.
  • the direction of the conditioned air blown out may be adjusted so that the conditioned air directly hits an area that does not overlap the detected area.
  • a vehicle air conditioner that can prevent an erroneous detection of a temperature distribution while performing the air conditioning control while moving the measurement point of the surface temperature.
  • FIG. 1 is a diagram illustrating a state in which the vehicle air conditioner according to the present embodiment is mounted on a vehicle.
  • FIG. 2 is a block diagram schematically showing the configuration of the vehicle air conditioner according to the present embodiment.
  • FIG. 3 is a diagram illustrating a change in the direction of the IR sensor and a change in the wind direction.
  • FIG. 4 is a diagram illustrating a range in which the direction of the IR sensor changes.
  • FIG. 5 is a flowchart showing a flow of processing performed by the control device for the vehicle air conditioner according to the present embodiment.
  • FIG. 6 is a flowchart showing a flow of processing performed by the control device for the vehicle air conditioner according to the present embodiment.
  • the vehicle air conditioner 10 is an apparatus that is provided in the vehicle 20 and performs air conditioning in the passenger compartment RM of the vehicle 20.
  • FIG. 1 the configuration inside the passenger compartment RM is schematically shown in a top view.
  • FIG. 1 shows a driver M1 seated in the driver seat 21 and a passenger M2 seated in the passenger seat 22.
  • Reference numeral 24 denotes a steering handle.
  • the driver seat 21 corresponds to the “first seat” in the present embodiment.
  • the driver seat 22 corresponds to the “second seat” in the present embodiment.
  • An instrument panel 23 is provided in front of the driver seat 21 and the passenger seat 22.
  • Two outlets 410 which are outlets of conditioned air from the vehicle air conditioner 10, are formed at the center of the instrument panel 23 in the left-right direction so as to be aligned along the left-right direction. These two outlets 410 are openings formed in a direction facing the driver's seat 21 and the passenger seat 22, that is, toward the rear side of the vehicle 20.
  • the direction of the conditioned air blown from each outlet 410 can be changed by a plurality of louvers 451 provided in a swing register 450 described later.
  • a blow-out port 420 which is another outlet of the conditioned air from the vehicle air conditioner 10, is formed upward.
  • the outlet 420 is an elongated straight opening formed along the left-right direction.
  • the vehicle 20 is also formed with a blowout port (not shown) for blowing the conditioned air from the vehicle air conditioner 10 toward the feet of the driver M1 and the passenger M2.
  • the vehicle air conditioner 10 includes a control unit 100, an air conditioning unit 200, an IR sensor 300, and a swing register 450.
  • the control unit 100 is configured as a computer system having a CPU, a ROM, a RAM, and the like.
  • the controller 100 controls the overall operation of the vehicle air conditioner 10. A specific configuration and function of the control unit 100 will be described later.
  • the air conditioning unit 200 is a part for generating conditioned air and sending it out into the passenger compartment RM.
  • the air conditioning unit 200 includes a refrigeration cycle (not shown). In the heat exchanger of the refrigeration cycle, heat exchange between air and refrigerant is performed, thereby generating conditioned air.
  • the air conditioning unit 200 further includes a blower 201 (not shown in FIG. 1, refer to FIG. 2) for sending out air.
  • the blower 201 is a so-called blower fan.
  • the temperature of the air is adjusted to be conditioned air, and blown out into the passenger compartment RM through a duct (not shown).
  • the outlet of the conditioned air blown out is one of a plurality of formed outlets (410, 420, etc.).
  • the number of rotations of the blower 201 is controlled by the control unit 100, and thereby the air volume of the conditioned air is adjusted.
  • the air conditioning unit 200 is provided with an outlet switching door (not shown) for switching the outlet of the conditioned air.
  • the outlet switching door is a door whose opening and closing is switched by the driving force of the outlet switching motor 202 (not shown in FIG. 1, see FIG. 2).
  • the operation of the outlet switching motor 202 is controlled by the control unit 100.
  • the “bi-level mode” in which the conditioned air is blown to both the upper body and the feet of the driver M1 or the like may be employed.
  • the air conditioning unit 200 is configured to be able to change the air volume and direction of the conditioned air blown into the passenger compartment RM, and corresponds to the “wind changing unit” in the present embodiment.
  • the air conditioning unit 200 is also provided with an inside / outside air switching door (not shown) for switching the introduction route of the air led to the refrigeration cycle.
  • the inside / outside air switching door is a door whose opening and closing is switched by the driving force of the inside / outside air switching motor 203 (not shown in FIG. 1, refer to FIG. 2).
  • the operation of the inside / outside air switching motor 203 is controlled by the control unit 100. Accordingly, the “outside air circulation mode” in which the air introduced from the outside of the vehicle 20 is blown out as the conditioned air and the “inside air circulation mode” in which the air introduced from the passenger compartment RM is blown out as the conditioned air are switched and executed. It is possible.
  • the IR sensor 300 is a temperature sensor that detects the surface temperature of an object based on radiation (infrared rays) from the object.
  • the IR sensor 300 is provided at a position between the two outlets 410 in the instrument panel 23, that is, a position at the center in the left-right direction of the instrument panel 23.
  • the IR sensor 300 corresponds to a “temperature detection unit” in the present embodiment.
  • the vehicle air conditioner 10 is configured to detect the surface temperature of an occupant (such as the driver M1 or the passenger M2) by the IR sensor 300 and perform air conditioning control based on the surface temperature.
  • the blowout temperature, the air volume, and the wind direction are adjusted based not only on the temperature in the passenger compartment RM but also on the surface temperature of each passenger. For this reason, the thermal sensation felt by the passenger can be made appropriate.
  • the field of view of the IR sensor 300 is relatively narrow, and the surface temperature of the entire occupant cannot be detected at one time.
  • the field of view of the IR sensor 300 is indicated by reference numeral 610.
  • this visual field range is also referred to as “visual field 610”.
  • the surface of the object included in the field of view 610 that is, the region that is currently subject to surface temperature measurement is also referred to as a “detected region”.
  • the IR sensor 300 is provided with an IR motor 301 (not shown in FIG. 1, see FIG. 2) for changing the direction of the IR sensor 300 and moving the visual field 610.
  • the IR motor 301 When the IR motor 301 is driven, the IR sensor 300 performs a peristaltic operation, and the visual field 610 moves in the left-right direction. Accordingly, the detected area also moves in the left-right direction.
  • the range in which the field of view 610 can move is shown as an IR drive range 600 in FIG.
  • a dotted line 601 is a line that divides the rightmost end of the IR driving range 600.
  • a dotted line 604 is a line that divides the leftmost end of the IR driving range 600.
  • the IR drive range 600 defined by the dotted line 601 and the dotted line 604 is a range that includes both the entire driver M1 and the entire passenger M2.
  • the IR sensor 300 can measure the distribution of the surface temperature of the entire driver M1 and the entire passenger M2 while gradually changing the position of the detected region by the driving force of the IR motor 301.
  • the operation of the IR motor 301 is controlled by the control unit 100.
  • the IR motor 301 corresponds to the “detection position changing unit” in the present embodiment.
  • the swing register 450 is a mechanism for adjusting the direction of the conditioned air blown from the air outlet 410.
  • the swing register 450 includes a louver 451 and an SR motor 452 (not shown in FIG. 1, refer to FIG. 2).
  • the louvers 451 are plate-like bodies provided so as to be arranged in a plurality along the outlets 410. The conditioned air blown from the air outlet 410 is guided by each louver 451 to change the direction of the air.
  • Each louver 451 is driven by the SR motor 452 and changes its direction. That is, the direction of the conditioned air guided by the louver 451 is adjusted by the driving force of the SR motor 452.
  • the operation of the SR motor 452 is controlled by the control unit 100.
  • the SR motor 452 changes the direction of the conditioned air blown into the passenger compartment RM, and corresponds to the “wind changing unit” in the present embodiment.
  • the configuration of the control unit 100 will be described with reference to FIG.
  • the control unit 100 includes, as functional control blocks, an air conditioning setting unit 110, an airflow change estimation unit 120, an air conditioning correction unit 130, an IR direction determination unit 140, an SR direction determination unit 150, and an IR operation setting unit 160. And have.
  • the air conditioning setting unit 110 is a part that determines the amount and direction of the conditioned air blown into the passenger compartment RM based on the measured values of various sensors provided in the vehicle 20. In addition to the measured value (surface temperature) from the IR sensor 300 described above, the measured values of the internal air temperature sensor 501, the external air temperature sensor 502, the solar radiation sensor 503, and the humidity sensor 504 are input to the air conditioning setting unit 110.
  • the measured value (surface temperature) from the IR sensor 300 described above the measured values of the internal air temperature sensor 501, the external air temperature sensor 502, the solar radiation sensor 503, and the humidity sensor 504 are input to the air conditioning setting unit 110.
  • the inside air temperature sensor 501 is a sensor for measuring the air temperature inside the passenger compartment RM.
  • the outside air temperature sensor is a sensor for measuring the temperature outside the vehicle 20.
  • the solar radiation sensor 503 is a sensor for detecting the amount of sunlight incident on the vehicle interior.
  • the humidity sensor 504 is a sensor for measuring the humidity in the passenger compartment RM.
  • the set value from the target temperature setter 505 provided in the vehicle 20 is input to the air conditioning setting unit 110.
  • the target temperature setter 505 is a part that is operated by a passenger of the vehicle 20 in order to set a target temperature for air conditioning.
  • the set value of the target temperature is input from the target temperature setter 505 to the air conditioning setting unit 110.
  • the air conditioning setting unit 110 includes a rotation speed setting unit 111, a blowout port setting unit 112, an inside / outside air setting unit 113, and an SR operation setting unit 114.
  • the rotation speed setting unit 111 is a part that determines the rotation speed of the blower 201.
  • the rotation speed of the blower 201 is set according to the air volume of the conditioned air to be blown into the passenger compartment RM.
  • the blower 201 is controlled to operate at the rotation speed determined by the air conditioning setting unit 110.
  • the number of revolutions is determined by comprehensively considering the measurement values input from various sensors. Moreover, it is good also as determining based on the setting which the driver
  • the blower 201 may be controlled to operate at a rotational speed different from the determined rotational speed by correction performed by a rotational speed correction unit 131 described later.
  • the air outlet setting unit 112 is a part that determines an air outlet that serves as an outlet for the conditioned air. That is, it is a part that determines which mode of the previously described face mode, defrost mode, foot mode, and bi-level mode should be blown out. Such a determination is made by comprehensively considering measured values input from various sensors. Moreover, it is good also as determining based on the setting which the driver
  • the inside / outside air setting unit 113 is a part that determines whether the vehicle air conditioner 10 operates in the outside air circulation mode or the inside air circulation mode. Such a determination is made by comprehensively considering measured values input from various sensors. Moreover, it is good also as determining based on the setting which the driver
  • the SR operation setting unit 114 is a part that determines the operation of the swing register 450, that is, the control method of the SR motor 452.
  • the SR operation setting unit 114 determines the direction in which the conditioned air should be directed. Such a determination is made by comprehensively considering measured values input from various sensors. Moreover, it is good also as determining based on the setting which the driver
  • the air volume change estimation unit 120 is conditioned air at a specific location in the passenger compartment RM based on various items determined by the air conditioning setting unit 110 (such as the rotation speed of the blower 201) and measured values of an SR position sensor 453 described later. This is the part that estimates the rate of change in the air volume.
  • the “specific part” is an arbitrary part where the conditioned air blown from the outlet 410 can reach, for example, a part of the surface of the driver M1.
  • the rate of change of the air volume estimated by the air volume change estimating unit 120 is input to the air conditioning correction unit 130 described later.
  • the rate of change of the air volume mentioned here may be a numerical value expressed in a unit such as “m 3 / h / sec”, for example. It may be a numerical value that represents the number of stages of the change that is expected after a predetermined time has elapsed after replacement.
  • the air conditioning correction unit 130 is a part that controls the blower 201 and the like after making various changes to the various items (such as the rotation speed of the blower 201) determined by the air conditioning setting unit 110 as necessary.
  • the air conditioning correction unit 130 includes a rotation speed correction unit 131, a blowout port correction unit 132, an inside / outside air correction unit 133, and an SR operation correction unit 134.
  • the rotational speed correction unit 131 is a part that controls the rotational speed of the blower 201.
  • the rotation speed correction unit 131 basically controls the blower 201 so as to operate at the rotation speed determined by the rotation speed setting unit 111.
  • the blower 201 is controlled so as to operate at a rotational speed different (corrected) from the rotational speed determined by the rotational speed setting unit 111. . Details of such correction will be described later.
  • the blowout port correction unit 132 is a part that controls the operation of the blowout port switching motor 202.
  • the air outlet correction unit 132 basically controls the air outlet switching motor 202 so that the conditioned air is blown out in the mode (face mode or the like) determined by the air outlet setting unit 112. However, when the rate of change of the air volume estimated by the air volume change estimating unit 120 is large, the outlet switching motor 202 is controlled to operate in a mode different (corrected) from the mode determined by the outlet setting unit 112. To do. Details of such correction will be described later.
  • the inside / outside air correction unit 133 is a part that controls the operation of the inside / outside air switching motor 203.
  • the inside / outside air correction unit 133 basically controls the inside / outside air switching motor 203 so that air conditioning is performed in the mode (outside air circulation mode or the like) determined by the inside / outside air setting unit 113.
  • the inside / outside air switching motor 203 is operated so that air conditioning is performed in a mode different (corrected) from the mode determined by the inside / outside air setting unit 113. To control. Details of such correction will be described later.
  • SR operation correction unit 134 is a part that controls the operation of SR motor 452.
  • the SR operation correction unit 134 basically controls the SR motor 452 so that the conditioned air is directed in the direction determined by the SR operation setting unit 114.
  • the SR motor 452 is set so that the conditioned air is directed in a direction (corrected) different from the mode determined by the SR operation setting unit 114. Control. Details of such correction will be described later.
  • the IR direction determination unit 140 is a part that determines which direction the IR sensor 300 is directed based on the measurement value of the IR position sensor 302.
  • the IR position sensor 302 is a pulse counter built in the IR sensor 300, for example, and measures the amount of change in the position of a movable part driven by the IR motor 301 (for example, the rotation angle of the sensor head).
  • the IR direction determination unit 140 determines the direction in which the IR sensor 300 is facing, and also determines whether or not the surface of the occupant (driver M1 or passenger M2) is included in the current detected area. In making such a determination, information on the position of the occupant stored in advance is taken into consideration. Information regarding the position of the occupant may be stored in advance as a set value in this way, but may be acquired each time based on the measured value of the IR sensor 300. With such an aspect, even when a driver M1 or the like having a different physique is seated on the driver's seat 21 or the like, it is accurately determined whether or not the surface of the occupant is included in the current detected area. It can be carried out.
  • the SR direction determination unit 150 is a part that determines which direction each louver 451 of the swing register 450 is facing, based on the measurement value of the SR position sensor 453. That is, it is a part for determining the direction of the conditioned air blown from the outlet 410.
  • the SR position sensor 453 is a pulse counter built in the SR motor 452, for example, and measures the amount of change in the position of the movable part driven by the SR motor 452 (for example, the rotation angle of the louver 451).
  • the SR direction determination unit 150 determines not only the direction in which each louver 451 is facing, but also whether or not the surface of the occupant (driver M1 or passenger M2) is included in the area where the conditioned air reaches directly. . In making such a determination, information on the position of the occupant stored in advance is taken into consideration. As described above, information on the position of the occupant may be acquired each time based on the measurement value of the IR sensor 300.
  • the IR operation setting unit 160 determines in which direction the IR sensor 300 should be directed based on both the determination result input from the IR direction determination unit 140 and the determination result input from the SR direction determination unit 150. It is a part to do. That is, it is a part that determines which part in the passenger compartment RM should be the detection area.
  • the IR operation setting unit 160 controls the operation of the IR motor 301 so that the determined detection area is included in the visual field 610.
  • the IR sensor 300 since the visual field range of the IR sensor 300 used in this embodiment is relatively narrow, the surface temperature of the entire occupant cannot be acquired at the same time (simultaneously). For this reason, as described above, the IR sensor 300 performs a peristaltic operation to move the visual field 610 in the left-right direction, partially acquiring the surface temperature of the occupant, and finally the overall temperature distribution. To get.
  • the IR sensor 300 is driven, that is, the visual field 610 is moved in the left-right direction at a speed that changes by 0.5 degrees every time 200 msec elapses.
  • the IR drive range 600 shown in FIG. 1 is a range extending over 150 degrees, it takes 120 seconds to make one round trip of the range. Since the speed of the peristaltic operation of the IR sensor 300 is in a trade-off relationship with the resolution and accuracy of the acquired temperature distribution, it is not easy to increase the speed of the peristaltic operation. As a result, when the surface temperature is measured at such a speed, for example, the time at which the temperature of the left part of the driver M1 is measured and the time at which the temperature of the right part is measured deviate greatly.
  • the operation of the IR motor 301 is devised while using the IR sensor 300 with a narrow viewing angle without using the high-cost IR sensor as described above. This prevents false detection.
  • FIG. 3A shows the time change of the direction of the louver 451, that is, the direction of the conditioned air blown from the outlet 410.
  • the vertical axis in the figure is an axis indicating the measured value of the SR position sensor 453.
  • the value B11 is a measured value of the SR position sensor 453 when at least a part of the conditioned air directly hits the rightmost position on the surface of the driver M1. That is, it is a measured value of the SR position sensor 453 when the conditioned air does not directly reach the driver M1 when the direction of the louver 451 further moves to the right.
  • Value B12 is a measured value of the SR position sensor 453 when at least a part of the conditioned air is directly hitting the leftmost position on the surface of the driver M1. That is, it is a measured value of the SR position sensor 453 when the conditioned air does not directly reach the driver M1 when the direction of the louver 451 further moves to the left.
  • the value B13 is a measured value of the SR position sensor 453 when at least a part of the conditioned air is directly hitting the rightmost position on the surface of the passenger M2. That is, the measured value of the SR position sensor 453 when the conditioned air does not directly reach the passenger M2 when the direction of the louver 451 further moves to the right.
  • the value B14 is a measured value of the SR position sensor 453 when at least a part of the conditioned air is directly hitting the leftmost position on the surface of the passenger M2. That is, the measured value of the SR position sensor 453 when the conditioned air does not directly reach the passenger M2 when the direction of the louver 451 further moves to the left.
  • the air conditioning setting unit 110 controls the SR motor 452, so that the louver 451 is swung left and right at a constant cycle. Specifically, during the period from time t0 to time t1, the louver 451 moves toward the left side, and during the period from time t2 to time t4, the louver 451 moves toward the right side. Such control is performed. In the subsequent period from time t4 to time t7, control is performed such that the louver 451 moves again toward the left side.
  • the measured value of the SR position sensor 453 is within the range from the value B13 to the value B14. For this reason, the conditioned air blown out directly hits at least a part of the passenger M2.
  • the measured value of the SR position sensor 453 is within the range from the value B12 to the value B13. For this reason, the conditioned air blown out does not directly hit both the driver M1 and the passenger M2, but passes between them.
  • the measured value of the SR position sensor 453 is within the range from the value B11 to the value B12. For this reason, the conditioned air blown out directly hits at least a part of the driver M1.
  • the measured value of the SR position sensor 453 is within the range from the value B12 to the value B13. For this reason, the conditioned air blown out does not directly hit both the driver M1 and the passenger M2, but passes between them. After time t6, the direction of the conditioned air changes repeatedly as in the period from time t0 to time t6.
  • the air conditioning blown out so that the conditioned air reaches the driver's seat 21 where the driver M1 sits and the conditioned air reaches the passenger seat 22 where the passenger M2 sits alternately.
  • the wind direction is gradually changed.
  • Such an operation is realized by the SR motor 452.
  • the IR operation setting unit 160 of the control unit 100 does not cause the region where the conditioned air directly hits the surface of the occupant to overlap the detected region.
  • the IR motor 301 is controlled. Such control is performed in consideration of both the determination result of the IR direction determination unit 140 and the determination result of the SR direction determination unit 150.
  • FIG. 3B shows a change in the direction of the IR sensor 300 over time.
  • the vertical axis in the figure is an axis indicating the measured value of the IR position sensor 302.
  • the value D11 is a measured value of the IR position sensor 302 when the rightmost position on the surface of the driver M1 is included in the detected region. That is, it is a measured value of the IR position sensor 302 when the surface of the driver M1 is not included in the detected area when the visual field 610 moves further to the right.
  • the value D12 is a measured value of the IR position sensor 302 when the leftmost position on the surface of the driver M1 is included in the detected region. That is, it is a measured value of the IR position sensor 302 when the surface of the driver M1 is not included in the detected area when the visual field 610 moves further to the left.
  • the value D13 is a measured value of the IR position sensor 302 when the rightmost position on the surface of the passenger M2 is included in the detected area. That is, when the field of view 610 moves further to the right, the measured value of the IR position sensor 302 is obtained when the detected area does not include the surface of the passenger M2.
  • the value D14 is a measured value of the IR position sensor 302 when the leftmost position on the surface of the passenger M2 is included in the detected area. That is, it is a measured value of the IR position sensor 302 when the surface of the passenger M2 is not included in the detected area when the visual field 610 moves further to the left.
  • the detected area includes a part of the surface of the driver M1.
  • the measurement value of the IR position sensor 302 is within the range from the value D13 to the value D14, at least a part of the region between the dotted line 603 and the dotted line 604 shown in FIG. Yes.
  • the detected area includes a part of the surface of the passenger M2.
  • the IR operation setting unit 160 controls the IR motor 301, so that the direction of the IR sensor 300 (and consequently the detected area) swings to the left and right.
  • the detected area moves toward the right side
  • the detected area moves toward the left side.
  • Control is performed.
  • control is performed such that the detected region moves again toward the right side.
  • the measured value of the IR position sensor 302 is within the range from the value D11 to the value D12. For this reason, at least a part of the surface of the driver M1 is included in the detected region. At this time, since the conditioned air does not directly hit the surface of the driver M1, the conditioned air does not directly reach the detected area. In other words, the IR motor 301 is controlled so that the surface temperature of the driver M1 is measured by the IR sensor 300 only in a period in which the conditioned air does not directly hit the surface of the driver M1.
  • the measured value of the IR position sensor 302 is within the range from the value D12 to the value D13. Therefore, neither the surface of the driver M1 nor the surface of the passenger M2 is included in the detected area.
  • the air-conditioning wind has reached a position between the driver's seat 21 and the passenger seat 22.
  • the direction (left direction) in which the position of the detected region changes is opposite to the direction (right direction) in which the conditioned air arrival position changes. Since the IR motor 301 is controlled so as to achieve such an operation, the region where the conditioned air directly reaches and the detected region are reliably prevented from overlapping each other on the surface of the occupant.
  • the measured value of the IR position sensor 302 is within the range from the value D13 to the value D14. For this reason, at least a part of the surface of the passenger M2 is included in the detected area. At this time, since the conditioned air does not directly hit the surface of the passenger M2, the conditioned air does not reach the detected area directly. In other words, the IR motor 301 is controlled such that the surface temperature of the passenger M2 is measured by the IR sensor 300 only in a period in which the conditioned air does not directly hit the passenger M2 surface.
  • the measured value of the SR position sensor 453 is within the range from the value B12 to the value B13. Therefore, neither the surface of the driver M1 nor the surface of the passenger M2 is included in the detected area.
  • the conditioned air has reached a position between the driver seat 21 and the passenger seat 22.
  • the direction (right direction) in which the position of the detected area changes is opposite to the direction (left direction) in which the conditioned air arrival position changes. Since the IR motor 301 is controlled so as to achieve such an operation, the region where the conditioned air directly reaches and the detected region are reliably prevented from overlapping each other on the surface of the occupant.
  • control is performed so that the direction of the IR sensor 300 changes repeatedly.
  • the operation of the IR motor 301 is performed so that the passenger seat 22 becomes a detected region when the conditioned air reaches the driver seat 21 and the driver seat 21 becomes the detected region when the conditioned air reaches the passenger seat 22. Is controlled. As a result, the region where the conditioned air directly reaches and the detected region do not overlap each other on the surface of any passenger (driver M1 or passenger M2) at any time.
  • the flow of processing performed by the control unit 100 will be described with reference to FIG.
  • the series of processing shown in FIG. 5 is repeatedly executed every time a certain period elapses.
  • step S01 it is determined whether or not the swing register 450 is operating. If the swing register 450 is stopped and the wind direction is constant, the series of processes shown in FIG. 5 is terminated. When the swing register 450 is operating, the process proceeds to step S02.
  • step S02 it is determined whether or not the direction of the conditioned air is directed toward the driver's seat 21, specifically, whether or not the measured value of the SR position sensor 453 is within the range from the value B11 to the value B12. The If the direction of the conditioned air is directed toward the driver's seat 21, the process proceeds to step S03.
  • step S03 the operation of the IR motor 301 is controlled so that the IR sensor 300 faces the passenger seat 22 side. Specifically, the operation of the IR motor 301 is controlled so that the measured value of the IR position sensor 302 falls within the range from the value B13 to the value B14.
  • step S02 if the direction of the conditioned air is not directed toward the driver's seat 21, the process proceeds to step S04.
  • step S04 it is determined whether or not the direction of the conditioned air is directed toward the passenger seat 22, specifically, whether or not the measured value of the SR position sensor 453 is within the range from the value B13 to the value B14. The If the direction of the conditioned air is directed toward the passenger seat 22, the process proceeds to step S05.
  • step S05 the operation of the IR motor 301 is controlled so that the IR sensor 300 faces the driver seat 21 side. Specifically, the operation of the IR motor 301 is controlled so that the measurement value of the IR position sensor 302 falls within the range from the value B11 to the value B12.
  • step S04 if the air-conditioning wind direction is not directed toward the passenger seat 22, the process proceeds to step S06.
  • step S06 it is determined whether or not the direction in which the conditioned air arrival position changes is toward the driver's seat 21 (that is, the right side). If the arrival position of the conditioned air is changing toward the right side, the process proceeds to step S07.
  • step S07 the IR motor 301 is controlled so that the moving direction of the IR sensor 300, that is, the direction in which the position of the detected area changes, is directed toward the passenger seat 22 (that is, the left side). Thereby, the direction in which the position of the detected area changes is opposite to the direction in which the arrival position of the conditioned air changes.
  • step S06 when the arrival position of the conditioned air is changing toward the passenger seat 22 side (that is, the left side), the process proceeds to step S08.
  • step S08 the IR motor 301 is controlled so as to be directed toward the driver's seat 21 (that is, on the right side). Thereby, the direction in which the position of the detected area changes is opposite to the direction in which the arrival position of the conditioned air changes.
  • the air-conditioned wind does not reach the detected area (a change in the air volume is suppressed).
  • the operation of the IR motor 301 is controlled.
  • the vehicle air conditioner 10 suppresses the change in the air volume in the detected area while swinging the direction of the IR sensor 300 at a constant cycle without considering the arrival position of the conditioned air. It is also possible to perform such control.
  • the contents of the processing performed for that purpose will be described with reference to FIG.
  • the series of processing shown in FIG. 6 is repeatedly executed by the control unit 100 every time a certain period elapses.
  • step S11 it is determined whether or not the detected area that is the measurement area of the IR sensor 300 includes a part of the surface of the occupant (driver M1 or passenger M2). When a part of the passenger's surface is not included in the detected area, the process proceeds to step S14.
  • step S14 normal air conditioning control is performed. Normal air-conditioning control is control performed without considering the air volume change in the detected area.
  • step S11 when a part of the surface of the occupant is included in the detected area, the process proceeds to step S12.
  • Step S11 in addition to the case where a part of the surface of the occupant is actually included in the detected area, a part of the surface of the occupant is included in the detected area after a few seconds from now, The process proceeds to step S12.
  • step S12 the air flow rate change rate in the detected region is estimated by the air flow rate change estimation unit 120 (see FIG. 2).
  • the “rate of change in air volume” is the rate of change for the air volume change estimated to occur in the detected area after a few seconds when the air conditioning control determined by the air conditioning setting unit 110 is performed.
  • step S12 it is further determined whether or not the estimated rate of change of the air volume exceeds a preset threshold value. That is, it is determined whether or not a large air volume change can occur in the detected area at a time point several seconds after the current time. If the change rate of the air volume does not exceed the threshold value, the process proceeds to step S14. Thereafter, the normal air conditioning control already described is performed.
  • step S12 when the change rate of the air volume exceeds the threshold value, the process proceeds to step S13.
  • step S ⁇ b> 13 air conditioning correction by the air conditioning correction unit 130 is executed in order to suppress a change in the air volume of the air conditioning air in the detected area.
  • the vehicle air conditioner 10 can execute various modes as such air conditioning correction.
  • the rotation speed correction unit 131 temporarily sets an upper limit for the change rate of the rotation speed of the blower 201, thereby suppressing the change in the rotation speed. Moreover, it is good also as prohibiting the change of the rotation speed of the blower 201 temporarily.
  • air conditioning correction it is possible to suppress changes in the air volume of the conditioned air that reaches the detection area. Thereby, the erroneous detection of the temperature distribution accompanying the temporary change of the surface temperature can be prevented.
  • the air volume itself of the air conditioning air reaching the detection area may be reduced or may be set to zero.
  • the control unit 100 controls the wind changing unit (for example, the air conditioning unit 200) and the detection position changing unit (for example, an IR motor) so that the air volume of the conditioned air hitting the occupant is suppressed in the detected region that overlaps with the passenger. 301), at least one of the operations may be controlled.
  • the air volume of the air-conditioning wind that hits the detected area that overlaps with the occupant may be set to 0 by changing only the air direction without changing the air volume of the air-conditioned air.
  • control of the air outlet switching motor 202 by the air outlet correcting unit 132 can be mentioned.
  • the outlet correction unit 132 temporarily prohibits the outlet switching motor 202 from operating. That is, switching between the face mode and the defrost mode is temporarily prohibited from switching the air outlet. Even with such air conditioning correction, it is possible to suppress changes in the air volume of the conditioned air that reaches the detected area. Thereby, the erroneous detection of the temperature distribution accompanying the temporary change of the surface temperature can be prevented.
  • the air conditioning correction include control of the inside / outside air switching motor 203 by the inside / outside air correcting unit 133.
  • the inside / outside air correction unit 133 temporarily prohibits the inside / outside air switching motor 203 from operating. In other words, the switching between the outside air circulation mode and the inside air circulation mode is temporarily prohibited. Even with such air conditioning correction, it is possible to suppress changes in the air volume of the conditioned air that reaches the detected area. Thereby, the erroneous detection of the temperature distribution accompanying the temporary change of the surface temperature can be prevented.
  • air conditioning correction examples include control of the SR motor 452 by the SR operation correction unit 134.
  • the SR operation correction unit 134 controls the SR motor 452 so that the conditioned air does not directly reach the detection area. In other words, the SR motor 452 is controlled so that the conditioned air reaches a portion other than the detected region. Even with such air conditioning correction, it is possible to suppress changes in the air volume of the conditioned air that reaches the detected area. Thereby, the erroneous detection of the temperature distribution accompanying the temporary change of the surface temperature can be prevented.
  • the present invention is limited to such an embodiment.
  • the configuration of the present disclosure can also be applied to a vehicle air conditioner configured to blow conditioned air from the ceiling toward the rear seat.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】表面温度の測定箇所を移動させながら空調制御を行う構成としながら、温度分布の誤検知が生じることを防止することのできる車両用空調装置。【解決方法】車両用空調装置(10)は、空調風の風量又は風向のうち少なくとも一方を変化させる風変更部(200,452)と、物体の表面温度を、当該物体からの輻射に基づいて検知する温度検知部(300)と、温度検知部(300)によって表面温度が検出される領域、である被検知領域の位置を変化させる検知位置変更部(301)と、風変更部(200,452)及び検知位置変更部(301)のそれぞれの動作を制御する制御部(100)と、を備え、制御部(100)は、乗員の表面の一部が被検知領域となっているときに、被検知領域においては空調風の風量変化が抑制されている状態となるように、風変更部(200,452)及び検知位置変更部(301)のうち少なくとも一方の動作を制御する。

Description

車両用空調装置 関連出願の相互参照
 本出願は、2015年12月22日に出願された日本国特許出願2015-249525号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。
 本開示は、車両に備えられる車両用空調装置に関する。
 乗員の表面温度を赤外線センサによって測定し、当該表面温度に基づいて空調制御を行う車両用空調装置が知られている。例えば下記特許文献1に記載の車両用空調装置では、吹出口に設けられたスイングルーバーに赤外線センサを配置しており、当該赤外線センサによって乗員の表面温度を算出している。
 このような構成においては、スイングルーバーの搖動に伴って赤外線センサの方向が一定の範囲で変化する。このため、検知範囲が比較的狭い安価な赤外線センサを用いながらも、乗員を含む広範囲の温度測定を行うことが可能である。
特許第4062124号公報
 上記特許文献1に記載の車両用空調装置は、乗員の全体における表面温度を一度に測定するものではなく、局所的な範囲を測定しながら、当該範囲を徐々に移動させて行くことによって全体の温度分布を検知するものである。すなわち、測定された箇所によって表面温度の測定タイミングが異なるものである。
 このため、全体の表面温度が一時的に変化した場合には、一部の表面温度が他の部分の表面温度とは異なっているかのように検知されてしまうことがある。例えば、乗員に当たる空調風の風量が一時的に増加したような場合においては、その時に表面温度の測定箇所となっていた部分のみが低温となっており、それ以外の部分(風量が小さいときに測定された部分)の温度は高くなっているかのように検知されることがある。このような見かけの温度分布は、実際の温度分布は異なるものである。
 特に、乗員の頭髪や着衣など、熱容量が比較的小さな部分は、空調風の風量変化に伴って温度が変化しやすい。このため、表面温度の測定が場所によって異なるタイミングで行われてしまうと、温度分布の誤検知が生じやすい。
 例えば、乗員全体の平均温度に基づいて空調制御が行われる場合には、上記のような誤検知が生じると平均温度が正確には算出されないので、行われる空調制御は不適切なものとなってしまう。また、例えば局所的な高温部分に集中的に空調風を当てて冷却するような制御が行われる場合には、全体の温度が均一であるにもかかわらず、温度分布の誤検知に伴って一部への集中的な冷却が行われてしまう可能性がある。
 本開示はこのような課題に鑑みてなされたものであり、その目的は、表面温度の測定箇所を移動させながら空調制御を行う構成としながら、温度分布の誤検知が生じることを防止することのできる車両用空調装置を提供することにある。
 上記課題を解決するために、本開示に係る車両用空調装置は、車室(RM)内に吹き出される空調風の風量又は風向のうち、少なくとも一方を変化させる風変更部(200,452)と、物体の表面温度を、当該物体からの輻射に基づいて検知する温度検知部(300)と、温度検知部によって表面温度が検出される領域、である被検知領域の位置を変化させる検知位置変更部(301)と、風変更部及び検知位置変更部のそれぞれの動作を制御する制御部(100)と、を備える。制御部は、乗員の表面の一部が被検知領域となっているときに、被検知領域においては空調風の風量変化が抑制されている状態となるように、風変更部及び検知位置変更部のうち少なくとも一方の動作を制御する。
 このような車両用空調装置では、乗員の表面の一部が被検知領域となっているときには、当該被検知領域においては空調風の風量変化が抑制されている状態となるような制御が行われる。「風量変化が抑制されている状態」とは、被検知領域となった部分における風量の変化率が、当該部分が被検知領域とはなっていないときにおける風量の変化率よりも小さくなっている状態をいう。また、このような状態には、被検知領域に空調風が到達しない状態も含まれる。
 上記のような制御としては、例えば、空調風が直接当たっている領域とは重ならない領域が被検知領域となるように、温度検知部の向きを調整することが挙げられる。また、被検知領域とは重ならない領域に空調風が直接当たるよう、吹き出される空調風の向きを調整することが挙げられる。
 上記のような制御が行われる結果、空調風の風量変化に伴って乗員の表面温度が一時的に変化した場合であっても、そのような一時的な変化が生じている領域が被検知領域となることが無い。このため、温度分布についての誤検知が防止される。
 本開示によれば、表面温度の測定箇所を移動させながら空調制御を行う構成としながら、温度分布の誤検知が生じることを防止することのできる車両用空調装置が提供される。
図1は、本実施形態に係る車両用空調装置が車両に搭載された状態を示す図である。 図2は、本実施形態に係る車両用空調装置の構成を模式的に示すブロック図である。 図3は、IRセンサの向きの変化と、風向の変化とを示す図である。 図4は、IRセンサの向きが変化する範囲を示す図である。 図5は、本実施形態に係る車両用空調装置の制御装置により行われる処理の流れを示すフローチャートである。 図6は、本実施形態に係る車両用空調装置の制御装置により行われる処理の流れを示すフローチャートである。
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 本実施形態に係る車両用空調装置10は、車両20に備えられ、車両20の車室RM内における空調を行うための装置である。図1には、車室RM内の構成が上面視で模式的に示されている。
 先ず、車両20について説明する。車両20の前方側部分には、右側の座席である運転席21と、左側の座席である助手席22とが、互いに隣り合うように設けられている。図1には、運転席21に着座している運転者M1と、助手席22に着座している同乗者M2とが示されている。符号24が付されているのはステアリングハンドルである。運転席21は、本実施形態における「第1座席」に該当する。運転席22は、本実施形態における「第2座席」に該当する。
 運転席21及び助手席22の前方側には、インストルメントパネル23が設けられている。インストルメントパネル23のうち左右方向における中央部には、車両用空調装置10からの空調風の出口である吹き出し口410が、左右方向に沿って2つ並ぶように形成されている。これら2つの吹き出し口410は、運転席21や助手席22と対向する方向、すなわち車両20の後方側に向けて形成された開口となっている。それぞれの吹き出し口410から吹き出される空調風の風向は、後述のスイングレジスター450が備える複数のルーバー451により変化させることが可能である。
 インストルメントパネル23のうち最も前方側となる位置には、車両用空調装置10からの空調風の別の出口である吹き出し口420が、上方に向けて形成されている。吹き出し口420は、左右方向に沿うように形成された細長い直線状の開口である。吹き出し口420から空調風が吹き出されると、当該空調風は車両20のフロントガラス(不図示)に当たる。これにより、フロントガラスの曇りを晴らすことができる。
 車両20には、車両用空調装置10からの空調風を運転者M1や同乗者M2の足元に向けて吹き出すための吹き出し口(不図示)も形成されている。
 車両用空調装置10は、制御部100と、空調部200と、IRセンサ300と、スイングレジスター450と、を備えている。
 制御部100は、CPU、ROM、RAM等を有するコンピュータシステムとして構成されている。制御部100は、車両用空調装置10の全体の動作を制御するものである。制御部100の具体的な構成や機能については後に説明する。
 空調部200は、空調風を生成して車室RM内に向けて送り出すための部分である。空調部200は不図示の冷凍サイクルを備えている。冷凍サイクルの熱交換器において空気と冷媒との熱交換を行い、これにより空調風を生成する。
 空調部200は更に、空気を送り出すためのブロア201(図1では不図示。図2を参照)を備えている。ブロア201は所謂送風ファンである。ブロア201によって冷凍サイクルに空気が送り込まれると、当該空気が温度調整されて空調風となり、不図示のダクトを通って車室RM内に吹き出される。吹き出される空調風の出口は、複数形成された吹き出し口(410、420等)のいずれかとなる。ブロア201の回転数は制御部100によって制御され、これにより空調風の風量が調整される。
 空調部200には、空調風の出口を切り換えるための吹き出し口切り換えドア(不図示)が設けられている。吹き出し口切り換えドアは、吹き出し口切り換えモータ202(図1では不図示。図2を参照)の駆動力によってその開閉が切り換えられるドアである。吹き出し口切り換えモータ202の動作は制御部100によって制御される。これにより、吹き出し口410から運転者M1等の上半身に向けて空調風が吹き出される「フェイスモード」と、吹き出し口420からフロントガラスに向けて空調風が吹き出される「デフロストモード」と、不図示の吹き出し口から運転者M1等の足元に向けて空調風が吹き出される「フットモード」とが切り換えられる。また、運転者M1等の上半身及び足元の両方に空調風が吹き出される「バイレベルモード」とすることもできる。このように、空調部200は、車室RM内に吹き出される空調風の風量や風向を変化させることができるように構成されており、本実施形態における「風変更部」に該当する。
 空調部200には、冷凍サイクルに導かれる空気の導入経路を切り換えるための内外気切り換えドア(不図示)も設けられている。内外気切り換えドアは、内外気切り換えモータ203(図1では不図示。図2を参照)の駆動力によってその開閉が切り換えられるドアである。内外気切り換えモータ203の動作は制御部100によって制御される。これにより、車両20の外側から導入された空気を空調風として吹き出す「外気循環モード」と、車室RM内から導入された空気を空調風として吹き出す「内気循環モード」と、を切り換えて実行することが可能となっている。
 IRセンサ300は、物体の表面温度を、当該物体からの輻射(赤外線)に基づいて検知する温度センサである。IRセンサ300は、インストルメントパネル23のうち、二つの吹き出し口410の間となる位置、すなわちインストルメントパネル23の左右方向における中央となる位置に設けられている。IRセンサ300は、本実施形態における「温度検知部」に該当する。
 車両用空調装置10は、IRセンサ300によって乗員(運転者M1や同乗者M2など)の表面温度を検知して、当該表面温度に基づいて空調制御を行うように構成されている。単に車室RM内の気温のみ基づくのではなく、各乗員の表面温度にも基づいて吹き出し温度や風量、風向が調整される。このため、乗員の感じる温熱感を適切なものとすることができる。
 IRセンサ300の視野範囲は比較的狭く、乗員全体の表面温度を一度に検知することはできない。図1には、IRセンサ300の視野範囲が符号610で示されている。以下、この視野範囲のことを「視野610」とも表記する。また、視野610に含まれる物体の表面、すなわち、現時点において表面温度の測定対象となっている領域のことを、「被検知領域」とも表記する。
 IRセンサ300には、IRセンサ300の向きを変更し視野610を移動させるためのIRモータ301(図1では不図示。図2を参照)が設けられている。IRモータ301が駆動されると、IRセンサ300が搖動動作を行い、視野610が左右方向に移動する。これに伴い、上記の被検知領域も左右方向に移動する。視野610が移動し得る範囲が、図1ではIR駆動範囲600として示されている。点線601は、IR駆動範囲600のうち最も右側の端部を区画する線である。点線604は、IR駆動範囲600のうち最も左側の端部を区画する線である。図1に示されるように、点線601と点線604とで区画されるIR駆動範囲600は、運転者M1の全体、及び同乗者M2の全体をいずれも包含する範囲となっている。
 IRセンサ300は、IRモータ301の駆動力によって被検知領域の位置を徐々に変化させて行きながら、運転者M1の全体、及び同乗者M2の全体における表面温度の分布を計測することができる。IRモータ301の動作は制御部100によって制御される。IRモータ301は、本実施形態における「検知位置変更部」に該当する。
 スイングレジスター450は、吹き出し口410から吹き出される空調風の風向を調整するための機構である。スイングレジスター450は、ルーバー451と、SRモータ452(図1では不図示。図2を参照)と、を備えている。ルーバー451は、吹き出し口410に沿って複数並ぶよう設けられた板状体である。吹き出し口410から吹き出される空調風は、それぞれのルーバー451によって案内されることによりその風向を変化させる。
 それぞれのルーバー451は、SRモータ452によって駆動され、その向きを変化させる。つまり、ルーバー451によって案内された空調風の向かう方向が、SRモータ452の駆動力によって調整される。SRモータ452の動作は制御部100により制御される。このように、SRモータ452は、車室RM内に吹き出される空調風の風向を変化させるものであって、本実施形態における「風変更部」に該当する。
 図2を参照しながら、制御部100の構成について説明する。制御部100は、機能的な制御ブロックとして、空調設定部110と、風量変化推定部120と、空調補正部130と、IR方向判定部140と、SR方向判定部150と、IR動作設定部160と、を有している。
 空調設定部110は、車両20に設けられた各種センサの測定値に基づいて、車室RM内に吹き出される空調風の風量や風向等を決定する部分である。空調設定部110には、先に説明したIRセンサ300からの測定値(表面温度)の他、内気温センサ501、外気温センサ502、日射センサ503、湿度センサ504のそれぞれの測定値が入力される。
 内気温センサ501は、車室RM内の気温を測定するためのセンサである。外気温センサは、車両20の外部の気温を測定するためのセンサである。日射センサ503は、車室内に入射する日光の光量を検知するためのセンサである。湿度センサ504は、車室RM内の湿度を測定するためのセンサである。
 空調設定部110には、車両20に設けられた目標温度設定器505からの設定値が入力される。目標温度設定器505は、空調の目標温度設定を行うために、車両20の乗員が操作する部分である。乗員によって目標温度が設定されると、当該目標温度の設定値が目標温度設定器505から空調設定部110へと入力される。
 空調設定部110は、回転数設定部111と、吹き出し口設定部112と、内外気設定部113と、SR動作設定部114と、を有している。回転数設定部111は、ブロア201の回転数を決定する部分である。ブロア201の回転数は、車室RM内に吹き出されるべき空調風の風量に応じて設定される。ブロア201は、空調設定部110により決定された回転数で動作するように制御される。回転数は、各種センサから入力される測定値を総合的に勘案して決定される。また、運転者M1が手動で行う設定に基づいて決定されることとしてもよい。尚、後述の回転数補正部131が行う補正により、決定された回転数とは異なる回転数で動作するようブロア201が制御される場合もある。
 吹き出し口設定部112は、空調風の出口となる吹き出し口を決定する部分である。すなわち、先に説明したフェイスモード、デフロストモード、フットモード、及びバイレベルモードのうち、どのモードで空調風が吹き出されるべきかを決定する部分である。かかる決定は、各種センサから入力される測定値を総合的に勘案して行われる。また、運転者M1が手動で行う設定に基づいて決定されることとしてもよい。尚、後述の吹き出し口補正部132が行う補正により、決定されたモードとは異なるモードで空調風が吹き出される場合もある。
 内外気設定部113は、車両用空調装置10が、外気循環モードと内気循環モードのいずれで動作するかを決定する部分である。かかる決定は、各種センサから入力される測定値を総合的に勘案して行われる。また、運転者M1が手動で行う設定に基づいて決定されることとしてもよい。尚、後述の内外気補正部133が行う補正により、決定されたモードとは異なるモードで車両用空調装置10が動作する場合もある。
 SR動作設定部114は、スイングレジスター450の動作、すなわちSRモータ452の制御方法を決定する部分である。SR動作設定部114により、空調風を向かわせるべき方向が決定される。かかる決定は、各種センサから入力される測定値を総合的に勘案して行われる。また、運転者M1が手動で行う設定に基づいて決定されることとしてもよい。尚、後述のSR動作補正部134が行う補正により、決定された動作とは異なる動作となるように、スイングレジスター450の制御が行われる場合もある。
 風量変化推定部120は、空調設定部110で決定された各種事項(ブロア201の回転数等)や、後述のSR位置センサ453の測定値に基づいて、車室RM内の特定箇所における空調風の風量の変化率を推定する部分である。「特定箇所」とは、例えば運転者M1の表面の一部等、吹き出し口410から吹き出された空調風が到達し得る任意の箇所である。
 風量変化推定部120により推定された風量の変化率は、後述の空調補正部130へと入力される。尚、ここでいう風量の変化率とは、例えば「m3/h/sec」のような単位で表される数値であってもよいが、風量の大きさを例えば10段階の無次元数に置き換えた上で、所定時間経過後に予想されるその変化の段数を表すような数値であってもよい。
 空調補正部130は、空調設定部110で決定された各種事項(ブロア201の回転数等)に対し必要に応じて種々の変更を加えた上で、ブロア201等の制御を行う部分である。空調補正部130は、回転数補正部131と、吹き出し口補正部132と、内外気補正部133と、SR動作補正部134と、を有している。
 回転数補正部131は、ブロア201の回転数を制御する部分である。回転数補正部131は、基本的には回転数設定部111で決定された回転数で動作するようにブロア201を制御する。ただし、風量変化推定部120において推定された風量の変化率が大きいときには、回転数設定部111で決定された回転数とは異なる(補正された)回転数で動作するよう、ブロア201を制御する。このような補正についての詳細は後に説明する。
 吹き出し口補正部132は、吹き出し口切り換えモータ202の動作を制御する部分である。吹き出し口補正部132は、基本的には吹き出し口設定部112で決定されたモード(フェイスモード等)で空調風が吹き出されるよう、吹き出し口切り換えモータ202を制御する。ただし、風量変化推定部120において推定された風量の変化率が大きいときには、吹き出し口設定部112で決定されたモードとは異なる(補正された)モードで動作するよう、吹き出し口切り換えモータ202を制御する。このような補正についての詳細は後に説明する。
 内外気補正部133は、内外気切り換えモータ203の動作を制御する部分である。内外気補正部133は、基本的には内外気設定部113で決定されたモード(外気循環モード等)で空調が行われるよう、内外気切り換えモータ203を制御する。ただし、風量変化推定部120において推定された風量の変化率が大きいときには、内外気設定部113で決定されたモードとは異なる(補正された)モードで空調が行われるよう、内外気切り換えモータ203を制御する。このような補正についての詳細は後に説明する。
 SR動作補正部134は、SRモータ452の動作を制御する部分である。SR動作補正部134は、基本的にはSR動作設定部114で決定された方向に空調風を向かわせるよう、SRモータ452を制御する。ただし、風量変化推定部120において推定された風量の変化率が大きいときには、SR動作設定部114で決定されたモードとは異なる(補正された)方向に空調風を向かわせるよう、SRモータ452を制御する。このような補正についての詳細は後に説明する。
 IR方向判定部140は、IR位置センサ302の測定値に基づいて、IRセンサ300がどの方向を向いているかを判定する部分である。IR位置センサ302は、例えばIRセンサ300に内蔵されたパルスカウンタであって、IRモータ301によって駆動される可動部分の位置変化量(例えばセンサヘッドの回転角度)を計測するものである。
 IR方向判定部140は、IRセンサ300が向いている方向を判定する他、現在の被検知領域に乗員(運転者M1や同乗者M2)の表面が含まれているかどうかについても判定する。かかる判定を行うに当たっては、予め記憶されている乗員の位置に関する情報が参酌される。尚、乗員の位置に関する情報は、このように予め設定値として記憶されていてもよいのであるが、IRセンサ300の測定値に基づいて都度取得されることとしてもよい。このような態様であれば、体格の異なる運転者M1等が運転席21等に着座した場合であっても、現在の被検知領域に乗員の表面が含まれているか否かの判定を正確に行うことができる。
 SR方向判定部150は、SR位置センサ453の測定値に基づいて、スイングレジスター450の各ルーバー451がどの方向を向いているかを判定する部分である。つまり、吹き出し口410から吹き出される空調風の風向を判定する部分である。SR位置センサ453は、例えばSRモータ452に内蔵されたパルスカウンタであって、SRモータ452によって駆動される可動部分の位置変化量(例えばルーバー451の回転角度)を計測するものである。
 SR方向判定部150は、各ルーバー451が向いている方向を判定する他、空調風が直接到達する領域に乗員(運転者M1や同乗者M2)の表面が含まれているかどうかについても判定する。かかる判定を行うに当たっては、予め記憶されている乗員の位置に関する情報が参酌される。上記のように、乗員の位置に関する情報が、IRセンサ300の測定値に基づいて都度取得されることとしてもよい。
 IR動作設定部160は、IR方向判定部140から入力される判定結果、及びSR方向判定部150から入力される判定結果、の両方に基づいて、IRセンサ300をどの方向に向けるべきかを決定する部分である。すなわち、車室RM内におけるどの部分を被検知領域とすべきかを決定する部分である。IR動作設定部160は、決定された被検知領域が視野610に含まれた状態となるように、IRモータ301の動作を制御する。
 ところで、本実施形態で用いられるIRセンサ300の視野範囲は比較的狭いので、乗員の全体における表面温度を一度に(同時に)取得することはできない。このため、既に述べたように、IRセンサ300に搖動動作を行わせることで視野610を左右方向に移動させ、乗員の表面温度を部分的に取得して行きながら、最終的に全体の温度分布を取得する。
 本実施形態では、200msecが経過する毎に0.5度変化するような速度でIRセンサ300の駆動、すなわち視野610の左右方向への移動が行われる。このため、図1に示されるIR駆動範囲600が150度にわたる範囲であるとすれば、当該範囲を1往復するためには120秒間の時間を要してしまう。IRセンサ300の搖動動作の速度は、取得する温度分布の分解能及び精度とトレードオフの関係となるため、搖動動作の速度を上げることは容易ではない。結果として、このような速度で表面温度が測定されると、例えば運転者M1のうち左側部分の温度が測定された時刻と、右側部分の温度が計測された時刻とは大きく乖離する。
 このため、例えば運転者M1の左側部分が測定された後に右側部分が測定される際、運転者M1に到達する空調風の風量が大きくなった場合には、運転者M1の右側部分のみが低温となったかのように検知されることとなる。上記のような(右側部分のみが低い)温度分布は、実際の温度分布とは異なるものである。
 このように、空調風の風量が一時的に大きくなったときに、当該空調風が直接当たる部分が被検知領域となっていると、温度分布の誤検知が生じる可能性がある。このような誤検知を防止するために、IR駆動範囲600の全体における表面温度を一度に測定し得るような口角のIRセンサを用いることも考えられる。しかしながら、その場合には広角レンズやセンサの高画素化が必要となるため、IRセンサのコストが上昇してしまう。
 そこで、本実施形態に係る車両用空調装置10では、上記のような高コストのIRセンサを用いることなく、視野角の狭いIRセンサ300を用いることとしながらも、IRモータ301の動作等を工夫することによって誤検知の発生を防止している。
 そのために行われる制御の概要について、図3及び図4を参照しながら説明する。図3(A)に示されるのは、ルーバー451の向き、すなわち吹き出し口410から吹き出される空調風の風向の時間変化である。同図の縦軸は、SR位置センサ453の測定値を示す軸である。値B11は、運転者M1の表面のうち最も右側となる位置に空調風の少なくとも一部が直接当たっているときにおける、SR位置センサ453の測定値である。つまり、ルーバー451の方向がこれ以上右側に移動すると運転者M1には空調風が直接到達しなくなるときにおける、SR位置センサ453の測定値である。
 値B12は、運転者M1の表面のうち最も左側となる位置に空調風の少なくとも一部が直接当たっているときにおける、SR位置センサ453の測定値である。つまり、ルーバー451の方向がこれ以上左側に移動すると運転者M1には空調風が直接到達しなくなるときにおける、SR位置センサ453の測定値である。
 値B13は、同乗者M2の表面のうち最も右側となる位置に空調風の少なくとも一部が直接当たっているときにおける、SR位置センサ453の測定値である。つまり、ルーバー451の方向がこれ以上右側に移動すると同乗者M2には空調風が直接到達しなくなるときにおける、SR位置センサ453の測定値である。
 値B14は、同乗者M2の表面のうち最も左側となる位置に空調風の少なくとも一部が直接当たっているときにおける、SR位置センサ453の測定値である。つまり、ルーバー451の方向がこれ以上左側に移動すると同乗者M2には空調風が直接到達しなくなるときにおける、SR位置センサ453の測定値である。
 図3(A)に示される例では、空調設定部110(図2を参照)がSRモータ452を制御することにより、ルーバー451が一定の周期で左右に搖動されている。具体的には、時刻t0から時刻t1までの期間においては、ルーバー451が左側に向かって移動して行き、時刻t2から時刻t4までの期間においては、ルーバー451が右側に向かって移動して行くような制御が行われる。その後の時刻t4から時刻t7までの期間においては、ルーバー451が再び左側に向かって移動して行くような制御が行われる。
 時刻t0から時刻t2までの期間には、SR位置センサ453の測定値は値B13から値B14までの範囲内となっている。このため、吹き出される空調風は同乗者M2の少なくとも一部に直接当たっている。
 時刻t2から時刻t3までの期間には、SR位置センサ453の測定値は値B12から値B13までの範囲内となっている。このため、吹き出される空調風は運転者M1及び同乗者M2のいずれに対しても直接は当たることなく、両者の間を通過している。
 時刻t3から時刻t5までの期間には、SR位置センサ453の測定値は値B11から値B12までの範囲内となっている。このため、吹き出される空調風は運転者M1の少なくとも一部に直接当たっている。
 時刻t5から時刻t6までの期間には、SR位置センサ453の測定値は値B12から値B13までの範囲内となっている。このため、吹き出される空調風は運転者M1及び同乗者M2のいずれに対しても直接は当たることなく、両者の間を通過している。時刻t6以降は、時刻t0から時刻t6までの期間と同様に空調風の風向が繰り返し変化する。
 このように、運転者M1が着座する運転席21に空調風が到達する状態と、同乗者M2が着座する助手席22に空調風が到達する状態とが交互に繰り返されるよう、吹き出される空調風の風向を徐々に変化させて行く。このような動作はSRモータ452によって実現される。
 空調風の風向が上記のように変化しているときにおいて、制御部100のIR動作設定部160は、乗員の表面のうち空調風が直接当たる領域と、被検知領域とが互いに重なることの無いように、IRモータ301の制御を行う。このような制御は、IR方向判定部140の判定結果、及びSR方向判定部150の判定結果の両方を参酌しながら行われる。
 IRモータ301の具体的な制御態様について説明する。図3(B)に示されるのは、IRセンサ300の向きの時間変化である。同図の縦軸は、IR位置センサ302の測定値を示す軸である。値D11は、運転者M1の表面のうち最も右側となる位置が被検知領域に含まれているときにおける、IR位置センサ302の測定値である。つまり、視野610がこれ以上右側に移動すると被検知領域には運転者M1の表面が含まれなくなるときにおける、IR位置センサ302の測定値である。
 値D12は、運転者M1の表面のうち最も左側となる位置が被検知領域に含まれているときにおける、IR位置センサ302の測定値である。つまり、視野610がこれ以上左側に移動すると被検知領域には運転者M1の表面が含まれなくなるときにおける、IR位置センサ302の測定値である。
 値D13は同乗者M2の表面のうち最も右側となる位置が被検知領域に含まれているときにおける、IR位置センサ302の測定値である。つまり、視野610がこれ以上右側に移動すると、被検知領域には同乗者M2の表面が含まれなくなるときにおける、IR位置センサ302の測定値である。
 値D14は、同乗者M2の表面のうち最も左側となる位置が被検知領域に含まれているときにおける、IR位置センサ302の測定値である。つまり、視野610がこれ以上左側に移動すると被検知領域には同乗者M2の表面が含まれなくなるときにおける、IR位置センサ302の測定値である。
 IR位置センサ302の測定値が値D11から値D12までの範囲内であるときには、図4に示される点線601と点線602との間の領域、の少なくとも一部が視野610に含まれている。このため、被検知領域には運転者M1の表面の一部が含まれた状態となっている。また、IR位置センサ302の測定値が値D13から値D14までの範囲内であるときには、図4に示される点線603と点線604との間の領域、の少なくとも一部が視野610に含まれている。このため、被検知領域には同乗者M2の表面の一部が含まれた状態となっている。
 図3(B)に示される例では、IR動作設定部160(図2を参照)がIRモータ301を制御することにより、IRセンサ300の向き(及びその結果として被検知領域)が左右に搖動されている。具体的には、時刻t0から時刻t1までの期間においては、被検知領域が右側に向かって移動して行き、時刻t2から時刻t4までの期間においては、被検知領域が左側に向かって移動して行くような制御が行われる。その後の時刻t4から時刻t7までの期間においては、被検知領域が再び右側に向かって移動して行くような制御が行われる。
 時刻t0から時刻t2までの期間には、IR位置センサ302の測定値は値D11から値D12までの範囲内となっている。このため、運転者M1の表面の少なくとも一部が被検知領域に含まれている。このとき、空調風は運転者M1の表面には直接当たらないので、被検知領域に空調風は直接到達しない。換言すれば、空調風が運転者M1の表面に直接当たらないような期間においてのみ、運転者M1の表面温度がIRセンサ300によって計測されるように、IRモータ301の制御が行われる。
 時刻t2から時刻t3までの期間には、IR位置センサ302の測定値は値D12から値D13までの範囲内となっている。このため、運転者M1の表面及び同乗者M2の表面はいずれも、被検知領域に含まれていない。
 この期間においては、空調風は運転席21と助手席22との間となる位置に到達している。被検知領域の位置が変化する方向(左方向)は、空調風の到達位置が変化する方向(右方向)とは逆方向となっている。このような動作となるようにIRモータ301の制御が行われるので、空調風が直接到達する領域と被検知領域とが、乗員の表面上において互いに重なってしまうことが確実に防止される。
 時刻t3から時刻t5までの期間には、IR位置センサ302の測定値は値D13から値D14までの範囲内となっている。このため、同乗者M2の表面の少なくとも一部が被検知領域に含まれている。このとき、空調風は同乗者M2の表面には直接当たらないので、被検知領域に空調風は直接到達しない。換言すれば、空調風が同乗者M2の表面に直接当たらないような期間においてのみ、同乗者M2の表面温度がIRセンサ300によって計測されるように、IRモータ301の制御が行われる。
 時刻t5から時刻t6までの期間には、SR位置センサ453の測定値は値B12から値B13までの範囲内となっている。このため、運転者M1の表面及び同乗者M2の表面はいずれも、被検知領域に含まれていない。この期間においては、空調風は運転席21と助手席22との間となる位置に到達している。被検知領域の位置が変化する方向(右方向)は、空調風の到達位置が変化する方向(左方向)とは逆方向となっている。このような動作となるようにIRモータ301の制御が行われるので、空調風が直接到達する領域と被検知領域とが、乗員の表面上において互いに重なってしまうことが確実に防止される。時刻t6以降は、時刻t0から時刻t6までの期間と同様に、IRセンサ300の向きが繰り返し変化するように制御が行われる。
 このように、運転席21に空調風が到達するときには助手席22が被検知領域となり、助手席22に空調風が到達するときには運転席21が被検知領域となるように、IRモータ301の動作の制御が行われる。その結果、どの時刻においても、空調風が直接到達する領域と被検知領域とが、いずれかの乗員(運転者M1又は同乗者M2)の表面上において互いに重なってしまうことがない。
 図5を参照しながら、制御部100が行う処理の流れについて説明する。図5に示される一連の処理は、一定の周期が経過する毎に繰り返し実行されている。
 最初のステップS01では、スイングレジスター450が動作中であるか否かが判定される。スイングレジスター450が停止しており、風向が一定である場合には、図5に示される一連の処理を終了する。スイングレジスター450が動作中である場合には、ステップS02に移行する。
 ステップS02では、空調風の風向が運転席21側に向いているか否か、具体的には、SR位置センサ453の測定値が値B11から値B12までの範囲内であるか否かが判定される。空調風の風向が運転席21側に向いていれば、ステップS03に移行する。ステップS03では、IRセンサ300が助手席22側を向くように、IRモータ301の動作が制御される。具体的には、IR位置センサ302の測定値が値B13から値B14までの範囲内となるように、IRモータ301の動作が制御される。
 ステップS02において、空調風の風向が運転席21側に向いていなければ、ステップS04に移行する。ステップS04では、空調風の風向が助手席22側に向いているか否か、具体的には、SR位置センサ453の測定値が値B13から値B14までの範囲内であるか否かが判定される。空調風の風向が助手席22側に向いていれば、ステップS05に移行する。ステップS05では、IRセンサ300が運転席21側を向くように、IRモータ301の動作が制御される。具体的には、IR位置センサ302の測定値が値B11から値B12までの範囲内となるように、IRモータ301の動作が制御される。
 ステップS04において、空調風の風向が助手席22側に向いていなければ、ステップS06に移行する。ステップS06では、空調風の到達位置が変化する方向が、運転席21側(つまり右側)へ向かう方向であるか否かが判定される。空調風の到達位置が右側に向かって変化している場合には、ステップS07に移行する。ステップS07では、IRセンサ300の移動方向、すなわち被検知領域の位置が変化する方向が、助手席22側(つまり左側)へ向かう方となるように、IRモータ301の制御が行われる。これにより、被検知領域の位置が変化する方向は、空調風の到達位置が変化する方向とは逆方向となる。
 ステップS06において、空調風の到達位置が、助手席22側(つまり左側)に向かって変化している場合には、ステップS08に移行する。ステップS08では、運転席21(つまり右側)へ向かう方となるように、IRモータ301の制御が行われる。これにより、被検知領域の位置が変化する方向は、空調風の到達位置が変化する方向とは逆方向となる。
 以上のように、本実施形態では、乗員の表面の一部が被検知領域となっているときに、その被検知領域においては空調風が到達しない状態(風量変化が抑制されている状態ともいえる)となるように、IRモータ301の動作が制御される。
 このような制御に替えて、車両用空調装置10では、IRセンサ300の向きを、空調風の到達位置を考慮することなく一定の周期で搖動させることとしながら、被検知領域における風量変化を抑制するような制御を行うことも可能となっている。そのために行われる処理の内容について、図6を参照しながら説明する。図6に示される一連の処理は、一定の周期が経過する毎に、制御部100で繰り返し実行されている。
 最初のステップS11では、IRセンサ300の計測領域である被検知領域が、乗員(運転者M1又は同乗者M2)の表面の一部を含んでいるか否かが判定される。被検知領域に乗員の表面の一部が含まれていない場合には、ステップS14に移行する。ステップS14では、通常の空調制御が実施される。通常の空調制御とは、被検知領域における風量変化を考慮することなく行われる制御のことである。
 ステップS11において、被検知領域に乗員の表面の一部が含まれている場合には、ステップS12に移行する。尚、ステップS11では、被検知領域に乗員の表面の一部が実際に含まれている場合の他、被検知領域に乗員の表面の一部がこれから数秒後に含まれることとなる場合にも、ステップS12に移行する。
 ステップS12では、被検知領域における空調風の風量の変化率が、風量変化推定部120(図2を参照)によって推定される。「風量の変化率」は、空調設定部110で決定された空調制御が行われたとした場合に、数秒後に被検知領域で生じると推定される風量変化、についての変化率である。
 ステップS12では更に、推定された風量の変化率が、予め設定された閾値を越えているか否かが判定される。つまり、現時点から数秒後の時点において、被検知領域で大きな風量変化が生じ得るかどうかが判定される。風量の変化率が閾値を越えていなければ、ステップS14に移行する。以降は、既に説明した通常の空調制御が実施される。
 ステップS12において、風量の変化率が閾値を越えている場合には、ステップS13に移行する。ステップS13では、被検知領域における空調風の風量変化を抑制するために、空調補正部130による空調補正が実行される。車両用空調装置10では、このような空調補正として、様々な態様を実行することができる。
 空調補正の態様の例として、回転数補正部131によるブロア201の回転数の調整が挙げられる。回転数補正部131は、ブロア201の回転数の変化率に対して一時的に上限を設定し、これにより回転数の変化を抑制する。また、ブロア201の回転数の変化を一時的に禁止することとしてもよい。このような空調補正によって、被検知領域に到達する空調風の風量変化を抑制することができる。これにより、一時的な表面温度の変化に伴う温度分布の誤検知を防止することができる。
 また、空調補正の他の態様として、被検知領域に到達する空調風の風量そのものを低下させたり、0としたりすることとしてもよい。つまり、乗員と重なる被検知領域においては乗員に当たる空調風の風量が抑制されている状態となるように、制御部100が、風変更部(例えば空調部200)及び検知位置変更部(例えばIRモータ301)のうち少なくとも一方の動作を制御することとしてもよい。例えば、空調風の風量は変化させることなく風向だけを変化させることにより、乗員と重なる被検知領域に当たる空調風の風量を0とするような態様であってもよい。
 空調補正の態様の他の例として、吹き出し口補正部132による吹き出し口切り換えモータ202の制御が挙げられる。吹き出し口補正部132は、吹き出し口切り換えモータ202が動作することを一時的に禁止する。すなわち、フェイスモードやデフロストモード等の切り換えが行われ、吹き出し口が切り換えられてしまうことを一時的に禁止する。このような空調補正によっても、被検知領域に到達する空調風の風量変化を抑制することができる。これにより、一時的な表面温度の変化に伴う温度分布の誤検知を防止することができる。
 空調補正の態様の他の例として、内外気補正部133による内外気切り換えモータ203の制御が挙げられる。内外気補正部133は、内外気切り換えモータ203が動作することを一時的に禁止する。すなわち、外気循環モードと内気循環モードとの間における切り換えが行われてしまうことを一時的に禁止する。このような空調補正によっても、被検知領域に到達する空調風の風量変化を抑制することができる。これにより、一時的な表面温度の変化に伴う温度分布の誤検知を防止することができる。
 空調補正の態様の他の例として、SR動作補正部134によるSRモータ452の制御が挙げられる。SR動作補正部134は、被検知領域に空調風が直接到達することの無いように、SRモータ452を制御する。換言すれば、被検知領域以外の部分に空調風が到達するように、SRモータ452を制御する。このような空調補正によっても、被検知領域に到達する空調風の風量変化を抑制することができる。これにより、一時的な表面温度の変化に伴う温度分布の誤検知を防止することができる。
 以上の説明においては、車両20のうち前方側に設けられた座席(運転席21、助手席22)に向けて空調風が吹き出される場合の例について説明したが、このような態様に限定される必要はない。例えば天井から後部座席に向けて空調風が吹き出されるような構成の車両用空調装置にも、本開示の構成を適用することができる。
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。

Claims (9)

  1.  車両(20)に備えられる車両用空調装置(10)であって、
     車室(RM)内に吹き出される空調風の風量又は風向のうち、少なくとも一方を変化させる風変更部(200,452)と、
     物体の表面温度を、当該物体からの輻射に基づいて検知する温度検知部(300)と、
     前記温度検知部によって表面温度が検出される領域、である被検知領域の位置を変化させる検知位置変更部(301)と、
     前記風変更部及び前記検知位置変更部のそれぞれの動作を制御する制御部(100)と、を備え、
     前記制御部は、
     乗員の表面の一部が前記被検知領域となっているときに、前記被検知領域においては空調風の風量変化が抑制されている状態となるように、前記風変更部及び前記検知位置変更部のうち少なくとも一方の動作を制御する、車両用空調装置。
  2.  前記制御部は、
     乗員の表面のうち吹き出された空調風が直接到達する領域に対し、前記被検知領域が重なることの無いように、前記検知位置変更部の動作を制御する、請求項1に記載の車両用空調装置。
  3.  前記車両には、互いに隣り合う第1座席(21)及び第2座席(22)が設けられており、
     前記風変更部は、前記第1座席に空調風が到達する状態と、前記第2座席に空調風が到達する状態とが交互に繰り返されるよう、吹き出される空調風の風向を徐々に変化させて行くものであって、
     前記制御部は、
     前記第1座席に空調風が到達するときには、前記第2座席が前記被検知領域となり、
     前記第2座席に空調風が到達するときには、前記第1座席が前記被検知領域となるように、前記検知位置変更部の動作を制御する、請求項2に記載の車両用空調装置。
  4.  前記第1座席と前記第2座席との間となる位置に空調風が到達するときには、
     前記制御部は、
     前記被検知領域の位置が変化する方向が、前記空調風の到達位置が変化する方向とは逆方向となるように、前記検知位置変更部の動作を制御する、請求項3に記載の車両用空調装置。
  5.  乗員の表面の一部が前記被検知領域となっているときには、
     前記制御部は、
     吹き出された空調風が、前記被検知領域に対して直接到達することの無いように、前記風変更部の動作を制御する、請求項1に記載の車両用空調装置。
  6.  空調風の出口である吹き出し口(410,420)が複数形成されており、
     乗員の表面の一部が前記被検知領域となっているときには、
     前記制御部は、
     前記吹き出し口の切り換えが行われないように前記風変更部の動作を制御する、請求項1に記載の車両用空調装置。
  7.  乗員の表面の一部が前記被検知領域となっているときには、
     前記制御部は、
     空調風を送り出すために設けられたブロア(201)の回転数変化が抑制されるように、前記風変更部の動作を制御する、請求項1に記載の車両用空調装置。
  8.  前記風変更部は、
     前記車両の外側から導入された空気を空調風として吹き出す外気循環モードと、車室内から導入された空気を空調風として吹き出す内気循環モードと、を切り換えて実行することができるものであって、
     乗員の表面の一部が前記被検知領域となっているときには、
     前記制御部は、
     前記外気循環モードと前記前記内気循環モードとの間における切り換えが行われないように、前記風変更部の動作を制御する、請求項1に記載の車両用空調装置。
  9.  車両(20)に備えられる車両用空調装置(10)であって、
     車室(RM)内に吹き出される空調風の風量又は風向のうち、少なくとも一方を変化させる風変更部(200,452)と、
     物体の表面温度を、当該物体からの輻射に基づいて検知する温度検知部(300)と、
     前記温度検知部によって表面温度が検出される領域、である被検知領域の位置を変化させる検知位置変更部(301)と、
     前記風変更部及び前記検知位置変更部のそれぞれの動作を制御する制御部(100)と、を備え、
     前記制御部は、
     乗員の表面の一部が前記被検知領域となっているときに、前記被検知領域においては前記乗員に当たる空調風の風量が抑制されている状態となるように、前記風変更部及び前記検知位置変更部のうち少なくとも一方の動作を制御する、車両用空調装置。
PCT/JP2016/082008 2015-12-22 2016-10-28 車両用空調装置 WO2017110244A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680074817.0A CN108473021B (zh) 2015-12-22 2016-10-28 车辆用空调装置
DE112016005926.4T DE112016005926B4 (de) 2015-12-22 2016-10-28 Fahrzeugklimaanlage
US16/063,709 US10618375B2 (en) 2015-12-22 2016-10-28 Vehicular air-conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-249525 2015-12-22
JP2015249525A JP6459952B2 (ja) 2015-12-22 2015-12-22 車両用空調装置

Publications (1)

Publication Number Publication Date
WO2017110244A1 true WO2017110244A1 (ja) 2017-06-29

Family

ID=59089229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082008 WO2017110244A1 (ja) 2015-12-22 2016-10-28 車両用空調装置

Country Status (5)

Country Link
US (1) US10618375B2 (ja)
JP (1) JP6459952B2 (ja)
CN (1) CN108473021B (ja)
DE (1) DE112016005926B4 (ja)
WO (1) WO2017110244A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532629B2 (en) * 2017-09-06 2020-01-14 Ford Global Technologies, Llc Radiant heating system incorporating steering wheel position monitoring device
FR3071056B1 (fr) * 2017-09-12 2021-01-08 Valeo Systemes Thermiques Dispositif d'analyse d'un rayonnement infrarouge d'une surface d'un habitacle de vehicule automobile
JP7036706B2 (ja) * 2018-12-12 2022-03-15 本田技研工業株式会社 車両用空調制御システム、車両用空調制御方法、およびプログラム
KR20190112681A (ko) * 2019-09-16 2019-10-07 엘지전자 주식회사 차량 공조 제어 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113210U (ja) * 1984-01-10 1985-07-31 日産自動車株式会社 乗物用空気調和装置
JP2005059821A (ja) * 2003-07-29 2005-03-10 Nissan Motor Co Ltd 車両用空調装置
JP2005067461A (ja) * 2003-08-26 2005-03-17 Denso Corp 車両用空調装置
WO2016166938A1 (ja) * 2015-04-16 2016-10-20 パナソニックIpマネジメント株式会社 空調制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135253B2 (ja) * 1998-05-13 2008-08-20 株式会社デンソー 車両用空調装置
JP3948355B2 (ja) * 2001-12-06 2007-07-25 株式会社デンソー 車両用空調装置
JP2004155408A (ja) * 2002-09-13 2004-06-03 Nissan Motor Co Ltd 車両用空調装置
JP3861797B2 (ja) * 2002-10-31 2006-12-20 株式会社デンソー 車両用空調装置
JP4062124B2 (ja) 2003-02-25 2008-03-19 株式会社デンソー 車両用空調装置
JP2006298016A (ja) * 2005-04-15 2006-11-02 Toyota Motor Corp 車両用空調装置
JP4770275B2 (ja) * 2005-05-30 2011-09-14 日産自動車株式会社 車両用空調制御装置及び車両用空調制御方法
JP4613718B2 (ja) 2005-07-07 2011-01-19 日産自動車株式会社 車両用空調装置および車両用空調制御方法
KR20100005925A (ko) 2008-07-08 2010-01-18 한라공조주식회사 차량용 공조 제어시스템 및 그 제어방법
JP5621695B2 (ja) * 2011-04-04 2014-11-12 カルソニックカンセイ株式会社 空調装置
FR2974761B1 (fr) * 2011-05-05 2013-10-25 Renault Sa Procede de regulation multizone de la temperature interieure de l'habitacle d'un vehicule automobile et systeme de climatisation associe.
US9643471B2 (en) * 2012-03-27 2017-05-09 Ford Global Technologies, Llc Driver personalized climate conditioning
KR101477233B1 (ko) * 2013-09-16 2014-12-29 현대모비스 주식회사 맞춤형 공조기 제어 시스템 및 방법
US10272920B2 (en) * 2013-10-11 2019-04-30 Panasonic Intellectual Property Corporation Of America Processing method, program, processing apparatus, and detection system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60113210U (ja) * 1984-01-10 1985-07-31 日産自動車株式会社 乗物用空気調和装置
JP2005059821A (ja) * 2003-07-29 2005-03-10 Nissan Motor Co Ltd 車両用空調装置
JP2005067461A (ja) * 2003-08-26 2005-03-17 Denso Corp 車両用空調装置
WO2016166938A1 (ja) * 2015-04-16 2016-10-20 パナソニックIpマネジメント株式会社 空調制御装置

Also Published As

Publication number Publication date
US20190009639A1 (en) 2019-01-10
JP2017114198A (ja) 2017-06-29
JP6459952B2 (ja) 2019-01-30
DE112016005926T5 (de) 2018-09-06
US10618375B2 (en) 2020-04-14
CN108473021B (zh) 2020-12-22
DE112016005926B4 (de) 2022-01-27
CN108473021A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2017110244A1 (ja) 車両用空調装置
US8733428B2 (en) Air conditioning system for vehicle
JP4348847B2 (ja) 車両用空調装置およびその制御方法
WO2013088727A1 (ja) 車両用空調装置
US10377208B2 (en) Use of discharge air sensors to control recirculation door during heat request
US10894460B2 (en) Occupant detection system
JP6702206B2 (ja) 車両用空調装置
JP4355584B2 (ja) 車両用空気調和装置
JP2018034705A5 (ja)
JP2010018227A (ja) 車両用空調装置
JP2017114198A5 (ja)
JP7119730B2 (ja) 状態推定装置
JP7031237B2 (ja) 空調装置
JP2019093766A5 (ja)
US10675944B2 (en) Vehicular air conditioner
JP2017136878A (ja) 空調システム
JP5995193B2 (ja) 車両用防曇装置
JP6702204B2 (ja) 車両用空調装置
JP4862441B2 (ja) 車両用空調装置
JP2020121698A (ja) 車両用空調装置
JP2006137216A (ja) 車両用空調装置
KR20160010675A (ko) 차량용 공조장치
JP2006232007A (ja) 車両用空調装置
JP3952596B2 (ja) 車両用空調装置
JP2020040495A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878142

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005926

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878142

Country of ref document: EP

Kind code of ref document: A1