WO2017107247A1 - 一种提高烧结钕铁硼薄片磁体磁性能的方法 - Google Patents

一种提高烧结钕铁硼薄片磁体磁性能的方法 Download PDF

Info

Publication number
WO2017107247A1
WO2017107247A1 PCT/CN2016/000377 CN2016000377W WO2017107247A1 WO 2017107247 A1 WO2017107247 A1 WO 2017107247A1 CN 2016000377 W CN2016000377 W CN 2016000377W WO 2017107247 A1 WO2017107247 A1 WO 2017107247A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
sheet magnet
sintered ndfeb
powder
ndfeb sheet
Prior art date
Application number
PCT/CN2016/000377
Other languages
English (en)
French (fr)
Inventor
杨庆忠
石高阳
张民
丁勇
吕向科
胡依群
Original Assignee
宁波韵升股份有限公司
宁波韵升磁体元件技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波韵升股份有限公司, 宁波韵升磁体元件技术有限公司 filed Critical 宁波韵升股份有限公司
Priority to DE112016005950.7T priority Critical patent/DE112016005950T5/de
Priority to US15/742,032 priority patent/US20180197680A1/en
Publication of WO2017107247A1 publication Critical patent/WO2017107247A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Definitions

  • the invention relates to a method for improving the magnetic properties of sintered NdFeB magnets, in particular to a method for improving the magnetic properties of sintered NdFeB sheet magnets.
  • Sintered NdFeB magnets have excellent comprehensive magnetic properties and are widely used in aerospace, microwave communication technology, automotive industry, instrumentation and medical equipment. In recent years, the high-performance sintered NdFeB application market has rapidly developed toward miniaturization, light weight and flaking.
  • Sintered NdFeB sheet magnets sintered NdFeB magnets with a thickness of 15 mm or less are used in wind power and inverter compressors. The speed and application range of high-end fields such as hybrids are rapidly expanding, and the market places higher demands on its performance, requiring not only high remanence but also high coercivity.
  • the traditional method for improving the coercivity of sintered NdFeB sheet magnets is mainly to add heavy rare earth elements such as Dy or Tb to sintered NdFeB sheet magnets, and heavy rare earth elements such as Dy or Tb by adding Dy or Tb during the raw material melting process.
  • the metal or alloy of the heavy rare earth element is added or added by means of a double alloy.
  • most of the heavy rare earth elements added by these methods enter the main phase of NdFeB, only a small amount is distributed in the grain boundaries, resulting in low utilization of heavy rare earth elements, and a large amount of heavy rare earth elements such as Dy or Tb in the main phase.
  • the introduction of the sintered NdFeB sheet magnet will result in a significant decrease in remanence and maximum magnetic energy product.
  • the method for improving the magnetic properties of the sintered NdFeB sheet magnet is mainly the grain boundary diffusion method.
  • a rare earth metal powder or a rare earth compound powder is first coated on a surface of a sintered NdFeB sheet magnet to form a surface coating layer, and then subjected to diffusion treatment and aging treatment to cause the rare earth element contained in the surface coating layer to enter the sintered NdFeB sheet magnet.
  • the inside, wherein the coating method can be spray coating, dipping, evaporation, magnetron sputtering or electroplating.
  • the rare earth element entering the sintered NdFeB sheet magnet is mainly distributed at the grain boundary of the sintered NdFeB sheet magnet and the main phase epitaxial layer, thereby improving the coercive force of the sintered NdFeB sheet magnet.
  • the residual magnetism drop is not obvious.
  • this method has the following problems: when the rare earth metal powder is used, the rare earth element is relatively easy to enter the inside of the sintered NdFeB sheet magnet during the diffusion treatment, and the coercive force is improved obviously under the premise that the residual magnetization is not obvious, but Rare earth metal powder is unstable in the air environment, and needs to be protected by atmosphere during storage and formation of surface coating, which is difficult to mass-produce; when rare earth compound powder is used, rare earth compound has high stability in air environment.
  • the atmosphere protection is not required in the process of forming the surface coating, but the rare earth compound is not easily decomposed during the diffusion treatment, so that it is difficult for the rare earth element to diffuse into the sintered NdFeB sheet magnet, thereby causing the coercive force of the sintered NdFeB sheet magnet.
  • the increase is not obvious and will affect the squareness of the final sintered NdFeB sheet magnet.
  • the technical problem to be solved by the present invention is to provide a method for improving the magnetic properties of a sintered NdFeB sheet magnet, which can significantly improve the coercive force while ensuring that the residual magnetization is not significantly reduced, and can be mass-produced without Affects the squareness of the final sintered NdFeB sheet magnet.
  • the technical solution adopted by the present invention to solve the above technical problem is: a method for improving the magnetic properties of a sintered NdFeB sheet magnet, firstly coating a powder containing a rare earth element on the surface of the sintered NdFeB sheet magnet to form a surface Coating, then performing diffusion treatment and aging treatment to bring rare earth elements contained in the surface coating into the interior of the sintered NdFeB sheet magnet, the rare earth element-containing powder being a rare earth oxide powder and a hydrogen storage alloy A mixture of powders of hydride.
  • the mass percentage of the powder of the rare earth oxide is 70% to 99.9%, and the mass percentage of the powder of the hydrogen storage alloy hydride is 0.1% to 30%.
  • the rare earth oxide is one or a mixture of at least two of lanthanum, cerium and lanthanide oxides.
  • the rare earth oxide is one or a mixture of at least two of lanthanum, cerium and lanthanum oxides.
  • the oxides of lanthanum, cerium and lanthanum are relatively stable in an air environment, and after oxidation-reduction reaction with hydrogen hydride of the hydrogen storage alloy, lanthanum, cerium and lanthanum enter the sintered NdFeB magnet grain boundary phase and the main phase epitaxial layer. , significantly improve the coercivity of the magnet.
  • the hydrogen storage alloy hydride is one or a mixture of at least two of an alkali metal hydride, an alkali metal alloy hydride, an alkaline earth metal hydride, an alkaline earth metal alloy hydride, a rare earth hydride, and a rare earth alloy hydride.
  • the hydrogen storage alloy hydride is prone to decomposition and release of hydrogen during the diffusion heat treatment, and a reducing atmosphere is generated, which facilitates subsequent grain boundary diffusion.
  • the hydrogen storage alloy hydride is one or a mixture of at least two of an alkaline earth metal hydride and a rare earth hydride.
  • the rare earth oxide has a powder specific surface area average particle size of ⁇ 10 ⁇ m.
  • the rare earth oxide powder has a small particle size, can be sufficiently in contact with the surface of the sintered NdFeB sheet magnet, and is more likely to diffuse the rare earth element into the sintered NdFeB sheet magnet to improve the utilization ratio of the rare earth.
  • the hydrogen storage alloy hydride has a powder specific surface area average particle size of ⁇ 2 mm.
  • the hydrogen storage alloy hydride has a powder specific surface area average particle size of ⁇ 100 ⁇ m.
  • the powder particle size of the hydrogen storage alloy hydride is less than 100 ⁇ m, the hydrogen storage alloy hydride powder is in sufficient contact with the rare earth oxide powder, and the hydrogen released from the hydrogen storage alloy hydride reacts with the rare earth oxide during the subsequent diffusion treatment heating. More fully, it is beneficial for the rare earth element to diffuse into the interior of the sintered NdFeB sheet magnet.
  • the diffusion treatment is performed at 700 ° C to 1000 ° C for 1 h to 30 h, and the aging treatment is performed at 400 ° C to 600 ° C for 1 h to 10 h.
  • the invention has the advantages that the powder containing the rare earth element is first coated on the surface of the sintered NdFeB sheet magnet to form a surface coating layer, and then subjected to diffusion treatment and aging treatment to make the rare earth contained in the surface coating layer.
  • the element enters the inside of the sintered NdFeB sheet magnet, and the powder containing the rare earth element is a mixture of the powder of the rare earth oxide and the powder of the hydrogen storage alloy hydride, and the surface of the sintered NdFeB sheet magnet is a rare earth oxide.
  • a mixture of a powder and a powder of a hydrogen storage alloy hydride, a mixture of a powder of a rare earth oxide and a powder of a hydrogen storage alloy hydride in a stable environment in an air environment, and a process of forming a surface coating is easy to handle, in the case of sintered ferroniobium
  • the rare earth oxide in the mixture and the hydrogen storage alloy hydride are redoxed, the rare earth element in the rare earth oxide is reduced, and the surface of the sintered NdFeB sheet magnet is easily diffused.
  • Rare earth elements, hydrogen storage alloy hydrides will release hydrogen during heat diffusion treatment, sintering ⁇
  • the boron sheet magnet is in a hydrogen reducing atmosphere, and the rare earth element diffused into the sintered NdFeB sheet magnet is not oxidized again by the oxygen element present in the sintered NdFeB sheet magnet, thereby ensuring diffusion of the rare earth element to the sintered NdFeB sheet.
  • the inside of the magnet does not stay inside and is close to the surface, thereby significantly increasing the diffusion efficiency of the rare earth element, increasing the diffusion depth of the rare earth element, and narrowing the difference in the content of rare earth elements at different positions inside the sintered NdFeB sheet magnet, which is obviously improved.
  • the coercive force ensures that the residual magnetism is not significantly reduced, and can be mass-produced without affecting the squareness of the final sintered NdFeB sheet magnet.
  • Embodiment 1 A method for improving the magnetic properties of a sintered NdFeB sheet magnet, comprising the following steps:
  • a suspension containing a rare earth element is prepared by mixing a powder of yttrium oxide Dy 2 O 3 and a powder of calcium hydride CaH 2 and uniformly dispersing it in absolute ethanol, and yttrium oxide Dy 2 O
  • the mass ratio of the powder of 3 and the powder of calcium hydride CaH 2 is 3:1;
  • the dried NdFeB sheet magnet after drying is firstly subjected to diffusion treatment in a vacuum environment of pressure of 5 ⁇ 10 -4 Pa and then subjected to aging treatment, the diffusion treatment temperature is 900 ° C, and the diffusion treatment time is 12 h; The treated temperature was 500 ° C and the aging treatment time was 4 h.
  • the sintered NdFeB sheet magnet is obtained by a large-sized sintered NdFeB magnet by a mechanical processing process (cutting), the specification (diameter ⁇ thickness) is ⁇ 10 ⁇ 7 mm, and the large sintered NdFeB magnet is made of ferroniobium. It is prepared by the process of mature quick-setting slab, hydrogen pulverization, jet milling, forming and sintering in the field of boron processing; the sintered NdFeB sheet magnet comprises the following components: mass percentage of 24.5% Nd, mass percentage 0.2% The Dy, the mass percentage is 4.8% of Pr, the mass percentage is 1.0% of B, and the balance is Fe and other trace elements.
  • the sintered NdFeB sheet magnets before spraying in the method of the present embodiment are identified as the original samples, and the two sintered NdFeB sheet magnets prepared by the method of the present embodiment are selected as the test sample 1-1 and the test sample 1 respectively.
  • - 2 using the permanent magnet material measuring BH meter for the original sample of this example and the test sample 1-1 and test sample 1-2 respectively magnetic performance test, the magnetic performance test data shown in Table 1 below.
  • the mixture of the powder of the yttrium oxide Dy 2 O 3 and the powder of the calcium hydride CaH 2 is sintered on the surface of the sintered NdFeB sheet magnet by the grain boundary diffusion treatment, and the NdFeB sheet magnet is sintered.
  • the coercive force of the magnet increases remarkably after the grain boundary diffusion, the coercive force increases by about 3.5 ⁇ 4kOe, and the magnetic properties of the sintered NdFeB sheet magnet are consistent.
  • Embodiment 2 A method for improving the magnetic properties of a sintered NdFeB sheet magnet, comprising the following steps:
  • a suspension containing a rare earth element is prepared by mixing a powder of cerium oxide Tb 2 O 3 and a powder of calcium hydride CaH 2 and uniformly dispersing it in absolute ethanol, and strontium oxide Tb 2 O
  • the mass ratio of the powder of 3 and the powder of calcium hydride CaH 2 is 3:1;
  • the sintered NdFeB sheet magnet after spraying is dried, the drying process is kept at 60 ° C for 5 min, and the sintered NdFeB sheet magnet after drying is stored in an inert gas environment;
  • the dried NdFeB sheet magnet after drying is firstly subjected to diffusion treatment in a vacuum environment of pressure of 5 ⁇ 10 -4 Pa and then subjected to aging treatment, the diffusion treatment temperature is 900 ° C, and the diffusion treatment time is 12 h; The treated temperature was 500 ° C and the aging treatment time was 4 h.
  • the sintered NdFeB sheet magnet is obtained by a large-sized sintered NdFeB magnet by a mechanical processing process (cutting), the specification (diameter ⁇ thickness) is ⁇ 10 ⁇ 7 mm, and the large sintered NdFeB magnet is made of ferroniobium. It is prepared by the process of mature quick-setting slab, hydrogen pulverization, jet milling, forming and sintering in the field of boron processing; the sintered NdFeB sheet magnet comprises the following components: mass percentage of 24.5% Nd, mass percentage 0.2% The Dy, the mass percentage is 4.8% of Pr, the mass percentage is 1.0% of B, and the balance is Fe and other trace elements.
  • the sintered NdFeB sheet magnets before spraying in the method of the present embodiment are identified as original samples, and two sintered NdFeB sheet magnets prepared by the method of the present embodiment are selected as test samples 2-1 and test samples 2, respectively. - 2, using the permanent magnet material measuring BH meter for the original sample of this example and test sample 2-1 and test sample 2-2 respectively magnetic performance test, the magnetic performance test data shown in Table 2 below.
  • the mixture of the powder of the ruthenium oxide Tb 2 O 3 and the powder of the calcium hydride CaH 2 is sintered on the surface of the sintered NdFeB sheet magnet by the grain boundary diffusion treatment, and the NdFeB sheet magnet is sintered.
  • the coercive force of the magnet increases remarkably after the grain boundary diffusion, the coercive force is increased by about 7 to 7.5 kOe, and the magnetic properties of the sintered NdFeB sheet magnet are consistent.
  • Embodiment 3 A method for improving the magnetic properties of a sintered NdFeB sheet magnet, comprising the following steps:
  • a suspension containing a rare earth element is prepared by mixing a powder of yttrium oxide Dy 2 O 3 and a powder of calcium hydride CaH 2 and uniformly dispersing it in absolute ethanol, and strontium oxide Tb 2 O
  • the mass ratio of the powder of 3 and the powder of calcium hydride CaH 2 is 3:1;
  • the immersed sintered NdFeB sheet magnet is dried, the drying process is kept at 60 ° C for 10 min, and the sintered NdFeB sheet magnet after drying is stored in an inert gas environment;
  • the dried NdFeB sheet magnet after drying is firstly subjected to diffusion treatment in a vacuum environment of pressure of 5 ⁇ 10 -4 Pa and then subjected to aging treatment, the diffusion treatment temperature is 900 ° C, and the diffusion treatment time is 12 h; The treated temperature was 500 ° C and the aging treatment time was 4 h.
  • the sintered NdFeB sheet magnet is obtained by a large-sized sintered NdFeB magnet by a mechanical processing process (cutting), the specification (diameter ⁇ thickness) is ⁇ 10 ⁇ 7 mm, and the large sintered NdFeB magnet is made of ferroniobium. It is prepared by the process of mature quick-setting slab, hydrogen pulverization, jet milling, forming and sintering in the field of boron processing; the sintered NdFeB sheet magnet comprises the following components: mass percentage of 24.5% Nd, mass percentage 0.2% The Dy, the mass percentage is 4.8% of Pr, the mass percentage is 1.0% of B, and the balance is Fe and other trace elements.
  • the sintered NdFeB sheet magnets before spraying in the method of the present embodiment are identified as the original samples, and the two sintered NdFeB sheet magnets prepared by the method of the present embodiment are selected as the test sample 3-1 and the test sample 3, respectively.
  • the magnetic properties of the original sample and the test sample 3-1 and the test sample 3-2 of the present embodiment were respectively measured by using a permanent magnet material measuring BH meter, and the magnetic property test data thereof is shown in Table 3 below.
  • the mixture of the powder of the yttrium oxide Dy 2 O 3 and the powder of the calcium hydride CaH 2 is sintered on the surface of the sintered NdFeB sheet magnet by the grain boundary diffusion treatment, and the NdFeB sheet magnet is sintered.
  • the coercive force of the magnet increases remarkably after the grain boundary diffusion, the coercive force increases by about 3.5 ⁇ 4kOe, and the magnetic properties of the sintered NdFeB sheet magnet are consistent. It is demonstrated that the method of the invention can be used in different coating processes.
  • Embodiment 4 A method for improving magnetic properties of a sintered NdFeB sheet magnet, comprising the following steps:
  • a suspension containing a rare earth element is prepared by mixing a powder of yttrium oxide Dy 2 O 3 with a powder of sodium hydride NaH and uniformly dispersing in absolute ethanol, and yttrium oxide Dy 2 O 3
  • the mass ratio of the powder and the sodium hydride NaH powder is 3:1;
  • the sintered NdFeB sheet magnet after spraying is dried, the drying process is kept at 60 ° C for 5 min, and the sintered NdFeB sheet magnet after drying is stored in an inert gas environment;
  • the dried NdFeB sheet magnet after drying is firstly subjected to diffusion treatment in a vacuum environment of pressure of 5 ⁇ 10 -4 Pa and then subjected to aging treatment, the diffusion treatment temperature is 900 ° C, and the diffusion treatment time is 12 h; The treated temperature was 500 ° C and the aging treatment time was 4 h.
  • the sintered NdFeB sheet magnet is obtained by a large-sized sintered NdFeB magnet by a mechanical processing process (cutting), the specification (diameter ⁇ thickness) is ⁇ 10 ⁇ 7 mm, and the large sintered NdFeB magnet is made of ferroniobium. It is prepared by the process of mature quick-setting slab, hydrogen pulverization, jet milling, forming and sintering in the field of boron processing; the sintered NdFeB sheet magnet comprises the following components: mass percentage of 24.5% Nd, mass percentage 0.2% The Dy, the mass percentage is 4.8% of Pr, the mass percentage is 1.0% of B, and the balance is Fe and other trace elements.
  • Embodiment 5 This embodiment is basically the same as Embodiment 4 except that the hydrogen hydride alloy hydride used in the present embodiment is hydrogenated hydrazine NdH 3 .
  • Embodiment 6 This embodiment is basically the same as Embodiment 4 except that the hydrogen hydride alloy hydride used in the embodiment is lithium aluminum hydride LiAlH 4 .
  • Embodiment 7 This embodiment is basically the same as Embodiment 4 except that the hydrogen hydride alloy hydride used in the present embodiment is potassium borohydride KBH 4 .
  • the sintered NdFeB sheet magnet prepared by the method of the fourth embodiment is identified as the test sample 4
  • the sintered NdFeB sheet magnet prepared by the method of the fifth embodiment is identified as the test sample 5, which is prepared by the method of the sixth embodiment.
  • the sintered NdFeB sheet magnet was identified as test sample 6
  • the sintered NdFeB sheet magnet prepared by the method of Example 7 was identified as test sample 7
  • the sintered NdFeB sheet magnet before spraying was identified as the original sample.
  • Measuring B-H with permanent magnet material was performed on the original samples of Examples 4 to 7 and the test samples 4 to 7 respectively. The test data is shown in Table 4 below.
  • Table 4 shows that different hydrogen storage alloy hydrides contribute to the improvement of grain boundary diffusion coercivity. Under the conditions of using the same rare earth oxide, different hydrogen storage alloy hydrides have different effects on the magnetic properties of the sintered NdFeB sheet magnets after grain boundary diffusion.
  • Embodiment 8 A method for improving the magnetic properties of a sintered NdFeB sheet magnet, comprising the steps of:
  • a suspension containing a rare earth element is prepared by mixing a powder of yttrium oxide Dy 2 O 3 and a powder of calcium hydride CaH 2 and uniformly dispersing it in absolute ethanol, and yttrium oxide Dy 2 O
  • the mass ratio of the powder of 3 and the powder of calcium hydride CaH 2 is 3:1;
  • the sintered NdFeB sheet magnet after spraying is dried, the drying process is kept at 60 ° C for 5 min, and the sintered NdFeB sheet magnet after drying is stored in an inert gas environment;
  • the dried NdFeB sheet magnet after drying is firstly subjected to diffusion treatment in a vacuum environment of pressure of 5 ⁇ 10 -4 Pa and then subjected to aging treatment, the diffusion treatment temperature is 800 ° C, and the diffusion treatment time is 16 h; The treated temperature was 500 ° C and the aging treatment time was 4 h.
  • the sintered NdFeB sheet magnet is obtained by a large-sized sintered NdFeB magnet by a mechanical processing process (cutting), the specification (diameter ⁇ thickness) is ⁇ 10 ⁇ 7 mm, and the large sintered NdFeB magnet is made of ferroniobium. It is prepared by the process of mature quick-setting slab, hydrogen pulverization, jet milling, forming and sintering in the field of boron processing; the sintered NdFeB sheet magnet comprises the following components: mass percentage of 24.5% Nd, mass percentage 0.2% The Dy, the mass percentage is 4.8% of Pr, the mass percentage is 1.0% of B, and the balance is Fe and other trace elements.
  • Embodiment 9 This embodiment is basically the same as Embodiment 8 except that the temperature of the diffusion treatment is 850 ° C in the present embodiment, the diffusion treatment time is 20 h, the aging treatment temperature is 500 ° C, and the aging treatment time is 4 h. .
  • Embodiment 10 This embodiment is basically the same as Embodiment 8 except that the temperature of the diffusion treatment is 890 ° C in the present embodiment, the diffusion treatment time is 16 hours, the aging treatment temperature is 510 ° C, and the aging treatment time is 4 hours. .
  • Embodiment 11 This embodiment is basically the same as Embodiment 8 except that the temperature of the diffusion treatment is 920 ° C in the present embodiment, the diffusion treatment time is 6 hours, the aging treatment temperature is 510 ° C, and the aging treatment time is 5h.
  • the sintered NdFeB sheet magnet prepared by the method of the eighth embodiment is identified as the test sample 8
  • the sintered NdFeB sheet magnet prepared by the method of the embodiment 9 is identified as the test sample 9, which is prepared by the method of the tenth embodiment.
  • the sintered NdFeB sheet magnet was identified as test sample 10
  • the sintered NdFeB sheet magnet prepared by the method of Example 11 was identified as test sample 11
  • the sintered NdFeB sheet magnet before spraying was identified as the original sample.
  • the original samples of the eighth to the eleventh examples and the test samples 8 to 11 were respectively subjected to performance tests using a permanent magnet material measuring B-H meter.
  • the test data is shown in Table 5 below.
  • the method of the present invention can coat a surface of a sintered NdFeB sheet magnet with a mixture of a rare earth oxide and a hydrogen storage alloy hydride to facilitate diffusion of rare earth elements into the sintered NdFeB sheet.
  • the magnetic properties of the NdFeB sheet magnet and the utilization rate of rare earth elements are more effectively improved.

Abstract

一种提高烧结钕铁硼薄片磁体磁性能的方法,将含有稀土元素的粉末包覆在烧结钕铁硼薄片磁体的表面形成表面涂层,然后进行扩散处理和时效处理使涂层中的稀土元素进入该烧结钕铁硼薄片磁体的内部,含有稀土元素的粉末为稀土氧化物的粉末与储氢合金氢化物的粉末的混合物;该方法的优点是稀土氧化物与储氢合金氢化物两者发生氧化还原反应,稀土元素被还原出来,储氢合金氢化物在扩散处理时放出氢气,从而显著提高稀土元素的扩散效率,增加稀土元素的扩散深度,使烧结钕铁硼薄片磁体内部不同位置处稀土元素含量差异缩小,在明显提高矫顽力的同时,保证剩磁下降不明显,且可以进行大批量生产,不会影响最终烧结钕铁硼薄片磁体的方形度。

Description

一种提高烧结钕铁硼薄片磁体磁性能的方法 技术领域
本发明涉及一种提高烧结钕铁硼磁体磁性能的方法,尤其是涉及一种提高烧结钕铁硼薄片磁体磁性能的方法。
背景技术
烧结钕铁硼磁体具有优异的综合磁性能,被广泛用于航空航天、微波通讯技术、汽车工业、仪器仪表及医疗器械等领域。而近年来,高性能烧结钕铁硼应用市场快速向小型化、轻型化和薄片化方向发展,烧结钕铁硼薄片磁体(厚度在15mm以下的烧结钕铁硼磁体)在风电、变频压缩机、混合动力等高端领域的推广速度和应用范围迅速扩大,市场对其性能提出了更高的要求,不仅要求具有高的剩磁,而且要求具有高的矫顽力。
传统提高烧结钕铁硼薄片磁体矫顽力的方法主要是在烧结钕铁硼薄片磁体中添加Dy或Tb等重稀土元素,Dy或Tb等重稀土元素通过在原材料熔炼过程中添加含有Dy或Tb等重稀土元素的金属或合金,或采用双合金的方式进行添加。但是,采用这些方法添加的重稀土元素大部分进入钕铁硼主相中,只有少量的分布于晶界,造成重稀土元素的利用率低,同时由于主相中大量Dy或Tb等重稀土元素的引入会导致烧结钕铁硼薄片磁体剩磁及最大磁能积明显下降。
为了避免在提高烧结钕铁硼薄片磁体矫顽力的过程中,出现剩磁及最大磁能积明显下降,目前,提高烧结钕铁硼薄片磁体磁性能的方法主要为晶界扩散法。该方法中首先将稀土金属粉末或稀土化合物粉末包覆在烧结钕铁硼薄片磁体表面形成表面涂层,然后进行扩散处理和时效处理使表面涂层中含有的稀土元素进入烧结钕铁硼薄片磁体内部,其中包覆方式可以为喷涂、浸渍、蒸镀、磁控溅射或者电镀等。该方法中,进入烧结钕铁硼薄片磁体内部的稀土元素主要分布在烧结钕铁硼薄片磁体的晶界和主相外延层处,由此使烧结钕铁硼薄片磁体的矫顽力提高的同时而剩磁下降不明显。但是该方法存在以下问题:当使用稀土金属粉末时,在扩散处理过程中,稀土元素比较容易进入烧结钕铁硼薄片磁体内部,在剩磁下降不明显的前提下其矫顽力提高明显,但是稀土金属粉末在空气环境中不稳定,在存储和形成表面涂层的过程中需要进行气氛保护,难以进行大批量生产;当使用稀土化合物粉末时,稀土化合物在空气环境中稳定性较高,在存储和形 成表面涂层的过程中不需要进行气氛保护,但是扩散处理过程中稀土化合物却不易分解,以致在稀土元素难以扩散进入烧结钕铁硼薄片磁体内部,从而造成烧结钕铁硼薄片磁体矫顽力提高不明显,同时会影响最终烧结钕铁硼薄片磁体的方形度。
发明内容
本发明所要解决的技术问题是提供一种提高烧结钕铁硼薄片磁体磁性能的方法,该方法在明显提高矫顽力的同时,保证剩磁下降不明显,且可以进行大批量生产,不会影响最终烧结钕铁硼薄片磁体的方形度。
本发明解决上述技术问题所采用的技术方案为:一种提高烧结钕铁硼薄片磁体磁性能的方法,首先将含有稀土元素的粉末包覆在所述的烧结钕铁硼薄片磁体的表面形成表面涂层,然后进行扩散处理和时效处理使表面涂层中含有的稀土元素进入所述的烧结钕铁硼薄片磁体的内部,所述的含有稀土元素的粉末为稀土氧化物的粉末与储氢合金氢化物的粉末的混合物。
所述的含有稀土元素的粉末中,所述的稀土氧化物的粉末的质量百分比为70%~99.9%,所述的储氢合金氢化物的粉末的质量百分比为0.1%~30%。通过控制稀土氧化物的粉末和储氢合金氢化物的粉末的质量百分比,可以有效控制扩散处理过程中储氢合金氢化物中氢气的释放,避免过量的氢进入烧结钕铁硼薄片磁体内部对烧结钕铁硼薄片磁体的力学性能产生不良影响。
所述的稀土氧化物为钪、钇和镧系元素的氧化物中的一种或者至少两种的混合物。
所述的稀土氧化物为镝、铽和钬的氧化物中的一种或者至少两种的混合物。该方法中,镝、铽和钬的氧化物在空气环境中较稳定,与储氢合金氢化物发生氧化还原反应后,镝、铽和钬进入烧结钕铁硼磁体晶界相和主相外延层,显著提高磁体矫顽力。
所述的储氢合金氢化物为碱金属氢化物、碱金属合金氢化物、碱土金属氢化物、碱土金属合金氢化物、稀土氢化物和稀土合金氢化物中的一种或者至少两种的混合物。该方法中,储氢合金氢化物扩散热处理时易于分解释放氢气,产生还原气氛,利于后续晶界扩散。
所述的储氢合金氢化物为碱土金属氢化物和稀土氢化物中的一种或者至少两种的混合物。
所述的稀土氧化物的粉末比表面积平均粒度≤10μm。该方法中,稀土氧化物的粉末粒度较小,可以与烧结钕铁硼薄片磁体的表面接触充分,更易于稀土元素扩散进入烧结钕铁硼薄片磁体内部,提高稀土利用率。
所述的储氢合金氢化物的粉末比表面积平均粒度≤2mm。
所述的储氢合金氢化物的粉末比表面积平均粒度≤100μm。该方法中,储氢合金氢化物的粉末粒度在小于100μm时,储氢合金氢化物粉末与稀土氧化物粉末接触充分,在后续扩散处理加热时储氢合金氢化物放出的氢气与稀土氧化物反应更充分,有利于稀土元素扩散进入烧结钕铁硼薄片磁体内部。
所述的扩散处理为在700℃~1000℃条件下保温1h~30h,所述的时效处理为在400℃~600℃条件下保温1h~10h。
与现有技术相比,本发明的优点在于首先将含有稀土元素的粉末包覆在烧结钕铁硼薄片磁体的表面形成表面涂层,然后进行扩散处理和时效处理使表面涂层中含有的稀土元素进入烧结钕铁硼薄片磁体的内部,含有稀土元素的粉末为稀土氧化物的粉末与储氢合金氢化物的粉末的混合物,烧结钕铁硼薄片磁体表面形成表面涂层的材料为稀土氧化物的粉末与储氢合金氢化物的粉末的混合物,稀土氧化物的粉末与储氢合金氢化物的粉末的混合物在空气环境中性能较稳定,表面涂层的形成过程易于操作,在对烧结钕铁硼薄片磁体进行加热扩散处理时,混合物中的稀土氧化物与储氢合金氢化物两者发生氧化还原反应,稀土氧化物中的稀土元素被还原出来,烧结钕铁硼薄片磁体表面形成易于扩散的稀土元素,储氢合金氢化物在加热扩散处理时会放出氢气,烧结钕铁硼薄片磁体处于氢气还原气氛中,扩散进入烧结钕铁硼薄片磁体内部的稀土元素不会再次被烧结钕铁硼薄片磁体中存在的氧元素氧化,由此保证稀土元素扩散到烧结钕铁硼薄片磁体的内部而不停留在内部靠近表面处,由此可以显著提高稀土元素的扩散效率,增加稀土元素的扩散深度,使烧结钕铁硼薄片磁体内部不同位置处稀土元素含量差异缩小,在明显提高矫顽力的同时,保证剩磁下降不明显,且可以进行大批量生产,不会影响最终烧结钕铁硼薄片磁体的方形度。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
实施例一:一种提高烧结钕铁硼薄片磁体磁性能的方法,包括以下步骤:
①制备含有稀土元素的悬浊液:含有稀土元素的悬浊液由氧化镝Dy2O3的粉末和氢化钙CaH2的粉末混合后均匀分散于无水乙醇中制得,氧化镝Dy2O3的粉末和氢化钙CaH2的粉末的质量比为3∶1;
②将含有稀土元素的悬浊液均匀喷涂在烧结钕铁硼薄片磁体的表面,在喷涂前烧结钕铁硼薄片磁体已进行表面预处理;
③将喷涂后的烧结钕铁硼薄片磁体进行烘干处理,烘干处理过程是在60℃下保温5min,将烘干处理后的烧结钕铁硼薄片磁体保存在惰性气体环境中;
④将烘干后的烧结钕铁硼薄片磁体在压力为5×10-4Pa的真空环境中先进行扩散处理然后进行时效处理,扩散处理的温度为900℃,扩散处理的时间为12h;时效处理的温度为500℃,时效处理的时间为4h。
本实施例中,烧结钕铁硼薄片磁体由大块烧结钕铁硼磁体通过机械加工工艺(切割)获得,其规格(直径×厚度)为Φ10×7mm,大块烧结钕铁硼磁体采用钕铁硼加工领域中成熟的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得;烧结钕铁硼薄片磁体包含以下各组分:质量百分比为24.5%的Nd、质量百分比为0.2%的Dy、质量百分比为4.8%的Pr、质量百分比为1.0%的B,余量为Fe及其他微量元素。
将本实施例的方法中喷涂前的烧结钕铁硼薄片磁体标识为原始样,选取采用本实施例的方法制备的两块烧结钕铁硼薄片磁体分别标识为测试样1-1和测试样1-2,采用永磁材料测量B-H仪对本实施例的原始样和测试样1-1和测试样1-2分别进行磁性能测试,其磁性能测试数据如下表1所示。
表1实施例一中烧结钕铁硼薄片磁体的磁性能测试结果
Figure PCTCN2016000377-appb-000001
分析表1可知,本实施例中,涂覆氧化镝Dy2O3的粉末和氢化钙CaH2的粉末的混合物在烧结钕铁硼薄片磁体表面通过晶界扩散处理后,烧结钕铁硼薄片磁体在几近不损失剩磁的前提下,晶界扩散后磁体矫顽力显著提高,矫顽力提高3.5~4kOe左右,并且 烧结钕铁硼薄片磁体磁性能一致性好。
实施例二:一种提高烧结钕铁硼薄片磁体磁性能的方法,包括以下步骤:
①制备含有稀土元素的悬浊液:含有稀土元素的悬浊液由氧化铽Tb2O3的粉末和氢化钙CaH2的粉末混合后均匀分散于无水乙醇中制得,氧化铽Tb2O3的粉末和氢化钙CaH2的粉末的质量比为3∶1;
②将含有稀土元素的悬浊液均匀喷涂在烧结钕铁硼薄片磁体的表面,在喷涂前烧结钕铁硼薄片磁体已进行表面预处理;
③将喷涂后的烧结钕铁硼薄片磁体进行烘干处理,烘干处理过程是在60℃下保温5min,烘干处理后的烧结钕铁硼薄片磁体保存在惰性气体环境中;
④将烘干后的烧结钕铁硼薄片磁体在压力为5×10-4Pa的真空环境中先进行扩散处理然后进行时效处理,扩散处理的温度为900℃,扩散处理的时间为12h;时效处理的温度为500℃,时效处理的时间为4h。
本实施例中,烧结钕铁硼薄片磁体由大块烧结钕铁硼磁体通过机械加工工艺(切割)获得,其规格(直径×厚度)为Φ10×7mm,大块烧结钕铁硼磁体采用钕铁硼加工领域中成熟的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得;烧结钕铁硼薄片磁体包含以下各组分:质量百分比为24.5%的Nd、质量百分比为0.2%的Dy、质量百分比为4.8%的Pr、质量百分比为1.0%的B,余量为Fe及其他微量元素。
将本实施例的方法中喷涂前的烧结钕铁硼薄片磁体标识为原始样,选取采用本实施例的方法制备的两块烧结钕铁硼薄片磁体分别标识为测试样2-1和测试样2-2,采用永磁材料测量B-H仪对本实施例的原始样和测试样2-1和测试样2-2分别进行磁性能测试,其磁性能测试数据如下表2所示。
表2实施例二中烧结钕铁硼薄片磁体的磁性能测试结果
Figure PCTCN2016000377-appb-000002
分析表2可知,本实施例中,涂覆氧化铽Tb2O3的粉末和氢化钙CaH2的粉末的混合物在烧结钕铁硼薄片磁体表面通过晶界扩散处理后,烧结钕铁硼薄片磁体在几近不损 失剩磁的前提下,晶界扩散后磁体矫顽力显著提高,矫顽力提高7~7.5kOe左右,并且烧结钕铁硼薄片磁体磁性能一致性好。
实施例三:一种提高烧结钕铁硼薄片磁体磁性能的方法,包括以下步骤:
①制备含有稀土元素的悬浊液:含有稀土元素的悬浊液由氧化镝Dy2O3的粉末和氢化钙CaH2的粉末混合后均匀分散于无水乙醇中制得,氧化铽Tb2O3的粉末和氢化钙CaH2的粉末的质量比为3∶1;
②将烧结钕铁硼薄片磁体浸渍在含有稀土元素的悬浊液中进行超声处理,在浸渍前烧结钕铁硼薄片磁体已进行表面预处理;
③将浸渍后的烧结钕铁硼薄片磁体进行烘干处理,烘干处理过程是在60℃下保温10min,将烘干处理后的烧结钕铁硼薄片磁体保存在惰性气体环境中;
④将烘干后的烧结钕铁硼薄片磁体在压力为5×10-4Pa的真空环境中先进行扩散处理然后进行时效处理,扩散处理的温度为900℃,扩散处理的时间为12h;时效处理的温度为500℃,时效处理的时间为4h。
本实施例中,烧结钕铁硼薄片磁体由大块烧结钕铁硼磁体通过机械加工工艺(切割)获得,其规格(直径×厚度)为Φ10×7mm,大块烧结钕铁硼磁体采用钕铁硼加工领域中成熟的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得;烧结钕铁硼薄片磁体包含以下各组分:质量百分比为24.5%的Nd、质量百分比为0.2%的Dy、质量百分比为4.8%的Pr、质量百分比为1.0%的B,余量为Fe及其他微量元素。
将本实施例的方法中喷涂前的烧结钕铁硼薄片磁体标识为原始样,选取采用本实施例的方法制备的两块烧结钕铁硼薄片磁体分别标识为测试样3-1和测试样3-2,采用永磁材料测量B-H仪对本实施例的原始样和测试样3-1和测试样3-2分别进行磁性能测试,其磁性能测试数据如下表3所示。
表3实施例三中烧结钕铁硼薄片磁体的磁性能测试结果
Figure PCTCN2016000377-appb-000003
分析表3可知,本实施例中,涂覆氧化镝Dy2O3的粉末和氢化钙CaH2的粉末的混 合物在烧结钕铁硼薄片磁体表面通过晶界扩散处理后,烧结钕铁硼薄片磁体在几近不损失剩磁的前提下,晶界扩散后磁体矫顽力显著提高,矫顽力提高3.5~4kOe左右,并且烧结钕铁硼薄片磁体磁性能一致性好。证明本发明的方法可用于不同涂覆工艺。
实施例四:一种提高烧结钕铁硼薄片磁体磁性能的方法,包括以下步骤:
①制备含有稀土元素的悬浊液:含有稀土元素的悬浊液由氧化镝Dy2O3的粉末和氢化钠NaH的粉末混合后均匀分散于无水乙醇中制得,氧化镝Dy2O3的粉末和氢化钠NaH的粉末的质量比为3∶1;
②将含有稀土元素的悬浊液均匀喷涂在烧结钕铁硼薄片磁体的表面,在喷涂前烧结钕铁硼薄片磁体已进行表面预处理;
③将喷涂后的烧结钕铁硼薄片磁体进行烘干处理,烘干处理过程是在60℃下保温5min,烘干处理后的烧结钕铁硼薄片磁体保存在惰性气体环境中;
④将烘干后的烧结钕铁硼薄片磁体在压力为5×10-4Pa的真空环境中先进行扩散处理然后进行时效处理,扩散处理的温度为900℃,扩散处理的时间为12h;时效处理的温度为500℃,时效处理的时间为4h。
本实施例中,烧结钕铁硼薄片磁体由大块烧结钕铁硼磁体通过机械加工工艺(切割)获得,其规格(直径×厚度)为Φ10×7mm,大块烧结钕铁硼磁体采用钕铁硼加工领域中成熟的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得;烧结钕铁硼薄片磁体包含以下各组分:质量百分比为24.5%的Nd、质量百分比为0.2%的Dy、质量百分比为4.8%的Pr、质量百分比为1.0%的B,余量为Fe及其他微量元素。
实施例五:本实施例与实施例四基本相同,区别仅在于本实施例中使用的储氢合金氢化物为氢化钕NdH3
实施例六:本实施例与实施例四基本相同,区别仅在于本实施例中使用的储氢合金氢化物为氢化铝锂LiAlH4
实施例七:本实施例与实施例四基本相同,区别仅在于本实施例中使用的储氢合金氢化物为硼氢化钾KBH4
将采用实施例四的方法制备的烧结钕铁硼薄片磁体标识为测试样4,将采用实施例五的方法制备的烧结钕铁硼薄片磁体标识为测试样5,将采用实施例六的方法制备的烧结钕铁硼薄片磁体标识为测试样6,将采用实施例七的方法制备的烧结钕铁硼薄片磁体标识为测试样7,将喷涂前的烧结钕铁硼薄片磁体标识为原始样。采用永磁材料测量B-H 仪对实施例四~实施例七的原始样和测试样4~7分别进行性能测试,测试数据如下表4所示。
表4实施例四~实施例七中烧结钕铁硼薄片磁体的磁性能测试结果
Figure PCTCN2016000377-appb-000004
分析表4可知,不同的储氢合金氢化物对晶界扩散矫顽力的提升都有帮助。在使用相同稀土氧化物的条件下,不同的储氢合金氢化物对烧结钕铁硼薄片磁体晶界扩散后磁体磁性能影响不同。
实施例八:一种提高烧结钕铁硼薄片磁体磁性能的方法,包括以下步骤:
①制备含有稀土元素的悬浊液:含有稀土元素的悬浊液由氧化镝Dy2O3的粉末和氢化钙CaH2的粉末混合后均匀分散于无水乙醇中制得,氧化镝Dy2O3的粉末和氢化钙CaH2的粉末的质量比为3∶1;
②将含有稀土元素的悬浊液均匀喷涂在烧结钕铁硼薄片磁体的表面,在喷涂前烧结钕铁硼薄片磁体已进行表面预处理;
③将喷涂后的烧结钕铁硼薄片磁体进行烘干处理,烘干处理过程是在60℃下保温5min,烘干处理后的烧结钕铁硼薄片磁体保存在惰性气体环境中;
④将烘干后的烧结钕铁硼薄片磁体在压力为5×10-4Pa的真空环境中先进行扩散处理然后进行时效处理,扩散处理的温度为800℃,扩散处理的时间为16h;时效处理的温度为500℃,时效处理的时间为4h。
本实施例中,烧结钕铁硼薄片磁体由大块烧结钕铁硼磁体通过机械加工工艺(切割)获得,其规格(直径×厚度)为Φ10×7mm,大块烧结钕铁硼磁体采用钕铁硼加工领域中成熟的速凝铸片、氢碎、气流磨、成型和烧结等工艺制备所得;烧结钕铁硼薄片磁体包含以下各组分:质量百分比为24.5%的Nd、质量百分比为0.2%的Dy、质量百分比为4.8%的Pr、质量百分比为1.0%的B,余量为Fe及其他微量元素。
实施例九:本实施例与实施例八基本相同,区别仅在于本实施例中扩散处理的温度为850℃,扩散处理的时间为20h;时效处理的温度为500℃,时效处理的时间为4h。
实施例十:本实施例与实施例八基本相同,区别仅在于本实施例中扩散处理的温度为890℃,扩散处理的时间为16h;时效处理的温度为510℃,时效处理的时间为4h。
实施例十一:本实施例与实施例八基本相同,区别仅在于本实施例中扩散处理的温度为920℃,扩散处理的时间为6h;时效处理的温度为510℃,时效处理的时间为5h。
将采用实施例八的方法制备的烧结钕铁硼薄片磁体标识为测试样8,将采用实施例九的方法制备的烧结钕铁硼薄片磁体标识为测试样9,将采用实施例十的方法制备的烧结钕铁硼薄片磁体标识为测试样10,将采用实施例十一的方法制备的烧结钕铁硼薄片磁体标识为测试样11,将喷涂前的烧结钕铁硼薄片磁体标识为原始样。采用永磁材料测量B-H仪对实施例八~实施例十一的原始样和测试样8~11分别进行性能测试,测试数据如下表5所示。
表5实施例八~十一中烧结钕铁硼薄片磁体的磁性能测试结果
Figure PCTCN2016000377-appb-000005
分析表5可知,用本发明的方法,在要求范围内,不同的扩散处理和时效处理温度对烧结钕铁硼薄片磁体晶界扩散矫顽力的提升都有帮助,且不同的扩散处理工艺效果各不相同。
从上述所有实施例中我们可以知道,本发明的方法可以在烧结钕铁硼薄片磁体表面包覆一层稀土氧化物与储氢合金氢化物的混合物,有利于稀土元素扩散进入烧结钕铁硼薄片磁体内,更有效的提高钕铁硼薄片磁体磁性能及稀土元素利用率。

Claims (10)

  1. 一种提高烧结钕铁硼薄片磁体磁性能的方法,首先将含有稀土元素的粉末包覆在所述的烧结钕铁硼薄片磁体的表面形成表面涂层,然后进行扩散处理和时效处理使表面涂层中含有的稀土元素进入所述的烧结钕铁硼薄片磁体的内部,其特征在于所述的含有稀土元素的粉末为稀土氧化物的粉末与储氢合金氢化物的粉末的混合物。
  2. 根据权利要求1所述的一种提高烧结钕铁硼薄片磁体性能的方法,其特征在于所述的含有稀土元素的粉末中,所述的稀土氧化物的粉末的质量百分比为70%~99.9%,所述的储氢合金氢化物的粉末的质量百分比为0.1%~30%。
  3. 根据权利要求1所述的一种提高烧结钕铁硼薄片磁体磁性能的方法,其特征在于所述的稀土氧化物为钪、钇和镧系元素的氧化物中的一种或者至少两种的混合物。
  4. 根据权利要求3所述的一种提高烧结钕铁硼薄片磁体磁性能的方法,其特征在于所述的稀土氧化物为镝、铽和钬的氧化物中的一种或者至少两种的混合物。
  5. 根据权利要求1所述的一种提高烧结钕铁硼薄片磁体磁性能的方法,其特征在于所述的储氢合金氢化物为碱金属氢化物、碱金属合金氢化物、碱土金属氢化物、碱土金属合金氢化物、稀土氢化物和稀土合金氢化物中的一种或者至少两种的混合物。
  6. 根据权利要求5所述的一种提高烧结钕铁硼薄片磁体磁性能的方法,其特征在于所述的储氢合金氢化物为碱土金属氢化物和稀土氢化物中的一种或者至少两种的混合物。
  7. 根据权利要求1所述的一种提高烧结钕铁硼薄片磁体性能的方法,其特征在于所述的稀土氧化物的粉末比表面积平均粒度≤10μm。
  8. 根据权利要求1所述的一种提高烧结钕铁硼薄片磁体磁性能的方法,其特征在于所述的储氢合金氢化物的粉末比表面积平均粒度≤2mm。
  9. 根据权利要求8所述的一种提高烧结钕铁硼薄片磁体磁性能的方法,其特征在于所述的储氢合金氢化物的粉末比表面积平均粒度≤100μm。
  10. 根据权利要求1所述的一种提高烧结钕铁硼薄片磁体磁性能的方法,其特征在于所述的扩散处理为在700℃~1000℃条件下保温1h~30h,所述的时效处理为在400℃~600℃条件下保温1h~10h。
PCT/CN2016/000377 2015-12-25 2016-07-12 一种提高烧结钕铁硼薄片磁体磁性能的方法 WO2017107247A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016005950.7T DE112016005950T5 (de) 2015-12-25 2016-07-12 VERFAHREN ZUR VERBESSERUNG DER MAGNETISCHEN LEISTUNGSFÄHIGKEIT EINES GESINTERTEN NdFeB-LAMELLARMAGNETEN
US15/742,032 US20180197680A1 (en) 2015-12-25 2016-07-12 Method for improvement of magnetic performance of sintered ndfeb lamellar magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510997488.4A CN105632748B (zh) 2015-12-25 2015-12-25 一种提高烧结钕铁硼薄片磁体磁性能的方法
CN201510997488.4 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017107247A1 true WO2017107247A1 (zh) 2017-06-29

Family

ID=56047564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000377 WO2017107247A1 (zh) 2015-12-25 2016-07-12 一种提高烧结钕铁硼薄片磁体磁性能的方法

Country Status (4)

Country Link
US (1) US20180197680A1 (zh)
CN (1) CN105632748B (zh)
DE (1) DE112016005950T5 (zh)
WO (1) WO2017107247A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105632748B (zh) * 2015-12-25 2019-01-11 宁波韵升股份有限公司 一种提高烧结钕铁硼薄片磁体磁性能的方法
CN108242336B (zh) * 2017-12-25 2019-12-03 江苏大学 一种高性能低成本复合磁体的制备方法
CN108987015B (zh) * 2018-06-28 2020-06-30 宁波招宝磁业有限公司 一种高性能钕铁硼磁体的制备方法
CN109390145A (zh) * 2018-10-24 2019-02-26 江西金力永磁科技股份有限公司 一种R-Fe-B类烧结磁体及其制备方法
CN109509628B (zh) * 2018-12-21 2020-10-23 宁波韵升股份有限公司 一种烧结钕铁硼复合粉料的制备方法
CN109712797B (zh) * 2019-01-03 2021-06-18 浙江东阳东磁稀土有限公司 一种改善钕铁硼磁体晶界扩散磁性能一致性的方法
CN111477445B (zh) * 2020-03-02 2022-07-22 浙江东阳东磁稀土有限公司 一种用于烧结钕铁硼的晶界扩散方法
CN111403164A (zh) * 2020-03-25 2020-07-10 北京汇磁粉体材料有限公司 通过粉末包装法渗金属提高烧结钕铁硼磁体矫顽力的方法
CN112614690B (zh) * 2020-12-31 2022-09-09 宁波松科磁材有限公司 一种高性能永磁体的制备方法
CN113755066B (zh) * 2021-08-02 2022-09-13 安徽省瀚海新材料股份有限公司 一种烧结钕铁硼涂覆氢化物用的防氧化型附着剂及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169004A (ja) * 1987-01-06 1988-07-13 Hitachi Metals Ltd 永久磁石合金粉末の製造方法
CN101076870A (zh) * 2004-12-16 2007-11-21 独立行政法人科学技术振兴机构 已晶间改质的Nd-Fe-B系磁铁和它的制造方法
CN101521069A (zh) * 2008-11-28 2009-09-02 北京工业大学 重稀土氢化物纳米颗粒掺杂烧结钕铁硼永磁的制备方法
CN101615459A (zh) * 2009-04-28 2009-12-30 中国科学院宁波材料技术与工程研究所 提高烧结钕铁硼永磁材料性能的方法
CN105632748A (zh) * 2015-12-25 2016-06-01 宁波韵升股份有限公司 一种提高烧结钕铁硼薄片磁体磁性能的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271852A (ja) * 1992-03-30 1993-10-19 Sumitomo Metal Ind Ltd 希土類系磁石合金の製造方法
JP2000223306A (ja) * 1998-11-25 2000-08-11 Hitachi Metals Ltd 角形比を向上したr―t―b系希土類焼結磁石およびその製造方法
US20050058882A1 (en) * 2003-08-06 2005-03-17 Vladimir Meiklyar Anode for liquid fuel cell
US8211327B2 (en) * 2004-10-19 2012-07-03 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
TWI413136B (zh) * 2005-03-23 2013-10-21 Shinetsu Chemical Co 稀土族永久磁體
JP4656323B2 (ja) * 2006-04-14 2011-03-23 信越化学工業株式会社 希土類永久磁石材料の製造方法
JP4840606B2 (ja) * 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法
US20100129538A1 (en) * 2007-03-30 2010-05-27 Tdk Corporation Process for producing magnet
JP5363314B2 (ja) * 2007-05-01 2013-12-11 インターメタリックス株式会社 NdFeB系焼結磁石製造方法
JP5328161B2 (ja) * 2008-01-11 2013-10-30 インターメタリックス株式会社 NdFeB焼結磁石の製造方法及びNdFeB焼結磁石
JP5687621B2 (ja) * 2009-07-10 2015-03-18 インターメタリックス株式会社 NdFeB焼結磁石及びその製造方法
PH12013000103B1 (en) * 2012-04-11 2015-09-07 Shinetsu Chemical Co Rare earth sintered magnet and making method
CN103065787B (zh) * 2012-12-26 2015-10-28 宁波韵升股份有限公司 一种制备烧结钕铁硼磁体的方法
CN103646773B (zh) * 2013-11-21 2016-11-09 烟台正海磁性材料股份有限公司 一种R-Fe-B类烧结磁体的制造方法
CN104134528B (zh) * 2014-07-04 2017-03-01 宁波韵升股份有限公司 一种提高烧结钕铁硼薄片磁体磁性能的方法
CN105489367B (zh) * 2015-12-25 2017-08-15 宁波韵升股份有限公司 一种提高烧结钕铁硼磁体磁性能的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169004A (ja) * 1987-01-06 1988-07-13 Hitachi Metals Ltd 永久磁石合金粉末の製造方法
CN101076870A (zh) * 2004-12-16 2007-11-21 独立行政法人科学技术振兴机构 已晶间改质的Nd-Fe-B系磁铁和它的制造方法
CN101521069A (zh) * 2008-11-28 2009-09-02 北京工业大学 重稀土氢化物纳米颗粒掺杂烧结钕铁硼永磁的制备方法
CN101615459A (zh) * 2009-04-28 2009-12-30 中国科学院宁波材料技术与工程研究所 提高烧结钕铁硼永磁材料性能的方法
CN105632748A (zh) * 2015-12-25 2016-06-01 宁波韵升股份有限公司 一种提高烧结钕铁硼薄片磁体磁性能的方法

Also Published As

Publication number Publication date
DE112016005950T5 (de) 2018-09-20
US20180197680A1 (en) 2018-07-12
CN105632748B (zh) 2019-01-11
CN105632748A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017107247A1 (zh) 一种提高烧结钕铁硼薄片磁体磁性能的方法
EP3182423B1 (en) Neodymium iron boron magnet and preparation method thereof
CN106409497B (zh) 一种钕铁硼磁体晶界扩散的方法
CN109754969B (zh) 一种高温抗氧化2:17型钐钴永磁材料及制备方法
WO2017107248A1 (zh) 一种提高烧结钕铁硼磁体磁性能的方法
KR101543111B1 (ko) NdFeB 영구자석 및 그 제조방법
CN105489334A (zh) 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN104599829A (zh) 一种提高烧结钕铁硼磁体磁性能的方法
CN112038083B (zh) 一种提高钐钴永磁材料磁性能的方法
CN104575903A (zh) 一种添加Dy粉末的钕铁硼磁体及其制备方法
CN106887321A (zh) 一种提高稀土磁体矫顽力的方法
CN105355412A (zh) 一种硫化处理获得高磁性烧结钕铁硼的方法
CN110534280A (zh) 一种基于晶界添加的高性能烧结钕铁硼磁体的制备方法
US20190172616A1 (en) R-t-b based permanent magnet
CN103320665B (zh) 一种钐钴基永磁材料的制备方法
CN102747318A (zh) 一种提高烧结稀土-铁-硼永磁材料矫顽力的方法
CN102360909B (zh) 一种钕铁硼磁体的制备方法
CN104392818A (zh) 一种提高烧结钕铁硼永磁材料磁性能的方法
CN114334416A (zh) 一种固液相分离扩散工艺制备高性能钕铁硼磁体的方法
CN104464997A (zh) 一种高矫顽力钕铁硼永磁材料及其制备方法
CN112216460A (zh) 纳米晶钕铁硼磁体及其制备方法
CN104319046B (zh) 一种钐钴永磁材料
WO2021258280A1 (zh) 一种无重稀土高性能钕铁硼永磁材料及其制备方法
JP7424126B2 (ja) R-t-b系永久磁石
CN111477446A (zh) 一种钕铁硼系烧结磁体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877061

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005950

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877061

Country of ref document: EP

Kind code of ref document: A1