WO2017104811A1 - シリコーンゴム組成物、その製造方法およびシリコーンゴム押出し成形品 - Google Patents

シリコーンゴム組成物、その製造方法およびシリコーンゴム押出し成形品 Download PDF

Info

Publication number
WO2017104811A1
WO2017104811A1 PCT/JP2016/087577 JP2016087577W WO2017104811A1 WO 2017104811 A1 WO2017104811 A1 WO 2017104811A1 JP 2016087577 W JP2016087577 W JP 2016087577W WO 2017104811 A1 WO2017104811 A1 WO 2017104811A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
silicone rubber
rubber composition
mass
viscosity
Prior art date
Application number
PCT/JP2016/087577
Other languages
English (en)
French (fr)
Inventor
島川 雅成
Original Assignee
モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 filed Critical モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社
Priority to JP2016574201A priority Critical patent/JP6228692B1/ja
Priority to CN201680074243.7A priority patent/CN108473769B/zh
Priority to EP16875785.4A priority patent/EP3392314B1/en
Publication of WO2017104811A1 publication Critical patent/WO2017104811A1/ja
Priority to US16/008,255 priority patent/US10654980B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the present invention relates to a silicone rubber composition, a method for producing the same, and a silicone rubber extruded product, and particularly to a millable silicone rubber composition, a method for producing the same, and a silicone rubber extruded product.
  • Silicone rubber has excellent weather resistance, electrical properties, low compression set, heat resistance, cold resistance, and other properties, so it can be used in various fields including electrical equipment, automobiles, architecture, medical care and food. Widely used.
  • millable silicone rubber is widely used in the manufacture of rubber parts because it can mix colorants with a simple device such as a two-roll machine and can be molded with simple equipment such as a press. Since the shape can be maintained even in an uncured state, it is widely used for extrusion molding of tubes and gaskets.
  • Patent Document 1 discloses a liquid silicone rubber coating composition using gel silica having an average particle size of 0.5 to 20 ⁇ m as a filler.
  • this coating composition technique is applied to a composition for a thick silicone rubber molded article, such as extrusion, it has a specific particle system formulated to prevent blocking. Since the filler is not easily exposed to the surface effectively, it is difficult to effectively eliminate the blocking problem. Moreover, in order to prevent blocking by this method, it is necessary to mix
  • conventional millable silicone rubber base compounds are manufactured by mixing a raw rubber-like high-polymerization polyorganosiloxane with a filler, and have a low viscosity as a process oil to facilitate the blending of the filler. It is common to add disilanol and the like.
  • the raw rubber-like polyorganosiloxane having a high degree of polymerization is generally produced by ring-opening polymerization of a low-molecular cyclic siloxane using an alkali catalyst, but this reaction is balanced and unreacted low-molecular-weight A certain amount of siloxane remains in the polymer.
  • there has been a demand for reduction of low molecular weight siloxane but it is difficult to remove low molecular weight siloxane from raw rubber-like base polymer, so the cured product must be post-cured at high temperature, resulting in increased cost. Is inevitable. Further, post-curing at high temperature narrows the range of material selection when performing composite molding with heat-sensitive materials such as thermoplastic plastics in particular.
  • Patent Document 2 discloses a polyorganosiloxane blended in a base compound with a content of low molecular siloxane having a polymerization degree of 10 or less in order to prevent contact failure of electronic parts. Reduced silicone rubber compositions are described. However, in recent years, in medical applications and healthcare applications, in addition to low-molecular siloxanes having a polymerization degree of 10 or less, reduction of total volatile siloxanes is required, and further improvements are required.
  • the present invention was made from the above viewpoint, and a silicone rubber composition having improved moldability, particularly extrusion moldability, and a method for producing the same, and anti-blocking property while sufficiently maintaining the strength of the resulting cured product It aims at providing the silicone rubber extrusion molded article which has property.
  • the molded product of the silicone rubber composition in this specification means a cured product obtained by molding and curing the silicone rubber composition.
  • silicone rubber simply means a cured product of the silicone rubber composition.
  • the silicone rubber composition of the present invention is (A) It consists of the following (A1) and (A2), the ratio of (A1) is 20 to 100% by mass relative to the whole (A), the viscosity at 25 ° C. is 5 to 20000 Pas, and the alkenyl group content is 0. 100 parts by weight of a base polymer that is 0.001 to 0.3 mmol / g, (A1) Polyorganosiloxanediol represented by the following formula (1) having a viscosity at 25 ° C.
  • R 1 is each independently a monovalent unsubstituted or substituted hydrocarbon group not containing an alkenyl group
  • R 2 represents an alkenyl group
  • N1 and n2 in formula (1) are Represents the total number of repeating units that are randomly or block polymerized, n1 is an integer of 200 to 1200, and n2 is an integer of 0 to 30.
  • A2 a viscosity at 25 ° C.
  • each R 3 independently represents a monovalent unsubstituted or substituted saturated or unsaturated hydrocarbon group not containing a hydroxyl group, and a represents a number in the range of 1.98 to 2.02.
  • B 10 to 50 parts by mass of silica powder having a specific surface area of 50 to 400 m 2 / g,
  • C 1 to 10 parts by mass of organosilazane, and
  • D a catalyst amount of a curing agent.
  • the silicone rubber composition of the present invention having the above configuration is a silicone rubber composition having improved moldability, particularly extrusion moldability, while sufficiently maintaining the strength of the resulting cured product.
  • an extrusion-molded product having excellent surface blocking resistance can be obtained without post-processing by extrusion molding and curing treatment.
  • the silicone rubber composition of the present invention when the composition is extruded at a rate of 2 m / min with a screw extruder and then cured to form a tube-shaped cured product, the surface is scanned with an electron microscope image. It is preferable to have 1 to 300 granular projections with a maximum diameter of 0.1 to 30 ⁇ m measured in step / 0.01 mm 2 .
  • the ratio of the component (A1) to the total component (A) is 50 to 100% by mass, and the viscosity of the component (A) at 25 ° C. is 5 to 3000 Pas. Embodiments are preferred.
  • the ratio of the component (A1) to the total component (A) is 40 to 100% by mass, and the viscosity of the component (A) at 25 ° C. is 5 to 1000 Pas.
  • the component (A) in which the ratio of the component (A1) to the entire component (A) is 40 to 100% by mass, and the viscosity of the component (A) at 25 ° C. is 5 to 1000 Pas is referred to as “low viscosity”.
  • the silicone rubber composition of the present invention which is referred to as “component (A)” and component (A) is a low viscosity component (A), is referred to as “low viscosity (A) component-containing silicone rubber composition”.
  • Such a low-viscosity (A) component-containing silicone rubber composition can easily remove low-molecular-weight siloxane from the raw material, and thus the low-molecular-weight siloxane content is sufficiently reduced without post-curing.
  • a cured product can be produced.
  • the component (A) has a mass reduction rate of 1.0% or less before and after heat treatment at 200 ° C. for 4 hours at normal pressure.
  • a silicone rubber composition that provides a cured product having a mass reduction rate of 0.5% or less before and after heat treatment at 200 ° C. for 4 hours without curing is preferable.
  • the low-viscosity (A) component-containing silicone rubber composition can be used as a silicone rubber composition that gives such a cured product with a low mass reduction rate.
  • the present invention provides the silicone rubber composition of the present invention in which the low viscosity (A) component-containing silicone rubber composition or the component (A) has a mass reduction rate of 1.0% or less before and after heat treatment at 200 ° C. for 4 hours at normal pressure.
  • the composition is molded, cured by heat or UV irradiation, and a silicone rubber molded article having a mass reduction rate of 0.5% or less before and after heat treatment at 200 ° C. for 4 hours without performing post cure is obtained.
  • a method for producing a silicone rubber molded article is provided.
  • the present invention also relates to a method for producing the silicone rubber composition of the present invention, wherein the component (A) and the component (B) and the component (C) are divided into a plurality of times or continuously at a predetermined rate.
  • the manufacturing method including the process of adding the said (D) component after adding typically.
  • the silicone rubber extruded product of the present invention is an extruded product obtained using the silicone rubber composition of the present invention, and has a maximum diameter of 0.1 to 0.1 measured on the surface by a scanning electron microscope (SEM) image. It has a 30 ⁇ m granular projection.
  • SEM scanning electron microscope
  • the present invention it is possible to provide a silicone rubber composition having improved moldability, particularly extrusion moldability, while sufficiently maintaining the strength of the resulting cured product.
  • the surface of the extrusion-molded product is excellent in slipperiness, so that blocking can be suppressed. It is considered that this improvement in surface slipping occurs because spherical bodies in which silica particles are aggregated are exposed on the surface.
  • the silicone rubber composition of the present invention contains the predetermined amounts of the components (A), (B), (C) and (D). Each component will be described below.
  • the component (A) component contains a specific polyorganosiloxane diol, has a predetermined amount of alkenyl groups and has a predetermined viscosity, and is mixed with the component (B), the component (C), and the component (D). It is a base polymer that forms a millable silicone rubber composition.
  • the component (A) comprises the following components (A1) and (A2), and the proportion of the component (A1) is 20 to 100% by mass with respect to the entire component (A).
  • the component (A) has an alkenyl group content of 0.001 to 0.3 mmol / g and a viscosity at 25 ° C. of 5 to 20000 Pas. That is, the component (A) is obtained by mixing the following components (A1) and (A2) at a ratio such that the ratio of the component (A1) is 20 to 100% by mass with respect to the total component (A) A) It is obtained by mixing so that the alkenyl group content as a whole component is 0.001 to 0.3 mmol / g and the viscosity at 25 ° C. is 5 to 20000 Pas.
  • viscosity refers to a viscosity measured at 25 ° C. with a shear rate of 0.1 s ⁇ 1 .
  • the component (A1) is a polyorganosiloxane diol represented by the following formula (1) having a viscosity at 25 ° C. of 1 to 100 Pas.
  • the polyorganosiloxane diol represented by the formula (1) is also referred to as polyorganosiloxane diol (1).
  • R 1 is each independently a monovalent unsubstituted or substituted hydrocarbon group not containing an alkenyl group
  • R 2 represents an alkenyl group
  • N1 and n2 in formula (1) are Represents the total number of repeating units that are randomly or block polymerized, n1 is an integer of 200 to 1200, and n2 is an integer of 0 to 30.
  • the above formula (1) does not necessarily mean a block copolymer. That is, n1 indicating the number of polymerized units — (R 1 2 ) SiO— and n2 indicating the number of —R 1 R 2 SiO— do not indicate the number in the block, Indicates the total number of each. That is, the polyorganosiloxane diol represented by the formula (1) may be a random copolymer.
  • the siloxane skeleton of the polyorganosiloxane diol (1) is substantially linear since it can synthesize a polymer having a predetermined viscosity with a high degree of polymerization with good control. There may be a plurality of branches therein.
  • the component (A1) may be composed of one type of polyorganosiloxane diol (1) or may be composed of two or more types.
  • the viscosity of the polyorganosiloxane diol (1) is 1 to 100 Pas.
  • the viscosity of the polyorganosiloxane diol (1) is two or more, the viscosity of the polyorganosiloxane diol (1) is not necessarily the above as long as the viscosity is within the above range as the component (A1) obtained by mixing them. Although it is not necessary to be in the range, the viscosity is preferably 1 to 100 Pas in each polyorganosiloxane diol (1).
  • the viscosity of the component (A1) is 1 to 100 Pas, it can be adjusted to 5 to 20000 Pas which is the predetermined viscosity as the component (A) when blended with the component (A2) at a predetermined ratio.
  • the viscosity of the polyorganosiloxane diol (1) is preferably 5 to 100 Pas, more preferably 5 to 50 Pas.
  • the average degree of polymerization of the polyorganosiloxane diol (1) that is, the average number of siloxane units in the molecule of the polyorganosiloxane diol (1) is represented by the total number (n1 + n2) of n1 and n2 in the formula (1).
  • the average degree of polymerization is not particularly limited. In the polyorganosiloxane diol (1) having a viscosity in the range of 1 to 100 Pas, the average degree of polymerization is about 200 to 1200.
  • Polyorganosiloxane diol (1) whether having R 2 is an alkenyl group in a molecule is arbitrary.
  • the alkenyl group content of the component (A1) is 0.001 to 0.3 mmol / g
  • the polyorganosiloxane diol ( At least one of 1) has R 2 which is an alkenyl group.
  • the polyorganosiloxane diol (1) has an alkenyl group content of 0.001 to 0.3 mmol / g.
  • the alkenyl group content of the polyorganosiloxane diol (1) is more preferably 0.01 to 0.3 mmol / g, and further preferably 0.05 to 0.2 mmol / g.
  • the polyorganosiloxane diol (1) has an alkenyl group in the molecule means that the formula (1) has —R 1 R 2 SiO— polymerized units, and n2 indicating the number of polymerized units is 1 or more. It means that. The number of n2 depends on the alkenyl group content of the polyorganosiloxane diol (1).
  • the alkenyl group of the polyorganosiloxane diol (1) is not present in the terminal O 1/2 —Si—OH unit but is bonded to the silicon atom of the intermediate Si—O 2/2 unit.
  • alkenyl group represented by R 2 in Formula (1) examples include a vinyl group, an allyl group, a 3-butenyl group, a 4-pentenyl group, and a 5-hexenyl group.
  • R 2 is preferably a vinyl group because the synthesis and handling of the polyorganosiloxane diol (1) is easy and the addition reaction is easily performed. If R 2 there are a plurality in the formula (1), a plurality of R 2 may be the same or different, but from the viewpoint of easy synthesis, but are preferably the same.
  • each R 1 is a monovalent unsubstituted or substituted hydrocarbon group that does not contain an alkenyl group.
  • R 1 include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group; aryl groups such as phenyl group, xenyl group, naphthyl group, tolyl group, and xylyl group; Aralkyl groups such as benzyl group and phenethyl group; cycloalkyl groups such as cyclohexyl group; cycloalyanyl groups such as cyclohexenyl group; chloromethyl group, 3-chloropropyl group, 3,3,3-trifluoropropyl group, 3 -Substituted hydrocarbon groups such as cyanopropyl group and 3-methoxypropyl group.
  • a plurality of R 1 may be the same or
  • R 1 is a 3,3,3-trifluoropropyl group, and the remaining R 1 is all a methyl group.
  • Combinations can be used. In this case, a combination in which R 1 of the unit surrounded by n1 in the formula (1) is partially a 3,3,3-trifluoropropyl group and the remaining R 1 is all methyl groups is preferable.
  • the polyorganosiloxane diol (1) is alkenyl. It does not have to have a group.
  • the polyorganosiloxane diol (1) is a compound represented by HO [(R 1 2 ) SiO] n1 H, which does not have —R 1 R 2 SiO— units.
  • polyorganosiloxane diol (1) having an alkenyl group is referred to as polyorganosiloxane diol (11), and polyorganosiloxane diol (1) having no alkenyl group is referred to as polyorganosiloxane diol (12).
  • (A1) component may comprise (A) component only by (A1) component, and may comprise (A) component in combination with (A2) component.
  • the component (A1) contains the polyorganosiloxane diol (11) as an essential component.
  • the component (A) contains the component (A2)
  • the component (A1) comprises at least one selected from the polyorganosiloxane diol (11) and the polyorganosiloxane diol (12) (A2)
  • the viscosity and alkenyl group content as the component (A) are adjusted by adjusting the combination of the types and blending amounts with the components.
  • Component (A2) is a polyorganosiloxane represented by the following average composition formula (2) having a viscosity at 25 ° C. of 0.2 to 40,000 Pas.
  • the polyorganosiloxane represented by the formula (2) is also referred to as polyorganosiloxane (2).
  • R 3 a SiO (4-a) / 2 (2) In the formula (2), each R 3 independently represents a monovalent unsubstituted or substituted saturated or unsaturated hydrocarbon group not containing a hydroxyl group, and a represents a number in the range of 1.98 to 2.02. Show.)
  • the polyorganosiloxane (2) a linear polymer that is partially branched and may form a three-dimensional structure is preferable. Further, the polyorganosiloxane (2) may be a homopolymer or a copolymer.
  • R 3 in the formula (2) include an unsubstituted or substituted hydrocarbon group exemplified for R 1 and an alkenyl group exemplified for R 2 .
  • R ⁇ 3 > in Formula (2) shows the said monovalent group each independently, not all of R ⁇ 3 > is an alkenyl group.
  • the preferred embodiment of R 3 is also the same as the preferred embodiment of the unsubstituted or substituted hydrocarbon group in R 1 and the preferred embodiment of the alkenyl group in R 2 .
  • Polyorganosiloxane (2) may be R 3 is a compound having no alkenyl group may be a compound part of R 3 is an alkenyl group.
  • polyorganosiloxane (2) having an alkenyl group is referred to as polyorganosiloxane (21)
  • polyorganosiloxane (2) having no alkenyl group is referred to as polyorganosiloxane (22).
  • the component (A2) may be composed of one type of polyorganosiloxane (2), or may be composed of two or more types.
  • the viscosity of the polyorganosiloxane (2) is 0.2 to 40,000 Pas.
  • the viscosity of the polyorganosiloxane diol (1) is within the above range as the component (A2) obtained by mixing them, the viscosity of each polyorganosiloxane (2) is not necessarily within the above range.
  • the viscosity of each polyorganosiloxane (2) is preferably 0.2 to 40,000 Pas.
  • the viscosity of the component (A2) is 0.2 to 40000 Pas, it can be adjusted to 5 to 20000 Pas, which is the predetermined viscosity as the component (A), when blended with the component (A1) at a predetermined ratio.
  • the viscosity of the polyorganosiloxane (2) is preferably 0.4 to 40000 Pas.
  • the average degree of polymerization of the polyorganosiloxane (2) is not particularly limited as long as the viscosity is in the above range. In the polyorganosiloxane (2) having a viscosity in the range of 0.2 to 40,000 Pas, the average degree of polymerization is about 100 to 7100.
  • the component may or may not contain the component (A2).
  • the component (A) contains the component (A2)
  • at least one of the polyorganosiloxane (21) having an alkenyl group and the polyorganosiloxane (22) having no alkenyl group is selected depending on the component (A1) to be combined. Select appropriately (A2).
  • the polyorganosiloxane diol (12) is preferable as the component (A1)
  • the polyorganosiloxane (21) is preferable as the component (A2).
  • polyorganosiloxane (21) for example, a linear polymer represented by the following formula (2A) (hereinafter also referred to as polyorganosiloxane (2A)) is preferable.
  • R 3 is the same as that shown in formula (2), but a part thereof is an alkenyl group.
  • m represents a number having an average degree of polymerization of ⁇ 2.
  • the alkenyl group content in the polyorganosiloxane (2A) depends on the type and blending amount of the polyorganosiloxane diol (1) used in combination, but is preferably 0.001 to 0.3 mmol / g, preferably 0.003 to 0.00. 3 mmol / g is more preferable, and 0.003 to 0.25 mmol / g is more preferable.
  • the alkenyl group in the polyorganosiloxane (2A) may be bonded to any silicon atom in the molecule, but since it exhibits excellent reactivity, a part of the alkenyl group is bonded to the silicon atom at the molecular end. It is preferable. That is, it is preferable that a part of R 3 of the terminal M unit represented by —OSi (R 3 3 ) is an alkenyl group, and the polyorganosiloxane (2A) has one R 3 of M units at both ends.
  • the alkenyl group-containing polyorganosiloxane (2A) containing both alkenyl groups is preferred.
  • the intermediate unit - [(R 3 2) SiO ] - R 3 may be partially alkenyl group for.
  • the alkenyl group is preferably a vinyl group because the synthesis and handling of the polyorganosiloxane (2A) is easy and the addition reaction is easily performed.
  • the polyorganosiloxane (2A) having alkenyl groups at both ends having an alkenyl group in the intermediate unit up to approximately 2.3% of the m intermediate units is an intermediate unit in which one of the two R 3 is an alkenyl group. be able to.
  • the intermediate unit having an alkenyl group is contained in the polyorganosiloxane (2A) containing alkenyl groups at both ends in a random or block manner.
  • Groups other than the alkenyl group in the polyorganosiloxane (2A) are easy to synthesize and handle the polyorganosiloxane (2A) and have excellent heat resistance. Therefore, 50% or more of R 3 other than the alkenyl group is methyl. It is particularly preferable that all of them are methyl groups. In particular, when heat resistance, cold resistance or radiation resistance is required, phenyl group, and 3,3,3-trifluoropyrrolyl group, etc. should be used as appropriate when oil resistance and / or solvent resistance is required. Can do.
  • the component (A) is composed of the component (A1) and the component (A2), and the ratio of the component (A1) is 20 to 100% by mass with respect to the whole component (A).
  • the component (A) has an alkenyl group content of 0.001 to 0.3 mmol / g and a viscosity at 25 ° C. of 5 to 20000 Pas. Adjustment of the alkenyl group content and viscosity in the component (A) is performed by adjusting the types and blending ratios of the component (A1) and the component (A2).
  • the component (A) has the blending ratio, the alkenyl group content, and the viscosity of the predetermined component (A1) and component (A2), and the components (B), (C), and (D) described below.
  • the silicone rubber composition When the silicone rubber composition is combined with the component at a predetermined ratio, the silicone rubber composition has improved moldability, particularly extrudability, while maintaining sufficient strength of the resulting cured product. Can do.
  • an extrusion-molded product having excellent surface blocking resistance can be obtained by post-molding and curing without post-processing.
  • the viscosity of the component (A) is 5 to 20000 Pas, and the ratio of the component (A1) to the whole component (A) giving the viscosity is 20 to 100% by mass. If the viscosity of the component (A) is less than 5 Pas, the resulting silicone rubber composition becomes excessively sticky and roll workability deteriorates. If it exceeds 20000 Pas, the viscosity of the silicone rubber composition becomes too high and kneading is difficult. It is.
  • the viscosity of the component (A) is preferably from 5 to 15000 Pas, more preferably from 5 to 3000 Pas, particularly for the purpose of improving the blocking resistance in the extruded product.
  • the viscosity in (A) component can be adjusted with the compounding ratio of the (A1) component and (A2) component in (A) component, for example.
  • the ratio of the component (A1) to the whole component (A) for obtaining the viscosity is preferably 30 to 100% by mass, more preferably 50 to 100% by mass.
  • the viscosity of the component (A) By reducing the viscosity of the component (A), it is possible to easily remove the low molecular siloxane from the raw material, and thereby the cured product in which the content of the low molecular siloxane is sufficiently reduced without post-curing. Is preferably 5 to 1000 Pas, more preferably 5 to 500 Pas, and still more preferably 5 to 150 Pas.
  • the ratio of the component (A1) to the total component (A) for obtaining such a viscosity is preferably 40 to 100% by mass, and more preferably 50 to 100% by mass.
  • the alkenyl group content in component (A) is preferably 0.002 to 0.3 mmol / g, more preferably 0.003 to 0.25 mmol / g.
  • the alkenyl group content of the component (A) is less than 0.001 mmol / g, the strength of the resulting cured product is not sufficient, and when it exceeds 0.3 mmol / g, the resulting cured product becomes brittle.
  • the content of OH groups bonded to silicon atoms is preferably 0.005 to 0.1 mmol / g, more preferably 0.005 to 0.08 mmol / g. 0.01 to 0.07 mmol / g is more preferable.
  • the silanol group of the component (A) not only suppresses the plasticization return of the silicone composition by the component (B) by performing a condensation reaction with the silanol group present on the surface of the silica powder of the component (B).
  • the rubber composition is imparted with an appropriate viscosity, and further, (B) components are bound together during kneading or extrusion molding to produce fine spherical aggregates. It has the effect of reducing surface tackiness by being partially exposed on the surface.
  • the silicone rubber composition is not sticky and roll workability is not deteriorated, or the mechanical properties of the cured product are not deteriorated. It can sufficiently condense with silanol groups present on the surface of the component silica powder.
  • the state in which the spherical aggregate is exposed on the surface of the extruded product can be evaluated by, for example, the following method.
  • the silicone rubber composition of the present invention is extruded at a rate of 2 m / min with a screw extruder, and then cured to obtain a tubular cured product.
  • the curing method depends on the type of component (D).
  • the component (D) is an ultraviolet curable curing agent, for example, an ultraviolet ray is irradiated with ultraviolet rays at 365 nm and an integrated irradiation amount of about 6000 mJ / cm 2 .
  • the component (D) is a thermosetting type, for example, a curing treatment is performed at 200 ° C. for 5 minutes.
  • the spherical aggregate is, for example, as shown in FIG.
  • the tube-like cured product obtained by using the silicone rubber composition as described above has 1 to 300 granular projections having a maximum diameter of 0.1 to 30 ⁇ m on the surface. preferably has 01mm 2, and more preferably has 10 to 200 amino /0.01mm 2.
  • cured material surface is not specifically limited. In any one SEM image of the surface of the tube-shaped cured product, it is only necessary to observe granular projections having a maximum diameter of 0.1 to 30 ⁇ m, and 1 to 300 are measured as the number per 0.01 mm 2. It is preferable that 10 to 200 are measured.
  • the average polymerization degree of the (A1) component and the (A2) component contained in the component (A) is as described above, but the component (A) contains a low-molecular siloxane that can volatilize at normal pressure and 200 ° C. It is preferred that the amount be sufficiently low.
  • the low molecular siloxane refers to a siloxane that can volatilize at 200 ° C. under normal pressure.
  • the component (A) is a low-viscosity (A) component
  • the content of the low-molecular siloxane contained in the low-viscosity (A) can be easily reduced by an existing method, and a silicone rubber containing the same In the composition, the content of the low molecular siloxane can be sufficiently reduced.
  • cured material obtained using a low-viscosity (A) component containing silicone rubber composition can turn into a hardened
  • content of the low molecular siloxane in (A) component can be shown, for example as a parameter
  • the mass reduction rate [%] refers to the mass reduction rate [%] before and after heat treatment at normal pressure and 200 ° C. for 4 hours.
  • the mass reduction rate [%] is preferably 1.0% or less, and if the mass reduction rate [%] is 1.0% or less, the content of the low molecular siloxane post-cure the cured product. It can be said that it is low enough to make a product without any problems.
  • the component (A) is a low viscosity component (A)
  • a mass reduction rate [%] of 1.0% or less can be easily achieved.
  • the mass reduction rate [%] of the component (A) is more preferably 0.8% or less, and more preferably 0.6% or less.
  • the silicone rubber composition of the present invention is preferably a silicone rubber composition that gives a cured product that can be made into a product without post-curing.
  • the fact that the cured product can be made into a product without post-curing means that the mass reduction rate [%] of the cured product is approximately 0.5% or less.
  • the curing conditions for obtaining a cured product to be subjected to the mass reduction rate [%] test from the silicone rubber composition include the thermal curing conditions and UV curing conditions described later according to the type of component (D). .
  • the siloxane polymer such as the component (A1) or the component (A2) constituting the component (A) is usually generated by an equilibrium reaction of a siloxane oligomer with acid or alkali. Therefore, even in the siloxane polymer having the average degree of polymerization as described above, a considerable amount of low molecular weight siloxane exists.
  • the removal of the low-molecular siloxane is performed after mixing (A1) component and (A2) component as (A) component, or before mixing (A1) component and (A2) component.
  • it performs with respect to (A1) component and (A2) component before mixing.
  • a method for reducing the low molecular weight siloxane component contained in the siloxane polymer a method for vaporizing and removing the low molecular weight siloxane component under high temperature heating at about 100 to 300 ° C. in a reduced pressure state, or during or after the vaporization removal is performed. Furthermore, a conventionally known method such as a method of further promoting vaporization by blowing an inert gas can be used.
  • the component (B) is a silica powder having a specific surface area of 50 to 400 m 2 / g, and the blending amount is 10 to 100 parts by mass with respect to 100 parts by mass of the component (A). 50 parts by mass.
  • the blending amount of each component is shown in parts by mass with respect to 100 parts by mass of the component (A), and may be simply shown as.
  • the component (B) is a component having a function of imparting appropriate fluidity to the silicone rubber composition and imparting excellent mechanical strength to the silicone rubber obtained by curing the composition.
  • the silica powder as the component (B) has a specific surface area of 50 to 400 m 2 / g in order to perform the above function when added to the composition of the present invention.
  • a specific surface area says the specific surface area by BET method.
  • the silica powder having a specific surface area of 50 to 400 m 2 / g is also referred to as silica powder (B).
  • the specific surface area of silica powder (B) is preferably from 100 ⁇ 360m 2 / g, more preferably 130 ⁇ 300m 2 / g.
  • the type of silica is not particularly limited, but precipitated silica, fumed silica (fumed silica), calcined silica, and the like are preferably used. From the viewpoint of reinforcement, fumed silica is preferred.
  • silica powder since silica powder is used after being surface-treated as necessary, surface-untreated silica powder and surface-treated silica powder are referred to as “silica powder” without distinction.
  • the silica powder of the component (B) shows only the untreated surface silica powder that has not been surface-treated.
  • a commercially available product may be used as the silica powder (B).
  • Commercially available products are fumed silica, all of which are EVONIC trade names, Aerosil 130 (specific surface area: 130 m 2 / g), Aerosil 200 (specific surface area: 200 m 2 / g), Aerosil 300 (specific surface area: 300 m) 2 / g).
  • Silica powder (B) may use 1 type, or may use 2 or more types together.
  • the blending amount of the component (B) in the silicone rubber composition of the present invention is 10 to 50 parts by mass, preferably 15 to 40 parts by mass with respect to 100 parts by mass of the component (A).
  • the blending amount of the component (B) exceeds 50 parts by mass, the viscosity of the silicone rubber composition is remarkably increased, making it difficult to blend the component (B) into the component (A), and conversely, it is less than 10 parts by mass.
  • the roll workability of the silicone rubber composition deteriorates and the properties such as mechanical strength of the resulting silicone rubber become insufficient.
  • a millable type silicone rubber composition suitable for extrusion molding and having both good shape maintenance and low hardness of the extrusion molded product can be obtained by blending a smaller amount of silica powder than usual. It is done. Moreover, when the fine spherical aggregates of silica powder are exposed on the surface of the extrusion-molded product, the surface of the extrusion-molded product is excellent in slipping property and blocking can be suppressed.
  • the amount of component (B) is preferably 10 to 40 parts by mass, more preferably 15 to 40 parts by mass.
  • the silicone rubber composition of the embodiment of the present invention contains 1 to 10 parts by mass of organosilazane as the component (C).
  • the component (C) has a function of silylating silanol groups on the surface of the silica powder of the component (B). This improves the stability of the base compound composed of the component (A), the component (B), and the component (C), and the silicone rubber composition further containing the component (D) in the base compound. Furthermore, ammonia is by-produced during the silylation, and the ammonia promotes the condensation reaction between the terminal silanol groups of the polyorganosiloxane diol (A1) and the silanol groups on the surface of the silica powder (B), Thereby, the viscosity suitable for roll workability
  • ammonia is by-produced during the silylation, and the ammoni
  • component (C) hexamethyldisilazane, 1-vinylpentamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3-dimethyl-1,1,3 Hexaorganodisilazane such as 1,3-tetravinyldisilazane, and octaorganotrisilazane such as octamethyltrisilazane and 1,5-divinylhexamethyltrisilazane.
  • the component (C) may be composed of one of these or may be composed of two or more.
  • hexamethyldisilazane and 1,3-divinyl-1,1,3,3-tetramethyldisilazane are preferable.
  • Hexamethyldisilazane, hexamethyldisilazane and 1,3-divinyl-1 1,3,3-tetramethyldisilazane is more preferred.
  • the blending amount of the component (C) is 1 to 10 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A).
  • the amount of component (C) is preferably 1 to 8 parts by mass, more preferably 2 to 8 parts by mass.
  • the blending amount of the component (C) is preferably 1 to 40 parts by mass, more preferably 5 to 30 parts by mass with respect to 100 parts by mass of the component (B).
  • component (C) When the blending amount of component (C) is too small, a sufficient amount of component (B) cannot be blended for the resulting silicone rubber to obtain mechanical strength, and the storage stability of the composition When the amount is too large, the workability of the composition deteriorates, and it is not preferable economically.
  • Component (B) Component (B) Silica powder on the surface of the silanol group on the surface Silyl group by-produced ammonia and low molecular siloxane, such as hexamethyldisiloxane, and further unreacted organosilazane Can be easily removed by heat treatment in the production process described later.
  • the component (D) is a catalytic amount of a curing agent.
  • Component (D) is a rubber-like elastic body obtained by curing a silicone rubber composition, particularly the base polymer of component (A).
  • curing agent of a component the combination (D2) of an organic peroxide (D1) and an addition type crosslinking agent and a catalyst is mentioned.
  • the organic peroxide (D1) is used, the silicone rubber composition is heated and cured.
  • either heat curing or ultraviolet curing (UV curing) can be selected depending on the type of the catalyst. You may use combining an organic peroxide (D1) and the combination (D2) of an addition type crosslinking agent and a catalyst.
  • the organic peroxide (D1) is not particularly limited as long as it is usually used in this type of silicone rubber composition. Specifically, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-chlorobenzoyl peroxide, dicumyl peroxide, p-methylbenzoyl peroxide, 2,5-dimethyl-2,5-di (t -Butylperoxy) hexane, 2,5-bis (t-butylperoxy) -2,5-dimethylhexane, di-t-butylperoxide, t-butylperoxybenzoate, bis (4-t-butylcyclohexyl) ) Peroxydicarbonate.
  • organic peroxides (D1) 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, and 2,5-bis (t-butylperoxy) -2,5-dimethylhexane are preferable. 2,4-dichlorobenzoyl peroxide and p-methylbenzoyl peroxide are more preferred.
  • the component (D1) one type may be used, or two or more types may be used in combination.
  • the blending amount of the component (D1) is an effective amount that catalyzes the curing reaction of the component (A). Specifically, the amount is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the component (A).
  • the blending amount of the component (D1) is less than 0.01 parts by mass, the curing reaction of the component (A) may not be sufficiently performed, and when it exceeds 5 parts by mass, the resulting silicone rubber has characteristics such as heat resistance. May decrease.
  • addition type crosslinking agent in the combination (D2) of the addition type crosslinking agent and the catalyst a polyorgano having a siloxane skeleton in which a hydrogen atom and an organic group are bonded to a silicon atom, and an average of two or more hydrogen atoms in the molecule.
  • examples thereof include hydrogen siloxane (D21).
  • the polyorganohydrogensiloxane (D21) component forms a crosslinked product by the addition reaction with the alkenyl group of the component (A) by the action of the catalyst used together.
  • the catalyst used is an addition reaction catalyst (D22) having an action of catalyzing this addition reaction.
  • examples of the organic group bonded to the silicon atom include an unsubstituted or substituted monovalent hydrocarbon group in the same range as R 1 of the component (A1), and the synthesis and handling are easy. Therefore, a methyl group is preferable.
  • the siloxane skeleton of the component (D21) may be linear, branched or cyclic.
  • the amount of hydrogen atoms bonded to the silicon atom is preferably 0.1 mmol / g or more and 20 mmol / g or less as the content per mass.
  • a hydrogen atom may be bonded to the silicon atom of the intermediate unit or may be bonded to the silicon atom at the molecular end. It is preferably bonded to an intermediate unit silicon atom.
  • the average degree of polymerization of the component (D21) is preferably 10 to 500, preferably 20 to 100, from the viewpoint of maintaining the liquid state at the reaction temperature of the addition reaction to contact the component (A) and reducing the content of low molecular siloxane. Is more preferable.
  • the component (D21) one type may be used, or two or more types may be used in combination.
  • a low viscosity (A) component is used as the (A) component, even in the (D21) component, a low molecular weight Until the content of siloxane is the same as the preferred content in component (A), preferably until the mass reduction rate [%] is in the same range as the preferred mass reduction rate [%] in component (A) It is preferable to remove.
  • the removal method the same method as in the component (A) can be used.
  • the amount of the component (D21) in the composition is an amount sufficient to crosslink the component (A).
  • the content of component (D21) is the molar ratio of hydrogen atoms bonded to silicon atoms in component (D21) to alkenyl groups in component (A) (moles of hydrogen atoms bonded to silicon atoms in component (D21)).
  • the number / (the number of moles of the alkenyl group of the component (A)) is from 0.01 to 10.
  • the molar ratio is preferably 0.1 to 5.
  • the addition reaction catalyst (D22) catalyzes the addition reaction between the alkenyl group of component (A) and the hydrosilyl group of component (D21).
  • the addition reaction catalyst (D22) include at least one selected from the group consisting of platinum, rhodium, palladium, iridium, and nickel.
  • the addition reaction catalyst (D22) is preferably a platinum catalyst similar to the platinum catalyst usually used for the addition reaction as described above.
  • the platinum-based catalyst includes a heat-activated platinum-based catalyst (hereinafter also referred to as “thermal platinum-based catalyst”) and an ultraviolet-activated platinum-based catalyst (hereinafter also referred to as “UV platinum-based catalyst”). is there.
  • Thermal platinum-based catalysts include compounds containing platinum-based metals, such as platinum metal fine powder, chloroplatinic acid, alcohol-modified chloroplatinic acid, complexes of platinum and diketone, complexes of chloroplatinic acid and olefins, chloroplatinic acid And alkenylsiloxane complexes.
  • the platinum-based metal refers to platinum, rhodium, palladium and the like.
  • the thermal platinum catalyst may be used alone or in combination of two or more.
  • the UV platinum-based catalyst is an ultraviolet-active catalyst designed as a compound containing a platinum-based metal so that the catalytic activity is exposed when irradiated with ultraviolet rays.
  • particularly preferable catalysts include ( ⁇ 5-cyclic pentadienyl) -trialkyl-platinum complexes and the like (Cp is cyclopentadienyl).
  • Cp trimethylplatinum (Cp) ethyldimethylplatinum (Cp) triethylplatinum (Cp) triallylplatinum (Cp) tripentylplatinum (Cp) trihexylplatinum (methyl-Cp) trimethylplatinum (trimethylsilyl-Cp) trimethylplatinum (phenyldimethylsilyl- Cp) Trimethylplatinum (Cp) Acetyldimethylplatinum (Cp) Diethylmethylplatinum (Cp) Triisopropylplatinum (Cp) Tri (2-butyl) platinum (Cp) Triallylplatinum (Cp) Trinonylplatinum (Cp) Tridodecylplatinum (Cp) Tricyclopentylplatinum (Cp) Tricyclohexylplatinum (chloro-Cp) Trimethylplatinum (fluoro-Cp) Trimethylplatinum (flu
  • the most preferred UV platinum-based catalysts used in the present invention are cyclopentadienyl-tris-alkyl-platinum compounds which may be substituted with alkyl or trialkylsilyl, in particular alkylcyclopentadienyl-trimethyl-platinum, in particular Methylcyclopentadienyl-trimethyl-platinum.
  • the UV platinum catalyst may be used alone or in combination of two or more.
  • the compounding quantity of the addition reaction catalyst (D22) in a composition catalyzes the addition reaction of (A) component and (D21) component.
  • the platinum-based catalyst including the thermal platinum-based catalyst and the UV platinum-based catalyst is usually 0.1 to 1000 ppm in terms of platinum metal atoms relative to the total amount of the component (A) and the component (D21). 0.1-100 ppm is preferred. Within this range, the addition reaction of the component (A) and the component (D21) is sufficiently catalyzed, and an excellent addition reaction rate can be obtained.
  • the blending amount of the platinum-based catalyst is more preferably 0.5 to 50 ppm, preferably 1 to 20 ppm in terms of the platinum metal atom. Particularly preferred.
  • polyorganosiloxanes other than the above in addition to the above components, polyorganosiloxanes other than the above (hereinafter referred to as “other polyorganosiloxanes”), various types, as long as the effects of the present invention are not impaired.
  • Various additives conventionally used may be blended depending on the purpose.
  • the low viscosity (A) component is used as the component (A)
  • the other polyorganosiloxane has a mass reduction rate [%] in the same range as the preferred mass reduction rate [%] in the component (A). Is preferred.
  • Additives such as ground silica (quartz fine powder), diatomaceous earth, metal carbonate, clay, talc, mica, titanium oxide and other inorganic fillers other than the silica powder of component (B), conductivity such as carbon black Materials, pigments, thixotropy imparting agents, viscosity modifiers for improving extrusion workability, UV inhibitors, fungicides, heat resistance improvers, flame retardants, antioxidants, reaction inhibitors for addition reactions, etc. Is mentioned.
  • the silicone rubber composition according to the embodiment of the present invention is prepared by uniformly kneading the components (A) to (D) and other components blended as necessary with a mixing means such as a kneader. Can do.
  • curing agent of (D) component is mix
  • the base compound is preferably prepared by gradually adding the component (B) and the component (C) to the component (A) while kneading the component (A).
  • the addition of the component (B) and the component (C) may be intermittent or may be continuous. Specifically, the component (B) and the component (C) are added to the component (A) in a plurality of times, continuously added at a predetermined rate, and the like.
  • the temperature at which the components (A), (B) and (C) are kneaded is preferably 100 ° C. or less, and more preferably in the range of 20 to 70 ° C.
  • the mixture obtained is mixed with ammonia, hexamethyldisiloxane, etc. before blending the curing agent (D).
  • the heating step is preferably performed by heating and kneading, and the time is preferably 0.5 to 12 hours.
  • the silicone rubber composition of the embodiment of the present invention may be provided with a low molecular siloxane removal step, for example, the above heating step, if necessary.
  • the component (D) is added to the composition.
  • the mass reduction rate [%] of the previous base compound is preferably 0.8% or less, more preferably 0.6% or less, and more preferably 0.3% or less.
  • the low molecular siloxane content of the component (A), the base compound, the silicone rubber composition, etc. can be analyzed by gas chromatography or the like.
  • the content of cyclic siloxane having a polymerization degree of 10 or less is preferably 1000 ppm or less, more preferably 500 ppm or less, More preferably, it can be 300 ppm or less.
  • the silicone rubber composition is obtained by a method such as press molding, transfer molding, injection molding, extrusion molding, calendar molding and the like. Mold into shape.
  • the organic peroxide (D1) is used as the component (D)
  • the above molding is performed under conditions of, for example, about 100 to 400 ° C. for about 3 to 30 minutes depending on the decomposition temperature of the organic peroxide.
  • cured is obtained as a molded object.
  • the temperature depends on the temperature at which the thermal platinum catalyst to be used is activated.
  • the addition reaction catalyst (D22) is a UV platinum-based catalyst
  • a silicone rubber molded product obtained by curing the silicone rubber composition by irradiating the obtained silicone rubber composition molded product with ultraviolet rays is obtained. can get.
  • the wavelength of the ultraviolet rays to be irradiated depends on the type of the UV platinum catalyst used, but is usually 200 nm to 400 nm, preferably 250 nm to 400 nm.
  • Irradiation energy can be 100mJ / cm 2 ⁇ 100,000mJ / cm 2 as the accumulated light quantity at 365 nm.
  • the silicone rubber composition of the present invention can be prepared using a base polymer having a wide viscosity range as the component (A), and is a millable silicone rubber composition having good roll workability and extrusion moldability.
  • the silicone rubber composition of the present invention has good roll workability and extrusion moldability because it has a good shape maintaining property while the blending amount of the silica powder of the component (B) is small compared with the conventional product. A cured product with low hardness is obtained. In particular, for extruded products, the surface is excellent in slipperiness and does not block.
  • the extrusion molded product obtained from the silicone rubber composition of the present invention preferably has a granular projection having a maximum diameter of 0.1 to 30 ⁇ m as measured by an SEM image on the surface.
  • the components (B) are bonded together during kneading to form fine spherical aggregates, and these spherical aggregates are partially exposed on the surface of the extruded product. To do. That is, the spherical agglomerates are observed as granular protrusions that are partly or entirely exposed from the surface of the generally flat extruded product.
  • the number of granular protrusions having a maximum diameter of 0.1 to 30 ⁇ m per 100 ⁇ m ⁇ 100 ⁇ m (0.01 mm 2 ) is 1 to 300/0. 0.01 mm 2 is preferable, and 10 to 200 / 0.01 mm 2 is more preferable.
  • the number per 100 ⁇ m ⁇ 100 ⁇ m (0.01 mm 2 ) of granular projections having a maximum diameter of 0.1 to 30 ⁇ m on the surface of an extrusion-molded product obtained from the silicone rubber composition of the present invention is arbitrarily selected from 5 It is preferable that it exists in the said range as an average value in a location.
  • the component (A) can be a liquid base polymer from which low molecular siloxane has been sufficiently removed. Accordingly, a cured product having a very low content of low molecular siloxane can be easily obtained.
  • the low-viscosity (A) component-containing silicone rubber composition or (A) component has a mass reduction rate of 1.0% or less before and after heat treatment at 200 ° C. for 4 hours at normal pressure.
  • the low viscosity (A) component-containing silicone rubber composition or the component (A) has a mass reduction rate before and after heat treatment at 200 ° C. for 4 hours at normal pressure.
  • the mass reduction rate [%] of a cured product obtained by curing the silicone rubber composition of the present invention having a ratio of 1.0% or less at 170 ° C. for 10 minutes can be approximately 0.5% or less.
  • the mass reduction rate [%] of the cured product in this case is preferably 0.3% or less, more preferably 0.2% or less.
  • the content of the cyclic siloxane having a polymerization degree of 10 or less can be 1000 ppm or less, preferably 500 ppm or less, more preferably 300 ppm or less.
  • the low viscosity (A) component The silicone rubber composition of the present invention in which the content silicone rubber composition or the component (A) is 1.0% or less before and after heat treatment at 200 ° C. for 4 hours at normal pressure is cured at 120 ° C. for 10 minutes.
  • the mass reduction rate [%] of the cured product obtained by the above treatment can be approximately 0.5% or less.
  • the mass reduction rate [%] of the cured product in this case is preferably 0.3% or less, more preferably 0.2% or less.
  • the addition reaction catalyst (D22) is a UV platinum catalyst
  • the low viscosity (A) component-containing silicone rubber composition or the component (A) is reduced in mass before and after heat treatment at 200 ° C. for 4 hours at normal pressure.
  • the mass reduction rate [%] of the cured product obtained by curing the silicone rubber composition of the present invention having a rate of 1.0% or less at 7200 mJ / cm 2 as the integrated light quantity at 365 nm is approximately 0.5%. The following can be done.
  • the mass reduction rate [%] of the cured product in this case is preferably 0.3% or less, more preferably 0.2% or less.
  • the content of the cyclic siloxane having a polymerization degree of 10 or less can be 1000 ppm or less, preferably 500 ppm or less, more preferably 300 ppm or less.
  • the following polyorganosiloxane was used as the component (A1), the component (A2), and the component (D21).
  • the siloxane unit is indicated by the following symbols.
  • the structural formula, mass reduction ratio [%], viscosity [Pas], silanol group content [mmol / g], each linear polyorganosiloxane polymer having an alkenyl group content [mmol / g] was used.
  • Table 1 also shows polyorganosiloxane diols (A1-cf) for comparative examples that are polyorganosiloxane diols but do not satisfy the requirements of the component (A1).
  • silica powder is a surface-treated silica powder for a comparative example.
  • (B) component fumed silica (B1); Aerosil 130 (trade name, manufactured by EVONIC), specific surface area of 130 m 2 / g (B2); Aerosil 200 (trade name, manufactured by EVONIC), specific surface area of 200 m 2 / g (B3); Aerosil 300 (trade name, manufactured by EVONIC), specific surface area of 300 m 2 / g (Bcf): Aerosil 130 treated with dimethyldichlorosilane (silica surface carbon content: 1.0 mass%)
  • Component (C) organosilazane (C1); hexamethyldisilazane (C2); 1,3-divinyl-1,1,3,3-tetramethyldisilazane
  • Example 1 to 23 Silicone rubber compositions of Examples 1 to 23 were produced with the compositions shown in Tables 2 to 5 as follows. Similarly, the silicone rubber compositions of Comparative Examples 1 to 7 having the compositions shown in Table 6 were produced as base compounds containing no component (D) as follows.
  • component (A1) and component (A2) were mixed with a kneader to prepare component (A).
  • the components (B) and (C) are continuously added to the component (A) over a period of 20 to 60 minutes, blended with a kneader, kneaded at 50 ° C. for 1 hour, and then heat-kneaded at 150 ° C. for 2 hours. This was cooled to 40 ° C. or lower to prepare a base compound.
  • component was mix
  • viscosity (Pas) as component (A) alkenyl group content [mmol / g]
  • mass reduction rate [%] mass reduction rate as a base compound [ %].
  • the alkenyl group content [mmol / g] and the mass reduction rate [%] of the component (A) are calculated values.
  • “phc” in (D11), (D21), and (D22) is a blending amount (parts by mass) with respect to 100 parts by mass of the base compound composed of the components (A), (B), and (C). is there.
  • the ppmPt in (D22) indicates ppm in terms of platinum metal atom relative to the total amount of the (A) component, the (B) component, the (C) component (base compound), and the (D21) component.
  • the blank indicates the blending amount “0”, and “ ⁇ ” indicates that the blending is not performed.
  • the extrusion processability is good.
  • Blocking resistance After winding the cured tube and leaving it to stand at room temperature for 1 day, the presence or absence of adhesion between the surfaces of the tubes is visually confirmed. was recognized as blocking resistance “none”.
  • FIG. 1A is a SEM photograph (1 ⁇ ) of the tube surface obtained in Example 12
  • FIG. 1B is a photograph showing a 100 ⁇ m ⁇ 100 ⁇ m area obtained by enlarging a 250 ⁇ SEM photograph of the same tube surface
  • FIG. 1C is the same tube surface. Is a SEM photograph at a magnification of 5000 times (the length of the white line at the lower right of the photograph is 5 ⁇ m).
  • test pieces were prepared using the silicone rubber composition of the example obtained above, and the following evaluation items were evaluated. The results are also shown in Tables 2 to 6.
  • Examples 1 to 11 Test pieces for measuring mechanical properties (hardness, tensile strength, elongation) according to JIS K6249, which were press-molded at 120 ° C. for 15 minutes under the conditions obtained above. A dumbbell-shaped No. 3 shape was produced.
  • the silicone rubber compositions obtained in Examples 1 to 11 were press-molded under the same conditions as those for producing test pieces for measuring mechanical properties to obtain silicone rubber sheets.
  • the silicone rubber compositions obtained in Examples 12 to 23 were cured using a UV lamp in the same manner as in the production of the test pieces for measuring mechanical properties to obtain silicone rubber sheets. These silicone rubber sheets were cut into appropriate sizes, and the mass (w1) was measured as sample sheets. The sample sheet was placed in an oven at 200 ° C. for 4 hours, taken out, measured for mass (g; w2), and mass reduction rate [%] ((w1-w2) / w1 ⁇ 100) was calculated.
  • the silicone rubber composition obtained in Examples 1 and 3 was press-molded under the conditions of 170 ° C. and 10 minutes to obtain a silicone rubber sheet in the same manner as the test piece for measuring mechanical properties.
  • the silicone rubber compositions obtained in Examples 12 and 15 were cured using a UV lamp in the same manner as in the preparation of the mechanical property measurement test pieces to obtain silicone rubber sheets. These silicone rubber sheets are immersed in n-hexane to extract low molecular weight siloxane, and the amount of low molecular siloxane contained in the extract is determined by gas chromatography (manufactured by Agilent Technologies, Model 6890). Tables 2 to 5 show the results of the determination of the content of cyclic siloxane having a degree of polymerization of 4 to 10 contained in Table 2, respectively.
  • the silicone rubber compositions of the examples have good moldability, particularly extrudability, while maintaining sufficient strength of the cured product.
  • the surface of the extruded product was excellent in slipperiness and did not block.
  • the base compound is the same as in Examples 12 and 14 to 20, and the curing agent is the same as in Examples 9 to 11, so that the extrusion moldability is good and the blocking resistance is good. Is also assumed to be good.
  • the spherical particles are considered to be an aggregate of silica particles. It is considered that the surface slipperiness of the extruded product was improved by the presence of the spherical body in which the silica particles were aggregated.
  • component (A) is a low viscosity component (A) (Examples 1 to 6, 9, 12 to 18), low molecular weight siloxane can be sufficiently reduced from the raw material components, and the low molecular weight When the component (A) in which siloxane is reduced is used, it is not necessary to post-cure the cured product.
  • the silicone rubber composition of the present invention has good moldability, particularly extrusion moldability, while maintaining sufficient strength of the cured product. Moreover, if the low viscosity (A) component containing silicone rubber composition which is a preferable aspect in the silicone rubber composition of this invention is used, the low molecular siloxane contained in (A) component beforehand can fully be reduced. Therefore, a cured product in which the content of low molecular siloxane is sufficiently reduced without post-curing, for example, a silicone rubber molded product having a mass reduction rate of 0.5% or less before and after heat treatment at 200 ° C. for 4 hours at normal pressure Is obtained.
  • Such silicone rubber moldings are suitable as connector seals / gaskets / packings / buffer materials for automobiles and electronic devices because there is almost no contact failure of electronic devices due to volatile low molecular weight siloxane. It is.
  • the amount of volatile low-molecular-weight siloxane is sufficiently small, it can be used as medical tubes, catheters, check valves, packings, wound care products, health care applications such as baby nipples, and kitchen products. Is preferred.
  • composite molding with a wide range of materials such as heat-sensitive materials such as thermoplastics is possible.
  • the surface of the extrusion-molded product with the silicone rubber composition of the present invention is excellent in slipperiness, so that almost no blocking occurs.
  • the silicone rubber composition of the present invention is suitable for producing extruded products such as packings, tubes and cables. Moreover, since the extruded product has a matte and non-sticky surface texture due to the granular protrusions exposed on the surface, it is suitable for uses such as wearable devices and automotive weather strips.

Abstract

得られる硬化物の強度を十分に維持しながら、成形性、特に押出成形性が改善されたシリコーンゴム組成物を提供する。(A)(A1)25℃における粘度が1~100Pasである、ポリオルガノシロキサンジオール、および(A2)25℃における粘度が0.2~40000Pasであるポリオルガノシロキサンからなり、(A1)の割合が(A)全体に対して20~100質量%である、25℃における粘度が5~20000Pas、アルケニル基含有量が0.001~0.3mmol/gであるベースポリマー100質量部、(B)比表面積が50~400m/gであるシリカ粉末10~50質量部、(C)オルガノシラザン1~10質量部、および(D)硬化剤の触媒量を含有するシリコーンゴム組成物。

Description

シリコーンゴム組成物、その製造方法およびシリコーンゴム押出し成形品
 本発明は、シリコーンゴム組成物、その製造方法およびシリコーンゴム押出し成形品に関し、特にはミラブル型のシリコーンゴム組成物、その製造方法およびシリコーンゴム押出し成形品に関する。
 シリコーンゴムは、優れた耐候性、電気特性、低圧縮永久歪性、耐熱性、耐寒性等の特性を有しているため、電気機器、自動車、建築、医療、食品を初めとして様々な分野で広く使用されている。シリコーンゴムのなかでもミラブル型シリコーンゴムは、二本ロールなどの簡単な装置で着色剤等の混合ができ、プレス等の簡単な設備で成形できるためゴム部品の製造に広く用いられており、特に未硬化状態であっても形状の保持ができることから、チューブやガスケット等の押出し成形に広く利用されている。
 しかしながら、シリコーンゴムは硬化後の表面に固有の粘着性を有するため、成形品の表面同士がブロッキングする不具合を生じやすい。ブロッキングは表面に微細な凹凸を設けることによって防止することが可能であり、金型を用いる成形品においては、金型の表面を粗面化することによってブロッキングを容易に防止することができる。しかし、金型を用いない、押出し成形や、コーティングにおいては、表面状態をコントロールすることが困難であり、改善が望まれていた。
 型を用いないコーティング用途では、ブロッキングの問題を解消する試みとして、例えば、特許文献1には、充填剤として平均粒径が0.5~20μmのゲル法シリカを用いた液状シリコーンゴムコーティング剤組成物の記載がある。しかしながら、このコーティング剤組成物の技術を、押出し成形のように、厚みを有するシリコーンゴム成形品のための組成物に適用しても、ブロッキングを防止するために配合された特定の粒子系を有する充填剤が、効果的に表面に露出しにくいため、効果的にブロッキングの問題を解消することは困難である。また、この方法でブロッキングを防止するためには、充填剤を過剰に配合する必要があり、シリコーンゴムの柔軟性が失われるという欠点を有している。
 さらに、従来のミラブル型シリコーンゴムのベースコンパウンドは、生ゴム状の高重合度ポリオルガノシロキサンに充填剤を混合して製造されており、充填剤の配合を容易にするためにプロセスオイルとして低粘度のジシラノール等を配合するのが一般的である。
 また、上記生ゴム状の高重合度ポリオルガノシロキサンは、低分子の環状シロキサンをアルカリ触媒による開環重合により製造するのが一般的であるが、この反応は平衡化であり、未反応の低分子シロキサンが一定量ポリマー中に残存する。近年、低分子シロキサンの低減が要求されているが、生ゴム状のベースポリマーから低分子シロキサンを除去することが困難なため、硬化後の成形品を高温でポストキュアせざるを得ず、コスト増加が避けらない。さらに、高温でのポストキュアは、特に熱可塑性のプラスチックのような、熱に弱い材料との複合成形を行う際に材料選択の幅を狭める。
 このような問題を解決するために、例えば、特許文献2にはベースコンパウンドに配合するポリオルガノシロキサンについて、電子部品の接点障害を防止するために、重合度10以下の低分子シロキサンの含有量を低減したシリコーンゴム組成物が記載されている。しかしながら、近年、医療用途やヘルスケア用途では、重合度10以下の低分子シロキサンに加えて、揮発性の全シロキサンの低減が求められており、更なる改善が求められている。
特開2006-225636号公報 特開2011-16977号公報
 本発明は、上記観点からなされたものであって、得られる硬化物の強度を十分に維持しながら、成形性、特に押出成形性が改善されたシリコーンゴム組成物およびその製造方法、ならびに耐ブロッキング性を有するシリコーンゴム押出し成形品の提供を目的とする。
 ここで、本明細書においてシリコーンゴム組成物の成形品とは、シリコーンゴム組成物を成形し硬化させた硬化物を意味する。また、単に「シリコーンゴム」という場合は、シリコーンゴム組成物の硬化物を意味する。
 本発明のシリコーンゴム組成物は、
(A)下記(A1)および(A2)からなり、(A1)の割合が(A)全体に対して20~100質量%である、25℃における粘度が5~20000Pas、アルケニル基含有量が0.001~0.3mmol/gであるベースポリマー100質量部、
 (A1)25℃における粘度が1~100Pasである、下記式(1)で示されるポリオルガノシロキサンジオール
  HO[(R )SiO]n1[RSiO]n2H   …(1)
(式(1)中、Rはそれぞれ独立に、アルケニル基を含まない1価の非置換または置換炭化水素基であり、Rはアルケニル基を表す。式(1)中のn1およびn2は、ランダム重合またはブロック重合したそれぞれの繰り返し単位の合計の数を示し、n1は200~1200、n2は0~30の整数である。)
 (A2)25℃における粘度が0.2~40000Pasである、下記平均組成式(2)で示されるポリオルガノシロキサン
  R SiO(4-a)/2   …(2)
(式(2)中、Rはそれぞれ独立に、水酸基を含まない1価の非置換または置換の飽和または不飽和炭化水素基であり、aは1.98~2.02の範囲の数を示す。)
(B)比表面積が50~400m/gであるシリカ粉末10~50質量部、
(C)オルガノシラザン1~10質量部、および
(D)硬化剤の触媒量
 を含有する。
 上記構成を有する本発明のシリコーンゴム組成物は、得られる硬化物の強度を十分に維持しながら、成形性、特に押出成形性が改善されたシリコーンゴム組成物である。本発明のシリコーンゴム組成物によれば、例えば、押出成形、硬化処理により、後加工することなく表面の耐ブロッキング性に優れる押出し成形品が得られる。
 本発明のシリコーンゴム組成物においては、該組成物をスクリュー押出し機により毎分2mの速度で押出した後、硬化処理してチューブ状硬化物とした場合に、その表面は、走査型電子顕微鏡画像で測定される最大径が0.1~30μmの粒状の突起物を1~300個/0.01mm有することが好ましい。
 本発明のシリコーンゴム組成物は、前記(A1)成分の前記(A)成分全体に対する割合は、50~100質量%であり、前記(A)成分の25℃における粘度は、5~3000Pasである態様が好ましい。
 本発明のシリコーンゴム組成物は、また、前記(A1)成分の前記(A)成分全体に対する割合が40~100質量%であり、前記(A)成分の25℃における粘度が5~1000Pasである態様も好ましい。以下、前記(A1)成分の前記(A)成分全体に対する割合が40~100質量%であり、前記(A)成分の25℃における粘度が5~1000Pasである(A)成分を、「低粘度(A)成分」といい、(A)成分が低粘度(A)成分である本発明のシリコーンゴム組成物を、「低粘度(A)成分含有シリコーンゴム組成物」という。
 このような低粘度(A)成分含有シリコーンゴム組成物は、原料から低分子シロキサンを容易に除去することが可能であり、これによりポストキュアすることなく低分子シロキサン含有量が十分に低減された硬化物が製造可能である。
 本発明のシリコーンゴム組成物においては、前記、(A)成分は、常圧、200℃、4時間の熱処理前後における質量減少率が1.0%以下であり、前記シリコーンゴム組成物は、ポストキュアを行うことなく、常圧、200℃、4時間の熱処理前後における質量減少率が0.5%以下である硬化物を与えるシリコーンゴム組成物であることが好ましい。上記低粘度(A)成分含有シリコーンゴム組成物は、このような質量減少率の少ない硬化物を与えるシリコーンゴム組成物として用いることができる。
 本発明は、上記低粘度(A)成分含有シリコーンゴム組成物または(A)成分が常圧、200℃、4時間の熱処理前後における質量減少率が1.0%以下である本発明のシリコーンゴム組成物を成形し、熱またはUV照射によって硬化させ、ポストキュアを行うことなく、常圧、200℃、4時間の熱処理前後における質量減少率が0.5%以下であるシリコーンゴム成形品を得るシリコーンゴム成形品の製造方法を提供する。
 また、本発明は、上記本発明のシリコーンゴム組成物の製造方法であって、前記(A)成分に前記(B)成分および前記(C)成分を複数回に分けてまたは所定の速度で連続的に添加した後、前記(D)成分を加える工程を含む、製造方法を提供する。
 本発明のシリコーンゴム押出し成形品は、本発明のシリコーンゴム組成物を用いて得られる押出し成形品であって、表面に走査型電子顕微鏡(SEM)画像で測定される最大径が0.1~30μmの粒状の突起物を有する。
 本発明によれば、得られる硬化物の強度を十分に維持しながら、成形性、特に押出成形性が改善されたシリコーンゴム組成物を提供できる。本発明のシリコーンゴム組成物によれば、押出し成形品の表面はすべり性に優れることからブロッキングが抑制できる。この表面すべり性の改善は、シリカ粒子が凝集した球状体が表面に露出しているために起こると考えられる。
実施例12で得られたシリコーンゴム押出し成形品の表面のSEM写真(1倍)である。 実施例12で得られたシリコーンゴム押出し成形品の表面のSEM写真(250倍)を拡大した100μm×100μmの区域を示す写真である。 実施例12で得られたシリコーンゴム押出し成形品の表面のSEM写真(5000倍)である。
 以下に本発明の実施の形態を説明する。
[シリコーンゴム組成物]
 本発明のシリコーンゴム組成物は、上記(A)、(B)、(C)および(D)の各成分を上記所定量含有する。以下に各成分について説明する。
((A)成分)
 (A)成分は、特定のポリオルガノシロキサンジオールを含有し、所定量のアルケニル基を有するとともに所定の粘度を有し、(B)成分、(C)成分、(D)成分と混合することでミラブル型のシリコーンゴム組成物を形成するベースポリマーである。
 (A)成分は、下記(A1)成分および(A2)成分からなり、(A1)成分の割合が(A)成分全体に対して20~100質量%である。また、(A)成分は、アルケニル基含有量が0.001~0.3mmol/gであり、25℃における粘度が5~20000Pasである。すなわち、(A)成分は、下記(A1)成分と(A2)成分を、(A1)成分の割合が(A)成分全体に対して20~100質量%となる割合で混合する際に、(A)成分全体としてのアルケニル基含有量が0.001~0.3mmol/gとなり、かつ25℃における粘度が5~20000Pasとなるように混合して得られる。本明細書において、特に断りのない限り「粘度」は、25℃においてシアレート0.1s-1で測定した粘度をいう。
 (A1)成分は、25℃における粘度が1~100Pasである、下記式(1)で示されるポリオルガノシロキサンジオールである。以下、式(1)で示されるポリオルガノシロキサンジオールを、ポリオルガノシロキサンジオール(1)ともいう。
  HO[(R )SiO]n1[RSiO]n2H   …(1)
(式(1)中、Rはそれぞれ独立に、アルケニル基を含まない1価の非置換または置換炭化水素基であり、Rはアルケニル基を表す。式(1)中のn1およびn2は、ランダム重合またはブロック重合したそれぞれの繰り返し単位の合計の数を示し、n1は200~1200、n2は0~30の整数である。)
 なお、上記式(1)は、必ずしもブロック共重合体を意味するものではない。すなわち、重合単位の-(R )SiO-の数を示すn1、および、-RSiO-の数を示すn2は、ブロックにおける数を示すものではなく、分子全体に上記各単位が存在する数を合計で、それぞれ示すものである。すなわち、式(1)で表されるポリオルガノシロキサンジオールは、ランダム共重合体であってもよい。ポリオルガノシロキサンジオール(1)のシロキサン骨格は、上記所定の粘度を有する高重合度の重合体を制御よく合成しうることから、実質的に直鎖状であるが、若干の分岐、例えば、分子中に複数個の分岐が存在してもよい。
 (A1)成分はポリオルガノシロキサンジオール(1)の1種からなってもよく、2種以上からなってもよい。ポリオルガノシロキサンジオール(1)の1種からなる場合、ポリオルガノシロキサンジオール(1)の粘度は1~100Pasである。ポリオルガノシロキサンジオール(1)の2種以上からなる場合、これらを混合して得られる(A1)成分として粘度が上記範囲内であれば、それぞれのポリオルガノシロキサンジオール(1)の粘度は必ずしも上記範囲にある必要はないが、好ましくは各ポリオルガノシロキサンジオール(1)において、粘度は1~100Pasである。
 (A1)成分の粘度が1~100Pasであることで、(A2)成分と所定の割合で配合した際に、(A)成分としての所定の粘度である5~20000Pasに調整できる。ポリオルガノシロキサンジオール(1)の粘度は、5~100Pasが好ましく、5~50Pasがより好ましい。
 ポリオルガノシロキサンジオール(1)の平均重合度、すなわちポリオルガノシロキサンジオール(1)分子中のシロキサン単位の平均数は、式(1)において、n1とn2の合計数(n1+n2)で示される。ポリオルガノシロキサンジオール(1)は、粘度が上記の範囲であれば、平均重合度は特に限定されない。粘度が1~100Pasの範囲のポリオルガノシロキサンジオール(1)においては、その平均重合度は概ね200~1200程度である。
 ポリオルガノシロキサンジオール(1)は分子中にアルケニル基であるRを有するか否かは任意である。(A)成分が、(A1)成分のみからなる場合は、(A1)成分のアルケニル基含有量は0.001~0.3mmol/gであり、(A1)成分を構成するポリオルガノシロキサンジオール(1)の少なくとも1種はアルケニル基であるRを有する。(A)成分が(A1)成分のみからなり、(A1)成分がポリオルガノシロキサンジオール(1)の1種からなる場合、該ポリオルガノシロキサンジオール(1)のアルケニル基含有量は0.001~0.3mmol/gである。この場合、ポリオルガノシロキサンジオール(1)のアルケニル基含有量は0.01~0.3mmol/gがより好ましく、0.05~0.2mmol/gがさらに好ましい。
 ポリオルガノシロキサンジオール(1)が分子中にアルケニル基を有するとは、式(1)が-RSiO-の重合単位を有することであり、該重合単位の数を示すn2が1以上であることを意味する。n2の数は、ポリオルガノシロキサンジオール(1)のアルケニル基含有量による。なお、ポリオルガノシロキサンジオール(1)が有するアルケニル基は、末端O1/2-Si-OH単位には存在せず中間Si-O2/2単位のケイ素原子に結合して存在する。
 式(1)においてRが示すアルケニル基として、具体的には、ビニル基、アリル基、3-ブテニル基、4-ペンテニル基、5-ヘキセニル基等が挙げられる。ポリオルガノシロキサンジオール(1)の合成や取扱いが容易で、付加反応も容易に行われることから、Rはビニル基が好ましい。式(1)においてRが複数存在する場合、複数のRは同一であっても異なってもよいが、合成が容易である点で、同一であることが好ましい。
 式(1)においてRは、それぞれ独立にアルケニル基を含まない1価の非置換または置換炭化水素基である。Rとして、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、キセニル基、ナフチル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;シクロヘキシル基のようなシクロアルキル基;シクロヘキセニル基のようなシクロアルヤニル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、3-シアノプロピル基、3-メトキシプロピル基等の置換炭化水素基が挙げられる。式(1)において、複数のRは同一であっても異なってもよい。合成が容易である点では、Rは同一であることが好ましいが、得られるシリコーンゴムに求められる物性に応じて、その一部に異なる基が導入されてもよい。
 ポリオルガノシロキサンジオール(1)の合成や取扱いが容易で、優れた耐熱性が得られることから、Rの50%以上がメチル基であることが好ましく、すべてのRがメチル基であることが特に好ましい。
 また、得られるシリコーンゴムに、耐油性および/または耐溶剤性を付与する目的で、Rの一部を3,3,3-トリフルオロプロピル基とし、残りのRを全てメチル基とする組合せを使用することができる。その場合、式(1)におけるn1で囲まれる単位のRが部分的に3,3,3-トリフルオロプロピル基であり、残りのRが全てメチル基である組合せが好ましい。
 (A)成分が、アルケニル基を有する(A2)成分を含有し、(A2)成分のみで(A)成分の上記アルケニル基含有量を達成できる場合には、ポリオルガノシロキサンジオール(1)はアルケニル基を有しなくてもよい。その場合、ポリオルガノシロキサンジオール(1)は、-RSiO-単位を有しない、HO[(R )SiO]n1Hで示される化合物となる。以下、アルケニル基を有するポリオルガノシロキサンジオール(1)をポリオルガノシロキサンジオール(11)、アルケニル基を有しないポリオルガノシロキサンジオール(1)をポリオルガノシロキサンジオール(12)という。
 (A1)成分は、(A1)成分のみで(A)成分を構成してもよく、(A2)成分と組み合わせて(A)成分を構成してもよい。(A)成分が(A1)成分のみで構成される場合、(A1)成分は、ポリオルガノシロキサンジオール(11)を必須成分として含有する。(A)成分が(A2)成分を含有する場合は、(A1)成分はポリオルガノシロキサンジオール(11)とポリオルガノシロキサンジオール(12)から選ばれる1種以上からなり、共に含有する(A2)成分との種類や配合量の組み合わせを調整することで、(A)成分としての粘度、アルケニル基含有量を調整する。
 (A2)成分は、25℃における粘度が0.2~40000Pasである、下記平均組成式(2)で示されるポリオルガノシロキサンである。以下、式(2)で示されるポリオルガノシロキサンを、ポリオルガノシロキサン(2)ともいう。
  R SiO(4-a)/2   …(2)
(式(2)中、Rはそれぞれ独立に、水酸基を含まない1価の非置換または置換の飽和または不飽和炭化水素基であり、aは1.98~2.02の範囲の数を示す。)
 ポリオルガノシロキサン(2)としては、一部が分岐鎖状、三次元構造を形成していてもよい主として直鎖状の重合体が好ましい。また、ポリオルガノシロキサン(2)は、単独重合体であってもよく共重合体であってもよい。式(2)におけるRとして、具体的には、上記Rで例示した非置換または置換炭化水素基、Rで例示したアルケニル基等が挙げられる。なお、式(2)におけるRは、それぞれ独立に上記1価の基を示すが、Rの全部がアルケニル基であることはない。Rの好ましい態様についても、Rにおける非置換または置換炭化水素基の好ましい態様、Rおけるアルケニル基の好ましい態様と同様である。
 ポリオルガノシロキサン(2)は、Rがアルケニル基を有しない化合物であってもよく、Rの一部がアルケニル基である化合物であってもよい。以下、アルケニル基を有するポリオルガノシロキサン(2)をポリオルガノシロキサン(21)、アルケニル基を有しないポリオルガノシロキサン(2)をポリオルガノシロキサン(22)という。(A2)成分はポリオルガノシロキサン(2)の1種からなってもよく、2種以上からなってもよい。
 (A2)成分が、ポリオルガノシロキサン(2)の1種からなる場合、ポリオルガノシロキサン(2)の粘度は0.2~40000Pasである。ポリオルガノシロキサンジオール(1)の2種以上からなる場合、これらを混合して得られる(A2)成分として粘度が上記範囲内であれば、それぞれのポリオルガノシロキサン(2)の粘度は必ずしも上記範囲にある必要はないが、好ましくは各ポリオルガノシロキサン(2)において、粘度は0.2~40000Pasである。
 (A2)成分の粘度が0.2~40000Pasであることで、(A1)成分と所定の割合で配合した際に、(A)成分としての所定の粘度である5~20000Pasに調整できる。ポリオルガノシロキサン(2)の粘度は、0.4~40000Pasが好ましい。
 ポリオルガノシロキサン(2)は、粘度が上記の範囲であれば、平均重合度は特に限定されない。粘度が0.2~40000Pasの範囲のポリオルガノシロキサン(2)においては、その平均重合度は概ね100~7100程度である。
 (A)成分は(A2)成分を含有してもしなくてもよい。(A)成分が(A2)成分を含有する場合、組み合わせる(A1)成分に応じて、アルケニル基を有するポリオルガノシロキサン(21)およびアルケニル基を有しないポリオルガノシロキサン(22)から1種以上を適宜選択して(A2)とする。(A)成分が(A2)成分を含有する場合、(A1)成分としてはポリオルガノシロキサンジオール(12)が好ましく、(A2)成分としてはポリオルガノシロキサン(21)が好ましい。
 ポリオルガノシロキサン(21)としては、例えば、下記式(2A)に示される直鎖状の重合体(以下、ポリオルガノシロキサン(2A)ともいう。)が好ましい。
 (R )SiO-[(R )SiO]-OSi(R )   …(2A)
 式(2A)中、Rは式(2)に示すのと同様であるが、その一部はアルケニル基である。式(2A)中、mは平均重合度-2の数を示す。
 ポリオルガノシロキサン(2A)における、アルケニル基含有量は、組み合わせて用いるポリオルガノシロキサンジオール(1)の種類や配合量によるが、0.001~0.3mmol/gが好ましく、0.003~0.3mmol/gがより好ましく、0.003~0.25mmol/gがさらに好ましい。
 ポリオルガノシロキサン(2A)におけるアルケニル基は、分子中のどのケイ素原子に結合していてもよいが、優れた反応性を示すことから、その一部は、分子末端のケイ素原子に結合していることが好ましい。すなわち、-OSi(R )で示される末端M単位のRの一部がアルケニル基であるのが好ましく、ポリオルガノシロキサン(2A)は、両末端のM単位のRが各1個アルケニル基である、両末端アルケニル基含有ポリオルガノシロキサン(2A)が好ましい。両末端アルケニル基含有ポリオルガノシロキサン(2A)において、中間単位の-[(R )SiO]-におけるRが部分的にアルケニル基であってもよい。アルケニル基は、上記のとおりポリオルガノシロキサン(2A)の合成や取扱いが容易で、付加反応も容易に行われることからビニル基が好ましい。
 中間単位にアルケニル基を有する両末端アルケニル基含有ポリオルガノシロキサン(2A)において、m個の中間単位中その概ね2.3%までを2個のRの一方がアルケニル基である中間単位とすることができる。アルケニル基を有する中間単位は、ランダムまたはブロックで両末端アルケニル基含有ポリオルガノシロキサン(2A)に含有される。
 ポリオルガノシロキサン(2A)におけるアルケニル基以外の基は、ポリオルガノシロキサン(2A)の合成や取扱いが容易で、優れた耐熱性が得られることから、アルケニル基以外のRの50%以上がメチル基であることが好ましく、そのすべてがメチル基であることが特に好ましい。特に耐熱性、耐寒性または耐放射線性が求められるときはフェニル基、耐油性および/または耐溶剤性が必要なときは3,3,3-トリフルオロピロピル基などを、適宜、使用することができる。
 (A)成分は、このような(A1)成分および(A2)成分からなり、(A1)成分の割合が(A)成分全体に対して20~100質量%である。また、(A)成分は、アルケニル基含有量が0.001~0.3mmol/gであり、25℃における粘度が5~20000Pasである。(A)成分におけるアルケニル基含有量および粘度の調整は、(A1)成分、(A2)成分の種類および配合割合の調整により行われる。
 (A)成分は、上記所定の(A1)成分と(A2)成分の配合割合、アルケニル基含有量、および粘度を有することで、以下に説明する(B)成分、(C)成分および(D)成分と所定の割合で組みわせてシリコーンゴム組成物とした際に、得られる硬化物の強度を十分に維持しながら、成形性、特に押出成形性が改善されたシリコーンゴム組成物とすることができる。このような(A)成分を用いて得られるシリコーンゴム組成物によれば、押出成形、硬化処理により、後加工することなく表面の耐ブロッキング性に優れる押出し成形品が得られる。
 (A)成分における粘度は、5~20000Pasであり、該粘度を与える(A)成分全体に対する(A1)成分の割合は20~100質量%である。(A)成分の粘度が5Pas未満では、得られるシリコーンゴム組成物の粘着性が過大となってロール作業性が悪化し、20000Pasを超えるとシリコーンゴム組成物の粘度が高くなりすぎて混練が困難である。
 (A)成分における粘度は、特に押出し成形品における耐ブロッキング性を向上させることを目的とする場合、5~15000Pasが好ましく、5~3000Pasがさらに好ましい。(A)成分における粘度は、例えば、(A)成分における(A1)成分と(A2)成分の配合割合により調整できる。上記粘度を得るための(A)成分全体に対する(A1)成分の割合は、30~100質量%が好ましく、50~100質量%がより好ましい。
 (A)成分における粘度を低粘度化することにより、原料から低分子シロキサンを容易に除去することが可能であり、これによりポストキュアすることなく低分子シロキサン含有量が十分に低減された硬化物を与えることが可能なシリコーンゴム組成物とするために、5~1000Pasが好ましく、5~500Pasがより好ましく、5~150Pasがさらに好ましい。このような粘度を得るための(A)成分全体に対する(A1)成分の割合は、40~100質量%が好ましく、50~100質量%がより好ましい。
 (A)成分におけるアルケニル基含有量は0.002~0.3mmol/gが好ましく、0.003~0.25mmol/gがより好ましい。(A)成分のアルケニル基含有量が0.001mmol/g未満では、得られる硬化物の強度が十分でなく、0.3mmol/gを超えると得られる硬化物が脆くなる。
 (A)成分におけるケイ素原子に結合するOH基、すなわちシラノール基(Si-OH基)の含有量は、0.005~0.1mmol/gが好ましく、0.005~0.08mmol/gがより好ましく、0.01~0.07mmol/gがさらに好ましい。
 (A)成分のシラノール基は、(B)成分のシリカ粉末の表面に存在するシラノール基と縮合反応することで、(B)成分によるシリコーン組成物の可塑化戻りを抑制するだけではなく、シリコーンゴム組成物に適度な粘性を付与し、さらに、混練、または、押出し成形中に(B)成分同士を結び付けることにより、微細な球状の凝集物を生成し、この球状凝集物が押出し成形品の表面に部分的に露出することによって表面粘着性を軽減させる作用を有する。
 (A)成分におけるシラノール基含有量が上記範囲内であると、シリコーンゴム組成物がべたついてロール作業性が悪くなったり、硬化物の機械的特性の低下を招いたりすることなく、(B)成分のシリカ粉末の表面に存在するシラノール基と十分に縮合反応できる。
 なお、本発明のシリコーンゴム組成物においては上記球状凝集物が押出し成形品の表面に露出した状態を、例えば、以下の方法で評価することができる。
 本発明のシリコーンゴム組成物をスクリュー押出し機により毎分2mの速度で押出した後、硬化処理してチューブ状硬化物とする。硬化の方法は、(D)成分の種類による。(D)成分が、紫外線硬化型の硬化剤の場合、例えば、紫外線ランプによって365nmで積算照射量は約6000mJ/cmの紫外線を照射する。(D)成分が熱硬化型の場合は、例えば、200℃、5分間の硬化処理を行う。得られるチューブ状硬化物の表面のSEM画像において、上記球状凝集物は、例えば、図1C(実施例12のシリコーンゴム組成物のチューブ状硬化物表面SEM写真(5000倍))に示されるように、全体として平坦な表面からその一部または全部が露出した粒状の突起物として観察される。
 このようにしてSEM画像で観察される粒状の突起物において、最大径が0.1~30μmの粒状の突起物の100μm×100μm(0.01mm)の面積当たりの個数を数える。本発明のシリコーンゴム組成物は、これを用いて上記のようにして得られるチューブ状硬化物が、表面に最大径が0.1~30μmの粒状の突起物を、1~300個/0.01mm有することが好ましく、10~200個/0.01mm有することがより好ましい。
 なお、チューブ状硬化物表面において、粒状の突起物を観察する位置は特に限定されない。チューブ状硬化物表面のいずれか1箇所のSEM画像において、最大径が0.1~30μmの粒状の突起物が観察されればよく、0.01mm当たりの個数として1~300個計測されるのが好ましく、10~200個が計測されるのがより好ましい。
 (A)成分が含有する(A1)成分、(A2)成分の平均重合度については上記のとおりであるが、(A)成分においては、常圧、200℃で揮発しうる低分子シロキサンの含有量が十分に低いことが好ましい。本明細書において、低分子シロキサンとは、常圧、200℃で揮発しうるシロキサンをいう。
 (A)成分が、低粘度(A)成分であると、低粘度(A)に含まれる低分子シロキサンの含有量は、既存の方法によって容易に減少させることができ、これを含有するシリコーンゴム組成物において低分子シロキサンの含有量を十分に低くすることができる。これにより、低粘度(A)成分含有シリコーンゴム組成物を用いて得られる硬化物は、ポストキュアすることなく製品としての使用が可能な硬化物となり得る。
 なお、(A)成分における低分子シロキサンの含有量は、例えば、常圧、200℃、4時間の熱処理前後の質量減少率[%]を指標として示すことができる。以下、特に断りのない限り、質量減少率[%]とは、常圧、200℃、4時間の熱処理前後の質量減少率[%]をいう。(A)成分において、質量減少率[%]は1.0%以下が好ましく、質量減少率[%]が1.0%以下であれば、低分子シロキサンの含有量は硬化物をポストキュアすることなく製品とするのに十分な程度に低いと言える。(A)成分が、低粘度(A)成分であれば、1.0%以下の質量減少率[%]を容易に達成できる。(A)成分の質量減少率[%]は0.8%以下がより好ましく、0.6%以下がより好ましい。
 本発明のシリコーンゴム組成物は、ポストキュアすることなく製品とできる硬化物を与えるシリコーンゴム組成物であることが好ましい。ここで、硬化物をポストキュアすることなく製品とすることが可能であるとは、硬化物の質量減少率[%]が、概ね0.5%以下である場合をいう。シリコーンゴム組成物から質量減少率[%]の試験に供する硬化物を得る際の硬化条件としては、例えば、(D)成分の種類に応じて後述する熱硬化条件や、UV硬化条件が挙げられる。
 (A)成分を構成する(A1)成分や(A2)成分等のシロキサンポリマーは、通常、酸やアルカリなどによるシロキサンオリゴマーの平衡反応により生成される。そのため、上記のような平均重合度のシロキサンポリマーにおいても、相当量の低分子シロキサンが存在してしまう。
 したがって、本発明においては、このような低分子シロキサンを、質量減少率[%]が上記範囲となるまで除去した(A)成分を使用することが好ましい。低分子シロキサンの除去は、(A1)成分と(A2)成分を混合後(A)成分として、または混合する前の(A1)成分、(A2)成分に対して行う。好ましくは、混合する前の(A1)成分、(A2)成分に対して行う。
 シロキサンポリマーに含まれる低分子シロキサン成分を低減する方法としては、減圧状態で100~300℃程度の高温加熱下に低分子シロキサン成分を気化除去する方法や、該気化除去中あるいはこの気化除去の後に、さらに不活性ガスを吹き込んで気化を促進する方法等の従来公知の方法が挙げられる。
((B)成分)
 本発明の実施形態のシリコーンゴム組成物において、(B)成分は、比表面積が50~400m/gであるシリカ粉末であり、配合量は(A)成分の100質量部に対して10~50質量部である。以下、特に断りのない限り、各成分の配合量は(A)成分の100質量部に対する質量部で示し、単に…質量部と示すこともある。(B)成分は、シリコーンゴム組成物に適度な流動性を与え、かつ該組成物を硬化して得られるシリコーンゴムに優れた機械的強度を付与する機能を有する成分である。
 (B)成分のシリカ粉末は、本発明の組成物に添加して上記機能を果たすために、比表面積が50~400m/gである。なお、本明細書において比表面積はBET法による比表面積をいう。以下、比表面積が50~400m/gのシリカ粉末をシリカ粉末(B)ともいう。シリカ粉末(B)の比表面積は、100~360m/gが好ましく、130~300m/gがより好ましい。シリカの種類に特に限定はないが、沈澱シリカ、煙霧質シリカ(ヒュームドシリカ)、焼成シリカ等が好適に使用される。補強性の点で、煙霧質シリカが好ましい。
 なお、一般的なシリコーンゴム組成物において、シリカ粉末は必要に応じて表面処理が施されて使用されることから、表面未処理シリカ粉末および表面処理シリカ粉末はその区別なく「シリカ粉末」と称されるが、本発明の実施形態のシリコーンゴム組成物において、(B)成分のシリカ粉末は、表面処理の施されていない表面未処理シリカ粉末のみを示す。
 シリカ粉末(B)としては、市販品を使用してもよい。市販品としては、煙霧質シリカである、いずれもEVONIC製の商品名、アエロジル130(比表面積:130m/g)、アエロジル200(比表面積:200m/g)、アエロジル300(比表面積:300m/g)等が挙げられる。シリカ粉末(B)は、1種を用いても、2種以上を併用してもよい。
 本発明のシリコーンゴム組成物における(B)成分の配合量は、(A)成分100質量部に対して10~50質量部であり、15~40質量部が好ましい。(B)成分の配合量が50質量部を超えると、シリコーンゴム組成物の粘度が著しく上昇して(A)成分への(B)成分の配合が困難となり、反対に10質量部未満であると、シリコーンゴム組成物のロール作業性が悪化するとともに得られるシリコーンゴムの機械的強度等の特性が十分でなくなる。
 本発明のシリコーンゴム組成物においては通常より少量のシリカ粉末の配合で、押出成形に適した、良好な形状維持性と押出成形品の低硬度化を両立したミラブル型のシリコーンゴム組成物が得られる。また、シリカ粉末による微細な球状凝集体が押出し成形品の表面に露出することによって、押出し成形品の表面はすべり性に優れ、ブロッキングが抑制可能である。なお、本発明のシリコーンゴム組成物を押出成形に用いる場合、(B)成分の配合量は、10~40質量部が好ましく15~40質量部がより好ましい。
((C)成分)
 本発明の実施形態のシリコーンゴム組成物は、(C)成分としてオルガノシラザン1~10質量部を含有する。
 (C)成分は(B)成分のシリカ粉末の表面のシラノール基をシリル化する作用を有する。これにより、(A)成分、(B)成分、(C)成分からなるベースコンパウンドや、ベースコンパウンドにさらに(D)成分を含有するシリコーンゴム組成物の安定性が改善される。さらに、上記シリル化の際にアンモニアが副生し、該アンモニアが(A1)成分のポリオルガノシロキサンジオールの末端シラノール基と(B)成分のシリカ粉末の表面のシラノール基の縮合反応を促進し、これにより、ベースコンパウンドやシリコーンゴム組成物にロール作業性に適した粘性が付与される。さらに、(C)成分は(B)成分に上記のように作用して(B)成分であるシリカ粉末による微細な球状凝集体の生成を促進して、押出し成形品のブロッキング性を改善する機能を有する。
 (C)成分としては、ヘキサメチルジシラザン、1-ビニルペンタメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジメチル-1,1,3,3-テトラビニルジシラザン等のヘキサオルガノジシラザンや、オクタメチルトリシラザン、1,5-ジビニルヘキサメチルトリシラザン等のオクタオルガノトリシラザン等があげられる。(C)成分としては、これらの1種からなってもよく、2種以上からなってもよい。
 (C)成分としては、ヘキサメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザンが好ましく、ヘキサメチルジシラザン、ヘキサメチルジシラザンと1,3-ジビニル-1,1,3,3-テトラメチルジシラザンの組み合わせがより好ましい。
 (C)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して、1~10質量部である。(C)成分の配合量は、好ましくは、1~8質量部、より好ましくは2~8質量部である。また、(C)成分の配合量は(B)成分の100質量部に対して1~40質量部が好ましく、5~30質量部がより好ましい。
 (C)成分の配合量が少なすぎる場合には、得られるシリコーンゴムが機械的強度を得るために十分な量の(B)成分を配合することができず、また、組成物の保存安定性を悪化させる、多すぎる場合には、組成物の作業性が悪化し、また、経済的にも好ましくない。
 なお、(C)成分が(B)成分のシリカ粉末の表面のシラノール基をシリル化する際に副生するアンモニアや低分子シロキサン、例えば、ヘキサメチルジシロキサン等、さらには、未反応のオルガノシラザンは、後述する製造工程の加熱処理により容易に除去可能である。
((D)成分)
 (D)成分は、触媒量の硬化剤である。(D)成分は、シリコーンゴム組成物、特には(A)成分のベースポリマーを硬化させてゴム状弾性体とするものである。(D)成分の硬化剤としては、有機過酸化物(D1)および、付加型架橋剤と触媒の組み合わせ(D2)が挙げられる。有機過酸化物(D1)を用いた場合、シリコーンゴム組成物は加熱されて硬化する。付加型架橋剤と触媒の組み合わせ(D2)の場合、触媒の種類により、加熱硬化と紫外線硬化(UV硬化)のいずれかが選択できる。有機過酸化物(D1)と、付加型架橋剤と触媒の組み合わせ(D2)を組み合わせて使用してもよい。
 有機過酸化物(D1)としては、通常この種のシリコーンゴム用組成物に用いられているものであれば特に制限されない。具体的には、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジクミルパーオキサイド、p-メチルベンゾイルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ビス(t-ブチルパーオキシ)-2,5-ジメチルヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネートなどが挙げられる。
 これらの有機過酸化物(D1)のうちでも、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、2,5-ビス(t-ブチルパーオキシ)-2,5-ジメチルヘキサンが好ましく、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイドがより好ましい。(D1)成分は、1種を用いても、2種以上を併用してもよい。
 本発明の実施形態の組成物が硬化剤として有機過酸化物(D1)を使用する場合、(D1)成分の配合量は、(A)成分の硬化反応を触媒する有効量である。具体的には、(A)成分100質量部に対して0.01~5質量部が好ましく、0.1~2質量部がより好ましい。(D1)成分の配合量が0.01質量部未満では(A)成分の硬化反応が十分に行われないことがあり、また5質量部を超えると、得られるシリコーンゴムにおいて耐熱性などの特性が低下するおそれがある。
 付加型架橋剤と触媒の組み合わせ(D2)における付加型架橋剤としては、ケイ素原子に水素原子と有機基が結合したシロキサン骨格を有し、該水素原子を分子中に平均2個以上有するポリオルガノハイドロジェンシロキサン(D21)が挙げられる。ポリオルガノハイドロジェンシロキサン(D21)成分は、ともに用いる触媒の作用により(A)成分のアルケニル基との付加反応によって架橋体を形成する。用いる触媒はこの付加反応を触媒する作用を有する付加反応触媒(D22)である。(D21)成分において、ケイ素原子に結合する有機基としては、(A1)成分のRと同じ範囲である非置換または置換の1価の炭化水素基が例示され、合成および取扱いが容易なことから、メチル基が好ましい。(D21)成分のシロキサン骨格は、直鎖状、分岐状、環状のいずれでもよい。
 (D21)成分においてケイ素原子に結合する水素原子の量は、質量当たりの含有量として、0.1mmol/g以上、20mmol/g以下であることが好ましい。このような水素原子は、中間単位のケイ素原子に結合していてもよく、分子末端のケイ素原子に結合していてもよい。中間単位のケイ素原子に結合していることが好ましい。
 (D21)成分の平均重合度は、付加反応の反応温度で液状を保って(A)成分と接触し、かつ低分子シロキサンの含有量を低減させる観点から、10~500が好ましく、20~100がより好ましい。(D21)成分は、1種を用いても、2種以上を併用してもよい。
 なお、特に得られる硬化物をポストキュアすることなく製品とできるレベルとするために、特に、(A)成分として低粘度(A)成分を用いる場合には、(D21)成分においても、低分子シロキサンの含有量を(A)成分における好ましい含有量と同等の含有量となるまで、好ましくは質量減少率[%]が(A)成分における好ましい質量減少率[%]と同等の範囲となるまで除去することが好ましい。除去方法は、(A)成分におけるのと同様の方法が使用できる。
 本発明の実施形態の組成物が硬化剤として(D2)成分を使用する場合、組成物における(D21)成分の配合量は、(A)成分を架橋させるのに十分な量である。(D21)成分の含有量は、(D21)成分中のケイ素原子に結合する水素原子の、(A)成分中のアルケニル基に対するモル比((D21)成分のケイ素原子に結合する水素原子のモル数/(A)成分のアルケニル基のモル数)が0.01~10になる量である。さらに、本発明の組成物において、上記モル比は、0.1~5が好ましい。
 付加反応触媒(D22)は、(A)成分のアルケニル基と(D21)成分のヒドロシリル基との付加反応を触媒するものである。付加反応触媒(D22)としては、白金、ロジウム、パラジウム、イリジウムおよびニッケルからなる群から選ばれる少なくとも1種が挙げられる。付加反応触媒(D22)としては、上記のような付加反応に通常用いる白金系触媒と同様の白金系触媒が好ましい。白金系触媒としては、熱で活性化する白金系触媒(以下、「熱白金系触媒)ともいう。)と紫外線で活性化する白金系触媒(以下、「UV白金系触媒)ともいう。)がある。
 熱白金系触媒としては、白金系金属を含む化合物、例えば、白金系金属微粉末、塩化白金酸、アルコール変性塩化白金酸、白金とジケトンの錯体、塩化白金酸とオレフィン類の錯体、塩化白金酸とアルケニルシロキサンの錯体等が挙げられる。なお、白金系金属とは、白金、ロジウム、パラジウム等をいう。熱白金系触媒は、1種を用いても、2種以上を併用してもよい。
 また、UV白金系触媒は、紫外線が照射されることにより触媒活性が表出されるように、白金系金属を含む化合物として設計された紫外線活性の触媒である。高い反応性と硬化速度の点から、特に好ましい触媒として以下に例示される(η5-環状ペンタジエニル)-トリアルキル-白金錯体等が挙げられる(Cpはシクロペンタジエニルである)。
(Cp)トリメチル白金
(Cp)エチルジメチル白金
(Cp)トリエチル白金
(Cp)トリアリル白金
(Cp)トリペンチル白金
(Cp)トリヘキシル白金
(メチル-Cp)トリメチル白金
(トリメチルシリル-Cp)トリメチル白金
(フェニルジメチルシリル-Cp)トリメチル白金
(Cp)アセチルジメチル白金
(Cp)ジエチルメチル白金
(Cp)トリイソプロピル白金
(Cp)トリ(2-ブチル)白金
(Cp)トリアリル白金
(Cp)トリノニル白金
(Cp)トリドデシル白金
(Cp)トリシクロペンチル白金
(Cp)トリシクロヘキシル白金
(クロロ-Cp)トリメチル白金
(フルオロ-Cp)トリメチル白金
(Cp)ジメチルベンジル白金
(トリエチルシリル-Cp)トリメチル白金
(ジメチルフェニルシリル-Cp)トリメチル白金
(メチルジフェニルシリル-Cp)トリメチル白金
(トリフェニルシリル-Cp)トリヘキシル白金
[1,3-ビス(トリメチルシリル)-Cp]トリメチル白金
(ジメチルオクタデシルシリル-Cp)トリメチル白金
1,3-ビス[(Cp)トリメチル白金]テトラメチルジシロキサン
1,3-ビス[(Cp)トリメチル白金]ジメチルジフェニルジシロキサン
1,3-ビス[(Cp)ジメチルフェニル白金]テトラメチルジシロキサン
1,3,5-トリス[(Cp)トリメチル白金]ペンタメチルトリシロキサン
1,3,5,7-テトラ[(Cp)トリメチル白金]ヘプタメチルテトラシロキサン
(メトキシ-Cp)トリメチル白金
(エトキシメチル-Cp)エチルジメチル白金
(メトキシカルボニル-Cp)トリメチル白金
(1,3-ジメチル-Cp)トリメチル白金
(メチル-Cp)トリイソプロピル白金
(1,3-ジアセチル-Cp)ジエチルメチル白金
(1,2,3,4,5-ペンタクロロ-Cp)トリメチル白金
(フェニル-Cp)トリメチル白金
(Cp)アセチルジメチル白金
(Cp)プロピオニルジメチル白金
(Cp)アクリロイルジメチル白金
(Cp)ジ(メタクリロイル)エチル白金
(Cp)ドデカノイルジメチル白金
トリメチル白金シクロペンタジエニル末端ポリシロキサン
 本発明において用いられる最も好ましいUV白金系触媒は、アルキルまたはトリアルキルシリルで置換されてもよいシクロペンタジエニル-トリス-アルキル-白金化合物であり、特にアルキルシクロペンタジエニル-トリメチル-白金、特にメチルシクロペンタジエニル-トリメチル-白金である。UV白金系触媒は、1種を用いても、2種以上を併用してもよい。
 本発明の実施形態の組成物が硬化剤として(D2)成分を使用する場合、組成物における付加反応触媒(D22)の配合量は、(A)成分と(D21)成分の付加反応を触媒する量である。具体的には、熱白金系触媒、UV白金系触媒を含む白金系触媒として、(A)成分と(D21)成分の合計量に対する白金金属原子換算で、通常、0.1~1000ppmであり、0.1~100ppmが好ましい。この範囲であると、(A)成分と(D21)成分の付加反応を十分に触媒し、優れた付加反応速度が得られる。また、押出し成形において、優れた付加反応速度と、ポットライフを両立させるためには、白金系触媒の配合量は、上記白金金属原子換算で、0.5~50ppmがより好ましく、1~20ppmが特に好ましい。
(任意成分)
 本発明の実施形態のシリコーンゴム組成物には、以上の成分の他に本発明による効果を阻害しない範囲で、上記以外のポリオルガノシロキサン(以下、「その他のポリオルガノシロキサン」という)や、各種目的に応じて従来から用いられている各種添加剤を配合してもよい。(A)成分として低粘度(A)成分を用いる場合には、その他のポリオルガノシロキサンとしては、質量減少率[%]が(A)成分における好ましい質量減少率[%]と同等の範囲のものが好ましい。
 添加剤としては、粉砕シリカ(石英微粉末)、ケイソウ土、金属炭酸塩、クレー、タルク、マイカ、酸化チタン等の(B)成分のシリカ粉末以外の無機充填剤、カーボンブラックのような導電性材料、顔料、チキソトロピー性付与剤、押出し作業性を改良するための粘度調整剤、紫外線防止剤、防かび剤、耐熱向上剤、難燃化剤、酸化防止剤、付加反応の反応抑制剤等、が挙げられる。
[シリコーンゴム組成物の製造]
 本発明の実施形態のシリコーンゴム組成物は、(A)成分~(D)成分、およびさらに必要に応じて配合されるその他の成分を、ニーダーなどの混合手段によって均一に混練して調製することができる。
 好ましくは、(A)成分が含有する(A1)成分のポリオルガノシロキサンジオールの末端シラノール基と(B)成分のシリカ粉末の表面のシラノール基の縮合反応を十分に行わせるために、(A)成分、(B)成分および(C)成分を混練して、ベースコンパウンドを調製した後、ベースコンパウンドに(D)成分の硬化剤を配合する。ベースコンパウンドの調製は、(A)成分を混練しながら、そこに(B)成分および(C)成分をそれぞれ徐々に加える方法が好ましい。(B)成分、(C)成分の添加は断続的であってもよく、連続的であってもよい。具体的には、(A)成分に、(B)成分および(C)成分を、複数回に分けて添加する、所定の速度で連続的に添加する等が挙げられる。
 なお、(A)成分、(B)成分および(C)成分を混練する際の温度は100℃以下が好ましく、20~70℃の範囲がより好ましい。また、(A)成分、(B)成分および(C)成分を均一に混練した後、得られた混合物を、(D)成分の硬化剤を配合する前に、アンモニア、ヘキサメチルジシロキサン等の低分子シロキサン、未反応の(C)成分等を除去する目的で、100~200℃で加熱する工程を設けることが好ましい。加熱工程は、具体的には、加熱混練により行うことが好ましく、時間は0.5~12時間が好ましい。さらに、このようにして得られるベースコンパウンドを冷却後、(D)成分の硬化剤を配合するのが好ましい。
 本発明の実施形態のシリコーンゴム組成物は上記製造過程において、必要に応じて低分子シロキサンの除去工程、例えば、上記加熱工程、を設けてもよい。本発明の実施形態のシリコーンゴム組成物においては、特に、ポストキュアすることなく低分子シロキサン含有量が十分に低減された硬化物を得るためには、該組成物に(D)成分を配合する前のベースコンパウンドの質量減少率[%]は0.8%以下が好ましく、0.6%以下がより好ましく、0.3%以下がより好ましい。
 また、(A)成分、ベースコンパウンド、シリコーンゴム組成物等の低分子シロキサン含有量は、ガスクロマトグラフィー等で分析することもできる。本発明のシリコーンゴム組成物においては、低粘度(A)成分含有シリコーンゴム組成物である場合、例えば、重合度10以下の環状シロキサンの含有量を、好ましくは1000ppm以下、より好ましくは500ppm以下、さらに好ましくは300ppm以下とすることができる。
[シリコーンゴム(硬化物)]
 本発明の実施形態のシリコーンゴム組成物を用いてシリコーンゴムを得るには、まず、シリコーンゴム組成物を、例えば、プレス成形、トランスファー成形、インジェクション成形、押し出し成形、カレンダー成形等の方法により所望の形状に成形する。(D)成分として有機過酸化物(D1)を用いる場合には、有機過酸化物の分解温度等に応じて、上記成形を、例えば、100~400℃、3~30分間程度の条件で行うことで、シリコーンゴム組成物が硬化したシリコーンゴムが成形体として得られる。
 また、(D)成分として付加型架橋剤と触媒の組み合わせ(D2)を用いた場合、付加反応触媒(D22)が熱白金系触媒の場合、用いる熱白金系触媒の活性化される温度に応じて、上記成形を、例えば、100~400℃、1~60分間程度の条件で行うことで、シリコーンゴム組成物が硬化したシリコーンゴムが成形体として得られる。
 付加反応触媒(D22)がUV白金系触媒の場合、上記成形を行った後、得られるシリコーンゴム組成物成形体に、紫外線を照射することでシリコーンゴム組成物が硬化したシリコーンゴムの成形体が得られる。照射する紫外線の波長は、用いるUV白金系触媒の種類によるが、通常、200nm~400nm、好ましくは250nm~400nmとすることができる。照射エネルギーは、365nmでの積算光量として100mJ/cm~100,000mJ/cmとすることができる。
 本発明のシリコーンゴム組成物は、(A)成分として広い粘度範囲のベースポリマーを用いて調製することができ、良好なロール作業性、押出成形性を有するミラブル型のシリコーンゴム組成物である。
 本発明のシリコーンゴム組成物は、(B)成分のシリカ粉末の配合量が従来品と比べて少量でありながら良好な形状維持性を有することから、良好なロール作業性、押出成形性を有する低硬度の硬化物が得られる。特に、押出し成形品については、表面がすべり性に優れブロッキングすることがない。
 本発明のシリコーンゴム組成物より得られる押出し成形品は、表面にSEM画像で測定される最大径が0.1~30μmの粒状の突起物を有するものが好ましい。上記のとおり、本発明のシリコーンゴム組成物は、混練中に(B)成分同士が結合して微細な球状の凝集物を生成し、この球状凝集物が押出し成形品の表面に部分的に露出する。すなわち、球状凝集物は、全体として平坦な押出し成形品の表面からその一部または全部が露出した粒状の突起物として観察される。このようにしてSEM画像で観察される粒状の突起物において、最大径が0.1~30μmの粒状の突起物の100μm×100μm(0.01mm)当たりの個数は、1~300個/0.01mmが好ましく、10~200個/0.01mmがより好ましい。
 なお、本発明のシリコーンゴム組成物より得られる押出し成形品の表面において、最大径が0.1~30μmの粒状の突起物の100μm×100μm(0.01mm)当たりの個数は、任意の5箇所における平均値として、上記範囲にあるのが好ましい。
 また、(A)成分を低分子シロキサンが十分に除去された液状のベースポリマーとできる低粘度(A)成分とすることで、低粘度(A)成分含有シリコーンゴム組成物を用いて、ポストキュアすることなく低分子シロキサン含有量が極めて少ない硬化物が容易に得られるようになる。
 本発明の製造方法は、低粘度(A)成分含有シリコーンゴム組成物または(A)成分が常圧、200℃、4時間の熱処理前後における質量減少率が1.0%以下である本発明のシリコーンゴム組成物を成形し、熱またはUV照射によって硬化させ、ポストキュアを行うことなく、常圧、200℃、4時間の熱処理前後における質量減少率が0.5%以下であるシリコーンゴム成形品を製造する方法である。
 例えば、(D)成分が有機過酸化物(D1)である場合、低粘度(A)成分含有シリコーンゴム組成物または(A)成分が常圧、200℃、4時間の熱処理前後における質量減少率が1.0%以下である本発明のシリコーンゴム組成物を、170℃、10分間で硬化させて得られた硬化物の質量減少率[%]を概ね0.5%以下とできる。この場合の硬化物の質量減少率[%]は好ましくは0.3%以下、より好ましくは0.2%以下である。さらに、該硬化物において、重合度10以下の環状シロキサンの含有量を1000ppm以下、好ましくは500ppm以下、より好ましくは300ppm以下とできる。
 また、例えば、(D)成分がポリオルガノハイドロジェンシロキサン(D21)と付加反応触媒(D22)の組み合わせであり、付加反応触媒(D22)が熱白金系触媒である場合、低粘度(A)成分含有シリコーンゴム組成物または(A)成分が常圧、200℃、4時間の熱処理前後における質量減少率が1.0%以下である本発明のシリコーンゴム組成物を、120℃、10分間で硬化させて得られた硬化物の質量減少率[%]を概ね0.5%以下とできる。この場合の硬化物の質量減少率[%]は好ましくは0.3%以下、より好ましくは0.2%以下である。
 さらに、上記において付加反応触媒(D22)がUV白金系触媒である場合、低粘度(A)成分含有シリコーンゴム組成物または(A)成分が常圧、200℃、4時間の熱処理前後における質量減少率が1.0%以下である本発明のシリコーンゴム組成物を、365nmでの積算光量として7200mJ/cmで硬化させて得られた硬化物の質量減少率[%]を概ね0.5%以下とできる。この場合の硬化物の質量減少率[%]は好ましくは0.3%以下、より好ましくは0.2%以下である。さらに、該硬化物において、重合度10以下の環状シロキサンの含有量を1000ppm以下、好ましくは500ppm以下、より好ましくは300ppm以下とできる。
 以下、本発明の実施例について記載するが、本発明はこれらの実施例に限定されるものではない。
 以下の実施例および比較例においては、(A1)成分、(A2)成分、(D21)成分として下記のポリオルガノシロキサンを用いた。なお、シロキサン単位を次のような記号で示すものとする。
M単位:(CHSiO1/2
Vi単位:(CH(CH=CH)SiO1/2
OH単位:(CH(OH)SiO1/2
D単位:-(CHSiO-
単位:-(CH)HSiO-
Vi単位:-(CH)(CH=CH)SiO-
 (A1)成分のポリオルガノシロキサンジオールおよび(A2)成分のポリオルガノシロキサンとしては、以下の表1に示す、構造式、質量減少率[%]、粘度[Pas]、シラノール基含有量[mmol/g]、アルケニル基含有量[mmol/g]を有する各直鎖ポリオルガノシロキサンポリマーを用いた。また、ポリオルガノシロキサンジオールであるが(A1)成分の要件を満たさない比較例用のポリオルガノシロキサンジオール(A1-cf)を同様に表1に示す。
Figure JPOXMLDOC01-appb-T000001
 さらに、実施例および比較例において、(B)成分、(C)成分、および(D)成分として、それぞれ以下のシリカ粉末、オルガノシラザン、硬化剤を用いた。なお、シリカ粉末(Bcf)は、比較例用の表面処理シリカ粉末である。
(B)成分;煙霧質シリカ
(B1);アエロジル130(商品名、EVONIC製)、比表面積が130m/g
(B2);アエロジル200(商品名、EVONIC製)、比表面積が200m/g
(B3);アエロジル300(商品名、EVONIC製)、比表面積が300m/g
(Bcf);アエロジル130のジメチルジクロロシラン処理物(シリカ表面のカーボン量;1.0質量%)
(C)成分;オルガノシラザン
(C1);ヘキサメチルジシラザン
(C2);1,3-ジビニル-1,1,3,3-テトラメチルジシラザン
(D)成分;硬化剤
・有機過酸化物(D1)
(D11);p-メチルベンゾイルパーオキサイド
・付加型架橋剤と触媒の組み合わせ(D2)
(D21);MD 2020M(ヒドロシリル基含有量7.4[mmol/g]、質量減少率1.0[%])
(D22);(メチルシクロペンタジエニル)トリメチル白金
[実施例1~23、比較例1~7]
 表2~5に示す組成で以下のようにして、実施例1~23のシリコーンゴム組成物を製造した。同様に、表6に示す組成で以下のようにして、比較例1~7のシリコーンゴム組成物を(D)成分を含有しないベースコンパウンドとして製造した。
 まず、(A1)成分と(A2)成分をニーダーで混合して(A)成分を調製した。(A)成分に(B)成分および(C)成分を、20~60分間かけて連続的に添加しながらニーダーで配合し、50℃で1時間混練した後、150℃で2時間加熱混練を行い、これを40℃以下まで冷却してベースコンパウンドを作製した。このベースコンパウンドに、ニーダーまたは二本ロールで(D)成分を配合してシリコーンゴム組成物を得た。
 なお、表2~6には、組成と併せて、(A)成分としての粘度[Pas]、アルケニル基含有量[mmol/g]、質量減少率[%]およびベースコンパウンドとしての質量減少率[%]を示す。なお、(A)成分のアルケニル基含有量[mmol/g]および、質量減少率[%]は計算値である。
 表2~6において(D11)、(D21)、(D22)における「phc」は(A)成分、(B)成分、(C)成分からなるベースコンパウンド100質量部に対する配合量(質量部)である。(D22)におけるppmPtは、(A)成分、(B)成分、(C)成分(ベースコンパウンド)と(D21)成分の合計量に対する白金金属原子換算のppmを示す。表2~6中、空欄は配合量「0」を、「-」は未実施を示す。
[評価]
(1)ベースコンパウンド、シリコーンゴム組成物
 上記シリコーンゴム組成物において(D)成分を添加する前のベースコンパウンドについて、以下の方法で質量減少率[%]を測定するとともに、可塑度、ロール作業性を評価した。また、実施例9~23、比較例2、5のシリコーンゴム組成物について押し出し加工性を評価した。結果を表2~6に併せて示す。なお、可塑度、ロール作業性は、ベースコンパウンドを用いて行ったが、(D)成分を含むシリコーンゴム組成物においても同様の結果が想定される。
(質量減少率)
 上記各実施例で得られたベースコンパウンドを適当な大きさのサンプルとして取り出して、その質量(w1)を測定した。このサンプルを、200℃のオーブンに入れ4時間放置し、取り出して質量(g;w2)を測定し、質量減少率[%]((w1-w2)/w1×100)を算出した。
(ロール作業性)
 6インチの2本ロールのギャップを3mmに調整し、約200gのベースコンパウンドについて、5分間(巻き返し約50回)ロール作業を行い、ロール作業性を評価した。ベースコンパウンドがロールに沿って滑らかに巻きつき、かつ、ロール表面に対するベースコンパウンドの粘着性が適切であって、ロール作業に支障がない場合を良好とした。
(可塑度)
 JISK6249に準じて、平衡板可塑度計(ウィリアムスプラストメーター)を用い、再練時間5分、放置時間5分、加圧時間5分で、ベースコンパウンドの可塑度を測定した。
(押出加工性)
 上記実施例9~23、比較例2、5のシリコーンゴム組成物を、外径8mm内径6mmのチューブ状の口金を備えた、スクリュー径Φ30mmの押出し機を用いて毎分2mの速度で水平方向に押出し、実施例9~11のシリコーンゴム組成物については、約50cmの長さに押出された未硬化のチューブ状のコンパウンドを、200℃のオーブンに入れて5分間加熱してチューブ状の硬化物を作製した。実施例12~23、比較例2、5のシリコーンゴム硬化物については、押出し直後に、押出し成形用のランプボックス(Nordson製、Thrucure)を備えた紫外線ランプ(Nordson製、Coolwave2-410)によって365nmでの照射強度800mW/cmの紫外線を照射することによってチューブ状の硬化物を連続的に作製した。なお、積算照射量は約6000mJ/cmである。
 得られたチューブ状の硬化物がシャークスキン等の欠陥のない滑らかな表面を有し、かつ、自重による変形を起こすことなく十分に硬化している場合、押出加工性を良好とした。
(押出成形品の評価)
・耐ブロッキング性
 硬化したチューブを巻き取って1日室温で放置後、チューブの表面同士の接着の有無を目視で確認し、接着が認められないものを耐ブロッキング性が「良好」であり、接着が認められたものを耐ブロッキング性「なし」として評価した。
・外観、突起物個数[個/0.01mm
 また、チューブ表面の状態について、外観を確認した。さらに、チューブ表面のSEM画像の観察並びに、EPMA(電子線プローブマイクロアナライザ)-EDSエネルギー分散型X線分光器)分析を行った。
 図1Aに実施例12で得られたチューブ表面のSEM写真(1倍)、図1Bに同じチューブ表面の250倍のSEM写真を拡大した100μm×100μmの区域を示す写真、図1Cに同じチューブ表面の5000倍のSEM写真(写真右下の白線の長さは5μmである)を示す。
 実施例12、13、14、15、20について得られたチューブ表面の250倍のSEM画像を解析して、最大径が0.1~30μmの粒状の突起物の100μm×100μm(0.01mm)の面積当たりの個数を数えた。なお、粒状突起物の0.01mm当たりの個数は、上記250倍の写真内の任意の5点について計測した平均の個数である。
(2)硬化物
 上記で得られた実施例のシリコーンゴム組成物を用いて各種試験片を作製し以下の評価項目について評価した。結果を表2~6に併せて示す。
(試験片の作製)
 実施例1~11;上記で得られたシリコーンゴム組成物を120℃、15分間の条件でプレス成形し、JIS K6249に準拠した、機械特性(硬さ、引張強さ、伸び)測定用試験片としてダンベル状3号形を作製した。
 実施例12~23、比較例2、5;上記で得られたシリコーンゴム組成物を室温でシート状にプレスし、25℃で、UVランプを用いて60mW/cm、120秒間のUV照射を行った。照射エネルギーは、365nmでの積算光量として7200mJ/cmであった。得られたシートからJIS K6249に準拠した、機械特性(硬さ、引張強さ、伸び)測定用試験片としてダンベル状3号形を作製した。
(機械特性)
 機械特性測定用試験片を用いて、シリコーンゴムの密度を測定した。また、JIS K6249にしたがって、硬さ(Type A)、引張強さ[MPa]、伸び[%]を測定した。
(質量減少率)
 実施例1~11で得られたシリコーンゴム組成物を、機械特性測定用試験片を作製したのと同様の条件でプレス成形してシリコーンゴムシートを得た。実施例12~23で得られたシリコーンゴム組成物を、機械特性測定用試験片を作製したのと同様にして、UVランプを用いて硬化させてシリコーンゴムシートを得た。これらの、シリコーンゴムシートを適当な大きさに切断してサンプルシートとしてその質量(w1)を測定した。このサンプルシートを、200℃のオーブンに入れ4時間放置し、取り出して質量(g;w2)を測定し、質量減少率[%]((w1-w2)/w1×100)を算出した。
(低分子シロキサン含有量の測定)
 実施例1、3で得られたシリコーンゴム組成物を、機械特性測定用試験片を作製したのと同様にして、170℃、10分間の条件でプレス成形してシリコーンゴムシートを得た。実施例12、15で得られたシリコーンゴム組成物について、機械特性測定用試験片を作製したのと同様にして、UVランプを用いて硬化させてシリコーンゴムシートを得た。これらの、シリコーンゴムシートをn-ヘキサンに浸漬して低分子量シロキサンを抽出し、ガスクロマトグラフィー(Agilent Technologies製、6890型)で抽出液に含まれる低分子シロキサン量を定量することにより、シリコーンゴムに含まれる重合度4~10の環状シロキサンの含有量を求めた結果を表2~5にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表2~5から実施例のシリコーンゴム組成物においては、硬化物の強度を十分に維持しながら成形性、特に押出成形性が良好であることがわかる。実施例9~23では、押出し成形品の表面はすべり性に優れブロッキングすることがなかった。なお、実施例1~8は、ベースコンパウンドが実施例12、14~20と同じであり、硬化剤が実施例9~11と同じであることから、押出成形性が良好であり、耐ブロッキング性も良好であると想定される。
 また、押出し成形品(硬化物)の表面観察によって、微細な球状粒子が部分的に表面に露出して粒状の突起物となっていることが確認できた。また、この球状粒子のSi原子、C原子、O原子の構成比率を分析したところ、この球状粒子はシリカ粒子の凝集体と考えられる。このシリカ粒子が凝集した球状体の存在により、押出し成形品の表面すべり性が改善されたと考えられる。
 また、(A)成分が、低粘度(A)成分であると(実施例1~6、9、12~18)、原料成分から低分子量シロキサンを十分に低減することが可能であり、低分子量シロキサンを低減した(A)成分を用いた場合、硬化物に対してポストキュアを行う必要がない。
 本発明のシリコーンゴム組成物は、硬化物の強度を十分に維持しながら、成形性、特に押出成形性が良好である。また、本発明のシリコーンゴム組成物における好ましい態様である低粘度(A)成分含有シリコーンゴム組成物を用いれば、あらかじめ(A)成分中に含有される低分子シロキサンを十分に低減することができるため、ポストキュアすることなく低分子シロキサン含有量が十分に低減された硬化物、例えば、常圧、200℃、4時間の熱処理前後における質量減少率が0.5%以下であるシリコーンゴム成形品が得られる。
 このようなシリコーンゴム成形品は、揮発性の低分子量シロキサンに起因する電子機器の接点障害の発生が殆どないことから、自動車用や電子機器用のコネクターシール/ガスケット/パッキン/緩衝材等として好適である。また、揮発性の低分子シロキサンの量が十分に少ないため、医療用のチューブ、カテーテル、逆止弁、パッキン、創傷ケア用品として、また、ベビーニップル等のヘルスケア用途、キッチン用品等の用途に好適である。さらに、これらの用途に用いるにあたって、高温でのポストキュアが必要ないので、熱可塑性プラスチックのような、熱に弱い素材等、幅広い素材との複合成形が可能である。
 本発明のシリコーンゴム組成物による押出し成形品の表面はすべり性に優れることからブロッキングの発生が殆どない。本発明のシリコーンゴム組成物は、パッキン、チューブ、ケーブル等の押出成形品の製造に好適である。また、表面に露出した粒状の突起物によって、押し出し成形品が、艶消しで粘着感のない表面質感が得られるため、ウェアラブルデバイス、自動車用ウェザーストリップ等の用途に好適である。

Claims (13)

  1. (A)下記(A1)および(A2)からなり、(A1)の割合が(A)全体に対して20~100質量%である、25℃における粘度が5~20000Pas、アルケニル基含有量が0.001~0.3mmol/gであるベースポリマー100質量部、
     (A1)25℃における粘度が1~100Pasである、下記式(1)で示されるポリオルガノシロキサンジオール
      HO[(R )SiO]n1[RSiO]n2H   …(1)
    (式(1)中、Rはそれぞれ独立に、アルケニル基を含まない1価の非置換または置換炭化水素基であり、Rはアルケニル基を表す。式(1)中のn1およびn2は、ランダム重合またはブロック重合したそれぞれの繰り返し単位の合計の数を示し、n1は200~1200、n2は0~30の整数である。)
     (A2)25℃における粘度が0.2~40000Pasである、下記平均組成式(2)で示されるポリオルガノシロキサン
      R SiO(4-a)/2   …(2)
    (式(2)中、Rはそれぞれ独立に、水酸基を含まない1価の非置換または置換の飽和または不飽和炭化水素基であり、aは1.98~2.02の範囲の数を示す。)
    (B)比表面積が50~400m/gであるシリカ粉末10~50質量部、
    (C)オルガノシラザン1~10質量部、および
    (D)硬化剤の触媒量
     を含有するシリコーンゴム組成物。
  2.  前記(A1)成分の前記(A)成分全体に対する割合は、50~100質量%であり、前記(A)成分の25℃における粘度は、5~3000Pasである請求項1記載のシリコーンゴム組成物。
  3.  前記(A1)成分の前記(A)成分全体に対する割合は、40~100質量%であり、前記(A)成分の25℃における粘度は、5~1000Pasである請求項1記載のシリコーンゴム組成物。
  4.  前記(A)成分は、常圧、200℃、4時間の熱処理前後における質量減少率が1.0%以下であり、前記シリコーンゴム組成物は、ポストキュアを行うことなく、常圧、200℃、4時間の熱処理前後における質量減少率が0.5%以下である硬化物を与える請求項1~3のいずれか1項に記載のシリコーンゴム組成物。
  5.  前記(A2)成分は、アルケニル基含有量が0.001~0.3mmol/gのアルケニル基含有直鎖ポリオルガノシロキサンである請求項1~4のいずれか1項に記載のシリコーンゴム組成物。
  6.  前記(D)成分は有機過酸化物であり、その含有量が(A)成分100質量部に対して0.01~5質量部である請求項1~5のいずれか1項に記載のシリコーンゴム組成物。
  7.  前記(D)成分が、ケイ素原子に水素原子と有機基が結合したシロキサン骨格を有し、前記水素原子を分子中に平均2個以上有するポリオルガノハイドロジェンシロキサン(D21)および付加反応触媒(D22)であり、前記ポリオルガノハイドロジェンシロキサン(D21)の含有量は、そのケイ素原子結合水素原子の前記(A)成分中のアルケニル基に対するモル比((D21)成分のケイ素原子に結合する水素原子のモル数/(A)成分のアルケニル基のモル数)が0.01~10となる量、付加反応触媒(D22)の含有量は前記(A)成分および(D21)成分の付加反応を触媒する量である請求項1~5のいずれか1項に記載のシリコーンゴム組成物。
  8.  前記付加反応触媒(D22)が、白金、ロジウム、パラジウム、イリジウムおよびニッケルからなる群から選ばれる少なくとも1種を含む請求項7に記載のシリコーンゴム組成物。
  9.  前記シリコーンゴム組成物をスクリュー押出し機により毎分2mの速度で押出した後、硬化処理して得られるチューブ状硬化物は、表面に走査型電子顕微鏡画像で測定される最大径が0.1~30μmの粒状の突起物を1~300個/0.01mm有する、請求項1~8のいずれか1項に記載のシリコーンゴム組成物。
  10.  前記(A)成分に前記(B)成分および前記(C)成分を複数回に分けてまたは所定の速度で連続的に添加した後、前記(D)成分を加える、請求項1~9のいずれか1項に記載のシリコーンゴム組成物の製造方法。
  11.  前記(D)成分を加える前に、前記(A)成分、(B)成分および前記(C)成分の混合物を100~200℃で加熱する工程を有する請求項10記載の製造方法。
  12.  請求項3または4に記載のシリコーンゴム組成物を成形し、熱またはUV照射によって硬化させ、ポストキュアを行うことなく、常圧、200℃、4時間の熱処理前後における質量減少率が0.5%以下であるシリコーンゴム成形品を得るシリコーンゴム成形品の製造方法。
  13.  表面に走査型電子顕微鏡画像で測定される最大径が0.1~30μmの粒状の突起物を有する、請求項1~9のいずれか1項に記載のシリコーンゴム組成物を用いて得られるシリコーンゴム押出し成形品。
PCT/JP2016/087577 2015-12-17 2016-12-16 シリコーンゴム組成物、その製造方法およびシリコーンゴム押出し成形品 WO2017104811A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016574201A JP6228692B1 (ja) 2015-12-17 2016-12-16 シリコーンゴム組成物、その製造方法およびシリコーンゴム押出し成形品
CN201680074243.7A CN108473769B (zh) 2015-12-17 2016-12-16 硅橡胶组合物、其制造方法和硅橡胶挤出成型品
EP16875785.4A EP3392314B1 (en) 2015-12-17 2016-12-16 Silicone rubber composition, method of producing the same, and silicone rubber extrudate
US16/008,255 US10654980B2 (en) 2015-12-17 2018-06-14 Silicone rubber composition, method of producing the same, and silicone rubber extrudate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-246104 2015-12-17
JP2015246104 2015-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/008,255 Continuation US10654980B2 (en) 2015-12-17 2018-06-14 Silicone rubber composition, method of producing the same, and silicone rubber extrudate

Publications (1)

Publication Number Publication Date
WO2017104811A1 true WO2017104811A1 (ja) 2017-06-22

Family

ID=59056742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087577 WO2017104811A1 (ja) 2015-12-17 2016-12-16 シリコーンゴム組成物、その製造方法およびシリコーンゴム押出し成形品

Country Status (6)

Country Link
US (1) US10654980B2 (ja)
EP (1) EP3392314B1 (ja)
JP (1) JP6228692B1 (ja)
CN (1) CN108473769B (ja)
TW (1) TW201731964A (ja)
WO (1) WO2017104811A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200139193A (ko) 2018-03-29 2020-12-11 신에쓰 가가꾸 고교 가부시끼가이샤 실리콘 고무-실리콘 변성 폴리이미드 수지 적층체
JP2021042332A (ja) * 2019-09-12 2021-03-18 信越化学工業株式会社 付加硬化型シリコーン組成物、その硬化物、光反射材、及び、光半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11866583B2 (en) * 2018-05-24 2024-01-09 Shin-Etsu Chemical Co., Ltd. Addition-curable liquid silicone rubber composition and molded silicone-rubber object
CN111117260A (zh) * 2019-12-31 2020-05-08 深圳市飞鸿达科技有限公司 一种微交联单组分导热吸波凝胶的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514249A (ja) * 1974-05-15 1976-01-14 Wacker Chemie Gmbh
JPS6443564A (en) * 1987-07-30 1989-02-15 Dow Corning Preparation of optically transparent curable polyorganosiloxane
JPH06306295A (ja) * 1993-04-09 1994-11-01 General Electric Co <Ge> 簡素化された組成の熱硬化性シリコーンゴム組成物
JPH0977978A (ja) * 1995-09-12 1997-03-25 Shin Etsu Chem Co Ltd 硬化性シリコーンエラストマー組成物及びその製造方法
JP2001342347A (ja) * 2000-05-31 2001-12-14 Dow Corning Toray Silicone Co Ltd 押出成形用シリコーンゴム組成物およびシリコーンゴム押出成形品の製造方法
JP2004067961A (ja) * 2002-08-09 2004-03-04 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563211A (en) * 1995-10-16 1996-10-08 Dow Corning Corporation Extrudable silicone elastomer with improved mold release
US6750279B1 (en) * 2000-08-11 2004-06-15 General Electric Company High tear strength low compression set heat curable silicone elastomer and additive
KR20040031021A (ko) * 2001-08-29 2004-04-09 다우 코닝 도레이 실리콘 캄파니 리미티드 저비중 액체 실리콘 고무 조성물 및 이로부터 성형된 제품
JP4878162B2 (ja) 2005-01-18 2012-02-15 信越化学工業株式会社 液状シリコーンゴムコーティング剤組成物および該組成物を用いたエアーバッグ
DE602006002040D1 (de) 2005-01-18 2008-09-18 Shinetsu Chemical Co Flüssige Siliconkautschuk-Beschichtungszusammensetzung und damit beschichteter Airbag
JP5117713B2 (ja) * 2006-12-25 2013-01-16 東レ・ダウコーニング株式会社 シリコーン系感圧接着剤組成物および粘着テープ
JP5343912B2 (ja) 2009-06-09 2013-11-13 信越化学工業株式会社 シリコーンゴム組成物及びその製造方法
CN103502337B (zh) * 2011-12-09 2015-11-25 迈图高新材料日本合同公司 硅橡胶发泡体用组合物、硅橡胶发泡体的制造方法和硅橡胶发泡体
TWI678551B (zh) * 2015-07-28 2019-12-01 美商道康寧公司 智慧型光學材料、配方、方法、用途、物品、及裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514249A (ja) * 1974-05-15 1976-01-14 Wacker Chemie Gmbh
JPS6443564A (en) * 1987-07-30 1989-02-15 Dow Corning Preparation of optically transparent curable polyorganosiloxane
JPH06306295A (ja) * 1993-04-09 1994-11-01 General Electric Co <Ge> 簡素化された組成の熱硬化性シリコーンゴム組成物
JPH0977978A (ja) * 1995-09-12 1997-03-25 Shin Etsu Chem Co Ltd 硬化性シリコーンエラストマー組成物及びその製造方法
JP2001342347A (ja) * 2000-05-31 2001-12-14 Dow Corning Toray Silicone Co Ltd 押出成形用シリコーンゴム組成物およびシリコーンゴム押出成形品の製造方法
JP2004067961A (ja) * 2002-08-09 2004-03-04 Shin Etsu Chem Co Ltd 室温硬化性オルガノポリシロキサン組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392314A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200139193A (ko) 2018-03-29 2020-12-11 신에쓰 가가꾸 고교 가부시끼가이샤 실리콘 고무-실리콘 변성 폴리이미드 수지 적층체
JP2021042332A (ja) * 2019-09-12 2021-03-18 信越化学工業株式会社 付加硬化型シリコーン組成物、その硬化物、光反射材、及び、光半導体装置

Also Published As

Publication number Publication date
EP3392314B1 (en) 2020-12-02
CN108473769B (zh) 2021-03-16
CN108473769A (zh) 2018-08-31
US10654980B2 (en) 2020-05-19
JPWO2017104811A1 (ja) 2017-12-14
EP3392314A4 (en) 2019-07-24
US20180291160A1 (en) 2018-10-11
EP3392314A1 (en) 2018-10-24
TW201731964A (zh) 2017-09-16
JP6228692B1 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6228692B1 (ja) シリコーンゴム組成物、その製造方法およびシリコーンゴム押出し成形品
JP5281206B1 (ja) シリコーンゴム発泡体用組成物、シリコーンゴム発泡体の製造方法およびシリコーンゴム発泡体
EP2759573B1 (en) Thermosetting silicone rubber composition
JPH0514742B2 (ja)
JP5164289B2 (ja) シリコーン組成物、物品およびかかるシリコーン組成物を製造する方法
JP2010155961A (ja) オルガノポリシロキサン及びその製造方法並びにフルオロシリコーンゴム組成物
JP2008063508A (ja) 押出成型用シリコ−ンゴム組成物
CN110234711B (zh) 导热性聚硅氧烷组合物
JP6274125B2 (ja) フロロシリコーンゴム組成物
JP2012211232A (ja) シリコーンゴム系硬化性組成物
JP4439802B2 (ja) 難燃性液状シリコーンゴム組成物
JP2016530394A (ja) シリコーン物品、チューブ及び物品形成方法
JP4553562B2 (ja) 接着性ポリオルガノシロキサン組成物
JP3472472B2 (ja) シリコーンゴム組成物およびシリコーンゴム成形体の製造方法
JP2005068273A (ja) ポリオルガノシロキサン組成物およびその製造方法ならびにシリコーンゴム成形品
JP6107741B2 (ja) ミラブル型シリコーンゴムコンパウンド及びミラブル型シリコーンゴム組成物の製造方法
JP6024427B2 (ja) ミラブル型シリコーンゴムコンパウンド及びシリコーンゴム組成物の製造方法
JP2015113456A (ja) フロロシリコーンゴム組成物
JP3482834B2 (ja) シリコーンゴムの製造方法
JP3919011B2 (ja) 熱硬化性シリコーンゴム組成物
JP6778834B2 (ja) 液状シリコーンゴム組成物、その硬化物、該硬化物を備える物品、及びシリコーンゴムの製造方法
JP2006001953A (ja) 高硬度付加硬化型液状シリコーンゴム組成物及びその製造方法
CN1493618A (zh) 阻燃性硅橡胶组合物
JPH07179765A (ja) シリコーンゴム組成物及びその製造方法
JPH08208994A (ja) 液状シリコーンゴム組成物及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016574201

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016875785

Country of ref document: EP