WO2017104696A1 - 細胞培養装置および細胞培養システム - Google Patents

細胞培養装置および細胞培養システム Download PDF

Info

Publication number
WO2017104696A1
WO2017104696A1 PCT/JP2016/087194 JP2016087194W WO2017104696A1 WO 2017104696 A1 WO2017104696 A1 WO 2017104696A1 JP 2016087194 W JP2016087194 W JP 2016087194W WO 2017104696 A1 WO2017104696 A1 WO 2017104696A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
medium
optical system
culture container
light
Prior art date
Application number
PCT/JP2016/087194
Other languages
English (en)
French (fr)
Inventor
佐々木 浩
達哉 南
真柄 泰典
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201680073068.XA priority Critical patent/CN108368467A/zh
Priority to EP16875673.2A priority patent/EP3392332A4/en
Priority to JP2017556091A priority patent/JP6942636B2/ja
Publication of WO2017104696A1 publication Critical patent/WO2017104696A1/ja
Priority to US16/006,399 priority patent/US20180291328A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/02Means for providing, directing, scattering or concentrating light located outside the reactor
    • C12M31/04Mirrors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control

Definitions

  • the present invention relates to a cell culture apparatus and a cell culture system that can automatically replace a medium in a cell culture container.
  • the present invention has been made in view of the above-described circumstances, and it is possible to easily replace the medium in the cell culture container in a timely manner according to the degree of deterioration of the medium, and to have a simple configuration.
  • An object of the present invention is to provide a cell culture device and a cell culture system that can reduce the occurrence of system troubles.
  • One embodiment of the present invention includes an incubator that can maintain an interior in an environment suitable for cell growth, a cell culture container that is housed in the incubator and holds cells and a medium, and an optical of the medium in the cell culture container
  • Another embodiment of the present invention is an incubator that can maintain an interior in an environment suitable for cell growth, a cell culture container that is housed in the incubator and holds cells and a medium, and a medium in the cell culture container
  • a second measurement optical system for measuring the light intensity of the other monochromatic light wherein the medium exchange unit includes medium supply means for supplying a medium to the cell culture container, and a medium for discharging the medium from the cell culture container A discharge means, and the control means calculates the amount of light absorbed by the medium based on the light intensity measured in the first measurement optical system and the second measurement optical system, and detects a change in the calculated light absorption over time.
  • a cell culture device for controlling the medium supply means and / or the medium discharge means based on the change over time can be replaced in a timely manner according to the deterioration of the medium with a simple configuration.
  • Another embodiment of the present invention is an incubator that can maintain an interior in an environment suitable for cell growth, a cell culture container that is housed in the incubator and holds cells and a medium, and a medium in the cell culture container
  • An optical data acquisition unit for acquiring the optical data
  • a driving means for relatively moving the optical data acquisition unit and the cell culture container
  • a medium exchange unit for exchanging the medium in the cell culture container
  • a control means for controlling the control means.
  • the optical data acquisition unit includes: an irradiation optical system that irradiates the medium in the cell culture container with monochromatic light; and a measurement optical system that measures the light intensity of the monochromatic light emitted from the irradiation optical system;
  • the medium exchange unit comprises medium supply means for supplying a medium to the cell culture container, medium discharge means for discharging the medium from the cell culture container,
  • the control means moves the optical data acquisition unit and the cell culture container relative to each other by the driving means, and the cell culture container is not disposed on the optical path from the irradiation optical system to the measurement optical system.
  • the amount of light absorbed by the medium is calculated based on the first light intensity measured in step 2 and the second light intensity measured when the cell culture container is placed on the optical path from the irradiation optical system to the measurement optical system,
  • a cell culturing apparatus that detects a change in the calculated amount of light absorption over time and controls the medium supply unit and / or the medium discharge unit based on the change over time.
  • the medium in the cell culture vessel can be replaced in a timely manner according to the deterioration of the medium with a simple configuration.
  • the control means includes a transmission / reception unit that transmits and receives signals to and from the outside of the incubator
  • the optical data acquisition unit and the medium exchange unit may be remotely controlled by transmitting / receiving signals to / from an external control means installed outside the incubator by the transmission / reception unit.
  • the irradiation optical system and the measurement optical system may be arranged vertically with the cell culture vessel interposed therebetween.
  • the irradiation optical system and the measurement optical system may be arranged in a horizontal direction with the cell culture container interposed therebetween.
  • the irradiation optical system and the measurement optical system are disposed on the same side with respect to the cell culture container, and are reflected on the opposite side of the irradiation optical system and the measurement optical system across the cell culture container.
  • a single color after the measurement optical system is irradiated from the irradiation optical system to the cell culture container, reflected by the reflecting member after passing through the cell culture container, and again passed through the cell culture container.
  • the light intensity of light may be measured.
  • the device configuration can be made compact and can be easily placed in the incubator.
  • monochromatic light passes through the medium in the cell culture container twice, the amount of light absorption by the medium increases, and the detection sensitivity of changes in the amount of light absorption increases.
  • the irradiation optical system includes a white light source and a band-pass filter that is detachably provided on an optical path of white light emitted from the white light source and transmits only light of a desired wavelength. May be. This makes it possible to irradiate light of a desired wavelength by simply exchanging the bandpass filter, improving the versatility of the apparatus and improving the operability by the operator.
  • the irradiation optical system may include a plurality of monochromatic light sources, and a mirror and a dichroic mirror that merge optical paths of light from the plurality of monochromatic light sources.
  • the culture medium supply means includes a culture medium holding means for holding a culture medium, a tubular member connecting the culture medium holding means and the cell culture container, and a liquid feed pump disposed on the tubular member.
  • the liquid feed pump may be controlled by a signal from the control means.
  • the medium discharge means includes a waste liquid holding container that holds the medium discharged from the cell culture container, a tubular member that connects the waste liquid holding container and the cell culture container, and the tubular member disposed on the tubular member.
  • the liquid feed pump may be controlled by a signal from the control means.
  • the medium discharging means includes a waste liquid holding container that holds the medium discharged from the cell culture container, a tubular member that connects the waste liquid holding container and the cell culture container, and the waste liquid holding container.
  • Negative pressure supply means for applying a negative pressure, and the negative pressure supply means may be controlled by a signal from the control means.
  • Another embodiment of the present invention is a first cell culture device selected from any of the cell culture devices of the above embodiments, and is housed in the incubator of the first cell culture device and holds cells and a medium.
  • a second cell culture device comprising a second cell culture vessel and a second medium exchange unit for exchanging the medium in the second cell culture vessel, wherein the control means of the first cell culture device
  • the cell culture system controls the medium exchange unit of the first cell culture device and the second medium exchange unit of the second cell culture device based on a change.
  • the present invention it is possible to detect the deterioration of the medium in the cell culture vessel disposed in the incubator and replace the medium in a timely manner according to the deterioration of the medium.
  • the apparatus configuration is simple, the risk of system errors can be reduced, and the possibility that the errors may affect the culture conditions can be avoided.
  • the labor of the operator can be reduced, and the possibility of contamination of the cell culture system accompanying the operation can be reduced.
  • the medium can be changed without removing the cell culture container from the incubator, it is possible to reduce the stress on the cells due to environmental changes such as temperature, and to avoid the impact on the cells when the cell culture container is transported. it can.
  • the cell culture apparatus 100 is an apparatus having the configuration shown in FIG.
  • the cell culture apparatus 100 is an apparatus for exchanging the medium A in the cell culture container 4 installed in the incubator 5, and includes an optical data acquisition unit 1, a medium exchange unit 2, a control means 3, a cell culture container 4, and an incubator. 5 is provided.
  • the optical data acquisition unit 1 measures the irradiation optical system 1a that irradiates the medium A in the cell culture container 4 with monochromatic light, and the light intensity of the monochromatic light emitted from the irradiation optical system 1a.
  • a measurement optical system 1b is provided.
  • the irradiation optical system 1 a includes a light source 11 that emits monochromatic light, and the light irradiated from the light source 11 is converted into substantially parallel light by the collimator lens 12 and is irradiated onto the medium A in the cell culture container 4.
  • the measurement optical system 1b includes a condenser lens 13 that condenses the monochromatic light emitted from the irradiation optical system 1a, and a light amount detector 14 that measures the intensity of the light collected by the condenser lens 13.
  • the irradiation optical system 1a and the measurement optical system 1b face each other in the vertical direction across the cell culture container 4, and the monochromatic light emitted from the irradiation optical system 1a passes through the cell culture container 4 and is measured by the measurement optical system 1b. Detected.
  • the measurement optical system 1b is housed inside a base 17 on which the cell culture container 4 is mounted.
  • the mounting surface 17a on which the cell culture vessel 4 of the base 17 is mounted is configured by a member that is optically transparent at least at a location where monochromatic light from the irradiation optical system 1a passes.
  • the control means 3 includes a control unit 15 and a transmission unit 16.
  • the control unit 15 performs ON / OFF control of the light source 11 and calculation of the light intensity measured by the light amount detector 14.
  • the controller 15 can send a signal to the culture medium exchange unit 2 via the transmitter 16.
  • the medium exchange unit 2 includes a medium supply means 2a for supplying the medium A to the cell culture container 4 and a medium discharge means 2b for discharging the medium A from the cell culture container 4.
  • the medium supply means 2a includes a medium holding means for holding the medium A, and a tubular member (such as a tube) that connects the medium holding means and the cell culture container 4, and the medium in the medium holding means is subjected to cell culture via the tubular member.
  • the medium holding means includes a holding container for storing the medium A.
  • the tubular member is provided with a liquid feed pump (peristaltic pump or the like).
  • a liquid feed pump peristaltic pump or the like.
  • the liquid feed pump receives a signal from the transmitter 16, the ON / OFF is switched, and the medium is supplied to the cell culture container 4. May be controlled.
  • the medium holding means may be installed above the cell culture container 4 in the direction of gravity, and the medium A of the medium holding means may be supplied to the cell culture container 4 via a tubular member by gravity.
  • a gate for opening and closing the flow path formed by the tubular member is installed in the tubular member, and when the gate receives a signal from the transmission unit 16, the opening and closing of the flow path is switched, and the cell culture container 4
  • the supply of the medium to may be controlled.
  • An example of a gate is a valve.
  • FIG. 3 shows an example of the medium supply means 2a.
  • the holding container 21 that can accommodate the culture medium A has a discharge port 21a for discharging the culture medium A.
  • the tubular member 22 connects the discharge port 21 a of the holding container 21 and the supply port 4 a of the cell culture container 4.
  • a liquid feed pump 23 is installed in the tubular member 22, and the medium A in the holding container 21 can be supplied to the cell culture container 4 through the tubular member 22 by operating the liquid feed pump 23.
  • the liquid feeding pump 23 has a receiving unit, and ON / OFF is controlled by receiving a signal from the transmitting unit 16.
  • the medium discharge means 2b includes a waste liquid holding container that holds the medium A discharged from the cell culture container 4, and a tubular member (such as a tube) that connects the waste liquid holding container and the cell culture container 4 via the tubular member.
  • the medium A in the cell culture container 4 is discharged to the waste liquid holding container.
  • the cell culture container 4 has an opening 4b on a side surface at a predetermined height from the bottom surface, and a tubular member is coupled to the opening 4b. When the medium A in the cell culture container 4 reaches the opening 4b. The liquid may be discharged from the opening 4b to the waste liquid holding container through the tubular member.
  • the tubular member protrudes from the bottom surface of the cell culture container 4 to a predetermined height and has an opening at the predetermined height, and the opening of the tubular member from which the medium A in the cell culture container 4 protrudes. When it reaches the part, it may be discharged from the opening to the waste liquid holding container through the tubular member.
  • a liquid feed pump (such as a peristaltic pump) is installed in the tubular member, and when the liquid feed pump receives a signal from the transmission unit 16, the ON / OFF is switched, and the medium discharge from the cell culture container 4 is controlled. May be.
  • the medium discharge means 2 b includes a negative pressure supply means 25 that applies a negative pressure to the waste liquid holding container 24, and the reception unit of the negative pressure supply means 25 receives a signal from the transmission unit 16.
  • the ON / OFF may be controlled. In this way, a negative pressure is transmitted to the cell culture container 4 through the tubular member 26, and the medium A can be sucked from the cell culture container 4 to the waste liquid holding container 24 by the negative pressure.
  • the discharge can be controlled.
  • the negative pressure supply means 25 may be a pump that sucks the gas in the waste liquid holding container 24, for example.
  • control unit 15 includes a timer (not shown), and periodically operates the light source 11 and the light amount detector 14 so that the amount of absorption (absorbance) by the medium A can be calculated over time. Yes.
  • the control unit 15 transmits a signal via the transmission unit 16. The signal is transmitted to the culture medium supply means 2a and / or the culture medium discharge means 2b, and the culture medium supply means 2a and / or the culture medium discharge means 2b that have received the signal start supply / discharge of the culture medium using the signal as a trigger.
  • the culture medium supply means 2a and / or the culture medium discharge means 2b may stop after a lapse of a certain time, or the control section 15 transmits a signal via the transmission section 16 after the lapse of a certain time and the culture medium supply means 2a and / or the culture medium.
  • the discharging means 2b may be stopped.
  • the control unit 15 stores in advance the light intensity of monochromatic light emitted from the light source 11 and calculates the amount of light absorbed by the medium A based on the stored light intensity and the light intensity measured by the light amount detector 14. May be. Instead of calculating the amount of light absorbed by the medium A, the control unit 15 may determine the timing of transmitting a signal from the transmission unit 16 based on the light intensity of the monochromatic light transmitted through the medium A.
  • the cell culture apparatus is an apparatus including the optical data acquisition unit shown in FIG. 5A and connects the irradiation optical system 1a and the measurement optical system 1b of the cell culture apparatus of the first embodiment. This is different from the first embodiment in that the measurement optical system 1c is provided on the optical axis. The rest is the same as in the first embodiment.
  • the optical data acquisition unit 1 of this embodiment includes an irradiation optical system 1a that irradiates the medium A in the cell culture container 4 with monochromatic light, and a partial light intensity of the monochromatic light emitted from the irradiation optical system 1a.
  • the irradiation optical system 1 a includes a light source 11 that emits monochromatic light, and the light emitted from the light source 11 becomes substantially parallel light by the collimator lens 12 and is irradiated toward the medium A in the cell culture container 4.
  • the measurement optical system 1 c includes a half mirror 31, a condenser lens 33, and a light amount detector 34.
  • the half mirror 31 is disposed on the optical axis connecting the irradiation optical system 1a and the measurement optical system 1b, and can reflect half of the monochromatic light from the irradiation optical system 1a and transmit the remaining half.
  • the half mirror 31 is disposed on the optical axis before the monochromatic light from the irradiation optical system 1a reaches the cell culture vessel 4, reflects half of the monochromatic light toward the light quantity detector 34, and is monochromatic. The other half of the light is transmitted toward the cell culture container 4.
  • the monochromatic light reflected by the half mirror 31 is collected by the condenser lens 33 and the light intensity is measured by the light quantity detector 34.
  • the measuring optical system 1b collects the monochromatic light irradiated from the irradiation optical system 1a and transmitted through the half mirror 31, and the light quantity detector 14 for measuring the intensity of the light collected by the collecting lens 13. And is housed in a base 17 on which the cell culture container 4 is mounted.
  • the mounting surface 17a on which the cell culture vessel 4 of the base 17 is mounted is configured by a member that is optically transparent at least at a location where monochromatic light from the irradiation optical system 1a passes.
  • the irradiation optical system 1a and the measurement optical system 1b face each other in the vertical direction across the cell culture container 4, and the monochromatic light emitted from the irradiation optical system 1a and transmitted through the half mirror 31 passes through the cell culture container 4. Then, it is detected by the light quantity detector 14 of the measurement optical system 1b. On the other hand, the monochromatic light emitted from the irradiation optical system 1a and reflected by the half mirror 31 does not pass through the cell culture container 4 and is detected by the light amount detector 34 of the measurement optical system 1c.
  • the control means 3 includes a control unit 15 and a transmission unit 16.
  • the control unit 15 performs ON / OFF control of the light source 11 and calculation of the light intensity measured by the light quantity detector 14 and the light quantity detector 34.
  • the controller 15 can send a signal to the culture medium exchange unit 2 via the transmitter 16.
  • the control unit 15 can calculate the amount of light absorbed by the medium A using the light intensity measured by the measurement optical system 1b and the measurement optical system 1c. That is, the amount of monochromatic light absorbed by the medium A is calculated from the difference between the light intensity measured by the measurement optical system 1c and the light intensity measured by the measurement optical system 1b.
  • the control of the medium exchange unit 2 by the control unit 15 is the same as in the first embodiment.
  • the measurement optical system 1c includes the half mirror 31.
  • the beam splitter that divides light at a constant rate in the reflection direction and the transmission direction may be used instead of the half mirror 31.
  • the control unit 15 may calculate the amount of light absorbed by the culture medium A in consideration of the division ratio of the beam splitter. That is, the beam splitter may be a means for extracting a part of the incident light, and may be a means for spatially dividing the incident light, such as a mirror that reflects only half of the diameter of the incident light beam.
  • the cell culture device according to the third embodiment of the present invention is configured such that the irradiation optical system 1a and the measurement optical system 1b of the cell culture device of the first embodiment are relatively relative to the cell culture container 4.
  • the second embodiment is different from the first embodiment in that the driving means 41 to be moved is provided. The rest is the same as in the first embodiment.
  • the driving means 41 is controlled by the control unit 15 and is integrated with the irradiation optical system 1a (light source 11, collimating lens 12) and the measurement optical system 1b (condensing lens 13, light amount detector 14) in the horizontal direction (irradiation optical system). 1a and the measuring optical system 1b can be moved in a direction perpendicular to the optical axis).
  • the drive means 41 includes, for example, a linear motion mechanism including a ball screw, and rotates the ball screw by a motor or the like to convert the rotational motion into a linear motion.
  • the irradiation optical system 1a and the measurement optical system 1b are moved along the guide rail and the like. It may be moved.
  • the driving means 41 includes, for example, a pulley and a belt (wire, chain), applies a rotational force to the pulley by a motor or the like, converts the rotational motion into a linear motion via the belt (wire, chain), and irradiation optics.
  • the system 1a and the measurement optical system 1b may be moved along a guide rail or the like.
  • the control means 3 includes a control unit 15 and a transmission unit 16.
  • the control unit 15 moves the irradiation optical system 1a and the measurement optical system 1b by the driving unit 41, so that the light of monochromatic light measured without passing through the cell culture container 4 at a place off the optical axis from the cell culture container 4.
  • the intensity (first light intensity) and the light intensity (second light intensity) of monochromatic light measured through the cell culture container 4 at the place where the cell culture container 4 is disposed on the optical axis are acquired.
  • the control unit 15 can calculate the amount of light absorbed by the medium A using both light intensities. That is, the amount of monochromatic light absorbed by the medium A can be calculated from the difference between the first light intensity and the second light intensity.
  • the control of the medium exchange unit 2 by the control unit 15 is the same as in the first embodiment.
  • the mode in which the irradiation optical system 1a and the measurement optical system 1b are moved by the driving means 41 is shown, but a driving means for moving the cell culture container 4 may be provided.
  • the stage which mounts the cell culture container 4 may be provided, and the drive means may move the said stage.
  • the irradiation optical system 1a has a mode including the light source 11 that emits monochromatic light and the collimating lens 12.
  • a mode in which a band-pass filter 52 that transmits a specific wavelength is disposed after the lens 12 may be employed.
  • the band-pass filter 52 can be replaced, and a band-pass filter that transmits a desired wavelength can be inserted into and removed from the optical path of white light from the white light source 51.
  • the irradiation optical system 1a may be provided with a plurality of monochromatic light sources and switched on by turning on a desired monochromatic light source.
  • the irradiation optical system 1a includes three single-color light sources 53a, 53b, and 53c that emit light of different wavelengths as shown in FIG. 7B, and the light sources 53a and 53b are arranged by arranging the mirror 54 and the dichroic mirrors 55a and 55b. , 53c may be combined to illuminate monochromatic light having a desired wavelength by turning on a desired monochromatic light source.
  • control unit 15 performs an operation based on the light absorption amounts at a plurality of wavelengths (for example, calculates the ratio of light absorption amounts at a plurality of wavelengths), and determines the timing for transmitting a signal via the transmission unit 16. May be.
  • examples of light sources that emit monochromatic light include LEDs and LDs, and light sources that emit light having a relatively narrow predetermined wavelength width can be used.
  • a desired wavelength may be cut out and irradiated by passing light emitted from a white light source through a narrow band-pass filter. Any light source that emits light having a wavelength width capable of measuring absorbance may be used.
  • examples of the light amount detector include a photodiode (PD) and a photomultiplier tube (PMT).
  • PD photodiode
  • PMT photomultiplier tube
  • the collimating lens 12 of the irradiation optical system 1a may not be necessary depending on the light source used. Further, depending on the light amount detector used, the condenser lens 13 of the measurement optical system 1b may not be necessary.
  • the control unit 3 has shown a mode in which a signal is transmitted to the culture medium replacement unit 2.
  • You may function as the transmission / reception part 16a which can receive a signal.
  • the transmission / reception unit 16a may transmit / receive a signal to / from an external control unit 60 installed outside the incubator 5 to remotely control absorbance measurement and medium replacement.
  • the control unit 15 may not include a timer.
  • the external control means 60 may directly control the optical data acquisition unit 1 and the medium replacement unit 2 without providing the control means 3.
  • An example of the external control means 60 is a personal computer (PC).
  • the PC may have a CPU and a memory, and the CPU may execute a control program stored in the memory to realize a function as an external control unit. Absorbance measurement and medium exchange may be controlled remotely by the operator operating the PC.
  • the optical data acquisition unit 1 and the cell culture container 4 are disposed inside the incubator 5.
  • the culture medium exchange unit 2 may be arranged inside the incubator 5 or a part thereof may be arranged outside the incubator 5.
  • the control means 3 may be arranged inside the incubator 5 or may be arranged outside the incubator 5.
  • the mode in which monochromatic light is irradiated from the upper surface to the bottom surface of the cell culture container 4 by the irradiation optical system 1a has been shown.
  • a mode in which the container 4 is disposed upside down with the container 4 interposed therebetween and monochromatic light is irradiated from the bottom surface to the top surface of the cell culture container 4 may be employed.
  • the irradiation optical system 1a and the measurement optical system 1b are arranged in the horizontal direction with the cell culture container 4 interposed therebetween, and the medium A is irradiated with monochromatic light from the side surface of the cell culture container 4. good.
  • the light absorption by the culture medium A can be measured in the location where the cell in the cell culture container 4 does not exist, and the light absorption by a cell can be excluded.
  • 2B, 5B, and 6B are modified examples corresponding to the first embodiment, the second embodiment, and the third embodiment, respectively.
  • the irradiation optical system 1a and the measurement optical system 1b are arranged with the cell culture container 4 interposed therebetween.
  • the irradiation optical system 1a (light source) 71 and the collimating lens 72) and the measuring optical system 1b (the condensing lens 73, the light quantity detector 74 and the half mirror 79) are arranged on the same side with respect to the cell culture container 4, and the reflecting member 78 is arranged in the cell culture container (FIG. (Not shown) may be disposed on the side facing the irradiation optical system 1a and the measurement optical system 1b.
  • the light emitted from the light source 71 that emits monochromatic light becomes substantially parallel light by the collimating lens 72, and half of the monochromatic light that has passed through the half mirror 79 is applied to the medium A in the cell culture vessel.
  • the monochromatic light that has passed through the cell culture container is reflected by the reflecting member 78 disposed above the cell culture container, and passes through the cell culture container again.
  • Half of the monochromatic light transmitted through the cell culture container is reflected by the half mirror 79, condensed by the condenser lens 73, and the intensity is measured by the light quantity detector 74.
  • the irradiation optical system (light source 71, collimating lens 72) and measurement optical system (condensing lens 73, light quantity detector 74, half mirror 79) are housed in a base 77 on which the cell culture vessel is mounted.
  • the mounting surface 77a on which the cell culture container of the base 77 is mounted is formed of a member that is optically transparent at least at a portion through which monochromatic light passes.
  • Control means may also be housed inside base 77.
  • FIG. 10A shows a mode in which the reflecting member 78 is integrally attached to the base 77, it may be a separate body. You may use the cell culture container in which the reflection member 78 was affixed on the upper surface.
  • the reflection member 78 is, for example, a mirror.
  • the irradiation optical system (light source 71, collimating lens 72) and measurement optical system (condensing lens 73, light quantity detector 74, half mirror 79) are arranged on the side surface of the cell culture container (not shown).
  • positioned in may be sufficient.
  • the apparatus configuration can be made compact and it is easy to arrange in the incubator.
  • monochromatic light passes through the medium A in the cell culture container twice, the amount of light absorption by the medium A increases, and the detection sensitivity of changes in the amount of light absorption increases.
  • the half mirror 79 a beam splitter that divides light at a constant rate in the reflection direction and the transmission direction may be employed.
  • the control unit 75 may calculate the amount of light absorbed by the culture medium A in consideration of the division ratio of the beam splitter. That is, a means for extracting a part of the incident light may be employed instead of the half mirror 79, or a means for spatially dividing the incident light, such as a mirror that reflects only half of the beam diameter of the incident light. Also good.
  • FIGS. 10A and 10B show a modification of the embodiment of FIGS. 10A and 10B.
  • the present modification further includes a half mirror 80 disposed so as to be replaceable with the half mirror 79.
  • the half mirror 79 and the half mirror 80 are arranged at an inclination of an angle orthogonal to each other, and can be switched on the optical axis by a driving mechanism (not shown).
  • a driving mechanism not shown.
  • the amount of monochromatic light that has passed through the cell culture container is measured with the half mirror 79 placed on the optical path, and the cell passes through the cell culture container with the half mirror 80 placed on the optical path. It is possible to measure the amount of monochromatic light that is not.
  • the controller 75 can calculate the amount of light absorbed by the medium A.
  • the arrangement angle of the half mirror 79 may be rotated 90 degrees by a driving mechanism (not shown).
  • a beam splitter that divides light at a constant rate in the reflection direction and the transmission direction may be employed instead of the half mirror 79.
  • the control unit 75 may calculate the amount of light absorbed by the culture medium A in consideration of the division ratio of the beam splitter. That is, a means for extracting a part of the incident light may be employed instead of the half mirror 79, or a means for spatially dividing the incident light, such as a mirror that reflects only half of the beam diameter of the incident light. Also good.
  • FIG. 10A, FIG. 10B, FIG. 11A, and FIG. 11B show a mode in which the monochromatic light emitted from the light source 71 passes through the medium A in the cell culture container 4 twice via the reflecting member 78.
  • the medium A in the cell culture container 4 may be passed three times or more.
  • the monochromatic light emitted from the light source 71 is obliquely incident on the reflecting surface of the reflecting member 78A, so that the reflected monochromatic light is centered on the light source 71 (light) in the base 77. Reach the position deviated from the axis.
  • the optical axis of the light source 71 may be tilted, or the reflecting surface of the reflecting member 78A may be tilted.
  • Another reflecting member 78B is disposed at the position where the monochromatic light reaches, and the monochromatic light is reflected by the reflecting member 78B and passes through the medium A in the cell culture container 4 again.
  • a condensing lens 73 and a light quantity detector 74 are disposed on the optical path of the monochromatic light that has passed through the medium A again from the light source 71 side. The amount of monochromatic light after passing through the medium A three times is measured.
  • the monochromatic light is reflected downward by the reflecting member 78C (which can also be used as the reflecting member 78A) disposed above the cell culture container 4, and again in the cell culture container 4
  • the light amount of the monochromatic light is measured by the condenser lens 73 and the light amount detector 74 arranged on the optical path of the monochromatic light that has passed through the medium A downward. The amount of light after passing the medium A four times can be measured.
  • the reflecting members 78A, 78C; 78B are respectively arranged above and below the cell culture container 4, and the monochromatic light is reflected a plurality of times between the respective reflecting members, so that a plurality of mediums A in the cell culture container 4 are provided.
  • the light quantity after passing through the culture medium A in the cell culture container 4 a plurality of times is measured by measuring the light quantity with the condensing lens 73 and the light quantity detector 74 arranged on the optical path. Can do.
  • the condenser lens 73 and the light amount detector 74 are arranged above the cell culture container 4, and in the mode in which the monochromatic light is reflected an even number of times, the condenser lens 73 and the light amount detector 74 are arranged. Is placed below the cell culture container 4. According to such an embodiment, since the distance through which the monochromatic light passes through the medium A in the cell culture container 4 is increased, the amount of light absorbed by the medium A is further increased, and the detection sensitivity of the change in the amount of light absorbed is further improved. Can do.
  • the transmission by the transmission unit 16 may be wired or wireless. Further, transmission / reception of signals between the external control means 60 and the transmission unit 16 or the transmission / reception unit 16a may be wired or wireless.
  • Examples of the cell culture container 4 include a flask, a petri dish, a culture bag, and a reactor (culture tank).
  • the cell culture device (first cell culture device) 61 of any one of the above embodiments and modifications thereof, the optical data acquisition unit 1, and the medium exchange unit (first A cell culture system 200 provided with a cell culture device (second cell culture device) 62 having a (2 medium exchange unit) 2 and a cell culture vessel (second cell culture vessel) 4 can be provided.
  • the optical data acquisition unit 1 of the first cell culture device 61 measures the amount of light absorbed by the medium A over time, and when the amount of light absorbed by the medium A reaches a preset threshold value, the control means 3 sends a signal to the medium exchange unit 2 of the first cell culture device 61 and the second cell culture device 62.
  • Each medium exchange unit 2 that has received the signal starts to supply and discharge the medium using the signal as a trigger.
  • a plurality of second cell culture devices 62 may be provided.
  • the control means 3 of the first cell culture device 61 can transmit a signal to each medium exchange unit 2 of the first cell culture device 61 and each second cell culture device 62, and each medium that has received the signal.
  • the exchange unit 2 starts supplying and discharging the culture medium using the signal as a trigger.
  • phenol red has absorption peaks near 430 nm and 560 nm, it is preferable to use monochromatic light having a wavelength in the vicinity thereof.
  • An optical data acquisition unit that acquires optical data of a culture medium in a cell culture vessel, and an absorption measurement device comprising a control means,
  • the optical data acquisition unit is divided by an irradiation optical system for irradiating the medium in the cell culture container with monochromatic light, a beam splitter for dividing the monochromatic light emitted from the irradiation optical system into two, and the beam splitter.
  • the first measurement optical system for measuring the light intensity of one monochromatic light before passing through the medium in the cell culture vessel, and the cell culture of the monochromatic light divided by the beam splitter.
  • a second measuring optical system for measuring the light intensity of the other monochromatic light after passing through the medium in the container can provide an absorbance measurement apparatus that measures the amount of light absorbed by the culture medium based on the light intensity measured in the first measurement optical system and the second measurement optical system.
  • An optical data acquisition unit for acquiring optical data of the medium in the cell culture vessel; Driving means for relatively moving the optical data acquisition unit and the cell culture vessel; Control means,
  • the optical data acquisition unit includes an irradiation optical system for irradiating the medium in the cell culture container with monochromatic light, and a measurement optical system for measuring the light intensity of the monochromatic light emitted from the irradiation optical system,
  • the control means moves the optical data acquisition unit and the cell culture container relative to each other by the driving means, and the cell culture container is not disposed on the optical path from the irradiation optical system to the measurement optical system.
  • a measuring device can be provided.
  • a cell culture container that holds cells and a medium in an internal space, the supply port for supplying the medium to the internal space, and an opening in the bottom of the container for discharging the medium from the internal space
  • a cell culture container provided with a discharge port and a discharge mechanism that forms an open channel protruding from the discharge port to a predetermined height toward the upper part of the internal space.
  • the cell culture container when the height of the medium accumulated in the internal space is increased by the medium supplied from the supply port, and the height reaches the opening of the discharge mechanism, the medium that exceeds the height Is discharged from the internal space through the opening.
  • the positions of the supply port and the opening of the discharge mechanism are preferably separated from each other because the exchange efficiency of the medium is increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

内部を細胞の生育に適した環境に維持できるインキュベータ(5)と、該インキュベータ(5)の内部に収納される細胞培養容器(4)と、該細胞培養容器(4)内の培地の光学データを取得する光学データ取得ユニット(1)と、細胞培養容器(4)内の培地を交換する培地交換ユニット(2)と、制御手段(3)と、を備え、光学データ取得ユニット(1)によって取得される光学データの経時的変化に基づき培地交換のタイミングを決定する細胞培養装置(100)を提供する。

Description

細胞培養装置および細胞培養システム
 本発明は、細胞培養容器内の培地を自動交換可能な細胞培養装置および細胞培養システムに関するものである。
 近年、幹細胞研究や再生医療の進展に伴い、細胞を大量に調製することが要求されている。細胞は培養中に酸素や栄養分等の生育に必要な成分を取り込み、二酸化炭素や老廃物を排出する。したがって、細胞を長期間にわたって培養すると培地は劣化してしまうので培地を定期的に交換する必要があり、作業者は培地の劣化度合いを常時チェックしていなければならない。しかし、作業者が培地の劣化度合いをチェックするには、サンプルをインキュベータに対して出し入れする必要があり、その際に細胞には、温度等の環境変化や運搬時に生じる衝撃などのストレスが加わり、細胞の成育に影響を及ぼす可能性がある。
 自動で培地を交換するシステムとして、搬送ロボットにより培養容器をインキュベータと培地交換ロボットの間で移動させるシステムが知られている(例えば、特許文献1参照。)。
特開2002-262856号公報
 特許文献1のような自動培地交換システムでは、搬送ロボット等を採用するためシステムが非常に複雑となり、システムエラーを起こす可能性が高くなる。また、細胞培養容器をインキュベータに対して出し入れするため、細胞培養容器内の細胞には温度等の環境変化や運搬時に生じる衝撃などのストレスが加わることになる。それを避けるためにシステムをインキュベータ内に設置すると、インキュベータ内の多湿の環境が要因で機械的、電気的な構造物がトラブルを起こす可能性があるので、インキュベータ内のシステム構成物は可能な限り簡単な構成が好ましい。
 本発明は、上述した事情に鑑みてなされたものであって、培地の劣化度合いに応じてタイムリーに細胞培養容器内の培地を簡易に交換することができるとともに、簡単な構成とすることでシステムトラブルの発生を軽減できる細胞培養装置および細胞培養システムを提供することを目的としている。
 上記目的を達成するために、本発明は以下の手段を提供する。
 本発明の一態様は、内部を細胞の生育に適した環境に維持できるインキュベータと、該インキュベータの内部に収納され、細胞および培地を保持する細胞培養容器と、該細胞培養容器内の培地の光学データを取得する光学データ取得ユニットと、前記細胞培養容器内の培地を交換する培地交換ユニットと、制御手段と、を備え、前記光学データ取得ユニットは、前記細胞培養容器内の培地に単色光を照射する照射光学系と、前記細胞培養容器内の培地を通過した後の前記単色光の光強度を測定する測定光学系とを備え、前記培地交換ユニットは、前記細胞培養容器に培地を供給する培地供給手段と、前記細胞培養容器から培地を排出する培地排出手段とを備え、前記制御手段は、前記測定光学系により測定される光強度の経時的変化を検出し、該経時的変化に基づき前記培地供給手段および/または前記培地排出手段を制御する細胞培養装置である。
 本態様によれば、簡単な構成によって、培地の劣化に応じてタイムリーに細胞培養容器内の培地を交換することができる。
 本発明の別の一態様は、内部を細胞の生育に適した環境に維持できるインキュベータと、該インキュベータの内部に収納され、細胞および培地を保持する細胞培養容器と、該細胞培養容器内の培地の光学データを取得する光学データ取得ユニットと、前記細胞培養容器内の培地を交換する培地交換ユニットと、制御手段と、を備え、前記光学データ取得ユニットは、前記細胞培養容器内の培地に単色光を照射する照射光学系と、該照射光学系から照射された単色光を2つに分割するビームスプリッタと、該ビームスプリッタにより分割された単色光の内、前記細胞培養容器内の培地を通過する前の一方の単色光の光強度を測定する第1測定光学系と、前記ビームスプリッタにより分割された単色光の内、前記細胞培養容器内の培地を通過した後の他方の単色光の光強度を測定する第2測定光学系とを備え、前記培地交換ユニットは、前記細胞培養容器に培地を供給する培地供給手段と、前記細胞培養容器から培地を排出する培地排出手段とを備え、前記制御手段は、前記第1測定光学系および第2測定光学系において測定された光強度によって培地による吸光量を算出し、算出された吸光量の経時的変化を検出し、該経時的変化に基づき前記培地供給手段および/または前記培地排出手段を制御する細胞培養装置である。
 本態様によれば、簡単な構成によって、培地の劣化に応じてタイムリーに細胞培養容器内の培地を交換することができる。
 本発明の別の一態様は、内部を細胞の生育に適した環境に維持できるインキュベータと、該インキュベータの内部に収納され、細胞および培地を保持する細胞培養容器と、該細胞培養容器内の培地の光学データを取得する光学データ取得ユニットと、該光学データ取得ユニットおよび前記細胞培養容器を相対的に移動させる駆動手段と、前記細胞培養容器内の培地を交換する培地交換ユニットと、制御手段と、を備え、前記光学データ取得ユニットは、前記細胞培養容器内の培地に単色光を照射する照射光学系と、前記照射光学系から照射された前記単色光の光強度を測定する測定光学系とを備え、前記培地交換ユニットは、前記細胞培養容器に培地を供給する培地供給手段と、前記細胞培養容器から培地を排出する培地排出手段とを備え、前記制御手段は、前記駆動手段により前記光学データ取得ユニットおよび前記細胞培養容器を相対的に移動させ、前記照射光学系から前記測定光学系までの光路上に前記細胞培養容器が配置されていないときに測定した第1光強度と、前記照射光学系から前記測定光学系までの光路上に前記細胞培養容器が配置されているときに測定した第2光強度とよって培地による吸光量を算出し、算出された吸光量の経時的変化を検出し、該経時的変化に基づき前記培地供給手段および/または前記培地排出手段を制御する細胞培養装置である。
 本態様によれば、簡単な構成によって、培地の劣化に応じてタイムリーに細胞培養容器内の培地を交換することができる。
 上記態様においては、少なくとも、前記細胞培養容器、前記光学データ取得ユニット、および、前記制御手段が前記インキュベータの内部に配置され、前記制御手段は前記インキュベータの外部と信号を送受信する送受信部を備え、該送受信部により前記インキュベータの外部に設置された外部制御手段と信号を送受信することで遠隔的に前記光学データ取得ユニットおよび前記培地交換ユニットを制御しても良い。
 このことにより、本細胞培養装置をインキュベータの外部から制御することができるので、作業者が任意のタイミングで培地交換を実行することができる。また、インキュベータに対して細胞培養容器を出し入れする必要がないので、細胞に与える影響を軽減することができる。
 上記態様においては、前記照射光学系および前記測定光学系が、前記細胞培養容器を挟んで上下方向に配置されていても良い。
 上記態様においては、前記照射光学系および前記測定光学系が、前記細胞培養容器を挟んで水平方向に配置されていても良い。
 このことにより、光路上に細胞が存在しない状態で光学データを取得することができ、細胞による吸光の影響を排除することができる。
 上記態様においては、照射光学系および前記測定光学系が、前記細胞培養容器に対して同じ側に配置され、前記細胞培養容器を挟んで前記照射光学系および前記測定光学系とは反対側に反射部材を備え、前記測定光学系が、前記照射光学系から前記細胞培養容器に照射され、該細胞培養容器を通過した後に前記反射部材により反射され、再度、前記細胞培養容器を通過した後の単色光の光強度を測定しても良い。
 このことにより、装置構成をコンパクトにすることができ、インキュベータ内に配置し易くなる。また、単色光が細胞培養容器内の培地を2回通過することになるので、培地による吸光量が多くなり、吸光量の変化の検出感度が上がることになる。
 上記態様においては、前記照射光学系は、白色光源と、該白色光源から射出される白色光の光路上に挿脱可能に設けられ所望の波長の光のみを透過するバンドパスフィルタとを備えていても良い。
 このことにより、バンドパスフィルタを交換するだけで所望の波長の光を照射することが可能となり、装置の汎用性が向上するとともに、作業者による操作性が向上する。
 上記態様においては、前記照射光学系は、複数の単色光源と、該複数の単色光源からの光の光路を合流するミラーおよびダイクロイックミラーとを備えていても良い。
 このことにより、異なる複数の波長で吸光量を測定することができ、培地の劣化をより正確に検出することができる。
 上記態様においては、前記培地供給手段は、培地を保持する培地保持手段と、該培地保持手段と前記細胞培養容器とを接続する管状部材と、該管状部材に配置された送液ポンプとを備え、該送液ポンプが前記制御手段からの信号により制御されても良い。
 上記態様においては、前記培地排出手段は、前記細胞培養容器から排出された培地を保持する廃液保持容器と、該廃液保持容器と前記細胞培養容器とを接続する管状部材と、該管状部材に配置された送液ポンプとを備え、該送液ポンプが前記制御手段からの信号により制御されても良い。
 上記態様においては、前記培地排出手段は、前記細胞培養容器から排出された培地を保持する廃液保持容器と、該廃液保持容器と前記細胞培養容器とを接続する管状部材と、前記廃液保持容器に陰圧を付加する陰圧供給手段とを備え、該陰圧供給手段が前記制御手段からの信号により制御されても良い。
 このことにより、簡便な構成によって培地交換をすることができる。
 本発明の別の一態様は、上記態様のいずれかの細胞培養装置から選択される第1細胞培養装置と、該第1細胞培養装置の前記インキュベータの内部に収納され、細胞および培地を保持する第2細胞培養容器および該第2細胞培養容器内の培地を交換する第2培地交換ユニットを備える第2細胞培養装置と、を備え、前記第1細胞培養装置の前記制御手段は、前記経時的変化に基づき、前記第1細胞培養装置の前記培地交換ユニット、および、前記第2細胞培養装置の第2培地交換ユニットを制御する細胞培養システムである。
 本態様によれば、複数の細胞培養容器により細胞培養を行う場合でも、単一の光学データ取得ユニットのみ備えていれば良いので、システムをよりコンパクトにすることができるとともに、コストの面でも優位となる。
 本発明によれば、インキュベータ内に配置された細胞培養容器内の培地の劣化を検出し、培地の劣化に応じてタイムリーに培地交換をすることができる。また、装置構成が簡単なので、システムエラーのリスクを軽減することができ、エラーにより培養条件に影響を及ぼしてしまう可能性を回避することができる。また、作業者による作業の手間を軽減できるとともに、作業に伴う細胞培養系の汚染の可能性を低減することができる。さらに、インキュベータから細胞培養容器を取り出さずに培地交換ができるため、温度等の環境変化にともなう細胞へのストレスを軽減できるとともに、細胞培養容器を運搬するときに細胞に加わる衝撃を回避することができる。
本発明の第1実施形態に係る細胞培養装置の概略構成を示す説明図である。 本発明の第1実施形態に係る細胞培養装置の光学データ取得ユニットおよび制御手段の概略構成を示す説明図である。 本発明の第1実施形態の変形例に係る細胞培養装置の光学データ取得ユニットおよび制御手段の概略構成を示す説明図である。 本発明の培地供給手段の例の概略構成を示す説明図である。 本発明の培地排出手段の例の概略構成を示す説明図である。 本発明の第2実施形態に係る細胞培養装置の光学データ取得ユニットおよび制御手段の概略構成を示す説明図である。 本発明の第2実施形態の変形例に係る細胞培養装置の光学データ取得ユニットおよび制御手段の概略構成を示す説明図である。 本発明の第3実施形態に係る細胞培養装置の光学データ取得ユニットおよび制御手段の概略構成を示す説明図である。 本発明の第3実施形態の変形例に係る細胞培養装置の光学データ取得ユニットおよび制御手段の概略構成を示す説明図である。 本発明の照射光学系の変形例の概略構成を示す説明図である。 本発明の照射光学系の変形例の概略構成を示す説明図である。 本発明の細胞培養システムの変形例の概略構成を示す説明図である。 本発明の細胞培養システムの変形例の概略構成を示す説明図である。 本発明の一実施形態に係る細胞培養システムの変形例の概略構成を示す説明図である。 本発明の細胞培養装置の変形例の概略構成を示す説明図である。 本発明の細胞培養装置の変形例の概略構成を示す説明図である。 本発明の細胞培養装置の変形例の概略構成を示す説明図である。 本発明の細胞培養装置の変形例の概略構成を示す説明図である。 本発明の細胞培養装置の変形例の概略構成を示す説明図である。 本発明の細胞培養装置の変形例の概略構成を示す説明図である。
 本発明の実施形態に係る細胞培養装置について、図面を参照して以下に説明する。
(第1実施形態)
 本発明の第1実施形態に係る細胞培養装置100は、図1に示される構成の装置である。細胞培養装置100は、インキュベータ5内に設置された細胞培養容器4内の培地Aを交換する装置であり、光学データ取得ユニット1、培地交換ユニット2、制御手段3、細胞培養容器4、およびインキュベータ5を備えている。
 光学データ取得ユニット1は、図2Aに示すように、細胞培養容器4内の培地Aに単色光を照射する照射光学系1aと、照射光学系1aから照射された単色光の光強度を測定する測定光学系1bを備えている。
 照射光学系1aは単色光を発する光源11を備えており、光源11から照射された光はコリメートレンズ12により略平行光となり細胞培養容器4内の培地Aに照射される。
 測定光学系1bは、照射光学系1aから照射された単色光を集光する集光レンズ13と、集光レンズ13により集められた光の強度を測定する光量検出計14を備えている。
 照射光学系1aと測定光学系1bは細胞培養容器4をはさんで上下方向に対向しており、照射光学系1aから発せられた単色光は細胞培養容器4を通過して測定光学系1bで検出される。測定光学系1bは、細胞培養容器4を搭載するベース17の内部に収納されている。ベース17の細胞培養容器4を搭載する搭載面17aは、少なくとも照射光学系1aからの単色光が通過する箇所が光学的に透明な部材で構成されている。
 制御手段3は、制御部15と送信部16とを備えている。制御部15は、光源11のON/OFF制御や、光量検出計14で測定された光強度の演算を行う。制御部15は、送信部16を介して培地交換ユニット2に信号を発信することができる。
 培地交換ユニット2は、細胞培養容器4に培地Aを供給するための培地供給手段2aと、細胞培養容器4から培地Aを排出するための培地排出手段2bを備えている。
 培地供給手段2aは、培地Aを保持する培地保持手段と、培地保持手段と細胞培養容器4をつなぐ管状部材(チューブなど)を備えており、管状部材を介して培地保持手段の培地を細胞培養容器4に供給する。培地保持手段は、培地Aを収容するための保持容器を備えている。
 管状部材には送液ポンプ(ペリスタルティックポンプなど)が設置されており、送信部16からの信号を送液ポンプが受信することでそのON/OFFが切り替り、細胞培養容器4への培地供給が制御されても良い。
 また、培地保持手段を細胞培養容器4よりも重力方向において上方に設置し、重力により管状部材を介して培地保持手段の培地Aを細胞培養容器4に供給しても良い。この時、管状部材により形成される流路を開閉するためのゲートを管状部材に設置し、当該ゲートが送信部16からの信号を受信することで流路の開閉が切り替り、細胞培養容器4への培地供給が制御されても良い。ゲートの例としては、バルブを挙げることができる。
 図3に培地供給手段2aの一例を示す。内部に培地Aを収容可能な保持容器21は、培地Aを排出するための排出口21aを有している。管状部材22は、保持容器21の排出口21aと細胞培養容器4の供給口4aとを連結している。管状部材22には送液ポンプ23が設置されており、送液ポンプ23を作動させることにより、保持容器21内の培地Aを管状部材22を介して細胞培養容器4に供給することができる。ここで、送液ポンプ23は受信部を有しており、送信部16からの信号を受信することでそのON/OFFが制御される。
 培地排出手段2bは、細胞培養容器4から排出された培地Aを保持する廃液保持容器と、廃液保持容器と細胞培養容器4をつなぐ管状部材(チューブなど)を備えており、管状部材を介して細胞培養容器4内の培地Aを廃液保持容器に排出する。
 細胞培養容器4は、底面から所定の高さにおいて側面に開口部4bを有し、当該開口部4bに管状部材が結合されており、細胞培養容器4内の培地Aが開口部4bに達すると開口部4bから管状部材を介して廃液保持容器に排出されても良い。または、管状部材が、細胞培養容器4の底面から内部に向かって所定の高さまで突出し、該所定の高さに開口部を有し、細胞培養容器4内の培地Aが突出した管状部材の開口部に達すると開口部から管状部材を介して廃液保持容器に排出されても良い。
 管状部材に送液ポンプ(ペリスタルティックポンプなど)を設置し、送信部16からの信号を送液ポンプが受信することでそのON/OFFが切り替り、細胞培養容器4からの培地排出が制御されても良い。
 図4に示すように、培地排出手段2bは、廃液保持容器24に陰圧を負荷する陰圧供給手段25を備え、送信部16からの信号を陰圧供給手段25の受信部が受信することでそのON/OFFが制御されても良い。こうすることで、管状部材26を介して細胞培養容器4に陰圧が伝わり、陰圧により細胞培養容器4から廃液保持容器24へ培地Aを吸引することができ、細胞培養容器4からの培地排出を制御することができる。陰圧供給手段25は、例えば廃液保持容器24の気体を吸引するポンプであれば良い。
 制御部15は、例えば、図示しないタイマーを備えており、定期的に光源11および光量検出計14を作動させ、培地Aによる吸光量(吸光度)を経時的に算出することができるようになっている。培地Aによる吸光量があらかじめ設定した閾値に達したとき、制御部15は送信部16を介して信号を発信する。信号は培地供給手段2aおよび/または培地排出手段2bに対して発信され、信号を受信した培地供給手段2aおよび/または培地排出手段2bはその信号をトリガーにして培地供給・排出を開始する。一定時間経過後に培地供給手段2aおよび/または培地排出手段2bが停止しても良いし、一定時間経過後に制御部15が送信部16を介して信号を発信して培地供給手段2aおよび/または培地排出手段2bを停止させても良い。
 制御部15は、光源11から射出される単色光の光強度をあらかじめ記憶し、記憶されている光強度と光量検出計14で測定された光強度とに基づいて培地Aによる吸光量を演算しても良い。
 制御部15は、培地Aによる吸光量を算出することに代えて、培地Aを透過した単色光の光強度に基づいて送信部16から信号を発信するタイミングを決定しても良い。
(第2実施形態)
 本発明の第2実施形態に係る細胞培養装置は、図5Aに示される光学データ取得ユニットを備えた装置であり、第1実施形態の細胞培養装置の照射光学系1aと測定光学系1bを結ぶ光軸上に測定光学系1cを備えた点で第1実施形態と異なっている。それ以外は、第1実施形態と同様である。
 本実施形態の光学データ取得ユニット1は、前記細胞培養容器4内の培地Aに単色光を照射する照射光学系1aと、照射光学系1aから照射された単色光の内の一部の光強度を測定する測定光学系(第1測定光学系)1cと、照射光学系1aから照射された単色光の内の他の一部の光強度を測定する測定光学系(第2測定光学系)1bとを備えている。
 照射光学系1aは単色光を発する光源11を備えており、光源11から照射された光はコリメートレンズ12により略平行光となり細胞培養容器4内の培地Aに向け照射される。
 測定光学系1cは、ハーフミラー31、集光レンズ33、および光量検出計34を備えている。ハーフミラー31は、照射光学系1aと測定光学系1bとを結ぶ光軸上に配置され、照射光学系1aからの単色光の半分を反射し、残り半分を透過することができる。ここで、ハーフミラー31は、照射光学系1aからの単色光が細胞培養容器4に達する前の光軸上に配置されており、単色光の半分を光量検出計34に向けて反射し、単色光の残りの半分を細胞培養容器4に向けて透過する。ハーフミラー31で反射された単色光は集光レンズ33により集められ、光量検出計34により光の強度が測定される。
 測定光学系1bは、照射光学系1aから照射され、ハーフミラー31を透過した単色光を集光する集光レンズ13と、集光レンズ13により集められた光の強度を測定する光量検出計14とを備えており、細胞培養容器4を搭載するベース17の内部に収納されている。ベース17の細胞培養容器4を搭載する搭載面17aは、少なくとも照射光学系1aからの単色光が通過する箇所が光学的に透明な部材で構成されている。
 照射光学系1aと測定光学系1bは細胞培養容器4をはさんで上下方向に対向しており、照射光学系1aから発せられハーフミラー31を透過した単色光は、細胞培養容器4を通過して測定光学系1bの光量検出計14で検出される。一方、照射光学系1aから発せられハーフミラー31で反射した単色光は、細胞培養容器4を通過せず測定光学系1cの光量検出計34により検出される。
 制御手段3は、制御部15と送信部16とを備えている。制御部15は、光源11のON/OFF制御や、光量検出計14および光量検出計34で測定された光強度の演算を行う。制御部15は、送信部16を介して培地交換ユニット2に信号を発信することができる。
 制御部15は、測定光学系1bおよび測定光学系1cにより測定された光強度を用いて、培地Aによる吸光量を算出することができる。つまり、測定光学系1cにより測定された光強度と測定光学系1bにより測定された光強度の差により、培地Aによる単色光の吸光量を算出する。
 制御部15による培地交換ユニット2の制御は第1実施形態と同様である。
 本実施形態においては、測定光学系1cがハーフミラー31を備えた態様を示したが、反射方向と透過方向に一定の割合で光を分割するビームスプリッタであれば、ハーフミラー31でなくても良い。この場合、当該ビームスプリッタの分割割合を加味して制御部15が演算を行い、培地Aによる吸光量を算出すれば良い。つまり、ビームスプリッタは、入射光の一部を取り出す手段であれば良く、入射光の光束径の半分だけを反射するミラーなど、入射光を空間的に分割する手段であっても良い。
(第3実施形態)
 本発明の第3実施形態に係る細胞培養装置は、図6Aに示すように、第1実施形態の細胞培養装置の照射光学系1aおよび測定光学系1bを細胞培養容器4に対して相対的に移動させる駆動手段41を備えている点で第1実施形態と異なっている。それ以外は、第1実施形態と同様である。
 駆動手段41は、制御部15により制御され、照射光学系1a(光源11、コリメートレンズ12)および測定光学系1b(集光レンズ13、光量検出計14)を一体として、水平方向(照射光学系1aと測定光学系1bとを結ぶ光軸に直交する方向)に移動することができる。
 駆動手段41は、例えば、ボールネジを含む直動機構を備え、モータ等によりボールネジを回転させることで回転運動を直線運動に変換し、照射光学系1aおよび測定光学系1bをガイドレール等に沿って移動させても良い。
 また、駆動手段41は、例えば、プーリとベルト(ワイヤ、チェーン)を備え、モータ等によりプーリに回転力を加え、ベルト(ワイヤ、チェーン)を介して回転運動を直線運動に変換し、照射光学系1aおよび測定光学系1bをガイドレール等に沿って移動させても良い。
 制御手段3は、制御部15と送信部16を備えている。制御部15は、駆動手段41により照射光学系1aおよび測定光学系1bを移動させることで、細胞培養容器4から光軸が外れた場所で細胞培養容器4を介さずに測定した単色光の光強度(第1光強度)と、細胞培養容器4が光軸上に配置された場所で細胞培養容器4を介して測定した単色光の光強度(第2光強度)とを取得する。制御部15は、両光強度を用いて培地Aによる吸光量を算出することができる。つまり、第1光強度と第2光強度との差により、培地Aによる単色光の吸光量を算出することができる。
 制御部15による培地交換ユニット2の制御は第1実施形態と同様である。
 本実施形態においては、駆動手段41により照射光学系1aおよび測定光学系1bを移動させる態様を示したが、細胞培養容器4を移動させる駆動手段を備えていても良い。その場合、細胞培養容器4を搭載するステージを備え、当該ステージを駆動手段が移動させても良い。
 上記各実施形態およびその変形例においては、照射光学系1aが単色光を発する光源11およびコリメートレンズ12を備えている態様を示したが、例えば、図7Aに示すように、白色光源51とコリメートレンズ12の後に特定の波長を透過するバンドパスフィルタ52を配置した態様でも良い。この場合、バンドパスフィルタ52は交換可能になっており、所望の波長を透過するバンドパスフィルタを白色光源51からの白色光の光路に挿脱可能になっていても良い。
 また、照射光学系1aは、複数の単色光源を備え、所望の単色光源を切替えて点灯させる態様でも良い。例えば、照射光学系1aは、図7Bに示すように異なる波長の光を発する3の単色光源53a、53b、53cを備え、ミラー54およびダイクロイックミラー55a、55bを配置することで各光源53a、53b、53cからの光の光路を合成し、所望の単色光源を点灯させることで所望の波長の単色光を照射させても良い。この場合、制御部15は、複数の波長における吸光量に基づき演算を行い(例えば、複数の波長における吸光量の比を算出するなど)、送信部16を介して信号を発信するタイミングを決定しても良い。
 上記各実施形態およびその変形例においては、単色光を発する光源として、LED、LDなどを例示することができ、比較的狭い所定の波長幅を有する光を発する光源を使用することができる。また、白色光源から照射される光を狭帯域バンドパスフィルタに通すことで所望の波長を切り出して照射しても良い。吸光度を測定できる波長幅を有した光を発する光源であれば良い。
 上記各実施形態およびその変形例においては、光量検出計としては、フォトダイオード(PD)、光電子増倍管(PMT)などを例示することができる。
 上記各実施形態およびその変形例において、使用する光源によっては、照射光学系1aのコリメートレンズ12が必要でない場合がある。また、使用する光量検出計によっては、測定光学系1bの集光レンズ13が必要でない場合がある。
 上記各実施形態およびその変形例においては、制御手段3が培地交換ユニット2に信号を発信する態様を示したが、例えば図8Aに示すように、制御手段3の送信部16が、外部からの信号を受信可能な送受信部16aとして機能しても良い。当該送受信部16aがインキュベータ5の外部に設置された外部制御手段60と信号を送受信し、遠隔的に吸光度測定および培地交換を制御しても良い。この場合、制御部15はタイマーを備えていなくても良い。
 また、例えば図8Bに示すように、制御手段3を備えずに、外部制御手段60が光学データ取得ユニット1および培地交換ユニット2を直接制御しても良い。
 外部制御手段60の例としてはパーソナルコンピュータ(PC)を挙げることができる。例えば、PCは、CPUとメモリを有し、メモリに記憶された制御プログラムをCPUが実行することで外部制御手段としての機能を実現しても良い。作業者がPCを操作することで遠隔的に吸光度測定および培地交換を制御しても良い。
 上記各実施形態およびその変形例においては、光学データ取得ユニット1および細胞培養容器4はインキュベータ5の内部に配置されている。培地交換ユニット2は、インキュベータ5の内部に配置されていても良いし、その一部がインキュベータ5の外部に配置されていても良い。制御手段3は、インキュベータ5の内部に配置されていても良いし、インキュベータ5の外部に配置されていても良い。
 上記各実施形態およびその変形例においては、照射光学系1aにより細胞培養容器4の上面から底面に向けて単色光を照射する態様を示したが、照射光学系1aと測定光学系1bを細胞培養容器4を挟んで上下逆に配置し、細胞培養容器4の底面から上面に向けて単色光を照射する態様でも良い。
 また、例えば図2Bに示すように、照射光学系1aと測定光学系1bを細胞培養容器4を挟んで水平方向に配置し、細胞培養容器4の側面から培地Aに単色光を照射しても良い。こうすることで、細胞培養容器4内の細胞が存在しない箇所で培地Aによる吸光を測定することができ、細胞による吸光を排除することができる。図2B、図5B、図6Bはそれぞれ第1実施形態、第2実施形態、第3実施形態に対応する変形例である。
 上記各実施形態およびその変形例においては、照射光学系1aと測定光学系1bを細胞培養容器4を挟んで配置する態様を示したが、例えば図10Aに示すように、照射光学系1a(光源71およびコリメートレンズ72)と測定光学系1b(集光レンズ73、光量検出計74およびハーフミラー79)とを細胞培養容器4に対して同じ側に配置し、反射部材78を細胞培養容器(図示せず)を挟んで照射光学系1aおよび測定光学系1bと対向する側に配置しても良い。
 この場合、単色光を発する光源71から照射された光は、コリメートレンズ72により略平行光となり、ハーフミラー79を通過した半量の単色光が細胞培養容器内の培地Aに照射される。細胞培養容器を透過した単色光は細胞培養容器の上方に配置された反射部材78により反射され、再度細胞培養容器を透過する。細胞培養容器を透過した単色光は、ハーフミラー79により半量が反射され、集光レンズ73により集光されて光量検出計74により強度が測定される。
 照射光学系(光源71、コリメートレンズ72)および測定光学系(集光レンズ73、光量検出計74、ハーフミラー79)は、細胞培養容器を搭載するベース77の内部に収納されている。ベース77の細胞培養容器を搭載する搭載面77aは、少なくとも単色光が通過する箇所が光学的に透明な部材で構成されている。制御手段(制御部75、送信部76)もベース77の内部に収納されていても良い。
 図10Aでは反射部材78が、ベース77に一体として取り付けられている態様を示しているが、別体としても良い。反射部材78が上面に貼り付けられた細胞培養容器を用いても良い。反射部材78は、例えばミラーである。
 また、図10Bに示すように、照射光学系(光源71、コリメートレンズ72)および測定光学系(集光レンズ73、光量検出計74、ハーフミラー79)を細胞培養容器(図示せず)の側面に配置する態様でも良い。
 このような態様によれば、装置構成をコンパクトにすることができ、インキュベータ内に配置し易くなる。また、単色光が細胞培養容器内の培地Aを2回通過することになるので、培地Aによる吸光量が多くなり、吸光量の変化の検出感度が上がることになる。
 ハーフミラー79に代えて、反射方向と透過方向に一定の割合で光を分割するビームスプリッタを採用しても良い。この場合、当該ビームスプリッタの分割割合を加味して制御部75が演算を行い、培地Aによる吸光量を算出すれば良い。つまり、ハーフミラー79に代えて入射光の一部を取り出す手段を採用しても良く、入射光の光束径の半分だけを反射するミラーなど、入射光を空間的に分割する手段を採用しても良い。
 図11Aおよび図11Bに図10Aおよび図10Bの態様の変形例を示す。本変形例は、ハーフミラー79と交換可能に配置されたハーフミラー80をさらに備えている。ハーフミラー79とハーフミラー80は互いに直交する角度の傾きで配置されており、図示しない駆動機構により光軸上に入れかえることができる。
 この態様によれば、光路上にハーフミラー79を配置した状態で、細胞培養容器を通過した単色光の光量を測定し、光路上にハーフミラー80を配置した状態で、細胞培養容器を通過していない単色光の光量を測定することができる。得られた2つの光量データとハーフミラー79,80の単色光の分割割合に基づき、制御部75が培地Aによる吸光量を算出することができる。
 ハーフミラー79とハーフミラー80を交換する代わりに、ハーフミラー79の配置角度を図示しない駆動機構により90度回転させても良い。
 本変形例においてもハーフミラー79に代えて、反射方向と透過方向に一定の割合で光を分割するビームスプリッタを採用しても良い。この場合、当該ビームスプリッタの分割割合を加味して制御部75が演算を行い、培地Aによる吸光量を算出すれば良い。つまり、ハーフミラー79に代えて入射光の一部を取り出す手段を採用しても良く、入射光の光束径の半分だけを反射するミラーなど、入射光を空間的に分割する手段を採用しても良い。
 図10A、図10B、図11Aおよび図11Bには、光源71から照射された単色光が、反射部材78を介して細胞培養容器4内の培地Aを2回通過する態様が示されているが、細胞培養容器4内の培地Aを3回以上通過する態様でもよい。
 例えば、図12Aに示すように、光源71から照射された単色光を反射部材78Aの反射面に対して斜めに入射させることで、反射された単色光をベース77内の光源71の中心(光軸)からずれた位置に到達させる。単色光を反射面に入射させるためには、光源71の光軸を傾けてもよく、反射部材78Aの反射面を傾けてもよい。単色光の到達位置にはもう1つの反射部材78Bが配置されており、該反射部材78Bによって単色光が反射されて再び細胞培養容器4内の培地Aを透過する。培地Aを光源71側から再度透過した単色光の光路上には集光レンズ73および光量検出計74が配置されており、該集光レンズ73および光量検出計74によって、細胞培養容器4内の培地Aを3回通過した後の単色光の光量が測定される。
 さらに、図12Bに示すように、細胞培養容器4の上方に配置された反射部材78C(反射部材78Aを兼用することも可能)により、単色光を下方に反射させて再び細胞培養容器4内の培地Aを透過させた後、培地Aを下方へ透過した単色光の光路上に配置された集光レンズ73および光量検出計74によって単色光の光量を測定することによって、細胞培養容器4内の培地Aを4回通過させた後の光量を測定することができる。
 このように、細胞培養容器4の上方および下方に反射部材78A,78C;78Bをそれぞれ配置し、それぞれの反射部材の間で単色光を複数回反射させて細胞培養容器4内の培地Aを複数回透過させた後、光路上に配置された集光レンズ73および光量検出計74で光量を測定することによって、細胞培養容器4内の培地Aを複数回通過させた後の光量を測定することができる。単色光を奇数回反射させる態様では集光レンズ73および光量検出計74を細胞培養容器4の上方に配置することになり、単色光を偶数回反射させる態様では集光レンズ73および光量検出計74を細胞培養容器4の下方に配置することになる。
 このような態様によれば、単色光が細胞培養容器4内の培地Aを通過する距離が増大するので、培地Aによる吸光量がさらに多くなり、吸光量の変化の検出感度をさらに向上することができる。
 上記各実施形態およびその変形例においては、送信部16による発信は有線でも無線でも良い。また、外部制御手段60と送信部16または送受信部16aとの信号の送受信は有線でも無線でも良い。
 細胞培養容器4としては、フラスコ、シャーレ、培養バッグ、リアクタ(培養槽)を例示することができる。
 本発明によれば、上記各実施形態およびその変形例のいずれかの細胞培養装置(第1細胞培養装置)61と、光学データ取得ユニット1および制御手段3を有さずに培地交換ユニット(第2培地交換ユニット)2および細胞培養容器(第2細胞培養容器)4を有している細胞培養装置(第2細胞培養装置)62とを備えた細胞培養システム200を提供することができる。
 本細胞培養システム200においては、第1細胞培養装置61の光学データ取得ユニット1が培地Aによる吸光量を経時的に測定し、培地Aによる吸光量があらかじめ設定した閾値に達したときに制御手段3が第1細胞培養装置61および第2細胞培養装置62の培地交換ユニット2対して信号を発信する。信号を受信した各培地交換ユニット2はその信号をトリガーにして培地供給・排出を開始する。
 例えば図9に示すように、第2細胞培養装置62を複数備えていても良い。この場合、第1細胞培養装置61の制御手段3は第1細胞培養装置61および各第2細胞培養装置62の各培地交換ユニット2対して信号を発信することができ、信号を受信した各培地交換ユニット2はその信号をトリガーにして培地供給・排出を開始する。
 本発明においては、培地Aに添加されているフェノールレッドによる吸光を測定するのが好ましい。フェノールレッドは430nm付近と560nm付近に吸収ピークを有するので、その付近の波長の単色光を用いるのが好ましい。
 本発明によれば、
 細胞培養容器内の培地の光学データを取得する光学データ取得ユニットと、制御手段とを備えた吸光測定装置であって、
 前記光学データ取得ユニットは、前記細胞培養容器内の培地に単色光を照射する照射光学系と、該照射光学系から照射された単色光を2に分割するビームスプリッタと、該ビームスプリッタにより分割された単色光の内、前記細胞培養容器内の培地を通過する前の一方の単色光の光強度を測定する第1測定光学系と、前記ビームスプリッタにより分割された単色光の内、前記細胞培養容器内の培地を通過した後の他方の単色光の光強度を測定する第2測定光学系とを備え、
 前記制御手段は、前記第1測定光学系および第2測定光学系において測定された光強度によって培地による吸光量を測定する吸光測定装置を提供することができる。
 本発明によれば、
 細胞培養容器内の培地の光学データを取得する光学データ取得ユニットと、
 該光学データ取得ユニットおよび前記細胞培養容器を相対的に移動させる駆動手段と、
 制御手段とを備え、
 前記光学データ取得ユニットは、前記細胞培養容器内の培地に単色光を照射する照射光学系と、前記照射光学系から照射された前記単色光の光強度を測定する測定光学系とを備え、
 前記制御手段は、前記駆動手段により前記光学データ取得ユニットおよび前記細胞培養容器を相対的に移動させ、前記照射光学系から前記測定光学系までの光路上に前記細胞培養容器が配置されていないときに測定した第1光強度と、前記照射光学系から前記測定光学系までの光路上に前記細胞培養容器が配置されているときに測定した第2光強度とよって培地による吸光量を測定する吸光測定装置を提供することができる。
 本発明によれば、内部空間に細胞および培地を保持する細胞培養容器であって、内部空間に培地を供給するための供給口と、容器底部に開口し、内部空間から培地を排出するための排出口と、該排出口から内部空間上方に向かって所定の高さまで突出して開口した流路を形成する排出機構と、を備えた細胞培養容器を提供することができる。
 当該細胞培養容器によれば、供給口から供給された培地により内部空間に溜まった培地の高さが上昇し、その高さが排出機構の開口部に達すると、高さを超えた分の培地が当該開口部を通して内部空間から排出される。供給口と排出機構の開口部の位置は、互いに距離を離したほうが培地の交換効率が上がるため好ましい。
1 光学データ取得ユニット
1a 照射光学系
1b 測定光学系
2 培地交換ユニット
3 制御手段
4 細胞培養容器
5 インキュベータ
11、71 光源
12、72 コリメートレンズ
13、33、73 集光レンズ
14、34、74 光量検出計
15、75 制御部
16、76 送信部
17、77 ベース
21 保持容器
22、26 管状部材
23 送液ポンプ
24 廃液保持容器
25 陰圧供給手段
31、79、80 ハーフミラー
41 駆動手段
51 白色光源
52 バンドパスフィルタ
53a、53b、53c 単色光源
54 ミラー
55a、55b ダイクロイックミラー
60 外部制御手段
61 第1細胞培養装置
62 第2細胞培養装置
78 反射部材

Claims (13)

  1.  内部を細胞の生育に適した環境に維持できるインキュベータと、
     該インキュベータの内部に収納され、細胞および培地を保持する細胞培養容器と、
     該細胞培養容器内の培地の光学データを取得する光学データ取得ユニットと、
     前記細胞培養容器内の培地を交換する培地交換ユニットと、
     制御手段と、を備え、
     前記光学データ取得ユニットは、前記細胞培養容器内の培地に単色光を照射する照射光学系と、前記細胞培養容器内の培地を通過した後の前記単色光の光強度を測定する測定光学系とを備え、
     前記培地交換ユニットは、前記細胞培養容器に培地を供給する培地供給手段と、前記細胞培養容器から培地を排出する培地排出手段とを備え、
     前記制御手段は、前記測定光学系により測定される光強度の経時的変化を検出し、該経時的変化に基づき前記培地供給手段および/または前記培地排出手段を制御する細胞培養装置。
  2.  内部を細胞の生育に適した環境に維持できるインキュベータと、
     該インキュベータの内部に収納され、細胞および培地を保持する細胞培養容器と、
     該細胞培養容器内の培地の光学データを取得する光学データ取得ユニットと、
     前記細胞培養容器内の培地を交換する培地交換ユニットと、
     制御手段と、を備え、
     前記光学データ取得ユニットは、前記細胞培養容器内の培地に単色光を照射する照射光学系と、該照射光学系から照射された単色光を2つに分割するビームスプリッタと、該ビームスプリッタにより分割された単色光の内、前記細胞培養容器内の培地を通過する前の一方の単色光の光強度を測定する第1測定光学系と、前記ビームスプリッタにより分割された単色光の内、前記細胞培養容器内の培地を通過した後の他方の単色光の光強度を測定する第2測定光学系とを備え、
     前記培地交換ユニットは、前記細胞培養容器に培地を供給する培地供給手段と、前記細胞培養容器から培地を排出する培地排出手段とを備え、
     前記制御手段は、前記第1測定光学系および第2測定光学系において測定された光強度によって培地による吸光量を算出し、算出された吸光量の経時的変化を検出し、該経時的変化に基づき前記培地供給手段および/または前記培地排出手段を制御する細胞培養装置。
  3.  内部を細胞の生育に適した環境に維持できるインキュベータと、
     該インキュベータの内部に収納され、細胞および培地を保持する細胞培養容器と、
     該細胞培養容器内の培地の光学データを取得する光学データ取得ユニットと、
     該光学データ取得ユニットおよび前記細胞培養容器を相対的に移動させる駆動手段と、
     前記細胞培養容器内の培地を交換する培地交換ユニットと、
     制御手段と、を備え、
     前記光学データ取得ユニットは、前記細胞培養容器内の培地に単色光を照射する照射光学系と、前記照射光学系から照射された前記単色光の光強度を測定する測定光学系とを備え、
     前記培地交換ユニットは、前記細胞培養容器に培地を供給する培地供給手段と、前記細胞培養容器から培地を排出する培地排出手段とを備え、
     前記制御手段は、前記駆動手段により前記光学データ取得ユニットおよび前記細胞培養容器を相対的に移動させ、前記照射光学系から前記測定光学系までの光路上に前記細胞培養容器が配置されていないときに測定した第1光強度と、前記照射光学系から前記測定光学系までの光路上に前記細胞培養容器が配置されているときに測定した第2光強度とよって培地による吸光量を算出し、算出された吸光量の経時的変化を検出し、該経時的変化に基づき前記培地供給手段および/または前記培地排出手段を制御する細胞培養装置。
  4.  少なくとも、前記細胞培養容器、前記光学データ取得ユニット、および、前記制御手段が前記インキュベータの内部に配置され、
     前記制御手段は、前記インキュベータの外部と信号を送受信する送受信部を備え、該送受信部により前記インキュベータの外部に設置された外部制御手段と信号を送受信することで遠隔的に前記光学データ取得ユニットおよび前記培地交換ユニットを制御する請求項1から3いずれかに記載の細胞培養装置。
  5.  前記照射光学系および前記測定光学系が、前記細胞培養容器を挟んで上下方向に配置された請求項1から4いずれかに記載の細胞培養装置。
  6.  前記照射光学系および前記測定光学系が、前記細胞培養容器を挟んで水平方向に配置された請求項1から4いずれかに記載の細胞培養装置。
  7.  前記照射光学系および前記測定光学系が、前記細胞培養容器に対して同じ側に配置され、
     前記細胞培養容器を挟んで前記照射光学系および前記測定光学系とは反対側に反射部材を備え、
     前記測定光学系が、前記照射光学系から前記細胞培養容器に照射され、該細胞培養容器を通過した後に前記反射部材により反射され、再度、前記細胞培養容器を通過した後の単色光の光強度を測定する請求項1から4いずれかに記載の細胞培養装置。
  8.  前記照射光学系は、白色光源と、該白色光源から射出される白色光の光路上に挿脱可能に設けられ所望の波長の光のみを透過するバンドパスフィルタとを備える請求項1から7いずれかに記載の細胞培養装置。
  9.  前記照射光学系は、複数の単色光源と、該複数の単色光源からの光の光路を合流するをミラーおよびダイクロイックミラーとを備える請求項1から7いずれかに記載の細胞培養装置。
  10.  前記培地供給手段は、培地を保持する培地保持手段と、該培地保持手段と前記細胞培養容器とを接続する管状部材と、該管状部材に配置された送液ポンプとを備え、該送液ポンプが前記制御手段からの信号により制御される請求項1から9いずれかに記載の細胞培養装置。
  11.  前記培地排出手段は、前記細胞培養容器から排出された培地を保持する廃液保持容器と、該廃液保持容器と前記細胞培養容器とを接続する管状部材と、該管状部材に配置された送液ポンプとを備え、該送液ポンプが前記制御手段からの信号により制御される請求項1から10いずれかに記載の細胞培養装置。
  12.  前記培地排出手段は、前記細胞培養容器から排出された培地を保持する廃液保持容器と、該廃液保持容器と前記細胞培養容器とを接続する管状部材と、前記廃液保持容器に陰圧を付加する陰圧供給手段とを備え、該陰圧供給手段が前記制御手段からの信号により制御される請求項1から10いずれかに記載の細胞培養装置。
  13.  請求項1から12のいずれかに記載の細胞培養装置から選択される第1細胞培養装置と、
     該第1細胞培養装置の前記インキュベータの内部に収納され、細胞および培地を保持する第2細胞培養容器と該第2細胞培養容器内の培地を交換する第2培地交換ユニットとを備える第2細胞培養装置と、を備え、
     前記第1細胞培養装置の前記制御手段は、前記経時的変化に基づき、前記第1細胞培養装置の前記培地交換ユニット、および、前記第2細胞培養装置の第2培地交換ユニットを制御する細胞培養システム。
PCT/JP2016/087194 2015-12-15 2016-12-14 細胞培養装置および細胞培養システム WO2017104696A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680073068.XA CN108368467A (zh) 2015-12-15 2016-12-14 细胞培养装置和细胞培养系统
EP16875673.2A EP3392332A4 (en) 2015-12-15 2016-12-14 DEVICE AND SYSTEM FOR CELL CULTURE
JP2017556091A JP6942636B2 (ja) 2015-12-15 2016-12-14 細胞培養装置および細胞培養システム
US16/006,399 US20180291328A1 (en) 2015-12-15 2018-06-12 Cell-culturing apparatus and cell-culturing system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-243745 2015-12-15
JP2015243745 2015-12-15
JP2016185835 2016-09-23
JP2016-185835 2016-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/006,399 Continuation US20180291328A1 (en) 2015-12-15 2018-06-12 Cell-culturing apparatus and cell-culturing system

Publications (1)

Publication Number Publication Date
WO2017104696A1 true WO2017104696A1 (ja) 2017-06-22

Family

ID=59056598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087194 WO2017104696A1 (ja) 2015-12-15 2016-12-14 細胞培養装置および細胞培養システム

Country Status (5)

Country Link
US (1) US20180291328A1 (ja)
EP (1) EP3392332A4 (ja)
JP (1) JP6942636B2 (ja)
CN (1) CN108368467A (ja)
WO (1) WO2017104696A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124446A1 (ja) * 2017-12-19 2019-06-27 オリンパス株式会社 計測装置および培養システム
JP2020122686A (ja) * 2019-01-30 2020-08-13 オリンパス株式会社 赤血球モニタリング装置
JP2020150815A (ja) * 2019-03-19 2020-09-24 オリンパス株式会社 培地モニタリング装置
JP2020167959A (ja) * 2019-04-04 2020-10-15 オリンパス株式会社 培地モニタリング装置
WO2021005652A1 (ja) * 2019-07-05 2021-01-14 オリンパス株式会社 検査方法、及び、システム
US11299701B2 (en) 2019-03-19 2022-04-12 Olympus Corporation Culture-medium-monitoring apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3887500A2 (en) * 2018-11-30 2021-10-06 Corning Incorporated Compact optical imaging system for cell culture monitoring
SE2050382A1 (en) * 2020-04-03 2021-10-04 Cellink Ab A cell monitoring device for use inside a humid incubator and a humid incubator system
WO2022150351A1 (en) * 2021-01-06 2022-07-14 Emmaus Medical, Inc. System and method of evaluating cell culture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262856A (ja) 2001-03-07 2002-09-17 Japan Tissue Engineering:Kk 自動培地交換方法、プログラム及び自動培地交換装置
JP2004113175A (ja) * 2002-09-27 2004-04-15 Olympus Corp 細胞培養検出装置
JP2004208663A (ja) * 2003-01-09 2004-07-29 Ochiyanomizu Jiyoshi Univ 細胞培養システム
JP2004357523A (ja) * 2003-06-02 2004-12-24 Olympus Corp 細胞培養検出装置
JP2006025789A (ja) * 2004-06-17 2006-02-02 Olympus Corp 生体試料観察システムおよび生体試料の観察方法
JP2012215609A (ja) * 2011-03-31 2012-11-08 Yokogawa Electric Corp 培養細胞観察用顕微鏡装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3568999D1 (en) * 1984-12-27 1989-04-27 Sumitomo Electric Industries Method and apparatus for incubating cells
FR2771508B1 (fr) * 1997-11-26 2000-11-03 Pasteur Institut Appareil et procede de mesure de proprietes optiques par retroaction
US20040241832A1 (en) * 2003-06-02 2004-12-02 Olympus Corporation Cell culture detection apparatus, cell culture observation apparatus, and cell culture observation method
KR101352639B1 (ko) * 2011-12-30 2014-01-17 광주과학기술원 세포 배양 관찰 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262856A (ja) 2001-03-07 2002-09-17 Japan Tissue Engineering:Kk 自動培地交換方法、プログラム及び自動培地交換装置
JP2004113175A (ja) * 2002-09-27 2004-04-15 Olympus Corp 細胞培養検出装置
JP2004208663A (ja) * 2003-01-09 2004-07-29 Ochiyanomizu Jiyoshi Univ 細胞培養システム
JP2004357523A (ja) * 2003-06-02 2004-12-24 Olympus Corp 細胞培養検出装置
JP2006025789A (ja) * 2004-06-17 2006-02-02 Olympus Corp 生体試料観察システムおよび生体試料の観察方法
JP2012215609A (ja) * 2011-03-31 2012-11-08 Yokogawa Electric Corp 培養細胞観察用顕微鏡装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124446A1 (ja) * 2017-12-19 2019-06-27 オリンパス株式会社 計測装置および培養システム
JP2019106945A (ja) * 2017-12-19 2019-07-04 オリンパス株式会社 計測装置および培養システム
JP6995606B2 (ja) 2017-12-19 2022-01-14 オリンパス株式会社 計測装置および培養システム
JP2020122686A (ja) * 2019-01-30 2020-08-13 オリンパス株式会社 赤血球モニタリング装置
JP7194030B2 (ja) 2019-01-30 2022-12-21 株式会社エビデント 赤血球モニタリング装置
JP2020150815A (ja) * 2019-03-19 2020-09-24 オリンパス株式会社 培地モニタリング装置
US11299701B2 (en) 2019-03-19 2022-04-12 Olympus Corporation Culture-medium-monitoring apparatus
JP2020167959A (ja) * 2019-04-04 2020-10-15 オリンパス株式会社 培地モニタリング装置
WO2021005652A1 (ja) * 2019-07-05 2021-01-14 オリンパス株式会社 検査方法、及び、システム
JPWO2021005652A1 (ja) * 2019-07-05 2021-01-14
JP7265631B2 (ja) 2019-07-05 2023-04-26 株式会社エビデント 検査方法、システム、及び、プログラム

Also Published As

Publication number Publication date
EP3392332A1 (en) 2018-10-24
JPWO2017104696A1 (ja) 2018-10-04
CN108368467A (zh) 2018-08-03
EP3392332A4 (en) 2019-07-31
US20180291328A1 (en) 2018-10-11
JP6942636B2 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
WO2017104696A1 (ja) 細胞培養装置および細胞培養システム
US8912007B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
US9488579B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JP3947073B2 (ja) 容器からの液体除去装置
KR101505844B1 (ko) 다중 모드 자동 광학 측정기
US20180267069A1 (en) Sample analyzer
US9488576B2 (en) Optical measuring apparatus and method for the analysis of samples contained in liquid drops
JP6502593B2 (ja) 培地交換装置および培養システム
KR101953864B1 (ko) 회전 원통형 필터휠이 구비된 다채널 형광측정기
JP2018119894A (ja) レーザ分光検査方法およびレーザ分光検査装置
JPWO2015182747A1 (ja) 表面プラズモン増強蛍光測定方法、表面プラズモン増強蛍光測定装置および分析チップ
US20090232486A1 (en) Image capturing apparatus
WO2019124446A1 (ja) 計測装置および培養システム
ES2291421T3 (es) Monitor optico sin contacto.
JPS6188158A (ja) 自動分析装置
WO2018016383A1 (ja) 検出方法および検出装置
JPH1019903A (ja) 分注装置
JP6690143B2 (ja) 検出装置及び分析装置
CN112986236A (zh) 用于确定液滴的位置和/或范围的装置和方法
JP5685514B2 (ja) 散乱光検出装置および散乱光検出方法
JP2013076607A (ja) 散乱光検出装置および散乱光検出方法
JP2020150815A (ja) 培地モニタリング装置
JP2007218882A (ja) 自動分析装置および分光装置
JP2008089366A (ja) 分注装置
JP2007127448A (ja) 分析光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556091

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016875673

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016875673

Country of ref document: EP

Effective date: 20180716