WO2017104339A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2017104339A1
WO2017104339A1 PCT/JP2016/083956 JP2016083956W WO2017104339A1 WO 2017104339 A1 WO2017104339 A1 WO 2017104339A1 JP 2016083956 W JP2016083956 W JP 2016083956W WO 2017104339 A1 WO2017104339 A1 WO 2017104339A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor component
power supply
supply device
circuit board
side semiconductor
Prior art date
Application number
PCT/JP2016/083956
Other languages
English (en)
French (fr)
Inventor
啓一 安藤
祐一 半田
公計 中村
薫 纐纈
祐希 山田
誠二 居安
修司 倉内
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/061,012 priority Critical patent/US10256719B2/en
Priority to CN201680074566.6A priority patent/CN108432115B/zh
Priority to DE112016005822.5T priority patent/DE112016005822T5/de
Publication of WO2017104339A1 publication Critical patent/WO2017104339A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/184Components including terminals inserted in holes through the printed circuit board and connected to printed contacts on the walls of the holes or at the edges thereof or protruding over or into the holes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3382Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement in a push-pull circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present disclosure relates to a power supply device.
  • a DC-DC converter and a power supply device such as a charging device equipped with the same are used.
  • a power supply device there is one including a transformer, a choke coil, a primary side semiconductor component, and a secondary side semiconductor component.
  • the power supply device of Patent Document 1 is configured by stacking two of each of the plurality of electronic components to form two stacked bodies. As a result, the power supply device is reduced in size and noise is reduced.
  • the power supply device usually includes a circuit board on which a control circuit is formed.
  • the arrangement of the circuit board disclosed in Patent Document 1 is at a position opposite to the semiconductor component in the stacked body. That is, a transformer or a choke coil is interposed between the circuit board and the semiconductor component. Therefore, the wiring length between the circuit board and the semiconductor component tends to be long. Therefore, it can be said that there is room for further noise reduction.
  • a transformer or choke coil is interposed between the circuit board and the semiconductor component, it tends to be disadvantageous from the viewpoint of heat dissipation of the transformer or choke coil.
  • This disclosure intends to provide a power supply device that can be reduced in size, reduced in noise, and improved in heat dissipation.
  • One aspect of the present disclosure includes a transformer having a primary coil and a secondary coil; A primary-side semiconductor component constituting a primary-side circuit connected to the primary coil side of the transformer; A secondary side semiconductor component constituting a secondary side circuit connected to the secondary coil side of the transformer; A choke coil that constitutes the secondary circuit together with the secondary semiconductor component; A circuit board on which a control circuit is formed, Of the electronic components of the transformer, the primary side semiconductor component, the secondary side semiconductor component, and the choke coil, the two normal electronic components are in the normal direction of the circuit board.
  • a first laminated body and a second laminated body laminated to each other, The circuit board is in a power supply device interposed between a pair of the electronic components constituting the first laminated body and between the pair of electronic components constituting the second laminated body.
  • two electronic components among the electronic components including the transformer, the primary side semiconductor component, the secondary side semiconductor component, and the choke coil constitute a first stacked body and a second stacked body.
  • the circuit board is interposed between a pair of electronic components constituting the first laminated body and between a pair of electronic components constituting the second laminated body. Therefore, the distance between the circuit board and any electronic component can be shortened. As a result, the wiring length between the circuit board and each electronic component can be shortened. Therefore, noise due to this connection wiring can be reduced.
  • FIG. 1 is a schematic cross-sectional view of a power supply device according to Embodiment 1
  • FIG. 2 is a schematic plan view of the power supply device viewed from the substrate normal direction in the first embodiment.
  • FIG. 3 is a circuit diagram of the power supply device according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of the power supply device according to the second embodiment.
  • FIG. 5 is a schematic plan view of the power supply device as viewed from the normal direction of the substrate in the second embodiment.
  • FIG. 6 is a schematic cross-sectional view of a power supply device according to the third embodiment.
  • FIG. 1 is a schematic cross-sectional view of a power supply device according to Embodiment 1
  • FIG. 2 is a schematic plan view of the power supply device viewed from the substrate normal direction in the first embodiment.
  • FIG. 3 is a circuit diagram of the power supply device according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of the power supply device according to the
  • FIG. 7 is a circuit diagram of a power supply device according to the third embodiment.
  • FIG. 8 is a perspective view of the connection member viewed from obliquely above in Embodiment 3.
  • FIG. 9 is a perspective view of the connection member viewed from obliquely below in Embodiment 3.
  • FIG. 10 is a perspective view of the conductor main body portion and the connection terminal portion viewed obliquely from above in Embodiment 3.
  • FIG. 11 is a plan view of the power supply device viewed from the substrate normal direction in the third embodiment.
  • FIG. 12 is an exploded explanatory view corresponding to a cross section taken along line XII-XII in FIG. FIG.
  • FIG. 13 is an exploded explanatory view corresponding to a cross section taken along line XIII-XIII in FIG.
  • FIG. 14 is an explanatory diagram of a connection terminal portion or a lead terminal in a state before insertion into a through hole in Embodiment 3.
  • FIG. 15 is an explanatory diagram of a connection terminal portion or a lead terminal in a state after being inserted into a through hole in Embodiment 3.
  • FIG. 16 is a schematic cross-sectional view of a power supply device according to the fourth embodiment.
  • FIG. 17 is a schematic cross-sectional view of a power supply device according to the fifth embodiment.
  • FIG. 18 is a circuit diagram of a power supply device according to the fifth embodiment.
  • FIG. 19 is a schematic cross-sectional view of a power supply device according to the sixth embodiment.
  • FIG. 20 is a circuit diagram of a power supply device according to the sixth embodiment.
  • the power supply device of the above aspect can be, for example, a DC-DC converter that steps down high-voltage DC power from a DC power source and converts it to low-voltage DC power.
  • the power supply device can be mounted on, for example, an electric vehicle or a hybrid vehicle.
  • the power supply device further includes a connection member that electrically connects the plurality of electronic components or the electronic component and the circuit board, and the connection member includes a pair of the above-described first laminates. It is preferable to interpose between the electronic components and between the pair of the electronic components constituting the second laminated body. In this case, the wiring distance between the electronic components or between the electronic component and the circuit board can be shortened, and noise reduction and downsizing can be further achieved.
  • connection member includes a conductor main body and a plurality of connection terminal portions protruding from the conductor main body in the normal direction of the substrate, and at least two of the plurality of electronic components and the circuit board. May be connected to the connection terminal portion. In this case, the assembling property of the electronic component and the circuit board to the connecting member can be improved.
  • the first laminated body includes the transformer and the primary side semiconductor component or the secondary side semiconductor component
  • the second laminated body includes the choke coil and the secondary side semiconductor component or the primary side semiconductor.
  • the transformer and the choke coil may be arranged on the same surface side of the circuit board. In this case, it is easy to reduce the size of the power supply device in the substrate normal direction.
  • the power supply device 1 includes a transformer 2, a primary-side semiconductor component 3, a secondary-side semiconductor component 4, a choke coil 5, and a circuit board 6.
  • the transformer 2 includes a primary coil 21 and a secondary coil 22.
  • the primary side semiconductor component 3 constitutes a primary side circuit connected to the primary coil 21 side of the transformer 2.
  • the secondary side semiconductor component 4 constitutes a secondary side circuit connected to the secondary coil 22 side of the transformer 2.
  • the choke coil 5 constitutes a secondary side circuit together with the secondary side semiconductor component 4.
  • a control circuit is formed on the circuit board 6.
  • two electronic components 10 are respectively normal to the substrate.
  • a first stacked body 11 and a second stacked body 12 stacked in the direction Z are configured.
  • the substrate normal direction Z is the normal direction of the circuit board 6.
  • the circuit board 6 is interposed between the pair of electronic components 10 constituting the first laminate 11 and between the pair of electronic components 10 constituting the second laminate 12.
  • the first stacked body 11 includes a transformer 2 and a primary-side semiconductor component 3.
  • the second stacked body 12 includes the choke coil 5 and the secondary-side semiconductor component 4.
  • the transformer 2 and the choke coil 5 are disposed on the same surface side of the circuit board 6.
  • the circuit board 6 is interposed between the transformer 2 and the primary semiconductor component 3, and is interposed between the choke coil 5 and the secondary semiconductor component 4.
  • the side on which the transformer 2 and the choke coil 5 are disposed with respect to the circuit board 6 is the upper side, and the opposite side is the lower side.
  • this is a convenient expression, and the direction of the power supply device 1 is not particularly limited.
  • the power supply device 1 is a DC-DC converter.
  • the DC-DC converter is mounted on, for example, an electric vehicle or a hybrid vehicle, and is used to step down high-voltage DC power from a DC power source to low-voltage DC power and supply it to an auxiliary battery. That is, as shown in FIG. 3, the power supply device 1 is used by being connected between a DC primary power supply 131 and a DC secondary power supply 132 (such as an auxiliary battery).
  • the primary side circuit composed of the primary side semiconductor component 3 is connected to the primary side power supply 131, and the secondary side circuit composed of the secondary side semiconductor component 4 passes through the smoothing circuit including the choke coil 5. , Connected to the secondary power source 132.
  • the Primary circuit constitutes a switching circuit.
  • the primary side semiconductor component 3 is composed of a semiconductor module incorporating a plurality of switching elements.
  • MOSFET or IGBT can be used, for example.
  • MOSFET is an abbreviation for metal oxide semiconductor field effect transistor.
  • IGBT is an abbreviation for insulated gate bipolar transistor.
  • the primary-side semiconductor component does not necessarily need to be a semiconductor module, and may be a discrete semiconductor component, for example.
  • the secondary side circuit constitutes a rectifier circuit
  • the secondary side semiconductor component 4 is composed of a semiconductor module incorporating a plurality of switching elements.
  • this switching element for example, a MOSFET or an IGBT can be used.
  • the secondary-side semiconductor component can be a diode module incorporating a plurality of diodes.
  • the secondary semiconductor component may be a discrete semiconductor component.
  • the choke coil 5 constitutes a smoothing circuit together with the capacitor 133.
  • the DC power input to the power supply device 1 of the present embodiment is converted into AC power in the primary side switching circuit and input to the transformer 2.
  • the input AC power is stepped down in the transformer 2 and then rectified in the secondary rectifier circuit to become DC power.
  • the DC power after the step-down is output after being smoothed by the smoothing circuit.
  • the DC power of the secondary power supply 132 can be boosted to charge the primary power supply 131.
  • a control circuit (not shown) is formed on the circuit board 6.
  • the control circuit is configured to perform on / off control of the switching elements in the primary-side semiconductor component 3 and the switching elements in the secondary-side semiconductor component 4. Therefore, the signal terminal of each switching element, for example, the gate terminal of the MOSFET is connected to the control circuit of the circuit board 6.
  • the primary side semiconductor component 3 and the secondary side semiconductor component 4 are directly mounted on the circuit board 6. That is, the semiconductor module which is the primary side semiconductor component 3 and the secondary side semiconductor component 4 includes a lead terminal (not shown).
  • the lead terminals are directly connected to the circuit board 6.
  • the lead terminal can be a signal terminal connected to the gate of the switching element or the like.
  • the lead terminal connected to the source or the drain or the like of the switching element may be directly connected to the circuit board 6.
  • source or the like means a source when the switching element is a MOSFET, but means an emitter when the switching element is an IGBT.
  • drain or the like means a drain when the switching element is a MOSFET, but means a collector when the switching element is an IGBT. The same applies to the following.
  • the transformer 2 and the primary side semiconductor component 3 constitute a first stacked body 11
  • the secondary side semiconductor component 4 and the choke coil 5 constitute a second stacked body 12.
  • the circuit board 6 is interposed between the pair of electronic components 10 constituting the first laminate 11 and between the pair of electronic components 10 constituting the second laminate 12. Therefore, the distance between the circuit board 6 and any electronic component 10 can be shortened. As a result, the wiring length between the circuit board 6 and each electronic component 10 can be shortened. Therefore, noise due to this connection wiring can be reduced. In particular, since the distance between the circuit board 6 and the primary-side semiconductor component 3 and the secondary-side semiconductor component 4 can be shortened, the wiring distance between the control circuit and the gate of the switching element can be shortened. . Thereby, generation of noise due to the control signal current and noise affecting the control signal current can be reduced.
  • the plurality of electronic components 10 are distributed on both sides of the circuit board 6, it is easy to dissipate the heat of the electronic components 10. That is, the heat dissipation of the power supply device 1 can be improved.
  • a cooling member can also be made to contact the 1st laminated body 11 and the 2nd laminated body 12 from the both sides of the board
  • the primary-side semiconductor component 3 and the secondary-side semiconductor component 4 are directly mounted on the circuit board 6, it is possible to improve the assemblability. In addition, further noise reduction can be achieved.
  • the power supply device 1 of the present embodiment further includes a connection member 7.
  • the connection member 7 electrically connects the plurality of electronic components 10 or the electronic component 10 and the circuit board 6.
  • the connection member 7 is interposed between the pair of electronic components 10 constituting the first laminate 11 and between the pair of electronic components 10 constituting the second laminate 12.
  • the connection member 7 is between the transformer 2 and the primary side semiconductor component 3 and is interposed between the choke coil 5 and the secondary side semiconductor component 4.
  • the connection member 7 is disposed on the upper side of the circuit board 6.
  • the connecting member 7 can also be disposed below the circuit board 6.
  • connection member 7 has a conductor body 71 and a plurality of connection terminals 72.
  • the connection terminal portion 72 protrudes from the conductor main body portion 71 in the substrate normal direction Z. At least two of the plurality of electronic components 10 and the circuit board 6 are connected to the connection terminal portion 72.
  • At least one of the primary side semiconductor component 3 and the secondary side semiconductor component 4 and the circuit board 6 are electrically connected via the connection terminal portion 72 and the conductor main body portion 71.
  • both the primary-side semiconductor component 3 and the secondary-side semiconductor component 4 are connected to the circuit board 6 via the connection terminal portion 72 and the conductor body portion 71 of the connection member 7.
  • connection terminal portion 72 connected to the primary side semiconductor component 3 or the secondary side semiconductor component 4 can be configured to be connected to the gate or the like of the switching element.
  • the connection terminal part 72 electrically connected to the connection terminal part 72 is connected to the control circuit in the circuit board 6.
  • the connection terminal part 72 connected to the primary side semiconductor component 3 or the secondary side semiconductor component 4 can also be set as the structure connected to power terminals, such as a source
  • the connecting member 7 includes a sealing portion 73 formed by sealing at least a part of the conductor main body portion 71 with a resin.
  • the connection terminal portion 72 is exposed from the sealing portion 73.
  • the plurality of connection terminal portions 72 protrude below the substrate normal direction Z, respectively.
  • the connection terminal portions 72 are connected to the circuit board 6, the primary side semiconductor component 3, and the secondary side semiconductor 4, respectively.
  • the connection member 7 may have a connection terminal portion 72 protruding upward.
  • the circuit board 6 is formed with a through hole 62 penetrating in the substrate normal direction Z.
  • connection terminal portions 72 those connected to the primary-side semiconductor component 3 and the secondary-side semiconductor 4 are inserted through the through holes 62.
  • Other configurations are the same as those of the first embodiment.
  • the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
  • the power supply device 1 of the present embodiment includes a connection member 7.
  • the connection member 7 is interposed between the pair of electronic components 10 constituting the first laminate 11 and between the pair of electronic components 10 constituting the second laminate 12. Therefore, the wiring distance between the electronic component 10 and the circuit board 6 can be shortened, and noise reduction and downsizing can be further achieved.
  • connection member 7 includes a conductor main body 71 and a connection terminal portion 72.
  • assembly property of the electronic component 10 and the circuit board 6 with respect to the connection member 7 can be improved. That is, when assembling the connection member 7, the electronic component 10, and the circuit board 6, the relative movement direction of these components can be set to the substrate normal direction Z instead of the direction parallel to the circuit board 6. Therefore, the installation area of the assembly equipment can be reduced. In addition, the same effects as those of the first embodiment are obtained.
  • FIG. 7 As shown in FIG. 7 as a circuit diagram, a pair of terminals of the primary coil 21 of the transformer 2 are connected to the circuit board 6 via the connection member 7.
  • the primary semiconductor component 3 mounted on the circuit board 6 is connected to the conductor wiring formed on the circuit board 6. Therefore, the primary coil 21 is electrically connected to the primary-side semiconductor component 3 via the connection member 7 and the circuit board 6.
  • conductor wiring independent of the control circuit is also formed on the circuit board 6, and the primary coil 21 is connected to the primary-side semiconductor component 3 through the conductor wiring.
  • a pair of terminals of the primary coil 21 are electrically connected to the wiring between the high-side switching element and the low-side switching element in the primary-side semiconductor component 3.
  • the connecting member 7 connects the pair of terminals of the auxiliary coil 52 in the choke coil 5 to the circuit board 6.
  • the auxiliary coil 52 is used to supply the energy stored in the choke coil 5 to the primary circuit when the power supply device 1 is used to boost the voltage of the secondary power supply 132 and supply it to the primary power supply 131. Is. Further, a diode for preventing a backflow of current is provided between one terminal of the auxiliary coil 52 and the primary side circuit.
  • the connection member 7 includes a sealing portion 73 formed by sealing at least a part of the conductor main body portion 71 with a resin.
  • the connection terminal portion 72 is exposed from the sealing portion 73.
  • the plurality of connection terminal portions 72 protrude on both the upper and lower sides in the substrate normal direction Z. As shown in FIG. 6, the connection terminal portion 72 protruding upward is connected to the transformer 2 and the choke coil 5. A connection terminal portion 72 protruding downward is connected to the circuit board 6.
  • the connection terminal portion 72 connected to the transformer 2 and the connection terminal portion 72 connected to the choke coil 5 are electrically independent from each other. That is, as shown in FIGS. 6 and 10, the connection member 7 includes a plurality of conductor main body portions 71 that are electrically independent from each other.
  • the transformer 2 or the choke coil 5 includes a printed circuit board 14 on which at least a part of the coil portion is formed.
  • the transformer 2 and the choke coil 5 include a thick copper substrate as the printed circuit board 14.
  • the primary coil 21 and the secondary coil 22 of the transformer 2 and the coil portion of the choke coil 5 share one printed board 14.
  • the printed board 14 has a plurality of conductor layers and a resin layer.
  • the plurality of conductor layers are respectively formed in the first part and the second part, which are two parts in the spreading direction of the printed board 14.
  • the transformer 2 is configured by the first portion of the printed circuit board 14 and the upper core 231 and the lower core 232 arranged so as to sandwich the first portion.
  • the choke coil 5 is configured by the second portion of the printed circuit board 14 and the upper core 531 and the lower core 532 arranged so as to sandwich the second portion.
  • the elastic member 13 is disposed on the upper surfaces of the upper core 231 of the transformer 2 and the upper core 531 of the choke coil 5. Further, the connection member 7 is disposed below the lower core 232 of the transformer 2 and the lower core 532 of the choke coil 5.
  • the sealing portion 73 of the connection member 7 includes a pair of electronic components 10 of the first stacked body 11 and a pair of electronic components of the second stacked body 12 from both sides in the substrate normal direction Z. 10.
  • the sealing portion 73 is sandwiched between the transformer 2 and the primary-side semiconductor component 3, and is sandwiched between the choke coil 5 and the secondary-side semiconductor component 4.
  • the sealing portion 73 has an upper contact surface 731 that contacts the upper electronic component 10 and a lower contact surface 732 that contacts the lower electronic component 10.
  • the upper contact surface 731 contacts the lower core 232 of the transformer 2 and the lower core 532 of the choke coil 5.
  • the lower contact surface 732 contacts the primary semiconductor component 3 and the secondary semiconductor component 4.
  • the upper contact surface 731 and the lower contact surface 732 are flat surfaces orthogonal to the substrate normal direction Z.
  • the sealing portion 73 is formed by projecting downward a leg portion 733 having a lower contact surface 732 on the lower surface. As shown in FIG. 12, the circuit board 6 is appropriately formed with an opening 63 for avoiding interference with the leg 733.
  • the power supply device 1 is configured by housing components including the first stacked body 11 and the second stacked body 12 in a case 15.
  • the case 15 is formed by combining a lower case body 151 and an upper case body 152.
  • the primary side semiconductor component 3 and the secondary side semiconductor 4, the circuit board 6, the connection member 7, the transformer 2, and the choke coil 5 are sequentially stacked on the lower case body 151.
  • the elastic member 13 is disposed above the transformer 2 and the choke coil 5, and the upper case body 152 is disposed above the elastic member 13. In the state where the upper case body 152 is assembled to the lower case body 151, the elastic member 13 is elastically compressed in the substrate normal direction Z. Thereby, the first laminated body 11 and the second laminated body 12 are pressurized by the elastic member 13.
  • the pressing force of the elastic member 13 is applied to the transformer 2, the sealing portion 73 of the connecting member 7, and the primary-side semiconductor component 3. Further, in the second stacked body 12, the pressing force of the elastic member 13 is applied to the choke coil 5, the sealing portion 73 of the connecting member 7, and the secondary semiconductor component 4. That is, the configuration is such that the applied pressure is not applied to the circuit board 6.
  • connection between the connection member 7 and the circuit board 6 is constituted by a through hole 61 formed in the circuit board 6 and a connection terminal portion 72 inserted into the through hole 61. ing.
  • the connection terminal portion 72 has a press-fit structure that can be deformed in the radial direction.
  • the connection terminal portion 72 is in pressure contact with the inner wall surface of the through hole 61. That is, as shown in FIG. 14, the connection terminal portion 72 before being inserted into the through hole 61 is larger than the inner diameter of the through hole 61 in at least one radial direction.
  • the connection terminal portion 72 can be elastically plastically deformed in the radial direction.
  • connection terminal portion 72 By inserting the connection terminal portion 72 into the through hole 61, the connection terminal portion 72 is deformed so as to be compressed in the radial direction as shown in FIG. In the state where the connection terminal portion 72 is disposed in the through hole 61, a restoring force F acts on the radially outer side. That is, the connection terminal portion 72 is pressed against the inner wall surface of the through hole 61. The connection terminal portion 72 may be deformed only in the elastic region and disposed in the through hole 61. Further, if the sufficient restoring force F is applied, the connection terminal portion 72 may be disposed in the through hole 61 in a state of being deformed beyond the elastic region to the plastic region.
  • connection between the connecting member 7 and the transformer 2 or the choke coil 5 is constituted by a through hole 141 formed in the printed board 14 and a connection terminal portion 72 inserted into the through hole 141.
  • both the connection between the transformer 2 and the connection member 7 and the connection between the choke coil 5 and the connection member 7 are configured by the through hole 141 and the connection terminal portion 72.
  • These connections are also configured in a state where the connection terminal portion 72 having a press-fit structure is in pressure contact with the inner wall surface of the through hole 141.
  • At least one lead terminal of the primary side semiconductor component 3 and the secondary side semiconductor component 4 is inserted into a through hole 61 formed in the circuit board 6.
  • both the lead terminal 31 of the primary side semiconductor component 3 and the lead terminal 41 of the secondary side semiconductor component 4 are respectively inserted into the through holes 61.
  • These connections are also configured in a state where the lead terminals 31 and 41 having a press-fit structure are pressed against the inner wall surface of the through hole 61.
  • connection member 7 includes a ground bus bar 74 that is grounded.
  • the conductor main body 71 that is electrically connected to the connection terminal portion 72 connected to the center pad of the secondary coil 22 of the transformer 2 serves as the ground bus bar 74.
  • the ground bus bar 74 is disposed so as to spread between the pair of electronic components 10 of the first stacked body 11 and between the pair of electronic components 10 of the second stacked body 12.
  • a mounting component 17 different from the electronic component 10 is mounted on the circuit board 6.
  • the mounting component 17 is disposed at a position that does not overlap with either the electronic component 10 or the connection member 7 when viewed from the substrate normal direction Z.
  • Examples of the mounting component 17 include a fuse, a capacitor, an input terminal block, a current transformer, a signal connector, and a magnetic component for an auxiliary power source.
  • the mounting component 17 has a height dimension in the substrate normal direction Z that is, for example, larger than the distance between the circuit board 6 and the primary-side semiconductor component 3 or the secondary-side semiconductor 4.
  • the height dimension of the mounting component 17 is larger than the distance between the circuit board 6 and the transformer 2 or the choke coil 5, for example.
  • Other configurations are the same as those of the first embodiment.
  • the transformer 2 and the choke coil 5 and the circuit board 6 can be connected via the connection member 7. Therefore, the electrical connection of the transformer 2 and the choke coil 5 to other electronic components 10 and the like can be easily performed. Further, the connection wiring can be shortened, and noise can be reduced.
  • the mounting component 17 is arranged at a position where it does not overlap with either the electronic component 10 or the connection member 7 when viewed from the substrate normal direction Z. Thereby, size reduction of the power supply device 1 in the substrate normal direction Z can be achieved.
  • connection terminal portion 72 and the lead terminals 31 and 41 are inserted into the through hole 61 of the circuit board 6 or the through hole 141 of the printed board 14.
  • the electronic component 10, the circuit board 6, and the connection member 7 can be easily assembled in the substrate normal direction Z.
  • the connection terminal part 72 and the extraction terminals 31 and 41 are provided with a press-fit structure, the number of assembling steps can be further reduced. For example, from the state where the electronic component 10, the connection member 7, and the circuit board 6 are set side by side in the substrate normal direction Z, the connection at all the connection terminals 72 and the extraction terminals 31 and 41 is completed with a single press. Is also possible.
  • connection terminal portion 72 and the lead terminals 31 and 41 have a press-fit structure, the distance between the terminals is reduced as compared with the solder connection, or the distance between the terminals and peripheral components is reduced. be able to. That is, when performing solder connection, for example, the area of the connection portion is likely to be increased by the solder fillet. Further, in order to prevent cracking of the solder portion, the position of the solder portion needs to be a portion where a large stress does not act on the circuit board 6, for example. Compared to this, it is easier to save space by adopting a press-fit structure. In addition, compared with welding or the like, it is easy to reduce the size of the power supply device 1 from the viewpoint of equipment used during assembly.
  • the connecting member 7 includes a ground bus bar 74. Therefore, the influence of electromagnetic noise between the upper electronic component 10 and the lower electronic component 10 of the connection member 7 can be suppressed. Further, since the ground bus bar 74 is disposed between the circuit board 6 and the transformer 2 and the choke coil 5, the influence of electromagnetic noise and heat from the transformer 2 and the choke coil 5 to the circuit board 6 is effectively reduced. Can be suppressed to
  • the sealing portion 73 of the connection member 7 is sandwiched by the electronic component 10 from both sides in the substrate normal direction Z. Accordingly, the first stacked body 11 and the second stacked body 12 can be fixed in the substrate normal direction Z while applying no pressure to the circuit board 6. In addition, since no pressure is applied to the circuit board 6, the pressure force of the elastic member 13 can be increased to easily improve the vibration resistance. In addition, the same effects as those of the first embodiment are obtained.
  • the present embodiment is an embodiment in which a plurality of electronic components 10 arranged on opposite sides of the circuit board 6 are connected by a connecting member 7.
  • connection terminal portion 72 and the conductor main body portion 71 in the connection member 7 are respectively provided between the transformer 2 and the primary side semiconductor component 3 and between the choke coil 5 and the secondary side semiconductor component 4. Is connected.
  • a through hole 62 is provided in a part of the circuit board 6.
  • the connection terminal portion 72 connected to the primary side semiconductor component 3 and the connection terminal portion 72 connected to the secondary side semiconductor component 4 are inserted through the through holes 62, respectively.
  • Other configurations are the same as those of the first embodiment. Also in the present embodiment, a power supply device that can be reduced in size, reduced in noise, and improved in heat dissipation can be obtained.
  • the transformer 2 and the choke coil 5 are electrically connected via the connection terminal portion 72 and the conductor body portion 71. That is, as shown in FIG. 17, the connection member 7 projects a plurality of connection terminal portions 72 connected via the conductor main body portion 71 upward. A part of the plurality of connection terminal portions 72 is connected to the transformer 2, and another part of the plurality of connection terminal portions 72 is connected to the choke coil 5. Thereby, the transformer 2 and the choke coil 5 are electrically connected.
  • the configuration shown in FIG. 18 is conceivable.
  • the terminal of the secondary coil 22 of the transformer 2 is connected to one terminal of the choke coil 5.
  • the connection wiring the conductor main body 71 and the connection terminal portion 72 of the connection member 7 are interposed between the transformer 2 and the choke coil 5.
  • Other configurations are the same as those of the first embodiment.
  • a power supply device that can be reduced in size, reduced in noise, and improved in heat dissipation can be obtained.
  • connection member 7 projects a plurality of connection terminal portions 72 connected via the conductor main body portion 71 downward. A part of the plurality of connection terminal portions 72 is connected to the primary-side semiconductor component 3, and another part of the plurality of connection terminal portions 72 is connected to the secondary-side semiconductor component 4. Thereby, the primary side semiconductor component 3 and the secondary side semiconductor component 4 are electrically connected.
  • the primary semiconductor component 3 is formed by integrating four MOSFETs and two capacitors.
  • the secondary semiconductor component 4 is formed by integrating two MOSFETs and a capacitor.
  • a wiring portion between the two capacitors in the primary side semiconductor component 3 and one terminal of the capacitor in the secondary side semiconductor component 4 are electrically connected to each other and grounded.
  • This connection wiring portion is constituted by the conductor main body 71 and the connection terminal portion 72 of the connection member 7.
  • Other configurations are the same as those of the first embodiment.
  • a power supply device that can be reduced in size, reduced in noise, and improved in heat dissipation can be obtained.
  • Embodiment 3 can be applied as appropriate in other embodiments. That is, for example, the configurations of the connection member 7, the electronic components 10, the circuit board 6, and the like described in detail in the third embodiment can be applied to other embodiments.
  • the form which comprised the 1st laminated body 11 by the transformer 2 and the primary side semiconductor component 3 and comprised the 2nd laminated body 12 by the choke coil 5 and the secondary side semiconductor component 4 is disclosed. is doing.
  • the combination of the electronic component 10 in the 1st laminated body 11 and the 2nd laminated body 12 is not restricted to this, It can also be set as another combination. Further, the arrangement of the electronic components 10 via the circuit board 6 can be variously changed.
  • connection member 7 is arranged on the upper side of the circuit board 6, but this arrangement relationship can be reversed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dc-Dc Converters (AREA)

Abstract

電源装置(1)は、トランス(2)と一次側半導体部品(3)と二次側半導体部品(4)とチョークコイル(5)と回路基板と、を有する。トランス(2)と一次側半導体部品(3)と二次側半導体部品(4)とチョークコイル(5)との電子部品(10)のうち、2つずつの電子部品(10)同士が、それぞれ基板法線方向Zに積層された第1積層体(11)及び第2積層体(12)を構成している。回路基板(6)は、第1積層体(11)を構成する一対の電子部品(10)の間と、第2積層体(12)を構成する一対の電子部品(10)の間とに介在している。

Description

電源装置 関連出願の相互参照
 本出願は、2015年12月18日に出願された日本出願番号2015-247539号に基づくもので、ここにその記載内容を援用する。
 本開示は、電源装置に関する。
 ハイブリッド自動車や電気自動車等には、DC-DCコンバータやこれを搭載した充電装置等の電源装置が用いられている。このような電源装置として、トランスとチョークコイルと一次側半導体部品と二次側半導体部品とを備えたものがある。特許文献1の電源装置は、上記複数の電子部品のうちの2個ずつをそれぞれ積層して、2つの積層体を構成している。これにより、電源装置の小型化及びノイズ低減を図っている。
特開2015-47058号公報
 電源装置は、通常、制御回路が形成された回路基板を備えるが、特許文献1に開示された回路基板の配置は、積層体における半導体部品とは反対側の位置となっている。すなわち、回路基板と半導体部品との間に、トランス又はチョークコイルが介在した状態となる。それゆえ、回路基板と半導体部品との間の配線長が長くなりやすい。したがって、さらなるノイズ低減の余地があると言える。
 また、回路基板と半導体部品との間にトランス又はチョークコイルが介在した構成においては、トランス又はチョークコイルの放熱の観点では不利となりやすい。
 本開示は、小型化、ノイズ低減、放熱性の向上を図ることができる電源装置を提供しようとするものである。
 本開示の一態様は、一次コイルと二次コイルとを有するトランスと、
 該トランスの上記一次コイル側に接続された一次側回路を構成する一次側半導体部品と、
 上記トランスの上記二次コイル側に接続された二次側回路を構成する二次側半導体部品と、
 上記二次側回路を上記二次側半導体部品と共に構成するチョークコイルと、
 制御回路が形成された回路基板と、を有し、
 上記トランスと上記一次側半導体部品と上記二次側半導体部品と上記チョークコイルとの電子部品のうち、2つずつの該電子部品同士が、それぞれ上記回路基板の法線方向である基板法線方向に積層された第1積層体及び第2積層体を構成しており、
 上記回路基板は、上記第1積層体を構成する一対の上記電子部品の間と、上記第2積層体を構成する一対の上記電子部品の間とに介在している、電源装置にある。
 上記電源装置において、トランスと一次側半導体部品と二次側半導体部品とチョークコイルとの電子部品のうち、2つずつの電子部品同士が、第1積層体及び第2積層体を構成している。これにより、基板法線方向から見た電子部品の配置スペースを容易に縮小することができる。それゆえ、上記電源装置を小型化することができる。
 そして、回路基板は、第1積層体を構成する一対の電子部品の間と、第2積層体を構成する一対の電子部品の間とに介在している。それゆえ、回路基板と、いずれの電子部品との間の距離をも短くすることができる。その結果、回路基板と各電子部品との間の配線長を短くすることが可能となる。そのため、この接続配線に起因するノイズを低減することができる。
 また、複数の電子部品が回路基板の両側に分散配置されることとなるため、電子部品の熱を放熱しやすい。すなわち、電源装置の放熱性を向上させることができる。
 以上のごとく、上記態様によれば、小型化、ノイズ低減、放熱性の向上を図ることができる電源装置を提供することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、電源装置の断面概説図であり、 図2は、実施形態1における、基板法線方向から見た電源装置の平面概説図であり、 図3は、実施形態1における、電源装置の回路図であり、 図4は、実施形態2における、電源装置の断面概説図であり、 図5は、実施形態2における、基板法線方向から見た電源装置の平面概説図であり、 図6は、実施形態3における、電源装置の断面概説図であり、 図7は、実施形態3における、電源装置の回路図であり、 図8は、実施形態3における、斜め上方から見た接続部材の斜視図であり、 図9は、実施形態3における、斜め下方から見た接続部材の斜視図であり、 図10は、実施形態3における、斜め上方から見た導体本体部及び接続端子部の斜視図であり、 図11は、実施形態3における、基板法線方向から見た電源装置の平面説明図であり、 図12は、実施形態3における、図11のXII-XII線矢視断面相当の分解説明図であり、 図13は、実施形態3における、図11のXIII-XIII線矢視断面相当の分解説明図であり、 図14は、実施形態3における、スルーホールへの挿入前の状態の接続端子部又は引出端子の説明図であり、 図15は、実施形態3における、スルーホールへ挿入した後の状態の接続端子部又は引出端子の説明図であり、 図16は、実施形態4における、電源装置の断面概説図であり、 図17は、実施形態5における、電源装置の断面概説図であり、 図18は、実施形態5における、電源装置の回路図であり、 図19は、実施形態6における、電源装置の断面概説図であり、 図20は、実施形態6における、電源装置の回路図である。
 上記態様の電源装置は、例えば、直流電源の高圧の直流電力を降圧して低圧の直流電力に変換するDC-DCコンバータとすることができる。また、上記電源装置は、例えば電気自動車やハイブリッド自動車に搭載するものとすることができる。
 また、上記電源装置は、複数の上記電子部品同士又は該電子部品と上記回路基板とを電気的に接続する接続部材をさらに備え、該接続部材は、上記第1積層体を構成する一対の上記電子部品の間と、上記第2積層体を構成する一対の上記電子部品の間とに介在していることが好ましい。この場合には、上記電子部品同士又は該電子部品と上記回路基板との間の配線距離を短くすることができ、より一層、ノイズ低減及び小型化を図ることができる。
 また、上記接続部材は、導体本体部と、該導体本体部から上記基板法線方向に突出した複数の接続端子部とを有し、上記複数の電子部品と上記回路基板とのうち少なくとも2つは、上記接続端子部に接続されているものとすることができる。この場合には、接続部材に対する電子部品及び回路基板の組付け性を向上させることができる。
 また、上記第1積層体は、上記トランスと上記一次側半導体部品又は上記二次側半導体部品とからなり、上記第2積層体は、上記チョークコイルと上記二次側半導体部品又は上記一次側半導体部品とからなり、上記トランスと上記チョークコイルとは、上記回路基板における同じ面側に配されていることとすることができる。この場合には、基板法線方向における電源装置の小型化を図りやすい。
(実施形態1)
 電源装置の実施形態につき、図1~図3を用いて説明する。
 電源装置1は、図1、図2に示すごとく、トランス2と、一次側半導体部品3と、二次側半導体部品4と、チョークコイル5と、回路基板6と、を有する。
 図3に示すごとく、トランス2は、一次コイル21と二次コイル22とを有する。一次側半導体部品3は、トランス2の一次コイル21側に接続された一次側回路を構成する。二次側半導体部品4は、トランス2の二次コイル22側に接続された二次側回路を構成する。チョークコイル5は、二次側回路を二次側半導体部品4と共に構成する。回路基板6には、制御回路が形成されている。
 図1、図2に示すごとく、トランス2と一次側半導体部品3と二次側半導体部品4とチョークコイル5との電子部品10のうち、2つずつの電子部品10同士が、それぞれ基板法線方向Zに積層された第1積層体11及び第2積層体12を構成している。基板法線方向Zは、回路基板6の法線方向である。
 回路基板6は、第1積層体11を構成する一対の電子部品10の間と、第2積層体12を構成する一対の電子部品10の間とに介在している。
 本実施形態において、第1積層体11は、トランス2と一次側半導体部品3とからなる。第2積層体12は、チョークコイル5と二次側半導体部品4とからなる。また、トランス2とチョークコイル5とは、回路基板6における同じ面側に配されている。回路基板6は、トランス2と一次側半導体部品3との間に介在すると共に、チョークコイル5と二次側半導体部品4との間に介在している。以下において、回路基板6に対してトランス2及びチョークコイル5が配置された側を上側、その反対側を下側として説明する。ただし、これは便宜的な表現であり、特に電源装置1の向きを限定するものではない。
 本例において、電源装置1は、DC-DCコンバータである。DC-DCコンバータは、例えば電気自動車やハイブリッド自動車に搭載され、直流電源の高圧の直流電力を低圧の直流電力に降圧し、補機用バッテリに供給するために用いられる。すなわち、図3に示すように、電源装置1は、直流の一次側電源131と直流の二次側電源132(補機バッテリ等)との間に接続されて用いられる。そして、一次側電源131に、一次側半導体部品3から構成される一次側回路が接続され、二次側半導体部品4から構成される二次側回路が、チョークコイル5を含む平滑回路を介して、二次側電源132に接続される。
 一次側回路はスイッチング回路を構成している。一次側半導体部品3は、複数のスイッチング素子を内蔵した半導体モジュールからなる。スイッチング素子としては、例えばMOSFET又はIGBTを用いることができる。MOSFETは金属酸化物半導体電界効果トランジスタの略称である。IGBTは絶縁ゲートバイポーラトランジスタの略称である。なお、一次側半導体部品は必ずしも半導体モジュールである必要はなく、例えば、ディスクリートの半導体部品であってもよい。
 二次側回路は整流回路を構成しており、二次側半導体部品4は、複数のスイッチング素子を内蔵した半導体モジュールからなる。このスイッチング素子も、例えばMOSFET又はIGBTを用いることができる。ただし、二次側半導体部品は、複数のダイオードを内蔵したダイオードモジュールとすることもできる。また、二次側半導体部品は、ディスクリートの半導体部品であってもよい。
 また、チョークコイル5は、コンデンサ133と共に平滑回路を構成している。
 本実施形態の電源装置1に入力された直流電力は、一次側のスイッチング回路において交流電力に変換されて、トランス2に入力される。入力された交流電力は、トランス2において降圧された後、二次側の整流回路において整流されて直流電力となる。そして、降圧後の直流電力は、平滑回路において平滑化された後、出力される。
 逆に、二次側電源132の直流電力を昇圧して、一次側電源131に充電することもできる。
 回路基板6には、図示しない制御回路が形成されている。該制御回路は、一次側半導体部品3におけるスイッチング素子及び二次側半導体部品4のスイッチング素子のオンオフ制御を行うよう構成されている。したがって、各スイッチング素子の信号端子、例えばMOSFETのゲート端子が、回路基板6の制御回路に接続されている。
 本実施形態において、一次側半導体部品3と二次側半導体部品4とは、回路基板6に直接実装されている。すなわち、一次側半導体部品3及び二次側半導体部品4である半導体モジュールは、図示しない引出端子を備えている。そして、該引出端子が直接回路基板6に接続されている。ここで、引出端子は、スイッチング素子のゲート等に接続された信号端子とすることができる。また、スイッチング素子のソース等またはドレイン等に接続された引出端子が直接回路基板6に接続された構成とすることもできる。
 なお、上述の「ソース等」は、スイッチング素子がMOSFETの場合には、ソースを意味するが、スイッチング素子がIGBTの場合には、エミッタを意味することとなる。同様に、上述の「ドレイン等」は、スイッチング素子がMOSFETの場合には、ドレインを意味するが、スイッチング素子がIGBTの場合には、コレクタを意味することとなる。以下においても同様である。
 次に、本実施形態の作用効果につき説明する。
 上記電源装置1において、トランス2と一次側半導体部品3が第1積層体11を構成し、二次側半導体部品4とチョークコイル5とが第2積層体12を構成している。これにより、基板法線方向Zから見た電子部品10の配置スペースを容易に縮小することができる。それゆえ、電源装置1を小型化することができる。
 そして、回路基板6は、第1積層体11を構成する一対の電子部品10の間と、第2積層体12を構成する一対の電子部品10の間とに介在している。それゆえ、回路基板6と、いずれの電子部品10との間の距離をも短くすることができる。その結果、回路基板6と各電子部品10との間の配線長を短くすることが可能となる。そのため、この接続配線に起因するノイズを低減することができる。
 特に、回路基板6と一次側半導体部品3及び二次側半導体部品4との間の距離を短くすることができることにより、制御回路とスイッチング素子のゲートとの間の配線距離を短くすることができる。これにより、制御信号電流に起因するノイズの発生や、制御信号電流へ影響するノイズを低減することができる。
 また、複数の電子部品10が回路基板6の両側に分散配置されることとなるため、電子部品10の熱を放熱しやすい。すなわち、電源装置1の放熱性を向上させることができる。また、図示は省略するが、第1積層体11及び第2積層体12に対して、基板法線方向Zの両側から冷却部材を接触させることもできる。これによって、さらに放熱性を向上させることができる。
 また、一次側半導体部品3と二次側半導体部品4とが、回路基板6に直接実装されていることにより、組付け性を向上させることができる。また、一層のノイズ低減を図ることができる。
 以上のごとく、本実施形態によれば、小型化及びノイズ低減を図ることができる電源装置を提供することができる。
(実施形態2)
 本実施形態の電源装置1は、図4、図5に示すごとく、さらに接続部材7を備えている。
 接続部材7は、複数の電子部品10同士又は電子部品10と回路基板6とを電気的に接続する。接続部材7は、第1積層体11を構成する一対の電子部品10の間と、第2積層体12を構成する一対の電子部品10の間とに介在している。本実施形態においては、接続部材7は、トランス2と一次側半導体部品3との間であり、チョークコイル5と二次側半導体部品4との間に介在している。また、接続部材7は、回路基板6の上側に配置されている。ただし、接続部材7を回路基板6の下側に配置することもできる。
 接続部材7は、導体本体部71と、複数の接続端子部72とを有する。接続端子部72は、導体本体部71から基板法線方向Zに突出している。複数の電子部品10と回路基板6とのうち少なくとも2つは、接続端子部72に接続されている。
 一次側半導体部品3と二次側半導体部品4との少なくとも一方と、回路基板6とが、接続端子部72及び導体本体部71を介して電気的に接続されている。本実施形態においては、一次側半導体部品3と二次側半導体部品4との双方が、接続部材7の接続端子部72及び導体本体部71を介して回路基板6に接続されている。
 一次側半導体部品3又は二次側半導体部品4に接続される接続端子部72は、スイッチング素子のゲート等に接続された構成とすることができる。この場合、当該接続端子部72と電気的に接続された接続端子部72は、回路基板6における制御回路に接続されることとなる。また、一次側半導体部品3又は二次側半導体部品4に接続される接続端子部72が、スイッチング素子のソース等またはドレイン等のパワー端子に接続された構成とすることもできる。
 接続部材7は、導体本体部71の少なくとも一部を樹脂によって封止してなる封止部73を備えている。接続端子部72は封止部73から露出している。複数の接続端子部72は、基板法線方向Zの下側にそれぞれ突出している。そして、それらの接続端子部72が、回路基板6、一次側半導体部品3、及び二次側半導体4にそれぞれ接続されている。なお、接続部材7は、上側に突出した接続端子部72を有していてもよい。
 また、回路基板6には、基板法線方向Zに貫通した貫通孔62が形成されている。接続端子部72のうち、一次側半導体部品3及び二次側半導体4にそれぞれ接続されるものは、貫通孔62に挿通されている。
 その他の構成は、実施形態1と同様である。なお、実施形態2以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
 本実施形態の電源装置1は、接続部材7を備えている。そして、接続部材7は、第1積層体11を構成する一対の電子部品10の間と、第2積層体12を構成する一対の電子部品10の間とに介在している。それゆえ、電子部品10と回路基板6との間の配線距離を短くすることができ、より一層、ノイズ低減及び小型化を図ることができる。
 また、接続部材7は、導体本体部71と接続端子部72とを有する。これにより、接続部材7に対する電子部品10及び回路基板6の組付け性を向上させることができる。すなわち、接続部材7と電子部品10と回路基板6とを組み付ける際、これらの部品の相対移動の方向を、回路基板6に平行な方向ではなく、基板法線方向Zとすることができる。そのため、組付け設備の設置面積を小さくすることができる。
 その他、実施形態1と同様の作用効果を有する。
(実施形態3)
 本実施形態は、図6に示すごとく、トランス2とチョークコイル5との少なくとも一方と、回路基板6とが、接続端子部72及び導体本体部71を介して電気的に接続されている形態である。
 より具体的には、トランス2とチョークコイル5との双方と、回路基板6とが、接続部材7における接続端子部72及び導体本体部71を介して電気的に接続されている。
 図7に回路図として示すごとく、トランス2の一次コイル21の一対の端子が、接続部材7を介して回路基板6に接続されている。そして、回路基板6に形成された導体配線に、回路基板6に搭載された一次側半導体部品3が接続されている。それゆえ、一次コイル21は、接続部材7及び回路基板6を介して、一次側半導体部品3に電気的に接続されている。
 すなわち、回路基板6には、制御回路とは独立した導体配線も形成されており、該導体配線を介して、一次コイル21が一次側半導体部品3に接続されている。また、一次側半導体部品3におけるハイサイド側のスイッチング素子とローサイド側のスイッチング素子との間の配線に、一次コイル21の一対の端子が電気的に接続される。
 また、接続部材7は、チョークコイル5における補助コイル52の一対の端子を、回路基板6に接続している。補助コイル52は、電源装置1を、二次側電源132の電圧を昇圧して一次側電源131に供給するにあたり用いる場合に、チョークコイル5に蓄積されたエネルギーを一次側回路に供給するためのものである。また、補助コイル52の一方の端子と一次側回路との間には、電流の逆流を防止するためのダイオードが設けてある。
 図8、図9に示すごとく、接続部材7は、導体本体部71の少なくとも一部を樹脂によって封止してなる封止部73を備えている。接続端子部72は封止部73から露出している。複数の接続端子部72は、基板法線方向Zの上下両側にそれぞれ突出している。そして、図6に示すごとく、上側に突出した接続端子部72がトランス2、チョークコイル5に接続されている。下側に突出した接続端子部72が回路基板6に接続されている。トランス2に接続された接続端子部72とチョークコイル5に接続された接続端子部72とは互いに電気的に独立している。つまり、図6、図10に示すごとく、接続部材7は、互いに電気的に独立した複数の導体本体部71を備えている。
 図11~図13に示すごとく、トランス2又はチョークコイル5は、コイル部の少なくとも一部が形成されたプリント基板14を備えている。本実施形態においては、トランス2及びチョークコイル5がプリント基板14として厚銅基板を備えている。
 トランス2の一次コイル21及び二次コイル22と、チョークコイル5のコイル部とは、一枚のプリント基板14を共有している。プリント基板14は、図示を省略するが、複数の導体層と樹脂層とを有する。また、本実施形態においては、複数の導体層は、プリント基板14の広がり方向における2つの部位である第1の部位と第2の部位とにそれぞれ形成されている。そして、プリント基板14の第1の部位と、該第1の部位を挟むように配された上コア231及び下コア232とによって、トランス2が構成されている。また、プリント基板14の第2の部位と、該第2の部位を挟むように配された上コア531及び下コア532とによって、チョークコイル5が構成されている。
 また、トランス2の上コア231及びチョークコイル5の上コア531のそれぞれの上面には、弾性部材13が配置されている。また、トランス2の下コア232及びチョークコイル5の下コア532の下側に、接続部材7が配置されている。
 図12、図13に示すごとく、接続部材7の封止部73は、基板法線方向Zの両側から、第1積層体11の一対の電子部品10及び第2積層体12の一対の電子部品10によって挟持されている。本実施形態においては、封止部73は、トランス2と一次側半導体部品3とによって挟持されていると共に、チョークコイル5と二次側半導体部品4とによって挟持されている。
 封止部73は、上側の電子部品10に当接する上側当接面731と、下側の電子部品10に当接する下側当接面732とを有する。本実施形態においては、上側当接面731がトランス2の下コア232及びチョークコイル5の下コア532と当接する。また、下側当接面732が一次側半導体部品3及び二次側半導体部品4と当接する。上側当接面731及び下側当接面732は、基板法線方向Zと直交する平坦面となっている。また、封止部73は、下面に下側当接面732を設けた脚部733を下方に突出形成してなる。なお、図12に示すごとく、回路基板6には、適宜、脚部733との干渉を避けるための開口部63が形成されている。
 電源装置1は、第1積層体11及び第2積層体12を含めた構成部品をケース15内に収容してなる。ケース15は、下側ケース体151と上側ケース体152とを組み合わせてなる。
 そして、下側ケース体151の上に、一次側半導体部品3及び二次側半導体4、回路基板6、接続部材7、トランス2及びチョークコイル5が、順次積層配置されている。そして、トランス2及びチョークコイル5の上側に、弾性部材13が配されており、弾性部材13の上側に上側ケース体152が配されている。そして、上側ケース体152を下側ケース体151に組み付けた状態において、弾性部材13が基板法線方向Zに弾性圧縮される。これにより、弾性部材13によって第1積層体11及び第2積層体12が加圧される。このとき、第1積層体11においては、弾性部材13の加圧力は、トランス2、接続部材7の封止部73、一次側半導体部品3に加わる。また、第2積層体12においては、弾性部材13の加圧力は、チョークコイル5、接続部材7の封止部73、二次側半導体部品4に加わる。つまり、加圧力が回路基板6には加わらないような構成となっている。
 接続部材7と回路基板6との間の接続は、図14、図15に示すごとく、回路基板6に形成されたスルーホール61と、スルーホール61に挿入された接続端子部72とによって構成されている。接続端子部72は、径方向に変形可能なプレスフィット構造を有する。そして、接続端子部72は、スルーホール61の内壁面に圧接されている。すなわち、図14に示すごとく、スルーホール61に挿入される前の接続端子部72は、径方向の少なくとも一方向において、スルーホール61の内径よりも大きい状態となっている。そして、接続端子部72は、径方向に弾塑性変形可能となっている。この接続端子部72をスルーホール61に挿入することにより、図15に示すごとく、接続端子部72が径方向に圧縮されるように変形する。そして、接続端子部72は、スルーホール61内に配置された状態において、径方向外側に復元力Fが作用する。つまり、接続端子部72がスルーホール61の内壁面に圧接されることとなる。
 なお、接続端子部72は、弾性域のみで変形してスルーホール61内に配置されていてもよい。また、充分な復元力Fが作用する状態であれば、接続端子部72は、弾性域を超えて塑性域まで変形した状態で、スルーホール61内に配置されてもよい。
 接続部材7とトランス2又はチョークコイル5との接続は、プリント基板14に形成されたスルーホール141と、該スルーホール141に挿入された接続端子部72とによって構成されている。本実施形態においては、トランス2と接続部材7との接続も、チョークコイル5と接続部材7との接続も、スルーホール141と接続端子部72とによって構成されている。そして、これらの接続も、プレスフィット構造を有する接続端子部72がスルーホール141の内壁面に圧接された状態で構成されている。
 また、一次側半導体部品3及び二次側半導体部品4の少なくとも一方の引出端子は、回路基板6に形成されたスルーホール61に挿入されている。本実施形態においては、一次側半導体部品3の引出端子31及び二次側半導体部品4の引出端子41のいずれもが、それぞれ、スルーホール61に挿入されている。そして、これらの接続も、プレスフィット構造を有する引出端子31、41がスルーホール61の内壁面に圧接された状態で構成されている。
 また、図7~図10に示すごとく、接続部材7は、接地される接地バスバー74を備えている。本実施形態においては、トランス2の二次コイル22のセンターパッドに接続される接続端子部72と導通する導体本体部71が、接地バスバー74となる。この接地バスバー74は、第1積層体11の一対の電子部品10の間、及び第2積層体12の一対の電子部品10の間に、広がって配置されている。
 また、図11に示すごとく、回路基板6には、電子部品10とは異なる実装部品17が実装されている。実装部品17は、基板法線方向Zから見たとき、電子部品10及び接続部材7のいずれとも重ならない位置に配されている。実装部品17としては、例えば、ヒューズ、コンデンサ、入力端子台、カレントトランス、信号コネクタ、補助電源の磁気部品等がある。また、実装部品17は、基板法線方向Zにおける高さ寸法が、例えば、回路基板6と一次側半導体部品3又は二次側半導体4との間の距離よりも大きい。また、実装部品17の高さ寸法は、例えば、回路基板6とトランス2又はチョークコイル5との間の距離よりも大きい。
 その他の構成は、実施形態1と同様である。
 次に、本実施形態の作用効果につき説明する。
 本実施形態においては、トランス2及びチョークコイル5と回路基板6とを、接続部材7を介して接続することができる。そのため、他の電子部品10等に対するトランス2及びチョークコイル5の電気的接続を容易に行うことができる。また、その接続配線を短くすることもでき、ノイズ低減を図ることができる。
 また、実装部品17は、基板法線方向Zから見たとき、電子部品10及び接続部材7のいずれとも重ならない位置に配されている。これにより、基板法線方向Zにおける電源装置1の小型化を図ることができる。
 また、接続端子部72及び引出端子31、41は、回路基板6のスルーホール61又はプリント基板14のスルーホール141に挿通されている。これにより、電子部品10と回路基板6と接続部材7との組み付けを、基板法線方向Zにおいて容易に行うことができる。また、接続端子部72及び引出端子31、41がプレスフィット構造を備えているため、一層、組付け工数を抑制することができる。例えば、基板法線方向Zに電子部品10と接続部材7と回路基板6とを並べてセットした状態から、一度のプレスにて、すべての接続端子72及び引出端子31、41における接続を完了することも可能となる。
 また、接続端子部72及び引出端子31、41がプレスフィット構造を備えていることにより、はんだ接続に比べて端子間距離を小さくしたり、端子と周辺部品との間の距離を小さくしたりすることができる。すなわち、はんだ接続を行う場合、例えば、はんだフィレットの分、接続部の面積が大きくなりやすい。また、はんだ部のクラックを防止するために、はんだ部の位置を、例えば回路基板6において大きな応力が作用しない部位にする必要がある。それに比べて、プレスフィット構造を採用することで、省スペース化を図りやすくなる。また、溶接等と比べても、組み立て時に用いる設備等の観点から、電源装置1の小型化を図りやすい。
 また、接続部材7は接地バスバー74を備えている。そのため、接続部材7の上側の電子部品10と下側の電子部品10との間における電磁ノイズの影響を抑制することができる。また、接地バスバー74が回路基板6とトランス2及びチョークコイル5との間に配置されていることで、トランス2及びチョークコイル5から回路基板6への電磁ノイズの影響及び熱の影響を効果的に抑制することができる
 また、接続部材7の封止部73が基板法線方向Zの両側から、電子部品10に挟持されている。これにより、回路基板6に加圧力がかからないようにしつつ、第1積層体11及び第2積層体12を基板法線方向Zに固定することができる。また、回路基板6に加圧力がかからないため、弾性部材13の加圧力を高めて、耐振性を容易に向上させることができる。
 その他、実施形態1と同様の作用効果を有する。
(実施形態4)
 本実施形態は、図16に示すごとく、回路基板6を挟んで互いに反対側に配された複数の電子部品10同士を接続部材7によって接続した実施形態である。
 すなわち、トランス2と一次側半導体部品3との間、トランス2と二次側半導体部品4との間、チョークコイル5と二次側半導体部品4との間、チョークコイル5と一次側半導体部品3との間、の少なくとも一つは、接続端子部72及び導体本体部71を介して電気的に接続されている。特に本実施形態においては、トランス2と一次側半導体部品3との間、及び、チョークコイル5と二次側半導体部品4との間を、それぞれ接続部材7における接続端子部72及び導体本体部71が接続している。
 回路基板6の一部には、貫通孔62が設けられている。そして、一次側半導体部品3に接続される接続端子部72、二次側半導体部品4に接続される接続端子部72が、それぞれ貫通孔62に挿通されている。
 その他の構成は、実施形態1と同様である。本実施形態においても、小型化、ノイズ低減、放熱性の向上を図ることができる電源装置を得ることができる。
(実施形態5)
 本実施形態においては、図17、図18に示すごとく、トランス2とチョークコイル5とが、接続端子部72及び導体本体部71を介して電気的に接続されている。
 すなわち、図17に示すごとく、接続部材7は、導体本体部71を介して接続されている複数の接続端子部72を、上側に突出させている。そして、これら複数の接続端子部72の一部がトランス2に接続され、複数の接続端子部72の他の一部がチョークコイル5に接続されている。これにより、トランス2とチョークコイル5とが電気的に接続されている。
 本実施形態における電源装置1の回路構成としては、例えば、図18に示す構成が考えられる。この回路構成においては、トランス2の二次コイル22の端子がチョークコイル5の一方の端子に接続されている。この接続配線として、接続部材7の導体本体部71と接続端子部72とがトランス2とチョークコイル5との間に介在している。
 その他の構成は、実施形態1と同様である。本実施形態においても、小型化、ノイズ低減、放熱性の向上を図ることができる電源装置を得ることができる。
(実施形態6)
 本実施形態においては、図19、図20に示すごとく、一次側半導体部品3と二次側半導体部品4とが、接続端子部72及び導体本体部71を介して電気的に接続されている。
 すなわち、接続部材7は、導体本体部71を介して接続されている複数の接続端子部72を、下側に突出させている。そして、これら複数の接続端子部72の一部が一次側半導体部品3に接続され、複数の接続端子部72の他の一部が二次側半導体部品4に接続されている。これにより、一次側半導体部品3と二次側半導体部品4とが電気的に接続されている。
 本実施形態における電源装置1の回路構成としては、例えば、図20に示す構成が考えられる。この回路構成においては、一次側半導体部品3が、4つのMOSFETと2つのコンデンサとを一体化してなる。また、二次側半導体部品4が2つのMOSFETとコンデンサとを一体化してなる。そして、一次側半導体部品3における2つのコンデンサの間の配線部分と、二次側半導体部品4におけるコンデンサの一方の端子とが、互いに電気的に接続されると共に接地されている。この接続配線部分が、接続部材7の導体本体部71と接続端子部72とによって構成されている。
 その他の構成は、実施形態1と同様である。本実施形態においても、小型化、ノイズ低減、放熱性の向上を図ることができる電源装置を得ることができる。
 本開示は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
 例えば、実施形態3において詳述した各部の構成は、他の実施形態においても、適宜適用することができる。すなわち、例えば、実施形態3において詳述した接続部材7、各電子部品10、回路基板6等のそれぞれの構成は、他の実施形態にも適用することができる。
 また、上記実施形態においては、第1積層体11をトランス2と一次側半導体部品3とによって構成し、第2積層体12をチョークコイル5と二次側半導体部品4とによって構成した形態を開示している。しかし、第1積層体11及び第2積層体12における電子部品10の組み合わせは、これに限られず、他の組み合わせとすることもできる。また、回路基板6を介する各電子部品10の配置も、種々変更することができる。
 また、上記実施形態においては、接続部材7を回路基板6の上側に配置した形態を示したが、この配置関係を逆にすることもできる。

Claims (19)

  1.  一次コイル(21)と二次コイル(22)とを有するトランス(2)と、
     該トランスの上記一次コイル側に接続された一次側回路を構成する一次側半導体部品(3)と、
     上記トランスの上記二次コイル側に接続された二次側回路を構成する二次側半導体部品(4)と、
     上記二次側回路を上記二次側半導体部品と共に構成するチョークコイル(5)と、
     制御回路が形成された回路基板(6)と、を有し、
     上記トランスと上記一次側半導体部品と上記二次側半導体部品と上記チョークコイルとの電子部品(10)のうち、2つずつの該電子部品同士が、それぞれ上記回路基板の法線方向である基板法線方向(Z)に積層された第1積層体(11)及び第2積層体(12)を構成しており、
     上記回路基板は、上記第1積層体を構成する一対の上記電子部品の間と、上記第2積層体を構成する一対の上記電子部品の間とに介在している、電源装置(1)。
  2.  複数の上記電子部品同士又は該電子部品と上記回路基板とを電気的に接続する接続部材(7)をさらに備え、該接続部材は、上記第1積層体を構成する一対の上記電子部品の間と、上記第2積層体を構成する一対の上記電子部品の間とに介在している、請求項1に記載の電源装置。
  3.  上記接続部材は、導体本体部(71)と、該導体本体部から上記基板法線方向に突出した複数の接続端子部(72)とを有し、上記複数の電子部品と上記回路基板とのうち少なくとも2つは、上記接続端子部に接続されている、請求項2に記載の電源装置。
  4.  上記第1積層体は、上記トランスと上記一次側半導体部品又は上記二次側半導体部品とからなり、上記第2積層体は、上記チョークコイルと上記二次側半導体部品又は上記一次側半導体部品とからなり、上記トランスと上記チョークコイルとは、上記回路基板における同じ面側に配されている、請求項3に記載の電源装置。
  5.  上記トランスと上記チョークコイルとの少なくとも一方と、上記回路基板とは、上記接続端子部及び上記導体本体部を介して電気的に接続されている、請求項4に記載の電源装置。
  6.  上記トランスと上記一次側半導体部品との間、上記トランスと上記二次側半導体部品との間、上記チョークコイルと上記二次側半導体部品との間、上記チョークコイルと上記一次側半導体部品との間、の少なくとも一つは、上記接続端子部及び上記導体本体部を介して電気的に接続されている、請求項4又は5に記載の電源装置。
  7.  上記一次側半導体部品と上記二次側半導体部品との少なくとも一方と、上記回路基板とは、上記接続端子部及び上記導体本体部を介して電気的に接続されている、請求項4~6のいずれか一項に記載の電源装置。
  8.  上記一次側半導体部品と上記二次側半導体部品との少なくとも一方は、上記回路基板に直接実装されている、請求項3~5のいずれか一項に記載の電源装置。
  9.  上記回路基板には、上記電子部品とは異なる実装部品(17)が実装されており、該実装部品は、上記基板法線方向から見たとき、上記電子部品及び上記接続部材のいずれとも重ならない位置に配されている、請求項2~7のいずれか一項に記載の電源装置。
  10.  上記トランスと上記チョークコイルとは、上記接続端子部及び上記導体本体部を介して電気的に接続されている、請求項3~9のいずれか一項に記載の電源装置。
  11.  上記一次側半導体部品と上記二次側半導体部品とは、上記接続端子部及び上記導体本体部を介して電気的に接続されている、請求項3~10のいずれか一項に記載の電源装置。
  12.  上記接続部材と上記回路基板との間の接続は、上記回路基板に形成されたスルーホール(61)と該スルーホールに挿入された上記接続端子部とによって構成されている、請求項5又は7に記載の電源装置。
  13.  上記接続端子部は、径方向に変形可能なプレスフィット構造を有し、上記スルーホールの内壁面に圧接されている、請求項12に記載の電源装置。
  14.  上記トランス又は上記チョークコイルは、コイル部の少なくとも一部が形成されたプリント基板(14)を備え、上記接続部材と上記トランス又は上記チョークコイルとの接続は、上記プリント基板に形成されたスルーホール(141)と該スルーホールに挿入された上記接続端子部とによって構成されている、請求項5又は6に記載の電源装置。
  15.  上記接続端子部は、径方向に変形可能なプレスフィット構造を有し、上記スルーホールの内壁面に圧接されている、請求項14に記載の電源装置。
  16.  上記一次側半導体部品及び上記二次側半導体部品の少なくとも一方の引出端子(31、41)は、上記回路基板に形成されたスルーホールに挿入されている、請求項8に記載の電源装置。
  17.  上記引出端子は、径方向に変形可能なプレスフィット構造を有し、上記スルーホールの内壁面に圧接されている、請求項16に記載の電源装置。
  18.  上記接続部材は、接地される接地バスバー(74)を備えている、請求項3~17に記載の電源装置。
  19.  上記接続部材は、上記接続端子部を露出させた状態で上記導体本体部の少なくとも一部を樹脂によって封止してなる封止部(73)を備え、該封止部は、上記基板法線方向の両側から、上記第1積層体の一対の上記電子部品及び上記第2積層体の一対の上記電子部品によって挟持されている、請求項2~18のいずれか一項に記載の電源装置。
PCT/JP2016/083956 2015-12-18 2016-11-16 電源装置 WO2017104339A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/061,012 US10256719B2 (en) 2015-12-18 2016-11-16 Power supply device
CN201680074566.6A CN108432115B (zh) 2015-12-18 2016-11-16 电源装置
DE112016005822.5T DE112016005822T5 (de) 2015-12-18 2016-11-16 Leistungsversorgungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015247539A JP6451620B2 (ja) 2015-12-18 2015-12-18 電源装置
JP2015-247539 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017104339A1 true WO2017104339A1 (ja) 2017-06-22

Family

ID=59056001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083956 WO2017104339A1 (ja) 2015-12-18 2016-11-16 電源装置

Country Status (5)

Country Link
US (1) US10256719B2 (ja)
JP (1) JP6451620B2 (ja)
CN (1) CN108432115B (ja)
DE (1) DE112016005822T5 (ja)
WO (1) WO2017104339A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124008A (ja) * 2019-01-29 2020-08-13 株式会社デンソー 電源装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018078734A1 (ja) * 2016-10-26 2018-12-20 三菱電機株式会社 電力変換装置
JP7053382B2 (ja) * 2018-06-13 2022-04-12 新電元工業株式会社 電力変換装置
JP7133487B2 (ja) * 2019-01-24 2022-09-08 株式会社Soken 電源装置
JP7268508B2 (ja) * 2019-07-09 2023-05-08 株式会社デンソー コイルモジュール及び電力変換装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329628A (ja) * 1998-04-27 1999-11-30 Whitaker Corp:The Ffcコネクタ組立体
WO2011010491A1 (ja) * 2009-07-23 2011-01-27 株式会社村田製作所 コイル一体型スイッチング電源モジュール
JP2013215053A (ja) * 2012-04-03 2013-10-17 Mitsubishi Electric Corp 電源装置およびパワーモジュール
JP2015201965A (ja) * 2014-04-08 2015-11-12 株式会社デンソー 電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620415B2 (ja) * 2000-06-30 2005-02-16 株式会社村田製作所 絶縁型コンバータ
JP2004222486A (ja) * 2002-12-27 2004-08-05 Murata Mfg Co Ltd スイッチング電源モジュール
JP5707435B2 (ja) * 2013-02-21 2015-04-30 株式会社日本自動車部品総合研究所 ノイズフィルタ
JP5701412B2 (ja) * 2013-02-21 2015-04-15 株式会社デンソー 電力変換装置
US9438127B2 (en) * 2013-03-11 2016-09-06 Analog Devices Global Reverse current control for an isolated power supply having synchronous rectifiers
JP5904228B2 (ja) * 2013-07-30 2016-04-13 株式会社デンソー 電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329628A (ja) * 1998-04-27 1999-11-30 Whitaker Corp:The Ffcコネクタ組立体
WO2011010491A1 (ja) * 2009-07-23 2011-01-27 株式会社村田製作所 コイル一体型スイッチング電源モジュール
JP2013215053A (ja) * 2012-04-03 2013-10-17 Mitsubishi Electric Corp 電源装置およびパワーモジュール
JP2015201965A (ja) * 2014-04-08 2015-11-12 株式会社デンソー 電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124008A (ja) * 2019-01-29 2020-08-13 株式会社デンソー 電源装置
JP7147598B2 (ja) 2019-01-29 2022-10-05 株式会社デンソー 電源装置

Also Published As

Publication number Publication date
CN108432115B (zh) 2020-09-22
DE112016005822T5 (de) 2018-08-30
JP6451620B2 (ja) 2019-01-16
US10256719B2 (en) 2019-04-09
US20180367031A1 (en) 2018-12-20
JP2017112794A (ja) 2017-06-22
CN108432115A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2017104339A1 (ja) 電源装置
JP5449424B2 (ja) 車載用電力変換装置
JP5939274B2 (ja) 電源装置
JP5558543B2 (ja) スイッチング電源装置
WO2015053141A1 (ja) Dc-dcコンバータ装置
JP5769784B2 (ja) 車載用電力変換装置
JP6020375B2 (ja) 電源装置
US9960700B2 (en) Electronic apparatus
WO2017038369A1 (ja) 電力変換装置
JP6160388B2 (ja) 電力変換装置
JPWO2020136886A1 (ja) 車載用電力変換装置
WO2015156240A1 (ja) 電源装置
JP2013188010A (ja) 絶縁型スイッチング電源装置
JP6604406B2 (ja) 電源装置
US10497631B2 (en) Insulated DC-DC converter
JP6164148B2 (ja) 電源装置
JP5958493B2 (ja) 電源装置
US11502018B2 (en) Holding and ignition prevention device for semiconductor element, and power conversion device using holding and ignition prevention device
JP2016086494A (ja) 車載用dcdcコンバータ
JP2016063554A (ja) 電源装置
JP2018207131A (ja) ゲートドライバユニットおよびパワーモジュール
JP7109619B1 (ja) 電力変換装置
JP6349874B2 (ja) 電源装置
US20220344286A1 (en) Semiconductor module
JP2016086458A (ja) 車両用dc―dcコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016005822

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875323

Country of ref document: EP

Kind code of ref document: A1