WO2017101712A1 - 一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法 - Google Patents

一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法 Download PDF

Info

Publication number
WO2017101712A1
WO2017101712A1 PCT/CN2016/108690 CN2016108690W WO2017101712A1 WO 2017101712 A1 WO2017101712 A1 WO 2017101712A1 CN 2016108690 W CN2016108690 W CN 2016108690W WO 2017101712 A1 WO2017101712 A1 WO 2017101712A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold storage
nanophase
inorganic
added
storage fluid
Prior art date
Application number
PCT/CN2016/108690
Other languages
English (en)
French (fr)
Inventor
方玉堂
付弯弯
梁向晖
汪双凤
余慧敏
谢鸿洲
高学农
张正国
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2017101712A1 publication Critical patent/WO2017101712A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/066Cooling mixtures; De-icing compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention belongs to the technical field of phase change cold storage materials, and particularly relates to an inorganic/organic composite shell nano phase change capsule cold storage fluid and a preparation method thereof.
  • Air conditioning phase change cold storage is an effective means to achieve the "shift peak filling" of the power grid. It can not only improve the cooling efficiency of the air conditioning system, but also reduce environmental pollution.
  • Conventional phase change cold storage materials such as ice, eutectic salts, etc., in which the cold storage medium (phase change cold storage material) and the refrigerant release medium (refrigerant or chilled water) are functionally separated, ie, cold storage and transportation. It is made of two materials, one material stores the cold amount (one heat exchange), and then transfers the cold amount to the other fluid (the second heat exchange). Due to the secondary heat exchange, the system energy utilization efficiency is low.
  • the latent heat functional fluid (LFTF) realizes the cold storage and release function of the same material (latent heat phase change fluid).
  • the pipeline is used as part of the cold storage tank, which saves the efficiency of the cold storage system by eliminating one heat exchange process.
  • the shell layer of the nanocapsule is a vinyl polymer, on the one hand, its long-term cold-heat cycle has high requirements on the thermal stability (heat resistance) of the material; on the other hand, its thermal conductivity is low, if As a cold storage fluid, it is difficult to transfer the cooling amount to the base liquid quickly and efficiently, thereby greatly limiting the heat transfer efficiency of the fluid.
  • Metal oxides have high thermal conductivity and thermal stability; however, the use of metal oxides as shells alone, due to their high rigidity and brittle performance, is difficult to adapt to long-term, periodic hot and cold cycle requirements.
  • the primary object of the present invention is to provide a method for preparing an inorganic/organic composite shell nanophase-change capsule cold storage fluid.
  • Another object of the present invention is to provide an inorganic/organic composite shell nanophase-change capsule cold storage fluid prepared by the above method.
  • a method for preparing an inorganic/organic composite shell nanophase change capsule cold storage fluid comprises the following preparation steps:
  • styrene monomer (St), acrylate (BA) comonomer, chain transfer agent, initiator and alkane core material are formulated into an oil phase, which is added to sodium dodecyl sulfate (SDS) and hydrazine.
  • SDS sodium dodecyl sulfate
  • a complex emulsion composed of a phenolic polyoxyethylene ether (OP-10) and an aqueous phase composed of deionized water, which are homogeneously emulsified to obtain a fine emulsion;
  • step (3) The fine emulsion obtained in the step (2) is heated to 40-80 ° C, and then subjected to in-situ miniemulsion polymerization for 10 to 50 min, then the modified metal oxide sol is added dropwise, and the reaction is continued for 3 to 7 hours, and then naturally cooled to obtain a composite.
  • the metal alkoxide is a compound of the M(OR) n structural formula, wherein M is a metal having a valence of n such as silicon, titanium, aluminum, etc., and R represents an alkyl group such as methyl, ethyl, propyl or isopropyl. , butyl, isobutyl and the like.
  • the metal alkoxide is preferably tetraethyl orthosilicate, tetrabutyl titanate or aluminum isopropoxide.
  • said basic catalysis means ammonia catalysis.
  • the silicone coupling agent comprises ⁇ -methacryloxypropyltrimethoxysilane (KH-570), ⁇ -aminopropyltriethoxysilane (KH-550), 3-(2, 3-glycidoxypropyl)propyltrimethoxysilane (KH-560) Wait.
  • KH-570 contains an unsaturated propylene group, it can be graft copolymerized with a styrene shell monomer, preferably KH-570 as a metal oxide sol modifier.
  • the silicone coupling agent is used for the modification of metal oxides, the amount is small, the metal oxide sol has poor hydrophobicity, the compatibility with the vinyl polymer shell is poor, the coating effect is poor, and the amount of the modified sol is stable.
  • the difference is that the synthesized nanocapsules have a large particle size and a wide distribution.
  • the silicone coupling agent is added in an amount of from 0.8% to 1.5% by mass of the metal alkoxide.
  • the addition of the acrylate comonomer mainly considers improving the brittleness of the polystyrene, increasing the hydrophilicity of the phase change capsule (favoring the dispersion of the composite shell particles in the suspension), and facilitating the microphase separation to form a capsule.
  • the acrylate comonomer refers to ethyl acrylate; the acrylate comonomer is added in an amount of 4% by mass of the styrene monomer.
  • the chain transfer agent is added to control the molecular weight of the polymer shell; preferably, the chain transfer agent refers to dodecyl mercaptan;
  • the initiator is preferably azobisisobutyronitrile (AIBN).
  • the alkane core material is preferably an alkane having a melting point of 5 to 10 ° C, such as tetradecane or pentadecane, and a eutectic of at least one of tetradecane and pentadecane and hexadecane.
  • the melting point of tetradecane is about 5.8 ° C and has a high phase transition enthalpy (about 200 KJ / kg), it is more preferable as a core material of the nanocapsule cold storage fluid.
  • the amount of core material has a great influence on the phase change enthalpy of nanocapsules.
  • the amount of addition is small, and the phase change enthalpy is low.
  • the alkane core material is added in an amount of from 90% to 120% by mass of the styrene.
  • the modified metal oxide sol in the step (3) needs to be added at a time when the organic shell layer is polymerized to a certain moment, that is, the polymer forms a phase change capsule, but still has a certain activity (free radical).
  • Premature addition has an effect on the coating rate of the organic shell layer, which in turn affects the phase change enthalpy of the nanocapsule; too late, the system activity is low, and the graft copolymerization or deposition amount of the metal oxide on the surface of the organic capsule is small.
  • the nanocapsule emulsion has low stability. Therefore, it is preferred to add after 20 to 40 minutes of polymerization.
  • the amount of the modified metal oxide sol added is small, the content of the metal oxide in the shell layer is small, and the modification effect is poor; when the amount is increased, the stability of the synthetic emulsion (storage fluid) is deteriorated.
  • the modified metal oxide sol is added in an amount of 3% to 8% by mass based on the solid content of the styrene monomer.
  • the composite shell nanocapsule original emulsion has a high mass fraction (about 20%), and the viscosity thereof is large, and it is difficult to directly use as a cold storage fluid, and needs to be diluted with water.
  • the dilution concentration is small, the phase change enthalpy is low, the cold storage effect is poor; the dilution concentration is high, the viscosity is large, and the flow resistance is large; preferably, the dilution with water means dilution to a solid content of 3 to 10%, more preferably diluted to Its solid content is 5% to 8%.
  • the antifreeze agent in the step (4) includes methanol, ethanol, ethylene glycol and the like.
  • the antifreeze is added to prevent the fluid from freezing with the heat exchange fluid during the cold storage and release of the cold storage fluid. From the antifreeze effect, it is best to use ethylene glycol.
  • the antifreeze is added in an amount of 10wt% to 25wt%, the amount of addition is small, and the antifreeze effect is poor; the amount of addition is large, and the antifreeze effect is strong, but because of its low thermal conductivity (below water), the heat conduction performance is low; It is 12 wt% to 20 wt%.
  • An inorganic/organic composite shell nanophase-change capsule cold storage fluid is prepared by the above method.
  • Sol-Gel method using ethanol as solvent, alkoxide alkaline (ammonia water) catalyzed hydrolysis and condensation to form hydrophilic nano metal oxide sol, hydrophobic modification with silane coupling agent to obtain uniform dispersion of nano metal Oxide (sol).
  • KH-570 as a coupling agent is achieved by graft copolymerization of its unsaturated olefin with the polymer shell layer, so that the formed composite shell capsule has high stability.
  • n-tetradecane is used as the core material; the main monomer of the polymer is styrene, and the comonomer acrylate is added, mainly to improve the brittleness of the polystyrene and increase the hydrophilicity of the phase change capsule. Sex (helps the dispersion of composite shell particles in suspension) and facilitates microphase separation to form capsules. Adding dodecyl mercaptan only to control the molecular weight of the polymer shell; using SDS/OP-10 composite emulsifier, on the one hand, it is beneficial to the formation of oil droplets (tetradecane dissolved in styrene) and synthetic composite capsules.
  • the invention combines metal oxide and organic high polymer into a shell layer, and the prepared nano phase change capsule has the characteristics of small particle size, high phase transition enthalpy value and good thermal stability; and the fluid has high heat conductivity. Performance, specific heat capacity and mechanical stability;
  • the preparation method of the present invention ensures good formation of the composite shell layer, thereby ensuring excellent properties of the product.
  • Example 1 is a particle size distribution diagram of a nano phase change capsule material (solid capsule) prepared in Example 1, Example 2, and a comparative example.
  • Example 2 is a TEM image of the nanophase change capsule prepared in Example 2;
  • Example 3 is a DSC graph of the nanophase-change capsule material prepared in Example 1, Example 2, and Comparative Example;
  • Example 4 is a graph showing the thermogravimetric load of the nanophase-change capsule material prepared in Example 1, Example 2, and Comparative Example;
  • Example 5 is a graph showing thermal conductivity curves of nanophase-change capsule materials (fluids) prepared in Example 1, Example 2, and Comparative Example;
  • Example 6 is a graph showing a specific heat capacity curve of the nanophase-change capsule material prepared in Example 1, Example 2, and Comparative Example;
  • Fig. 7 is a graph showing the viscosity of the nanophase-change capsule material prepared in Example 1, Example 2, and Comparative Example.
  • the samples were centrifuged at a rate of 1500 r ⁇ min -1 and 3000 r ⁇ min -1 for 15 min respectively.
  • the ratio of the sample after centrifugation to the fluid solid content (R) was used to illustrate the mechanical stability. The smaller the R value, the more stable.
  • Determination of solid content of emulsion Demulsification with 10% sodium chloride solution and absolute ethanol. After suction filtration, the white solid was washed three times with petroleum ether, then washed with deionized water three times, and finally processed white. The solid was dried in a dry box at 40 ° C for 12 h. The ratio of the weight after drying to the amount of raw material added is the solid content of the nanocapsule emulsion.
  • the properties of the nanophase-change capsules prepared by the present invention are as follows:
  • FIG. 1 is a particle size distribution diagram of three samples (solid capsules);
  • FIG. 2 is a TEM image of the transmission electron microscope; For its DSC curve, Figure 4 is its thermogravimetric curve.
  • the particle size of the phase change capsule prepared in Examples 1 and 2 was slightly increased as compared with the comparative example.
  • the average particle size of the comparative organic shell nanocapsules was about 129.5 nm.
  • the average particle size of the capsule prepared as in Example 1 was about 151.3 nm; while the capsule prepared in Example 2 was approximately 176.3 nm.
  • Example 2 is a TEM image of the nanophase-change capsule prepared in Example 2.
  • the capsule has a regular spherical shape and a relatively uniform distribution, and the particle diameter is about 50 nm.
  • the particle size of the particle size analysis (176.3 nm) is larger than the particle size of the TEM, which may be related to the dilution of the cold storage fluid by adding the antifreeze to the glycol to increase the hydration of the particles.
  • Figure 3 shows the curve.
  • the phase change latent heat (melting enthalpy) of the samples of Examples 1 and 2 was 83.23 and 88.85 kJ/kg, respectively, which was slightly increased compared with the comparative phase change enthalpy (81.32 kJ/kg).
  • the addition of the modified metal oxide has little effect on the coating rate of the capsule; however, they differ in terms of the phase inversion process; in the temperature-melting melting process, in the first embodiment, the second embodiment has a high thermal conductivity of the shell layer.
  • the heat can be transferred to the core material in time, and the melting of the core material is accelerated (endothermic), so the initial melting temperature is lower than that of the comparative example, and the initial crystallization temperature of Example 1, the second embodiment is also in the cooling process. (Exothermic)
  • the crystallization process was advanced as compared with the comparative example. The above results indirectly prove that the composite shell layer prepared by the invention has better heat conduction properties.
  • thermogravimetric curve of Fig. 4 shows that in the composite shell layer, the thermal stability of Example 1 and Example 2 was increased due to the inclusion of the metal oxide, and the thermal stability of the comparative polymer shell layer (Comparative Example) was enhanced.
  • Example 2 The properties of the nanophase-change capsule cold storage fluid prepared in Example 1, Example 2 and Comparative Example were also tested.
  • Figure 5 is the thermal conductivity of three samples (fluid);
  • Figure 6 is its specific heat capacity;
  • Figure 7 is its viscosity;
  • Table 1 is the mechanical stability test of Example 1, Example 2.
  • the thermal conductivity of the embodiment 1 and the embodiment 2 is higher than that of the comparative example at the same temperature, and the embodiment 2 is larger than the embodiment 1. It shows that the silica content increases and its thermal conductivity is increased.
  • the specific heat capacity tested in Figure 6 is basically consistent with the DSC test. In the vicinity of the phase transition temperature, the heat capacity value of Example 1 and Example 2 is higher than that of the comparative example. The results of Fig.
  • Example 7 show that the composite shell cold storage fluid (Example 1, Example 2) and the single shell (Comparative Example) cold storage fluid (fluid) have low viscosity and good flow properties; Table 1 Example 1 The test results of Example 2 show that the composite shell nanophase-change capsule cold storage fluid has good mechanical stability. Qualitative.
  • the inorganic/organic composite shell nanocapsules prepared by the method of the invention have the characteristics of small particle size, high phase transition enthalpy value and good thermal stability, and the fluid has high thermal conductivity, specific heat capacity and mechanical stability. It can be used as a phase change cold storage fluid for cold storage air conditioners.

Abstract

本发明属于相变蓄冷材料技术领域,公开了一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法。所述制备方法为:将金属醇盐经水解缩合和有机硅偶联剂改性,得到改性金属氧化物溶胶;将苯乙烯单体、丙烯酸酯共聚单体、链转移剂、引发剂和烷烃芯材配成油相,加入到乳化剂和去离子水配成的水相中,经均质乳化得细乳液;将其升温至40~80℃原位聚合10~50min后滴加改性金属氧化物溶胶,反应后得到复合壳层纳米相变胶囊乳液;往上述乳液中加入抗冻剂并加水稀释,得到产物。本发明以金属氧化物和有机高聚物复合为壳层,所得产物同时具有较高导热性能、比热容及机械稳定性,可作为蓄冷空调用相变蓄冷流体。

Description

一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法 技术领域
本发明属于相变蓄冷材料技术领域,具体涉及一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法。
背景技术
空调相变蓄冷是实现电网“移峰填谷”的有效手段,它不仅能提高空调系统制冷效率,而且可减少环境污染。传统相变蓄冷材料,如冰、共晶盐等,其蓄冷系统中的蓄冷介质(相变蓄冷材料)与释冷介质(冷媒或冷冻水)在功能上分离的,即冷量的储存和运输是由两种材料完成,一种材料将冷量储存(一次换热),再将冷量传递给另一种流体(第二次换热)。由于经历二次换热,其系统能量利用效率较低。潜热型功能热流体(LFTF)则实现了由同一种材料(潜热型相变流体)的蓄冷和释冷功能,输送管道作为蓄冷槽一部分,由于省掉一次换热过程,提升了蓄冷系统效率。
在专利文献“纳米胶囊相变材料乳液的制备方法(ZL200610036494.4)”里,介绍了以有机聚苯乙烯为壳层,16~27碳原子正构烷烃为芯材的纳米胶囊LFTF制备方法。新型纳米胶囊LFTF,可应用于纺织、建筑节能等蓄热领域。而对于相变蓄冷空调领域的纳米胶囊LFTF,到目前为止,很少提及。由于纳米胶囊的壳层为乙烯基高聚物,一方面,其长时间冷-热循环,对材料热稳定性(耐热性)提出高要求;另一方面,其本身导热系数较低,若作为蓄冷流体,难以快速有效地将冷量传递给基液,从而大大限制了流体的传热效率。
金属氧化物具有较高热导率及热稳定性;但单独使用金属氧化物作壳层,由于其刚度大,性能脆,难以适应长时间、周期性冷热循环要求。
发明内容
为了解决以上现有技术的缺点和不足之处,本发明的首要目的在于提供一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法。
本发明的另一目的在于提供一种通过上述方法制备得到的无机/有机复合壳层纳米相变胶囊蓄冷流体。
本发明目的通过以下技术方案实现:
一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,包括以下制备步骤:
(1)将金属醇盐在醇溶剂及碱性催化下水解、缩合,然后用有机硅偶联剂改性,得到改性金属氧化物溶胶;
(2)将苯乙烯单体(St)、丙烯酸酯(BA)共聚单体、链转移剂、引发剂和烷烃芯材配成油相,加入到由十二烷基硫酸钠(SDS)和壬基酚聚氧乙烯醚(OP-10)组成的复合乳化剂和去离子水配成的水相中,经均质乳化得细乳液;
(3)步骤(2)所得细乳液除氧后升温至40~80℃进行原位细乳液聚合10~50min,然后滴加改性金属氧化物溶胶,继续反应3~7h后自然冷却,得到复合壳层纳米相变胶囊乳液;
(4)往复合壳层纳米相变胶囊乳液中加入抗冻剂,并加水稀释,形成均匀悬浮液,得到所述无机/有机复合壳层纳米相变胶囊蓄冷流体。
所述金属醇盐为M(OR)n结构式的化合物,其中,M为价态为n的金属如硅、钛、铝等,R表示烷基如甲基、乙基、丙基、异丙基、丁基,异丁基等。
考虑到金属醇盐水解速率及溶胶稳定性,所述的金属醇盐优选正硅酸乙酯、钛酸四丁酯或异丙醇铝。
优选地,所述的碱性催化是指氨水催化。
所述的有机硅偶联剂包括γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)、γ-氨丙基三乙氧基硅烷(KH-550)、3-(2,3-环氧丙氧)丙基三甲氧基硅烷(KH-560) 等。考虑到KH-570中含有不饱和丙烯基,它能与苯乙烯壳层单体发生接枝共聚,优选KH-570作为金属氧化物溶胶改性剂。
有机硅偶联剂用于金属氧化物的改性,用量小,金属氧化物溶胶疏水性差,与乙烯基聚合物壳层相容性差,包覆效果差;用量多,其改性溶胶的稳定性变差,合成的纳米胶囊粒径较大、分布宽。优选地,所述有机硅偶联剂的加入量为金属醇盐质量的0.8%~1.5%。
丙烯酸酯共聚单体的加入,主要考虑改善聚苯乙烯的脆性、增大相变胶囊的亲水性(有利于复合壳层粒子在悬浮液中的分散),并有利于微相分离形成胶囊。优选地,所述的丙烯酸酯共聚单体是指丙烯酸乙酯;丙烯酸酯共聚单体的加入量为苯乙烯单体质量的4%。
链转移剂的加入是为了控制聚合物壳层分子量;优选地,所述的链转移剂是指十二硫醇;
所述的引发剂优选偶氮二异丁氰(AIBN)。
所述的烷烃芯材优选熔点为5~10℃的烷烃,如十四烷或十五烷,以及十四烷和十五烷中的至少一种与十六烷的共晶物。考虑到十四烷的熔点在5.8℃左右,并具有较高相变焓值(200KJ/kg左右),更优选其作为纳米胶囊蓄冷流体的芯材。
芯材加入量对纳米胶囊相变焓值影响较大,加入量少,其相变焓值低;加入量高,胶囊相变焓值高,但壳层较薄,对其循环稳定性有影响。优选烷烃芯材的加入量为苯乙烯质量的90%~120%。
步骤(3)中所述改性金属氧化物溶胶需在有机壳层聚合反应到一定时刻,即聚合物形成相变胶囊、但仍有一定活性(自由基)的时刻加入。加入过早,对有机壳层包覆率有影响,进而影响纳米胶囊的相变焓值;加入太晚,体系活性低,金属氧化物在有机胶囊表面的接枝共聚合或沉积量较少,纳米胶囊乳液稳定性低。因此,以聚合反应20~40min后加入为佳。
所述改性金属氧化物溶胶的加入量少,金属氧化物在壳层中含量少,改性效果差;加入量多,对合成乳液(蓄冷流体)稳定性变差。优选地,所述改性金属氧化物溶胶的加入量(以固含量计算)为苯乙烯单体质量的3%~8%。
步骤(4)中,所述复合壳层纳米胶囊原乳液质量分数较高(20%左右),其粘度较大,难以直接作为蓄冷流体,需加水稀释。稀释浓度小,其相变焓值低,蓄冷效果差;稀释浓度高,粘度大,流动阻力大;优选地,所述加水稀释是指稀释至其固含量为3~10%,更优选稀释至其固含量为5%~8%。
步骤(4)中所述抗冻剂包括甲醇、乙醇及乙二醇等。加入抗冻剂是为了蓄冷流体在蓄冷、释冷过程中能与换热流体发生相变,防止流体结冰。从抗冻效果看,以乙二醇最好。
抗冻剂加入量为10wt%~25wt%,加入量少,防冻效果差;加入量多,防冻效果强,但由于其导热系数较低(低于水),热传导性能较低;其优化加入量为12wt%~20wt%。
一种无机/有机复合壳层纳米相变胶囊蓄冷流体,通过以上方法制备得到。
以金属氧化物及聚苯乙烯为复合壳层,十四烷为芯材,偶联剂KH-570为改性剂为例,本发明反应原理解释如下:
采用Sol-Gel法,以乙醇为溶剂,醇盐碱性(氨水)催化水解、缩合形成亲水性纳米金属氧化物溶胶,加入硅烷偶联剂对其进行疏水改性,得分散均匀的纳米金属氧化物(溶胶)。选用KH-570作偶联剂是利用其不饱和烯烃与聚合物壳层发生接枝共聚合,使形成的复合壳层胶囊稳定性高。
与空调蓄冷工况相对应,选用正十四烷作芯材;聚合物主单体为苯乙烯,加入共聚单体丙烯酸酯,主要考虑改善聚苯乙烯的脆性、增大相变胶囊的亲水性(有利于复合壳层粒子在悬浮液中的分散),并有利于微相分离形成胶囊。加入十二硫醇,只为了控制聚合物壳层分子量;选用SDS/OP-10复合乳化剂,一方面有利于油相小液滴形成(十四烷溶于苯乙烯)并使合成的复合胶囊在水中均匀分散;选用油溶性引发剂AIBN是为了在油相小液滴中进行原位细乳液聚 合,形成均匀的胶囊;在合成乳液中加入抗冻剂是为了防止蓄冷流体在蓄冷过程中结冰。改性溶胶在聚合物壳层形成前加入或同时加入,均影响聚合物胶囊的形成及稳定性,只有在聚合物相变胶囊形成、并具有一定活性的时刻加入,才能形成较好的复合壳层。
本发明的制备方法及所得到的产物具有如下优点及有益效果:
(1)本发明通过金属氧化物和有机高聚物复合为壳层,制备的纳米相变胶囊具有粒径小、相变焓值高及热稳定性好等特点;同时其流体具有较高导热性能、比热容及机械稳定性;
(2)本发明的制备方法确保了复合壳层的良好形成,从而保证了产物的优良性能。
附图说明
图1为实施例1、实施例2及比较例所制备的纳米相变胶囊材料(固体胶囊)的粒径分布图
图2为实施例2制备的纳米相变胶囊的TEM图;
图3为实施例1、实施例2及比较例所制备的纳米相变胶囊材料的DSC曲线图;
图4为实施例1、实施例2及比较例所制备的纳米相变胶囊材料的热失重曲线图;
图5为实施例1、实施例2及比较例所制备的纳米相变胶囊材料(流体)的导热系数曲线图;
图6为实施例1、实施例2及比较例所制备的纳米相变胶囊材料的比热容曲线图;
图7为实施例1、实施例2及比较例所制备的纳米相变胶囊材料的粘度曲线图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
以下实施例所得样品(包括乳液)结构表征及性能测试:美国Microtrac公司NPA150纳米粒度仪测量蓄冷流体中胶囊的粒径及分布;Hitachi S-3700N扫描电子显微镜观察样品的形貌;将流体稀释后滴加到玻璃片上镀金进行观察;美国TA公司DSC Q20差示扫描量热仪测定固体样品的相变温度、焓值及蓄冷流体样品的比热容,测温区间为-30~40℃,升降温速率均为5℃/min,气氛为N2,参比为Al2O3;德国Netzsch公司TG209热重分析仪测定样品的TG曲线,N2保护,升温速率为10℃/min,测温区间为25~600℃;瑞典Hot Disk公司的Hot Disk热常数分析仪测试流体导热系数;美国Brookfield公司DV-II+Pro旋转粘度计测试乳液的粘度,使用S00号转子,转速为100rpm;800型离心机测试相变胶囊流体机械稳定性。样品分别在1500r·min-1和3000r·min-1的速率下离心15min,离心沉积后的样品经干燥与流体固含量的比值(R)来说明其机械稳定性,R值越小,越稳定。乳液的固含量测定:先后用10%的氯化钠溶液、无水乙醇破乳,抽滤后将获得白色固体用石油醚洗三遍,再用去离子水洗三遍,最后将处理好的白色固体置于干燥箱40℃干燥12h。干燥后称重与原料添加量的比值为纳米胶囊乳液的固含量。
比较例
(1)将10g苯乙烯、12g正十四烷、0.4g丙烯酸乙酯、0.2g十二硫醇及0.05g偶氮二异丁腈配制成油相液,加入溶有0.3g乳化剂(SDS:OP-10=1:1)的100g水中,采用均质乳化机乳化10min得到乳液;
(2)将乳液转入到250ml装有回流管、氮气进口及机械搅拌的三口烧瓶内,先通氮气15min以除去体系中的氧气,然后在回流管冷凝下,加热升温至60℃并保持水温恒定,聚合反应6h后自然冷却到室温得纳米相变胶囊乳液。乳液经 破乳、分离、干燥及称重步骤,计算得固含量为18.5%。
(3)取合成乳液100g,加入46.25g乙二醇及162.05g水均匀混合,得固含量为6%、乙二醇含量15%的有机壳层纳米相变胶囊蓄冷流体。
实施例1
(1)在60℃恒温水浴条件下,将5ml正硅酸乙酯溶于30ml无水乙醇中,滴加0.008mol氨水,反应0.5h后加入0.06g KH-570,继续反应2.5h,自然冷却到室温制得改性硅溶胶。忽略其他组分,理论计算得其固含量16.7%(下同)。
(2)将10g苯乙烯、12g正十四烷、0.4g丙烯酸乙酯、0.2g十二硫醇及0.05g偶氮二异丁腈配制成油相液,加入溶有0.3g乳化剂(SDS:OP-10=1:1)的100g水中,采用均质乳化机乳化10min得到乳液。
(3)将乳液转入到250ml装有回流管、氮气进口、滴液漏斗及机械搅拌的四口烧瓶内,先通氮气15min以除去体系中的氧气,然后在回流管冷凝下,加热升温至60℃,保持水浴温度恒定条件下聚合反应30min后,滴加改性硅溶胶0.5g(固含量,相当于液体2.994g),继续反应5h,反应完毕后自然冷却到室温制得纳米相变胶囊乳液。
(4)取合成乳液100g,加入46.25g乙二醇及162.05g水,均匀混合得固含量为6%、乙二醇含量为15%的无机/有机复合壳层纳米相变胶囊蓄冷流体。
实施例2
(1)在60℃恒温水浴条件下,将5ml正硅酸乙酯溶于30ml无水乙醇中,滴加0.008mol氨水,反应0.5h后加入0.06g KH-570,继续反应2.5h,自然冷却到室温制得改性硅溶胶。
(2)将10g苯乙烯、12g正十四烷、0.4g丙烯酸乙酯、0.2g十二硫醇及0.05g偶氮二异丁腈配制成油相液,加入溶有0.3g乳化剂(SDS:OP-10=1:1)的100g 水中,采用均质乳化机乳化10min得到乳液。
(3)将乳液转入到250ml装有回流管、氮气进口及机械搅拌的三口烧瓶内,先通氮气15min以除去体系中的氧气,然后在回流管冷凝下,加热升温至60℃,保持水浴温度恒定条件下聚合反应30min后,滴加改性硅溶胶0.8g(固含量),继续反应5h,反应完毕后自然冷却到室温制得纳米相变胶囊乳液。
(4)取合成乳液100g,加入46.25g乙二醇及162.05g水,均匀混合得固含量为6%、乙二醇含量为15%的无机/有机壳层纳米相变胶囊蓄冷流体。
实施例3
(1)在60℃恒温水浴条件下,将5ml钛酸四丁酯溶于30ml无水乙醇中,滴加0.008mol氨水,反应0.5h后加入0.06g KH-570,继续反应2.5h,自然冷却到室温制得改性钛溶胶。
(2)将10g苯乙烯、12g正十五烷、0.4g丙烯酸乙酯、0.2g十二硫醇及0.05g偶氮二异丁腈配制成油相液,加入溶有0.3g乳化剂(SDS:OP-10=1:1)的100g水中,采用均质乳化机乳化10min得到乳液。
(3)将乳液转入到250ml装有回流管、氮气进口、滴液漏斗及机械搅拌的三口烧瓶内,先通氮气15min以除去体系中的氧气,然后在回流管冷凝下,加热升温至60℃,保持水浴温度恒定条件下聚合反应30min后,滴加改性钛溶胶0.5g(固含量),继续反应5h,反应完毕后自然冷却到室温制得纳米相变胶囊乳液。
(4)取合成乳液100g,加入46.25g乙二醇及162.05g水,均匀混合得固含量为6%、乙二醇含量为15%的无机/有机壳层纳米相变胶囊蓄冷流体。
实施例4
(1)在60℃恒温水浴条件下,将5ml正硅酸乙酯溶于30ml无水乙醇中,滴加0.008mol氨水,反应0.5h后加入0.06g KH-560,继续反应2.5h,自然冷却 到室温制得改性硅溶胶。
(2)将10g苯乙烯、10g正十四烷、0.4g丙烯酸乙酯、0.2g十二硫醇及0.05g偶氮二异丁腈配制成油相液,加入溶有0.3g乳化剂(SDS:OP-10=1:1)的100g水中,采用均质乳化机乳化10min得到乳液。
(3)将乳液转入到装有250ml回流管、氮气进口、滴液漏斗及机械搅拌的四口烧瓶内,先通氮气15min以除去体系中的氧气,然后在回流管冷凝下,加热升温至50℃,保持水浴温度恒定条件下聚合反应45min后,滴加改性硅溶胶0.5g(固含量),继续反应7h,反应完毕后自然冷却到室温制得纳米相变胶囊乳液。
(4)取合成乳液100g,加入46.25g乙二醇及162.05g水,均匀混合得固含量为6%、乙二醇含量为15%的无机/有机壳层纳米相变胶囊蓄冷流体。
实施例5
(1)在60℃恒温水浴条件下,将5ml异丙醇铝溶于30ml无水乙醇中,滴加0.008mol氨水,反应0.5h后加入0.06g KH-560,继续反应2.5h,自然冷却到室温制得改性铝溶胶。
(2)将10g苯乙烯、12g正十五烷、0.4g丙烯酸乙酯、0.2g十二硫醇及0.05g偶氮二异丁腈配制成油相液,加入溶有0.3g乳化剂(SDS:OP-10=1:1)的100g水中,采用均质乳化机乳化10min得到乳液。
(3)将乳液转入到装有回流管、氮气进口及机械搅拌的250ml三口烧瓶内,先通氮气15min以除去体系中的氧气,然后在回流管冷凝下,加热升温至70℃,保持水浴温度恒定条件下聚合反应30min后,滴加改性铝溶胶0.5g(固含量),继续反应4h,反应完毕后自然冷却到室温制得纳米相变胶囊乳液。
(4)取合成乳液100g,加入46.25g乙醇及162.05g水,均匀混合得固含量为6%、乙醇含量为15%的无机/有机壳层纳米相变胶囊蓄冷流体。
实施例6
(1)在60℃恒温水浴条件下,将5ml异丙醇铝溶于30ml无水乙醇中,滴加0.008mol氨水,反应0.5h后加入0.06g KH-570,继续反应2.5h,自然冷却到室温制得改性铝溶胶。
(2)将10g苯乙烯、12g正十四烷、0.4g丙烯酸乙酯、0.2g十二硫醇及0.05g偶氮二异丁腈配制成油相液,加入溶有0.3g乳化剂(SDS:OP-10=1:1)的100g水中,采用均质乳化机乳化10min得到乳液。
(3)将乳液转入到250ml装有回流管、氮气进口、滴液漏斗及机械搅拌的四口烧瓶内,先通氮气15min以除去体系中的氧气,然后在回流管冷凝下,加热升温至45℃,保持水浴温度恒定条件下聚合反应20min后,滴加改性铝溶胶0.8g(固含量),继续反应6h,反应完毕后自然冷却到室温制得纳米相变胶囊乳液。
(4)取合成乳液100g,加入34.69g乙二醇及96.56g水,均匀混合得固含量为8%、乙二醇含量为15%的无机/有机壳层纳米相变胶囊蓄冷流体。
实施例7
(1)在60℃恒温水浴条件下,将5ml正硅酸乙酯溶于30ml无水乙醇中,滴加0.008mol氨水,反应0.5h后加入0.06g KH-570,继续反应2.5h,自然冷却到室温制得改性硅溶胶。
(2)将10g苯乙烯、12g正十四烷、0.4g丙烯酸乙酯、0.2g十二硫醇及0.05g偶氮二异丁腈配制成油相液,加入溶有0.3g乳化剂(SDS:OP-10=1:1)的100g水中,采用均质乳化机乳化10min得到乳液。
(3)将乳液转入到250ml装有回流管、氮气进口、滴液漏斗及机械搅拌的四口烧瓶内,先通氮气15min以除去体系中的氧气,然后在回流管冷凝下,加热升温至60℃,保持水浴温度恒定条件下聚合反应45min后,滴加改性硅溶胶0.5g(固含量),继续反应5h,反应完毕后自然冷却到室温制得纳米相变胶囊乳 液。
(4)取合成乳液100g,加入74g乙醇及196g水,均匀混合得固含量为5%、乙醇含量为20%的无机/有机壳层纳米相变胶囊蓄冷流体。
实施例8
(1)在60℃恒温水浴条件下,将5ml异丙醇铝溶于30ml异丙醇中,滴加0.008mol氨水,反应0.5h后加入0.06g KH-570,继续反应2.5h,自然冷却到室温制得改性铝溶胶。
(2)将10g苯乙烯、12g正十四烷、0.4g丙烯酸乙酯、0.2g十二硫醇及0.05g偶氮二异丁腈配制成油相液,加入溶有0.3g乳化剂(SDS:OP-10=1:1)的100g水中,采用均质乳化机乳化10min得到乳液。
(3)将乳液转入到250ml装有回流管、氮气进口、滴液漏斗及机械搅拌的四口烧瓶内,先通氮气15min以除去体系中的氧气,然后在回流管冷凝下,加热升温至60℃,保持水浴温度恒定条件下聚合反应30min后,滴加改性铝溶胶0.8g(固含量),继续反应5h,反应完毕后自然冷却到室温制得纳米相变胶囊乳液。
(4)取合成乳液100g,加入46.25g乙醇及162.05g水,均匀混合得固含量为6%、乙醇含量为15%的无机/有机壳层纳米相变胶囊蓄冷流体。
本发明制备的纳米相变胶囊的性能介绍如下:
对实施例1、实施例2及比较例所制备的纳米相变胶囊材料结构进行表征,图1为三种样品(固体胶囊)的粒径分布图;图2为其透射电镜TEM图;图3为其DSC曲线,图4为其热失重曲线。
如图1所示,实施例1,2制备的相变胶囊粒径与比较例相比略有增大。比较例有机壳层纳米胶囊的平均粒径约为129.5nm。随着改性硅溶胶用量的增加,所制备的复合壳层相变胶囊粒径增大。如实施例1制备的胶囊平均粒径约为 151.3nm;而实施例2制备的胶囊约为176.3nm。
图2为实施例2制备的纳米相变胶囊的TEM图,从图2可以看出,胶囊呈规则的球状,分布较为均匀,粒径约在50nm左右。粒径分析的粒径(176.3nm)大于TEM的粒径,可能与蓄冷流体加入乙二醇防冻剂稀释,增大粒子的水化作用有关。
图3曲线表明。实施例1、2样品的相变潜热(熔化焓)分别为83.23、88.85kJ/kg,与比较例相变焓(81.32kJ/kg)对照,略有增大。改性金属氧化物的加入对胶囊的包覆率几乎没有影响;但从其相转化过程看,它们有所区别;在升温融化过程,实施例1,实施例2由于壳层导热系数较高,能将热量及时转移给芯材,加速了芯材的融化(吸热),因此其起始融化温度与比较例相比较低,同样在降温过程,实施例1,实施例2的起始结晶温度(放热)与比较例比较,结晶过程提前。上述结果间接证明,本发明制备的复合壳层具有较好的热传导性能。
图4的热失重曲线表明,复合壳层中,由于含有金属氧化物,增加了实施例1,实施例2的热稳定性,对比聚合物壳层(比较例)样品,其热稳定性增强。
同样对实施例1、实施例2及比较例所制备的纳米相变胶囊蓄冷流体性能进行测试。图5为三种样品(流体)导热系数;图6为其比热容;图7为其粘度;表1为实施例1,实施例2的机械稳定测试。
由图5可知,由于复合壳层中含有金属氧化物,增加了热传导性能,因此,实施例1,实施例2的导热系数比同温度下的比较例高,并且实施例2大于实施例1,表明二氧化硅含量增加,增加了其热传导性能;图6测试的比热容跟DSC测试的结果基本一致,在相变温度附近,实施例1,实施例2的热容值高于比较例。由图7结果表明复合壳层蓄冷流体(实施例1,实施例2)与单壳层(比较例)蓄冷流体(流体),它们的粘度均较低,其流动性能良好;表1实施例1,实施例2测试结果表明,复合壳层纳米相变胶囊蓄冷流体,具有较好的机械稳 定性。
表1复合壳层纳米相变蓄冷流体机械稳定性测试
Figure PCTCN2016108690-appb-000001
综上所述,本发明方法制备的无机/有机复合壳层纳米胶囊具有粒径小、相变焓值高及热稳定性好等特点,其流体具有较高导热性能、比热容及机械稳定性,可作为蓄冷空调用相变蓄冷流体。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,其特征在于包括以下制备步骤:
    (1)将金属醇盐在醇溶剂及碱性催化下水解、缩合,然后用有机硅偶联剂改性,得到改性金属氧化物溶胶;
    (2)将苯乙烯单体、丙烯酸酯共聚单体、链转移剂、引发剂和烷烃芯材配成油相,加入到由十二烷基硫酸钠和壬基酚聚氧乙烯醚组成的复合乳化剂和去离子水配成的水相中,经均质乳化得细乳液;
    (3)步骤(2)所得细乳液除氧后升温至40~80℃进行原位细乳液聚合10~50min,然后滴加改性金属氧化物溶胶,继续反应3~7h后自然冷却,得到复合壳层纳米相变胶囊乳液;
    (4)往复合壳层纳米相变胶囊乳液中加入抗冻剂,并加水稀释,形成均匀悬浮液,得到所述无机/有机复合壳层纳米相变胶囊蓄冷流体。
  2. 根据权利要求1所述的一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,其特征在于:所述金属醇盐为M(OR)n结构式的化合物,其中,M为价态为n的金属,R表示甲基、乙基、丙基、异丙基、丁基或异丁基。
  3. 根据权利要求1所述的一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,其特征在于:所述的金属醇盐是指正硅酸乙酯、钛酸四丁酯或异丙醇铝;所述的碱性催化是指氨水催化。
  4. 根据权利要求1所述的一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,其特征在于:所述的有机硅偶联剂是指γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-氨丙基三乙氧基硅烷、3-(2,3-环氧丙氧)丙基三甲氧基硅烷;有机硅偶联剂的加入量为金属醇盐质量的0.8%~1.5%。
  5. 根据权利要求1所述的一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,其特征在于:所述的丙烯酸酯共聚单体是指丙烯酸乙酯;丙烯酸酯 共聚单体的加入量为苯乙烯单体质量的4%;所述的链转移剂是指十二硫醇;所述的引发剂是指偶氮二异丁氰。
  6. 根据权利要求1所述的一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,其特征在于:所述的烷烃芯材是指熔点为5~10℃的烷烃,具体为十四烷或十五烷,以及十四烷和十五烷中的至少一种与十六烷的共晶物;烷烃芯材的加入量为苯乙烯质量的90%~120%。
  7. 根据权利要求1所述的一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,其特征在于:步骤(3)中所述改性金属氧化物溶胶在聚合反应20~40min后加入;所述改性金属氧化物溶胶的加入量以固含量计算为苯乙烯单体质量的3%~8%。
  8. 根据权利要求1所述的一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,其特征在于:步骤(4)中所述加水稀释是指稀释至固含量为3~10%。
  9. 根据权利要求1所述的一种无机/有机复合壳层纳米相变胶囊蓄冷流体的制备方法,其特征在于:步骤(4)中所述的抗冻剂为甲醇、乙醇或乙二醇;抗冻剂的加入量为10wt%~25wt%。
  10. 一种无机/有机复合壳层纳米相变胶囊蓄冷流体,其特征在于:通过权利要求1~9任一项所述的方法制备得到。
PCT/CN2016/108690 2015-12-15 2016-12-06 一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法 WO2017101712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510937692.7 2015-12-15
CN201510937692.7A CN105542051A (zh) 2015-12-15 2015-12-15 一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法

Publications (1)

Publication Number Publication Date
WO2017101712A1 true WO2017101712A1 (zh) 2017-06-22

Family

ID=55821639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108690 WO2017101712A1 (zh) 2015-12-15 2016-12-06 一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法

Country Status (2)

Country Link
CN (1) CN105542051A (zh)
WO (1) WO2017101712A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679498A (zh) * 2019-01-02 2019-04-26 华南理工大学 一种纳米氧化铝改性的硅烷防水剂及其制备方法与应用
CN110894268A (zh) * 2019-12-04 2020-03-20 杭州传化精细化工有限公司 一种纳米粒子型原位引发剂及其制备方法和应用
CN112375236A (zh) * 2020-11-03 2021-02-19 三棵树(上海)新材料研究有限公司 一种复合相变微胶囊型乳液及其制备方法和应用
CN113563850A (zh) * 2021-08-16 2021-10-29 广东工业大学 一种多元杂化无机单壳多温区相变微胶囊及其制备方法
CN114805708A (zh) * 2022-04-14 2022-07-29 浙江理工大学 聚合物/Ag纳米复合粒子及其制备和在硬质基材上制备持久抗菌复合涂层中的应用
CN115287044A (zh) * 2021-05-04 2022-11-04 纳米及先进材料研发院有限公司 一种耐破裂、易分散的纳米胶囊相变材料及其合成方法
WO2024060036A1 (zh) * 2022-09-20 2024-03-28 纯钧新材料(深圳)有限公司 相变温度为2~8℃的相变材料及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105542051A (zh) * 2015-12-15 2016-05-04 华南理工大学 一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法
CN107540798B (zh) * 2016-06-28 2020-06-05 苏州大学 一种将水相纳米粒子转移到油相中的方法
CN109082267B (zh) * 2018-10-11 2021-04-06 上海第二工业大学 一种添加二氧化锰颗粒改善正十八烷/聚苯乙烯相变微胶囊热性能的方法
CN109294526B (zh) * 2018-11-29 2020-12-29 航天特种材料及工艺技术研究所 一种基于微乳液体系的杂化壁材包覆的相变亚微米胶囊的制备方法
CN110144193B (zh) * 2019-06-03 2021-05-25 宁波特粒科技有限公司 一种二氧化硅相变储能微胶囊及其制备方法
CN112742316B (zh) * 2019-10-31 2023-07-28 中国石油化工股份有限公司 一种相变微胶囊材料的制备方法
CN111574934B (zh) * 2020-05-19 2021-01-12 常州百佳年代薄膜科技股份有限公司 纳米导热胶膜及制备方法、光伏组件
CN113564810B (zh) * 2021-08-18 2022-07-05 深圳市恩裳纺织品有限公司 一种高弹力保暖面料及其制备方法
CN114073941B (zh) * 2021-08-20 2023-08-22 上海安谱实验科技股份有限公司 一种有机-无机杂化材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092299A1 (de) * 2003-04-17 2004-10-28 Basf Aktiengesellschaft Verwendung von wässrigen mikrokapseldispersionen als wärmeträgerflüssigkeiten
CN101555401A (zh) * 2008-04-10 2009-10-14 中国科学院化学研究所 有机相变储能材料的微胶囊及其制备方法
WO2011130657A9 (en) * 2010-04-15 2012-03-08 Pcm Innovations Llc Phase change material-containing composition and related products and methods
CN102407088A (zh) * 2010-09-21 2012-04-11 中国科学院化学研究所 相变储能微胶囊的制备方法及相变储能微胶囊
CN105542051A (zh) * 2015-12-15 2016-05-04 华南理工大学 一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322091C (zh) * 2006-01-06 2007-06-20 华南理工大学 聚乙二醇/二氧化硅复合定形相变材料的制备方法
CN101530772B (zh) * 2009-03-13 2011-06-15 清华大学深圳研究生院 有机高分子材料包覆的相变储能微胶囊制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092299A1 (de) * 2003-04-17 2004-10-28 Basf Aktiengesellschaft Verwendung von wässrigen mikrokapseldispersionen als wärmeträgerflüssigkeiten
CN101555401A (zh) * 2008-04-10 2009-10-14 中国科学院化学研究所 有机相变储能材料的微胶囊及其制备方法
WO2011130657A9 (en) * 2010-04-15 2012-03-08 Pcm Innovations Llc Phase change material-containing composition and related products and methods
CN102407088A (zh) * 2010-09-21 2012-04-11 中国科学院化学研究所 相变储能微胶囊的制备方法及相变储能微胶囊
CN105542051A (zh) * 2015-12-15 2016-05-04 华南理工大学 一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679498A (zh) * 2019-01-02 2019-04-26 华南理工大学 一种纳米氧化铝改性的硅烷防水剂及其制备方法与应用
CN110894268A (zh) * 2019-12-04 2020-03-20 杭州传化精细化工有限公司 一种纳米粒子型原位引发剂及其制备方法和应用
CN110894268B (zh) * 2019-12-04 2022-04-19 杭州传化精细化工有限公司 一种纳米粒子型原位引发剂及其制备方法和应用
CN112375236A (zh) * 2020-11-03 2021-02-19 三棵树(上海)新材料研究有限公司 一种复合相变微胶囊型乳液及其制备方法和应用
CN112375236B (zh) * 2020-11-03 2023-01-31 三棵树(上海)新材料研究有限公司 一种复合相变微胶囊型乳液及其制备方法和应用
CN115287044A (zh) * 2021-05-04 2022-11-04 纳米及先进材料研发院有限公司 一种耐破裂、易分散的纳米胶囊相变材料及其合成方法
CN113563850A (zh) * 2021-08-16 2021-10-29 广东工业大学 一种多元杂化无机单壳多温区相变微胶囊及其制备方法
CN113563850B (zh) * 2021-08-16 2022-06-03 广东工业大学 一种多元杂化无机单壳多温区相变微胶囊及其制备方法
CN114805708A (zh) * 2022-04-14 2022-07-29 浙江理工大学 聚合物/Ag纳米复合粒子及其制备和在硬质基材上制备持久抗菌复合涂层中的应用
CN114805708B (zh) * 2022-04-14 2023-09-22 浙江理工大学 聚合物/Ag纳米复合粒子及其制备和在硬质基材上制备持久抗菌复合涂层中的应用
WO2024060036A1 (zh) * 2022-09-20 2024-03-28 纯钧新材料(深圳)有限公司 相变温度为2~8℃的相变材料及其制备方法

Also Published As

Publication number Publication date
CN105542051A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2017101712A1 (zh) 一种无机/有机复合壳层纳米相变胶囊蓄冷流体及制备方法
Zhu et al. Preparation and properties of nanoencapsulated n-octadecane phase change material with organosilica shell for thermal energy storage
Zhu et al. Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: Compositions, morphologies, and properties
CN104449590B (zh) 一种相变储能材料的纳米胶囊及其制备方法
Chang et al. Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage
Yin et al. Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell
Liang et al. Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion
Fang et al. Preparation and characterization of novel nanoencapsulated phase change materials
CN105399889B (zh) 一种相变储能材料的杂化壁材纳米胶囊及其制备方法
CN109499500B (zh) 一种具有亚微米尺寸的复合壁材相变胶囊及其制备方法和应用
Sun et al. Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage
CN109294526B (zh) 一种基于微乳液体系的杂化壁材包覆的相变亚微米胶囊的制备方法
Qiu et al. Synthesis and characterization of paraffin/TiO2‐P (MMA‐co‐BA) phase change material microcapsules for thermal energy storage
Lin et al. Research progress on preparation, characterization, and application of nanoparticle‐based microencapsulated phase change materials
CN105418820B (zh) 含羟基的苯丙聚合物/SiO2杂化乳液及其制备方法与应用
CN111621265B (zh) 基于无机物壳层的相变微胶囊及其制造方法和应用
CN113025285A (zh) 一种相变储能微胶囊及其制备方法和应用
Zhou et al. Preparation and characterization of film-forming raspberry-like polymer/silica nanocomposites via soap-free emulsion polymerization and the sol–gel process
CN109499499A (zh) 一种超疏水相变储能材料微胶囊及其制备方法
Zhang et al. Microstructure regulation of microencapsulated bio-based n-dodecanol as phase change materials via in situ polymerization
CN102212342B (zh) 一种相变材料胶囊及其制备方法
CN109082267B (zh) 一种添加二氧化锰颗粒改善正十八烷/聚苯乙烯相变微胶囊热性能的方法
CN109836598B (zh) 一种超交联聚苯乙烯担载有机相变材料的制备方法及其制备的复合相变材料
Chang et al. Synthesis and thermal properties of n-tetradecane phase change microcapsules for cold storage
CN107706000B (zh) 花球状氧化镍/聚吡咯/石墨烯复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16874769

Country of ref document: EP

Kind code of ref document: A1