WO2017101129A1 - 一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法 - Google Patents

一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法 Download PDF

Info

Publication number
WO2017101129A1
WO2017101129A1 PCT/CN2015/098066 CN2015098066W WO2017101129A1 WO 2017101129 A1 WO2017101129 A1 WO 2017101129A1 CN 2015098066 W CN2015098066 W CN 2015098066W WO 2017101129 A1 WO2017101129 A1 WO 2017101129A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
composite hydrogel
nanotube composite
solution
carbon nanotubes
Prior art date
Application number
PCT/CN2015/098066
Other languages
English (en)
French (fr)
Inventor
文万信
刘汉洲
叶天南
闫思齐
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2017101129A1 publication Critical patent/WO2017101129A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation

Definitions

  • the invention relates to the field of cockroach protection, in particular to a carbon nanotube composite hydrogel for cockroach protection filtration and a preparation method thereof.
  • Earthworms are low-toxic radionuclides, but they are the most active artificial nuclides released by nuclear facilities to the workplace and the environment. With the rapid development of the nuclear industry, research on the internal exposure dose and health hazards generated by radiation workers and the public has received increasing attention internationally.
  • the main focus of individual sputum protection is to control the two pathways of breathing and skin.
  • Controlled breathing intake uses both filtration and gas supply methods.
  • Gas supply respiratory protection products include self-retaining breathing apparatus, ventilating hood and protective air-clothing; filtering respiratory protection products use materials to adsorb and filter the cockroaches, thereby protecting the cockroaches.
  • the adsorbent materials in the filter respiratory protection articles are mainly desiccants such as activated carbon and molecular sieve; the curling device uses ice cubes as the filter adsorption material.
  • Activated carbon, molecular sieve as a desiccant filter respiratory protection products excellent water absorption, wearing will be uncomfortable due to air drying, and is not suitable for long-term use.
  • the curling respirator has a short use time, and the condensed water on the curling surface is dripped freely, which is inconvenient to use. Ventilation hoods and protective air hoods are limited by the air source, the range of motion is limited, and it is not convenient to wear, which is not conducive to production and work.
  • the preparation methods of the current composite hydrogel mainly include chemical crosslinking method, physical crosslinking method and radiation crosslinking method.
  • the composite hydrogel prepared by the chemical cross-linking method and the physical cross-linking method is not high in purity, and the composite hydrogel prepared by the radiation cross-linking method is not high in strength.
  • modifying the free radical on the surface of the carrier is a method for efficiently preparing the composite hydrogel.
  • the main methods are ionizing radiation, strong acid oxidation, plasma-induced atomization or chemically-catalyzed radicals. Compared with several other methods, the ionizing radiation cross-linking method has low experimental requirements, low cost, large safety factor, large yield, and high grafting rate.
  • the presenter actively researches and innovates in order to create a carbon nanotube composite hydrogel for sputum protection filtration and a preparation method thereof, so as to make it more industrially valuable.
  • the object of the present invention is to provide a carbon nanotube composite hydrogel which has good filtering effect of deuterated water, high mechanical strength, long service life and simple preparation for antimony protection filtration and preparation thereof. method.
  • the carbon nanotube composite hydrogel for sputum protection filtration proposed by the invention comprises: carbon nanotubes and a hydrogel, wherein the carbon nanotubes are irradiated with acrylic acid, the carbon nanometer The tube is compounded with the hydrogel.
  • the invention provides a method for preparing a carbon nanotube composite hydrogel for sputum protection filtration, which comprises the following steps:
  • Step (1) mixing a certain amount of carbon nanotubes, CuSO 4 and acrylic acid into deionized water to prepare a certain concentration of "1#"solution;
  • Step (2) ultrasonically stirring the "1#” solution, discharging oxygen through nitrogen gas, and then performing irradiation grafting under a cobalt source or an accelerator to obtain a mixed solution of carbon nanotubes CNTs-g-PAAc after grafting, the mixing
  • the solution is a "2#" solution;
  • Step (3) After centrifuging the "2#" solution, the residual Cu 2+ is washed away with deionized water, and the grafted carbon nanotube sample is obtained after lyophilization;
  • Step (4) mixing the grafted carbon nanotube sample with a certain amount of acrylamide solution into deionized water to configure a "3#" solution;
  • Step (5) After ultrasonically stirring the "3#" solution, oxygen is discharged through a nitrogen gas, and then the carbon nanotube composite hydrogel sample is obtained by freeze-drying with a cobalt source or an accelerator after a period of irradiation and freeze-drying.
  • the concentration of the carbon nanotubes in the "1#" solution described in the step (1) is 0.5-5 mg/mL
  • the concentration of CuSO 4 is 1-4 mmol/L
  • the concentration of acrylic acid is 1-5%.
  • the grafted carbon nanotubes have a graft ratio of 5% to 30%.
  • the concentration of the acrylamide solution described in the step (4) is from 10 to 100 mg/mL.
  • the doses of the irradiation in the step (2) and the step (5) are both 10 kGy to 100 kGy.
  • the ultrasonic stirring time in the step (2) and the step (5) is 20 minutes, and the nitrogen gas discharge time is 20 minutes.
  • freeze drying time in the step (3) and the step (5) is 48 hours.
  • the present invention has at least the following advantages:
  • the present invention prepares a carbon nanotube composite hydrogel by a two-step irradiation method.
  • the first step the grafting of acrylic acid onto the wall of the carbon nanotube tube was successfully carried out, which solved the problem that the carbon tube was insoluble in water.
  • the second step the gel and the carbon nanotubes are successfully and uniformly combined, and the mechanical strength of the carbon nanotube composite hydrogel is also improved, and the air water adsorption efficiency is also improved.
  • the carbon nanotube composite hydrogel proposed by the invention can maintain the gas permeability under the condition of adsorbing water, and at the same time has a certain mechanical strength.
  • the hydrogel material uses a radiation cross-linking method, which is simple and easy to perform, and does not need to be doped with other reagents to obtain a more pure hydrogel material.
  • the carbon nanotube composite hydrogel proposed by the invention has good filtering effect of deuterated water, and has long lasting time, and can be used as a desiccant for filtering respiratory protection articles instead of activated carbon, molecular sieve and the like.
  • the preparation method of the carbon nanotube composite hydrogel proposed by the invention adopts a two-step irradiation cross-linking method. Compared with the chemical cross-linking method and the physical cross-linking method, the radiation cross-linking method has low experimental requirements and is easy to operate.
  • the gel prepared by the method has good water absorption effect, especially the effect of adsorbing gaseous water is better than that of pure hydrogel, and can be used for air enthalpy protection.
  • Example 1 2 mL of acrylic acid, 0.1 g of carbon nanotubes, and 1 mmol/L of anhydrous copper sulfate were added to 200 mL of deionized water, dispersed uniformly, and ultrasonicated for 20 minutes, then deaerated by nitrogen for 20 minutes, and sent to a cobalt source for 10 kGy. Dose irradiation. The obtained product was subjected to centrifugal washing and freeze-dried for 48 hours.
  • Example 2 5 mL of acrylic acid, 0.5 g of carbon nanotubes, and 2 mmol/L of anhydrous copper sulfate were added to 200 mL of deionized water, dispersed uniformly, ultrasonicated for 20 minutes, and then deaerated by nitrogen for 20 minutes. The cobalt source was irradiated at a dose of 30 kGy. The obtained product was subjected to centrifugal washing and freeze-dried for 48 hours.
  • Example 3 10 mL of acrylic acid, 1 g of carbon nanotubes, and 4 mmol/L of anhydrous copper sulfate were added to 200 mL of deionized water, dispersed uniformly, and ultrasonicated for 20 minutes, then deaerated by nitrogen for 20 minutes, and sent to a cobalt source for a dose of 100 kGy. Irradiation. The obtained product was subjected to centrifugal washing and freeze-dried for 48 hours.
  • Example 4 2 mL of acrylic acid, 0.1 g of carbon nanotubes, and 1 mmol/L of anhydrous copper sulfate were added to 200 mL of deionized water, dispersed uniformly, and ultrasonicated for 20 minutes, then deaerated by nitrogen for 20 minutes, and sent to an electron accelerator for 10 kGy. Dose irradiation. The obtained product was subjected to centrifugal washing and freeze-dried for 48 hours.
  • Example 5 5 mL of acrylic acid, 0.5 g of carbon nanotubes, and 2 mmol/L of anhydrous copper sulfate were added to 200 mL of deionized water, dispersed uniformly, and ultrasonicated for 20 minutes, then deaerated by nitrogen for 20 minutes, and sent to an electron accelerator for 30 kGy. Dose irradiation. The obtained product was subjected to centrifugal washing and freeze-dried for 48 hours.
  • Example 6 10 mL of acrylic acid, 1 g of carbon nanotubes, and 4 mmol/L of anhydrous copper sulfate were added to 200 mL of deionized water, dispersed uniformly, and ultrasonicated for 20 minutes, then deaerated by nitrogen for 20 minutes, and sent to an electron accelerator for a dose of 100 kGy. Irradiation. The obtained product was subjected to centrifugal washing and freeze-dried for 48 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法,碳纳米管复合水凝胶包括碳纳米管和水凝胶,碳纳米管上辐照接枝有丙烯酸,碳纳米管与水凝胶复合在一起。制备方法采用两步辐照法,第一步辐照将丙烯酸接枝到碳纳米管管壁上,第二步辐照将凝胶与碳纳米管均匀复合在一起。

Description

一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法
本申请要求了申请日为2015年12月14日,申请号为201510919799.9,发明名称为“一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及氚防护领域,尤其涉及一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法。
背景技术
氚是一种低毒放射性核素,但却是核设施向工作场地和环境释放的活度最大的人工核素。随着核工业的迅速发展,其对辐射工作人员与公众产生的内照射剂量及健康危害的研究在国际上日益受到重视。个体氚防护的重点主要是控制呼吸和皮肤两条途径。控制呼吸摄入采用过滤和供气两种方法。供气呼吸防护用品包括自背式呼吸器、通风头罩和防护气衣;过滤呼吸防护用品利用材料将氚吸附过滤,进而起到防护氚的作用。过滤呼吸防护用品中的吸附材料主要是活性炭、分子筛等干燥剂;冰壶呼吸器用冰块作为过滤吸附材料。
活性炭、分子筛作为干燥剂的过滤呼吸防护用品,吸水性优异,佩戴着会因空气干燥而不适,并且不适用长期使用。而冰壶呼吸器使用时间短,冰壶表面冷凝水随意滴落,造成使用的不方便。通风头罩和防护气衣由于受空气源限制,活动范围受到了限制,并且穿戴不方便,不利于生产和工作的进行。
现在的复合水凝胶的制备方法主要有化学交联法、物理交联法、辐射交联法。化学交联法和物理交联法制备的复合水凝胶纯度不高,而辐射交联法制备的复合水凝胶强度不高。为改善了水凝胶的机械强度,在载体表面修饰自由基是有效制备复合水凝胶的方法。主要方法有电离辐射、强酸氧化、等离子体激化原子或化学催化游离基等。电离辐射交联法与其他几种方法相比实验要求低,成本低,安全系数大,产量大,接枝率高。
有鉴于上述的内容,本设计人,积极加以研究创新,以期创设一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法,使其更具有产业上的利用价值。
发明内容
为解决上述技术问题,本发明的目的是提供一种具有良好的氚化水过滤效果,机械强度高,使用时间持久,制备简单的用于氚防护过滤的碳纳米管复合水凝胶及其制备方法。
本发明提出的一种用于氚防护过滤的碳纳米管复合水凝胶,其特征在于:包括碳纳米管和水凝胶,所述碳纳米管上辐照接枝有丙烯酸,所述碳纳米管与所述水凝胶复合在一起。
本发明提出的一种用于氚防护过滤的碳纳米管复合水凝胶的制备方法,其特征在于:包括以下步骤:
步骤(1)将一定量的碳纳米管、CuSO4和丙烯酸混合到去离子水中,配制出一定浓度的“1#”溶液;
步骤(2)将“1#”溶液超声搅拌后,通氮气排氧,然后放在钴源或加速器下进行辐照接枝,获得接枝后碳纳米管CNTs-g-PAAc混合溶液,该混合溶液为“2#”溶液;
步骤(3)将“2#”溶液离心后用去离子水清洗掉残留的Cu2+,冷冻干燥后获得了接枝后的碳纳米管样品;
步骤(4)将接枝后的碳纳米管样品与一定量的丙烯酰胺溶液混合到去离子水中配置出“3#”溶液;
步骤(5)将“3#”溶液超声搅拌后,通氮气排氧,然后用钴源或加速器经过一段时间辐照交联后冷冻干燥获得碳纳米管复合水凝胶样品。
进一步的,步骤(1)中所述的“1#”溶液中碳纳米管的浓度为0.5-5mg/mL,CuSO4浓度为1-4mmol/L,丙烯酸浓度为1-5%。
进一步的,步骤(3)中所述接枝后的碳纳米管,接枝率为5%-30%。
进一步的,步骤(4)中所述的丙烯酰胺溶液的浓度为10-100mg/mL。
进一步的,步骤(2)和步骤(5)中所述辐照的剂量均为10kGy-100kGy。
进一步的,步骤(2)和步骤(5)中所述超声搅拌的时间均为20分钟,通氮气排氧时间均为20分钟。
进一步的,步骤(3)和步骤(5)中所述冷冻干燥的时间均为48小时。
借由上述方案,本发明至少具有以下优点:本发明采用两步辐照法制备了碳纳米管复合水凝胶。第一步辐照成功将丙烯酸接枝到碳纳米管管壁上,解决了碳管不溶于水的问题。第二步辐照将凝胶与碳纳米管成功均匀复合在一起,碳纳米管复合水凝胶的机械强度也因此提高,空气水吸附效率也得到了提高。
本发明提出的碳纳米管复合水凝胶,可以在吸附水情况下,保持透气性,且同时具有一定的机械强度。水凝胶材料使用辐照交联的方法,此方法简单易行,不用掺杂其他试剂,获得水凝胶材料更加纯净。
本发明提出的碳纳米管复合水凝胶具有良好的氚化水过滤效果,而且使用时间持久,可替代活性炭、分子筛等材料作为干燥剂用于过滤呼吸防护用品。
本发明提出的碳纳米管复合水凝胶的制备方法采用两步辐照交联法。与化学交联法和物理交联法相比,辐射交联法对实验要求低,操作简易。该方法制备的凝胶吸水效果好,尤其是吸附气态水的效果要比纯水凝胶优异,可用于空气氚防护。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例详细说明如后。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例一:将2mL丙烯酸、0.1g碳纳米管、1mmol/L无水硫酸铜加入到200mL的去离子水中,分散均匀后超声20分钟,然后通氮气20分钟除氧,送入钴源进行10kGy剂量辐照。获得的产品经过离心清洗后冷冻干燥48h。将1g丙烯酰胺,0.5mg/mL改性后的碳纳米管加入到100mL的去离子水中,分散均匀后超声搅拌20分钟,然后通氮气20分钟除氧,送入钴源进行10kGy剂量辐照。获得的碳纳米管复合水凝胶产品经过冷冻干燥48h。
实施例二:将5mL丙烯酸、0.5g碳纳米管、2mmol/L无水硫酸铜加入到200mL的去离子水中,分散均匀后超声20分钟,然后通氮气20分钟除氧,送 入钴源进行30kGy剂量辐照。获得的产品经过离心清洗后冷冻干燥48h。将5g丙烯酰胺,2mg/mL改性后碳纳米管加入到100mL的去离子水中,分散均匀后超声搅拌20分钟,然后通氮气20分钟除氧,送入钴源进行30kGy剂量辐照。获得的碳纳米管复合水凝胶产品经过冷冻干燥48h。
实施例三:将10mL丙烯酸、1g碳纳米管、4mmol/L无水硫酸铜加入到200mL的去离子水中,分散均匀后超声20分钟,然后通氮气20分钟除氧,送入钴源进行100kGy剂量辐照。获得的产品经过离心清洗后冷冻干燥48h。将10g丙烯酰胺,5mg/mL改性后碳纳米管加入到100mL的去离子水中,分散均匀后超声搅拌20分钟,然后通氮气20分钟除氧,送入钴源进行100kGy剂量辐照。获得的碳纳米管复合水凝胶产品经过冷冻干燥48h。
实施例四:将2mL丙烯酸、0.1g碳纳米管、1mmol/L无水硫酸铜加入到200mL的去离子水中,分散均匀后超声20分钟,然后通氮气20分钟除氧,送至电子加速器进行10kGy剂量辐照。获得的产品经过离心清洗后冷冻干燥48h。将1g丙烯酰胺,0.5mg/mL改性后碳纳米管加入到100mL的去离子水中,分散均匀后超声搅拌20分钟,然后通氮气20分钟除氧,送至电子加速器进行10kGy剂量辐照。获得的碳纳米管复合水凝胶产品经过冷冻干燥48h。
实施例五:将5mL丙烯酸、0.5g碳纳米管、2mmol/L无水硫酸铜加入到200mL的去离子水中,分散均匀后超声20分钟,然后通氮气20分钟除氧,送至电子加速器进行30kGy剂量辐照。获得的产品经过离心清洗后冷冻干燥48h。将5g丙烯酰胺,2mg/mL改性后碳纳米管加入到100mL的去离子水中,分散均匀后超声搅拌20分钟,然后通氮气20分钟除氧,送至电子加速器进行30kGy剂量辐照。获得的碳纳米管复合水凝胶产品经过冷冻干燥48h。
实施例六:将10mL丙烯酸、1g碳纳米管、4mmol/L无水硫酸铜加入到200mL的去离子水中,分散均匀后超声20分钟,然后通氮气20分钟除氧,送至电子加速器进行100kGy剂量辐照。获得的产品经过离心清洗后冷冻干燥48h。将10g丙烯酰胺,5mg/mL改性后碳纳米管加入到100mL的去离子水中,分散均匀后超声搅拌20分钟,然后通氮气20分钟除氧,送至电子加速器进行100kGy剂量辐照。获得的碳纳米管复合水凝胶产品经过冷冻干燥48h。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (8)

  1. 一种用于氚防护过滤的碳纳米管复合水凝胶,其特征在于:包括碳纳米管和水凝胶,所述碳纳米管上辐照接枝有丙烯酸,所述碳纳米管与所述水凝胶复合在一起。
  2. 一种用于氚防护过滤的碳纳米管复合水凝胶的制备方法,其特征在于:包括以下步骤:
    步骤(1)将一定量的碳纳米管、CuSO4和丙烯酸混合到去离子水中,配制出一定浓度的“1#”溶液;
    步骤(2)将“1#”溶液超声搅拌后,通氮气排氧,然后放在钴源或加速器下进行辐照接枝,获得接枝后碳纳米管CNTs-g-PAAc混合溶液,该混合溶液为“2#”溶液;
    步骤(3)将“2#”溶液离心后用去离子水清洗掉残留的Cu2+,冷冻干燥后获得了接枝后的碳纳米管样品;
    步骤(4)将接枝后的碳纳米管样品与一定量的丙烯酰胺溶液混合到去离子水中配置出“3#”溶液;
    步骤(5)将“3#”溶液超声搅拌后,通氮气排氧,然后用钴源或加速器经过一段时间辐照交联后冷冻干燥获得碳纳米管复合水凝胶样品。
  3. 根据权利要求2所述的用于氚防护过滤的碳纳米管复合水凝胶的制备方法,其特征在于:步骤(1)中所述的“1#”溶液中碳纳米管的浓度为0.5-5mg/mL,CuSO4浓度为1-4mmol/L,丙烯酸浓度为1-5%。
  4. 根据权利要求2所述的用于氚防护过滤的碳纳米管复合水凝胶的制备方法,其特征在于:步骤(3)中所述接枝后的碳纳米管,接枝率为5%-30%。
  5. 根据权利要求2所述的用于氚防护过滤的碳纳米管复合水凝胶的制备方法,其特征在于:步骤(4)中所述的丙烯酰胺溶液的浓度为10-100mg/mL。
  6. 根据权利要求2所述的用于氚防护过滤的碳纳米管复合水凝胶的制备方法,其特征在于:步骤(2)和步骤(5)中所述辐照的剂量均为10kGy-100kGy。
  7. 根据权利要求2所述的用于氚防护过滤的碳纳米管复合水凝胶的制备方法,其特征在于:步骤(2)和步骤(5)中所述超声搅拌的时间均为20分钟,通氮气排氧时间均为20分钟。
  8. 根据权利要求2所述的3用于氚防护过滤的碳纳米管复合水凝胶的制备方法,其特征在于:步骤(3)和步骤(5)中所述冷冻干燥的时间均为48小时。
PCT/CN2015/098066 2015-12-14 2015-12-21 一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法 WO2017101129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510919799.9A CN105418859A (zh) 2015-12-14 2015-12-14 一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法
CN201510919799.9 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017101129A1 true WO2017101129A1 (zh) 2017-06-22

Family

ID=55497436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098066 WO2017101129A1 (zh) 2015-12-14 2015-12-21 一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法

Country Status (2)

Country Link
CN (1) CN105418859A (zh)
WO (1) WO2017101129A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110540658A (zh) * 2019-08-08 2019-12-06 天津大学 一种基于丙烯酰胺/氧化碳纳米管纳米复合水凝胶传感器及其制备方法
CN111808246A (zh) * 2019-04-11 2020-10-23 天津工业大学 一种具有高吸附性能的丙烯酸接枝改性碳纳米管制备方法
CN111991576A (zh) * 2020-08-20 2020-11-27 文山御美堂生物技术开发有限公司 一种三七粉灭菌处理方法
CN112934129A (zh) * 2021-01-28 2021-06-11 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 一种高效光热水蒸发碳纳米管水凝胶及其制备方法与应用
US20230312840A1 (en) * 2021-12-13 2023-10-05 Guangdong Ocean University Method for preparing carbon nanotube/polyacrylic acid hydrogel, product and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106008769B (zh) * 2016-06-14 2018-11-02 苏州大学 用于放射治疗三维剂量验证的凝胶的制备方法及应用
CN109011246A (zh) * 2018-06-13 2018-12-18 西京学院 一种基于复合层结构的氚防护装置及其制作方法
CN114749153A (zh) * 2022-04-21 2022-07-15 苏州大学 一种氚化水及氚气吸附材料的制备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143914A (zh) * 2007-09-13 2008-03-19 郑州大学 碳纳米管增强温敏性复合水凝胶及辐射制备方法
CN101693125A (zh) * 2009-10-12 2010-04-14 北京科技大学 生物相容性定向碳纳米管阵列增强复合水凝胶的制备方法
CN101768231A (zh) * 2010-01-06 2010-07-07 东华大学 微反应器中原位聚合制备n-异丙基丙烯酰胺/多壁碳纳米管复合微凝胶的方法
WO2012138803A2 (en) * 2011-04-04 2012-10-11 Carnegie Mellon University Carbon nanotube aerogels, composites including the same, and devices formed therefrom
CN103435951A (zh) * 2013-09-09 2013-12-11 江南大学 一种纳米复合高分子双网络水凝胶及其制备方法
CN104707486A (zh) * 2015-03-03 2015-06-17 浙江大学 一种高强度水凝胶过滤膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389145C (zh) * 2006-09-29 2008-05-21 北京大学 含天然高分子的水凝胶及其辐射制备方法
CN105111355A (zh) * 2015-08-28 2015-12-02 苏州大学张家港工业技术研究院 一种双亲性水凝胶的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143914A (zh) * 2007-09-13 2008-03-19 郑州大学 碳纳米管增强温敏性复合水凝胶及辐射制备方法
CN101693125A (zh) * 2009-10-12 2010-04-14 北京科技大学 生物相容性定向碳纳米管阵列增强复合水凝胶的制备方法
CN101768231A (zh) * 2010-01-06 2010-07-07 东华大学 微反应器中原位聚合制备n-异丙基丙烯酰胺/多壁碳纳米管复合微凝胶的方法
WO2012138803A2 (en) * 2011-04-04 2012-10-11 Carnegie Mellon University Carbon nanotube aerogels, composites including the same, and devices formed therefrom
CN103435951A (zh) * 2013-09-09 2013-12-11 江南大学 一种纳米复合高分子双网络水凝胶及其制备方法
CN104707486A (zh) * 2015-03-03 2015-06-17 浙江大学 一种高强度水凝胶过滤膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, SHIMOU ET AL.: "Prepare Water-soluble Carbon Nanotube Using Radiation Grafting Polymerization Process", 2005 NATIONAL POLYMER ACADEMIC THESIS SEMINAR, 13 October 2005 (2005-10-13), pages 511 *
FENG, HUANHUAN ET AL.: "High Strength Polyacrylamide-Carbon Nanotube Composite Hydroge l", 2007 NATIONAL POLYMER ACADEMIC THESIS SEMINAR, 13 October 2007 (2007-10-13), pages 426 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111808246A (zh) * 2019-04-11 2020-10-23 天津工业大学 一种具有高吸附性能的丙烯酸接枝改性碳纳米管制备方法
CN110540658A (zh) * 2019-08-08 2019-12-06 天津大学 一种基于丙烯酰胺/氧化碳纳米管纳米复合水凝胶传感器及其制备方法
CN110540658B (zh) * 2019-08-08 2022-03-15 天津大学 一种基于丙烯酰胺/氧化碳纳米管纳米复合水凝胶传感器及其制备方法
CN111991576A (zh) * 2020-08-20 2020-11-27 文山御美堂生物技术开发有限公司 一种三七粉灭菌处理方法
CN112934129A (zh) * 2021-01-28 2021-06-11 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 一种高效光热水蒸发碳纳米管水凝胶及其制备方法与应用
US20230312840A1 (en) * 2021-12-13 2023-10-05 Guangdong Ocean University Method for preparing carbon nanotube/polyacrylic acid hydrogel, product and application thereof
US11958946B2 (en) * 2021-12-13 2024-04-16 Guangdong Ocean University Method for preparing carbon nanotube/polyacrylic acid hydrogel, product and application thereof

Also Published As

Publication number Publication date
CN105418859A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2017101129A1 (zh) 一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法
CN106731892B (zh) 一种对血液中重金属离子高清除的氨基修饰mof膜及其制备方法
CN107626283B (zh) 利用多壁碳纳米管/金属有机骨架复合材料吸附水体中抗生素的方法
CN104923166B (zh) 一种微孔Fe‑N‑MOF材料及其制备方法和应用
CN110052247B (zh) 氧化石墨烯/锂皂石/壳聚糖气凝胶型固体胺吸附剂及其制备方法、应用
CN105413664B (zh) 一种改性超高分子量聚乙烯纤维、其制备方法及应用
CN105597708B (zh) 一种空气中pm2.5净化剂的制备方法
CN112023904B (zh) 一种快速合成的吸附剂PACP-MnO2纳米微球及其制备方法和应用
CN114192122A (zh) 一种清除二氧化碳的可再生纳米多孔吸附材料及制备方法
CN106861646B (zh) 选择性吸附银离子的吸附材料的制备方法
CN110511391A (zh) 具有光动力治疗效果的共价有机框架材料及其制备方法
CN103933937A (zh) 氧化石墨烯复合物与氧化镍负载石墨烯复合物的制备方法与应用
CN110327896A (zh) 一种磁性聚多巴胺/羧甲基壳聚糖吸附剂及其制备方法与应用
CN106902649B (zh) 一种对血液中重金属离子高清除的硫基修饰mof膜及其制备方法
CN105833265B (zh) 新型片层二硫化钼基纳米免疫佐剂及其制备方法与应用
CN106377772A (zh) 一种用于清除循环肿瘤细胞的免疫吸附剂
CN114887667A (zh) 一种新型的光催化空气净化材料的制备方法
CN110064377A (zh) 一种藻酸盐金属交联壳聚糖吸附材料的制备方法及其应用
JPS6377514A (ja) 空気清浄器
CN106861461B (zh) 一种对血液中重金属离子高清除的羟基修饰mof膜及其制备方法
CN105233769B (zh) 一种胶原多肽纳米球表面阳电荷修饰方法
CN104492397A (zh) 一种用于降低卷烟烟气中氨释放量的羧基聚苯乙烯磁性微球复合材料及其制备方法和应用
CN114405475A (zh) 一种吸附材料及其制备方法和应用
JP2000309609A (ja) ハロゲン化アルキルの除去剤及びその製造方法
JP2016087506A (ja) 有機化合物捕集剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910598

Country of ref document: EP

Kind code of ref document: A1