WO2017099154A1 - 硬化性組成物およびその硬化物 - Google Patents
硬化性組成物およびその硬化物 Download PDFInfo
- Publication number
- WO2017099154A1 WO2017099154A1 PCT/JP2016/086454 JP2016086454W WO2017099154A1 WO 2017099154 A1 WO2017099154 A1 WO 2017099154A1 JP 2016086454 W JP2016086454 W JP 2016086454W WO 2017099154 A1 WO2017099154 A1 WO 2017099154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- curable composition
- weight
- polymer
- parts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3432—Six-membered rings
- C08K5/3435—Piperidines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
- C08K5/134—Phenols containing ester groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/10—Block or graft copolymers containing polysiloxane sequences
- C09D183/12—Block or graft copolymers containing polysiloxane sequences containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/63—Additives non-macromolecular organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J183/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
- C09J183/10—Block or graft copolymers containing polysiloxane sequences
- C09J183/12—Block or graft copolymers containing polysiloxane sequences containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
Definitions
- the present invention relates to a polyoxyalkylene having a silicon-containing group (hereinafter also referred to as “reactive silicon group”) having a hydroxy group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond.
- the present invention relates to a transparent curable composition containing a polymer and a transparent cured product.
- An organic polymer containing at least one reactive silicon group in the molecule is crosslinked at the room temperature by forming a siloxane bond accompanied by a hydrolysis reaction of the reactive silicon group due to moisture, etc. It is known to give things.
- polymers having reactive silicon groups polymers having a polyoxyalkylene polymer skeleton or a polyisobutylene polymer skeleton as the main chain skeleton are disclosed in Patent Document 1, Patent Document 2, and the like. ing. These polymers have already been industrially produced and are widely used for applications such as sealing materials, adhesives and paints.
- a polyisobutylene-based polymer having a reactive silicon group is a material that is resistant to light and heat and can withstand long-term exposure because its main chain is a carbon-carbon bond. Shown to be usable.
- the polyoxyalkylene polymer having a reactive silicon group has an ether bond in the main chain, there is a problem that it is weak against light and heat. For this reason, the polyoxyalkylene polymer having a reactive silicon group is generally blended in combination with an antioxidant, an ultraviolet absorber, and a light stabilizer.
- a high molecular weight hindered amine light stabilizer is known to be effective in improving weather resistance, as described in Patent Document 4 and the like.
- Patent Document 5 also describes a technique in which a polyoxyalkylene polymer having a reactive silicon group is combined with a hindered amine light stabilizer of> N-OR type (R is a long-chain alkyl group).
- Patent Document 6 discloses a technique in which a polyoxyalkylene polymer having a reactive silicon group, a triazine hindered amine light stabilizer, and a benzotriazole ultraviolet absorber are combined.
- JP-A-52-73998 JP 63-6041 A Japanese Patent Laid-Open No. 9-286895 JP-A-61-233043 JP2015-89911A Japanese Patent Laid-Open No. 2001-271057
- Reactive silicon group-containing polyoxyalkylene polymers are widely used mainly for architectural sealants and industrial sealants. In these applications, weather resistance to sunlight over a long period of time and heat stability in industrial use are necessary. For this reason, as described above, a reactive silicon group-containing polyoxyalkylene polymer is generally added in combination with a plurality of stabilizers.
- hindered amine light stabilizers are suitable for improving the weather resistance of reactive silicon group-containing polyoxyalkylene polymers, and have been thought to be particularly effective because high molecular weight materials are not easily washed away by water or the like. .
- composition containing the reactive silicon group-containing polyoxyalkylene polymer is colored, for example, due to a high shielding effect such as calcium carbonate as a white pigment, rutile titanium oxide, carbon black as a black pigment, etc. Securing weather resistance was not so difficult.
- a transparent composition since light reaches the inside of the cured product, it is difficult to maintain long-term weather resistance.
- some stabilizers are colored yellow or red when used in combination with an amino group-containing silane coupling agent which is an adhesion-imparting agent. Under such circumstances, it has not been easy to find a combination of additives that hardly changes the color of the cured product.
- An object of the present invention is to provide a curable composition containing a silicon group-containing polyoxyalkylene polymer, which is excellent in weather resistance, heat resistance, and transparency, and a transparent cured product.
- the present inventors have found that long-chain hydrocarbons in the molecule. It has been found that a weathering stabilizer having a specific structure having a group is specifically effective. Moreover, it discovered that the weather stabilizer of the above-mentioned specific structure suppressed coloring of a transparent hardened
- the polyoxyalkylene polymer (A) has a reactive silicon group that can be crosslinked by forming a siloxane bond
- the weather stabilizer (B) is represented by the following formula (1): (In the formula (1), R 1 is an unsubstituted hydrocarbon group having 12 to 20 carbon atoms, and R 2 is selected from hydrogen, a methyl group, an ethyl group, and an alkyloxy group having 1 to 12 carbon atoms.
- R 1 is the same as in Formula (1), and two R 3 are each independently a group selected from hydrogen, a methyl group, an ethyl group, and a t-butyl group. At least one of R 3 is a t-butyl group.
- the reactive silicon group of component (A) is at least one selected from the group consisting of a trimethoxysilyl group, a triethoxysilyl group, and a dimethoxymethylsilyl group.
- Curable composition (4).
- the component (A) is a mixture of a linear polyoxyalkylene polymer (A1) and a branched polyoxyalkylene polymer (A2), (1) to (3)
- the transparent cured product according to (14) is obtained within 7 days after curing, and the curable composition according to any one of (1) to (8), and (16) Formula (1) below:
- R 1 is an unsubstituted hydrocarbon group having 12 to 20 carbon atoms
- R 2 is selected from hydrogen, a methyl group, an ethyl group, and an alkyloxy group having 1 to 12 carbon atoms.
- Group. Hindered amine light stabilizer (B1) and / or the following formula (2):
- R 1 is the same as in Formula (1), and two R 3 are each independently a group selected from hydrogen, a methyl group, an ethyl group, and a t-butyl group.
- At least one of R 3 is a t-butyl group.
- a hindered phenolic antioxidant (B2) represented by A weathering stabilizer used in a transparent curable composition comprising a polyoxyalkylene-based polymer (A) having a reactive silicon group capable of crosslinking by forming a siloxane bond, About.
- a curable composition containing a silicon group-containing polyoxyalkylene polymer which is excellent in weather resistance, heat resistance, and transparency, and a transparent cured product.
- the polyoxyalkylene polymer (A) has a reactive silicon group that can be crosslinked by forming a siloxane bond.
- the main chain skeleton of the polyoxyalkylene polymer (A) is not particularly limited, and polymers having various main chain skeletons can be used.
- the main chain skeleton is preferably composed of one or more selected from a hydrogen atom, a carbon atom, a nitrogen atom, an oxygen atom and a sulfur atom because the resulting composition is excellent in curability and adhesiveness.
- polyoxyalkylene heavy polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc. It is a coalescence.
- the polyoxyalkylene polymer (A) having a reactive silicon group may be mixed with a reactive silicon group-containing polymer having the following skeleton.
- the glass transition temperature of the polyoxyalkylene polymer (A) is not particularly limited, but is preferably 20 ° C. or less, more preferably 0 ° C. or less, and particularly preferably ⁇ 20 ° C. or less. .
- the glass transition temperature is a value obtained by DSC measurement.
- the polyoxyalkylene polymer (A) and the (meth) acrylic acid ester polymer are particularly preferable because they have high moisture permeability and are excellent in deep-part curability when used as a one-component composition, and also have excellent adhesion.
- the polyoxyalkylene polymer is most preferable.
- polyoxypropylene polymers are particularly preferable.
- the reactive silicon group contained in the polyoxyalkylene polymer (A) or the reactive silicon group-containing polymer used together with the polyoxyalkylene polymer (A) is a hydroxy group bonded to a silicon atom or a hydrolyzed group. Has a degradable group.
- Such a reactive silicon group is a group that can be crosslinked by forming a siloxane bond by a reaction accelerated by a silanol condensation catalyst.
- the reactive silicon group As the reactive silicon group, the general formula (3): -SiR 4 3-a X a (3) (R 4 is each independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or —OSi (R ′) 3 (R ′ Are each independently a hydrocarbon group having 1 to 20 carbon atoms) X is independently a hydroxy group or a hydrolyzable group, a is 1 to 3 (It is an integer.) The group represented by these is mentioned.
- the hydrolyzable group is not particularly limited as long as it is a conventionally known hydrolyzable group.
- Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.
- a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable.
- the group is particularly preferred.
- Hydrolyzable groups and hydroxy groups can be bonded to one silicon atom in the range of 1 to 3. When two or more hydrolyzable groups or hydroxy groups are bonded to the reactive silicon group, they may be the same or different.
- a is preferably 2 or 3 from the viewpoint of curability, and is particularly preferably 3 when quick curability is required, and when stability during storage is required. Is preferably 2.
- R 4 in the general formula (3) include, for example, alkyl groups such as a methyl group and an ethyl group, cycloalkyl groups such as a cyclohexyl group, aryl groups such as a phenyl group, aralkyl groups such as a benzyl group, R And a triorganosiloxy group represented by —OSi (R ′) 3 in which “is a methyl group, a phenyl group, and the like. Of these, a methyl group is particularly preferred.
- the reactive silicon group include a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group, a dimethoxymethylsilyl group, a diethoxymethylsilyl group, and a diisopropoxymethylsilyl group.
- a trimethoxysilyl group, a triethoxysilyl group, and a dimethoxymethylsilyl group are more preferable, and a trimethoxysilyl group is particularly preferable because of high activity and good curability.
- a dimethoxymethylsilyl group and a triethoxysilyl group are particularly preferable.
- the triethoxysilyl group and the diethoxymethylsilyl group are particularly preferable because the alcohol produced in the hydrolysis reaction of the reactive silicon group is ethanol and has higher safety.
- the introduction of the reactive silicon group may be performed by a known method. For example, the following methods are mentioned.
- An organic polymer having an unsaturated group by reacting an organic polymer having a functional group such as a hydroxy group in the molecule with an organic compound having an active group and an unsaturated group that are reactive with the functional group.
- a polymer is obtained.
- an unsaturated group-containing organic polymer is obtained by copolymerization with an unsaturated group-containing epoxy compound.
- the resulting reaction product is hydrosilylated by the action of a hydrosilane having a reactive silicon group.
- the method (I) or the method (III) of reacting a polymer having a hydroxy group at the terminal with a compound having an isocyanate group and a reactive silicon group has a relatively short reaction time. It is preferable because a high conversion rate can be obtained. Furthermore, the organic polymer having a reactive silicon group obtained by the method (I) provides a curable composition having a lower viscosity and better workability than the organic polymer obtained by the method (III); Moreover, since there is no strong odor based on a mercaptosilane like the organic polymer obtained by the method of (II), it is especially preferable.
- hydrosilane compound used in the method (I) include halogenated silanes such as trichlorosilane, methyldichlorosilane, dimethylchlorosilane, and phenyldichlorosilane; trimethoxysilane, triethoxysilane, and methyldiethoxysilane.
- Alkoxysilanes such as methyldimethoxysilane, phenyldimethoxysilane, 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane; methyldiacetoxysilane, phenyldiacetoxysilane And acyloxysilanes such as bis (dimethylketoximate) methylsilane and bis (cyclohexylketoximate) methylsilane.
- the hydrosilane compound is not limited to these.
- halogenated silanes and alkoxysilanes are particularly preferable, and alkoxysilanes are most preferable because the hydrolyzability of the resulting curable composition is gentle and easy to handle.
- alkoxysilanes methyldimethoxysilane is preferred because it is easily available and the curable composition containing the resulting organic polymer has high curability, storage stability, elongation characteristics, and tensile strength. Trimethoxysilane is particularly preferable from the viewpoints of curability and restorability of the resulting curable composition.
- a compound having a mercapto group and a reactive silicon group is converted into an unsaturated bond site of an organic polymer by a radical addition reaction in the presence of a radical initiator and / or a radical generation source.
- a radical addition reaction in the presence of a radical initiator and / or a radical generation source.
- transducing etc. is mentioned, it does not specifically limit.
- Specific examples of the compound having a mercapto group and a reactive silicon group include, for example, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, and ⁇ -mercaptopropylmethyldiethoxysilane.
- the compound having an isocyanate group and a reactive silicon group include ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatepropylmethyldiethoxysilane, isocyanate Examples include, but are not limited to, methyltrimethoxysilane, isocyanatemethyltriethoxysilane, isocyanatemethyldimethoxymethylsilane, and isocyanatemethyldiethoxymethylsilane.
- a silane compound in which three hydrolyzable groups are bonded to one silicon atom such as trimethoxysilane may cause a disproportionation reaction.
- an unstable compound such as dimethoxysilane is produced, which may make handling difficult.
- disproportionation reaction does not proceed with ⁇ -mercaptopropyltrimethoxysilane or ⁇ -isocyanatopropyltrimethoxysilane.
- the synthesis method (II) or (III) can be used. preferable.
- R 5 s are each independently a hydrocarbon group, and from the viewpoint of availability and cost, a hydrocarbon group having 1 to 20 carbon atoms is preferred, and 1 to 8 carbon atoms is preferred.
- the hydrocarbon group is more preferably a hydrocarbon group having 1 to 4 carbon atoms, and R 6 is a divalent organic group, and is divalent having 1 to 12 carbon atoms from the viewpoint of availability and cost.
- the divalent hydrocarbon group having 2 to 8 carbon atoms is more preferable, and the divalent hydrocarbon group having 2 carbon atoms is particularly preferable, and m is an integer of 0 to 19 and is available. 1 is preferred from the standpoint of property and cost.)
- the disproportionation reaction does not proceed with the silane compound represented by For this reason, when a group in which three hydrolyzable groups are bonded to one silicon atom is introduced by the synthesis method (I), a silane compound represented by the general formula (4) should be used. Is preferred.
- silane compound represented by the general formula (4) examples include 1- [2- (trimethoxysilyl) ethyl] -1,1,3,3-tetramethyldisiloxane, 1- [2- (trimethoxy Silyl) propyl] -1,1,3,3-tetramethyldisiloxane, 1- [2- (trimethoxysilyl) hexyl] -1,1,3,3-tetramethyldisiloxane.
- the polyoxyalkylene polymer (A) may be linear or branched.
- the polyoxyalkylene polymer (A) it is also preferable to use a combination of a linear polyoxyalkylene polymer (A1) and a branched polyoxyalkylene polymer (A2).
- a linear polyoxyalkylene polymer (A1) and a branched polyoxyalkylene polymer (A2) In this case, there exists an advantage which can balance the intensity
- the linear polyoxyalkylene polymer (A1) and the branched polyoxyalkylene polymer (A2) are used in combination, the ratio (weight ratio) between them is the linear polyoxyalkylene.
- the branched polyoxyalkylene polymer (A2) is preferably 5:95 to 95: 5, more preferably 10:90 to 90:10, and 20:80 to 80:20. Particularly preferred.
- the number average molecular weight of the polyoxyalkylene polymer (A) is about 500 to 100,000, more preferably 1,000 to 50,000, particularly preferably 3,000 to 30,000 in terms of polystyrene in GPC. It is. If the number average molecular weight is less than 500, the cured product tends to be inconvenient in terms of elongation characteristics, and if it exceeds 100,000, the viscosity tends to be inconvenient because of high viscosity.
- the reactive silicon group contained in the polyoxyalkylene polymer (A) is at least on average in one molecule of the polymer.
- One, preferably 1.1 to 5, may be present.
- the reactive silicon group may be at the end of the main chain or the side chain of the polymer molecular chain, or at both ends.
- the effective network length of the polymer component contained in the finally formed cured product is increased, so that the high strength, high elongation, A rubber-like cured product having a low elastic modulus is easily obtained.
- the polyoxyalkylene polymer (A) essentially has the general formula (5): -R 7 -O- (5) (R 7 is a linear or branched alkylene group having 1 to 14 carbon atoms.) It is a polymer which has a repeating unit shown by these.
- R 7 in the general formula (5) is preferably a linear or branched alkylene group having 1 to 14 carbon atoms, more preferably 2 to 4 carbon atoms.
- the main chain skeleton of the polyoxyalkylene polymer (A) may be composed of only one type of repeating unit or may be composed of two or more types of repeating units.
- a polymer composed mainly of a propylene oxide polymer is amorphous or has a relatively low viscosity.
- the polyoxyalkylene polymer (A) for example, a polymerization method using an alkali catalyst such as KOH, or a complex obtained by reacting an organoaluminum compound and porphyrin disclosed in JP-A-61-215623 Polymerization method using transition metal compound-porphyrin complex catalyst such as JP-B-46-27250, JP-B-59-15336, US Pat. No. 3,278,457, US Pat. No. 3,278,458, US Pat. No. 3,278,459, US Pat. No. 3,427,256, US Pat. No. 3427334, US Pat. No.
- the production method of the polyoxyalkylene polymer (A) having a reactive silicon group is disclosed in JP-B Nos. 45-36319 and 46-12154, JP-A Nos. 50-156599, 54-6096 and 55-.
- the methods proposed in the publications such as No. 13767, No. 55-13468, No. 57-164123, No. 3-2450, U.S. Pat. No. 3,632,557, U.S. Pat. No. 4,345,053, U.S. Pat. .
- the polyoxyalkylene polymer having a narrow molecular weight distribution and a high molecular weight having a number average molecular weight of 6,000 or more and Mw / Mn of 1.6 or less can be exemplified.
- the present invention is not particularly limited thereto.
- the above-mentioned polyoxyalkylene polymer (A) having a reactive silicon group may be used alone or in combination of two or more.
- the polyoxyalkylene polymer (A) having a reactive silicon group may be used by mixing with a reactive silicon group-containing polymer having a skeleton other than the polyoxyalkylene polymer.
- the reactive silicon group-containing polymer having a skeleton other than the polyoxyalkylene-based polymer is a (meth) acrylate-based polymer that is a polymer of a monomer containing a (meth) acrylate-based monomer as described above. Polymers are preferred.
- the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer is not particularly limited, and various types can be used. Examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-heptyl (meth) acrylate, N-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth)
- the following vinyl monomers can be copolymerized together with the (meth) acrylate monomer.
- the vinyl monomer include styrene monomers such as styrene, vinyl toluene, ⁇ -methyl styrene, chlorostyrene, styrene sulfonic acid and salts thereof; silicon-containing vinyl monomers such as vinyl trimethoxysilane and vinyl triethoxysilane; Maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, monoalkyl and dialkyl esters of fumaric acid; maleimide, methylmaleimide, ethylmaleimide, propylmaleimide, butylmaleimide, hexylmaleimide, octylmaleimide, Maleimide monomers such as dodecylmaleimide, stearylmaleimide, phenylmaleimide
- the polymer of the monomer which consists of a styrene-type monomer and a (meth) acrylic-acid type monomer from the physical property of a product etc. is preferable. More preferably, it is a (meth) acrylic polymer that is a polymer of monomers consisting of an acrylate monomer and a methacrylic acid ester monomer, and particularly preferably a polymer of monomers consisting of an acrylate monomer. It is an acrylic polymer.
- a polymer of monomers containing a butyl acrylate monomer because of its low viscosity of the compound, low modulus of the cured product, high elongation, weather resistance, heat resistance, etc. is more preferable.
- a copolymer of monomers mainly composed of ethyl acrylate is more preferable.
- This monomer-based polymer mainly composed of ethyl acrylate is excellent in oil resistance but tends to be slightly inferior in low-temperature characteristics (cold resistance). For this reason, in order to improve the low temperature characteristic, it is also possible to replace a part of ethyl acrylate with butyl acrylate.
- the ratio of butyl acrylate in the monomer is preferably 40% by weight or less, and more preferably 30% by weight or less. It is also preferable to use 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate or the like in which oxygen is introduced into the side chain alkyl group in order to improve low temperature characteristics without impairing oil resistance.
- heat resistance tends to be inferior due to the introduction of an alkoxy group having an ether bond in the side chain.
- the ratio of the acrylic acid alkyl ester in which oxygen is introduced into the side chain alkyl group in the monomer is preferably 40% by weight or less.
- suitable polymers by changing the ratio in consideration of required physical properties such as oil resistance, heat resistance and low temperature characteristics.
- required physical properties such as oil resistance, heat resistance and low temperature characteristics.
- excellent balance of physical properties such as oil resistance, heat resistance, and low temperature characteristics include ethyl acrylate / butyl acrylate / 2-methoxyethyl acrylate (by weight ratio of 40-50 / 20- 30/30 to 20).
- these preferable monomers may be copolymerized with other monomers, and further block copolymerized, and in this case, it is preferable that these preferable monomers are contained in a weight ratio of 40% or more.
- (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
- the “atom transfer radical polymerization method” for polymerizing a (meth) acrylate monomer using an organic halide or a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst In addition to the characteristics of the “living radical polymerization method”, it has a halogen or the like that is relatively advantageous for functional group conversion reaction, and has a specific functional group because it has a large degree of freedom in designing initiators and catalysts ( The method for producing a (meth) acrylic acid ester polymer is more preferable. Examples of this atom transfer radical polymerization method include Matyjazewski et al., Journal of American Chemical Society (J. Am. Chem. Soc.) 1995, 117, 5614.
- Examples of the method for producing a (meth) acrylic acid ester-based polymer having a reactive silicon group include chain transfer described in JP-B-3-14068, JP-B-4-55444, JP-A-6-211922, and the like.
- a production method using a free radical polymerization method using an agent is disclosed.
- Japanese Patent Application Laid-Open No. 9-272714 discloses a production method using an atom transfer radical polymerization method, but is not particularly limited thereto.
- the (meth) acrylic acid ester-based polymer having a reactive silicon group may be used alone or in combination of two or more.
- organic polymers having a reactive silicon group may be used alone or in combination of two or more.
- an organic polymer obtained by blending a polyoxyalkylene polymer (A) having a reactive silicon group and a (meth) acrylic acid ester polymer having a reactive silicon group can also be used.
- a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer (A) having a reactive silicon group and a (meth) acrylic acid ester polymer having a reactive silicon group is disclosed in JP-A-59-122541. No. 63-112642, JP-A-6-172631, and JP-A-11-116763, but are not limited thereto.
- a preferred specific example has a reactive silicon group and a molecular chain substantially having the following general formula (6): —CH 2 —C (R 8 ) (COOR 9 ) — (6) (R 8 is a hydrogen atom or a methyl group, and R 9 is an alkyl group having 1 to 8 carbon atoms.)
- a method comprising: blending a polyoxyalkylene polymer having a reactive silicon group with a copolymer comprising a (meth) acrylic acid ester monomer unit having an alkyl group having 9 or more carbon atoms represented by It is.
- R 9 in the general formula (6) is, for example, 1 to 8, preferably 1 to 4 carbon atoms such as methyl group, ethyl group, propyl group, n-butyl group, t-butyl group, and 2-ethylhexyl group. More preferred are 1 or 2 alkyl groups.
- the alkyl group of R 9 may alone, or may be two or more.
- R 10 in the general formula (7) is, for example, 9 or more carbon atoms such as a nonyl group, a decyl group, a lauryl group, a tridecyl group, a cetyl group, a stearyl group, or a behenyl group, usually 10 to 30, preferably 10 -20 long chain alkyl groups.
- the alkyl groups of R 10 is the R 9, it may be alone or may be two or more.
- the molecular chain of the (meth) acrylate polymer is substantially composed of monomer units of the general formula (6) and the general formula (7).
- “substantially” means that the total of the monomer units of the general formula (6) and the general formula (7) present in the copolymer exceeds 50% by weight.
- the total of the monomer unit of the general formula (6) and the monomer unit of the general formula (7) is preferably 70% by weight or more.
- the abundance ratio of the monomer unit of the general formula (6) and the monomer unit of the general formula (7) is preferably 95: 5 to 40:60, and more preferably 90:10 to 60:40, by weight.
- Examples of the monomer unit other than the monomer unit of the general formula (6) and the monomer unit of the general formula (7) that may be contained in the copolymer include acrylic acid and methacrylic acid.
- Acrylic acid ; amide groups such as acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, epoxy groups such as glycidyl acrylate, glycidyl methacrylate, amino groups such as diethylaminoethyl acrylate, diethylaminoethyl methacrylate, aminoethyl vinyl ether
- an organic polymer obtained by blending a (meth) acrylic acid ester-based polymer having a reactive silicon functional group, in the presence of an organic polymer having a reactive silicon group (meth) A method of polymerizing an acrylic ester monomer can be used. This production method is specifically disclosed in JP-A-59-78223, JP-A-59-168014, JP-A-60-228516, JP-A-60-228517, etc. It is not limited to these.
- the main chain skeleton of the component (A) may contain other components such as a urethane bond component as long as the effects of the present invention are not significantly impaired.
- the amide segment has the general formula (8): —NR 11 —C ( ⁇ O) — (8) (R 11 is an organic group or a hydrogen atom.) It is group represented by these.
- the amide segment includes a urethane group formed by a reaction between an isocyanate group and a hydroxy group; a urea group formed by a reaction between an isocyanate group and an amino group; a thio group formed by a reaction between an isocyanate group and a mercapto group.
- a urethane group etc. can be mentioned.
- groups generated by the reaction of the active hydrogen in the urethane group, urea group, and thiourethane group with an isocyanate group are also included in the group of the general formula (8).
- An example of an industrially easy production method of an organic polymer having an amide segment and a reactive silicon group is as follows.
- An organic polymer having an active hydrogen-containing group at the terminal is reacted with an excess polyisocyanate compound to produce a polyurethane-based main polymer.
- all or a part of the isocyanate group has the general formula (9): WR 12 -SiR 43-a X a (9) (R 4 , X and a are the same as described above.
- R 12 is a divalent organic group, more preferably a hydrocarbon group having 1 to 20 carbon atoms.
- W is a hydroxy group, a carboxy group, a mercapto group and Active hydrogen-containing group selected from amino groups (primary or secondary).
- the method of manufacturing an organic polymer can be mentioned by the method of making W group of the silicon compound represented by these react.
- Examples of known production methods for organic polymers related to this production method include Japanese Patent Publication No. 46-12154 (US Pat. No. 3,632,557), Japanese Patent Application Laid-Open No. 58-109529 (US Pat. No. 4,374,237), Japanese Patent Application Laid-Open No. Sho 62. No. 13430 (US Pat. No.
- JP-A-8-53528 EP0676403
- JP-A-10-204144 EP0831108
- JP-T 2003-508561 US Pat. No. 6,1979,912
- JP-A-6-21879 US) No. 5364955
- JP-A-10-53637 US Pat. No. 5,757,751
- JP-A-11-100197 JP-A-2000-169544
- JP-A-2000-169545 JP-A-2002-212415
- JP-A-3313360 JP-A-3313360.
- the method of manufacturing an organic polymer can be mentioned by making the reactive silicon group containing isocyanate compound shown by these react.
- Examples of known production methods for organic polymers related to this production method include JP-A-11-279249 (US Pat. No. 5,990,257), JP-A 2000-119365 (US Pat. No. 6,046,270), JP-A 58- No. 29818 (US Pat. No. 4,345,053), JP-A-3-47825 (US Pat. No. 5,068,304), JP-A-11-60724, JP-A-2002-155138, JP-A-2002-249538, WO03 / 018658, WO03 / 059981 Etc.
- organic polymer having an active hydrogen-containing group at the terminal examples include an oxyalkylene polymer having a hydroxy group at the terminal (polyether polyol), a polyacryl polyol, a polyester polyol, and a saturated hydrocarbon polymer having a hydroxy group at the terminal (Polyolefin polyol), polythiol compounds, polyamine compounds and the like.
- polyether polyol, polyacryl polyol, and polyolefin polyol are preferable because the obtained organic polymer has a relatively low glass transition temperature and the resulting cured product is excellent in cold resistance.
- polyether polyols are particularly preferred because the resulting organic polymer has a low viscosity, good workability, and good deep part curability and adhesiveness.
- Polyacryl polyols and saturated hydrocarbon polymers are more preferred because the cured products of the resulting organic polymers have good weather resistance and heat resistance.
- the polyether polyol may be produced by any production method.
- the polyether polyol preferably has at least 0.7 hydroxyl groups per molecule terminal at the average of all molecules.
- an oxyalkylene polymer produced using a conventional alkali metal catalyst, an initiator such as a polyhydroxy compound having at least two hydroxy groups in the presence of a double metal cyanide complex or cesium examples include oxyalkylene polymers produced by reacting oxides.
- a polymerization method using a double metal cyanide complex has a lower degree of unsaturation, a smaller Mw / Mn, a lower viscosity, a high acid resistance, and a high weather resistance oxyalkylene heavy. It is preferable because a coalescence can be obtained.
- polyacryl polyol examples include a polyol having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and a hydroxy group in the molecule.
- the polymer synthesis method is preferably a living radical polymerization method and more preferably an atom transfer radical polymerization method because the molecular weight distribution is narrow and viscosity can be lowered.
- Specific examples include Alfon UH-2000 manufactured by Toagosei Co., Ltd.
- polyisocyanate compound examples include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate.
- aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate
- aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate.
- silicon compound of General formula (9) There is no limitation in particular as a silicon compound of General formula (9). Specific examples include ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, (N-phenyl) - ⁇ -aminopropyltrimethoxysilane, N-ethylaminoisobutyl.
- Amino group-containing silanes such as trimethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N-phenylaminomethyltrimethoxysilane; hydroxy groups such as ⁇ -hydroxypropyltrimethoxysilane -Containing silanes; mercapto group-containing silanes such as ⁇ -mercaptopropyltrimethoxysilane; and the like.
- JP-A-6-2111879 US Pat. No. 5,364,955
- JP-A-10-53637 US Pat. No.
- Michael addition reaction products of various ⁇ , ⁇ -unsaturated carbonyl compounds and primary amino group-containing silanes, or various (meth) acryloyl group-containing silanes and primary amino group-containing compounds can also be used as the silicon compound of general formula (9).
- a reactive silicon group containing isocyanate compound of General formula (10) there is no limitation in particular as a reactive silicon group containing isocyanate compound of General formula (10).
- Specific examples include ⁇ -trimethoxysilylpropyl isocyanate, ⁇ -triethoxysilylpropyl isocyanate, ⁇ -methyldimethoxysilylpropyl isocyanate, ⁇ -methyldiethoxysilylpropyl isocyanate, trimethoxysilylmethyl isocyanate, triethoxymethylsilylmethyl.
- a compound obtained by reacting a silicon compound of the general formula (9) with an excess of a polyisocyanate compound is also represented by the general formula ( It can be used as the reactive silicon group-containing isocyanate compound 10).
- the organic polymer obtained by the above method has the general formula (11) in the main chain skeleton: —NR 13 —C ( ⁇ O) — (11) (R 13 is a hydrogen atom or a substituted or unsubstituted organic group.) It has group represented by these. Since this structure has a relatively high polarity, it tends to increase the strength of the cured product and the adhesion to the substrate, which is preferable.
- the curable composition contains a weathering stabilizer (B) having a long-chain unsubstituted hydrocarbon group.
- the weather stabilizer (B) has the formula (1): (In the formula (1), R 1 is an unsubstituted hydrocarbon group having 12 to 20 carbon atoms, and R 2 is selected from hydrogen, a methyl group, an ethyl group, and an alkyloxy group having 1 to 12 carbon atoms.
- the long chain unsubstituted hydrocarbon group R 1 contained in the hindered amine light stabilizer (B1) and the hindered phenol antioxidant (B2) preferably has 12 to 20 carbon atoms, more preferably 14 to 18 carbon atoms.
- the hydrocarbon group as R 1 may be saturated or unsaturated.
- the average number of unsaturated groups is preferably 2 or less in the hydrocarbon group, and an alkyl group having no unsaturated group is preferred.
- the hydrocarbon group may be linear or branched, but the linear group is preferred from the viewpoint of compatibility with the component (A).
- the hindered amine light stabilizer (B1) is a compound having a piperidinyl group and a long-chain unsubstituted hydrocarbon group in the molecule.
- a piperidinyl group having a hindered structure improves weather resistance, and a long-chain unsubstituted hydrocarbon group improves compatibility with the component (A). That is, in the curable composition containing the polyoxyalkylene polymer (A), the compatibility of the hindered amine light stabilizer (B1) with the curable composition is improved by the long-chain unsubstituted hydrocarbon group.
- the hindered amine light stabilizer (B1) provided by the piperidinyl group having a hindered structure is considered to further improve the effect of improving the weather resistance of the curable composition.
- the long chain unsubstituted hydrocarbon group R 1 contained in the hindered amine light stabilizer (B1) preferably has 12 to 20 carbon atoms, more preferably 14 to 18 carbon atoms.
- compatibility with the component (A) decreases, so the effect of improving weather resistance is reduced.
- the number of carbon atoms is larger than 20, the melting point of the hindered amine light stabilizer (B1) is increased, and it is likely to precipitate from the curable composition.
- the unsubstituted hydrocarbon group may be saturated or unsaturated, but the average number of unsaturated groups is preferably 2 or less in the unsubstituted hydrocarbon group, and an alkyl group having no unsaturated group is preferable.
- the unsubstituted hydrocarbon group may be linear or branched, but the linear chain is preferred from the viewpoint of compatibility with the component (A).
- R 2 is hydrogen or a methyl group are preferred, particularly preferably to early expressed effect towards hydrogen.
- the molecular weight of the hindered amine light stabilizer (B1) is preferably in the range of 300 to 600, and particularly preferably in the range of 400 to 500 from the viewpoint of compatibility with the component (A).
- the melting point of the hindered amine light stabilizer (B1) is preferably 0 to 100 ° C. from the viewpoint of good usability of the curable composition, and particularly preferably 20 to 80 ° C.
- a compound represented by the following formula (12) is sold and is preferable because it can be easily obtained.
- the product name is Sabostab UV91 from Songwon and the product name Cyasorb UV-3853 from Cytec.
- the hindered phenol-based antioxidant (B2) is a compound having a hindered phenol structure and a long-chain unsubstituted hydrocarbon group in the molecule. Although it is widely known that the hindered phenol structure has an antioxidant ability, it has a long-chain unsubstituted hydrocarbon group in the molecule, so that the effect is particularly manifested when added to the component (A). In the curable composition containing the polyoxyalkylene polymer (A), the compatibility of the hindered phenol antioxidant (B2) with the curable composition is improved by the long-chain unsubstituted hydrocarbon group.
- the hindered phenol-based antioxidant (B1) provided by the hindered phenol structure further improves the effect of improving the weather resistance of the curable composition.
- the long chain unsubstituted hydrocarbon group R 1 contained in (B2) preferably has 12 to 20 carbon atoms, more preferably 14 to 18 carbon atoms.
- compatibility with the component (A) decreases, so the effect of improving weather resistance is reduced.
- the number of carbon atoms is larger than 20, the melting point of the hindered phenol-based antioxidant (B2) is increased, and the hindered phenol-based antioxidant (B2) is likely to precipitate from the curable composition of the present invention.
- This unsubstituted hydrocarbon group may be saturated or unsaturated, but the average number of unsaturated groups is preferably 2 or less in the unsubstituted hydrocarbon group, and an alkyl group having no unsaturated group is preferred.
- the unsubstituted hydrocarbon group may be linear or branched, but the linear chain is preferred from the viewpoint of compatibility with the component (A).
- Two R 3 are each independently hydrogen contained in a hindered phenol antioxidant (B2), a methyl group, an ethyl group, or a t- butyl group. At least one of the two R 3 is a t-butyl group. In view of high antioxidant ability, it is preferable that both R 3 are t-butyl groups.
- the molecular weight of the hindered phenol antioxidant (B2) is preferably in the range of 300 to 600, and particularly preferably in the range of 400 to 500 from the viewpoint of compatibility with the component (A).
- the melting point of the hindered phenol antioxidant (B2) is preferably 0 to 100 ° C. from the viewpoint of good usability of the curable composition, and particularly preferably 20 to 80 ° C.
- a compound represented by the following formula (13) is commercially available and is preferable because it can be easily obtained. Specifically, it is sold under the trade name: Songsorb 2908 from Songwon, under the trade name: Cyasorb UV-2908 from Cytec, and under the trade name: KEMISORB 114 from Chemipro Kasei Co., Ltd.
- the component (B) is an effective component for improving the weather resistance and heat resistance of the component (A).
- the presence of the long-chain unsubstituted hydrocarbon group increases the compatibility with the polyoxyalkylene skeleton of the component (A), and it is estimated that the effect can be maintained over a long period of time even if it is splashed with water.
- a component may be used independently and may use 2 or more types together.
- Component (B) is added in an amount of 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, and 0.3 to 5 parts by weight per 100 parts by weight of the polyoxyalkylene polymer (A). Part is particularly preferred.
- the blending amount of the component (B) is less than 0.1 parts by weight, it is not preferable because sufficient weather resistance and heat resistance cannot be obtained. On the other hand, even if the blending amount of the component (B) exceeds 20 parts by weight, the weather resistance is not further improved, and the component (B) tends to precipitate from the cured product, which is not preferable.
- Antioxidants (anti-aging agents) other than the hindered phenol antioxidant (B2) can be used for the curable composition. If an antioxidant other than the hindered phenol antioxidant (B2) is used, the heat resistance of the cured product can be increased.
- antioxidant include hindered phenols, monophenols, bisphenols, and polyphenols, with hindered phenols being particularly preferred.
- Tinuvin 622LD, Tinuvin 144, CHIMASSORB 944LD, CHIMASSORB 119FL (all of which are manufactured by BASF); MARK LA-57, MARK LA-62, MARK LA-67, MARK LA-63, MARK LA-68 (all of which are stocks) Company ADEKA); hindered amine light shown by Sanol LS-770, Sanol LS-765, Sanol LS-292, Sanol LS-2626, Sanol LS-1114, Sanol LS-744 (all of which are manufactured by Sankyo Co., Ltd.) Stabilizers can also be used.
- the amount of the antioxidant used is preferably in the range of 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the polyoxyalkylene polymer (A).
- a light stabilizer other than the hindered amine light stabilizer (B1) can be used.
- a light stabilizer other than the hindered amine light stabilizer (B1) is used, photooxidative deterioration of the cured product can be prevented.
- the light stabilizer include benzotriazole, hindered amine, and benzoate compounds, with hindered amines being particularly preferred.
- the amount of the light stabilizer used is preferably in the range of 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight with respect to 100 parts by weight of the polyoxyalkylene polymer (A). Specific examples of the light stabilizer are also described in JP-A-9-194731.
- a photocurable substance is used in combination with a curable composition, particularly when an unsaturated acrylic compound is used, a tertiary amine-containing hindered amine type as a hindered amine type light stabilizer as described in JP-A-5-70531.
- a tertiary amine-containing hindered amine type as a hindered amine type light stabilizer as described in JP-A-5-70531.
- Use of a light stabilizer is preferred for improving the storage stability of the composition.
- Tinuvin 622LD Tinuvin 144, CHIMASSORB 119FL (all of which are manufactured by BASF); MARK LA-57, LA-62, LA-67, LA-63 (all of which are ADEKA Corporation)
- Light stabilizers such as SANOL LS-765, LS-292, LS-2626, LS-1114, and LS-744 (all of which are manufactured by BASF).
- An ultraviolet absorber can be used for the curable composition. When the ultraviolet absorber is used, the surface weather resistance of the cured product can be enhanced.
- ultraviolet absorbers include benzophenone, benzotriazole, salicylate, substituted tolyl, and metal chelate compounds, with benzotriazole being particularly preferred.
- the amount of the ultraviolet absorber used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the polyoxyalkylene polymer (A). It is preferable to use a phenolic or hindered phenolic antioxidant, a hindered amine light stabilizer and a benzotriazole ultraviolet absorber in combination.
- the curable composition may contain a plasticizer.
- plasticizers include non-aromatic dibasic acid esters such as dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate; aliphatic esters such as butyl oleate and methyl acetyl ricinoleate; Phosphate esters such as zil phosphate and tributyl phosphate; trimellitic acid esters; chlorinated paraffins; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oils; epoxidized soybean oil, epoxy stearin Mention may be made of epoxy plasticizers such as benzyl acid.
- Plasticizers include dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, di-normal hexyl phthalate, bis (2-ethylhexyl) phthalate, di-normal octyl phthalate, diisononyl phthalate, dinonyl phthalate Phthalic acid esters such as diisodecyl phthalate, diisoundecyl phthalate, and bisbutylbenzyl phthalate can also be used. However, considering the influence on the human body and the environment, it is preferable that the amount used is small, and it is preferable not to use them.
- plasticizers that are improved in safety by hydrogenating phthalate esters are on the market.
- a plasticizer for example, the trade name hexamol DINCH sold by BASF may be used.
- a polymeric plasticizer can be used.
- the initial physical properties are maintained over a long period of time as compared with the case where a low-molecular plasticizer that is a plasticizer containing no polymer component in the molecule is used.
- the drying property also referred to as paintability
- an alkyd paint is applied to the cured product can be improved.
- polymer plasticizer examples include vinyl polymers obtained by polymerizing vinyl monomers by various methods; esters of polyalkylene glycols such as diethylene glycol dibenzoate, triethylene glycol dibenzoate, and pentaerythritol ester; Polyester plasticizer obtained from dibasic acids such as sebacic acid, adipic acid, azelaic acid and phthalic acid and dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and dipropylene glycol; Is a polyether polyol of 1000 or more polyethylene glycol, polypropylene glycol, polytetramethylene glycol, or the like.
- Polyethers such as derivatives obtained by converting the ether group or the like; polystyrenes such as polystyrene and polymethyl - ⁇ - methyl styrene; polybutadiene, polybutene, polyisobutylene, butadiene - acrylonitrile, although polychloroprene, and the like, without limitation.
- polyethers and vinyl polymers are preferable.
- polyethers are used as a plasticizer, the surface curability and deep part curability are improved, and the curing delay after storage does not occur.
- Polypropylene glycol is more preferred.
- a vinyl polymer is preferable from the viewpoint of compatibility, weather resistance, and heat resistance.
- acrylic polymers and / or methacrylic polymers are preferred, and acrylic polymers such as polyacrylic acid alkyl esters are more preferred.
- the polymer synthesis method is preferably a living radical polymerization method and more preferably an atom transfer radical polymerization method because the molecular weight distribution is narrow and viscosity can be lowered.
- the number average molecular weight of the polymer plasticizer is preferably 500 to 15000, more preferably 800 to 10,000, still more preferably 1000 to 8000, particularly preferably 1000 to 5000, and most preferably 1000 to 3000. If the molecular weight is too low, the plasticizer will flow out over time due to heat and rain, the initial physical properties cannot be maintained over a long period of time, and the alkyd paintability cannot be improved. If the molecular weight is too high, the viscosity increases and workability deteriorates.
- the molecular weight distribution of the polymer plasticizer is not particularly limited, but is preferably narrow, preferably less than 1.80, more preferably 1.70 or less, further preferably 1.60 or less, and even more preferably 1.50 or less. 1.40 or less is particularly preferable, and 1.30 or less is most preferable.
- the number average molecular weight is measured by a GPC method in the case of a vinyl polymer, and by a terminal group analysis method in the case of a polyether polymer. Moreover, it is measured by molecular weight distribution (Mw / Mn) GPC method (polystyrene conversion).
- the polymer plasticizer may not have a reactive silicon group, but may have a reactive silicon group. When it has a reactive silicon group, it acts as a reactive plasticizer and can prevent migration of the plasticizer from the cured product.
- the number of reactive silicon groups is preferably 1 or less on average per molecule, and more preferably 0.8 or less.
- the number average molecular weight thereof must be lower than that of the polymer of component (A).
- Plasticizers may be used alone or in combination of two or more. Further, a low molecular plasticizer and a high molecular plasticizer may be used in combination. These plasticizers can also be blended at the time of polymer production.
- the amount of the plasticizer used is 5 to 150 parts by weight, preferably 10 to 120 parts by weight, and more preferably 20 to 100 parts by weight with respect to 100 parts by weight of the polymer of component (A). If it is less than 5 parts by weight, the effect as a plasticizer will not be exhibited, and if it exceeds 150 parts by weight, the mechanical strength of the cured product will be insufficient.
- the curable composition may contain a thermally expandable fine particle hollow body described in JP-A No. 2004-51701 or JP-A No. 2004-66749.
- the thermally expandable fine hollow body is a polymer outer shell material (vinylidene chloride copolymer, acrylonitrile copolymer, or vinylidene chloride-acrylonitrile copolymer weight) such as a hydrocarbon having 1 to 5 carbon atoms. It is a plastic sphere wrapped in a spherical shape.
- the gas pressure in the shell of the thermally expandable fine hollow body increases, and the volume of the polymer outer shell material softens, so that the volume expands dramatically and the bonding interface is Plays the role of peeling.
- the thermally expandable fine hollow body it is possible to obtain an adhesive composition that can be easily peeled off without destroying the material simply by heating when unnecessary, and can be peeled off without using any organic solvent.
- the curable composition may contain an amino group-containing silane coupling agent (aminosilane) (C).
- Aminosilane is a compound having a reactive silicon group and amino group in the molecule, and is usually referred to as an adhesion-imparting agent.
- various adherends that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, and mortar, and organic substrates such as vinyl chloride, acrylic, polyester, polyethylene, polypropylene, polycarbonate, etc. When used, it exhibits a significant adhesive improvement effect under non-primer conditions or primer treatment conditions. When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable.
- it is a compound that can function as a physical property modifier, an inorganic filler dispersibility improver, and the like.
- the reactive silicon group of aminosilane include the groups already exemplified, but methoxy group, ethoxy group and the like are preferable from the viewpoint of hydrolysis rate.
- the number of hydrolyzable groups is preferably 2 or more, particularly 3 or more.
- aminosilane examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltriisopropoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, ⁇ -(2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) amino Propylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriisopropoxysilane, ⁇ - (2- (2-aminoethyl) aminoethyl) aminopropyltrimethoxysilane,
- ⁇ -aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxy Silane is preferred.
- component (C) only one type of aminosilane may be used, or two or more types may be used in combination. It has been pointed out that ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane is irritating compared to other aminosilanes, and instead of reducing this aminosilane, ⁇ -aminopropyltrimethoxysilane should be used in combination. Can alleviate irritation.
- the compounding amount of the amino group-containing silane coupling agent (C) is preferably about 0.1 to 20 parts by weight, more preferably 2 to 10 parts by weight with respect to 100 parts by weight of the polyoxyalkylene polymer (A). If the amount of the amino group-containing silane coupling agent (C) is less than 1 part by weight, sufficient adhesion may not be obtained. On the other hand, when the compounding amount of the amino group-containing silane coupling agent (C) exceeds 20 parts by weight, the cured product becomes brittle and sufficient strength cannot be obtained, and the curing rate may be slow.
- the curable composition may contain an adhesion-imparting agent other than the amino group-containing silane coupling agent (C).
- adhesion-imparting agent other than the amino group-containing silane coupling agent (C) include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -glycidoxypropylmethyldimethoxysilane.
- the condensate which condensed the said silane partially can also be used.
- amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, etc., which are derivatives of these, can also be used as silane coupling agents.
- the silane coupling agent is usually used in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the polyoxyalkylene polymer (A). In particular, it is preferably used in the range of 0.5 to 10 parts by weight.
- silane coupling agent in the curable composition is possible for various adherends, that is, inorganic substrates such as glass, aluminum, stainless steel, zinc, copper, mortar, or vinyl chloride, acrylic, polyester, polyethylene, polypropylene, polycarbonate.
- organic base material such as a non-primer condition or a primer treatment condition
- it shows a remarkable effect of improving adhesiveness.
- non-primer conditions When used under non-primer conditions, the effect of improving adhesion to various adherends is particularly remarkable.
- Specific examples other than the silane coupling agent are not particularly limited, and examples thereof include epoxy resins, phenol resins, sulfur, alkyl titanates, and aromatic polyisocyanates.
- the adhesiveness-imparting agent may be used alone or in combination of two or more. By adding these adhesion-imparting agents, the adhesion to the adherend can be improved.
- ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ -glycidoxypropylmethyldimethoxysilane are preferable in order to ensure good adhesion.
- the amount of the adhesion-imparting agent used is preferably about 0.01 to 20 parts by weight, more preferably about 0.1 to 10 parts by weight, more preferably 1 to 1 part by weight per 100 parts by weight of the polyoxyalkylene polymer (A). About 7 parts by weight is particularly preferable. If the blending amount of the adhesiveness-imparting agent is below this range, sufficient adhesion may not be obtained. On the other hand, if the blending amount of the adhesion-imparting agent exceeds this range, practical deep curability may not be obtained.
- adhesion-imparting agent for example, epoxy resin, phenol resin, sulfur, alkyl titanates, aromatic polyisocyanate and the like can be used as the adhesion-imparting agent.
- the adhesiveness-imparting agent may be used alone or in combination of two or more.
- the epoxy resin may reduce the catalytic activity depending on the amount added. For this reason, it is preferable that the addition amount of the epoxy resin in a curable composition is small.
- the amount of the epoxy resin used is preferably 5 parts by weight or less, more preferably 0.5 parts by weight or less, and substantially no content with respect to 100 parts by weight of the polyoxyalkylene polymer (A). Is particularly preferred.
- a curable composition contains the curing catalyst which is a catalyst which accelerates
- the curing catalyst include titanium compounds such as tetrabutyl titanate, tetrapropyl titanate, titanium tetrakis (acetylacetonate), bis (acetylacetonato) diisopropoxytitanium, diisopropoxytitanium bis (ethylacetocetate); Dimethyltin diacetate, dimethyltin bis (acetylacetonate), dibutyltin dilaurate, dibutyltin maleate, dibutyltin phthalate, dibutyltin dioctanoate, dibutyltin bis (2-ethylhexanoate), dibutyltin bis (methylmaleate) , Dibutyltin bis (ethyl male
- Onium compounds zirconium tetrakis (acetylacetonate) zirconium compounds such like.
- Carboxylic acids and / or carboxylic acid metal salts can also be used as curing catalysts.
- an amidine compound as described in WO2008 / 078654 can also be used. Examples of amidine compounds include 1- (o-tolyl) biguanide, 1-phenylguanidine, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1,5,7-triazabicyclo [4.4. .0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] dec-5-ene, and the like, but are not limited thereto.
- dibutyltin-based curing catalysts have a good balance of curability and adhesiveness and are most widely used. In recent years, however, dibutyltin-based curing catalysts are concerned about adverse effects on the human body. In such cases, dioctyltin-based curing catalysts can be used.
- dioctyltin-based curing catalyst dioctyltin bisacetylacetonate, dioctyltin dilaurate, dioctyltin diversate, and a reaction product of dioctyltin salt and ethyl silicate are preferred because they are commercially available.
- curing catalysts for electrical and electronic applications may be avoided, and in such cases, curing catalysts of metals other than tin or strong bases are suitable.
- metals other than tin or strong bases are suitable.
- bismuth, zinc, aluminum, titanium and the like are preferable.
- As a strong base curing catalyst 1- (o-tolyl) biguanide and 1-phenylguanidine are preferred because of their high catalytic activity and good adhesion.
- dibutyltin dilaurate a reaction product of dibutyltin oxide and a phthalate ester, tin octylate, and the like are preferable.
- the blending amount of the curing catalyst is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the polyoxyalkylene polymer (A).
- the blending amount of the curing catalyst is within this range, the curable composition has excellent curability, and has an appropriate curing time, and therefore has excellent workability.
- the curable composition preferably contains silica (D).
- silica (D) examples include fumed silica, precipitated silica, crystalline silica, fused silica, dolomite, anhydrous silicic acid, and hydrous silicic acid.
- these silicas are used, it is easy to obtain a transparent curable composition and a cured product.
- silica a cured product having a haze value of 10% or less or 5% or less as a cured product having a thickness of 1 mm can be obtained.
- it since it has a thixotropic effect, it is also suitable for preventing sagging of the curable composition.
- the blending amount of silica (D) is preferably 0.1 to 20 parts by weight, and more preferably 3 to 10 parts by weight with respect to 100 parts by weight of the polyoxyalkylene polymer (A).
- amount of silica is within this range, the curable composition has excellent thixotropy and strength, and in the case of a transparent curable composition, appropriate transparency can be exhibited.
- the curable composition may contain a filler other than silica (D) as long as the transparency is not impaired.
- the filler include glass microballoons, organic microballoons of phenol resins and vinylidene chloride resins, fillers such as resin powders such as PVC powder and PMMA powders; and fibrous fillers such as glass fibers and filaments.
- the amount used is 1 to 250 parts by weight, preferably 10 to 200 parts by weight, per 100 parts by weight of the polymer of component (A). These are effective mainly when it is desired to increase the strength.
- the curable composition may contain a silicate.
- This silicate acts as a cross-linking agent and has a function of improving the resilience, durability, and creep resistance of the polyoxyalkylene polymer (A). Furthermore, it also has the effect of improving adhesiveness, water-resistant adhesiveness, and adhesive durability under high temperature and high humidity conditions.
- As the silicate tetraalkoxysilane or a partial hydrolysis condensate thereof can be used.
- the amount used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the polyoxyalkylene polymer (A).
- silicate examples include, for example, tetramethoxysilane, tetraethoxysilane, ethoxytrimethoxysilane, dimethoxydiethoxysilane, methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n- Examples thereof include tetraalkoxysilanes (tetraalkyl silicates) such as butoxysilane, tetra-i-butoxysilane, and tetra-t-butoxysilane, and partial hydrolysis condensates thereof.
- the partial hydrolysis-condensation product of tetraalkoxysilane is more preferable because the polyoxyalkylene polymer (A) has a greater effect of improving the resilience, durability, and creep resistance than tetraalkoxysilane.
- Examples of the partially hydrolyzed condensate of tetraalkoxysilane include a product obtained by adding water to tetraalkoxysilane and condensing it by partial hydrolysis by an ordinary method.
- a commercially available product can be used as the partially hydrolyzed condensate of the organosilicate compound.
- Examples of such condensates include methyl silicate 51 and ethyl silicate 40 (both manufactured by Colcoat Co., Ltd.).
- the curable composition may contain a tackifier.
- tackifying resin Although it does not specifically limit as tackifying resin, What is normally used regardless of solid and liquid at normal temperature can be used. Specific examples include styrene block copolymers, hydrogenated products thereof, phenol resins, modified phenol resins (for example, cashew oil modified phenol resin, tall oil modified phenol resin, etc.), terpene phenol resins, xylene-phenol resins, cyclohexane Pentadiene-phenol resin, coumarone indene resin, rosin resin, rosin ester resin, hydrogenated rosin ester resin, xylene resin, low molecular weight polystyrene resin, styrene copolymer resin, petroleum resin (for example, C5 hydrocarbon resin, C9) Hydrocarbon resin, C5C9 hydrocarbon copolymer resin, etc.), hydrogenated petroleum resin, terpene resin, DCPD resin petroleum resin and the like.
- Styrene block copolymers and their hydrogenated products include styrene-butadiene-styrene block copolymers (SBS), styrene-isoprene-styrene block copolymers (SIS), and styrene-ethylenebutylene-styrene block copolymers.
- SBS styrene-butadiene-styrene block copolymers
- SIS styrene-isoprene-styrene block copolymers
- SEBS styrene-ethylenebutylene-styrene block copolymer
- SEPS styrene-ethylenepropylene-styrene block copolymer
- SIBS styrene-isobutylene-styrene block copolymer
- the tackifying resins may be used alone or in combination of two or more.
- the amount of tackifier used is preferably 5 to 1,000 parts by weight and more preferably 10 to 100 parts by weight with respect to 100 parts by weight of the polyoxyalkylene polymer (A).
- the curable composition may contain a physical property adjusting agent that adjusts the tensile properties of the cured product to be produced as necessary.
- the physical property adjusting agent is not particularly limited.
- alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, and n-propyltrimethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropenoxy Silanes, alkylisopropenoxysilanes such as ⁇ -glycidoxypropylmethyldiisopropenoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyldimethylmethoxy Silane, ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoeth
- a compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis has an action of reducing the modulus of the cured product without deteriorating the stickiness of the surface of the cured product.
- Particularly preferred are compounds that produce trimethylsilanol.
- Examples of the compound that generates a compound having a monovalent silanol group in the molecule by hydrolysis include compounds described in JP-A-5-117521. Further, hexanol, octanol, a derivative of alkyl alcohol compound to produce a silicon compound that produces R 3 SiOH such as trimethyl silanol by hydrolysis of decanol, etc.
- JP-A-11-241029 trimethylol examples thereof include compounds that are derivatives of polyhydric alcohols having 3 or more hydroxy groups such as propane, glycerin, pentaerythritol, sorbitol, and the like, and that generate silicon compounds that generate R 3 SiOH such as trimethylsilanol by hydrolysis.
- the physical property modifier is used in an amount of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the organic polymer (A) having a reactive silicon group.
- a thixotropic agent may be added to the curable composition in order to prevent sagging and improve workability.
- the anti-sagging agent is not particularly limited, and examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate, and barium stearate.
- rubber powder having a particle diameter of 10 to 500 ⁇ m as described in JP-A-11-349916 or organic fiber as described in JP-A-2003-155389 is used, thixotropy is high. A composition having good workability can be obtained.
- These thixotropic agents (anti-sagging agents) may be used alone or in combination of two or more.
- the thixotropic agent is preferably used in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the polyoxyalkylene polymer (A).
- the curable composition may contain a compound containing an epoxy group in the molecule.
- a compound containing an epoxy group When a compound containing an epoxy group is used, the restorability of the cured product can be improved.
- the compound containing an epoxy group include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, compounds shown in epichlorohydrin derivatives, and mixtures thereof.
- epoxidized soybean oil epoxidized linseed oil, bis (2-ethylhexyl) -4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxy octyl stearate, epoxy butyl Examples include stearate. Of these, E-PS is particularly preferred.
- the compound containing an epoxy group is preferably used in the range of 0.5 to 50 parts by weight with respect to 100 parts by weight of the polyoxyalkylene polymer (A).
- the curable composition may contain a photocurable material.
- a photocurable material When a photocurable material is used, a film of the photocurable material is formed on the surface of the cured product, and the stickiness and weather resistance of the cured product can be improved.
- a photocurable substance is a substance that undergoes a chemical change in its molecular structure in a very short time due to the action of light, resulting in a change in physical properties such as curing. Many compounds such as organic monomers, oligomers, resins or compositions containing them are known as this type of compound, and any commercially available compound can be adopted. Representative examples include unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, and the like.
- Unsaturated acrylic compounds include monomers, oligomers or mixtures thereof having one or several acrylic or methacrylic unsaturated groups, including propylene (or butylene, ethylene) glycol di (meth) acrylate, neopentyl Examples thereof include monomers such as glycol di (meth) acrylate or oligoesters having a molecular weight of 10,000 or less.
- Aronix M-210 special acrylate (bifunctional) Aronix M-210, Aronix M-215, Aronix M-220, Aronix M-233, Aronix M-240, Aronix M-245; (Trifunctional) Aronix M -305, Aronix M-309, Aronix M-310, Aronix M-315, Aronix M-320, Aronix M-325, and (Multifunctional) Aronix M-400 can be exemplified.
- a compound containing an acrylic functional group is preferable, and a compound containing three or more same functional groups on average in one molecule is preferable.
- All Aronix is a product of Toa Gosei Co., Ltd.
- polyvinyl cinnamates examples include a photosensitive resin having a cinnamoyl group as a photosensitive group, and a compound obtained by esterifying polyvinyl alcohol with cinnamic acid, as well as many polyvinyl cinnamate derivatives.
- the azide resin is known as a photosensitive resin having an azide group as a photosensitive group.
- a photosensitive resin in addition to a rubber photosensitive solution in which a diazide compound is added as a photosensitive agent, a “photosensitive resin” (March 17, 1972).
- a “photosensitive resin” March 17, 1972.
- the amount of the photocurable substance used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the polyoxyalkylene polymer (A). If it is 0.1 parts by weight or less, it may be difficult to obtain the effect of increasing the weather resistance to a desired level. If it is 20 parts by weight or more, the cured product tends to be too hard and cracks tend to occur.
- the curable composition may contain an oxygen curable substance.
- the oxygen curable substance include unsaturated compounds that can react with oxygen in the air.
- the oxygen curable substance reacts with oxygen in the air to form a cured film in the vicinity of the surface of the cured product, and acts to prevent stickiness of the surface and adhesion of dust and dust to the surface of the cured product.
- oxygen curable substance examples include drying oils typified by drill oil, linseed oil, etc., various alkyd resins obtained by modifying the compounds; acrylic polymers modified with drying oils, epoxy resins , Silicone resins; 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
- drying oils typified by drill oil, linseed oil, etc., various alkyd resins obtained by modifying the compounds
- acrylic polymers modified with drying oils epoxy resins , Silicone resins
- 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene
- Liquid polymers liquid copolymers such as NBR and SBR obtained by copolymerizing monomers such as acrylonitrile and styrene copolymerizable with these diene compounds so that the main component is a diene compound
- various modified products thereof maleinized modified products, boiled oil modified products, etc.
- drill oil and liquid diene polymers are particularly preferred.
- the effect may be enhanced when a catalyst for promoting the oxidative curing reaction or a metal dryer is used in combination.
- Examples of these catalysts and metal dryers include metal salts such as cobalt naphthenate, lead naphthenate, zirconium naphthenate, cobalt octylate, zirconium octylate, and amine compounds.
- the amount of the oxygen curable substance used is preferably in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the polyoxyalkylene polymer (A). If the amount used is less than 0.1 parts by weight, it is difficult to obtain the desired effect of improving the contamination. If the amount used exceeds 20 parts by weight, the tensile properties of the cured product tend to be impaired.
- an oxygen curable substance is preferably used in combination with a photocurable substance.
- a flame retardant such as a phosphorus compound such as ammonium polyphosphate and tricresyl phosphate, aluminum hydroxide, magnesium hydroxide, and thermally expandable graphite can be added to the curable composition.
- the said flame retardant may be used independently and may be used together 2 or more types.
- the flame retardant is preferably used in an amount of 5 to 200 parts by weight, more preferably 10 to 100 parts by weight, based on 100 parts by weight of the polyoxyalkylene polymer (A).
- a solvent can be added to the curable composition for the purpose of reducing the viscosity of the composition, increasing thixotropy, and improving workability.
- the solvent is not particularly limited, and various compounds can be used. Specific examples include hydrocarbon solvents such as toluene, xylene, heptane, hexane, petroleum solvents, halogen solvents such as trichloroethylene, ester solvents such as ethyl acetate and butyl acetate, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
- Examples include ketone solvents, alcohol solvents such as methanol, ethanol and isopropyl alcohol, and silicone solvents such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane. These solvents may be used alone or in combination of two or more.
- the blending amount of the solvent is preferably 3 parts by weight or less, more preferably 1 part by weight or less, with respect to 100 parts by weight of the polyoxyalkylene polymer (A). Most preferably not.
- ⁇ Fluorescent brightener> You may add a fluorescent whitening agent to a curable composition as needed. Yellowing and turbidity of the cured product can be improved by adding a fluorescent brightening agent.
- fluorescent brighteners include stilbene, benzoxazole, coumarin, and pyrazoline, and benzoxazole is preferred because it does not cause yellowing. Specifically, it is sold under the trade names of BASF: TINOPAL OB and Uvitex OB and can be easily obtained.
- additives may be added to the curable composition as necessary for the purpose of adjusting various physical properties of the curable composition or the cured product.
- additives include, for example, curability modifiers, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides.
- curability modifiers include, for example, curability modifiers, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides.
- curability modifiers include, for example, curability modifiers, radical inhibitors, metal deactivators, ozone degradation inhibitors, phosphorus peroxide decomposers, lubricants, pigments, foaming agents, and anti-anticides. And fungicides.
- ozone degradation inhibitors include, for example, ozone degradation inhibitors,
- the curable composition can also be prepared as a one-component type in which all the blended components are blended and stored in advance and cured by moisture in the air after construction. Moreover, it can also prepare as a two-component type which mix
- the curable composition When the curable composition is of a one-component type, all the ingredients are pre-blended, so the water-containing ingredients are dehydrated and dried before use, or dehydrated during decompression or the like during compounding and kneading. Is preferred.
- the curable composition When the curable composition is a two-component type, it is not necessary to add a curing catalyst to the main ingredient containing a polymer having a reactive silicon group, so even if some moisture is contained in the compounding agent, There is little concern, but when long-term storage stability is required, dehydration and drying are preferred.
- the dehydration and drying method is a heat drying method or a vacuum dehydration method in the case of solids such as powder, and a dehydration method using a synthetic zeolite, activated alumina, silica gel, quick lime, magnesium oxide, etc. The method is preferred.
- An alkoxysilane compound such as glycidoxypropyltrimethoxysilane may be added and reacted with water for dehydration.
- an oxazolidine compound such as 3-ethyl-2-methyl-2- (3-methylbutyl) -1,3-oxazolidine may be blended and reacted with water for dehydration.
- an isocyanate compound may be blended to react with an isocyanate group and water for dehydration. Addition of an alkoxysilane compound, an oxazolidine compound, and an isocyanate compound improves storage stability.
- the amount of the dehydrating agent, particularly the silicon compound capable of reacting with water such as vinyltrimethoxysilane, is 0.1 to 20 parts by weight, preferably 0.5 to 100 parts by weight of the polyoxyalkylene polymer (A). A range of ⁇ 10 parts by weight is preferred.
- the method for preparing the curable composition described above is not particularly limited.
- the above-described components are blended and kneaded using a mixer, roll, kneader, or the like at room temperature or under heating, or a small amount of a suitable solvent is used. Then, usual methods such as dissolving and mixing the components may be employed.
- the curable composition is a transparent curable composition.
- Transparency can be defined by total light transmittance.
- a test piece having a smooth surface is prepared by extending the curable composition to a thickness of 5 mm, and the total light transmittance and haze are measured using the obtained test piece.
- a test piece is prepared by curing and curing for 10 days under conditions. About this hardened
- the total light transmittance is a value obtained by dividing the total amount of light that has passed through the test piece by the amount of incident light, and increases as the transparency increases.
- the curable composition that gives a test piece having a total light transmittance of 70% or more measured under the above conditions is assumed to be transparent, and the cured product of the transparent curable composition is a transparent cured product. Suppose there is.
- the curable composition is used for adhesives, sealing materials for buildings, ships, automobiles, roads, etc., adhesives, mold preparations, vibration-proofing materials, vibration-damping materials, sound-proofing materials, foam materials, paints, spraying materials, etc. it can. Since the cured product obtained by curing the curable composition is excellent in flexibility and adhesiveness, among these, it is more preferable to use it as a sealing material or an adhesive.
- electrical and electronic parts materials such as solar cell backside sealing materials, electrical insulation materials such as insulation coating materials for electric wires and cables, elastic adhesives, contact type adhesives, spray type sealing materials, crack repair materials, and tiles
- Adhesives powder paints, casting materials, medical rubber materials, medical adhesives, medical device sealing materials, food packaging materials, sealing materials for joints of exterior materials such as sizing boards, coating materials, primers, electromagnetic wave shielding
- Conductive materials thermal conductive materials, hot melt materials, potting agents for electrical and electronic use, films, gaskets, various molding materials, and anti-rust / waterproof sealing materials for meshed glass and laminated glass end faces (cut parts)
- It can be used for various applications such as liquid sealants used in automobile parts, electrical parts, various machine parts and the like.
- the curable composition is an adhesive for interior panels, an adhesive for exterior panels, an adhesive for tiles, an adhesive for stonework, an adhesive for ceiling finishing, an adhesive for floor finishing, an adhesive for wall finishing, Adhesives for vehicle panels, adhesives for assembly of electrical / electronic / precision equipment, sealing materials for direct glazing, sealing materials for double-glazed glass, sealing materials for SSG construction methods, sealing materials for building working joints, and asphalt It can also be used as a waterproof material.
- Example 1 100 parts by weight of the reactive silicon group-containing polyoxypropylene polymer (A-1) obtained in Synthesis Example 1, a hindered amine light stabilizer having a long-chain unsubstituted hydrocarbon group (product name: Sabostab UV91, manufactured by Songwon) : 0.4 parts by weight of 2,2,6,6-tetramethyl-4-piperidyl stearate), benzotriazole-based UV absorber (Songwon, trade name: Songsorb 3260: 2- (2-hydroxy-3-tert) -Butyl-5-methylphenyl) -5-chlorobenzotriazole) 0.6 parts by weight, diisononyl phthalate as a plasticizer (trade name DINP, 55 parts by weight), hydrophobic fumed silica (Nippon Aerosil) Product name: AEROSIL R974) Weigh 25 parts by weight and use planetary mixer After mixing and kneading sufficiently, the mixture was passed through three paint rolls three times to be dispersed.
- Example 2 instead of Songsorb 3260 in Example 1, an oxanilide ultraviolet absorber (product name: Songsorb 3120: N- (2-ethoxyphenyl) -N ′-(4-ethylphenyl) -ethylenediamide) manufactured by Songwon was 0.6.
- a curable composition was obtained in the same manner as in Example 1 except that parts by weight were used.
- Example 3 The amount of Sabostab UV91 used in Example 1 was changed to 0.7 parts by weight, and instead of Songsorb 3260, a triazine-based ultraviolet absorber (product name: Songsorb 1577: 2- [4,6-diphenyl-1, manufactured by Songwon) A curable composition was obtained in the same manner as in Example 1 except that 0.3 part by weight of 3,5-triazin-2-yl] -5- (hexyloxy) phenol) was used.
- a triazine-based ultraviolet absorber product name: Songsorb 1577: 2- [4,6-diphenyl-1, manufactured by Songwon
- Comparative Example 2 A curable composition was obtained in the same manner as in Comparative Example 1, except that the amount of Songsorb 3260 used in Comparative Example 1 was changed to 1 part by weight and the amount of Sabostab UV70 used was changed to 1 part by weight.
- Cured materials were prepared for the curable compositions obtained in Examples 1 to 3 and Comparative Examples 1 to 5, and the initial color (b value) and the color after the cured material was stored at 70 ° C. for 6 months. Was measured. Moreover, the accelerated weather resistance test of hardened
- cured material with a smooth surface of thickness 5mm was created using the curable composition obtained by said Example and comparative example. As a result, all the test pieces showed a total light transmittance of 70% or more and were transparent.
- the curable composition was made into a sheet-like test body having a thickness of 3 mm and cured under conditions of 23 ° C. and 50% RH for 3 days and then placed in a 50 ° C. dryer for 4 days to obtain a cured product.
- Heat resistance of cured product A cured product having a thickness of 3 mm was cut into a rectangle of about 30 mm ⁇ 40 mm and placed in an oven adjusted to 70 ° C. The coloring of the cured product was evaluated at regular intervals.
- a 3 mm thick cured product is cut into a rectangle of about 30 mm ⁇ 40 mm and placed in a QUV accelerated weathering tester (manufactured by Q-Lab) to check the surface condition at regular intervals, and cracks occur on the cured product surface. Time until.
- Examples 1 to 3 are transparent curable compositions using a weathering stabilizer (B) having a specific structure having a long-chain unsubstituted hydrocarbon group, and the cured products are both initial and after heat resistance evaluation. There was little coloring. In the weather resistance test, a good surface state was maintained over a long period of time. In particular, Example 1 in which the component (B) and the benzotriazole ultraviolet absorber were used in combination had particularly high weather resistance. On the other hand, as shown in Comparative Examples 1, 3, 4, and 5, when the component (B) is not used, a cured product that is satisfactory in coloring and weather resistance cannot be obtained even if two types of weathering stabilizers are used in combination. It was. Comparative Example 2 expresses good weather resistance, but this formulation uses another twice the amount of weather stabilizer and is unfavorable because the initial cured product is yellowish.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Sealing Material Composition (AREA)
- Paints Or Removers (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
それに対して、反応性ケイ素基を有するポリオキシアルキレン系重合体は、主鎖にエーテル結合を有するため、光や熱に弱いという課題があった。
このため、反応性ケイ素基を有するポリオキシアルキレン系重合体に、酸化防止剤、紫外線吸収剤、光安定剤を組み合わせて配合されることが一般的である。特に高分子量のヒンダードアミン系光安定剤は耐候性を改善するのに有効であることが特許文献4等に記載され公知である。
また、反応性ケイ素基を有するポリオキシアルキレン系重合体と、>N-OR型(Rが長鎖アルキル基)のヒンダードアミン系光安定剤を組み合わせる技術も特許文献5に記載されている。
さらに、反応性ケイ素基を有するポリオキシアルキレン系重合体と、トリアジン系ヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を組み合わせる技術も特許文献6で公知である。
特にヒンダードアミン系光安定剤は、反応性ケイ素基含有ポリオキシアルキレン系重合体の耐候性向上には適しており、特に高分子量のものが水等によって洗い流されにくいため効果があると考えられてきた。
なお、反応性ケイ素基含有ポリオキシアルキレン系重合体を含む組成物が着色されている場合、例えば、白色顔料である炭酸カルシウムやルチル型酸化チタン、黒色顔料であるカーボンブラック等の高い遮蔽効果によって、耐候性の担保がそれほど難しくなかった。
一方、透明な組成物では、光が硬化物内部まで到達するため、長期にわたる耐候性を維持することが難しい。加えて、安定剤には、接着付与剤であるアミノ基含有シランカップリング剤と併用すると黄色や赤色に着色するものがある。このような事情から、硬化物を変色させにくい添加剤の組み合わせを見つけることは容易ではなかった。
また、シーリング材には、補強性や、チキソ性の付与、コストダウンのために多量の炭酸カルシウムを配合することが一般的である。そして、炭酸カルシウムは白色度の高いフィラーである。このため、炭酸カルシウムを含むシーリング材では、上記のような安定剤とアミン化合物との併用による着色が顕在化しにくく、硬化物の変色が課題となることはほとんどなかった。
すなわち、本発明は、
(1).ポリオキシアルキレン系重合体(A)と、耐候安定剤(B)とを含み、
ポリオキシアルキレン系重合体(A)が、シロキサン結合を形成することにより架橋し得る反応性ケイ素基を有し、
耐候安定剤(B)が、下記式(1):
で示されるヒンダードアミン系光安定剤(B1)および/または下記式(2):
で示されるヒンダードフェノール系酸化防止剤(B2)であり、
ポリオキシアルキレン系重合体(A)100重量部に対する、耐候安定剤(B)の含有量が0.1~20重量部である、透明な硬化性組成物、
(2).ポリオキシアルキレン系重合体(A)がポリオキシプロピレン系重合体である(1)に記載の硬化性組成物、
(3).(A)成分の反応性ケイ素基が、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基からなる群から選択される少なくとも1種である(1)~(2)のいずれかに記載の硬化性組成物、
(4).(A)成分が、直鎖構造のポリオキシアルキレン系重合体(A1)と、分岐構造のポリオキシアルキレン系重合体(A2)の混合物であることを特徴とする、(1)~(3)のいずれかに記載の硬化性組成物、
(5).さらに紫外線吸収剤を含有することを特徴とする(1)~(4)のいずれかに記載の硬化性組成物、
(6).アミノ基含有シランカップリング剤(C)を、(A)成分100重量部に対して0.1~20重量部含むことを特徴とする(1)~(5)のいずれかに記載の硬化性組成物、
(7).シリカ(D)を、(A)成分100重量部に対して0.1~20重量部含むことを特徴とする(1)~(6)のいずれかに記載の硬化性組成物、
(8).水分含有量が2000ppm以下であることを特徴とする(1)~(7)のいずれかに記載の硬化性組成物、
(9).(1)~(8)のいずれかに記載の硬化性組成物を含有するシーリング材、
(10).(1)~(8)のいずれかに記載の硬化性組成物を含有する接着剤、
(11).(1)~(8)のいずれかに記載の硬化性組成物を含有するコーティング材、
(12).(1)~(8)のいずれかに記載の硬化性組成物を含有する防水材、
(13).(1)~(8)のいずれかに記載の硬化性組成物の透明硬化物、
(14).厚み5mmの試料の全光線透過率が70%以上であることを特徴とする、(13)に記載の透明硬化物、
(15).(14)に記載の透明硬化物が硬化後7日以内に得られる、(1)~(8)のいずれかに記載の硬化性組成物、および、
(16)下記式(1):
で示されるヒンダードアミン系光安定剤(B1)および/または下記式(2):
で示されるヒンダードフェノール系酸化防止剤(B2)を含み、
シロキサン結合を形成することにより架橋し得る反応性ケイ素基を有するポリオキシアルキレン系重合体(A)を含む透明な硬化性組成物において用いられる、耐候安定剤、
に関する。
ポリオキシアルキレン系重合体(A)は、シロキサン結合を形成することにより架橋し得る反応性ケイ素基を有する。
ポリオキシアルキレン系重合体(A)の主鎖骨格は特に制限はなく、各種の主鎖骨格を持つ重合体を使用することができる。主鎖骨格は、得られる組成物の硬化性や接着性に優れることから、水素原子、炭素原子、窒素原子、酸素原子、硫黄原子から選択される1つ以上からなることが好ましい。
反応性ケイ素基を有するポリオキシアルキレン系重合体(A)には、以下の骨格を有する反応性ケイ素基含有重合体を混合してもよい。
具体的には、エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリルおよびスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε-カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε-アミノウンデカン酸の縮重合によるナイロン11、ε-アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;例えばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。
ガラス転移温度が20℃を上回ると、冬季または寒冷地での粘度が高くなり作業性が悪くなる場合があり、また、硬化物の柔軟性が低下し、伸びが低下する場合がある。
ガラス転移温度はDSC測定による値である。
-SiR4 3-aXa (3)
(R4は、それぞれ独立に炭素原子数1~20のアルキル基、炭素原子数6~20のアリール基、炭素原子数7~20のアラルキル基、または、-OSi(R’)3(R’は、それぞれ独立に炭素原子数1~20の炭化水素基である)で示されるトリオルガノシロキシ基である。Xは、それぞれ独立にヒドロキシ基または加水分解性基である。aは1~3の整数である。)
で表される基が挙げられる。
活性が高く良好な硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基がより好ましく、トリメトキシシリル基が特に好ましい。
貯蔵安定性の点からはジメトキシメチルシリル基、トリエトキシシリル基が特に好ましい。
トリエトキシシリル基およびジエトキシメチルシリル基は、反応性ケイ素基の加水分解反応に伴って生成するアルコールが、エタノールであり、より高い安全性を有することから特に好ましい。
これらの中では特にハロゲン化シラン類、アルコキシシラン類が好ましく、アルコキシシラン類は、得られる硬化性組成物の加水分解性が穏やかで取り扱いやすいために最も好ましい。
アルコキシシラン類の中で、メチルジメトキシシランは、入手しやすく、得られる有機重合体を含有する硬化性組成物の硬化性、貯蔵安定性、伸び特性、引張強度が高いために好ましい。
また、トリメトキシシランは、得られる硬化性組成物の硬化性および復元性の点から特に好ましい。
イソシアネート基および反応性ケイ素基を有する化合物の具体例としては、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシラン、イソシアネートメチルジエトキシメチルシラン等が挙げられるが、これらに限定されるものではない。
H-(SiR5 2O)mSiR5 2-R6-SiX3 (4)
(Xは前記に同じ。2m+2個のR5は、それぞれ独立に炭化水素基であり、入手性およびコストの点から、炭素原子数1~20の炭化水素基が好ましく、炭素原子数1~8の炭化水素基がより好ましく、炭素原子数1~4の炭化水素基が特に好ましい。R6は2価の有機基であり、入手性およびコストの点から、炭素原子数1~12の2価の炭化水素基が好ましく、炭素原子数2~8の2価の炭化水素基がより好ましく、炭素原子数2の2価の炭化水素基が特に好ましい。mは0~19の整数であり、入手性およびコストの点から、1が好ましい。)
で表されるシラン化合物は、不均化反応が進まない。
このため、(I)の合成法で、3個の加水分解性基が1つのケイ素原子に結合している基を導入する場合には、一般式(4)で表されるシラン化合物を用いることが好ましい。
一般式(4)で示されるシラン化合物の具体例としては、1-[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、1-[2-(トリメトキシシリル)プロピル]-1,1,3,3-テトラメチルジシロキサン、1-[2-(トリメトキシシリル)ヘキシル]-1,1,3,3-テトラメチルジシロキサンが挙げられる。
ポリオキシアルキレン系重合体(A)としては、直鎖構造のポリオキシアルキレン系重合体(A1)と、分岐構造のポリオキシアルキレン系重合体(A2)とを組み合わせて用いるのも好ましい。この場合、硬化物の強度と伸びのバランスを取ることができる利点がある。
直鎖構造のポリオキシアルキレン系重合体(A1)と、分岐構造のポリオキシアルキレン系重合体(A2)とを組み合わせて用いる場合、両者の比率(重量比)は、直鎖構造のポリオキシアルキレン系重合体(A1):分岐構造のポリオキシアルキレン系重合体(A2)として、5:95~95:5が好ましく、10:90~90:10がより好ましく、20:80~80:20が特に好ましい。
数平均分子量が500未満では、硬化物の伸び特性の点で不都合な傾向があり、100,000を超えると、高粘度となるために作業性の点で不都合な傾向がある。
分子中に含まれる反応性ケイ素基の数が平均して1個未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しにくくなる。反応性ケイ素基は、重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、反応性ケイ素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。
-R7-O- (5)
(R7は、炭素原子数1~14の直鎖状もしくは分岐アルキレン基である。)
で示される繰り返し単位を有する重合体である。
一般式(5)におけるR7は、炭素原子数1~14の、さらには2~4の、直鎖状もしくは分岐アルキレン基が好ましい。
一般式(5)で示される繰り返し単位の具体例としては、
-CH2O-、-CH2CH2O-、-CH2CH(CH3)O-、-CH2CH(C2H5)O-、-CH2C(CH3)2O-、-CH2CH2CH2CH2O-
等が挙げられる。
ポリオキシアルキレン系重合体(A)の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーラント等に使用される場合には、プロピレンオキシド重合体を主成分とする重合体からなるものが非晶質であることや比較的低粘度である点から好ましい。
また特開昭61-197631号、同61-215622号、同61-215623号、同61-218632号、特開平3-72527号、特開平3-47825号、特開平8-231707号の各公報に提案されている数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体が例示できるが、特にこれらに限定されるものではない。
ポリオキシアルキレン系重合体以外の骨格を有する反応性ケイ素基含有重合体としては、前述するように(メタ)アクリル酸エステル系モノマーを含む単量体の重合体である(メタ)アクリル酸エステル系重合体が好ましい。
より好ましくは、アクリル酸エステルモノマーおよびメタクリル酸エステルモノマーからなる単量体の重合体である(メタ)アクリル系重合体であり、特に好ましくはアクリル酸エステルモノマーからなる単量体の重合体であるアクリル系重合体である。
一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、アクリル酸ブチル系モノマーを含む単量体の重合体がさらに好ましい。
一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした単量体の共重合体がさらに好ましい。このアクリル酸エチルを主とした単量体の重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向がある。このため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。
ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていく。このため、耐油性を要求される用途には、単量体中のアクリル酸ブチルの比率は40重量%以下にするのが好ましく、さらには30重量%以下にするのがより好ましい。
また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸2-メトキシエチルやアクリル酸2-エトキシエチル等を用いるのも好ましい。
ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にある。このため、耐熱性が要求されるときには、単量体における側鎖のアルキル基に酸素が導入されたアクリル酸アルキエステルの比率は40重量%以下にするのが好ましい。
各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸2-メトキシエチル(重量比で40~50/20~30/30~20)の共重合体が挙げられる。
本発明においては、これらの好ましいモノマーを他のモノマーと共重合、さらにはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。
従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、リビングラジカル重合法を用いることが好ましい。
この原子移動ラジカル重合法としては例えば、Matyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁等が挙げられる。
また、特開平9-272714号公報等に、原子移動ラジカル重合法を用いた製法が開示されているが、特にこれらに限定されるものではない。上記の反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。
好ましい具体例は、反応性ケイ素基を有し分子鎖が実質的に、下記一般式(6):
-CH2-C(R8)(COOR9)- (6)
(R8は水素原子またはメチル基であり、R9は炭素原子数1~8のアルキル基である。)
で表される炭素原子数1~8のアルキル基を有する(メタ)アクリル酸エステル単量体単位と、下記一般式(7):
-CH2-C(R8)(COOR10)- (7)
(R8は前記に同じであり、R10は炭素原子数9以上のアルキル基である。)
で表される炭素原子数9以上のアルキル基を有する(メタ)アクリル酸エステル単量体単位からなる共重合体に、反応性ケイ素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
-NR11-C(=O)- (8)
(R11は有機基または水素原子である。)
で表される基である。
また、上記ウレタン基、尿素基、および、チオウレタン基中の活性水素が、さらにイソシアネート基と反応して生成する基も、一般式(8)の基に含まれる。
W-R12-SiR43-aXa (9)
(R4、X、aは前記と同じ。R12は2価の有機基であり、より好ましくは炭素原子数1~20の炭化水素基である。Wはヒドロキシ基、カルボキシ基、メルカプト基およびアミノ基(1級または2級)から選ばれた活性水素含有基である。)
で表されるケイ素化合物のW基を反応させる方法により有機重合体を製造する方法を挙げることができる。
この製造方法に関連した、有機重合体の公知の製造法を例示すると、特公昭46-12154号(米国特許3632557号)、特開昭58-109529号(米国特許4374237号)、特開昭62-13430号(米国特許4645816号)、特開平8-53528号(EP0676403)、特開平10-204144号(EP0831108)、特表2003-508561(米国特許6197912号)、特開平6-211879号(米国特許5364955号)、特開平10-53637号(米国特許5756751号)、特開平11-100427号、特開2000-169544号、特開2000-169545号、特開2002-212415号、特許第3313360号、米国特許4067844号、米国特許3711445号、特開2001-323040号等が挙げられる。
O=C=N-R12-SiR4 3-aXa (10)
(R12、R4、X、aは前記に同じ。)
で示される反応性ケイ素基含有イソシアネート化合物を反応させることにより有機重合体を製造する方法を挙げることができる。
この製造方法に関連した、有機重合体の公知の製造法を例示すると、特開平11-279249号(米国特許5990257号)、特開2000-119365号(米国特許6046270号)、特開昭58-29818号(米国特許4345053号)、特開平3-47825号(米国特許5068304号)、特開平11-60724号、特開2002-155145号、特開2002-249538号、WO03/018658、WO03/059981等が挙げられる。
これらの中でも、ポリエーテルポリオール、ポリアクリルポリオール、および、ポリオレフィンポリオールは、得られる有機重合体のガラス転移温度が比較的低く、得られる硬化物が耐寒性に優れることから好ましい。
特に、ポリエーテルポリオールは、得られる有機重合体の粘度が低く作業性が良好であり、深部硬化性および接着性が良好であるために特に好ましい。
また、ポリアクリルポリオールおよび飽和炭化水素系重合体は、得られる有機重合体の硬化物の耐候性、耐熱性が良好であるためにより好ましい。
具体的には、従来のアルカリ金属触媒を使用して製造したオキシアルキレン重合体や、複合金属シアン化物錯体やセシウムの存在下、少なくとも2つのヒドロキシ基を有するポリヒドロキシ化合物等の開始剤に、アルキレンオキシドを反応させて製造されるオキシアルキレン重合体等が挙げられる。
また、特開平6-211879号(米国特許5364955号)、特開平10-53637号(米国特許5756751号)、特開平10-204144号(EP0831108)、特開2000-169544号、特開2000-169545号に記載されている様に、各種のα,β-不飽和カルボニル化合物と一級アミノ基含有シランとのMichael付加反応物、または、各種の(メタ)アクリロイル基含有シランと一級アミノ基含有化合物とのMichael付加反応物もまた、一般式(9)のケイ素化合物として用いることができる。
また、特開2000-119365号(米国特許6046270号)に記載されている様に、一般式(9)のケイ素化合物と、過剰のポリイソシアネート化合物を反応させて得られる化合物もまた、一般式(10)の反応性ケイ素基含有イソシアネート化合物として用いることができる。
-NR13-C(=O)- (11)
(R13は水素原子または置換あるいは非置換の有機基である。)
で表される基を有する。この構造は極性が比較的高いため、硬化物の強度や基材への接着性が高くなる傾向にあり好ましい。
硬化性組成物は、長鎖非置換炭化水素基を有する耐候安定剤(B)を含む。耐候安定剤(B)は、式(1):
で示されるヒンダードアミン系光安定剤(B1)および/または式(2):
で示されるヒンダードフェノール系酸化防止剤(B2)である。
R1としての炭化水素基は飽和でも不飽和でもよい。不飽和基の数は、平均して炭化水素基中に2個以下が望ましく、不飽和基のないアルキル基が好ましい。また炭化水素基は直鎖でも分岐でもよいが、直鎖の方が(A)成分との相溶性の点から好ましい。
つまり、ポリオキシアルキレン系重合体(A)を含む硬化性組成物においては、長鎖非置換炭化水素基によってヒンダードアミン系光安定剤(B1)の硬化性組成物への相溶性が向上し、その結果、ヒンダード構造のピペリジニル基によりもたらされるヒンダードアミン系光安定剤(B1)が硬化性組成物の耐候性を向上させる効果がさらに向上すると考えられる。
ヒンダードアミン系光安定剤(B1)に含まれる長鎖非置換炭化水素基R1の炭素原子数は12~20が好ましく、14~18が好ましい。炭素原子数が12未満の場合は(A)成分との相溶性が低下するため耐候性向上の効果が低くなる。一方、炭素原子数が20より大きい場合はヒンダードアミン系光安定剤(B1)の融点が上がり、硬化性組成物から析出しやすくなる。
この非置換炭化水素基は飽和でも不飽和でよいが、不飽和基の数は、平均して非置換炭化水素基中に2個以下が望ましく、不飽和基のないアルキル基が好ましい。また非置換炭化水素基は直鎖でも分岐でもよいが、直鎖の方が(A)成分との相溶性の点から好ましい。
R2は水素もしくはメチル基が好ましいが、特に水素の方が効果が早くから発現するため好ましい。
ヒンダードアミン系光安定剤(B1)の中でも、下記式(12)で示される化合物は販売されており、容易に入手できるため好ましい。具体的には、ソンウォン社から商品名:Sabostab UV91、Cytec社から商品名:Cyasorb UV-3853として販売されている。
ポリオキシアルキレン系重合体(A)を含む硬化性組成物においては、長鎖非置換炭化水素基によってヒンダードフェノール系酸化防止剤(B2)の硬化性組成物への相溶性が向上し、その結果、ヒンダードフェノール構造によりもたらされるヒンダードフェノール系酸化防止剤(B1)が硬化性組成物の耐候性を向上させる効果がさらに向上すると考えられる。
(B2)に含まれる長鎖非置換炭化水素基R1の炭素原子数は12~20が好ましく、14~18が好ましい。炭素原子数が12未満の場合は(A)成分との相溶性が低下するため耐候性向上の効果が低くなる。一方、炭素原子数が20より大きい場合はヒンダードフェノール系酸化防止剤(B2)の融点が上がり、本発明の硬化性組成物から析出しやすくなる。
この非置換炭化水素基は飽和でも不飽和でよいが、不飽和基の数は平均して非置換炭化水素基中に2個以下が望ましく、不飽和基のないアルキル基が好ましい。また非置換炭化水素基は直鎖でも分岐でもよいが、直鎖の方が(A)成分との相溶性の点から好ましい。
硬化性組成物には、ヒンダードフェノール系酸化防止剤(B2)以外の酸化防止剤(老化防止剤)を使用することができる。ヒンダードフェノール系酸化防止剤(B2)以外の酸化防止剤を使用すると硬化物の耐熱性を高めることができる。
酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。同様に、チヌビン622LD,チヌビン144,CHIMASSORB944LD,CHIMASSORB119FL(以上いずれもBASF社製);MARK LA-57,MARK LA-62,MARK LA-67,MARK LA-63,MARK LA-68(以上いずれも株式会社ADEKA製);サノールLS-770,サノールLS-765,サノールLS-292,サノールLS-2626,サノールLS-1114,サノールLS-744(以上いずれも三共株式会社製)に示されたヒンダードアミン系光安定剤を使用することもできる。
酸化防止剤の具体例は特開平4-283259号公報や特開平9-194731号公報にも記載されている。
酸化防止剤の使用量は、ポリオキシアルキレン系重合体(A)100重量部に対して0.1~10重量部の範囲がよく、さらに好ましくは0.2~5重量部である。
硬化性組成物には、ヒンダードアミン系光安定剤(B1)以外の光安定剤を使用することができる。(ヒンダードアミン系光安定剤(B1)以外の光安定剤を使用すると硬化物の光酸化劣化を防止できる。
光安定剤としてベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系化合物等が例示できるが、特にヒンダードアミン系が好ましい。
光安定剤の使用量は、ポリオキシアルキレン系重合体(A)100重量部に対して0.1~10重量部の範囲がよく、さらに好ましくは0.2~5重量部である。
光安定剤の具体例は特開平9-194731号公報にも記載されている。
3級アミン含有ヒンダードアミン系光安定剤としてはチヌビン622LD,チヌビン144,CHIMASSORB119FL(以上いずれもBASF社製);MARK LA-57,LA-62,LA-67,LA-63(以上いずれも株式会社ADEKA製);サノールLS-765,LS-292,LS-2626,LS-1114,LS-744(以上いずれもBASF社製)等の光安定剤が例示できる。
硬化性組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。
紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系および金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。
紫外線吸収剤の使用量は、ポリオキシアルキレン系重合体(A)100重量部に対して0.1~10重量部がよく、さらに好ましくは0.2~5重量部である。
フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。
硬化性組成物は、可塑剤を含んでいてもよい。可塑剤の例としては、ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸ジイソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;プロセスオイル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類を挙げることができる。
さらに、該硬化物にアルキド塗料を塗布した場合の乾燥性(塗装性ともいう)を改良できる。
高分子可塑剤の具体例としては、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;分子量500以上、さらには1000以上のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールあるいはこれらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基等に変換した誘導体等のポリエーテル類;ポリスチレンやポリ-α-メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられるが、これらに限定されない。
また、相溶性および耐候性、耐熱性の点からビニル系重合体が好ましい。ビニル系重合体の中でもアクリル系重合体および/またはメタクリル系重合体が好ましく、ポリアクリル酸アルキルエステル等アクリル系重合体がさらに好ましい。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法がさらに好ましい。また、特開2001-207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。
分子量が低すぎると熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、アルキド塗装性が改善できない。
分子量が高すぎると粘度が高くなり、作業性が悪くなる。
高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、1.80未満が好ましく、1.70以下がより好ましく、1.60以下がさらに好ましく、1.50以下がさらによりに好ましく、1.40以下が特に好ましく、1.30以下が最も好ましい。
反応性ケイ素基を有する可塑剤、特に反応性ケイ素基を有するオキシアルキレン重合体を使用する場合、その数平均分子量は(A)成分の重合体より低いことが必要である。
硬化性組成物は、特開2004-51701号公報または特開2004-66749号公報等に記載の熱膨張性微粒中空体を含んでいてもよい。
熱膨張性微粒中空体とは、炭素原子数1~5の炭化水素等の低沸点化合物を高分子外殻材(塩化ビニリデン系共重合体、アクリロニトリル系共重合体、または塩化ビニリデン-アクリロニトリル共重合体)で球状に包み込んだプラスチック球体である。本組成物を用いた接着部分を加熱することによって、熱膨張性微粒中空体の殻内のガス圧が増し、高分子外殻材が軟化することで体積が劇的に膨張し、接着界面を剥離させる役割を果たす。熱膨張性微粒中空体の添加により、不要時には加熱するだけで簡単に材料の破壊を伴わずに剥離でき、かつ有機溶剤を一切用いないで加熱剥離可能な接着性組成物が得られる。
硬化性組成物は、アミノ基含有シランカップリング剤(アミノシラン)(C)を含んでいてもよい。
アミノシランとは、分子中に反応性ケイ素基とアミノ基を有する化合物であり、通常、接着付与剤と称される。これを使用することで、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタル等の無機基材や、塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネート等の有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。
ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。他にも物性調整剤、無機充填材の分散性改良剤等として機能し得る化合物である。
加水分解性基の個数は、2個以上、特に3個以上が好ましい。
アミノシランの具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-(2-(2-アミノエチル)アミノエチル)アミノプロピルトリメトキシシラン、γ-(6-アミノヘキシル)アミノプロピルトリメトキシシラン、3-(N-エチルアミノ)-2-メチルプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N-フェニルアミノメチルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン等のアミノ基含有シラン類;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン等のケチミン型シラン類を挙げることができる。
硬化性組成物は、アミノ基含有シランカップリング剤(C)以外の接着付与剤を含んでいてもよい。
アミノ基含有シランカップリング剤(C)以外の接着付与剤の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-β-(カルボキシメチル)アミノエチル-γ-アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-アクリロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有シラン類;γ-クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(トリメトキシシリル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。
また、上記シラン類を部分的に縮合した縮合体も使用できる。
さらに、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル等もシランカップリング剤として用いることができる。
シランカップリング剤は、通常、ポリオキシアルキレン系重合体(A)100重量部に対して、0.1~20重量部の範囲で使用される。特に、0.5~10重量部の範囲で使用するのが好ましい。
硬化性組成物におけるシランカップリング剤の使用は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタル等の無機基材、または塩化ビニル、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネート等の有機基材を用いる場合に、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。
ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。シランカップリング剤以外の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。上記接着性付与剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。
接着性付与剤の配合量がこの範囲を下回ると、接着性が十分に得られない場合がある。一方、接着性付与剤の配合量がこの範囲を上回ると実用的な深部硬化性が得られない場合がある。
しかしながら、エポキシ樹脂は添加量に応じて触媒活性を低下させる場合がある。このため、硬化性組成物におけるエポキシ樹脂の添加量は少ないことが好ましい。エポキシ樹脂の使用量としては、ポリオキシアルキレン系重合体(A)100重量部に対して、5重量部以下が好ましく、0.5重量部以下がより好ましく、実質的に、含有していないことが特に好ましい。
硬化性組成物は、ポリオキシアルキレン系重合体(A)が有する反応性ケイ素基の縮合を促進させる触媒である硬化触媒を含むのが好ましい。
硬化触媒の具体例としては、テトラブチルチタネート、テトラプロピルチタネート、チタンテトラキス(アセチルアセトナート)、ビス(アセチルアセトナート)ジイソプロポキシチタン、ジイソプロポキシチタンビス(エチルアセトセテート)等のチタン化合物;ジメチル錫ジアセテート、ジメチル錫ビス(アセチルアセトナート)、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫フタレート、ジブチル錫ジオクタノエート、ジブチル錫ビス(2-エチルヘキサノエート)、ジブチル錫ビス(メチルマレエート)、ジブチル錫ビス(エチルマレエート)、ジブチル錫ビス(ブチルマレエート)、ジブチル錫ビス(オクチルマレエート)、ジブチル錫ビス(トリデシルマレエート)、ジブチル錫ビス(ベンジルマレエート)、ジブチル錫ジアセテート、ジオクチル錫ビス(エチルマレエート)、ジオクチル錫ビス(オクチルマレエート)、ジブチル錫ジメトキサイド、ジブチル錫ビス(ノニルフェノキサイド)、ジブテニル錫オキサイド、ジブチル錫オキサイド、ジブチル錫ビス(アセチルアセトナート)、ジブチル錫ビス(エチルアセトアセトナート)、ジブチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物、ジオクチル錫ジラウレート、ジオクチル錫ジアセテート、ジオクチル錫ビス(アセチルアセトナート)等の4価の有機錫化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)、ジイソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;ジルコニウムテトラキス(アセチルアセトナート)等のジルコニウム化合物類が挙げられる。
カルボン酸および/またはカルボン酸金属塩を硬化触媒として使用することもできる。
また、WO2008/078654号公報に記載されているようなアミジン化合物も使用できる。アミジン化合物の例として、1-(o-トリル)ビグアニド、1-フェニルグアニジン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン等を挙げることができるが、これらに限られるものではない。
硬化性組成物は、シリカ(D)を含むのが好ましい。シリカ(D)としては、フュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸を挙げることができる。これらのシリカを用いる場合、透明な硬化性組成物、硬化物を得やすい。シリカを用いると厚さ1mmの硬化物としてのヘイズ値が10%以下や5%以下の硬化物を得ることができる。またチキソ性付与効果もあるため、硬化性組成物のタレを防止するのにも適している。
硬化性組成物は、透明性を損なわない範囲で、シリカ(D)以外の充填剤を含んでいてもよい。充填剤としては、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末等樹脂粉末の如き充填剤;ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。
充填剤を使用する場合、その使用量は(A)成分の重合体100重量部に対して1~250重量部、好ましくは10~200重量部である。これらは主に強度を高めたい場合に有効である。
硬化性組成物は、シリケートを含んでいてもよい。このシリケートは、架橋剤として作用し、ポリオキシアルキレン系重合体(A)の復元性、耐久性、および、耐クリープ性を改善する機能を有する。またさらに、接着性および耐水接着性、高温高湿条件での接着耐久性を改善する効果も有する。シリケートとしてはテトラアルコキシシランまたはその部分加水分解縮合物が使用できる。シリケートを使用する場合、その使用量はポリオキシアルキレン系重合体(A)100重量部に対して0.1~20重量部が好ましく、0.5~10重量部が寄り好ましい。
硬化性組成物は粘着性付与剤を含んでいてもよい。粘着性付与樹脂としては、特に限定されないが、常温で固体、液体を問わず通常使用されるものを使用することができる。具体例としては、スチレン系ブロック共重合体、その水素添加物、フェノール樹脂、変性フェノール樹脂(例えば、カシューオイル変性フェノール樹脂、トール油変性フェノール樹脂等)、テルペンフェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、テルペン系樹脂、DCPD樹脂石油樹脂等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
スチレン系ブロック共重合体およびその水素添加物としては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレンブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレンプロピレン-スチレンブロック共重合体(SEPS)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)等が挙げられる。上記粘着性付与樹脂は単独で用いてもよく、2種以上併用してもよい。
硬化性組成物は、必要に応じて生成する硬化物の引張特性を調整する物性調整剤を含んでいてもよい。
物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等の官能基を有するアルコキシシラン類;シリコーンワニス類;ポリシロキサン類等が挙げられる。
物性調整剤を用いることにより、硬化性組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。物性調整剤は単独で用いてもよく、2種以上併用してもよい。
硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加してもよい。垂れ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。また、特開平11-349916号公報に記載されているような粒子径10~500μmのゴム粉末や、特開2003-155389号公報に記載されているような有機質繊維を用いると、チクソ性が高く作業性の良好な組成物が得られる。これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。チクソ性付与剤は、ポリオキシアルキレン系重合体(A)100重量部に対して、0.1~20重量部の範囲で使用されるのが好ましい。
硬化性組成物は、分子中にエポキシ基を含有する化合物を含んでいてもよい。エポキシ基を含有する化合物を使用すると硬化物の復元性を高めることができる。エポキシ基を含有する化合物としては、エポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環式エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物およびそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化アマニ油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレート、エポキシブチルステアレート等が挙げられる。これらのなかではE-PSが特に好ましい。
エポキシ基を含有する化合物は、ポリオキシアルキレン系重合体(A)100重量部に対して0.5~50重量部の範囲で使用するのがよい。
硬化性組成物は、光硬化性物質を含んでいてもよい。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや耐候性を改善できる。光硬化性物質とは、光の作用によってかなり短時間に分子構造が化学変化をおこし、硬化等の物性的変化を生ずるものである。
この種の化合物には有機単量体、オリゴマー、樹脂あるいはそれらを含む組成物等多くのものが知られており、市販の任意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。
不飽和アクリル系化合物としては、アクリル系またはメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマーあるいはそれ等の混合物であって、プロピレン(またはブチレン、エチレン)グリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の単量体または分子量10,000以下のオリゴエステルが例示される。
具体的には、例えば特殊アクリレート(2官能)のアロニックスM-210,アロニックスM-215,アロニックスM-220,アロニックスM-233,アロニックスM-240,アロニックスM-245;(3官能)のアロニックスM-305,アロニックスM-309,アロニックスM-310,アロニックスM-315,アロニックスM-320,アロニックスM-325,および(多官能)のアロニックスM-400等が例示できるが。特にアクリル官能基を含有する化合物が好ましく、また1分子中に平均して3個以上の同官能基を含有する化合物が好ましい。(以上アロニックスはいずれも東亜合成株式会社の製品である。)。
アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、第93頁から、第106頁から、第117頁から)に詳細な例示があり、これらを単独または混合し、必要に応じて増感剤を加えて使用することができる。
なお、ケトン類、ニトロ化合物等の増感剤やアミン類等の促進剤を添加すると、効果が高められる場合がある。
光硬化性物質の使用量は、ポリオキシアルキレン系重合体(A)100重量部に対して0.1~20重量部が好ましく、0.5~10重量部がより好ましい。0.1重量部以下では、所望する程度に耐候性を高める効果を得にくい場合がある。20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。
硬化性組成物は、酸素硬化性物質を含んでいてもよい。酸素硬化性物質としては、空気中の酸素と反応し得る不飽和化合物を例示できる。酸素硬化性物質は、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止する等の作用をする。
酸素硬化性物質の具体例には、キリ油、アマニ油等で代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3-ペンタジエン等のジエン系化合物を重合または共重合させてえられる1,2-ポリブタジエン、1,4-ポリブタジエン、C5~C8ジエンの重合体等の液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレン等の単量体とをジエン系化合物が主体となるように共重合させてえられるNBR、SBR等の液状共重合体や、さらにはそれらの各種変性物(マレイン化変性物、ボイル油変性物等)等が挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
これらの中ではキリ油や液状ジエン系重合体がとくに好ましい。
また、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高められる場合がある。
これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩や、アミン化合物等が例示される。
酸素硬化性物質の使用量は、ポリオキシアルキレン系重合体(A)100重量部に対して0.1~20重量部の範囲がよく、0.5~10重量部がより好ましい。
使用量が0.1重量部未満であると所望する汚染性の改善効果を得にくい。使用量が20重量部を超えると硬化物の引張り特性等が損なわれる傾向が生ずる。
特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
硬化性組成物には、ポリリン酸アンモニウム、トリクレジルホスフェート等のリン化合物、水酸化アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛等の難燃剤を添加することができる。上記難燃剤は単独で用いてもよく、2種以上併用してもよい。
難燃剤は、ポリオキシアルキレン系重合体(A)100重量部に対して、5~200重量部使用されるのが好ましく、10~100重量部使用されるのがより好ましい。
硬化性組成物には、組成物の粘度を低減し、チクソ性を高め、作業性を改善する目的で、溶剤を加えることができる。溶剤としては、特に限定は無く、各種の化合物を使用することができる。
具体例としては、トルエン、キシレン、ヘプタン、ヘキサン、石油系溶媒等の炭化水素系溶剤、トリクロロエチレン等のハロゲン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のシリコーン系溶剤が例示される。これらの溶剤は、単独で使用してもよく、2種以上併用してもよい。
従って、溶剤の配合量は、ポリオキシアルキレン系重合体(A)100重量部に対して、3重量部以下であることが好ましく、1重量部以下であることがより好ましく、溶剤を実質的に含まないことが最も好ましい。
硬化性組成物には、必要に応じて蛍光増白剤を添加してもよい。蛍光増白剤を添加することにより硬化物の黄変や濁りを改善することができる。蛍光増白剤としては、スチルベン系、ベンゾオキサゾール系、クマリン系、ピラゾリン系等があり、ベンゾオキサゾール系が黄変が少なく好ましい。具体的には、BASF社の商品名:TINOPAL OB、Uvitex OBとして販売されており容易に入手できる。
硬化性組成物が2成分型の場合、反応性ケイ素基を有する重合体を含有する主剤に硬化触媒を配合する必要がないので配合剤中には若干の水分が含有されていてもゲル化の心配は少ないが、長期間の貯蔵安定性を必要とする場合には脱水乾燥するのが好ましい。
脱水、乾燥方法としては粉状等の固状物の場合は加熱乾燥法または減圧脱水法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲル、生石灰、酸化マグネシウム等を使用した脱水法が好適である。かかる脱水乾燥法に加えて、n-プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、メチルシリケート、エチルシリケート、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のアルコキシシラン化合物を添加し、水と反応させて脱水してもよい。
また、3-エチル-2-メチル-2-(3-メチルブチル)-1,3-オキサゾリジン等のオキサゾリジン化合物を配合して水と反応させて脱水してもよい。
また、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。アルコキシシラン化合物やオキサゾリジン化合物、および、イソシアネート化合物の添加により、貯蔵安定性が向上する。
具体的には、上記条件で測定される全光透過率が70%以上である試験片を与える硬化性組成物を透明であるとし、透明な硬化性組成物の硬化物を透明な硬化物であるとする。
さらに、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物等の如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。
また、硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、アスファルトを併用した防水材としても使用可能である。
分子量約2,000のポリオキシプロピレンジオールと分子量約3,000のポリオキシプロピレントリオールの1/1(重量比)混合物を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、数平均分子量約19,000(送液システムとして東ソー製HLC-8120GPCを用い、カラムは東ソー製TSK-GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)のポリプロピレンオキシドを得た。続いて、この水酸基末端ポリプロピレンオキシドの水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、さらに水酸基に対して1.7倍当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。
合成例1で得られた反応性ケイ素基含有ポリオキシプロピレン系重合体(A-1)100重量部、長鎖非置換炭化水素基を有するヒンダードアミン系光安定剤(ソンウォン製、商品名:Sabostab UV91:2,2,6,6-テトラメチル-4-ピペリジル ステアレート)0.4重量部、ベンゾトリアゾール系紫外線吸収剤(ソンウォン製、商品名:Songsorb 3260:2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール)0.6重量部、可塑剤としてジイソノニルフタレート((株)ジェイプラス製、商品名DINP)55重量部、疎水性フュームドシリカ(日本アエロジル(株)製、商品名:AEROSIL R974)25重量部を計量し、プラネタリーミキサーで混合して充分混練りした後、3本ペイントロールに3回通して分散させた。この後、120℃で2時間減圧脱水を行い、50℃以下に冷却後、脱水剤としてビニルトリメトキシシラン(EVONIK社製、商品名:Dynasylan VTMO)3重量部、接着性付与剤の3-アミノプロピルトリメトキシシラン(EVONIK社製、商品名:Dynasylan AMMO)3重量部、最後に硬化触媒としてジブチル錫系硬化触媒(モメンティブ製、商品名:FOMREZ SUL-11C)1重量部を加えて混練し、実質的に水分の存在しない状態で防湿性のあるカートリッジに密閉し、1成分型硬化性組成物を得た。
実施例1におけるSongsorb 3260の代わりにオキサニリド系紫外線吸収剤(ソンウォン製、商品名:Songsorb 3120:N-(2-エトキシフェニル)-N’-(4-エチルフェニル)-エチレンジアミド)を0.6重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
実施例1におけるSabostab UV91の使用量を0.7重量部に変更し、Songsorb 3260の代わりにトリアジン系紫外線吸収剤(ソンウォン製、商品名:Songsorb 1577:2-[4,6-ジフェニル-1,3,5-トリアジン-2-イル]-5-(ヘキシルオキシ)フェノール)を0.3重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
実施例1におけるSabostab UV91を使用しない代わりに、ヒンダ-ドアミン系光安定剤(ソンウォン製、商品名:Sabostab UV70:セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル))0.4重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
比較例1におけるSongsorb 3260の使用量を1重量部、Sabostab UV70の使用量を1重量部に変更したこと以外は、比較例1と同様にして硬化性組成物を得た。
実施例2におけるSabostab UV91を使用しない代わりに、Sabostab UV70を0.4重量部使用したこと以外は、実施例2と同様にして硬化性組成物を得た。
実施例1におけるSabostab UV91を使用しない代わりに、ヒンダ-ドアミン系光安定剤(ソンウォン製、商品名:Sabostab UV119:N,N’,N’’,N’’’-テトラキス(4,6-ビス(ブチルー(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン)を0.4重量部使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
実施例1におけるSabostab UV91を使用しない代わりに、ヒンダ-ドアミン系光安定剤(ソンウォン社製、商品名:Sabostab UV62:コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチル-4-ピペリジン重縮合物)0.2重量部とヒンダ-ドアミン系光安定剤(BASF社製、商品名:Tinuvin 144:ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート)を0.2重量部を使用したこと以外は、実施例1と同様にして硬化性組成物を得た。
上記実施例1~3と比較例1~5で得られた硬化性組成物について硬化物を作成し、初期の色(b値)と硬化物を70℃の状態に6ヶ月保管した後の色を測定した。また、硬化物の促進耐候性試験を実施した。
上記硬化性組成物を厚さ3mmのシート状試験体にして23℃、50%RH条件に3日間、その後50℃乾燥機に4日間入れて硬化養生を行うことにより硬化物を得た。
厚さ3mmの硬化物を約30mm×40mmの長方形に切り取り、70℃に調整したオーブンに入れた。一定の期間毎に硬化物の着色を評価した。
色彩色差計CR-400(コニカミノルタ製)を用いて、硬化物表面の黄色味b値を測定した。b値が大きいほど黄色味が濃いことを表す。
結果を表1に示す。
厚さ3mmの硬化物を約30mm×40mmの長方形に切り取り、QUV促進耐候性試験機(Q-Lab製)に入れて表面の状態を一定の期間毎に確認し、硬化物表面にクラックが入るまでの時間を計った。
一方、比較例1、3、4、5に示されるように、(B)成分を使用しない場合、2種類の耐候安定剤を併用しても着色や耐候性において満足な硬化物は得られなかった。比較例2は良好な耐候性を発現しているが、この配合では他の2倍量の耐候安定剤を使用しており、また初期の硬化物が黄色味を帯びており好ましくない。
Claims (16)
- ポリオキシアルキレン系重合体(A)と、耐候安定剤(B)とを含み、
前記ポリオキシアルキレン系重合体(A)が、シロキサン結合を形成することにより架橋し得る反応性ケイ素基を有し、
前記耐候安定剤(B)が、下記式(1):
で示されるヒンダードアミン系光安定剤(B1)および/または下記式(2):
で示されるヒンダードフェノール系酸化防止剤(B2)であり、
前記ポリオキシアルキレン系重合体(A)100重量部に対する、前記耐候安定剤(B)の含有量が0.1~20重量部である、透明な硬化性組成物。 - ポリオキシアルキレン系重合体(A)がポリオキシプロピレン系重合体である請求項1に記載の硬化性組成物。
- (A)成分の反応性ケイ素基が、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基からなる群から選択される少なくとも1種である請求項1~2のいずれかに記載の硬化性組成物。
- (A)成分が、直鎖構造のポリオキシアルキレン系重合体(A1)と、分岐構造のポリオキシアルキレン系重合体(A2)の混合物であることを特徴とする、請求項1~3のいずれかに記載の硬化性組成物。
- さらに紫外線吸収剤を含有することを特徴とする請求項1~4のいずれかに記載の硬化性組成物。
- アミノ基含有シランカップリング剤(C)を、(A)成分100重量部に対して0.1~20重量部含むことを特徴とする請求項1~5のいずれかに記載の硬化性組成物。
- シリカ(D)を、(A)成分100重量部に対して0.1~20重量部含むことを特徴とする請求項1~6のいずれかに記載の硬化性組成物。
- 水分含有量が2000ppm以下であることを特徴とする請求項1~7のいずれかに記載の硬化性組成物。
- 請求項1~8のいずれかに記載の硬化性組成物を含有するシーリング材。
- 請求項1~8のいずれかに記載の硬化性組成物を含有する接着剤。
- 請求項1~8のいずれかに記載の硬化性組成物を含有するコーティング材。
- 請求項1~8のいずれかに記載の硬化性組成物を含有する防水材。
- 請求項1~8のいずれかに記載の硬化性組成物の透明硬化物。
- 厚み5mmの試料の全光線透過率が70%以上であることを特徴とする、請求項13に記載の透明硬化物。
- 請求項14に記載の透明硬化物が硬化後7日以内に得られる、請求項1~8のいずれかに記載の硬化性組成物。
- 下記式(1):
で示されるヒンダードアミン系光安定剤(B1)および/または下記式(2):
で示されるヒンダードフェノール系酸化防止剤(B2)を含み、
シロキサン結合を形成することにより架橋し得る反応性ケイ素基を有するポリオキシアルキレン系重合体(A)を含む透明な硬化性組成物において用いられる、耐候安定剤。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017555118A JP6550148B2 (ja) | 2015-12-07 | 2016-12-07 | 硬化性組成物およびその硬化物 |
EP16873047.1A EP3378898B2 (en) | 2015-12-07 | 2016-12-07 | Curable composition and cured product thereof |
CN201680070931.6A CN108368334B (zh) | 2015-12-07 | 2016-12-07 | 固化性组合物及其固化物 |
US16/002,783 US10676593B2 (en) | 2015-12-07 | 2018-06-07 | Curable composition and cured product thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015238551 | 2015-12-07 | ||
JP2015-238551 | 2015-12-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/002,783 Continuation US10676593B2 (en) | 2015-12-07 | 2018-06-07 | Curable composition and cured product thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017099154A1 true WO2017099154A1 (ja) | 2017-06-15 |
Family
ID=59013251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/086454 WO2017099154A1 (ja) | 2015-12-07 | 2016-12-07 | 硬化性組成物およびその硬化物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10676593B2 (ja) |
EP (1) | EP3378898B2 (ja) |
JP (1) | JP6550148B2 (ja) |
CN (1) | CN108368334B (ja) |
WO (1) | WO2017099154A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107674641A (zh) * | 2017-10-27 | 2018-02-09 | 惠州市佳的利实业有限公司 | 一种耐高温有机硅胶黏剂 |
KR20190117284A (ko) * | 2018-04-06 | 2019-10-16 | 바프렉스 주식회사 | 고온 성형성이 우수한 진공스킨 포장용 복합필름 |
US10556829B1 (en) | 2019-05-30 | 2020-02-11 | Saudi Arabian Oil Company | Cement slurries, cured cement and methods of making and use of these |
KR20200050297A (ko) * | 2018-11-01 | 2020-05-11 | 현대자동차주식회사 | 형광증백제를 포함하는 자동차용 바디 실러 조성물 |
KR20200074979A (ko) * | 2017-12-15 | 2020-06-25 | 와커 헤미 아게 | 표면 밀봉용 코팅 조성물 |
JP2021522384A (ja) * | 2018-04-26 | 2021-08-30 | 日東電工株式会社 | ゲルガスケット |
JP7022800B1 (ja) | 2020-09-02 | 2022-02-18 | サンスター技研株式会社 | 接着剤組成物及び接着構造体 |
JP7099593B1 (ja) | 2021-06-30 | 2022-07-12 | 東洋インキScホールディングス株式会社 | 蓄電デバイス包装材用ポリウレタン接着剤、蓄電デバイス用包装材、蓄電デバイス用容器及び蓄電デバイス |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109467974B (zh) * | 2018-10-31 | 2021-10-01 | 深圳市格莱特印刷材料有限公司 | 一种3d曲面屏的感光墨水、制备方法及其应用 |
EP3931237A4 (en) | 2019-02-28 | 2023-01-11 | Kaneka Americas Holding, Inc. | MOISTURE CURE ADHESIVE COMPOSITIONS |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11310696A (ja) * | 1998-04-27 | 1999-11-09 | Asahi Denka Kogyo Kk | 硬化性樹脂組成物 |
JP2013006887A (ja) * | 2011-06-22 | 2013-01-10 | Asahi Glass Co Ltd | 光安定剤組成物の製造方法および硬化性組成物の製造方法 |
JP2014001358A (ja) * | 2012-05-22 | 2014-01-09 | Kaneka Corp | 硬化性組成物 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5273998A (en) | 1975-12-16 | 1977-06-21 | Kanegafuchi Chem Ind Co Ltd | Room temperature curing compositions |
JPH0651844B2 (ja) | 1985-04-09 | 1994-07-06 | 鐘淵化学工業株式会社 | 硬化性組成物 |
JPS636041A (ja) | 1986-06-25 | 1988-01-12 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JP2582385B2 (ja) * | 1987-12-11 | 1997-02-19 | 旭電化工業株式会社 | 安定化された合成樹脂組成物 |
WO1997031066A1 (fr) | 1996-02-21 | 1997-08-28 | Kaneka Corporation | Composition durcissable |
JPH09286895A (ja) | 1996-02-21 | 1997-11-04 | Kanegafuchi Chem Ind Co Ltd | 硬化性組成物 |
JP3272342B2 (ja) | 2000-03-24 | 2002-04-08 | コニシ株式会社 | シーリング材組成物 |
JPWO2003046079A1 (ja) * | 2001-11-29 | 2005-04-07 | 株式会社カネカ | 硬化性組成物 |
JP2008163182A (ja) * | 2006-12-28 | 2008-07-17 | Sekisui Fuller Co Ltd | 硬化性組成物、並びに硬化性組成物を含む接着剤及びシーリング材 |
JP5734293B2 (ja) | 2009-08-18 | 2015-06-17 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | 安定化ポリマー封止材を有する光電モジュール |
JP2014109007A (ja) * | 2012-12-03 | 2014-06-12 | Seiko Epson Corp | 紫外線硬化型インクジェット用組成物および記録物 |
JP6254422B2 (ja) | 2013-11-06 | 2017-12-27 | 積水フーラー株式会社 | 硬化性組成物及びこれを用いてなる目地構造 |
JP6270432B2 (ja) * | 2013-11-25 | 2018-01-31 | 旭化成株式会社 | ポリアセタール樹脂組成物 |
CN104087231A (zh) * | 2014-06-18 | 2014-10-08 | 广州新展化工新材料有限公司 | 一种端硅烷基改性聚氨酯密封胶及其制备方法 |
-
2016
- 2016-12-07 JP JP2017555118A patent/JP6550148B2/ja active Active
- 2016-12-07 WO PCT/JP2016/086454 patent/WO2017099154A1/ja active Application Filing
- 2016-12-07 EP EP16873047.1A patent/EP3378898B2/en active Active
- 2016-12-07 CN CN201680070931.6A patent/CN108368334B/zh active Active
-
2018
- 2018-06-07 US US16/002,783 patent/US10676593B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11310696A (ja) * | 1998-04-27 | 1999-11-09 | Asahi Denka Kogyo Kk | 硬化性樹脂組成物 |
JP2013006887A (ja) * | 2011-06-22 | 2013-01-10 | Asahi Glass Co Ltd | 光安定剤組成物の製造方法および硬化性組成物の製造方法 |
JP2014001358A (ja) * | 2012-05-22 | 2014-01-09 | Kaneka Corp | 硬化性組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3378898A4 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107674641B (zh) * | 2017-10-27 | 2020-08-11 | 惠州市佳的利实业有限公司 | 一种耐高温有机硅胶黏剂 |
CN107674641A (zh) * | 2017-10-27 | 2018-02-09 | 惠州市佳的利实业有限公司 | 一种耐高温有机硅胶黏剂 |
KR102416921B1 (ko) * | 2017-12-15 | 2022-07-05 | 와커 헤미 아게 | 표면 밀봉용 코팅 조성물 |
KR20200074979A (ko) * | 2017-12-15 | 2020-06-25 | 와커 헤미 아게 | 표면 밀봉용 코팅 조성물 |
US11643557B2 (en) | 2017-12-15 | 2023-05-09 | Wacker Chemie Ag | Coating composition for sealing surfaces |
KR20190117284A (ko) * | 2018-04-06 | 2019-10-16 | 바프렉스 주식회사 | 고온 성형성이 우수한 진공스킨 포장용 복합필름 |
KR102043744B1 (ko) | 2018-04-06 | 2019-11-12 | 바프렉스 주식회사 | 고온 성형성이 우수한 진공스킨 포장용 복합필름 |
JP7498119B2 (ja) | 2018-04-26 | 2024-06-11 | 日東電工株式会社 | ゲルガスケット |
JP2021522384A (ja) * | 2018-04-26 | 2021-08-30 | 日東電工株式会社 | ゲルガスケット |
KR102678540B1 (ko) | 2018-11-01 | 2024-06-25 | 현대자동차주식회사 | 형광증백제를 포함하는 자동차용 바디 실러 조성물 |
KR20200050297A (ko) * | 2018-11-01 | 2020-05-11 | 현대자동차주식회사 | 형광증백제를 포함하는 자동차용 바디 실러 조성물 |
US10882788B2 (en) | 2019-05-30 | 2021-01-05 | Saudi Arabian Oil Company | Cement slurries, cured cement and methods of making and use of these |
US10689293B1 (en) | 2019-05-30 | 2020-06-23 | Saudi Arabian Oil Company | Cement slurries, cured cement and methods of making and use of these |
US10556829B1 (en) | 2019-05-30 | 2020-02-11 | Saudi Arabian Oil Company | Cement slurries, cured cement and methods of making and use of these |
JP2022042337A (ja) * | 2020-09-02 | 2022-03-14 | サンスター技研株式会社 | 接着剤組成物及び接着構造体 |
WO2022049931A1 (ja) * | 2020-09-02 | 2022-03-10 | サンスター技研株式会社 | 接着剤組成物及び接着構造体 |
JP7022800B1 (ja) | 2020-09-02 | 2022-02-18 | サンスター技研株式会社 | 接着剤組成物及び接着構造体 |
JP7099593B1 (ja) | 2021-06-30 | 2022-07-12 | 東洋インキScホールディングス株式会社 | 蓄電デバイス包装材用ポリウレタン接着剤、蓄電デバイス用包装材、蓄電デバイス用容器及び蓄電デバイス |
JP2023006643A (ja) * | 2021-06-30 | 2023-01-18 | 東洋インキScホールディングス株式会社 | 蓄電デバイス包装材用ポリウレタン接着剤、蓄電デバイス用包装材、蓄電デバイス用容器及び蓄電デバイス |
Also Published As
Publication number | Publication date |
---|---|
CN108368334A (zh) | 2018-08-03 |
EP3378898A4 (en) | 2018-11-21 |
CN108368334B (zh) | 2020-08-04 |
EP3378898A1 (en) | 2018-09-26 |
EP3378898B1 (en) | 2019-11-20 |
JPWO2017099154A1 (ja) | 2018-08-30 |
US20180282518A1 (en) | 2018-10-04 |
US10676593B2 (en) | 2020-06-09 |
JP6550148B2 (ja) | 2019-07-24 |
EP3378898B2 (en) | 2023-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5850851B2 (ja) | 硬化性組成物 | |
JP6550148B2 (ja) | 硬化性組成物およびその硬化物 | |
EP1990371B1 (en) | Curable composition | |
US8415444B2 (en) | Curable composition | |
JP5378684B2 (ja) | 硬化性組成物 | |
JP5953234B2 (ja) | 硬化性組成物 | |
JP5785954B2 (ja) | 反応性可塑剤、およびこれを含む硬化性組成物 | |
JP6561062B2 (ja) | 硬化性組成物 | |
JP5907708B2 (ja) | 硬化性組成物 | |
WO2015098998A1 (ja) | 硬化性組成物およびその硬化物 | |
JP5340815B2 (ja) | 一液型接着剤 | |
JP5025162B2 (ja) | 硬化性組成物 | |
JPWO2008111598A1 (ja) | 硬化性組成物 | |
JP5028139B2 (ja) | 硬化性組成物 | |
JP5639442B2 (ja) | 硬化性組成物 | |
JP6383163B2 (ja) | 硬化性組成物およびその硬化物 | |
JP2020164607A (ja) | 反応性シリル基含有(メタ)アクリル酸エステル系重合体およびこれを含有する硬化性組成物 | |
JP2020164606A (ja) | 反応性シリル基含有(メタ)アクリル酸エステル系共重合体およびこれを含有する硬化性組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16873047 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017555118 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016873047 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016873047 Country of ref document: EP Effective date: 20180621 |