WO2017098880A1 - ノボラック型樹脂及びレジスト膜 - Google Patents

ノボラック型樹脂及びレジスト膜 Download PDF

Info

Publication number
WO2017098880A1
WO2017098880A1 PCT/JP2016/084055 JP2016084055W WO2017098880A1 WO 2017098880 A1 WO2017098880 A1 WO 2017098880A1 JP 2016084055 W JP2016084055 W JP 2016084055W WO 2017098880 A1 WO2017098880 A1 WO 2017098880A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
compound
novolac resin
alkyl group
Prior art date
Application number
PCT/JP2016/084055
Other languages
English (en)
French (fr)
Inventor
今田 知之
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US15/777,739 priority Critical patent/US20180334523A1/en
Priority to KR1020187013721A priority patent/KR102486775B1/ko
Priority to CN201680071738.4A priority patent/CN108368214B/zh
Priority to JP2017525995A priority patent/JP6241577B2/ja
Publication of WO2017098880A1 publication Critical patent/WO2017098880A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/36Chemically modified polycondensates by etherifying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/30Chemically modified polycondensates by unsaturated compounds, e.g. terpenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C09D161/14Modified phenol-aldehyde condensates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes

Definitions

  • the present invention relates to a novolak resin excellent in developability, heat resistance and dry etching resistance, and a resist film using the same.
  • phenolic hydroxyl group-containing resins are excellent in heat resistance and moisture resistance in cured products.
  • a curable composition containing a phenolic hydroxyl group-containing resin itself as a main ingredient, or as a curing agent such as an epoxy resin it is widely used in the electrical and electronic fields such as semiconductor sealing materials and insulating materials for printed wiring boards.
  • the phenolic hydroxyl group-containing resin most widely used for photoresist applications is of the cresol novolac type, but as mentioned above, it does not meet the demands of today's increasingly sophisticated and diversified markets, and is heat resistant. Also, developability was not sufficient (see Patent Document 1).
  • the problem to be solved by the present invention is to provide a novolac resin excellent in developability, heat resistance and dry etching resistance, a photosensitive composition containing the same, a curable composition, and a resist film.
  • the present inventors introduced an acid-dissociable protecting group into a ladder-like novolac-type phenolic hydroxyl group-containing resin obtained by reacting a tetrafunctional phenol compound with formaldehyde.
  • the resin obtained in this way has been found to be excellent in developability, heat resistance and dry etching resistance, and the present invention has been completed.
  • the present invention has the following structural formula (1) or (2)
  • Ar represents an arylene group.
  • R 1 is each independently a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom
  • m is each independently an integer of 1 to 3.
  • X is any one of a hydrogen atom, a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group.
  • X present in the resin is a tertiary alkyl group, alkoxyalkyl group, acyl group, alkoxycarbonyl group, heteroatom-containing cyclic hydrocarbon group, trialkyl
  • the present invention relates to a novolak resin characterized by being any of silyl groups.
  • the present invention further relates to a photosensitive composition containing the novolac resin and a photosensitive agent.
  • the present invention further relates to a resist film comprising the photosensitive composition.
  • the present invention further relates to a curable composition containing the novolak type resin and a curing agent.
  • the present invention further relates to a resist film comprising the curable composition.
  • the present invention further includes the following structural formula (4)
  • Ar represents an arylene group.
  • R 1 is each independently a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom, and m is each independently an integer of 1 to 3.
  • the intermediate novolac resin is obtained by reacting the tetrafunctional phenol compound (A) represented by the formula with formaldehyde as an essential component, and a part of hydrogen atoms of the phenolic hydroxyl group of the obtained intermediate novolac resin is obtained.
  • the present invention relates to a method for producing a novolak-type resin in which the whole is substituted with any of a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group.
  • a novolak resin excellent in developability, heat resistance and dry etching resistance a photosensitive composition and a curable composition containing the resin, and a resist film.
  • FIG. 1 is a GPC chart of the tetrafunctional phenol compound (A-1) obtained in Production Example 1.
  • FIG. 2 is a 1 H-NMR chart of the tetrafunctional phenol compound (A-1) obtained in Production Example 1.
  • FIG. 3 is a GPC chart of the intermediate novolak resin (1) obtained in Production Example 2.
  • FIG. 4 is a 13 C-NMR chart of the intermediate novolak resin (1) obtained in Production Example 2.
  • FIG. 5 is a TOF-MS chart of the intermediate novolak resin (1) obtained in Production Example 2.
  • FIG. 6 is a GPC chart of the intermediate novolak resin (2) obtained in Production Example 2.
  • FIG. 7 is a 13 C-NMR chart of the intermediate novolak resin (2) obtained in Production Example 2.
  • FIG. 8 is a TOF-MS chart of the intermediate novolak resin (2) obtained in Production Example 2.
  • the novolac resin of the present invention has the following structural formula (1) or (2)
  • Ar represents an arylene group.
  • R 1 is each independently a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom
  • m is each independently an integer of 1 to 3.
  • X is any one of a hydrogen atom, a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group.
  • At least one of X present in the resin is a tertiary alkyl group, alkoxyalkyl group, acyl group, alkoxycarbonyl group, heteroatom-containing cyclic hydrocarbon group, trialkyl It is one of silyl groups.
  • the novolac resin of the present invention has the following structural formula (3)
  • Ar represents an arylene group.
  • R 1 is each independently a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom
  • m is each independently an integer of 1 to 3.
  • X is any one of a hydrogen atom, a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group.
  • It has a so-called ladder-like rigid and highly symmetric molecular structure in which the structural parts represented by are linked by two methylene groups, realizing unprecedented high heat resistance and dry etching resistance. .
  • R 1 in the structural formulas (1) and (2) is independently a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a cyclohexyl group.
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and a cyclohexyloxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • R 1 is preferably an alkyl group because it becomes a novolak resin having a good balance between heat resistance and developability, and the effect of improving heat resistance by suppressing molecular motion and the ability to donate electrons to aromatic nuclei. It is particularly preferable that it is a methyl group because it is excellent in the quality and is easily available industrially.
  • m is an integer of 1 to 3 independently. Among them, 1 or 2 is preferable because it is a novolac resin having an excellent balance between heat resistance and developability.
  • Ar in the structural formulas (1) and (2) is an arylene group.
  • one or more of hydrogen atoms on the phenylene group, naphthylene group, anthrylene group, and these aromatic nuclei are alkyl groups and alkoxy groups. And structural sites substituted with any of halogen atoms.
  • Examples of the alkyl group, alkoxy group and halogen atom here are those listed as R 1 .
  • a phenylene group is preferable because it is a novolak resin having excellent molecular structure symmetry and developability, heat resistance, and dry etching resistance.
  • X in the structural formulas (1) and (2) is any of a hydrogen atom, a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group. is there.
  • the tertiary alkyl group include a t-butyl group and a t-pentyl group.
  • alkoxyalkyl group examples include a methoxyethyl group, an ethoxyethyl group, a propoxyethyl group, a butoxyethyl group, a cyclohexyloxyethyl group, and a phenoxyethyl group.
  • acyl group examples include an acetyl group, an ethanoyl group, a propanoyl group, a butanoyl group, a cyclohexanecarbonyl group, and a benzoyl group.
  • alkoxycarbonyl group examples include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group, a cyclohexyloxycarbonyl group, and a phenoxycarbonyl group.
  • heteroatom-containing cyclic hydrocarbon group examples include a tetrahydrofuranyl group and a tetrahydropyranyl group.
  • trialkylsilyl group examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, and the like.
  • it is preferably an alkoxyalkyl group, an alkoxycarbonyl group, or a heteroatom-containing cyclic hydrocarbon group because it becomes a novolak type resin excellent in photosensitivity, resolution, and alkali developability, and is preferably an ethoxyethyl group, tetrahydropyrani group. It is preferably any one of the above groups.
  • a structural moiety represented by —OX (where X is a hydrogen atom, tertiary alkyl group, alkoxyalkyl group, acyl group, alkoxycarbonyl group, heteroatom-containing cyclic hydrocarbon group, trialkylsilyl group)
  • the ratio of the structural moiety (OX ′) in which X is any one of a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group is It is preferably in the range of 30 to 100%, more preferably in the range of 70 to 100%, since it becomes a novolak resin excellent in performance balance between transparency and light transmittance, alkali developability and resolution. preferable.
  • the abundance ratio of the structural moiety (OX ′) in which X is any one of a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group In the 13 C-NMR measurement measured under the following conditions, a peak of 145 to 160 ppm derived from a structural site (OH) in which X is a hydrogen atom, that is, a carbon atom on a benzene ring to which a phenolic hydroxyl group is bonded, and X is Bonded to an oxygen atom derived from a phenolic hydroxyl group in a structural moiety (OX ') that is any of a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, or
  • the method for producing the novolak type resin of the present invention is not particularly limited.
  • Ar represents an arylene group.
  • R 1 is each independently a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom, and m is each independently an integer of 1 to 3.
  • the intermediate novolac resin is obtained by reacting the tetrafunctional phenol compound (A) represented by the formula with formaldehyde as an essential component, and a part of hydrogen atoms of the phenolic hydroxyl group of the obtained intermediate novolac resin is obtained.
  • a method of substituting all of them with any of a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group can be mentioned.
  • R 1 in the structural formula (4) has the same meaning as R 1 in the structural formulas (1) and (2), and the tetrafunctional phenol compound (A) represented by the structural formula (4) is Specifically, those having a molecular structure represented by any of the following structural formulas (4-1) to (4-45) can be mentioned.
  • the tetrafunctional phenol compound (A) can be obtained, for example, by a method of reacting the phenol compound (a1) and the aromatic dialdehyde (a2) in the presence of an acid catalyst.
  • the phenol compound (a1) is a compound in which some or all of the hydrogen atoms bonded to the aromatic ring of phenol are substituted with any of an alkyl group, an alkoxy group, an aryl group, an aralkyl group, and a halogen atom.
  • alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a cyclohexyl group.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propyloxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and a cyclohexyloxy group.
  • aryl group examples include a phenyl group, a hydroxyphenyl group, a dihydroxyphenyl group, a hydroxyalkoxyphenyl group, an alkoxyphenyl group, a tolyl group, a xylyl group, a naphthyl group, a hydroxynaphthyl group, and a dihydroxynaphthyl group.
  • the aralkyl group is, for example, phenylmethyl group, hydroxyphenylmethyl group, dihydroxyphenylmethyl group, tolylmethyl group, xylylmethyl group, naphthylmethyl group, hydroxynaphthylmethyl group, dihydroxynaphthylmethyl group, phenylethyl group, hydroxyphenylethyl group, Examples thereof include a dihydroxyphenylethyl group, a tolylethyl group, a xylylethyl group, a naphthylethyl group, a hydroxynaphthylethyl group, and a dihydroxynaphthylethyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • a phenol compound may be used individually by 1 type and may use 2 or more types together.
  • alkyl-substituted phenols are preferable because novolak-type resins having excellent developability, heat resistance, and dry etching resistance are obtained.
  • o-cresol, m-cresol, p-cresol, 2,5-xylenol examples include 3,5-xylenol, 3,4-xylenol, 2,4-xylenol, 2,6-xylenol, 2,3,5-trimethylphenol, 2,3,6-trimethylphenol.
  • 2,5-xylenol and 2,6-xylenol are particularly preferable.
  • the aromatic dialdehyde (a2) is any compound in which two of the hydrogen atoms bonded to the aromatic ring of an aromatic compound such as benzene, naphthalene, anthracene, and derivatives thereof are substituted with a formyl group. It may be a compound. Among them, it is preferable to have a structure in which two formyl groups are bonded to each other at the para position of the aromatic ring, because it becomes a novolak type resin having excellent symmetry of molecular structure and excellent developability, heat resistance and dry etching resistance.
  • Such compounds include, for example, terephthalaldehyde, 2-methylterephthalaldehyde, 2,5-dimethylterephthalaldehyde, 2,3,5,6-tetramethylbenzene-1,4-dicarbaldehyde, 2,5-dimethoxy Phenylene-type dialdehyde compounds such as terephthalaldehyde, 2,5-dichloroterephthalaldehyde, 2-bromoterephthalaldehyde; naphthylene-type dialdehyde compounds such as 1,4-naphthalenedicarbaldehyde; 9,10-anthracene dicarbaldehyde, etc. An anthrylene type dialdehyde compound etc. are mentioned. These may be used alone or in combination of two or more.
  • a phenylene type dialdehyde compound is preferable because a novolak type resin having excellent molecular structure symmetry and excellent developability, heat resistance, and dry etching resistance can be obtained.
  • the reaction molar ratio [(a1) / (a2)] of the phenol compound (a1) and the aromatic dialdehyde (a2) is such that the target tetrafunctional phenol compound (A) can be obtained in high yield and purity. Therefore, it is preferably in the range of 1 / 0.1 to 1 / 0.25.
  • Examples of the acid catalyst used in the reaction of the phenol compound (a1) and the aromatic dialdehyde (a2) include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, and manganese acetate. It is done. These acid catalysts may be used alone or in combination of two or more. Among these, sulfuric acid and paratoluenesulfonic acid are preferable from the viewpoint of excellent catalytic activity.
  • the reaction of the phenol compound (a1) and the aromatic dialdehyde (a2) may be performed in an organic solvent as necessary.
  • the solvent used here include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin and other polyols; 2-ethoxyethanol, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether
  • the reaction of the phenol compound (a1) and the aromatic dialdehyde (a2) is performed, for example, in a temperature range of 60 to 140 ° C. for 0.5 to 100 hours.
  • the reaction product is put into a poor solvent (S1) of the tetrafunctional phenol compound (A) and the precipitate is filtered off, and then the solubility of the tetrafunctional phenol compound (A) is high, And by the method of re-dissolving the precipitate obtained in the solvent (S2) that is miscible with the poor solvent (S1), unreacted phenol compound (a1) or aromatic dialdehyde (a2), By removing the acid catalyst, a purified tetrafunctional phenol compound (A) can be obtained.
  • the tetrafunctional phenol compound (A) is a novolak-type resin that is excellent in both developability and heat resistance. Therefore, the purity calculated from the GPC chart is preferably 90% or more, and 94% or more. More preferably, it is 98% or more. The purity of the tetrafunctional phenol compound (A) can be determined from the area ratio of the chart of gel permeation chromatography (GPC).
  • GPC measurement conditions are as follows.
  • Measuring device “HLC-8220 GPC” manufactured by Tosoh Corporation
  • Examples of the poor solvent (S1) used for the purification of the tetrafunctional phenol compound (A) include water; monoalcohols such as methanol, ethanol, propanol, and ethoxyethanol; n-hexane, n-heptane, n-octane, and cyclohixane. Aliphatic hydrocarbons such as toluene; aromatic hydrocarbons such as toluene and xylene. These may be used alone or in combination of two or more. Of these, water, methanol, and ethoxyethanol are preferred because of the excellent solubility of the acid catalyst.
  • the solvent (S2) is, for example, a monoalcohol such as methanol, ethanol, or propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentane.
  • a monoalcohol such as methanol, ethanol, or propanol
  • ethylene glycol 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentane.
  • Polyols such as diol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin; 2-ethoxyethanol, ethylene Glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, Glycol ethers such as ethylene glycol ethyl methyl ether and ethylene glycol monophenyl ether; Cyclic ethers such as 1,3-dioxane and 1,4-dioxane; Glycol esters such as ethylene glycol acetate; Ketones such as acetone, methyl ethyl ketone and methyl isobutyl
  • the formaldehyde used is any of formalin in the form of an aqueous solution, paraformaldehyde in the solid state, etc. It may be in the state.
  • the reaction ratio between the tetrafunctional phenol compound (A) and formaldehyde can suppress excessive high molecular weight (gelation), and a novolac resin having a molecular weight suitable as a resist material can be obtained.
  • the ratio of formaldehyde is preferably in the range of 0.5 to 7.0 moles, more preferably in the range of 0.6 to 6.0 moles per mole of (A).
  • the reaction of the tetrafunctional phenol compound (A) with formaldehyde is usually carried out under acid catalyst conditions, as in the method for producing a general novolak resin.
  • acid catalyst used here include acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, and manganese acetate. These acid catalysts may be used alone or in combination of two or more. Among these, sulfuric acid and paratoluenesulfonic acid are preferable from the viewpoint of excellent catalytic activity.
  • the reaction between the tetrafunctional phenol compound (A) and formaldehyde may be performed in an organic solvent as necessary.
  • the solvent used here include monoalcohols such as methanol, ethanol, and propanol; monocarboxylic acids such as acetic acid, propionic acid, butyric acid, pentanoic acid, and hexanoic acid; ethylene glycol, 1,2-propanediol, 1,3- Propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol Polyols such as polyethylene glycol and glycerin; 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropy
  • solvents may be used alone or in combination of two or more kinds.
  • a mixed solvent of a monoalcohol such as methanol and a monocarboxylic acid such as acetic acid is preferable because the resulting novolac resin is excellent in solubility.
  • the reaction between the tetrafunctional phenol compound (A) and formaldehyde is carried out, for example, in the temperature range of 60 to 140 ° C. for 0.5 to 100 hours.
  • an intermediate novolak resin can be obtained by adding water to the reaction product and performing a reprecipitation operation.
  • the weight average molecular weight (Mw) of the intermediate novolak type resin is in the range of 1,500 to 30,000 because the novolak type resin, which is the final target, has excellent heat resistance, photosensitivity, and alkali developability. Preferably there is.
  • the polydispersity (Mw / Mn) is preferably in the range of 1 to 10 because the novolak type resin as the final object is excellent in heat resistance, photosensitivity and alkali developability.
  • the weight average molecular weight (Mw) and the polydispersity (Mw / Mn) are values measured by GPC under the same conditions as the calculation of the purity of the tetrafunctional phenol compound (A) described above.
  • the method for substitution with any of the silyl groups specifically includes the intermediate and the following structural formulas (5-1) to (5-8).
  • X represents a halogen atom
  • R 2 each independently represents an alkyl group having 1 to 6 carbon atoms or a phenyl group, and n is 1 or 2.
  • protecting group introducing agent a compound represented by any of the above (hereinafter abbreviated as “protecting group introducing agent”).
  • the structural formula (5-2) or (5-7) are preferred, with ethyl vinyl ether or dihydropyran being particularly preferred.
  • the reaction ratio between the intermediate novolac resin and the protecting group introducing agent represented by any one of the structural formulas (5-1) to (5-8) depends on which compound is used as the protecting group introducing agent.
  • the structural moiety represented by —OX present in the resulting novolak type resin (where X is a hydrogen atom, tertiary alkyl group, alkoxyalkyl group, acyl group, alkoxycarbonyl group, heteroatom-containing cyclic hydrocarbon group) Or a trialkylsilyl group), wherein X is a tertiary alkyl group, alkoxyalkyl group, acyl group, alkoxycarbonyl group, heteroatom-containing cyclic hydrocarbon group, or trialkylsilyl group
  • the reaction is preferably carried out at such a ratio that the ratio of (OX ′) is in the range of 30 to 100%. That is, the protective group introducing agent is preferably reacted at a ratio of 0.3 to 1.2 mol with respect to
  • the reaction between the intermediate novolac resin and the protecting group introducing agent may be performed in an organic solvent.
  • organic solvent used here include 1,3-dioxolane. Each of these organic solvents may be used alone or as a mixed solvent of two or more types.
  • the desired novolak resin can be obtained by pouring the reaction mixture into ion-exchanged water and drying the precipitate under reduced pressure.
  • the novolac resin of the present invention has an excellent balance of developability, heat resistance and dry etching resistance and is suitable for a resist material. Therefore, the novolac resin of the structure represented by the structural formula (1) or (2) It is preferable to contain a dimer having 2 repeating units or a trimer having 3 repeating units in the structural portion represented by the structural formula (1) or (2).
  • dimer examples include those having a molecular structure represented by any of the following structural formulas (II-1) to (II-3).
  • Ar represents an arylene group.
  • R 1 is each independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aralkyl group, or a halogen atom
  • m is each independently an integer of 1 to 3.
  • X is any one of a hydrogen atom, a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group.
  • trimer examples include those having a molecular structure represented by any of the following structural formulas (III-1) to (III-6).
  • Ar represents an arylene group.
  • R 1 is each independently a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aralkyl group, or a halogen atom
  • m is each independently an integer of 1 to 3.
  • X is any one of a hydrogen atom, a tertiary alkyl group, an alkoxyalkyl group, an acyl group, an alkoxycarbonyl group, a heteroatom-containing cyclic hydrocarbon group, and a trialkylsilyl group.
  • the content is preferably in the range of 5 to 90% because it becomes a novolak type resin particularly excellent in developability. Further, when the novolak type resin contains the trimer, the content is preferably in the range of 5 to 90% because the novolak type resin is excellent in heat resistance.
  • the content of the dimer or trimer in the novolac resin is a value calculated from the area ratio of the GPC chart measured under the same conditions as the calculation of the purity of the tetrafunctional phenol compound (A) described above. is there.
  • the novolak type resin of the present invention described in detail above is easily dissolved in a general-purpose organic solvent and has excellent heat resistance. Therefore, various electric and electronic materials such as adhesives, paints, photoresists, printed wiring boards, etc. It can be used for member applications. Among these applications, it is particularly suitable for resist applications that make use of the characteristics that are excellent in developability, heat resistance and dry etching resistance, as an alkali-developable resist material combined with a photosensitive agent, or in combination with a curing agent, It can also be suitably used for thick film applications, resist underlayer films, and resist permanent film applications.
  • the photosensitive composition of the present invention contains the novolak resin of the present invention and a photoacid generator as essential components.
  • the photoacid generator examples include organic halogen compounds, sulfonic acid esters, onium salts, diazonium salts, disulfone compounds, and the like. These may be used alone or in combination of two or more. . Specific examples thereof include, for example, tris (trichloromethyl) -s-triazine, tris (tribromomethyl) -s-triazine, tris (dibromomethyl) -s-triazine, and 2,4-bis (tribromomethyl). Haloalkyl group-containing s-triazine derivatives such as -6-p-methoxyphenyl-s-triazine;
  • Halogen-substituted paraffinic hydrocarbon compounds such as 1,2,3,4-tetrabromobutane, 1,1,2,2-tetrabromoethane, carbon tetrabromide, iodoform; hexabromocyclohexane, hexachlorocyclohexane, hexabromocyclo Halogen-substituted cycloparaffinic hydrocarbon compounds such as dodecane;
  • Halogenated benzene derivatives such as bis (trichloromethyl) benzene and bis (tribromomethyl) benzene; Sulfone compounds containing haloalkyl groups such as tribromomethylphenylsulfone and trichloromethylphenylsulfone; Halogen containing such as 2,3-dibromosulfolane Sulfolane compounds; haloalkyl group-containing isocyanurate compounds such as tris (2,3-dibromopropyl) isocyanurate;
  • Triphenylsulfonium chloride triphenylsulfonium methanesulfonate, triphenylsulfonium trifluoromethanesulfonate, diphenyl (4-methylphenyl) sulfonium trifluoromethanesulfonate, triphenylsulfonium p-toluenesulfonate, triphenylsulfonium tetrafluoroborate, triphenylsulfonium trifluorosulfonate Sulfonium salts such as phenylsulfonium hexafluoroarsenate, triphenylsulfonium hexafluorophosphonate;
  • Iodonium salts such as diphenyliodonium trifluoromethanesulfonate, diphenyliodonium p-toluenesulfonate, diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluoroarsenate, diphenyliodonium hexafluorophosphonate;
  • O-nitrobenzyl ester compounds such as o-nitrobenzyl-p-toluenesulfonate; sulfone hydrazide compounds such as N, N'-di (phenylsulfonyl) hydrazide and the like.
  • the amount of the photoacid generator added is in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the resin solid content of the photosensitive composition because the photosensitive composition has high photosensitivity. preferable.
  • the photosensitive composition of the present invention may contain an organic base compound for neutralizing the acid generated from the photoacid generator during exposure.
  • the addition of the organic base compound has an effect of preventing the dimensional variation of the resist pattern due to the movement of the acid generated from the photoacid generator.
  • the organic base compound used here include organic amine compounds selected from nitrogen-containing compounds, and specifically include pyrimidine, 2-aminopyrimidine, 4-aminopyrimidine, 5-aminopyrimidine, and 2,4-diamino.
  • Pyridine compounds such as pyridine, 4-dimethylaminopyridine, 2,6-dimethylpyridine;
  • An amine compound substituted with a hydroxyalkyl group having 1 to 4 carbon atoms such as diethanolamine, triethanolamine, triisopropanolamine, tris (hydroxymethyl) aminomethane, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane;
  • Examples include aminophenol compounds such as 2-aminophenol, 3-aminophenol, and 4-aminophenol. These may be used alone or in combination of two or more. Among them, the pyrimidine compound, the pyridine compound, or the amine compound having a hydroxy group is preferable because the dimensional stability of the resist pattern after exposure is excellent, and the amine compound having a hydroxy group is particularly preferable.
  • the addition amount is preferably in the range of 0.1 to 100 mol%, preferably in the range of 1 to 50 mol%, with respect to the content of the photoacid generator. Is more preferable.
  • the photosensitive composition of the present invention may be used in combination with other resin (V) in addition to the novolak resin of the present invention.
  • the other resin (V) any resin can be used as long as it is soluble in an alkali developer or can be dissolved in an alkali developer by using it in combination with an additive such as an acid generator. .
  • Examples of the other resin (V) used here include other phenolic resins (V-1) other than the novolak resin of the present invention, p-hydroxystyrene, and p- (1,1,1,3,3,3).
  • a homopolymer or copolymer (V-2) of a hydroxy group-containing styrene compound such as -hexafluoro-2-hydroxypropyl) styrene, and the hydroxyl group of (V-1) or (V-2) is t-butoxycarbonyl Modified with an acid-decomposable group such as benzyloxycarbonyl group (V-3), homopolymer or copolymer (V-4) of (meth) acrylic acid, norbornene compound, tetracyclododecene compound, etc.
  • Examples of the other phenol resin (V-1) include phenol novolak resin, cresol novolak resin, naphthol novolak resin, co-condensed novolak resin using various phenolic compounds, aromatic hydrocarbon formaldehyde resin-modified phenol resin, Cyclopentadiene phenol addition resin, phenol aralkyl resin (Zylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), Biphenyl-modified naphthol resin (polyvalent naphthol compound in which phenol nucleus is linked by bismethylene group), aminotriazine-modified phenol resin (melamine, benzoguanamine, etc.
  • phenol novolak resin cresol novolak resin
  • naphthol novolak resin co-condensed novolak resin
  • Nuclei include phenolic resins such as polyhydric phenol compound) and an alkoxy group-containing aromatic ring-modified novolac resins, which are linked (polyhydric phenol compound phenol nucleus and an alkoxy group-containing aromatic ring are connected by formaldehyde).
  • phenolic resins such as polyhydric phenol compound
  • alkoxy group-containing aromatic ring-modified novolac resins which are linked (polyhydric phenol compound phenol nucleus and an alkoxy group-containing aromatic ring are connected by formaldehyde).
  • the cresol novolak resin or the co-condensed novolak resin of cresol and other phenolic compound comprises at least one cresol selected from the group consisting of o-cresol, m-cresol and p-cresol and an aldehyde compound. It is a novolak resin obtained as an essential raw material and appropriately used in combination with other phenolic compounds.
  • phenolic compounds other than the cresol include, for example, phenol; 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol Xylenol such as o-ethylphenol, m-ethylphenol, p-ethylphenol, etc .; butylphenol such as isopropylphenol, butylphenol, pt-butylphenol; p-pentylphenol, p-octylphenol, p-nonylphenol, alkylphenols such as p-cumylphenol; halogenated phenols such as fluorophenol, chlorophenol, bromophenol and iodophenol; p-phenylphenol, aminophenol, nitrophenol, 1-substituted phenols such as nitrophenol and trinitrophenol; condensed polycycl
  • phenolic compounds may be used alone or in combination of two or more.
  • the amount used is preferably such that the other phenolic compound is in the range of 0.05 to 1 mol with respect to a total of 1 mol of the cresol raw material.
  • aldehyde compound examples include formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde, allylaldehyde, benzaldehyde, croton.
  • formaldehyde is preferable because of its excellent reactivity, and formaldehyde and other aldehyde compounds may be used in combination.
  • the amount of the other aldehyde compounds used is preferably in the range of 0.05 to 1 mole per mole of formaldehyde.
  • the reaction ratio between the phenolic compound and the aldehyde compound in producing the novolak resin is such that a photosensitive resin composition having excellent sensitivity and heat resistance can be obtained.
  • the range is preferably 1.6 mol, and more preferably in the range of 0.5 to 1.3.
  • the reaction between the phenolic compound and the aldehyde compound is performed in the presence of an acid catalyst at a temperature of 60 to 140 ° C., and then water and residual monomers are removed under reduced pressure.
  • an acid catalyst used here include oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, p-toluenesulfonic acid, zinc acetate, manganese acetate, etc., each of which may be used alone or in combination of two or more. May be. Of these, oxalic acid is preferred because of its excellent catalytic activity.
  • cresol novolak resins using metacresol alone or cresol novolak resins using metacresol and paracresol in combination It is preferable that In the latter case, the reaction molar ratio of metacresol to paracresol [metacresol / paracresol] is a photosensitive resin composition having an excellent balance between sensitivity and heat resistance, so that the ratio is 10/0 to 2/8.
  • the range is preferable, and the range of 7/3 to 2/8 is more preferable.
  • the blending ratio of the novolac resin of the present invention to the other resin (V) can be arbitrarily adjusted depending on the desired application.
  • the novolak resin of the present invention is excellent in light sensitivity, resolution, and heat resistance when combined with a photosensitive agent, a photosensitive composition containing this as a main component is optimal for resist applications.
  • the proportion of the novolak resin of the present invention in the total resin component is preferably 60% by mass or more, because it is a curable composition having high photosensitivity and excellent resolution and heat resistance. % Or more is more preferable.
  • the blending ratio of the novolac resin of the present invention to the other resin (V) is in the range of 3 to 80 parts by mass of the novolac resin of the present invention with respect to 100 parts by mass of the other resin (V). It is preferable.
  • the photosensitive composition of the present invention may further contain a photosensitive agent used for a normal resist material.
  • the photosensitive agent include compounds having a quinonediazide group.
  • Specific examples of the compound having a quinonediazide group include, for example, an aromatic (poly) hydroxy compound, naphthoquinone-1,2-diazide-5-sulfonic acid, naphthoquinone-1,2-diazide-4-sulfonic acid, orthoanthra
  • Examples thereof include complete ester compounds, partial ester compounds, amidated products, and partially amidated products with sulfonic acids having a quinonediazide group such as quinonediazidesulfonic acid.
  • aromatic (poly) hydroxy compound used here examples include 2,3,4-trihydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,4, 6-trihydroxybenzophenone, 2,3,4-trihydroxy-2′-methylbenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2, 3 ′, 4,4 ′, 6-pentahydroxybenzophenone, 2,2 ′, 3,4,4′-pentahydroxybenzophenone, 2,2 ′, 3,4,5-pentahydroxybenzophenone, 2,3 ′, 4,4 ′, 5 ′, 6-hexahydroxybenzophenone, 2,3,3 ′, 4,4 ′, 5′-hexahydroxyben Polyhydroxy benzophenone compounds such phenone;
  • a tris (hydroxyphenyl) methane compound such as phenyl) -3,4-dihydroxyphenylmethane, bis (4-hydroxy-3,5-dimethylphenyl) -3,4-dihydroxyphenylmethane, or a methyl-substituted product thereof;
  • the blending amount of the photosensitive agent in the photosensitive composition of the present invention is a photosensitive composition having excellent photosensitivity, and therefore 5 to 50 parts by mass with respect to 100 parts by mass in total of the resin solid content of the photosensitive composition. It is preferable that the ratio is
  • the photosensitive composition of the present invention may contain a surfactant for the purpose of improving the film-forming property and pattern adhesion when used for resist applications, and reducing development defects.
  • a surfactant for the purpose of improving the film-forming property and pattern adhesion when used for resist applications, and reducing development defects.
  • the surfactant used here include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ether compounds such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene Polyoxyethylene alkyl allyl ether compounds such as ethylene nonylphenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid ester compounds such as polyoxy
  • the compounding amount of these surfactants is preferably in the range of 0.001 to 2 parts by mass with respect to a total of 100 parts by mass of resin solids in the photosensitive composition of the present invention.
  • a resist composition can be obtained by adding various additives such as dyes, fillers, crosslinking agents and dissolution accelerators and dissolving them in an organic solvent. This may be used as it is as a positive resist solution, or may be used as a positive resist film obtained by removing the solvent by applying the resist composition in a film form.
  • the support film used as a resist film include synthetic resin films such as polyethylene, polypropylene, polycarbonate, and polyethylene terephthalate, and may be a single layer film or a plurality of laminated films.
  • the surface of the support film may be a corona-treated one or a release agent.
  • the organic solvent used in the resist composition of the present invention is not particularly limited.
  • alkylene glycol monoalkyl such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether, etc.
  • Dialkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene groups such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Cole alkyl ether acetate; Ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, and methyl amyl ketone; Cyclic ethers such as dioxane; Methyl 2-hydroxypropionate, Ethyl 2-hydroxypropionate, Ethyl 2-hydroxy-2-methylpropionate , Ethyl ethoxyacetate, ethyl oxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate
  • the resist composition of the present invention can be prepared by blending the above components and mixing them using a stirrer or the like. Moreover, when the resin composition for photoresists contains a filler and a pigment, it can adjust by disperse
  • the resist composition is applied onto an object to be subjected to silicon substrate photolithography, and prebaked at a temperature of 60 to 150 ° C.
  • the coating method at this time may be any method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor blade coating and the like.
  • a resist pattern is created. Since the resist composition of the present invention is a positive type, the target resist pattern is exposed through a predetermined mask, and the exposed portion is dissolved with an alkaline developer. Thus, a resist pattern is formed. Since the resist composition of the present invention has both high alkali solubility in the exposed area and high alkali resistance in the non-exposed area, it is possible to form a resist pattern with excellent resolution.
  • the curable composition of the present invention contains the novolac resin of the present invention and a curing agent as essential components.
  • the curable composition of the present invention may use other resin (W) in addition to the novolac resin of the present invention.
  • Other resins (W) used here include, for example, various novolak resins, addition polymerization resins of alicyclic diene compounds such as dicyclopentadiene and phenol compounds, phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, Modified novolak resin, phenol aralkyl resin (Xylok resin), naphthol aralkyl resin, trimethylol methane resin, tetraphenylol ethane resin, biphenyl modified phenol resin, biphenyl modified naphthol resin, aminotriazine modified phenol resin, and various vinyl polymers Etc.
  • the various novolak resins include phenolphenol, cresol, xylenol and other alkylphenols, phenylphenol, resorcinol, biphenyl, bisphenols such as bisphenol A and bisphenol F, phenolic hydroxyl group-containing compounds such as naphthol and dihydroxynaphthalene. And a polymer obtained by reacting an aldehyde compound with acid catalyst conditions.
  • the various vinyl polymers include polyhydroxystyrene, polystyrene, polyvinyl naphthalene, polyvinyl anthracene, polyvinyl carbazole, polyindene, polyacenaphthylene, polynorbornene, polycyclodecene, polytetracyclododecene, polynortricyclene, poly ( A homopolymer of a vinyl compound such as (meth) acrylate or a copolymer thereof may be mentioned.
  • the blending ratio of the novolak resin of the present invention and the other resin (W) can be arbitrarily set according to the application, but the dry etching resistance and thermal decomposition exhibited by the present invention are achieved. From the standpoint of more remarkably improving the performance of the resin, it is preferable that the ratio of the other resin (W) is 0.5 to 100 parts by mass with respect to 100 parts by mass of the novolak resin of the present invention.
  • the curing agent used in the present invention is, for example, a melamine compound, a guanamine compound, a glycoluril compound, a urea compound, a resole resin, an epoxy substituted with at least one group selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group.
  • the melamine compound examples include hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, hexamethoxyethyl melamine, hexaacyloxymethyl melamine, hexamethylol melamine methylol
  • guanamine compound examples include tetramethylol guanamine, tetramethoxymethyl guanamine, tetramethoxymethyl benzoguanamine, a compound in which 1 to 4 methylol groups of tetramethylol guanamine are methoxymethylated, tetramethoxyethyl guanamine, tetraacyloxyguanamine, tetra Examples thereof include compounds in which 1 to 4 methylol groups of methylolguanamine are acyloxymethylated.
  • glycoluril compound examples include 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4,6-tetrakis ( Hydroxymethyl) glycoluril and the like.
  • urea compound examples include 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea and 1,1,3,3-tetrakis (methoxymethyl) urea. It is done.
  • the resole resin may be, for example, an alkylphenol such as phenol, cresol or xylenol, a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F, a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene, and an aldehyde compound.
  • alkylphenol such as phenol, cresol or xylenol
  • a bisphenol such as phenylphenol, resorcinol, biphenyl, bisphenol A or bisphenol F
  • a phenolic hydroxyl group-containing compound such as naphthol or dihydroxynaphthalene
  • aldehyde compound examples include polymers obtained by reacting under catalytic conditions.
  • Examples of the epoxy compound include diglycidyloxynaphthalene, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, 1,1-bis (2,7-diglycidyloxy-1-naphthyl) alkane, naphthylene ether type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene- Examples include phenol addition reaction type epoxy resins, phosphorus atom-containing epoxy resins, polyglycidyl ethers of cocondensates of phenolic hydroxyl group-containing compounds and alkoxy group-containing aromatic compounds, and the like. That.
  • isocyanate compound examples include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate.
  • azide compound examples include 1,1'-biphenyl-4,4'-bisazide, 4,4'-methylidenebisazide, 4,4'-oxybisazide, and the like.
  • Examples of the compound containing a double bond such as an alkenyl ether group include ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether.
  • Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, 4,4 Aromatic acid anhydrides such as '-(isopropylidene) diphthalic anhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride; tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride And alicyclic carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.
  • a glycoluril compound, a urea compound, and a resole resin are preferable, and a glycoluril compound is particularly preferable because it is a curable composition having excellent curability and heat resistance in a cured product.
  • the compounding amount of the curing agent in the curable composition of the present invention is a composition having excellent curability, it is 0 with respect to a total of 100 parts by mass of the novolac resin of the present invention and the other resin (W).
  • the ratio is preferably 5 to 50 parts by mass.
  • the curable composition of the present invention is used for a resist underlayer film (BARC film), in addition to the novolac resin and the curing agent of the present invention, other resins (W), surfactants, By adding various additives such as dyes, fillers, cross-linking agents and dissolution accelerators and dissolving them in an organic solvent, a resist underlayer film composition can be obtained.
  • BARC film resist underlayer film
  • W resins
  • surfactants By adding various additives such as dyes, fillers, cross-linking agents and dissolution accelerators and dissolving them in an organic solvent, a resist underlayer film composition can be obtained.
  • the organic solvent used in the resist underlayer film composition is not particularly limited.
  • alkylene glycol monoalkyl such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether propylene glycol monomethyl ether, etc.
  • Dialkylene glycol dialkyl ethers such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether; alkylene groups such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate Cole alkyl ether acetate; Ketone compounds such as acetone, methyl ethyl ketone, cyclohexanone, and methyl amyl ketone; Cyclic ethers such as dioxane; Methyl 2-hydroxypropionate, Ethyl 2-hydroxypropionate, Ethyl 2-hydroxy-2-methylpropionate , Ethyl ethoxyacetate, ethyl oxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate
  • the resist underlayer film composition can be prepared by blending the above components and mixing them using a stirrer or the like.
  • a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • the resist underlayer film composition is applied onto an object to be subjected to photolithography such as a silicon substrate, and is subjected to a temperature condition of 100 to 200 ° C. After drying, a resist underlayer film is formed by a method such as heat curing under a temperature condition of 250 to 400 ° C. Next, a resist pattern is formed on this lower layer film by performing a normal photolithography operation, and a resist pattern by a multilayer resist method can be formed by performing a dry etching process with a halogen-based plasma gas or the like.
  • the curable composition of the present invention is used for resist permanent film applications, in addition to the novolak type resin and the curing agent of the present invention, other resins (W), surfactants, dyes, and fillers as necessary.
  • the composition for a resist permanent film can be obtained by adding various additives such as a crosslinking agent and a dissolution accelerator and dissolving in an organic solvent.
  • the organic solvent used here is the same as the organic solvent used in the resist underlayer film composition.
  • a photolithography method using the resist permanent film composition includes, for example, dissolving and dispersing a resin component and an additive component in an organic solvent, and applying the solution on an object to be subjected to silicon substrate photolithography, and a temperature of 60 to 150 ° C. Pre-bake under the following temperature conditions.
  • the coating method at this time may be any method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor blade coating and the like.
  • the resist permanent film composition is positive, the target resist pattern is exposed through a predetermined mask, and the exposed portion is dissolved with an alkali developer. Thus, a resist pattern is formed.
  • the permanent film made of the resist permanent film composition is, for example, a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices.
  • a solder resist for example, a solder resist, a package material, an underfill material, a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices.
  • a package adhesive layer such as a circuit element, an integrated circuit element-circuit board adhesive layer, an LCD, or an OELD for semiconductor devices.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), polydispersity (Mw / Mn) of the synthesized resin were measured by GPC under the following measurement conditions, and the purity, dimer and trimer of the resin were measured.
  • the content was calculated from the area ratio of the GPC chart obtained under the following measurement conditions.
  • Production Example 1 Production of tetrafunctional phenol compound (A-1) A 100 ml two-necked flask equipped with a cooling tube was charged with 73 g (0.6 mol) of 2,5-xylenol and 20 g (0.15 mol) of terephthalaldehyde, and 2- Dissolved in 300 ml of ethoxyethanol. After adding 10 g of sulfuric acid while cooling in an ice bath, the mixture was heated and stirred in an oil bath at 80 ° C. for 2 hours to be reacted. After the reaction, water was added to the resulting solution to reprecipitate the crude product.
  • A-1 A 100 ml two-necked flask equipped with a cooling tube was charged with 73 g (0.6 mol) of 2,5-xylenol and 20 g (0.15 mol) of terephthalaldehyde, and 2- Dissolved in 300 ml of ethoxyethanol. After adding 10 g of sulfuric acid
  • Production Example 2 Production of Intermediate Novolak Type Resins (1) and (2) 59 g (0.1 mol) of the tetrafunctional phenol compound (A-1) obtained in Production Example 1 was added to a 2 L four-necked flask equipped with a cooling pipe. And dissolved in a mixed solution of 250 ml of methanol and 250 ml of acetic acid. After adding 20 g of sulfuric acid while cooling in an ice bath, 15 g (0.5 mol) of 92% paraformaldehyde was charged, and the temperature was raised to 60 ° C. in a water bath.
  • the intermediate novolak resin (1) has a number average molecular weight (Mn) of 1,552, a weight average molecular weight (Mw) of 1,666, a polydispersity (Mw / Mn) of 1.07, and a TOF-MS spectrum. 1,219 peaks indicating the presence of dimeric sodium adducts were observed.
  • the intermediate novolak resin (2) has a number average molecular weight (Mn) of 2,832, a weight average molecular weight (Mw) of 3,447, a polydispersity (Mw / Mn) of 1.22, and a TOF-MS spectrum. 1,830 peaks were observed indicating the presence of trimer sodium adducts.
  • Example 1 Production of Novolak-type Resin (1) After charging 6 g of the intermediate novolac-type resin (1) synthesized in Production Example 2 and 4 g of ethyl vinyl ether as a protecting group introducing agent into a 100 ml three-necked flask equipped with a cooling pipe, 1 , 3-Dioxolane was dissolved in 30 g. After adding 0.01 g of 35 wt% hydrochloric acid aqueous solution, stirring was continued at 25 ° C. for 4 hours to cause reaction.
  • Example 2 Production of Novolak Type Resin (2) The same procedure as in Example 1 was carried out except that 4 g of dihydropyran was used instead of 4 g of ethyl vinyl ether as a protecting group introducing agent, and a novolac type resin (2 6.7 g was obtained.
  • Example 3 Production of Novolac Type Resin (3) The same procedure as in Example 1 was repeated except that 6 g of intermediate novolac type resin (1) was replaced with 6 g of intermediate novolac type resin (1), and novolak of red powder was obtained. 6.1 g of mold resin (3) was obtained.
  • Example 4 Production of Novolac Type Resin (4) Example except that 6 g of phenol resin before protection was 6 g of intermediate novolac type resin (2) and 4.4 g of dihydropyran was used instead of 4 g of til vinyl ether as a protecting group introducing agent. The same operation as in No. 3 was performed to obtain 6.4 g of a red powder borac resin (4).
  • Examples 5 to 8 and Comparative Example 1 The novolac resin obtained in Examples 1 to 5 and Comparative Production Example 1 was subjected to various evaluations by preparing a photosensitive composition in the following manner. The results are shown in Table 1.
  • Photosensitive Composition 1.9 g of novolak resin was dissolved in 8 g of propylene glycol monomethyl ether acetate, and 0.1 g of a photoacid generator was added to this solution and dissolved. This was filtered through a 0.2 ⁇ m membrane filter to obtain a photosensitive composition.
  • a photoacid generator “WPAG-336” [diphenyl (4-methylphenyl) sulfonium trifluoromethanesulfonate] manufactured by Wako Pure Chemical Industries, Ltd. was used.
  • composition for heat resistance test 1.9 g of the novolak type resin was dissolved in 8 g of propylene glycol monomethyl ether acetate, and this was filtered through a 0.2 ⁇ m membrane filter to obtain a composition for heat resistance test.
  • the photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater to a thickness of about 1 ⁇ m, and then on a hot plate at 110 ° C. Dried for 60 seconds. Two wafers were prepared, and one of the wafers was designated as “no exposure sample”. The other was used as an “exposed sample” and irradiated with 100 mJ / cm 2 of ghi line using a ghi line lamp (“Multi Light” manufactured by USHIO INC.), And then heat-treated at 140 ° C. for 60 seconds. .
  • Both the “non-exposed sample” and the “exposed sample” were immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds and then dried on a hot plate at 110 ° C. for 60 seconds.
  • the film thickness of each sample before and after immersion in the developer was measured, and the value obtained by dividing the difference by 60 was defined as alkali developability [ADR (nm / s)].
  • the photosensitive composition obtained above was applied on a 5 inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m, and dried on a hot plate at 110 ° C. for 60 seconds.
  • a mask corresponding to a resist pattern with a line-and-space ratio of 1: 1 and a line width of 1 to 10 ⁇ m set every 1 ⁇ m is brought into close contact with this wafer, and then a ghi-line lamp (“Multi Light” manufactured by USHIO INC. )) was used for irradiation with ghi rays, and heat treatment was performed at 140 ° C. for 60 seconds.
  • the film was immersed in an alkaline developer (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, and then dried on a hot plate at 110 ° C. for 60 seconds.
  • the exposure amount (Eop exposure amount) capable of faithfully reproducing the line width of 3 ⁇ m when the ghi line exposure amount was increased from 30 mJ / cm 2 to 5 mJ / cm 2 was evaluated.
  • the photosensitive composition obtained above was applied on a 5-inch silicon wafer with a spin coater to a thickness of about 1 ⁇ m, and dried on a hot plate at 110 ° C. for 60 seconds.
  • a photomask was placed on the obtained wafer, and an alkali development operation was performed by irradiating with 200 mJ / cm 2 of ghi line in the same manner as in the previous alkali developability evaluation.
  • the composition for heat resistance test obtained above was applied onto a 5-inch silicon wafer with a spin coater so as to have a thickness of about 1 ⁇ m, and dried on a hot plate at 110 ° C. for 60 seconds.
  • the resin content was scraped from the obtained wafer and its glass transition temperature (Tg) was measured.
  • the glass transition temperature (Tg) was measured using a differential scanning calorimeter (DSC) (“Q100” manufactured by TA Instruments Co., Ltd.) under a nitrogen atmosphere, a temperature range of ⁇ 100 to 200 ° C., and a temperature rising temperature of 10 ° C. / Performed under the condition of minutes.
  • DSC differential scanning calorimeter
  • curable composition 1.6 g of novolak resin, 0.4 g of curing agent (“1,3,4,6-tetrakis (methoxymethyl) glycoluril” manufactured by Tokyo Chemical Industry Co., Ltd.) 3 g of propylene glycol monomethyl ether acetate And was filtered through a 0.2 ⁇ m membrane filter to obtain a curable composition.
  • curing agent 1,3,4,6-tetrakis (methoxymethyl) glycoluril
  • the curable composition obtained above was applied onto a 5-inch silicon wafer with a spin coater and dried on a hot plate at 110 ° C. for 60 seconds.
  • a hot plate having an oxygen concentration of 20% by volume heating was performed at 180 ° C. for 60 seconds, and further heating was performed at 350 ° C. for 120 seconds to obtain a cured coated moon silicon wafer having a film thickness of 0.3 ⁇ m.
  • the cured coating film on the wafer was subjected to CF 4 / Ar / O 2 (CF 4 : 40 mL / min, Ar: 20 mL / min, O 2 : 5 mL) using an etching apparatus (“EXAM” manufactured by Shinko Seiki Co., Ltd.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

現像性、耐熱性及びドライエッチング耐性に優れるノボラック型樹脂、これを含有する感光性組成物、硬化性組成物及びレジスト膜を提供すること。下記構造式(1)又は(2)[式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。Xは水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである。] で表される構造部位を繰り返し単位として有し、樹脂中に存在するXのうち少なくとも一つが3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかであることを特徴とするノボラック型樹脂。

Description

ノボラック型樹脂及びレジスト膜
 本発明は、現像性、耐熱性及びドライエッチング耐性に優れるノボラック型樹脂及びこれを用いてなるレジスト膜に関する。
 フェノール性水酸基含有樹脂は、接着剤、成形材料、塗料、フォトレジスト材料、エポキシ樹脂原料、エポキシ樹脂用硬化剤等に用いられている他、硬化物における耐熱性や耐湿性などに優れることから、フェノール性水酸基含有樹脂自体を主剤とする硬化性組成物として、或いは、エポキシ樹脂等の硬化剤として、半導体封止材やプリント配線板用絶縁材料等の電気・電子分野で幅広く用いられている。
 このうちフォトレジストの分野では、用途や機能に応じて細分化された多種多様なレジストパターン形成方法が次々に開発されており、それに伴いレジスト用樹脂材料に対する要求性能も高度化かつ多様化している。例えば、高集積化された半導体に微細なパターンを正確かつ高い生産効率で形成するための高い現像性はもちろんのこと、レジスト下層膜に用いる場合にはドライエッチング耐性や耐熱性等が要求され、また、レジスト永久膜に用いる場合には特に高い耐熱性が要求される。
 フォトレジスト用途に最も広く用いられているフェノール性水酸基含有樹脂はクレゾールノボラック型のものであるが、前述の通り、高度化かつ多様化が進む昨今の市場要求性能に対応できるものではなく、耐熱性や現像性も十分なものではなかった(特許文献1参照)。
特開平2-55359号公報
 したがって、本発明が解決しようとする課題は、現像性、耐熱性及びドライエッチング耐性に優れるノボラック型樹脂、これを含有する感光性組成物、硬化性組成物、レジスト膜を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、4官能フェノール化合物とホルムアルデヒドとを反応させて得られるラダー状ノボラック型フェノール性水酸基含有樹脂に酸解離性保護基を導入して得られる樹脂が、現像性、耐熱性及びドライエッチング耐性に優れることを見出し、本発明を完成させるに至った。
 即ち、本発明は、下記構造式(1)又は(2)
Figure JPOXMLDOC01-appb-C000003
[式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。Xは水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである。]
で表される構造部位を繰り返し単位として有し、樹脂中に存在するXのうち少なくとも一つが3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかであることを特徴とするノボラック型樹脂に関する。
 本発明はさらに、前記ノボラック型樹脂と感光剤とを含有する感光性組成物に関する。
 本発明はさらに、前記感光性組成物からなるレジスト膜に関する。
 本発明はさらに、前記ノボラック型樹脂と硬化剤とを含有する硬化性組成物に関する。
 本発明はさらに、前記硬化性組成物からなるレジスト膜に関する。
 本発明はさらに、下記構造式(4)
Figure JPOXMLDOC01-appb-C000004
[式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。]
で表される4官能フェノール化合物(A)と、ホルムアルデヒドとを必須の成分として反応させて中間体ノボラック型樹脂を得、得られた中間体ノボラック型樹脂のフェノール性水酸基の水素原子の一部乃至全部を、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかで置換する、ノボラック型樹脂の製造方法に関する。
 本発明によれば、現像性、耐熱性及びドライエッチング耐性に優れるノボラック型樹脂、これを含有する感光性組成物及び硬化性組成物、レジスト膜を提供することができる。
図1は、製造例1で得られた4官能フェノール化合物(A-1)のGPCチャート図である。 図2は、製造例1で得られた4官能フェノール化合物(A-1)のH-NMRチャート図である。 図3は、製造例2で得られた中間体ノボラック型樹脂(1)のGPCチャート図である。 図4は、製造例2で得られた中間体ノボラック型樹脂(1)の13C-NMRチャート図である。 図5は、製造例2で得られた中間体ノボラック型樹脂(1)のTOF-MSチャート図である。 図6は、製造例2で得られた中間体ノボラック型樹脂(2)のGPCチャート図である。 図7は、製造例2で得られた中間体ノボラック型樹脂(2)の13C-NMRチャート図である。 図8は、製造例2で得られた中間体ノボラック型樹脂(2)のTOF-MSチャート図である。
 以下、本発明を詳細に説明する。
 本発明のノボラック型樹脂は、下記構造式(1)又は(2)
[式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。Xは水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである。]
で表される構造部位を繰り返し単位として有し、樹脂中に存在するXのうち少なくとも一つが3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかであることを特徴とする。
 本発明のノボラック型樹脂は、下記構造式(3)
Figure JPOXMLDOC01-appb-C000006
[式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。Xは水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである。]
で表される構造部位同士が2つのメチレン基で結節された、所謂ラダー状の剛直かつ対称性の高い分子構造を有することから、これまでにない高い耐熱性と耐ドライエッチング性とを実現する。
 前記構造式(1)、(2)中のRはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子の何れかである。前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、へキシルオキシ基、シクロへキシルオキシ基等が挙げられる。前記ハロゲン原子はフッ素原子、塩素原子、臭素原子が挙げられる。
 これらの中でも、耐熱性と現像性とのバランスに優れるノボラック型樹脂となることからRはアルキル基であることが好ましく、分子運動の抑制による耐熱性の向上効果や芳香核への電子供与性に優れること、工業的に入手が容易であることからメチル基であることが特に好ましい。
 また、前記構造式(1)、(2)中のmはそれぞれ独立に1~3の整数である。中でも、耐熱性と現像性とのバランスに優れるノボラック型樹脂となることからそれぞれ1又は2であることが好ましい。
 前記構造式(1)、(2)中のArはアリーレン基であり、例えば、フェニレン基、ナフチレン基、アントリレン基、及びこれらの芳香核上の水素原子の一つないし複数がアルキル基、アルコキシ基、ハロゲン原子の何れかで置換された構造部位が挙げられる。ここでのアルキル基、アルコキシ基、ハロゲン原子は、前記Rとして列挙したものが挙げられる。中でも、分子構造の対称性に優れ、現像性、耐熱性及びドライエッチング耐性に優れるノボラック型樹脂となることからフェニレン基であることが好ましい。
 前記構造式(1)、(2)中のXは、水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである。前記3級アルキル基は、例えば、t-ブチル基、t-ペンチル基等が挙げられる。前記アルコキシアルキル基は、例えば、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、シクロへキシルオキシエチル基、フェノキシエチル基等が挙げられる。前記アシル基は、例えば、アセチル基、エタノイル基、プロパノイル基、ブタノイル基、シクロヘキサンカルボニル基、ベンゾイル基等が挙げられる。前記アルコキシカルボニル基は、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、シクロへキシルオキシカルボニル基、フェノキシカルボニル基等が挙げられる。前記ヘテロ原子含有環状炭化水素基は、例えば、テトラヒドロフラニル基、テトラヒドロピラニル基等が挙げられる。前記トリアルキルシリル基は、例えば、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基等が挙げられる。
 中でも、光感度や解像度、アルカリ現像性に優れるノボラック型樹脂となることから、アルコキシアルキル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基の何れかであることが好ましく、エトキシエチル基、テトラヒドロピラニル基の何れかであることが好ましい。
 本発明のノボラック型樹脂中-OXで表される構造部位(Xは水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである)においてXが3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである構造部位(OX’)の割合は、透明性や光透過性と、アルカリ現像性や解像度との性能バランスに優れるノボラック型樹脂となることから30~100%の範囲であることが好ましく、70~100%の範囲であることがより好ましい。
 本発明において、Xが3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである構造部位(OX’)の存在比率は、下記条件で測定される13C-NMR測定において、Xが水素原子である構造部位(OH)、即ちフェノール性水酸基が結合するベンゼン環上の炭素原子に由来する145~160ppmのピークと、Xが3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである構造部位(OX’)中のフェノール性水酸基由来の酸素原子に結合しているX中の炭素原子に由来する95~105ppmのピークとの比から算出される値である。
 装置:日本電子株式会社製「JNM-LA300」
 溶媒:DMSO-d
 本発明のノボラック型樹脂を製造する方法は特に限定されないが、例えば、下記構造式(4)
Figure JPOXMLDOC01-appb-C000007
[式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。]
で表される4官能フェノール化合物(A)と、ホルムアルデヒドとを必須の成分として反応させて中間体ノボラック型樹脂を得、得られた中間体ノボラック型樹脂のフェノール性水酸基の水素原子の一部乃至全部を、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかで置換する方法が挙げられる。
 前記構造式(4)中のRは前記構造式(1)、(2)中のRと同義であり、前記構造式(4)で表される4官能フェノール化合物(A)は、具体的には下記構造式(4-1)~(4-45)の何れかで表される分子構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000008

Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 前記4官能フェノール化合物(A)は、例えば、フェノール化合物(a1)と芳香族ジアルデヒド(a2)とを酸触媒の存在下で反応させる方法により得ることができる。
 前記フェノール化合物(a1)は、フェノールの芳香環に結合している水素原子の一部乃至全部がアルキル基、アルコキシ基、アリール基、アラルキル基、ハロゲン原子の何れかで置換されている化合物である。前記アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基等が挙げられる。前記アルコキシ基は、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、へキシルオキシ基、シクロへキシルオキシ基等が挙げられる。前記アリール基は、例えば、フェニル基、ヒドロキシフェニル基、ジヒドロキシフェニル基、ヒドロキシアルコキシフェニル基、アルコキシフェニル基、トリル基、キシリル基、ナフチル基、ヒドロキシナフチル基、ジヒドロキシナフチル基等が挙げられる。前記アラルキル基は、例えば、フェニルメチル基、ヒドロキシフェニルメチル基、ジヒドロキシフェニルメチル基、トリルメチル基、キシリルメチル基、ナフチルメチル基、ヒドロキシナフチルメチル基、ジヒドロキシナフチルメチル基、フェニルエチル基、ヒドロキシフェニルエチル基、ジヒドロキシフェニルエチル基、トリルエチル基、キシリルエチル基、ナフチルエチル基、ヒドロキシナフチルエチル基、ジヒドロキシナフチルエチル基等が挙げられる。前記ハロゲン原子はフッ素原子、塩素原子、臭素原子が挙げられる。フェノール化合物は1種類を単独で用いても良いし、2種類以上を併用しても良い。
 中でも、現像性、耐熱性及びドライエッチング耐性に優れるノボラック型樹脂が得られることからアルキル置換フェノールが好ましく、具体的には、o-クレゾール、m-クレゾール、p-クレゾール、2,5-キシレノール、3,5-キシレノール、3,4-キシレノール、2,4-キシレノール、2,6-キシレノール、2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール等が挙げられる。これらの中でも特に2,5-キシレノール、2,6-キシレノールが好ましい。
 前記芳香族ジアルデヒド(a2)は、ベンゼン、ナフタレン、アントラセン及びこれらの誘導体等の芳香族化合物の芳香環に結合している水素原子のうち二つがホルミル基で置換された化合物であればいずれの化合物でも良い。中でも、分子構造の対称性に優れ、現像性、耐熱性及びドライエッチング耐性に優れるノボラック型樹脂となることから、二つのホルミル基が互いに芳香環のパラ位に結合した構造を有することが好ましい。このような化合物は、例えば、テレフタルアルデヒド、2-メチルテレフタルアルデヒド、2,5-ジメチルテレフタルアルデヒド、2,3,5,6-テトラメチルベンゼン-1,4-ジカルボアルデヒド、2,5-ジメトキシテレフタルアルデヒド、2,5-ジクロロテレフタルアルデヒド、2-ブロモテレフタルアルデヒド等のフェニレン型ジアルデヒド化合物;1,4-ナフタレンジカルボアルデヒド等のナフチレン型ジアルデヒド化合物;9,10-アントラセンジカルボアルデヒド等のアントリレン型ジアルデヒド化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 これら芳香族ジアルデヒド(a2)の中でも、分子構造の対称性に優れ、現像性、耐熱性及びドライエッチング耐性に優れるノボラック型樹脂が得られることからフェニレン型ジアルデヒド化合物が好ましい。
 前記フェノール化合物(a1)と芳香族ジアルデヒド(a2)との反応モル比率[(a1)/(a2)]は、目的の4官能フェノール化合物(A)を高収率かつ高純度で得られることから、1/0.1~1/0.25の範囲であることが好ましい。
 フェノール化合物(a1)と芳香族ジアルデヒド(a2)との反応で用いる酸触媒は、例えば、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられる。これらの酸触媒は、それぞれ単独で用いても良いし、2種以上併用しても良い。これらの中でも、触媒活性に優れる点から硫酸、パラトルエンスルホン酸が好ましい。
 フェノール化合物(a1)と芳香族ジアルデヒド(a2)との反応は、必要に応じて有機溶媒中で行っても良い。ここで用いる溶媒は、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン、ベンゼン、トルエン、キシレン等の芳香族炭化水素などが挙げられる。これらの溶媒は、それぞれ単独で用いても良いし、2種類以上の混合溶媒として用いても良い。中でも、得られる4官能フェノール化合物(A)の溶解性に優れることから2-エトキシエタノールが好ましい。
 前記フェノール化合物(a1)と芳香族ジアルデヒド(a2)との反応は、例えば、60~140℃の温度範囲で、0.5~100時間かけて行う。
 反応終了後は、例えば、反応生成物を4官能フェノール化合物(A)の貧溶媒(S1)に投入して沈殿物を濾別し、次いで、4官能フェノール化合物(A)の溶解性が高く、かつ、前記貧溶媒(S1)と混和する溶媒(S2)に得られた沈殿物を再溶解させる方法により、反応生成物から未反応のフェノール化合物(a1)や芳香族ジアルデヒド(a2)、用いた酸触媒を除去し、精製された4官能フェノール化合物(A)を得ることが出来る。
 前記4官能フェノール化合物(A)は、現像性と耐熱性の両方に優れるノボラック型樹脂が得られることから、GPCチャート図から算出される純度が90%以上であることが好ましく、94%以上であることがより好ましく、98%以上であることが特に好ましい。4官能フェノール化合物(A)の純度はゲルパーミエーションクロマトグラフィー(GPC)のチャート図の面積比から求めることができる。
 本発明において、GPCの測定条件は下記の通りである。
 [GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
 +昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
 +昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)
 +昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
 カラム温度:40℃
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
 展開溶媒:テトラヒドロフラン
 流速:1.0ml/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの
 注入量:0.1ml
 標準試料:下記単分散ポリスチレン
 (標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 前記4官能フェノール化合物(A)の精製に用いる前記貧溶媒(S1)は、例えば、水;メタノール、エタノール、プロパノール、エトキシエタノール等のモノアルコール;n-ヘキサン、n-ヘプタン、n-オクタン、シクロヒキサン等の脂肪族炭化水素;トルエン、キシレン等の芳香族炭化水素が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、酸触媒の溶解性に優れることから水、メタノール、エトキシエタノールが好ましい。
 一方、前記溶媒(S2)は、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、前記貧溶媒(S1)として水やモノアルコールを用いた場合には、溶媒(S2)としてアセトンを用いることが好ましい。
 次に、前記4官能フェノール化合物(A)とホルムアルデヒドとを反応させて中間体ノボラック型樹脂を得る工程において、用いるホルムアルデヒドは水溶液の状態であるホルマリンや、固形の状態であるパラホルムアルデヒド等、いずれの状態のものでも良い。
 前記4官能フェノール化合物(A)と、ホルムアルデヒドとの反応割合は、過剰な高分子量化(ゲル化)を抑制でき、レジスト材料として適当な分子量のノボラック型樹脂が得られることから、4官能フェノール化合物(A)1モルに対し、ホルムアルデヒドが0.5~7.0モルの範囲となる割合であることが好ましく、0.6~6.0モルの範囲となる割合であることがより好ましい。
 前記4官能フェノール化合物(A)と、ホルムアルデヒドとの反応は、一般のノボラック樹脂を製造する方法と同様に、通常酸触媒条件下で行う。ここで用いる酸触媒は、例えば、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられる。これらの酸触媒は、それぞれ単独で用いても良いし、2種以上併用しても良い。これらの中でも、触媒活性に優れる点から硫酸、パラトルエンスルホン酸が好ましい。
 4官能フェノール化合物(A)と、ホルムアルデヒドとの反応は、必要に応じて有機溶媒中で行っても良い。ここで用いる溶媒は、例えば、メタノール、エタノール、プロパノール等のモノアルコール;酢酸、プロピオン酸、酪酸、ペンタン酸、ヘキサン酸等のモノカルボン酸;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。これらの溶媒は、それぞれ単独で用いても良いし、2種類以上の混合溶媒として用いても良い。中でも、得られるノボラック型樹脂の溶解性に優れることから、メタノール等のモノアルコールと酢酸等のモノカルボン酸との混合溶媒が好ましい。
 4官能フェノール化合物(A)と、ホルムアルデヒドとの反応は、例えば、60~140℃の温度範囲で、0.5~100時間かけて行う。反応終了後は、反応生成物に水を加えて再沈殿操作を行うなどして、中間体ノボラック型樹脂を得ることが出来る。
 中間体ノボラック型樹脂の重量平均分子量(Mw)は、最終目的物であるノボラック型樹脂が耐熱性や光感度、アルカリ現像性に優れるものとなることから、1,500~30,000の範囲であることが好ましい。また、その多分散度(Mw/Mn)は、最終目的物であるノボラック型樹脂が耐熱性や光感度、アルカリ現像性に優れるものとなることから、1~10の範囲であることが好ましい。なお、本発明において重量平均分子量(Mw)及び多分散度(Mw/Mn)は、前述した4官能フェノール化合物(A)の純度の算出と同条件のGPCにて測定される値である。
 次に、得られた中間体ノボラック型樹脂のフェノール性水酸基の水素原子の一部乃至全部を3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかで置換する方法は、具体的には、前記中間体と、下記構造式(5-1)~(5-8)
Figure JPOXMLDOC01-appb-C000013
(式中Xはハロゲン原子を表し、Rはそれぞれ独立に炭素原子数1~6のアルキル基又はフェニル基を表す。また、nは1又は2である。)
の何れかで表される化合物(以下「保護基導入剤」と略記する。)とを反応させる方法が挙げられる。
 前記保護基導入剤の中でも、酸触媒条件下における開裂が進行し易く、光感度、解像度及びアルカリ現像性に優れる樹脂となることから、前記構造式(5-2)又は(5-7)で表される化合物が好ましく、エチルビニルエーテル又はジヒドロピランが特に好ましい。
 前記中間体ノボラック型樹脂と前記構造式(5-1)~(5-8)の何れかで表される保護基導入剤とを反応させる方法は、保護基導入剤として何れの化合物を用いるかによって異なり、保護基導入剤として前記構造式(5-1)、(5-3)、(5-4)、(5-5)、(5-6)、(5-8)の何れかで表される化合物を用いる場合には、例えば、前記中間体ノボラック型樹脂と保護基導入剤とを、ピリジンやトリエチルアミン等の塩基性触媒条件下で反応させる方法が挙げられる。また、保護基導入剤として前記構造式(5-2)又は(5-7)で表される化合物を用いる場合には、例えば、前記中間体ノボラック型樹脂と保護基導入剤とを、塩酸等の酸性触媒条件下で反応させる方法が挙げられる。
 前記間体ノボラック型樹脂と前記構造式(5-1)~(5-8)の何れかで表される保護基導入剤との反応割合は、保護基導入剤として何れの化合物を用いるかによっても異なるが、得られるノボラック型樹脂中に存在する-OXで表される構造部位(Xは水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである)において、Xが3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである構造部位(OX’)の割合が30~100%の範囲となるような割合で反応させることが好ましい。即ち、前記中間体ノボラック型樹脂中のフェノール性水酸基の合計1モルに対し、前記保護基導入剤が0.3~1.2モルとなる割合で反応させることが好ましい。
 前記中間体ノボラック型樹脂と前記保護基導入剤との反応は有機溶剤中で行っても良い。ここで用いる有機溶剤は例えば、1,3-ジオキソラン等が挙げられる。これらの有機溶剤はそれぞれ単独で用いても良いし、2種類以上の混合溶剤として用いても良い。
 反応終了後は、反応混合物をイオン交換水中に注ぎ、沈殿物を減圧乾燥するなどして目的のノボラック型樹脂を得ることが出来る。
 本発明のノボラック型樹脂は、現像性、耐熱性及びドライエッチング耐性のバランスに優れ、レジスト材料に好適なものになることから、前記構造式(1)又は(2)で表される構造部位の繰り返し単位数が2である2量体、又は、前記構造式(1)又は(2)で表される構造部位の繰り返し単位数が3である3量体を含有することが好ましい。
 前記2量体は、例えば、下記構造式(II-1)~(II-3)の何れかで表される分子構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000014
[式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、アリール基、アラルキル基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。Xは水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである。]
 前記3量体は、例えば、下記構造式(III-1)~(III-6)の何れかで表される分子構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
[式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、アリール基、アラルキル基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。Xは水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである。]
 ノボラック型樹脂が前記2量体を含有する場合、その含有量は、特に現像性に優れるノボラック型樹脂となることから5~90%の範囲であることが好ましい。また、ノボラック型樹脂が前記3量体を含有する場合、その含有量は、耐熱性に優れるノボラック型樹脂となることから5~90%の範囲であることが好ましい。なお、ノボラック型樹脂中の2量体或いは3量体の含有量は、前述した4官能フェノール化合物(A)の純度の算出と同条件で測定したGPCチャート図の面積比から算出される値である。
 以上詳述した本発明のノボラック型樹脂は汎用性の有機溶剤に容易に溶解し、耐熱性に優れる特徴を有することから、接着剤や塗料、フォトレジスト、プリント配線基板等の各種の電気・電子部材用途に用いることが出来る。これらの用途の中でも、現像性、耐熱性及びドライエッチング耐性に優れる特徴を生かしたレジスト用途に特に適しており、感光剤と組み合わせたアルカリ現像性のレジスト材料として、或いは、硬化剤と組み合わせて、厚膜用途やレジスト下層膜、レジスト永久膜用途にも好適に用いることができる。
 本発明の感光性組成物は、前記本発明のノボラック型樹脂と光酸発生剤とを必須の成分として含有する。
 前記光酸発生剤は、例えば、有機ハロゲン化合物、スルホン酸エステル、オニウム塩、ジアゾニウム塩、ジスルホン化合物等が挙げられ、これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらの具体例としては、例えば、トリス(トリクロロメチル)-s-トリアジン、トリス(トリブロモメチル)-s-トリアジン、トリス(ジブロモメチル)-s-トリアジン、2,4-ビス(トリブロモメチル)-6-p-メトキシフェニル-s-トリアジンなどのハロアルキル基含有s-トリアジン誘導体;
1,2,3,4-テトラブロモブタン、1,1,2,2-テトラブロモエタン、四臭化炭素、ヨードホルムなどのハロゲン置換パラフィン系炭化水素化合物;ヘキサブロモシクロヘキサン、ヘキサクロロシクロヘキサン、ヘキサブロモシクロドデカンなどのハロゲン置換シクロパラフィン系炭化水素化合物;
 ビス(トリクロロメチル)ベンゼン、ビス(トリブロモメチル)ベンゼンなどのハロアルキル基含有ベンゼン誘導体;トリブロモメチルフェニルスルホン、トリクロロメチルフェニルスルホン等のハロアルキル基含有スルホン化合物;2,3-ジブロモスルホランなどのハロゲン含有スルホラン化合物;トリス(2,3-ジブロモプロピル)イソシアヌレートなどのハロアルキル基含有イソシアヌレート化合物;
 トリフェニルスルホニウムクロライド、トリフェニルスルホニウムメタンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニル(4-メチルフェニル)スルフォニウムトリフルオロメタンスルフォネート、トリフェニルスルホニウムp-トルエンスルホネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアルセネート、トリフェニルスルホニウムヘキサフルオロホスホネートなどのスルホニウム塩;
 ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムp-トルエンスルホネート、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロアルセネート、ジフェニルヨードニウムヘキサフルオロホスホネートなどのヨードニウム塩;
 p-トルエンスルホン酸メチル、p-トルエンスルホン酸エチル、p-トルエンスルホン酸ブチル、p-トルエンスルホン酸フェニル、1,2,3-トリス(p-トルエンスルホニルオキシ)ベンゼン、p-トルエンスルホン酸ベンゾインエステル、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸ブチル、1,2,3-トリス(メタンスルホニルオキシ)ベンゼン、メタンスルホン酸フェニル、メタンスルホン酸ベンゾインエステル、トリフルオロメタンスルホン酸メチル、トリフルオロメタンスルホン酸エチル、トリフルオロメタンスルホン酸ブチル、1,2,3-トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、トリフルオロメタンスルホン酸フェニル、トリフルオロメタンスルホン酸ベンゾインエステルなどのスルホン酸エステル化合物;ジフェニルジスルホンなどのジスルホン化合物;
 ビス(フェニルスルホニル)ジアゾメタン、ビス(2,4-ジメチルフェニルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(2-メトキシフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(3-メトキシフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(4-メトキシフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(2-メトキシフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(3-メトキシフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(4-メトキシフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(2-フルオロフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(3-フルオロフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(4-フルオロフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(2-フルオロフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(3-フルオロフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(4-フルオロフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(2-クロロフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(3-クロロフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(4-クロロフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(2-クロロフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(3-クロロフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(4-クロロフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(2-トリフルオロメチルフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(3-トリフルオロメチルフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(4-トリフルオロメチルフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(2-トリフルオロメチルフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(3-トリフルオロメチルフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(4-トリフルオロメチルフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(2-トリフルオロメトキシフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(3-トリフルオロメトキシフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(4-トリフルオロメトキシフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(2-トリフルオロメトキシフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(3-トリフルオロメトキシフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(4-トリフルオロメトキシフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(2,4,6-トリメチルフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(2,3,4-トリメチルフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(2,4,6-トリエチルフェニルスルホニル)ジアゾメタン、シクロヘキシルスルホニル-(2,3,4-トリエチルフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(2,4,6-トリメチルフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(2,3,4-トリメチルフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(2,4,6-トリエチルフェニルスルホニル)ジアゾメタン、シクロペンチルスルホニル-(2,3,4-トリエチルフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(2-メトキシフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(3-メトキシフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(4-メトキシフェニルスルホニル)ジアゾメタン、ビス(2-メトキシフェニルスルホニル)ジアゾメタン、ビス(3-メトキシフェニルスルホニル)ジアゾメタン、ビス(4-メトキシフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(2,4,6-トリメチルフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(2,3,4-トリメチルフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(2,4,6-トリエチルフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(2,3,4-トリエチルフェニルスルホニル)ジアゾメタン、2,4-ジメチルフェニルスルホニル-(2,4,6-トリメチルフェニルスルホニル)ジアゾメタン、2,4-ジメチルフェニルスルホニル-(2,3,4-トリメチルフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(2-フルオロフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(3-フルオロフェニルスルホニル)ジアゾメタン、フェニルスルホニル-(4-フルオロフェニルスルホニル)ジアゾメタンなどのスルホンジアジド化合物;
 o-ニトロベンジル-p-トルエンスルホネートなどのo-ニトロベンジルエステル化合物;N,N’-ジ(フェニルスルホニル)ヒドラジドなどのスルホンヒドラジド化合物等が挙げられる。
 これら光酸発生剤の添加量は、光感度の高い感光性組成物となることから、感光性組成物の樹脂固形分100質量部に対し、0.1~20質量部の範囲で用いることが好ましい。
 本発明の感光性組成物は、露光時に前記光酸発生剤から生じた酸を中和するための有機塩基化合物を含有しても良い。有機塩基化合物の添加は、光酸発生剤から発生した酸の移動によるレジストパターンの寸法変動を防止する効果がある。ここで用いる有機塩基化合物は、例えば、含窒素化合物から選ばれる有機アミン化合物が挙げられ、具体的には、ピリミジン、2-アミノピリミジン、4-アミノピリミジン、5-アミノピリミジン、2,4-ジアミノピリミジン、2,5-ジアミノピリミジン、4,5-ジアミノピリミジン、4,6-ジアミノピリミジン、2,4,5-トリアミノピリミジン、2,4,6-トリアミノピリミジン、4,5,6-トリアミノピリミジン、2,4,5,6-テトラアミノピリミジン、2-ヒドロキシピリミジン、4-ヒドロキシピリミジン、5-ヒドロキシピリミジン、2,4-ジヒドロキシピリミジン、2,5-ジヒドロキシピリミジン、4,5-ジヒドロキシピリミジン、4,6-ジヒドロキシピリミジン、2,4,5-トリヒドロキシピリミジン、2,4,6-トリヒドロキシピリミジン、4,5,6-トリヒドロキシピリミジン、2,4,5,6-テトラヒドロキシピリミジン、2-アミノ-4-ヒドロキシピリミジン、2-アミノ-5-ヒドロキシピリミジン、2-アミノ-4,5-ジヒドロキシピリミジン、2-アミノ-4,6-ジヒドロキシピリミジン、4-アミノ-2,5-ジヒドロキシピリミジン、4-アミノ-2,6-ジヒドロキシピリミジン、2-アミノ-4-メチルピリミジン、2-アミノ-5-メチルピリミジン、2-アミノ-4,5-ジメチルピリミジン、2-アミノ-4,6-ジメチルピリミジン、4-アミノ-2,5-ジメチルピリミジン、4-アミノ-2,6-ジメチルピリミジン、2-アミノ-4-メトキシピリミジン、2-アミノ-5-メトキシピリミジン、2-アミノ-4,5-ジメトキシピリミジン、2-アミノ-4,6-ジメトキシピリミジン、4-アミノ-2,5-ジメトキシピリミジン、4-アミノ-2,6-ジメトキシピリミジン、2-ヒドロキシ-4-メチルピリミジン、2-ヒドロキシ-5-メチルピリミジン、2-ヒドロキシ-4,5-ジメチルピリミジン、2-ヒドロキシ-4,6-ジメチルピリミジン、4-ヒドロキシ-2,5-ジメチルピリミジン、4-ヒドロキシ-2,6-ジメチルピリミジン、2-ヒドロキシ-4-メトキシピリミジン、2-ヒドロキシ-4-メトキシピリミジン、2-ヒドロキシ-5-メトキシピリミジン、2-ヒドロキシ-4,5-ジメトキシピリミジン、2-ヒドロキシ-4,6-ジメトキシピリミジン、4-ヒドロキシ-2,5-ジメトキシピリミジン、4-ヒドロキシ-2,6-ジメトキシピリミジンなどのピリミジン化合物;
 ピリジン、4-ジメチルアミノピリジン、2,6-ジメチルピリジン等のピリジン化合物;
 ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミン、トリス(ヒドロキシメチル)アミノメタン、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタンなどの炭素数1以上4以下のヒドロキシアルキル基で置換されたアミン化合物;
 2-アミノフェノール、3-アミノフェノール、4-アミノフェノールなどのアミノフェノール化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、露光後のレジストパターンの寸法安定性に優れることから、前記ピリミジン化合物、ピリジン化合物、またはヒドロキシ基をもつアミン化合物が好ましく、特にヒドロキシ基をもつアミン化合物が好ましい。
 前記有機塩基化合物を添加する場合、その添加量は、光酸発生剤の含有量に対して、0.1~100モル%の範囲であることが好ましく、1~50モル%の範囲であることがより好ましい。
 本発明の感光性組成物は、前記本発明のノボラック型樹脂以外に、その他の樹脂(V)を併用しても良い。その他の樹脂(V)は、アルカリ現像液に可溶なもの、或いは、酸発生剤等の添加剤と組み合わせて用いることによりアルカリ現像液へ溶解するものであれば何れのものも用いることができる。
 ここで用いるその他の樹脂(V)は、例えば、本発明のノボラック型樹脂以外のその他のフェノール樹脂(V-1)、p-ヒドロキシスチレンやp-(1,1,1,3,3,3-ヘキサフルオロ-2-ヒドロキシプロピル)スチレン等のヒドロキシ基含有スチレン化合物の単独重合体あるいは共重合体(V-2)、前記(V-1)又は(V-2)の水酸基をt-ブトキシカルボニル基やベンジルオキシカルボニル基等の酸分解性基で変性したもの(V-3)、(メタ)アクリル酸の単独重合体あるいは共重合体(V-4)、ノルボルネン化合物やテトラシクロドデセン化合物等の脂環式重合性単量体と無水マレイン酸或いはマレイミドとの交互重合体(V-5)等が挙げられる。
 前記その他のフェノール樹脂(V-1)は、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、種々のフェノール性化合物を用いた共縮ノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等のフェノール樹脂が挙げられる。
 前記他のフェノール樹脂(V-1)の中でも、感度が高く、耐熱性にも優れる感光性樹脂組成物となることから、クレゾールノボラック樹脂又はクレゾールと他のフェノール性化合物との共縮ノボラック樹脂が好ましい。クレゾールノボラック樹脂又はクレゾールと他のフェノール性化合物との共縮ノボラック樹脂は、具体的には、o-クレゾール、m-クレゾール及びp-クレゾールからなる群から選ばれる少なくとも1つのクレゾールとアルデヒド化合物とを必須原料とし、適宜その他のフェノール性化合物を併用して得られるノボラック樹脂である。
 前記クレゾール以外のその他のフェノール性化合物は、例えば、フェノール;2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等のキシレノール;o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール;イソプロピルフェノール、ブチルフェノール、p-t-ブチルフェノール等のブチルフェノール;p-ペンチルフェノール、p-オクチルフェノール、p-ノニルフェノール、p-クミルフェノール等のアルキルフェノール;フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等のハロゲン化フェノール;p-フェニルフェノール、アミノフェノール、ニトロフェノール、ジニトロフェノール、トリニトロフェノール等の1置換フェノール;1-ナフトール、2-ナフトール等の縮合多環式フェノール;レゾルシン、アルキルレゾルシン、ピロガロール、カテコール、アルキルカテコール、ハイドロキノン、アルキルハイドロキノン、フロログルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシナフタリン等の多価フェノール等が挙げられる。これらその他のフェノール性化合物は、それぞれ単独で用いても良いし、2種以上を併用しても良い。これらその他のフェノール性化合物を用いる場合、その使用量は、クレゾール原料の合計1モルに対し、その他のフェノール性化合物が0.05~1モルの範囲となる割合であることが好ましい。
 また、前記アルデヒド化合物は、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド等が挙げられ、それぞれ単独で用いても良いし、2種以上を併用しても良い。中でも、反応性に優れることからホルムアルデヒドが好ましく、ホルムアルデヒドとその他のアルデヒド化合物を併用しても構わない。ホルムアルデヒドとその他のアルデヒド化合物を併用する場合、その他のアルデヒド化合物の使用量は、ホルムアルデヒド1モルに対して、0.05~1モルの範囲とすることが好ましい。
 ノボラック樹脂を製造する際のフェノール性化合物とアルデヒド化合物との反応比率は、感度と耐熱性に優れる感光性樹脂組成物が得られることから、フェノール性化合物1モルに対しアルデヒド化合物が0.3~1.6モルの範囲であることが好ましく、0.5~1.3の範囲であることがより好ましい。
 前記フェノール性化合物とアルデヒド化合物との反応は、酸触媒存在下60~140℃の温度条件で行い、次いで減圧条件下にて水や残存モノマーを除去する方法が挙げられる。ここで用いる酸触媒は、例えば、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられ、それぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、触媒活性に優れる点からシュウ酸が好ましい。
 以上詳述したクレゾールノボラック樹脂、又はクレゾールと他のフェノール性化合物との共縮ノボラック樹脂の中でも、メタクレゾールを単独で用いたクレゾールノボラック樹脂、または、メタクレゾールとパラクレゾールとを併用したクレゾールノボラック樹脂であることが好ましい。また、後者においてメタクレゾールとパラクレゾールとの反応モル比[メタクレゾール/パラクレゾール]は、感度と耐熱性とのバランスに優れる感光性樹脂組成物となることから、10/0~2/8の範囲が好ましく、7/3~2/8の範囲がより好ましい。
 前記その他の樹脂(V)を用いる場合、本発明のノボラック型樹脂とその他の樹脂(V)との配合割合は所望の用途により任意に調整することが出来る。例えば、本発明のノボラック型樹脂は感光剤と組み合わせたときの光感度や解像度、耐熱性に優れることから、これを主成分とする感光性組成物はレジスト用途に最適である。このとき、樹脂成分の合計における本発明のノボラック型樹脂の割合は、光感度が高く解像度や耐熱性にも優れる硬化性組成物となることから、60質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 また、本発明のノボラック型樹脂の光感度に優れる特徴を活かして、これを感度向上剤として用いることもできる。この場合本発明のノボラック型樹脂とその他の樹脂(V)との配合割合は、前記その他の樹脂(V)100質量部に対し、本発明のノボラック型樹脂が3~80質量部の範囲であることが好ましい。
 本発明の感光性組成物は、更に、通常のレジスト材料に用いる感光剤を含有しても良い。前記感光剤は、例えば、キノンジアジド基を有する化合物が挙げられる。キノンジアジド基を有する化合物の具体例としては、例えば、芳香族(ポリ)ヒドロキシ化合物と、ナフトキノン-1,2-ジアジド-5-スルホン酸、ナフトキノン-1,2-ジアジド-4-スルホン酸、オルトアントラキノンジアジドスルホン酸等のキノンジアジド基を有するスルホン酸との完全エステル化合物、部分エステル化合物、アミド化物又は部分アミド化物などが挙げられる。
 ここで用いる前記芳香族(ポリ)ヒドロキシ化合物は、例えば、2,3,4-トリヒドロキシベンゾフェノン、2,4,4’-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,3,6-トリヒドロキシベンゾフェノン、2,3,4-トリヒドロキシ-2’-メチルベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3’,4,4’,6-ペンタヒドロキシベンゾフェノン、2,2’,3,4,4’-ペンタヒドロキシベンゾフェノン、2,2’,3,4,5-ペンタヒドロキシベンゾフェノン、2,3’,4,4’,5’,6-ヘキサヒドロキシベンゾフェノン、2,3,3’,4,4’,5’-ヘキサヒドロキシベンゾフェノン等のポリヒドロキシベンゾフェノン化合物;
 ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、2-(4-ヒドロキシフェニル)-2-(4’-ヒドロキシフェニル)プロパン、2-(2,4-ジヒドロキシフェニル)-2-(2’,4’-ジヒドロキシフェニル)プロパン、2-(2,3,4-トリヒドロキシフェニル)-2-(2’,3’,4’-トリヒドロキシフェニル)プロパン、4,4’-{1-[4-〔2-(4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール,3,3’-ジメチル-{1-[4-〔2-(3-メチル-4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール等のビス[(ポリ)ヒドロキシフェニル]アルカン化合物;
 トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3、5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン等のトリス(ヒドロキシフェニル)メタン化合物又はそのメチル置換体;
 ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-2-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-3-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-4-ヒドロキシフェニルメタンなどの、ビス(シクロヘキシルヒドロキシフェニル)(ヒドロキシフェニル)メタン化合物又はそのメチル置換体等が挙げられる。これらの感光剤はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 本発明の感光性組成物における前記感光剤の配合量は、光感度に優れる感光性組成物となることから、感光性組成物の樹脂固形分の合計100質量部に対し、5~50質量部となる割合であることが好ましい。
 本発明の感光性組成物は、レジスト用途に用いた場合の製膜性やパターンの密着性の向上、現像欠陥を低減するなどの目的で界面活性剤を含有していても良い。ここで用いる界面活性剤は、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル化合物、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル化合物、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル化合物、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテ-ト、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル化合物等のノニオン系界面活性剤;フルオロ脂肪族基を有する重合性単量体と[ポリ(オキシアルキレン)](メタ)アクリレートとの共重合体など分子構造中にフッ素原子を有するフッ素系界面活性剤;分子構造中にシリコーン構造部位を有するシリコーン系界面活性剤等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 これらの界面活性剤の配合量は、本発明の感光性組成物中の樹脂固形分の合計100質量部に対し0.001~2質量部の範囲で用いることが好ましい。
本発明の感光性組成物をフォトレジスト用途に用いる場合には、本発明のノボラック型樹脂、光酸発生剤の他、更に必要に応じてその他のフェノール樹脂(V)や感光剤、界面活性剤、染料、充填材、架橋剤、溶解促進剤など各種の添加剤を加え、有機溶剤に溶解することによりレジスト用組成物とすることができる。これをそのままポジ型レジスト溶液と用いても良いし、或いは、該レジスト用組成物をフィルム状に塗布して脱溶剤させたものをポジ型レジストフィルムとして用いても良い。レジストフィルムとして用いる際の支持フィルムは、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート等の合成樹脂フィルムが挙げられ、単層フィルムでも複数の積層フィルムでも良い。また、該支持フィルムの表面はコロナ処理されたものや剥離剤が塗布されたものでも良い。
 本発明のレジスト用組成物に用いる有機溶剤は特に限定されないが、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルプロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジアルキレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン化合物;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル等のエステル化合物が挙げられる、これらはそれぞれ単独でも地いても良いし、2種類以上を併用しても良い。
 本発明のレジスト用組成物は上記各成分を配合し、攪拌機等を用いて混合することにより調整できる。また、フォトレジスト用樹脂組成物が充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合して調整することが出来る。
 本発明のレジスト用組成物を用いたフォトリソグラフィーの方法は、例えば、シリコン基板フォトリソグラフィーを行う対象物上にレジスト用組成物を塗布し、60~150℃の温度条件でプリベークする。このときの塗布方法は、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターブレードコート等の何れの方法でも良い。次にレジストパターンの作成であるが、本発明のレジスト用組成物はポジ型であることから、目的とするレジストパターンを所定のマスクを通じて露光し、露光した箇所をアルカリ現像液にて溶解することにより、レジストパターンを形成する。本発明のレジスト用組成物は、露光部のアルカリ溶解性と、非露光部の耐アルカリ溶解性とが共に高いことから、解像度に優れるレジストパターンの形成が可能となる。
 本発明の硬化性組成物は、前記本発明のノボラック型樹脂と、硬化剤とを必須の成分として含有する。本発明の硬化性組成物は、前記本発明のノボラック型樹脂以外に、その他の樹脂(W)を併用しても良い。ここで用いるその他の樹脂(W)は、例えば、各種のノボラック樹脂、ジシクロペンタジエン等の脂環式ジエン化合物とフェノール化合物との付加重合樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との変性ノボラック樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂、及び各種のビニル重合体等が挙げられる。
 前記各種のノボラック樹脂は、より具体的には、フェノールェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とを酸触媒条件下で反応させて得られる重合体が挙げられる。
 前記各種のビニル重合体は、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート等のビニル化合物の単独重合体或いはこれらの共重合体が挙げられる。
 これらその他の樹脂を用いる場合、本発明のノボラック型樹脂とその他の樹脂(W)との配合割合は、用途に応じて任意に設定することが出来るが、本発明が奏するドライエッチング耐性と耐熱分解性とに優れる効果がより顕著に発現することから、本発明のノボラック型樹脂100質量部に対し、その他の樹脂(W)が0.5~100質量部となる割合であることが好ましい。
 本発明で用いる前記硬化剤は、例えば、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたメラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、レゾール樹脂、エポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基等の2重結合を含む化合物、酸無水物、オキサゾリン化合物等が挙げられる。
 前記メラミン化合物は、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物等が挙げられる。 
 前記グアナミン化合物は、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメトキシメチルベンゾグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物等が挙げられる。
 前記グリコールウリル化合物は、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル等が挙げられる。
 前記ウレア化合物は、例えば、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素及び1,1,3,3-テトラキス(メトキシメチル)尿素等が挙げられる。
 前記レゾール樹脂は、例えば、フェノール、クレゾールやキシレノール等のアルキルフェノール、フェニルフェノール、レゾルシノール、ビフェニル、ビスフェノールAやビスフェノールF等のビスフェノール、ナフトール、ジヒドロキシナフタレン等のフェノール性水酸基含有化合物と、アルデヒド化合物とをアルカリ性触媒条件下で反応させて得られる重合体が挙げられる。
 前記エポキシ化合物は、例えば、ジグリシジルオキシナフタレン、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン、ナフチレンエーテル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、リン原子含有エポキシ樹脂、フェノール性水酸基含有化合物とアルコキシ基含有芳香族化合物との共縮合物のポリグリシジルエーテル等が挙げられる。
 前記イソシアネート化合物は、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等が挙げられる。
 前記アジド化合物は、例えば、1,1’-ビフェニル-4,4’-ビスアジド、4,4’-メチリデンビスアジド、4,4’-オキシビスアジド等が挙げられる。 
前記アルケニルエーテル基等の2重結合を含む化合物は、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。
 前記酸無水物は例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、4,4’-(イソプロピリデン)ジフタル酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等の芳香族酸無水物;無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水エンドメチレンテトラヒドロフタル酸無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等の脂環式カルボン酸無水物等が挙げられる。 
 これらの中でも、硬化性や硬化物における耐熱性に優れる硬化性組成物となることから、グリコールウリル化合物、ウレア化合物、レゾール樹脂が好ましく、グリコールウリル化合物が特に好ましい。
 本発明の硬化性組成物における前記硬化剤の配合量は、硬化性に優れる組成物となることから、本発明のノボラック型樹脂とその他の樹脂(W)との合計100質量部に対し、0.5~50質量部となる割合であることが好ましい。
本発明の硬化性組成物をレジスト下層膜(BARC膜)用途に用いる場合には、本発明のノボラック型樹脂、硬化剤の他、更に必要に応じてその他の樹脂(W)、界面活性剤や染料、充填材、架橋剤、溶解促進剤など各種の添加剤を加え、有機溶剤に溶解することによりレジスト下層膜用組成物とすることができる。
 レジスト下層膜用組成物に用いる有機溶剤は、特に限定されないが、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルプロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジアルキレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン化合物;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル等のエステル化合物が挙げられる、これらはそれぞれ単独でも地いても良いし、2種類以上を併用しても良い。
 前記レジスト下層膜用組成物は上記各成分を配合し、攪拌機等を用いて混合することにより調整できる。また、レジスト下層膜用組成物が充填材や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散或いは混合して調整することが出来る。
 前記レジスト下層膜用組成物からレジスト下層膜を作成するには、例えば、前記レジスト下層膜用組成物を、シリコン基板などフォトリソグラフィーを行う対象物上に塗布し、100~200℃の温度条件下で乾燥させた後、更に250~400℃の温度条件下で加熱硬化させるなどの方法によりレジスト下層膜を形成する。次いで、この下層膜上で通常のフォトリソグラフィー操作を行ってレジストパターンを形成し、ハロゲン系プラズマガス等でドライエッチング処理することにより、多層レジスト法によるレジストパターンを形成することが出来る。
 本発明の硬化性組成物をレジスト永久膜用途に用いる場合には、本発明のノボラック型樹脂、硬化剤の他、更に必要に応じてその他の樹脂(W)、界面活性剤や染料、充填材、架橋剤、溶解促進剤など各種の添加剤を加え、有機溶剤に溶解することによりレジスト永久膜用組成物とすることができる。ここで用いる有機溶剤は、レジスト下層膜用組成物で用いる有機溶剤と同様のものが挙げられる。
 前記レジスト永久膜用組成物を用いたフォトリソグラフィーの方法は、例えば、有機溶剤に樹脂成分及び添加剤成分を溶解・分散させ、シリコン基板フォトリソグラフィーを行う対象物上に塗布し、60~150℃の温度条件でプリベークする。このときの塗布方法は、スピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターブレードコート等の何れの方法でもよい。次にレジストパターンの作成であるが、当該レジスト永久膜用組成物がポジ型の場合には、目的とするレジストパターンを所定のマスクを通じて露光し、露光した箇所をアルカリ現像液にて溶解することにより、レジストパターンを形成する。
 前記レジスト永久膜用組成物からなる永久膜は、例えば、半導体デバイス関係ではソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、LCD、OELDに代表される薄型ディスプレイ関係では薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリックス、スペーサーなどに好適に用いることができる。
 以下に具体的な例を挙げて、本発明をさらに詳しく説明する。なお、合成した樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、多分散度(Mw/Mn)下記測定条件のGPCで測定したものであり、純度や2量体及び3量体の含有量は下記測定条件で得られるGPCチャート図の面積比から計算した。
 [GPCの測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」
 カラム:昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF802」(8.0mmФ×300mm)
+昭和電工株式会社製「Shodex KF803」(8.0mmФ×300mm)+昭和電工株式会社製「Shodex KF804」(8.0mmФ×300mm)
 カラム温度:40℃
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.30」
 展開溶媒:テトラヒドロフラン
 流速:1.0mL/分
 試料:樹脂固形分換算で0.5質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの
 注入量:0.1mL
 標準試料:下記単分散ポリスチレン
 (標準試料:単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 H-NMRスペクトルの測定は、日本電子(株)製「AL-400」を用い、試料のDMSO-d溶液を分析して構造解析を行った。以下に、H-NMRスペクトルの測定条件を示す。
H-NMRスペクトル測定条件]
 測定モード:SGNNE(NOE消去の1H完全デカップリング法)
 パルス角度:45℃パルス
 試料濃度:30wt%
 積算回数:10000回
 13C-NMRスペクトルの測定は、日本電子(株)製「AL-400」を用い、試料のDMSO-d溶液を分析して構造解析を行った。以下に、13C-NMRスペクトルの測定条件を示す。
13C-NMRスペクトル測定条件]
 測定モード:SGNNE(NOE消去の1H完全デカップリング法)
 パルス角度:45℃パルス
 試料濃度:30wt%
 積算回数:10000回
 TOF-MSスペクトルの測定は、島津製作所(株)製「AXIMA TOF2」を用い、マトリックスにジスラノール、カチオン化剤にトリフルオロ酢酸ナトリウムを用いて試料を分析して分子量解析を行った。
 測定モード:リニアーモード
 試料調整:サンプル/ジスラノール/トリフルオロ酢酸ナトリウム/THF=10/10/1/1
製造例1 4官能フェノール化合物(A-1)の製造
 冷却管を設置した100mlの二口フラスコに2,5-キシレノール73g(0.6mol)、テレフタルアルデヒド20g(0.15mol)を仕込み、2-エトキシエタノール300mlに溶解させた。氷浴中で冷却しながら硫酸10gを添加した後、80℃のオイルバス中で2時間加熱、攪拌し反応させた。反応後、得られた溶液に水を加えて粗成生物を再沈殿させた。沈殿した粗生成物をアセトンに再溶解し、さらに水で再沈殿させた後、沈殿物を濾別して真空乾燥を行い、淡赤色粉末の4官能フェノール化合物(A-1)62gを得た。H-NMRにて下記構造式で表される化合物の生成を確認した。また、GPCチャート図から算出される純度は98.2%であった。4官能フェノール化合物(A-1)のGPCチャートを図1に、H-NMRチャートを図2に示す。
Figure JPOXMLDOC01-appb-C000017
製造例2 中間体ノボラック型樹脂(1)及び(2)の製造
 冷却管を設置した2Lの4口フラスコに製造例1で得た4官能フェノール化合物(A-1)59g(0.1mol)を、メタノール250mlと酢酸250mlとの混合溶液中に溶解させた。氷浴中で冷却しながら硫酸20gを添加した後、92%パラホルムアルデヒド15g(0.5mol)を仕込み、水浴で60℃まで昇温した。10時間加熱、攪拌を継続し反応させた後、得られた溶液に水を加えて生成物を沈殿させ、濾別し、真空乾燥して赤色固体の粗成生物を得た。粗生成物をシリカゲルカラム(展開溶媒:ヘキサン/酢酸エチル=1/1)で精製し、2量体を主成分とする中間体ノボラック型樹脂(1)23.4gと、3量体を主成分とする中間体ノボラック型樹脂(2)21.6gを得た。中間体ノボラック型樹脂(1)のGPC、13C-NMR、TOF-MSを図3、図4、図5に、中間体ノボラック型樹脂(2)のGPC、13C-NMR、TOF-MSを図6、図7、図8に示す。中間体ノボラック型樹脂(1)の数平均分子量(Mn)は1,552、重量平均分子量(Mw)は1,666、多分散度(Mw/Mn)は1.07であり、TOF-MSスペクトルにて2量体のナトリウム付加物の存在を示す1,219のピークが観測された。中間体ノボラック型樹脂(2)の数平均分子量(Mn)は2,832、重量平均分子量(Mw)は3,447、多分散度(Mw/Mn)は1.22であり、TOF-MSスペクトルにて3量体のナトリウム付加物の存在を示す1,830のピークが観測された。
実施例1 ノボラック型樹脂(1)の製造
 冷却管を設置した100ml3口フラスコに製造例2で合成した中間体ノボラック型樹脂(1)6g、保護基導入剤としてエチルビニルエーテル4gを仕込んだ後、1,3-ジオキソラン30gに溶解させた。35wt%塩酸水溶液0.01gを添加した後、25℃で4時間攪拌を継続し反応させた。反応中にメタノールで滴定を行い、メタノール溶解成分が消失し、水酸基のほぼすべてに保護基が導入されたことを確認した後、25wt%アンモニア水溶液0.1gを添加した。得られた溶液に水を加えて再沈殿操作を行い、沈殿物を濾別、真空乾燥して赤色粉末のノボラック型樹脂(1)6.2gを得た。
実施例2 ノボラック型樹脂(2)の製造
 保護基導入剤として、エチルビニルエーテル4gに替えてジヒドロピラン4.4gとした以外は実施例1と同様の操作を行い、赤色粉末のノボラック型樹脂(2)6.7gを得た。
実施例3 ノボラック型樹脂(3)の製造
 中間体ノボラック型樹脂(1)6gに替えて中間体ノボラック型樹脂(2)6gとした以外は実施例1と同様の操作を行い、赤色粉末のノボラック型樹脂(3)6.1gを得た。
実施例4 ノボラック型樹脂(4)の製造
 保護前のフェノール樹脂を中間体ノボラック型樹脂(2)6g、保護基導入剤として、チルビニルエーテル4gに替えてジヒドロピラン4.4gとした以外は実施例3と同様の操作を行い、赤色粉末のボラック型樹脂(4)6.4gを得た。
比較製造例1 ノボラック型樹脂(1’)の製造
 攪拌機、温度計を備えた2Lの4つ口フラスコに、m-クレゾール648g(6mol)、p-クレゾール432g(4mol)、シュウ酸2.5g(0.2mol)、42%ホルムアルデヒド492gを仕込み、100℃まで昇温して反応させた。常圧、200℃の条件下で脱水及び蒸留し、更に230℃で6時間減圧蒸留を行い、淡黄色固形の中間体ノボラック型樹脂(1’)736gを得た。中間体ノボラック型樹脂(1’)の数平均分子量(Mn)は1,450、重量平均分子量(Mw)は10,316、多分散度(Mw/Mn)は7.116であった。
 中間体ノボラック型樹脂(1)6gに替えて中間体ノボラック型樹脂(1’)6gとした以外は実施例2と同様の操作を行い、ノボラック型樹脂(1’)6.7gを得た。
実施例5~8及び比較例1
 実施例1~5、比較製造例1で得たノボラック型樹脂について、下記の要領で感光性組成物を調整し、各種評価を行った。結果を表1に示す。
感光性組成物の調整
 ノボラック型樹脂1.9gをプロピレングリコールモノメチルエーテルアセテート8gに溶解させ、この溶液に光酸発生剤0.1gを加えて溶解させた。これを0.2μmのメンブランフィルターで濾過し、感光性組成物を得た。
 光酸発生剤は和光純薬株式会社製「WPAG-336」[ジフェニル(4-メチルフェニル)スルフォニウムトリフルオロメタンスルフォネート]を用いた。
耐熱性試験用組成物の調整
 前記ノボラック型樹脂1.9gをプロピレングリコールモノメチルエーテルアセテート8gに溶解させ、これを0.2μmのメンブランフィルターで濾過し、耐熱性試験用組成物を得た。
アルカリ現像性[ADR(nm/s)]の評価
 先で得た感光性組成物を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。このウェハーを2枚用意し、一方を「露光なしサンプル」とした。他方を「露光有サンプル」としてghi線ランプ(ウシオ電機株式会社製「マルチライト」)を用いて100mJ/cmのghi線を照射したのち、140℃、60秒間の条件で加熱処理を行った。
 「露光なしサンプル」と「露光有サンプル」の両方をアルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬した後、110℃のホットプレート上で60秒乾燥させた。各サンプルの現像液浸漬前後の膜厚を測定し、その差分を60で除した値をアルカリ現像性[ADR(nm/s)]とした。
光感度の評価
 先で得た感光性組成物を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。このウェハー上にラインアンドスペースが1:1であり、ライン幅が1~10μmまで1μmごとに設定されたレジストパターン対応のマスクを密着させた後、ghi線ランプ(ウシオ電機株式会社製「マルチライト」)を用いてghi線を照射し、140℃、60秒間の条件で加熱処理を行った。次いで、アルカリ現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸漬した後、110℃のホットプレート上で60秒乾燥させた。
 ghi線露光量を30mJ/cmから5mJ/cm毎に増加させた場合の、ライン幅3μmを忠実に再現することのできる露光量(Eop露光量)を評価した。
解像度の評価
 先で得た感光性組成物を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。得られたウェハー上にフォトマスクを乗せ、先のアルカリ現像性評価の場合と同様の方法でghi線200mJ/cmを照射し、アルカリ現像操作を行った。レーザーマイクロスコープ(株式会社キーエンス製「VK-X200」)を用いてパターン状態を確認し、L/S=5μmで解像できているものを○、L/S=5μmで解像できていないものを×として評価した。
耐熱性の評価
 先で得た耐熱性試験用組成物を5インチシリコンウェハー上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。得られたウェハーより樹脂分をかきとり、そのガラス転移温度(Tg)を測定した。ガラス転移温度(Tg)の測定は示差走査熱量計(DSC)(株式会社TAインスツルメント製「Q100」)を用いて、窒素雰囲気下、温度範囲-100~200℃、昇温温度10℃/分の条件で行った。
Figure JPOXMLDOC01-appb-T000018
実施例9~12及び比較例2
 実施例1~4、比較製造例1で得たノボラック型樹脂について、下記の要領で硬化性組成物を調整し、各種の評価試験を行った。結果を表2に示す。
硬化性組成物の調整
 ノボラック型樹脂1.6g、硬化剤(東京化成工業株式会社製「1,3,4,6-テトラキス(メトキシメチル)グリコールウリル」)0.4gをプロピレングリコールモノメチルエーテルアセテート3gに溶解させ、これを0.2μmのメンブランフィルターで濾過し、硬化性組成物を得た。
耐ドライエッチング性の評価
 先で得た硬化性組成物を5インチシリコンウェハー上にスピンコーターで塗布し、110℃のホットプレート上で60秒乾燥させた。酸素濃度20容量%のホットプレート内にて、180℃で60秒間加熱し、更に、350℃で120秒間加熱して、膜厚0.3μmの硬化塗膜月シリコンウェハーを得た。ウェハー上の硬化塗膜を、エッチング装置(神鋼精機社製の「EXAM」)を使用して、CF/Ar/O(CF:40mL/分、Ar:20mL/分、O:5mL/分 圧力:20Pa RFパワー:200W 処理時間:40秒 温度:15℃)の条件でエッチング処理した。このときのエッチング処理前後の膜厚を測定して、エッチングレートを算出し、エッチング耐性を評価した。評価基準は以下の通りである。
○:エッチングレートが150nm/分以下の場合
×:エッチングレートが150nm/分を超える場合
Figure JPOXMLDOC01-appb-T000019

Claims (8)

  1. 下記構造式(1)又は(2)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。Xは水素原子、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかである。]
    で表される構造部位を繰り返し単位として有し、樹脂中に存在するXのうち少なくとも一つが3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかであることを特徴とするノボラック型樹脂。
  2. 前記構造式(1)又は(2)で表される構造部位の繰り返し単位数が2である2量体、又は、前記構造式(1)又は(2)で表される構造部位の繰り返し単位数が3である3量体を含有する請求項1記載のノボラック型樹脂。
  3. 請求項1又は2に記載のノボラック型樹脂と光酸発生剤とを含有する感光性組成物。
  4. 請求項3記載の感光性組成物からなるレジスト膜。
  5. 請求項1又は2に記載のノボラック型樹脂と硬化剤とを含有する硬化性組成物。
  6. 請求項5記載の硬化性組成物の硬化物。
  7. 請求項5記載の硬化性組成物からなるレジスト膜。
  8. 下記構造式(4)
    Figure JPOXMLDOC01-appb-C000002
    [式中、Arはアリーレン基を表す。Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、ハロゲン原子の何れかであり、mはそれぞれ独立に1~3の整数である。]
    で表される4官能フェノール化合物(A)と、ホルムアルデヒドとを必須の成分として反応させて中間体ノボラック型樹脂を得、得られた中間体ノボラック型樹脂のフェノール性水酸基の水素原子の一部乃至全部を、3級アルキル基、アルコキシアルキル基、アシル基、アルコキシカルボニル基、ヘテロ原子含有環状炭化水素基、トリアルキルシリル基の何れかで置換する、ノボラック型樹脂の製造方法。
PCT/JP2016/084055 2015-12-07 2016-11-17 ノボラック型樹脂及びレジスト膜 WO2017098880A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/777,739 US20180334523A1 (en) 2015-12-07 2016-11-17 Novolac resin and resist film
KR1020187013721A KR102486775B1 (ko) 2015-12-07 2016-11-17 노볼락형 수지 및 레지스트막
CN201680071738.4A CN108368214B (zh) 2015-12-07 2016-11-17 酚醛清漆型树脂及抗蚀膜
JP2017525995A JP6241577B2 (ja) 2015-12-07 2016-11-17 ノボラック型樹脂及びレジスト膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015238538 2015-12-07
JP2015-238538 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017098880A1 true WO2017098880A1 (ja) 2017-06-15

Family

ID=59014037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084055 WO2017098880A1 (ja) 2015-12-07 2016-11-17 ノボラック型樹脂及びレジスト膜

Country Status (6)

Country Link
US (1) US20180334523A1 (ja)
JP (1) JP6241577B2 (ja)
KR (1) KR102486775B1 (ja)
CN (1) CN108368214B (ja)
TW (1) TWI705991B (ja)
WO (1) WO2017098880A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141329B (zh) * 2022-07-28 2023-10-03 共享智能装备有限公司 一种二氧化硅水凝胶改性冷硬酚醛树脂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159847A (ja) * 1984-01-30 1985-08-21 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション ポジテイブ写真食刻レジスト組成
JPH03152544A (ja) * 1989-10-23 1991-06-28 Internatl Business Mach Corp <Ibm> 高感度の乾式現像可能な深uv光用ホトレジスト
JPH11149161A (ja) * 1997-05-30 1999-06-02 Shipley Co Llc 新規なポリマーを含有する放射線感光性組成物
JP2001220420A (ja) * 2000-02-08 2001-08-14 Shin Etsu Chem Co Ltd 高分子化合物及びポジ型レジスト材料
JP2013189531A (ja) * 2012-03-13 2013-09-26 Meiwa Kasei Kk ノボラック型フェノール樹脂の製造方法、ノボラック型フェノール樹脂及びフォトレジスト組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734545B2 (ja) 1988-08-22 1998-03-30 大日本インキ化学工業株式会社 ポジ型フォトレジスト組成物
JP4749621B2 (ja) * 2001-01-09 2011-08-17 三井化学株式会社 ノボラックアラルキル樹脂及びその製造方法、並びに該樹脂組成物
JP4801550B2 (ja) * 2006-09-26 2011-10-26 富士通株式会社 レジスト組成物、レジストパターンの形成方法、及び半導体装置の製造方法
JP5476762B2 (ja) * 2009-03-27 2014-04-23 宇部興産株式会社 フェノール樹脂、該樹脂の製造方法及び該樹脂を含むエポキシ樹脂組成物、ならびにその硬化物
JP5506621B2 (ja) * 2009-10-16 2014-05-28 富士フイルム株式会社 感光性樹脂組成物、硬化膜、硬化膜の形成方法、有機el表示装置、及び、液晶表示装置
KR20150129676A (ko) * 2013-03-14 2015-11-20 디아이씨 가부시끼가이샤 변성 노볼락형 페놀 수지, 레지스트 재료, 도막 및 레지스트 영구막
JP2014214256A (ja) * 2013-04-26 2014-11-17 明和化成株式会社 フォトレジスト用樹脂およびそれを用いたフォトレジスト組成物
KR102222658B1 (ko) * 2013-07-19 2021-03-05 디아이씨 가부시끼가이샤 페놀성 수산기 함유 화합물, 감광성 조성물, 레지스트용 조성물, 레지스트 도막, 경화성 조성물, 레지스트 하층막용 조성물, 및 레지스트 하층막
WO2015041143A1 (ja) * 2013-09-18 2015-03-26 Dic株式会社 変性ヒドロキシナフタレンノボラック樹脂、変性ヒドロキシナフタレンノボラック樹脂の製造方法、感光性組成物、レジスト材料及び塗膜
KR102352289B1 (ko) * 2014-04-17 2022-01-19 삼성디스플레이 주식회사 포토레지스트 조성물 및 이를 이용한 디스플레이 기판의 제조 방법
WO2015174199A1 (ja) * 2014-05-15 2015-11-19 Dic株式会社 変性フェノール性水酸基含有化合物、変性フェノール性水酸基含有化合物の製造方法、感光性組成物、レジスト材料及びレジスト塗膜
KR102534516B1 (ko) * 2015-08-18 2023-05-22 디아이씨 가부시끼가이샤 노볼락형 페놀성 수산기 함유 수지 및 레지스트막

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159847A (ja) * 1984-01-30 1985-08-21 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション ポジテイブ写真食刻レジスト組成
JPH03152544A (ja) * 1989-10-23 1991-06-28 Internatl Business Mach Corp <Ibm> 高感度の乾式現像可能な深uv光用ホトレジスト
JPH11149161A (ja) * 1997-05-30 1999-06-02 Shipley Co Llc 新規なポリマーを含有する放射線感光性組成物
JP2001220420A (ja) * 2000-02-08 2001-08-14 Shin Etsu Chem Co Ltd 高分子化合物及びポジ型レジスト材料
JP2013189531A (ja) * 2012-03-13 2013-09-26 Meiwa Kasei Kk ノボラック型フェノール樹脂の製造方法、ノボラック型フェノール樹脂及びフォトレジスト組成物

Also Published As

Publication number Publication date
CN108368214A (zh) 2018-08-03
KR20180090789A (ko) 2018-08-13
TW201734070A (zh) 2017-10-01
JP6241577B2 (ja) 2017-12-06
KR102486775B1 (ko) 2023-01-11
CN108368214B (zh) 2021-03-23
US20180334523A1 (en) 2018-11-22
JPWO2017098880A1 (ja) 2017-12-07
TWI705991B (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
KR102210073B1 (ko) 변성 히드록시나프탈렌노볼락 수지, 변성 히드록시나프탈렌노볼락 수지의 제조 방법, 감광성 조성물, 레지스트 재료 및 도막
JP6265123B2 (ja) 変性ノボラック型フェノール樹脂、レジスト材料、塗膜及びレジスト永久膜
JP5928666B2 (ja) 変性フェノール性水酸基含有化合物、変性フェノール性水酸基含有化合物の製造方法、感光性組成物、レジスト材料及びレジスト塗膜
CN107003612B (zh) 抗蚀剂下层膜形成用感光性组合物及抗蚀剂下层膜
JP5950069B1 (ja) ノボラック型フェノール樹脂、その製造方法、感光性組成物、レジスト材料、及び塗膜
JP6304453B2 (ja) ノボラック型樹脂及びレジスト膜
CN113348188B (zh) 含酚羟基树脂、感光性组合物、抗蚀膜、固化性组合物和固化物
JP6123967B1 (ja) ノボラック型フェノール性水酸基含有樹脂及びレジスト膜
JP6241577B2 (ja) ノボラック型樹脂及びレジスト膜
WO2017098881A1 (ja) ノボラック型樹脂及びレジスト膜
JP2017088675A (ja) ノボラック型フェノール性水酸基含有樹脂及びレジスト材料
JP6828279B2 (ja) ノボラック型樹脂及びレジスト膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017525995

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187013721

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15777739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16872780

Country of ref document: EP

Kind code of ref document: A1