WO2017095178A1 - 위조 및 변조 방지 장치 - Google Patents

위조 및 변조 방지 장치 Download PDF

Info

Publication number
WO2017095178A1
WO2017095178A1 PCT/KR2016/014091 KR2016014091W WO2017095178A1 WO 2017095178 A1 WO2017095178 A1 WO 2017095178A1 KR 2016014091 W KR2016014091 W KR 2016014091W WO 2017095178 A1 WO2017095178 A1 WO 2017095178A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
variable material
magnetic field
material containing
light
Prior art date
Application number
PCT/KR2016/014091
Other languages
English (en)
French (fr)
Inventor
장보승
이동진
주재현
Original Assignee
주식회사 나노브릭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노브릭 filed Critical 주식회사 나노브릭
Publication of WO2017095178A1 publication Critical patent/WO2017095178A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/091Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect based on magneto-absorption or magneto-reflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/435Marking by removal of material using electromagnetic radiation, e.g. laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D15/00Component parts of recorders for measuring arrangements not specially adapted for a specific variable
    • G01D15/12Magnetic recording elements

Definitions

  • the present invention relates to a forgery and tamper proof device. More specifically, a magnetic variable material containing part including a magnetic variable material whose reflected light or transmitted light is changed when the applied magnetic field is changed, a magnetic field generating part generating a magnetic field that can be applied to the magnetic variable material, and a magnetic variable material It includes a spacer interposed between the containing portion and the magnetic field generating portion for adjusting the distance between the magnetic variable material containing portion and the magnetic field generating portion, and by adjusting the thickness of the spacer to adjust the strength of the magnetic field applied to the magnetic variable material, A device capable of varying light reflected or transmitted at a variable material inclusion.
  • the present inventors have developed a method and an apparatus for allowing a general user to easily determine whether a forgery and a tamper-proof object are forged or modulated by using a material that changes color or transmittance of light as a magnetic field is applied. Reached.
  • the object of the present invention is to solve all the above-mentioned problems.
  • the present invention controls the distance between the magnetoresistive material containing part and the magnetic field generating part through a spacer between the magnetoresistive material containing part and the magnetic field generating part, thereby making it possible to change the light reflected or transmitted from the magnetoresistive material containing part. And an anti-tampering device.
  • the present invention applies a magnetic field to the second magnetic induction unit integrally extending with the first magnetic induction unit opposed to the magnetic variable substance containing portion, so that the magnetic field can be applied on a different axis from the magnetic variable material containing portion. And an anti-tampering device.
  • an object of the present invention is to provide an anti-counterfeiting and tamper-proof device that can change the light reflected or transmitted from the magnetic variable material containing portion by rotating or changing the position of the magnetic field generating portion relative to the variable material containing portion. do.
  • the adhesive force of a part of the adhesive part adhered to the magnetic variable material containing part is different from the adhesive force of the other part, so that only a part of the magnetic variable material containing part is separated from the adhesive part by applying an external force. It is an object to provide a separate counterfeit and tamper proof device.
  • the present invention is a forgery and tamper-resistant to form a cutting pattern is formed in the magnetic variable material containing portion, when the externally applied to separate the magnetic variable material containing portion from the adhesive portion, only the portion of the magnetic variable material containing the cutting pattern is separated. It is an object to provide a device.
  • the present invention is an information thin film layer is disposed on the magneto-variable material containing portion, and the image, pattern, characters, graphics, barcodes, etc. are formed on the surface in contact with the magneto-variable material including the anti-counterfeiting and modulation can be displayed It is an object to provide a device.
  • an object of the present invention is to provide an anti-counterfeiting and tamper-proof device that can display information by forming an information display unit such as an image, a pattern, a character, a figure, a barcode, and the like in a magnetic variable material containing portion.
  • the present invention receives the light reflected or transmitted from the magneto-variable material containing portion by the magnetic field applied in the magnetized portion of the pattern-shaped portion, and compares it with the input pattern or wavelength value to determine the authenticity It is an object of the present invention to provide an anti-counterfeiting and tamper proof device.
  • a magnetic variable material containing portion including a magnetic variable material, the reflected light or transmitted light is changed when the applied magnetic field is changed, a magnetic field generating unit for generating a magnetic field that can be applied to the magnetic variable material, And a spacer interposed between the magnetic variable substance containing portion and the magnetic field generating portion to adjust a distance between the magnetic variable substance containing portion and the magnetic field generating portion.
  • the spacer may include at least one of an air layer, a thin film layer, a film layer, a sheet layer, adhesion, an information display layer, and a phase change material layer.
  • the intensity of the magnetic field applied to the magnetic variable material may be adjusted to change light reflected or transmitted from the magnetic variable material containing part.
  • the intensity of the magnetic field applied to the magnetic variable material may be adjusted to change light reflected or transmitted from the magnetic variable material containing part.
  • the spacer may include a light absorbing layer, and the light absorbing layer may change light reflected or transmitted from the magnetic variable material containing part.
  • the spacer may include a transparent or translucent light transmissive layer, and the light transmissive layer may change light reflected or transmitted from the magnetoresistive material containing portion.
  • Images, patterns, characters, figures, barcodes, etc. may be formed on at least one surface of the light transmitting layer.
  • the magnetic variable material containing portion or the magnetic field generating portion is bent, and the magnetic field applied to the magnetic variable material containing portion may change as the magnetic variable material containing portion or the magnetic field generating portion is deformed by applying an external force. have.
  • the magnetic variable material including part may be formed by coating the magnetic variable material on an elastic substrate.
  • the magnetic variable material containing portion including a magnetic variable material, the reflected light or transmitted light is changed when the applied magnetic field is changed, disposed on one side of the magnetic variable material containing portion,
  • a magnetic field generating unit generating a magnetic field that can be applied to the magnetic field generating unit, and a magnetic induction unit disposed at the other side of the magnetic variable material including unit, the magnetic inducing unit having at least a portion of magnetic induction according to the magnetic field applied from the magnetic field generating unit; It is achieved by a forgery and tamper proof device characterized in that.
  • the magnetic induction part may have a magnetic induction pattern, which is a magnetic induction area.
  • the light reflected or transmitted at the portion of the magnetic variable material containing part opposite to the magnetic induction pattern may be changed.
  • a magnetic variable material containing part including a magnetic variable material that changes the reflected light or transmitted light when the applied magnetic field is changed, the first magnetic induction part at least partially opposed to the magnetic variable material containing part And a second magnetic induction unit integrally extending to the first magnetic induction unit, and a magnetic field generating unit generating a magnetic field that can be applied to the second magnetic induction unit.
  • the second magnetic induction part is magnetically induced according to the magnetic field applied from the magnetic field generating part, and the first magnetic induction part which extends integrally with the second magnetic induction part is magnetically induced and faces the first magnetic induction part.
  • the light reflected or transmitted at the portion of the variable material inclusion may vary.
  • a magnetic variable material containing portion including a magnetic variable material that changes the reflected light or transmitted light when the magnetic field is applied, and a magnetic field to generate a magnetic field that can be applied to the magnetic variable material
  • a generator wherein the magnetic field generator comprises at least one permanent magnet or a variable magnet.
  • the magnetic field generator may rotate or change a position of the magnetic variable material containing part to change light reflected or transmitted from the magnetic variable material containing part.
  • the display device may further include a magnetization part having at least one layer between the magnetic variable material containing part and the magnetic field generating part.
  • the magnetic variable material containing portion including a magnetic variable material, the reflected light or transmitted light is changed when the applied magnetic field is changed, and the magnetic variable material containing portion is attached to any counterpart And an adhesive portion formed on one side of the variable material containing portion, wherein the adhesive force of at least a part of the adhesive part is stronger than that of the remaining parts except for the part.
  • the portion of the magnetic variable material containing part adhered to the part remains attached and the magnetic variable material adhered to the remaining parts except the part. Only parts of the material inclusion can be separated.
  • the portion may be patterned.
  • the magnetic variable material containing portion including a magnetic variable material, the reflected light or transmitted light is changed when the applied magnetic field is changed, and the magnetic variable material containing portion is attached to any counterpart
  • the magnetic variable material containing portion including a magnetic variable material the reflected light or transmitted light is changed when the applied magnetic field is changed, disposed on the magnetic variable material containing portion, including the magnetic variable material
  • the above object of the present invention includes a magnetic variable material containing part including a magnetic variable material that changes reflected light or transmitted light when the applied magnetic field is changed, and the magnetic variable material containing part includes an image, a pattern, a character, a figure, It is achieved by an anti-counterfeiting and tamper-proof device characterized in that an information display section such as a barcode is formed.
  • the information display unit may be formed by selectively removing the magnetic variable material containing part by a punching method, laser irradiation, UV irradiation, or the like.
  • the light receiving unit may determine the authenticity by comparing a pre-input pattern or wavelength value with the wavelength of light reflected or transmitted from the magnetic variable material containing unit by the pattern of the magnetization unit.
  • the magnetically variable material may be set to reflect light of a predetermined wavelength or to transmit light with a predetermined transmission as the magnetic field is applied.
  • At least one of the magnetic variable material containing part and the magnetic field generating part may be formed in at least one of a tag, a card, a film, and a sticker.
  • the magnetic variable material may include a solution in which magnetic particles in which a distance or a position of each other changes according to a change in an applied magnetic field are dispersed.
  • the magnetically variable material may include at least one of a fluorescent material, a phosphorescent material, a quantum dot material, a Temperature Indicating material, and an Optically Variable Pigment (OVP) material.
  • the magnetically variable material may be encapsulated in a capsule made of a light transmissive material.
  • the present invention by adjusting the distance between the magnetic variable material containing portion and the magnetic field generating portion, there is an effect that can change the light reflected or transmitted from the magnetic variable material containing portion.
  • the magnetic induction pattern portion is magnetic induction (magnetic indcuction), there is an effect that the light reflected or transmitted at the portion of the magnetic variable material containing portion opposite to the magnetic induction pattern can be changed.
  • the authenticity may be determined by comparing the light reflected or transmitted from the magneto-variable material containing part with the input pattern or the wavelength value according to the magnetic field applied from the magnetized magnetized part. It has an effect.
  • FIG. 1 is a diagram exemplarily illustrating a principle of controlling a wavelength of light reflected from a magneto-variable material according to an exemplary embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a result of photographing a color change of a magnetic variable material that appears when a magnetic field of various intensities is applied according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a graph measuring wavelengths of light reflected from a magnetic variable material according to an intensity of a magnetic field according to an exemplary embodiment of the present invention.
  • FIG. 4 (a) is a view showing an SEM image of the magnetic particles constituting the magnetic variable material according to an embodiment of the present invention.
  • Figure 4 (b) is a diagram showing the encapsulation of a magnetic variable material according to an embodiment of the present invention in a capsule made of a light transmitting material, and then applying a magnetic field to reflect the green light.
  • FIG. 5 illustrates a butterfly pattern formed on a magnetoresistive material, and a magnet alternately formed in a stripe shape to generate magnetic fields of different strengths under the magnetoresistive material according to an embodiment of the present invention. Then, it is a view showing a picture observing the change in color and pattern of the magnetic variable material as the magnet rotates.
  • FIG. 6 is a diagram exemplarily illustrating a configuration in which light transmittance of a magnetic variable material is changed according to an exemplary embodiment of the present invention.
  • FIGS. 7 to 18 are diagrams exemplarily illustrating a configuration of an anti-counterfeiting and tamper-proof apparatus according to various embodiments of the present disclosure.
  • FIG. 19 is a conceptual diagram illustrating a color nanocomposite forming a self-variable material of the present invention.
  • 20 is a conceptual diagram illustrating a nanocomposite prepared by surface modification.
  • 21 is a conceptual diagram showing a nanocomposite produced by aggregation.
  • 22 is a process chart showing a microparticle manufacturing process.
  • 25 is an optical microscope photograph of an aqueous phase of microparticles (a) of Example and microparticles (b) of Comparative Example.
  • 26 is an optical microscope photograph of the dry powder of the microparticles (a) of the example and the microparticles (b) of the comparative example.
  • 27 is a photograph showing color development when a magnetic field is applied to microparticles.
  • FIG. 28 is a spectrum illustrating reflectance change according to the magnetic field strength of microparticles in a powder state.
  • FT-IR Fourier transform infrared spectroscopy
  • FIG. 31 is a conceptual diagram illustrating a process in which the color nanocomposite of the embodiment is rearranged by application of an electric field or a magnetic field to form a spherical ball-shaped sphere.
  • 33 is a photograph showing color variation before (a) and after (b) application of a magnetic field to a sphere of an embodiment.
  • FIG. 34 is a micrograph of a sphere comprising colored nanocomposites with an average particle size of 15 ⁇ m.
  • the particles included in the magnetic variable material may have magnetism to be rotated or moved under magnetic force by a magnetic field.
  • nickel (Ni), iron (Fe), cobalt ( Magnetic material such as Co) may be included in the particles.
  • the particles may include a material that becomes magnetic, that is, magnetized as the magnetic field is applied.
  • a material that becomes magnetic that is, magnetized as the magnetic field is applied.
  • an external magnetic field when an external magnetic field is applied to prevent agglomeration of particles having magnetic properties when the magnetic field is not applied from the outside, magnetization occurs but the external magnetic field is not applied. In this case, it is possible to use a superparamagnetic material which does not cause residual magnetization.
  • the surface of the particles may be coated with a charge of the same sign to prevent the particles from being well dispersed and aggregate in the solvent, and the surface of the particles may be covered in order to prevent the particles from settling in the solvent.
  • the particles may be coated with a material having a different specific gravity or a solvent may be mixed with a material having a different specific gravity from the particles.
  • the particles may be configured to reflect light of a particular wavelength, that is, to have a specific color. More specifically, the particles according to the present invention may have a specific color through oxidation control or coating of inorganic pigments, pigments and the like.
  • inorganic pigments for example, Zn, Pb, Ti, Cd, Fe, As, Co, Mg, Al, etc., including chromophores, may be used in the form of oxides, emulsions, lactates, and the like as inorganic pigments coated on the particles according to the present invention.
  • the dyes coated on the particles according to the present invention fluorescent dyes, acid dyes, basic dyes, mordant dyes, sulfide dyes, bat dyes, disperse dyes, reactive dyes and the like may be used.
  • the particles included in the magnetically variable material may be a fluorescent material, a phosphor, a quantum dot material, a temporal indication material, or an optically variable pigment (OVP) material. And the like.
  • silica, a polymer, a polymer monomer, etc. may be coated on the surface of the particles.
  • the diameter of the particles according to the invention may be several tens of nanometers to several tens of micrometers, but is not necessarily limited thereto.
  • the solvent may be composed of a material having a specific gravity similar to the specific gravity of the particles so that the particles may be uniformly dispersed, and composed of a material suitable for stably dispersing the particles in the solvent
  • a material suitable for stably dispersing the particles in the solvent For example, it may include a halogen carbon oil having a low dielectric constant, dimethyl silicone oil and the like.
  • the solvent may be configured to reflect light of a specific wavelength, that is, to have a specific color. More specifically, the solvent according to the present invention may include a material having an inorganic pigment, a dye or a material having a structural color by photonic crystal.
  • the configuration of the particles and the solvent according to the present invention is not limited to those enumerated above, but it should be understood that they may be appropriately changed within a range capable of achieving the object of the present invention.
  • the particles may be encapsulated into a plurality of capsules made of a light transmissive material in a dispersed state in a solvent.
  • the particles and the solvent by encapsulating the particles and the solvent, it is possible to prevent direct interference such as incorporation between different capsules, so that the particles contained in the magnetic variable material may be independently controlled for each capsule.
  • direct interference such as incorporation between different capsules
  • the particles contained in the magnetic variable material may be independently controlled for each capsule.
  • gelatin, acacia, melamine, urea, protein, polysaccharide, and the like may be used for the material constituting the capsule according to an embodiment of the present invention, and a material (ie, a binder) for fixing the capsule may be used.
  • a material ie, a binder
  • the composition of the capsule according to the present invention is not necessarily limited to the examples listed above, and any material may be used as long as it is a material that is light transmissive, physically strong, hard, elastic, porous, and resistant to external heat and pressure. It may be used as the material of the capsule according to.
  • the particles may be partitioned in a dispersed state in a solvent. According to an embodiment of the present invention, it is possible to prevent the direct interference such as mixing between different cells divided by the partition wall, and thus, the particles included in the magnetic variable material containing part to be described later for each capsule It can be controlled independently.
  • FIG. 1 is a diagram exemplarily illustrating a principle of controlling wavelengths of light reflected from the magnetic variable material 10 according to an exemplary embodiment of the present invention.
  • the particles 11 when a magnetic field is applied to a plurality of particles 11 having magnetic properties and electric charges on their surfaces, the particles 11 have a magnetic direction in a predetermined direction due to the magnetism of the particles 11.
  • the electrical repulsive force is applied between the particles 11 according to Coulomb's law or when the particles have the same surface charge.
  • the physical repulsive force due to steric hindrance is applied (when the hydrodynamic size of the particle is large due to the detection function attached to the surface of the particle).
  • the spacing of the particles 11 can be determined according to the relative strength of the repulsive force between the attractive force due to the magnetic field and the particles due to the charge, so that the particles 11 arranged at a predetermined interval can function as a photonic crystal. Will be. That is, according to Bragg's law, since the wavelength of the light reflected from the particles 11 is determined by the spacing of the particles 11, the wavelength of the light reflected from the particles 11 is controlled by controlling the spacing of the particles 11. It can be adjusted.
  • the pattern of the wavelength of the reflected light varies depending on factors such as the strength and direction of the magnetic field, the size and mass of the particles, the refractive index of the particles and the solvent, the magnetization value of the particles, the amount of charge of the particles, the concentration of dispersed particles in the solvent, and the like. May appear.
  • the particles 11 in the capsule 13 may be irregularly arranged, in which case no color is emitted from the particles 11.
  • the repulsive force between the attraction force due to the magnetic field and the particles 11 due to the charge is in equilibrium, so that the particles 11 may be regularly arranged at a predetermined interval, and thus the interval may be It is possible to reflect light of a specific wavelength from the controlled plurality of particles 11.
  • the intensity of the magnetic field applied to the particles 11 increases, the attraction of the magnetic field also increases, so that the distance between the particles 11 becomes narrower, and thus the wavelength of the light reflected from the particles 11 becomes shorter.
  • the intensity of the magnetic field applied to the particles 11 it is possible to adjust the wavelength of the light reflected from the particles (11).
  • the intensity of the magnetic field increases, when the wavelength of the light reflected from the particle corresponds to the ultraviolet band beyond the visible light band, the particle transmits the light without reflecting the visible light. In this case, the light transmittance may increase.
  • FIG. 2 is a diagram illustrating a result of photographing a color change of a magnetic variable material that appears when a magnetic field of various intensities is applied according to an embodiment of the present invention.
  • the intensity of the applied magnetic field is adjusted, the light reflected from the particles can be adjusted in all regions of the visible wavelength range from red to green and purple.
  • 3 is a graph measuring wavelengths of light reflected from a magneto-variable material according to an intensity of a magnetic field according to an embodiment of the present invention. It can be seen that the light moves to the short blue light.
  • FIG. 4 (a) is a view showing an SEM image of the magnetic particles constituting the magnetic variable material according to an embodiment of the present invention.
  • superparamagnetic Fe 3 O 4 particles between 50 m and 300 nm were used as the particles.
  • Figure 4 (b) is a diagram showing the encapsulation of a magnetic variable material according to an embodiment of the present invention in a capsule made of a light transmitting material, and then applying a magnetic field to reflect the green light.
  • particles in the capsule are regularly arranged at specific intervals according to the magnetic field, and thus, green light having a specific wavelength range is mainly reflected.
  • FIG. 5 illustrates a magnet in which a butterfly pattern is formed on an upper portion of the magnetic variable material, and magnetic poles alternately formed in a stripe shape to generate magnetic fields of different intensities in the lower portion of the magnetic variable material according to an embodiment of the present invention
  • the magneto-variable material may include particles having magnetophoretic properties.
  • the magnetic particles can move in the same direction or in the opposite direction of the magnetic field, thereby having a unique color or solvent Unique colors can be displayed.
  • the magnetic variable material may include a material whose light transmittance may change as a magnetic field is applied.
  • FIG. 6 is a diagram exemplarily illustrating a configuration in which light transmittance of a magnetic variable material is changed according to an exemplary embodiment of the present invention.
  • the magnetically variable material containing part may include a plurality of particles 11, a solvent 12, and a capsule 13 having magnetic properties.
  • a plurality of particles 11 having magnetic properties may be included in the solvent 12.
  • a plurality of particles 11 having magnetic properties may be irregularly dispersed in the capsule 13.
  • the transmittance of light incident on the magneto-variable material is in a state where it is not particularly controlled. That is, the light incident on the magneto-variable material is scattered or reflected by the plurality of particles 11 that are irregularly distributed, and thus the light transmittance is relatively low.
  • the plurality of particles 11 having magnetism in the capsule 13 may be aligned in a direction parallel to the direction of the magnetic field. As a result, the transmittance of light incident on the magnetic variable material containing part may be controlled.
  • the direction from the S pole to the N pole of the plurality of particles 11 that are originally magnetized or magnetized by the magnetic field is
  • Each of the plurality of particles 11 may be rotated or moved to be equal to the direction of the magnetic field. Since the N pole and the S pole of each particle 11 rotated or moved close to the S pole and the N pole of the surrounding particles 11, respectively, magnetic attraction or repulsive force is generated between the plurality of particles 11. As a result, the plurality of particles 11 may be regularly aligned in a direction parallel to the direction of the magnetic field.
  • the plurality of particles 11 may be regularly aligned in a direction parallel to the direction of the magnetic field applied in the vertical direction, in which case the light incident on the magneto-variable material is scattered by the plurality of particles 11 or The degree of reflection is lowered, and thus the light transmittance is relatively higher.
  • the anti-counterfeiting and tamper-proof apparatus is configured to include a magnetic variable material containing part 100 (see Figs. 7 to 18), the magnetic field generating unit 200 (see Figs. 7 to 10). Can be.
  • the magnetic variable material including part 100 may include a magnetic variable material in which reflected light or transmitted light is changed when the applied magnetic field is changed.
  • the magnetic variable material included in the magnetic variable material inclusion part 100 may be configured (or set) to reflect light of a specific wavelength or to exhibit a specific light transmittance when a magnetic field having a specific intensity and direction is applied.
  • a self-variable material may be utilized as a visual indicator when the general user visually checks the authenticity of the counterfeit and tamper-proof object.
  • the magnetic variable material including part 100 may be configured to be destroyed when the forgery and tamper-proof object is opened, and thus, after the forgery and tamper-proof object is opened, the magnetic Even when the magnetic field is applied to the variable material, the reflected light or the transmitted light of the magnetic variable material may not be changed, and thus the magnetic variable material may not reflect the light having a predetermined wavelength or exhibit the transmittance of the predetermined light.
  • the magnetic field generating unit 200 may perform a function of generating a magnetic field that can be applied to the magnetic variable material.
  • the magnetic field generating unit 200 may be formed along a predetermined pattern so that the magnetic variable material may display a predetermined color or a predetermined light transmittance according to a predetermined pattern.
  • the magnetic field generating unit is configured to generate a magnetic field having a predetermined intensity and direction according to the shape of a logo, a character, a barcode, a figure, or the like, which are used as a standard for determining whether the object is forged or tampered with. Can be.
  • the display state of the magneto-variable material in response to an external stimulus applied, is changed by changing the state in which the magnetic field is applied to the magneto-variable material (ie, the strength, direction, or pattern of the magnetic field). It may further include a movable portion (not shown) for performing a function to change the.
  • the external stimulus applied to the movable part may be caused by a user who wants to check the authenticity of the forgery and tamper proof object, a user who wants to open the forgery and tamper proof object, a user who wants to use the forgery and tamper proof object, and the like.
  • the movable part moves, rotates, or bends in response to an external magnetic pole being applied, thereby causing the magnetic field generating part 200 to generate the magnetic variable material containing part 100 by the magnetic field generating part 200.
  • a function of moving to the area to be applied can be performed.
  • the movable part moves, rotates, bends, or destroys in response to an external magnetic pole being applied, thereby generating a magnetic field generating part (eg, a magnetic variable material included in the magnetic variable material containing part 100).
  • a magnetic field generating part eg, a magnetic variable material included in the magnetic variable material containing part 100.
  • a function of moving to the area to which the magnetic field generated by the 200 is applied can be performed.
  • the movable part moves, rotates, or bends in response to an external stimulus being applied, thereby moving the magnetic field generating part 200 to an area capable of applying a magnetic field to the magnetic variable material. To perform the function.
  • FIGS. 7 to 18 are diagrams exemplarily illustrating a configuration of an anti-counterfeiting and tamper-proof apparatus according to various embodiments of the present disclosure.
  • the anti-counterfeiting and tamper-proof apparatus according to the embodiments described below are assumed to be manufactured in the form of tags, cards, films, and stickers, but are not necessarily limited to this form.
  • the magnetic variable material containing part 100, the magnetic field generating part 200, and the magnetic variable material containing part 100 and the magnetic field are generated.
  • Interposed between the portions 200 may include a spacer (300: 310, 320, 330) for adjusting the interval (d) of the magnetic variable material containing portion 100 and the magnetic field generating unit 200.
  • the spacer 300 is not limited so long as the spacer 300 can adjust the distance d between the magnetic variable material including part 100 and the magnetic field generating part 200. Accordingly, the spacer 300 may be formed by an image display layer on which information such as an air layer, a thin film layer, a film layer, a sheet layer, an adhesive layer, and a pattern is displayed, and factors such as heat, humidity pH, electricity, and light. phase change materials (phase change materials) layer or the like that changes the phase (or volume), it may be configured by stacking them in a plurality of layers.
  • 7A illustrates an air layer 310
  • FIG. 7B illustrates a sheet layer 320
  • FIG. 7C illustrates three layers 330: 331, 332, and 333.
  • the embodiment comprised by 300 is shown.
  • the spacer 300 is applied to the magnetic variable material in the magnetic field generating unit 200 by adjusting the thickness d of one layer or the thickness d of the entire plurality of layers by stacking a plurality of layers.
  • the intensity of the magnetic field By adjusting the intensity of the magnetic field, the light L reflected or transmitted by the magnetic variable material including part 100 may be changed.
  • the magnetic field generating unit 200 applies a strong magnetic field to the magneto-variable material, so that the distance between the particles 11 is small, so that the wavelength close to red is increased.
  • a weak magnetic field is applied to the magnetic variable material by the magnetic field generating unit 200, so that the distance between the particles 11 increases, so that a wavelength close to blue is reflected. Can be.
  • the thickness of the anti-counterfeiting and tamper-proof device may be 1 ⁇ m to several cm.
  • the ratio of the spacer 300 to the thickness may be 5% to 90%.
  • the spacer 300 may include a light absorption layer 400.
  • the light absorbing layer 400 is shown as a separate configuration from the spacer 300 in FIG. 8, the light absorbing layer 400 may be controlled by adjusting the thickness of the light absorbing layer 400 to adjust the intensity of the magnetic field applied to the magnetic variable material. It should be understood that 400 is also included in the spacer 300.
  • the light absorbing layer 400 may be a film layer having a predetermined color such as black, red, and blue.
  • a film layer having a predetermined color is used as the light absorbing layer 400, the light is transmitted through the magnetoresistive material containing part 100 and reflected from the light absorbing layer 400, and is reflected by the magnetoresistive material containing part 100.
  • the light absorbing layer 400 absorbs a specific wavelength band, the light reflected from the light absorbing layer 400 and the light L ′ reflected from the magnetic variable material containing part 100 overlap or interfere with each other to implement vivid colors. There is also an advantage to solve the problem that can not be solved.
  • the black film when used as the light absorbing layer 400, since the light absorbing layer 400 absorbs light of a wide wavelength band, the overlapping and interference with light reflected from the magnetic variable material containing part 100 is greatly reduced. As a result, the visibility can be greatly improved.
  • the spacer 300 may include a transparent or translucent light transmitting layer 500.
  • the light transmitting layer 500 is illustrated as a separate component from the spacer 300, but the intensity of the magnetic field applied to the magnetic variable material may be adjusted by adjusting the thickness of the light transmitting layer 500. It is to be understood that the light transmitting layer 500 is also included in the spacer 300.
  • the light transmitting layer 500 may have a pattern 510, an image, a character, a figure, a barcode, or the like formed on at least one surface thereof. Since the light L 'reflecting from the portion where the pattern 510 is formed and the light L of the wavelength band reflecting from the portion where the pattern 510 is not formed are different from each other, the magneto-variable material containing portion 100 is consequently formed. Through it, there is an effect that can check the shape of the pattern 510, etc. in addition to the predetermined color.
  • the external force F is applied to the magnetic variable material containing part 100, the magnetic field generating part 200, or the spacer 300.
  • the intensity of the magnetic field applied to the magnetoresistive material containing part 100 may be changed to change (L-> L ') the light reflected or transmitted from the magnetoresistive material containing part 100. .
  • a magnetoresistive material may be coated on an elastic substrate to form a magnetoresistive material containing part 100a.
  • the magnetic variable material containing portion 100a reflects the light L having a predetermined wavelength, but when the external force F is applied, the magnetic variable substance containing portion 100a is bent (100a '). Since the spacer 300 is pressed according to the thickness of the spacer 300, a change in the intensity of the magnetic field applied to the magneto-variable material-containing portion occurs in the portion where the thickness is changed (d 1-> d 2), and thus the wavelength of the reflected light L ′ may change. Can be. Since the magneto-variable material containing part 100a includes an elastic substrate, when the external force F is released, the magnetic variable material containing part 100a may return to its original state and reflect light L having a predetermined wavelength.
  • the spacer 300 is made of an elastic material, the spacer 300 is deformed when the external force F is applied to change the intensity of the magnetic field applied to the magneto-variable material containing part 100.
  • the spacer 300 returns to its original state and the light of the predetermined wavelength L ) Can be reflected.
  • the magnetic variable material containing part 100 or the magnetic field generating part 200 is formed to be bent, thereby applying the strength of the magnetic field applied to the magnetic variable material containing part 100 as the external force F is applied to the curved part.
  • the light reflected or transmitted by the magnetoresistive material containing part 100 may be changed (L-> L ').
  • the magnetic field generating unit 700 is disposed on one side of the magnetic variable material containing unit 100, and the magnetic variable material containing unit is disposed.
  • the other side of the 100 may include a magnetic induction unit 600, at least a portion 610 of the magnetic induction (magnetic indcuction) according to the magnetic field applied from the magnetic field generator 700.
  • the magnetic induction part 600 may have a magnetic induction pattern 610 which is a magnetic induction area.
  • the magnetic induction pattern 610 may be formed by coating a magnetic material such as iron powder.
  • the magnetic field generating unit 700 When the magnetic field generating unit 700 is close to the upper portion of the magnetic variable material containing unit 100, the magnetic field generating unit 700 not only applies a magnetic field to the magnetic variable material containing unit 100, but also the magnetic induction unit 600.
  • the magnetic field may be applied, and in particular, magnetic induction may occur in the magnetic induction pattern 610 to amplify the strength of the magnetic force.
  • the light reflected from the portion 110 of the magneto-variable material inclusion 100 to which the amplified magnetic field is applied that is, the portion 110 of the magneto-variable material inclusion 100 opposite to the magnetic induction pattern 610.
  • the wavelength may vary (L-> L ').
  • the magnetic induction pattern 610 is formed in the form of an image or a character, the image or character may be identified in the same manner as the magnetic induction pattern 610 through the upper surface of the magnetic variable material including part 100.
  • the anti-counterfeiting and tamper-proof apparatus magnetically generates the magnetic field generating unit 700 even when the magnetic variable material containing unit 100 and the magnetic inducing unit 600 are integrally attached to the forgery and tamper-proof object. Approaching from the upper portion of the variable material containing part 100 has an effect that can be immediately confirmed the pattern.
  • the anti-counterfeiting and anti-tampering apparatus may include a first magnetic body in which at least a portion of the magnetic variable material containing part 100 and the magnetic variable material containing part 100 face each other.
  • the magnetic field generator 700 generating a magnetic field that can be applied to the induction part 810, the second magnetic induction part 820 integrally extending to the first magnetic induction part 810, and the second magnetic induction part 820. It may include.
  • the first magnetic induction part 810 and the second magnetic induction part 820 are integral, and the magnetic variable material including part 100 overlaps with the first magnetic induction part 810 in a vertical direction. Part and does not have a part overlapping with the second magnetic induction part 820 in a vertical direction. Since the first magnetic induction part 810 and the second magnetic induction part 820 are integral and not physically separated, the first magnetic induction part 810 and the second magnetic induction part 820 are preferably the same material.
  • the magnetic field generator 700 does not apply a magnetic field to the magnetic variable material including part 100 and the first magnetic induction part 810, but only the second magnetic induction part 820.
  • the first magnetic induction part 810 extending integrally with the second magnetic induction part 820 may be magnetically induced.
  • a magnetic field may be applied to the magnetic variable material including part 100, and thus, at a portion of the magnetic variable material containing part 100 opposite to the first magnetic induction part 810. The light that is reflected or transmitted may change.
  • the anti-counterfeiting and tamper-proof apparatus may be arranged on a different axis from the magnetic variable material-containing part 100 without first having the magnetic field generator 700 directly approach the magnetic-variable material-containing part 100.
  • the magnetic field may be indirectly applied to check the authenticity.
  • the anti-counterfeiting and anti-tampering apparatus includes a magnetic field generating unit 700 including a magnetic variable material containing unit 100 and at least one permanent or variable magnet. , 720).
  • the magnetic field generator 700 is rotated by using a rotating means (not shown) or a moving means (not shown), or the position thereof is changed.
  • the light reflected or transmitted from the magnetic variable material containing part 100 may be changed (L-> L ').
  • a plurality of magnetic field generators 700 may be disposed 710 and 720.
  • both ends of the magnetization part 800 may be formed.
  • the wavelength of the light L that is magnetized to be reflected at the center of the magnetic variable material including part 100 and the light L ′ that is reflected at both ends may be different.
  • the entire magnetization unit 800 is closed.
  • the wavelength of the light L ′′ that is magnetized and reflected from both the center and the both ends of the magnetic variable material including part 100 may be the same.
  • the magnetic field generating unit 700 may combine the permanent magnet and the variable magnet, or may include a plurality of layers. Accordingly, by controlling the polarity, intensity, amplification, interference, and the like of the magnetic field applied by the magnetic field generator 700, the light reflected or transmitted from the magnetic variable material includeer 100 may be controlled.
  • the magnetization unit 800 may be configured of a plurality of layers to adjust polarity, intensity, amplification, interference, and the like of the magnetic field applied by the magnetic field generator 700.
  • the magnetic variable material containing part 100 and the magnetic variable material containing part are random counterparts (not shown).
  • an adhesive part 900 formed on one side of the magnetic variable material including part to be attached to the product, and the adhesive force of the partial part 910 of the adhesive part 900 may be different from the adhesive force of the remaining part 920. .
  • Some portions 910 may be patterned to take the form of images, text, graphics, barcodes, and the like.
  • the adhesive force of the portion 910 is stronger than the adhesive force of the remaining portion 920, since the portion 910 and the magnetic variable material containing portion 100 are strongly bonded, the magnetic variable material containing portion 100 may be arbitrarily selected. In the process of separating from the counterpart (not shown) of the only part may be separated and the other may not be separated.
  • the silver adhered state may be maintained, and only the portion 100b of the magnetic variable material containing portion 100 adhered to the remaining portion 920 except for the partial portion 910 may be separated.
  • the part 100b of the magneto-variable substance containing part 100 is damaged, so that the counterfeit and tamper proof device can be prevented from being reused. It works. And, even when the magnetically deformable material containing part 100 is separated, since the magnetically deformable material containing part 120 is still stuck on the patterned portion 910 of the adhesive part 900 having the strong adhesive force, any relative It is effective to keep the information that water is genuine.
  • the magnetic variable material containing part 100 and the magnetic variable material containing part may be any counterparts (not shown).
  • the adhesive part 900 may be formed on one side of the magnetic variable material including part to be attached to the product, and a cutting pattern P may be formed on the magnetic variable material including part 100.
  • Adhesive force may be the same in all parts of the adhesive part 900, and the cutout pattern P may have an image, a character, a figure, and the like.
  • the cutout pattern P has a letter form of “genuine”
  • the portion 130 corresponding to the cutout pattern P is separated and the remaining part is separated.
  • 140 may have a letter form of “genuine” and remain attached to any counterpart (not shown).
  • the magnetic variable material containing part 100 is detached from the counterpart once, the magnetic variable material containing part 100 is damaged, thereby preventing the reuse of the counterfeit and tamper proof device.
  • the magnetic variable material containing part 100 is separated, since some portions 140 are still attached to arbitrary counterparts, there is an effect of continuing to leave information that any counterpart is genuine.
  • the anti-counterfeiting and tamper-proof apparatus is disposed on the magnetic variable material including part 100, the magnetic field generating part 200, and the magnetic variable material containing part.
  • the information thin film layer 1000 may include an image 1010, a pattern, a character, a figure, a bar code, and the like formed on a surface of the magnetic variable material containing part 100.
  • the information thin film layer 1000 may be formed of a material capable of transmitting light. Since the information thin film layer 1000 has an image 1010 or the like formed on a surface contacting the magneto-variable material containing part 100, the image 1010 may be immediately checked from the outside, and the image 1010 may be arbitrarily forged from the outside. Can be prevented.
  • the adhesive force of the adhesive part (not shown) interposed between the information thin film layer 1000 and the magneto-variable material containing part 100 is applied.
  • a cutting pattern may be formed on the magnetic variable material including part 100 (see FIGS. 14 to 15).
  • the magnetic variable material including part 100 having an information display unit 150 such as an image, a pattern, a character, a figure, a barcode, etc. is formed. It may include.
  • the information display unit 150 may be formed by selectively removing a portion of the magneto-variable material containing unit 100 by punching, laser irradiation, UV irradiation, or the like. Accordingly, since the information display unit 150 is formed in the magnetic variable substance containing part 100, there is an effect of preventing reuse of the magnetic variable material containing part 100 in another kind of goods.
  • the anti-counterfeiting and tamper-proof apparatus includes a magnetization unit 1100 having a predetermined pattern 1110 and a portion of the pattern 1110 magnetized, and a magnetic variable material.
  • the light receiving unit 1200 may receive light reflected or transmitted from the magnetic variable material including unit 100 by the magnetic field applied by the unit 100 and the magnetization unit 1100.
  • the pattern 1110 of the magnetization unit 1100 may be formed by coating a magnetization material such as iron powder.
  • the pattern or wavelength value of the light L or L 'reflected or transmitted by the magnetoresistive material containing part 100 may correspond to the shape of the pattern 1110 of the magnetization part 1100.
  • the light receiving unit 1200 may be configured as a photo diode to receive the light (L, L ') reflected or transmitted from the magnetic variable material containing unit 100.
  • the light receiving unit 1200 may determine the authenticity by comparing the pattern or wavelength value of the light input in advance with the light L and L 'received by the magnetic variable material including unit 100.
  • the anti-counterfeiting and anti-tampering apparatus receives the pattern or the wavelength value of the light corresponding to the genuine product, and compares it with the light (L, L ') received by the magnetic variable material including part 100, There is an effect that can confirm the authenticity precisely.
  • the pattern 1110 is formed such that the pattern or wavelength value of the light L or L 'reflected or transmitted from the magnetic variable material containing part 100 cannot be visually identified, the forgery can be further prevented. There is.
  • the anti-counterfeiting and tamper-proof apparatus may further include additional anti-counterfeiting and tamper-proof means using at least one of hologram, radio frequency identification (RFID), and biometric information recognition, thereby preventing counterfeiting and tampering with an object.
  • RFID radio frequency identification
  • biometric information recognition thereby preventing counterfeiting and tampering with an object.
  • the effect of the can be further increased.
  • the magnetic variable material may be a color nanocomposite having a different form from magnetic material particles and the like.
  • the color nanocomposite is color-variable by application of an electric or magnetic field, the color difference ( ⁇ E * ab) before and after application of the electric or magnetic field according to the color coordinates of the CIE color system is 2.2 or more, and the full width at half of the particle size distribution curve maximum, FWHM) is 30 nm or less.
  • the color difference ⁇ E * ab indicates the degree of change in color (color caused by reflected light or transmitted light) through the rearrangement or change of charge state of the color nanocomposite before and after application of an electric or magnetic field.
  • the color difference 2.2 or more, preferably 3.0 or more, and more preferably 3.2 or more as an indicator to indicate, it means that the color change of the degree which can visually clearly confirm the change of color is represented.
  • the half width of the particle size distribution curve is an index indicating uniformity of particles
  • the half width of the peak is 30 nm or less, preferably 20 nm or less, more preferably around D50 of a single peak measured by particle size analysis.
  • a color nanocomposite having a uniform particle size distribution to be less than 10nm, it is easily rearranged by the application of an electric or magnetic field, it is possible to achieve a uniform color through diffraction or scattering of incident light.
  • the color nanocomposites may be dispersed and present in a medium, or may be dispersed and present in the form of charged particles.
  • the color nanocomposite may be composed of a core-cell structure or a multi-core-cell structure.
  • the color nanocomposite of the present invention exhibits a uniform size in the particle size of 50 to 1000 nm, preferably 100 to 500 nm, more preferably 100 to 300 nm.
  • the uniformity of the particles may be more important than the particle size, and thus may be out of the range of the particle size.
  • the color nanocomposite includes nanoparticles, and the nanoparticles may be conductive particles, metal particles, organometallic particles, metal oxide particles, magnetic particles, hydrophobic organic polymer particles, and may be formed by applying external energy.
  • the particles may exhibit photonic crystal properties in which regularity is imparted to the array and the interval. For example, silicon (Si), titanium (Ti), barium (Ba), strontium (Sr), iron (Fe), nickel (Ni), cobalt (Co), lead (Pb), aluminum (Al), copper (Cu), silver (Ag), gold (Au), tungsten (W), molybdenum (Mo), zinc (Zn), zirconium (Zr), or any one or more metals or nitrides or oxides thereof. .
  • the organic material nanoparticles may be made of a high molecular material such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, particles whose surface is modified by an organic compound having a hydrocarbon group, carboxyl group, ester group, ah. Particles whose surface is modified by an organic compound having any one or more of the actual groups, particles whose surface is modified by a complex compound containing a halogen element, and whose surface is modified by a coordination compound containing amines, thiols, and phosphines
  • grains which form a radical in the surface and have an electric charge are mentioned.
  • the nanoparticles may be particles imparting electrical polarization characteristics. That is, as the external magnetic field or electric field is applied to polarize the medium, the polarization of ions or atoms is further induced to increase the amount of polarization, and the residual polarization amount exists even when the external magnetic field or the electric field is not applied and the magnetic or electric field is applied. It can contain ferroelectric materials that remain hysteresis along the direction, and when an external magnetic or electric field is applied, an additional ionic or atomic polarization is induced to increase the amount of polarization greatly, but no external magnetic or electric field is applied. In this case, it may include a paraelectric material and a superparaelectric material in which residual polarization and hysteresis remain.
  • the nanoparticles may be made of particles containing single or different types of metals, oxide particles or photonic crystal particles.
  • a metal in the case of a metal, a metal nitrate compound, a metal sulfate compound, a metal fluoracetoacetate compound, a metal halide compound, a metal perchloroate compound, a metal sulfamate compound, a metal styrate compound and an organometallic compound
  • Magnetic precursors selected from the group consisting of: alkyl trimethylammonium halide-based cationic ligands, alkyl acids, trialkylphosphines, trialkylphosphine oxides, neutral ligands such as alkylamines, alkylthiols, sodium alkyl sulfates, sodium alkylcarboxylates
  • the amorphous metal gel may be prepared by adding a ligand selected from the group consisting of anionic ligands such as sodium alkyl phosphate, sodium acetate, and the like to a solvent to dissolve it, and heating the phase to crystalline particles.
  • the magnetic properties of the particles finally obtained by containing heterogeneous precursors may be enhanced, or various magnetic materials such as superparamagnetism, paramagnetic, ferromagnetic, antiferromagnetic, ferrimagnetic, and diamagnetic may be obtained.
  • the color nanocomposites of the present invention may be dispersed in a medium and rearranged by application of an electric or magnetic field.
  • a medium may be a polar or nonpolar medium.
  • a medium for example, water, methanol, ethanol, propanol, butanol, propylene carbonate, toluene, benzene, hexane, chloroform, halocarbon oil, perchloroethylene, trichloroethylene, isopar-G which is a kind of isoparaffin oil, isopar-M
  • isopar-G which is a kind of isoparaffin oil
  • isopar-M One or more of, isopar-H can be used.
  • the color nanocomposite of the present invention may have its own intrinsic color and may represent colors by rearrangement of particles, and in addition, various colors may be realized by applying a predetermined color to the medium.
  • the medium may comprise a dye or a pigment.
  • the dye may be azo dyes, anthraquinone dyes, carbonium dyes, indigo dyes, sulfide dyes, phthalocyanine dyes, and the like, and the pigments include titanium dioxide, zinc oxide, and lithopone.
  • various methods may be applied to the method of manufacturing the color nanocomposite of the present invention.
  • various methods of preparing nanocomposites according to the formation of an emulsion may include various methods as shown in Table 1 below.
  • the nanocomposite of the present invention may be formed by mixing colloidal particles and dyes or pigments (FIG. 19A), and may further include an expression material to form nanocomposites (FIG. 19B), and a cured material.
  • the nanocomposite may be additionally included (FIG. 19C), or the nanocomposite may be formed additionally including a hardening material and an expression material (FIG. 19D).
  • the nanocomposite comprises the steps of mixing the colorant particles and nanoparticles to prepare a mixture; Mixing a hydrophobic material in the mixture to form a miniemulsion; And polymerizing the miniemulsion and a monomer.
  • an anionic surfactant in order to form a miniemulsion, an anionic surfactant, a cationic surfactant, or a nonionic surfactant is included to maintain the dispersion of the colloidal particles.
  • the emulsion may be prepared by a chemical method using interfacial chemical properties or by physical methods such as ultrasonic dispersion, rotary stirring, colloid mill, homogenizer and the like.
  • the step of polymerization may be carried out by adding a droplet of the miniemulsion to the medium, after preparing a suspension of the hydrophobic material and the colorant particles, it may be carried out by adding an initiator.
  • the monomers applied to the miniemulsion of the present invention are styrene, pyridine, pyrrole, aniline, pyrrolidone, acrylic acid, urethane, Thiophene, carbazole, fluorene, fluorene, vinyl alcohol, vinyl alcohol, vinyl glycol, ethylene glycol, ethoxy acrylate may be one or more.
  • the nanocomposite may include preparing nanoparticles whose surface is modified by a material including a reactive group; Preparing a dispersion by mixing the surface-modified nanoparticles and colorant particles; It can be prepared, including; the surface-modified nanoparticles and the adsorption reaction of the colorant particles.
  • the surface modification is to make the surface of the nanoparticles with a reactive group such as a hydroxyl group (-OH), an amine group (-NH), etc., for example, by coating the nanoparticles with a silica containing a hydroxyl group which is a reactive group may cause surface modification. have. It can also be modified with an amine group (-NH) through the coating of aminosilane.
  • a reactive group such as a hydroxyl group (-OH), an amine group (-NH), etc.
  • the type of surface group depends on the type of colorant to be adsorbed. For example, when the carbon nanoparticles are used as the colorant, the surface is replaced with a hydroxyl group and adsorbed. When dye particles such as methylene blue are used as the colorant, the surface may be replaced with an amine group.
  • graphene oxide grafted with ethylene diamine may be used instead of the carbon nanoparticles, or carbon nanoparticles modified with a hydroxyl group may be used to increase the adsorption reaction efficiency.
  • the color nanocomposite is modified by modifying the surface of the colorant particles; Preparing a dispersion by mixing the colorant particles and the nanoparticles; It is prepared, including; causing the adsorption reaction of the colorant particles and nanoparticles.
  • 5% of graphene oxide is mixed with ethanol and then dispersed with an ultrasonic disperser for 2 hours, and the dispersion is placed in a reactor and adjusted to pH 11 with ammonia while stirring. Then, aminosilane is added to convert the surface of graphene oxide into an amine group. After washing this, mixed with silica-coated iron oxide nanoparticle cluster collide aqueous solution, heated to 80 ° C. and stirred for 12 hours to cause adsorption reaction, the zeta potential of -45 mV to -50 mV has a positive value (- ) Even if it has a charge, it shows very low value and it can be confirmed that adsorption is good.
  • the nanocomposite may be prepared by using an iron oxide nanoparticle cluster coated with silica and surface modified with a hydroxyl group and methylene blue modified with an amine group.
  • the dispersed iron oxide nanoparticle cluster colloid is adjusted to pH 11 using ammonia, mixed with an ethanol solution in which 1% methylene blue is dissolved, and stirred for 12 hours to prepare a nanocomposite, and the zeta potential value is -7 to Measured at +10 mV. This can be confirmed that the reaction occurs firmly compared with the zeta potential value of -48 to -35mV of the general iron oxide nanoparticle cluster coated with silica.
  • the color nanocomposite may comprise mixing nanoparticle clusters and colorant particles; And agglomeration reaction of the nanoparticle clusters and the colorant particles.
  • the nanoparticle cluster and the colorant particles should satisfy a range of 5 nm or less in the difference between the median particle diameter ( ⁇ D50) and the average particle diameter ( ⁇ Dm) according to the particle size distribution curve.
  • the particle size distribution curve is symmetric about D50, there is no difference between D50 and Dm.However, if the particle size distribution curve is asymmetric, the difference between D50 and Dm occurs. The larger the difference, the less uniform the particle size distribution is. Means that.
  • ⁇ D50 is an index indicating the size of two kinds of particles, and when 5 nm or less, two kinds of particles may be uniformly mixed to substantially the same size to form a nanocomposite.
  • ⁇ Dm is an index indicating particle uniformity and particle size difference between two kinds of particles, and simultaneously satisfies a value of 5 nm or less of ⁇ D50 and ⁇ Dm, so that the particle size is uniform and the particle size difference is substantially the same. It will be used as an indicator.
  • the nanocomposite is prepared by oxidizing the surface of 20 to 50nm grade carbon black, surface modification with a hydroxyl group to be easily dispersed in an ethylene glycol solvent, and then mixed with iron oxide nanoparticle clusters. As the concentration was increased, the color of the surface was changed to black, and it was confirmed that the color can be adjusted according to the ratio of mixing two kinds of particles.
  • the difference between the manufacturing method by the surface modification and the manufacturing method by the aggregation will form the nanocomposite prepared by the surface modification (FIG. 20) and the nanocomposite prepared by the aggregation (FIG. 21).
  • a negative charge is applied to a surface by coating a material (for example, silica) that can impart a reactor to the surface of nanoparticles (2),
  • a material for example, silica
  • the dye particles are physically adsorbed or chemisorbed on the surface of the nanoparticles to form nanocomposites (3).
  • the nanoparticles 1 and the oxidized carbon black particles 2 are dispersed in an ethylene glycol solvent and then flocculated (3) under oil / water phase conditions. Nanocomposites are formed.
  • the intrinsic color of the nanocomposite changes depending on the amount of carbon black mixed, the color can be adjusted according to the use.
  • the colorant particles may be any one or more of dye particles, pigment particles, surface-modified carbon nanoparticles, graphite, surface-modified graphene oxide particles.
  • the dye particles are particles consisting of any one or more of azo dyes, anthraquinone dyes, carbonium dyes, indigo dyes, sulfide dyes, phthalocyanine dyes
  • the pigment particles are pigments titanium oxide (titanium dioxide), Zinc oxide, lithopon, zinc sulfonate, chrome yellow, zinc chromate, red oxide of iron, red lead, cadmium ( cardmium red, molybdate chrome orange, milori blue, pressian blue, iron blue, cobalt blue, chrome green, chrome hydroxide, zinc green ),
  • microparticles may be mentioned.
  • the microparticles are microparticles containing color nanocomposites that are rearranged by application of an electric or magnetic field, wherein the color nanocomposites are as described above, and the microparticles have a pencil hardness of 4 B or less and a ratio using nitrogen gas.
  • the pore volume in the region of 5 nm or less is characterized by 20% or less of the total pore volume.
  • the microparticles of the present invention have lower elasticity and harder properties of wall materials than conventional capsules. Therefore, it is excellent in the storage of the color nanocomposite contained in the particles, unlike the capsule is easy to print because the particles are not destroyed during printing.
  • the colored nanocomposite exhibiting these properties exhibits a pencil hardness of 4 B or less, preferably 3 B or less, in a dry powder state.
  • the conventional microcapsule has a pencil hardness of 9B or more and the strength of the wall material is very weak, it can be seen that the microparticles greatly improve the wall material strength.
  • the strength of the wall material of such microparticles can be inferred from the void volume of the micropores present in the wall material.
  • Pore volume can be measured by BET specific surface area measurement using gas adsorption-desorption method. In this case, the surface area is measured by adsorption-desorption of gases such as nitrogen, argon, krypton, oxygen, helium and carbon monoxide.
  • the micropores are pores of 5 nm or less, and the higher the density of the polymer constituting the wall material, the smaller the pore volume of the micropores. Therefore, the pore volume of the micropore region tends to be inversely proportional to the strength of the wall material, and in order to obtain sufficient strength of the microcapsules in the present invention, the pore volume in the region of 5 nm or less must satisfy 20% or less of the total pore volume. When the pore volume in the 5 nm or less region exceeds 20% of the total pore volume, the wall is observed to be formed of an aggregate of polymers, which is associated with a tendency to decrease the volume of the micropore region.
  • the principle that the color nanocomposite realizes the color in the microparticles may be realized through the intrinsic color of the particles due to the colorant particles contained in the nanocomposite, and at the same time, the application may be performed by application from the outside of an electric or magnetic field. Nanocomposites can also be rearranged to reflect light of a specific wavelength to achieve color.
  • the color nanocomposite may realize colors through rearrangement of particles or rearrangement of micro particles.
  • it has to have a very uniform particle size and high mobility in the medium to facilitate rearrangement.
  • the color nanocomposites of the present invention may be dispersed and present in the medium, or may be present in the form of charged particles.
  • the color nanocomposite may be composed of a core-cell structure or a multi-core-cell structure.
  • the color nanocomposite of the present invention exhibits a uniform size in the particle size of 50 to 1000 nm, preferably 50 to 500 nm, more preferably 50 to 300 nm.
  • the uniformity of the particles may be more important than the particle size, and thus may be out of the range of the particle size.
  • the color nanocomposites of the present invention are dispersed in a dispersion medium and exist as cores in the microparticles, and can be rearranged by application of an electric or magnetic field.
  • a polar or nonpolar dispersion medium can be used.
  • a polar or nonpolar dispersion medium can be used.
  • Microparticles according to the present invention can be prepared through the reaction process to form an emulsion to form a core-cell.
  • the core material is prepared by dispersing the color nanocomposite in a dispersion medium (S110).
  • the color nanocomposite may be dispersed at a ratio of 0.1 to 25% by weight based on the dispersion medium, but may be dispersed in a larger amount as needed.
  • the dispersion of the core material is dispersed using an ultrasonic disperser or homogenizer.
  • a polymer precursor capable of exhibiting low elasticity and rigid properties may be used.
  • a copolymer such as urea-formaldehyde, melamine-formaldehyde, methylvinyl ether commaleic anhydride, gelatin, polyvinyl Polymers such as alcohol, polyvinylacetate, cellulosic derivatives, acacia, carrageenan, carboxymethylcellulose, hydrolyzed styrene anhydride copolymers, agar, alginate, casein, albumin, cellulose phthalate and the like can be used.
  • the prepolymer may be prepared in a dispersion by dispersing in a dispersion medium like the nanocomposite.
  • the dispersion of the nanocomposite prepared in step S110 and the prepolymer dispersion of the wall material prepared in step S120 may be mixed and stirred to form an emulsion (S130). It is necessary to optimize the ratio of the nanocomposite and the prepolymer under the conditions for forming such an emulsion, and the two dispersions may be mixed in a volume ratio of 1: 5 to 1:12. In addition, a stabilizer may be added to improve dispersibility.
  • the color nanocomposite may be in a dispersed phase and the wall material may be in a continuous phase.
  • an additive may be added to increase the stability of the emulsion.
  • Such additives may be organic polymers having high viscosity and high wettability after dissolution in an aqueous phase.
  • gelatin polyvinyl alcohol, sodium carboxymethyl cellulose, starch, hydroxyethyl cellulose, polyvinylpyrrolidone, alginate At least one of them can be used.
  • the core material dispersion may be encapsulated by controlling the pH and temperature of the emulsion formed in the step S130 so that the continuous wall material dispersion is deposited around the discolored magnetic discoloring ink to form a wall of the capsule (S140). That is, the encapsulation is performed by an in situ polymerization method, in which case, the capsule wall material may be more densely formed to reduce the elasticity, thereby adding an additive to increase the hardness of the wall material.
  • the type of additive to be added may be an ionic or polar substance that is well soluble in the aqueous phase.
  • an ionic or polar substance that is well soluble in the aqueous phase.
  • ammonium chloride, resorcinol, hydroquinone, and catechol which is a curing catalyst, may be used.
  • microparticles containing the color nanocomposite of the present invention may be prepared by the in situ polymerization method as described above, but may also be prepared by a coacervation method E or an interfacial polymerization method.
  • an oil phase / water emulsion of an internal phase and an external phase is used.
  • the color nanocomposite colloid is coacervated out from the aqueous outer phase and granulated by forming walls in the oil phase droplets of the inner phase by controlling temperature, pH, relative concentration, and the like.
  • urea-formaldehyde, melamine-formaldehyde, gelatin, arabic rubber, or the like can be used as the wall material.
  • the lipophilic monomer in the inner phase depending on the presence of the lipophilic monomer in the inner phase, it is present as an emulsion in the aqueous outer phase.
  • the monomer in the inner phase liquid crystal reacts with the monomer introduced into the aqueous outer phase, the polymerization takes place at the interface between the droplet of the inner phase and the surrounding aqueous outer phase, and a wall of particles is formed around the droplet.
  • the formed wall is relatively thin and permeable, but unlike other manufacturing methods, heating is not required, and thus there is an advantage in that various dielectric liquids can be applied.
  • the microparticles according to the invention consist of a uniform sphere of 10 to 100 ⁇ m, preferably 10 to 50 ⁇ m, more preferably 10 to 40 ⁇ m.
  • the uniformity of the shape and size of the capsule is to ensure the macroscopic uniformity of the color nanocomposite rearranged by the electric or magnetic field, thereby improving the color change and the sharpness of the color to be implemented. If the uniformity of the shape and size of the microparticles is not secured, even if the color nanocomposites dispersed in the microparticles are rearranged uniformly, irregularities are increased macroscopically, resulting in insufficient color change and implementation.
  • Table 2 shows the results of measuring the particle size distribution of the microparticles (Comparative Example) prepared by reducing the amount of the curing catalyst to 1/2 without using the microparticles (Example) and the stabilizer prepared by the present invention. have.
  • the microparticles according to the present invention has a D50 of 23.23 ⁇ m having the size of the particle required by the present invention, it can be seen that the D50 is rapidly increased when the manufacturing conditions are changed. Uniformity of the particle size distribution can also be seen by examining the particle size distribution graph of the microparticles according to Examples and Comparative Examples (FIG. 23).
  • the comparative example is 113.95 ⁇ m, which shows that the uniformity of the average particle size distribution is greatly deteriorated compared to the examples. Therefore, it was confirmed that the microparticles of the present invention can be obtained by strictly controlling the production conditions and physical properties of the microparticles in the present invention.
  • the microparticles of the present invention have less agglomeration between the particles even after drying due to the low elasticity of the wall material and the hard properties. This can be seen by examining the optical micrograph of the powder state prepared by the room temperature drying of the Example (FIG. 26A) and the Comparative Example (FIG. 26B). In Example, no agglomeration occurred after drying and almost no change in the shape of the particles was observed, but in the Comparative Example, it was confirmed that the shape change and the partial agglomeration occurred. Therefore, the particles according to the comparative example can be seen to exhibit properties similar to the conventional capsule.
  • FIG. 27 is a photograph showing the appearance of color when a rubber particle having a magnetic field strength of 100 gauss is applied to the rear surface of the slide glass after applying the microparticles of the present invention to the slide glass at a thickness of 100 ⁇ m.
  • the uniformity of the microparticles of the present invention has the effect of causing a noticeable color change even in a weak magnetic field.
  • the microparticles of the present invention exhibit excellent heat resistance due to the low elasticity and rigid properties of the wall material.
  • the microparticles according to the Examples and Comparative Examples evenly sprayed on the slide glass and left for 24 hours in a hot air dryer at 100 °C, the result of observing the change in the shape of the particles. From the above results, it was confirmed that the rigidity of the wall material of the microparticles according to the present invention is excellent in thermal stability.
  • This property means that it can withstand high temperature printing conditions, which means that it can be applied to various types of display elements or print media.
  • FT-IR Fourier transform infrared spectroscopy
  • the wall material of the microparticles of the present invention was found to have a very dense structure, a very high elasticity, a low elasticity, and a hard property.
  • microparticles including the color nanocomposite of the present invention have no agglomeration during dry storage, and are excellent in thermal stability and wall strength, and thus can be applied to various types of printing, and particularly heat resistance and coagulation resistance such as silk screen printing are required. It can be applied to inks that can be used to broaden the application.
  • microparticles according to the present invention When the microparticles according to the present invention are applied to an ink for printing, they can be dispersed and used in binders such as water-soluble polymers, water-dispersible polymers, oil-soluble polymers, thermosetting polymers, thermoplastic polymers, UV curable polymers, radiation curable polymers, and the like.
  • binders such as water-soluble polymers, water-dispersible polymers, oil-soluble polymers, thermosetting polymers, thermoplastic polymers, UV curable polymers, radiation curable polymers, and the like.
  • the surface active agent and the crosslinking agent may be added to the binder to improve the durability of the printing or coating process.
  • Printing using the microparticles includes all forms of printing and coating, and may be a coating such as roll coating, gravure coating, dip coating, spray coating, meniscus coating, sping coating, brush coating, air knife coating, or silkscreen. It may be carried out through printing such as printing, electrostatic printing, thermal printing, inkjet printing.
  • an emulsion, a jelly-like ball, and particles using the same may be used.
  • the emulsion is an emulsion containing the color nanocomposite, an emulsion containing a color nanocomposite rearranged by the application of an electric or magnetic field, the color nanocomposite forms a spherical ball-shaped sphere, the emulsion It is characterized in that the sphere in the form of jelly balls is dispersed.
  • the color nanocomposites used in the present invention are as described above, but are mixed and dispersed with a polymer that is hydrogen-bonded with the solvent molecules. Therefore, it is preferable to perform surface modification to make the surface of the color nanocomposite particles reactive groups such as hydroxyl group and amine group.
  • surface modification may be performed with an amine group via a coating of aminosilane or surface modification with a hydroxyl group via a silica coating.
  • the surface-modified color nanocomposites are dispersed in oil and encapsulated by dropping them in a hydrophilic solvent such as water.
  • this embodiment simplifies this complex manufacturing process, by dispersing the surface-modified color nanocomposite particles in a solvent and a polymer that is hydrogen-bonded with the solvent molecule, so that when it is dropped into oil, an inverse emulsion of water-in oil structure ( An inverse emulsion system is formed to form spherical balls.
  • the spherical ball-shaped spheres contain colored nanocomposites within the spheres, and thus rearranged at a significantly faster rate than the colored nanocomposite particles dispersed in conventional microcapsules upon application of an electric or magnetic field. This becomes possible. This is a phenomenon that occurs because the colored nanocomposite particles are fixed and dispersed by a polymer so that aggregation does not occur, and rearrangement is sufficiently possible even when a short distance is moved when an electric or magnetic field is applied.
  • the dispersion of the color nanocomposite and the solvent-molecule and the hydrogen-bonding polymer may be improved in order to improve dispersibility.
  • the surface of the color nanocomposite should be surface treated to exhibit an electrostatic repulsive force. Surface formula is needed for this purpose.
  • a polar or nonpolar solvent may be used as the solvent for forming the jellyball-shaped spheres.
  • solvents are water, methanol, ethanol, propanol, butanol, propylene carbonate, toluene, benzene, hexane, chloroform, halocarbon oil, perchloroethylene, trichloroethylene and isopar-G, which is a kind of isoparaffin oil.
  • -M and isopar H may be used as a polar or nonpolar solvent.
  • the color nanocomposite does not need surface modification in this case because it is dropped in an aqueous medium to prepare an antiemulsion system.
  • the color nanocomposite, the solvent, and the polymer may be modified and used in an appropriate form so as to form a jellyball-shaped sphere through an inverse emulsion system.
  • the polymer that is hydrogen-bonded with the solvent molecule may be used as long as it is dispersed in a solvent and can be stably bonded to the color nanocomposite particles, for example, gelatin, polyvinal alcohol, polyvinylacetate, cellulose Polymers, such as an acid derivative, acacia, carrageenan, carboxymethyl cellulose, hydrolyzed styrene anhydride copolymer, agarose, alginate, casein, albumin, cellulose phthalate, can be used. It is preferable to use a water-soluble polymer as such a polymer, and natural polymers such as gelatin, agarose, and cellulosic derivatives are preferably used in consideration of production cost.
  • the spherical ball-shaped spheres in which the colored nanocomposite particles are dispersed are easily arranged at equal intervals by being dispersed in the fine pores of the high-viscosity jelly-type ball having elasticity by the application of a very small amount of electric or magnetic fields. .
  • Oils for forming the jelly-like ball include mineral oil, paraffin oil, vegetable glyceride oil, animal glyceride oil, synthetic ester oil, synthetic ether oil, silicone oil, fatty alcohol alcohol propoxylate, wax, dodecane, kerosene, You can use salt control, etc.
  • the spherical ball-shaped sphere is very fluid, it may be formed in a circular shape with low surface tension, but may be deformed into an ellipse or joined to a spherical spherical sphere in the form of a crushed sphere (FIG. 32).
  • the gel ball-shaped spheres can be produced in various sizes by adjusting the process conditions, it is possible to produce spheres with a diameter of 1 ⁇ m to 10 mm depending on the application.
  • agarose was selected as a polymer that hydrogen bonds with a solvent molecule, thereby preparing a spherical ball-shaped sphere.
  • a colloidal solution may be prepared by mixing and dispersing color nanocomposites such as iron oxide nanocomposites coated with silica in an aqueous solution of agarose in a stirring tank of 70 ° C or higher. Can be.
  • the colloidal solution is injected into an oil of about 70 ° C., which is a phase change temperature of agarose, and stirred to prepare a spherical ball-shaped sphere.
  • Fig. 34 is a micrograph of a sphere in the form of a jelly ball having an average particle size of 15 ⁇ m.
  • a sphere may be obtained by adjusting the ratio of the color nanocomposite particles to the polymer and the solvent, and in the present invention, its size may be adjusted in the range of 1 ⁇ m to 10 mm.
  • the spherical ball-shaped spheres may be coated with a curable polymer to form an envelope, thereby preparing spheres including the color nanocomposites.
  • thermosetting or ultraviolet curable polymer may be used, and any one of polyethylene, polymethyl methacrylate, polystyrene, polyamide, and polyvinyl chloride may be used.
  • the curable polymer may be formed by spraying the surface of the sphere through a nozzle or the like and then hardening.
  • the shell When the shell is formed, drying and volume reduction of the jelly-shaped sphere are hardly generated, and thus long-term integrity is achieved. This increases, and even when manufactured with printing inks it is possible to obtain a durable sphere with no outflow of the color nanocomposite.
  • the emulsion containing the color nanocomposite of the present invention is excellent in dispersibility and can be easily prepared into a film by applying it to a film substrate such as a release paper or a light transmissive film and then cooling and curing.
  • the coated sphere has no agglomeration even in dry storage, and has excellent thermal stability and strength of wall materials, so it can be applied to various types of printing, especially in inks requiring heat resistance and coagulation resistance such as silk screen printing.
  • the application can be broadened.
  • microparticles according to the present invention When the microparticles according to the present invention are applied to an ink for printing, they can be dispersed and used in binders such as water-soluble polymers, water-dispersible polymers, oil-soluble polymers, thermosetting polymers, thermoplastic polymers, UV curable polymers, radiation curable polymers, and the like.
  • binders such as water-soluble polymers, water-dispersible polymers, oil-soluble polymers, thermosetting polymers, thermoplastic polymers, UV curable polymers, radiation curable polymers, and the like.
  • the surface active agent and the crosslinking agent may be added to the binder to improve the durability of the printing or coating process.
  • Printing using the microparticles includes all forms of printing and coating, and coatings such as roll coating, gravure coating, dip coating, spray coating, meniscus coating, spin coating, brush coating, air knife coating, or silkscreen It may be carried out through printing such as printing, electrostatic printing, thermal printing, inkjet printing.
  • 0.1 to 10 parts by weight of xanthan gum is dissolved in 5 to 20 parts by weight of distilled water at 80 to 100 ° C. for 0.5 to 3 hours and stored in a 50 to 80 ° C. stirring tank.
  • the temperature is raised to 60 to 80 ° C. to make the temperature of the xanthan gum solution the same.
  • 0.1 to 10 parts by weight of a hydrous polyacrylamide is dissolved in 5 to 20 parts by weight of distilled water at 80 to 100 ° C for 0.5 to 3 hours and stored in a 50 to 80 ° C stirring tank.
  • 0.1 to 10 parts by weight of agarose is dissolved in 5 to 20 parts by weight of distilled water at 80 to 100 ° C. for 0.5 to 3 hours and stored in a 50 to 80 ° C. stirring tank.
  • a jelly-shaped ball of the nanocomposite having a size of 10 ⁇ m or more can be prepared as follows.
  • 0.1 to 10 parts by weight of agarose is dissolved in 5 to 20 parts by weight of distilled water at 80 to 100 ° C. for 0.5 to 3 hours and stored in a 50 to 80 ° C. stirring tank.
  • magnetizer 1200 light receiver

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Credit Cards Or The Like (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soft Magnetic Materials (AREA)
  • Printing Methods (AREA)

Abstract

본 발명에 따른 위조 및 변조 방지 장치는, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 상기 자기 가변 물질에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부, 및 상기 자기 가변 물질 포함부와 상기 자기장 발생부 사이에 개재되어 상기 자기 가변물질 포함부와 상기 자기장 발생부의 간격을 조절하는 스페이서를 포함하는 것을 특징으로 한다.

Description

위조 및 변조 방지 장치
본 발명은 위조 및 변조 방지 장치에 관한 것이다. 보다 상세하게는, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 자기 가변 물질에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부, 및 자기 가변 물질 포함부와 자기장 발생부 사이에 개재되어 자기 가변물질 포함부와 자기장 발생부의 간격을 조절하는 스페이서를 포함하고, 스페이서의 두께를 조절하여 자기 가변 물질에 대하여 인가되는 자기장의 세기를 조절함에 따라, 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있는 장치에 관한 것이다.
고가의 상품이나 내용물의 진정성이 요구되는 상품의 위조 및 변조를 방지하기 위하여 다양한 기술들이 소개된 바 있다. 종래에는 주로 미세 패턴, 점자, 홀로그램, RFID 등을 이용한 기술들이 상품의 위조 및 변조를 방지하기 위하여 사용되어 왔지만, 이러한 종래기술은 일반 사용자가 상품의 위조 및 변조 여부를 감별하기가 쉽지 않다는 한계를 가지고 있거나 위조 및 변조 방지 수단을 제조하는 데에 많은 비용이 소요되는 문제점을 가지고 있다.
이에, 본 발명자는, 자기장이 인가됨에 따라 색이 변하거나 광 투과도가 변하는 물질을 이용하여 일반 사용자가 위조 및 변조 방지 대상물의 위조 및 변조 여부를 손쉽게 판별할 수 있도록 하는 방법 및 장치를 개발하기에 이르렀다.
본 발명은 상술한 문제점을 모두 해결하는 것을 그 목적으로 한다.
본 발명은 자기 가변 물질 포함부와 자기장 발생부 사이에 스페이서를 개재하여 자기 가변물질 포함부와 자기장 발생부의 간격을 조절함에 따라, 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있는 위조 및 변조 방지 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 자기장 발생부에서 인가되는 자기장에 따라 자기 유도 패턴 부분이 자기 유도(magnetic indcuction)되고, 자기 유도 패턴에 대향하는 자기 가변 물질 포함부의 부분에서 반사되거나 투과되는 광이 변화될 수 있는 위조 및 변조 방지 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 자기 가변 물질 포함부와 대향되는 제1 자기 유도부와 일체로 연장되는 제2 자기 유도부에 대하여 자기장을 인가함에 따라, 자기 가변 물질 포함부와 다른 축 상에서 자기장을 인가할 수 있는 위조 및 변조 방지 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 자기장 발생부를 가변 물질 포함부에 대해서 회전시키거나, 위치를 변화시킴으로써, 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있는 위조 및 변조 방지 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 자기 가변 물질 포함부에 접착된 접착부의 일부 부분의 접착력은 나머지 부분의 접착력과 상이하여, 외력을 가하여 자기 가변 물질 포함부를 접착부로부터 분리시킬 때, 자기 가변 물질 포함부의 일부 부분만이 분리되는 위조 및 변조 방지 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 자기 가변 물질 포함부에 절취 패턴이 형성되어, 외력을 가하여 자기 가변 물질 포함부를 접착부로부터 분리시킬 때, 절취 패턴에 해당되는 자기 가변 물질 포함부의 부분만이 분리되는 위조 및 변조 방지 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 자기 가변 물질 포함부 상에 정보 박막층이 배치되고, 자기 가변 물질 포함부와 접하는 면에 이미지, 패턴, 문자, 도형, 바코드 등이 형성되어 정보를 표시할 수 있는 위조 및 변조 방지 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 자기 가변 물질 포함부에 이미지, 패턴, 문자, 도형, 바코드 등의 정보 표시부가 형성 되어 정보를 표시 할 수 있는 위조 및 변조 방지 장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은 패턴 형상 부분이 자화된 자화부에서 인가된 자기장에 의해, 자기 가변 물질 포함부에서 반사되거나 투과된 광을 수광하고, 이를 기입력된 패턴 또는 파장 값과 비교하여 진위 여부를 판단할 수 있는 위조 및 변조 방지 장치를 제공하는 것을 목적으로 한다.
본 발명의 상기의 목적은, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 상기 자기 가변물질에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부, 및 상기 자기 가변 물질 포함부와 상기 자기장 발생부 사이에 개재되어 상기 자기 가변물질 포함부와 상기 자기장 발생부의 간격을 조절하는 스페이서를 포함하는 위조 및 변조 방지 장치에 의해 달성된다.
상기 스페이서는, 에어(air)층, 박막층, 필름층, 시트층, 접착증, 정보표시층, 상변화 물질(phase change materials)층 중 적어도 어느 하나를 포함할 수 있다.
상기 스페이서의 두께를 조절하여, 상기 자기 가변 물질에 대하여 인가되는 자기장의 세기를 조절함에 따라, 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있다.
상기 스페이서의 자화율을 조절하여, 상기 자기 가변 물질에 대하여 인가되는 자기장의 세기를 조절함에 따라, 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있다.
상기 스페이서는 광흡수층을 포함하며, 상기 광흡수층은 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있다.
상기 스페이서는 투명 또는 반투명의 광투과층을 포함하며, 상기 광투과층은 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있다.
상기 광투과층의 적어도 일면에 이미지, 패턴, 문자, 도형, 바코드 등이 형성될 수 있다.
상기 자기 가변 물질 포함부 또는 상기 자기장 발생부는 굴곡지게 형성되고, 상기 자기 가변 물질 포함부 또는 상기 자기장 발생부에 외력을 가하여 변형시킴에 따라, 상기 자기 가변 물질 포함부에 인가되는 자기장이 변화할 수 있다.
상기 자기 가변 물질 포함부는 상기 자기 가변 물질을 탄성 기판에 코팅하여 형성할 수 있다.
상기 스페이서는 탄성 재질로 구성되고, 상기 스페이서가 외력에 의해 변형됨에 따라, 상기 자기 가변 물질 포함부에 인가되는 자기장이 변화할 수 있다.
그리고, 본 발명의 상기의 목적은, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 상기 자기 가변 물질 포함부의 일측에 배치되며, 상기 자기 가변 물질에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부, 및 상기 자기 가변 물질 포함부의 타측에 배치되며, 상기 자기장 발생부에서 인가되는 자기장에 따라 적어도 일부가 자기 유도(magnetic indcuction)되는 자기 유도부를 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치에 의해 달성된다.
상기 자기 유도부는 자기 유도 되는 영역인 자기 유도 패턴이 형성될 수 있다.
상기 자기 유도 패턴에 대향하는 상기 자기 가변 물질 포함부의 부분에서 반사되거나 투과되는 광이 변화될 수 있다.
그리고, 본 발명의 상기의 목적은, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 상기 자기 가변 물질 포함부와 적어도 일부가 대향되는 제1 자기 유도부, 상기 제1 자기 유도부에 일체로 연장되는 제2 자기 유도부, 및 상기 제2 자기 유도부에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부를 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치에 의해 달성된다.
상기 자기장 발생부에서 인가되는 자기장에 따라 제2 자기 유도부가 자기 유도됨과 동시에, 상기 제2 자기 유도부와 일체로 연장되는 상기 제1 자기 유도부가 자기 유도되며, 상기 제1 자기 유도부에 대향하는 상기 자기 가변 물질 포함부의 부분에서 반사되거나 투과되는 광이 변화될 수 있다.
그리고, 본 발명의 상기의 목적은, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 및 상기 자기 가변 물질에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부를 포함하며, 상기 자기장 발생부는, 적어도 하나의 영구자석 또는 가변자석을 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치에 의해 달성된다.
상기 자기장 발생부는 상기 자기 가변 물질 포함부에 대해서 회전되거나, 위치가 변화됨으로써, 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있다.
상기 자기 가변 물질 포함부와 상기 자기장 발생부 사이에 적어도 하나의 층을 가지는 자화부를 더 포함할 수 있다.
그리고, 본 발명의 상기의 목적은, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 및 상기 자기 가변 물질 포함부가 임의의 상대물에 부착되도록 상기 자기 가변 물질 포함부의 일측에 형성된 접착부를 포함하며, 상기 접착부의 적어도 일부 부분의 접착력은 상기 일부 부분을 제외한 나머지 부분의 접착력보다 강한 것을 특징으로 하는 위조 및 변조 방지 장치에 의해 달성된다.
외력을 가하여 상기 자기 가변 물질 포함부를 상기 접착부로부터 분리시킬 경우, 상기 일부 부분에 접착된 상기 자기 가변 물질 포함부의 부분은 접착된 상태를 유지하고, 상기 일부 부분을 제외한 나머지 부분에 접착된 상기 자기 가변 물질 포함부의 부분만이 분리될 수 있다.
상기 일부 부분은 패턴화 될 수 있다.
그리고, 본 발명의 상기의 목적은, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 및 상기 자기 가변 물질 포함부가 임의의 상대물에 부착되도록 상기 자기 가변 물질 포함부의 일측에 형성된 접착부를 포함하며, 상기 자기 가변 물질 포함부에 절취 패턴이 형성되어, 외력을 가하여 상기 자기 가변 물질 포함부를 상기 임의의 상대물로부터 분리시킬 경우, 상기 절취 패턴에 해당되는 자기 가변 물질 포함부의 부분만이 분리되는 것을 특징으로 하는 위조 및 변조 방지 장치에 의해 달성된다.
그리고, 본 발명의 상기의 목적은, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 상기 자기 가변 물질 포함부 상에 배치되며, 상기 자기 가변 물질 포함부와 접하는 면에 이미지, 패턴, 문자, 도형, 바코드 등이 형성된 정보 박막층, 및 상기 자기 가변 물질에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부를 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치에 의해 달성된다.
그리고, 본 발명의 상기의 목적은, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부를 포함하며, 상기 자기 가변 물질 포함부는 이미지, 패턴, 문자, 도형, 바코드 등의 정보 표시부가 형성된 것을 특징으로 하는 위조 및 변조 방지 장치에 의해 달성된다.
상기 정보 표시부는, 펀칭(punching), 레이저 조사, UV 조사 등의 방법으로 상기 자기 가변 물질 포함부를 선택적으로 제거하여 형성할 수 있다.
그리고, 본 발명의 상기의 목적은, 소정의 패턴을 가지며, 상기 패턴 부분이 자화된 자화부, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 및 상기 자화부에서 인가된 자기장에 의해 상기 자기 가변 물질 포함부에서 반사되거나 투과된 광을 수광하는 수광부를 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치에 의해 달성된다.
상기 수광부는 기입력된 패턴 또는 파장 값과, 상기 자화부의 상기 패턴에 의해 상기 자기 가변 물질 포함부에서 반사되거나 투과된 광의 파장을 비교하여 진위 여부를 판단할 수 있다.
상기 자기 가변 물질은 상기 자기장이 인가됨에 따라 기설정된 파장의 광을 반사시키거나 기설정된 투과도로 광을 투과시키도록 설정될 수 있다.
상기 자기 가변 물질 포함부, 상기 자기장 발생부 중 적어도 하나는, 태그, 카드, 필름 및 스티커 중 적어도 하나의 형태로 이루어질 수 있다.
상기 자기 가변 물질에는, 인가되는 자기장의 변화에 따라 서로 간의 간격 또는 위치가 변화되는 자성 입자가 분산된 용액이 포함될 수 있다.
상기 자기 가변 물질에는, 형광 물질, 인광 물질, 양자점(Quantum Dot) 물질, 시온(Temperature Indicating) 물질 및 시변각 안료(OVP, Optically Variable Pigment) 물질 중 적어도 하나가 포함될 수 있다.
상기 자기 가변 물질은 광 투과성 물질로 이루어진 캡슐로 캡슐화될 수 있다.
본 발명에 따르면, 자기 가변물질 포함부와 자기장 발생부의 간격을 조절함에 따라, 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있는 효과가 있다.
그리고, 본 발명에 따르면, 자기 유도 패턴 부분이 자기 유도(magnetic indcuction)되고, 자기 유도 패턴에 대향하는 자기 가변 물질 포함부의 부분에서 반사되거나 투과되는 광이 변화될 수 있는 효과가 있다.
그리고, 본 발명에 따르면, 자기 가변 물질 포함부와 다른 축 상에서 자기장을 인가할 수 있는 효과가 있다.
그리고, 본 발명에 따르면, 자기장 발생부를 가변 물질 포함부에 대해서 회전시키거나, 위치를 변화시킴으로써, 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시킬 수 있는 효과가 있다.
그리고, 본 발명에 따르면, 외력을 가하여 자기 가변 물질 포함부를 접착부로부터 분리시킬 때, 자기 가변 물질 포함부의 일부 부분만을 분리시킬 수 있는 효과가 있다.
그리고, 본 발명에 따르면, 외력을 가하여 자기 가변 물질 포함부를 접착부로부터 분리시킬 때, 절취 패턴에 해당되는 자기 가변 물질 포함부의 부분만을 분리시킬 수 있는 효과가 있다.
그리고, 본 발명에 따르면, 자기 가변 물질 포함부 상의 정보 박막층을 통해 이미지, 패턴, 문자, 도형, 바코드 등의 정보를 표시할 수 있는 효과가 있다.
그리고, 본 발명에 따르면, 자기 가변 물질 포함부에 이미지, 패턴, 문자, 도형, 바코드 등의 정보를 표시할 수 있는 효과가 있다.
그리고, 본 발명에 따르면, 패턴 형상 부분이 자화된 자화부에서 인가된 자기장에 따라 자기 가변 물질 포함부에서 반사되거나 투과된 광을 기입력된 패턴 또는 파장 값과 비교하여, 진위 여부를 판단할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따라 자기 가변 물질로부터 반사되는 광을 파장을 조절하는 원리를 예시적으로 나타내는 도면이다,
도 2는 본 발명의 일 실시예에 따라 다양한 세기의 자기장이 인가될 때 나타나는 자기 가변 물질의 컬러 변화를 촬영한 결과를 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따라 자기장의 세기에 따라 자기 가변 물질로부터 반사되는 광의 파장을 측정한 그래프를 나타내는 도면이다.
도 4의 (a)는 본 발명의 일 실시예에 따른 자기 가변 물질을 구성하는 자성 입자의 SEM 사진을 나타내는 도면이다. 도 4의 (b)는 본 발명의 일 실시예에 따른 자기 가변 물질을 광 투과성 물질로 이루어진 캡슐로 캡슐화 한 후, 자기장을 인가하여 초록색 계열의 광이 반사되도록 한 것을 촬영한 도면이다.
도 5는 본 발명의 일 실시예에 따라 자기 가변 물질 상부에 나비 모양의 패턴을 형성하고, 자기 가변 물질 하부에 서로 다른 세기의 자기장을 발생시키는 자극을 줄무늬 모양으로 교대로 형성시킨 자석을 위치시킨 후, 자석을 회전시킴에 따라 자기 가변 물질의 색상 및 패턴이 변화되는 것을 관찰한 사진을 나타내는 도면이다.
도 6은 본 발명의 일 실시예에 따라 자기 가변 물질의 광 투과도가 변화되는 구성을 예시적으로 나타내는 도면이다.
도 7 내지 도 18은 본 발명의 다양한 실시예들에 따른 위조 및 변조 방지 장치의 구성을 예시적으로 나타내는 도면이다.
도 19는 본 발명의 자기 가변 물질을 형성하는 컬러 나노 복합체를 나타낸 개념도이다.
도 20은 표면 수식에 의하여 제조된 나노 복합체를 나타내는 개념도이다.
도 21은 응집에 의해 제조된 나노 복합체를 나타내는 개념도이다.
도 22는 마이크로 입자의 제조 공정을 나타낸 공정도이다.
도 23은 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 입도 분포 그래프이다.
도 24는 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 에멀전 상태에 있어서의 광학현미경 사진이다.
도 25는 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 수상에서의 광학현미경 사진이다.
도 26은 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 건조 분말에 대한 광학현미경 사진이다.
도 27은 마이크로 입자에 자기장을 인가했을 때 색상 발현을 나타내는 사진이다.
도 28은 분말 상태의 마이크로 입자의 자기장 세기에 따른 반사율 변화를 나타낸 스펙트럼이다.
도 29는 실시예의 마이크로 입자(a)와 비교예의 마이크로 입자(b)의 고온 보관 후의 광학현미경 사진이다.
도 30은 실시예의 마이크로 입자에 대한 푸리에 변환 적외선 분광법(FT-IR) 측정 결과를 나타낸 스펙트럼이다.
도 31은 실시예의 컬러 나노 복합체가 젤리형 볼 형태의 구체를 이루어 전기장 또는 자기장의 인가에 의해 재배열되는 과정을 나타낸 개념도이다.
도 32는 실시예의 컬러 나노 복합체 입자의 콜로이드를 함유한 밀리미터 크기의 구체의 현미경 사진이다.
도 33은 실시예의 구체에 자기장을 인가하기 전(a) 및 인가한 후(b)의 색가변을 나타낸 사진이다.
도 34는 평균 입도 15㎛ 크기의 컬러 나노 복합체를 포함하는 구체의 현미경 사진이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 첨부된 도면을 참조하여 본 발명의 구성을 상세하게 설명하도록 한다.
[자기 가변 물질의 구성]
본 발명의 일 실시예에 따르면, 자기 가변 물질에 포함되는 입자는 자기장에 의하여 자기력을 받아 회전 또는 이동할 수 있도록 자성을 가질 수 있는데, 예를 들면, 니켈(Ni), 철(Fe), 코발트(Co) 등의 자성 물질이 입자에 포함될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 입자는 자기장이 인가됨에 따라 자성을 갖게 되는, 즉, 자화되는 되는 물질을 포함할 수 있다. 특히, 본 발명의 일 실시예에 따르면, 외부에서 자기장이 인가되지 않는 경우에 자성을 지닌 입자끼리 뭉치는 현상을 방지하기 위하여 외부 자기장을 인가하면 자화(magnetization)가 일어나지만 외부 자기장이 인가되지 않는 경우에는 잔류 자화(remnant magnetization)가 일어나지 않는 초상자성(superparamagnetic) 물질을 이용할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 입자가 용매에 잘 분산되고 응집되지 않도록 하기 위해서 입자 표면을 동일한 부호의 전하로 코팅할 수 있고, 입자가 용매 내에서 침전되지 않도록 하기 위해서 입자 표면을 해당 입자와 비중이 다른 물질로 코팅하거나 용매에 해당 입자와 비중이 다른 물질을 혼합할 수도 있다.
또한, 본 발명의 일 실시예에 따르면, 입자는 특정 파장의 광을 반사시킬 수 있도록, 즉, 특정 컬러를 갖도록 구성될 수 있다. 보다 구체적으로, 본 발명에 따른 입자는 산화수 조절 또는 무기 안료, 안료 등의 코팅을 통하여 특정 컬러를 갖게 될 수 있다. 예를 들면, 본 발명에 따른 입자에 코팅되는 무기 안료로는 발색단을 포함하는 Zn, Pb, Ti, Cd, Fe, As, Co, Mg, Al 등이 산화물, 유화물, 유산염의 형태로 사용될 수 있고, 본 발명에 따른 입자에 코팅되는 염료로는 형광 염료, 산성 염료, 염기성 염료, 매염 염료, 황화 염료, 배트 염료, 분산 염료, 반응성 염료 등이 사용될 수 있다. 또한, 본 발명의 일 실시예에 따르면, 자기 가변 물질에 포함되는 입자는 형광 물질, 인광 물질, 양자점(Quantum Dot) 물질, 시온(Temperature Indicating) 물질, 시변각 안료(OVP, Optically Variable Pigment) 물질 등을 포함하여 구성될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 입자가 용매 내에서 높은 분산성과 안정성을 갖도록 하기 위하여 실리카, 고분자, 고분자 단량체 등을 입자의 표면에 코팅시킬 수도 있다.
한편, 본 발명에 따른 입자의 직경은 수십 나노미터 내지 수십 마이크로미터일 수 있으나, 반드시 이에 한정되는 것은 아니다.
다음으로, 본 발명에 따른 자기 가변 물질에 포함되는 용매의 구성에 대하여 구체적으로 살펴보면 다음과 같다. 본 발명의 일 실시예에 따르면, 용매는 입자가 균일하게 분산될 수 있도록 입자의 비중과 비슷한 비중을 갖는 물질로 구성될 수 있고, 용매 내에서의 입자가 안정적으로 분산되는 데에 적합한 물질로 구성될 수 있는데, 예를 들면, 저유전율을 갖는 할로겐 카본 오일, 디메틸 실리콘 오일 등을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 용매는 특정 파장의 광을 반사시킬 수 있도록, 즉, 특정 컬러를 갖도록 구성될 수 있다. 보다 구체적으로, 본 발명에 따른 용매는 무기 안료, 염료를 갖는 물질을 포함하거나 광결정에 의한 구조색을 갖는 물질을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 자성 입자를 지용성 용매에 균일하게 분산시킴으로써 캡슐화 과정에서 입자끼리 서로 뭉치거나 캡슐 내벽에 들러 붙는 것을 방지할 수 있다.
다만, 본 발명에 따른 입자 및 용매의 구성이 상기 열거한 것에 한정되는 것은 아니며, 본 발명의 목적을 달성할 수 있는 범위 내에서 적절히 변경될 수 있음을 밝혀 둔다.
다음으로, 본 발명에 따른 자기 가변 물질에 포함되는 입자 및 용매가 캡슐화 또는 구획화되는 구성에 대하여 구체적으로 살펴보면 다음과 같다.
본 발명의 일 실시예에 따르면, 입자는 용매 내에서 분산된 상태로 광투과성 물질로 이루어진 복수의 캡슐로 캡슐화될 수 있다. 본 발명의 일 실시예에 따르면, 입자 및 용매를 캡슐화함으로써 서로 다른 캡슐 간의 혼입 등의 직접적인 간섭이 발생하는 것을 방지할 수 있으며, 이에 따라 자기 가변 물질에 포함되는 입자를 각 캡슐마다 독립적으로 제어할 수 있으며, 그 결과 보다 다양한 패턴의 광 투과 조절이 가능해지고, 광 투과도 제어 특성이 보다 우수해지도록 할 수 있다.
예를 들면, 본 발명의 일 실시예에 따른 캡슐을 구성하는 물질에는 젤라틴, 아카시아, 멜라민, 우레아, 프로틴, 폴리사카라이드 등이 사용될 수 있고, 캡슐을 고정시키기 위한 물질(즉, 바인더)이 사용될 수 있다. 다만, 본 발명에 따른 캡슐의 구성이 반드시 상기 열거한 예에 한정되는 것은 아니며, 광투과성이고 물리적으로 강하고 딱딱하지 않고 탄성을 가지고 다공성이지 않고 외부의 열과 압력에 강한 재료라면 어느 물질이든지 본 발명에 따른 캡슐의 재료로서 사용될 수 있을 것이다.
또한, 본 발명의 일 실시예에 따르면, 입자는 용매 내에서 분산된 상태로 구획화될 수 있다. 본 발명의 일 실시예에 따르면, 격벽에 의하여 나누어진 서로 다른 셀 사이에 혼입 등의 직접적인 간섭이 발생하는 것을 방지할 수 있으며, 이에 따라 후술할 자기 가변 물질 포함부에 포함되는 입자를 각 캡슐마다 독립적으로 제어할 수 있게 된다.
도 1은 본 발명의 일 실시예에 따라 자기 가변 물질(10)로부터 반사되는 광을 파장을 조절하는 원리를 예시적으로 나타내는 도면이다.
본 발명의 일 실시예에 따르면, 자성을 갖고 표면에 전하를 갖는 복수의 입자(11)에 자기장이 인가되는 경우, 각 입자(11)가 갖는 자성으로 인하여 입자(11)에는 소정의 방향의 자기적 인력이 작용하게 되고 이에 따라 한 쪽으로 치우쳐진 입자(11) 사이의 거리가 좁아지게 됨과 동시에, 입자(11) 사이에는 쿨롱의 법칙에 의한 전기적 척력이 작용하거나(입자가 동일한 표면 전하를 갖는 경우) 입체장애효과에 의한 물리적 척력이 작용하게 된다(입자의 표면에 부착된 검출 기능기로 인하여 입자의 유체역학적 크기가 큰 경우). 따라서, 자기장으로 인한 인력과 전하로 인한 입자 사이의 척력의 상대적인 세기에 따라 입자(11)들의 간격이 결정될 수 있으며, 이에 따라 소정의 간격을 두고 배열된 입자(11)들은 광결정의 기능을 할 수 있게 된다. 즉, Bragg 법칙에 의하면 입자(11)들로부터 반사되는 광의 파장은 입자(11)들의 간격에 의해 결정되기 때문에, 입자(11)들의 간격을 제어함에 따라 입자(11)들로부터 반사되는 광의 파장이 조절될 수 있는 것이다.
여기서, 반사되는 광의 파장의 패턴은 자기장의 세기 및 방향, 입자의 크기 및 질량, 입자 및 용매의 굴절률, 입자의 자화값, 입자의 전하량, 용매 내의 분산된 입자의 농도 등의 요인에 의하여 다양하게 나타날 수 있다.
도 1을 참조하면, 자기장이 인가되지 않는 경우에 캡슐(13) 내의 입자(11)는 불규칙하게 배열되어 있을 수 있으며, 이러한 경우에는 입자(11)로부터 별다른 색이 표출되지 않게 된다. 다음으로, 소정의 자기장이 인가되면, 자기장으로 인한 인력과 전하로 인한 입자(11) 사이의 척력이 평형을 이루면서 입자(11)는 소정의 간격을 두고 규칙적으로 배열될 수 있으며, 이에 따라 간격이 제어된 복수의 입자(11)로부터 특정 파장의 광을 반사될 수 있게 된다. 또한, 입자(11)에 인가되는 자기장의 세기가 커지면 자기장으로 인한 인력도 커지기 때문에 입자(11)의 간격이 더 좁아지게 되고, 이에 따라 입자(11)로부터 반사되는 광의 파장은 더 짧아지게 된다. 즉, 본 발명의 일 실시예에 따르면, 입자(11)에 인가되는 자기장의 세기를 조절함으로써 입자(11)로부터 반사되는 광의 파장을 조절할 수 있게 된다. 자기장의 세기가 더 커짐에 따라 입자로부터 반사되는 광의 파장이 가시광선 대역을 넘어 자외선 대역에 해당하게 되면 입자가 가시광선을 반사하지 않고 투과시키게 되므로 이러한 경우에는 광 투과도가 증가할 수도 있다.
한편, 본 발명의 일 실시예에 따르면, 도 1에 도시되어 있는 바와 같이 입자(11)와 용매(12)로 구성되는 자기 가변 물질은 광 투과성 물질로 구성되는 캡슐(13)에 의하여 캡슐화될 수도 있다.
도 2는 본 발명의 일 실시예에 따라 다양한 세기의 자기장이 인가될 때 나타나는 자기 가변 물질의 컬러 변화를 촬영한 결과를 나타내는 도면이다.
도 2를 참조하면, 인가되는 자기장의 세기를 조절함에 따라 입자로부터 반사되는 광은 적색에서 초록색, 그리고 보라색까지 가시광선 파장대의 모든 영역에서 조절될 수 있음을 확인할 수 있다.
도 3은 본 발명의 일 실시예에 따라 자기장의 세기에 따라 자기 가변 물질로부터 반사되는 광의 파장을 측정한 그래프로서, 인가되는 자기장의 세기가 증가함에 따라 파장이 긴 붉은색 계열의 광에서 점차 파장이 짧은 푸른색 계열의 광으로 이동하게 됨을 확인할 수 있다.
도 4의 (a)는 본 발명의 일 실시예에 따른 자기 가변 물질을 구성하는 자성 입자의 SEM 사진을 나타내는 도면이다. 도 4에서, 입자로서 50m ~ 300nm 사이의 초상자성체 Fe3O4 입자가 사용되었다.
도 4의 (b)는 본 발명의 일 실시예에 따른 자기 가변 물질을 광 투과성 물질로 이루어진 캡슐로 캡슐화 한 후, 자기장을 인가하여 초록색 계열의 광이 반사되도록 한 것을 촬영한 도면이다. 도 4의 (b)를 참조하면, 캡슐 내의 입자가 자기장에 따라 특정 간격을 두고 규칙적으로 배열되고 이에 따라 특정 파장 범위인 초록색 계열의 광이 주로 반사되고 있음을 확인할 수 있다.
도 5는 본 발명의 일 실시예에 따라 자기 가변 물질의 상부에 나비 모양의 패턴을 형성하고, 자기 가변 물질의 하부에 서로 다른 세기의 자기장을 발생시키는 자극을 줄무늬 모양으로 교대로 형성시킨 자석을 위치시킨 후, 자석을 회전시킴에 따라 자기 가변 물질의 색상 및 패턴이 변화되는 것을 관찰한 사진을 나타내는 도면이다.
한편, 본 발명의 일 실시예에 따르면, 자기 가변 물질은 자기 영동 특성을 갖는 입자를 포함할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 자기 가변 물질에 자기장이 인가되면, 자성을 갖는 입자가 자기장의 방향과 같은 방향 혹은 반대 방향으로 이동할 수 있고 이에 따라 입자가 갖는 고유의 색 또는 용매가 갖는 고유의 색이 표시될 수 있다.
한편, 본 발명의 일 실시예에 따르면, 자기 가변 물질은 자기장이 인가됨에 따라 광 투과도가 변화될 수 있는 물질을 포함할 수 있다.
도 6은 본 발명의 일 실시예에 따라 자기 가변 물질의 광 투과도가 변화되는 구성을 예시적으로 나타내는 도면이다.
도 6을 참조하면, 본 발명의 일 실시예에 따른 자기 가변 물질 포함부는 자성을 갖는 복수의 입자(11), 용매(12) 및 캡슐(13)을 포함할 수 있고, 캡슐(13) 내에는 자성을 갖는 복수의 입자(11)가 용매(12)에 분산된 채로 포함될 수 있다.
먼저, 도 6의 (a)를 참조하면, 자기 가변 물질 포함부에 자기장이 인가되지 않는 경우에, 자성을 갖는 복수의 입자(11)는 캡슐(13) 내에서 불규칙하게 분산되어 있을 수 있으며, 이러한 경우 자기 가변 물질에 대하여 입사되는 광의 투과도는 특별히 제어되지 않는 상태가 된다. 즉, 자기 가변 물질에 입사되는 광은 불규칙하게 분산되어 있는 복수의 입자(11)에 의하여 산란 또는 반사되게 되며, 이에 따라 광 투과도가 상대적으로 낮아지게 된다.
다음으로 도 6의 (b)를 참조하면, 자기 가변 물질에 대하여 자기장이 인가되는 경우에, 캡슐(13) 내의 자성을 갖는 복수의 입자(11)는 자기장의 방향과 평행한 방향으로 정렬될 수 있으며, 이에 따라 자기 가변 물질 포함부에 입사되는 광의 투과도가 제어될 수 있게 된다.
구체적으로, 본 발명의 일 실시예에 따라 자기 가변 물질에 대하여 자기장이 인가되는 경우에, 원래부터 자성을 가지고 있거나 자기장에 의하여 자화되는 복수의 입자(11)의 S극으로부터 N극으로의 방향이 자기장의 방향과 같아지도록 복수의 입자(11) 각각이 회전하거나 이동할 수 있다. 이렇게 회전하거나 이동된 각각의 입자(11)의 N극 및 S극은 주변의 입자(11)의 S극 및 N극과 각각 가까워지기 때문에 복수의 입자들(11) 사이에 자기적 인력 혹은 척력이 발생하게 되며, 이에 따라 복수의 입자(11)가 자기장의 방향과 평행한 방향으로 규칙적으로 정렬될 수 있다.
즉, 복수의 입자(11)가 상하 방향으로 인가되는 자기장의 방향과 평행한 방향으로 규칙적으로 정렬될 수 있으며, 이러한 경우 자기 가변 물질에 대하여 입사되는 광이 복수의 입자(11)에 의하여 산란 또는 반사되는 정도가 낮아지게 되며, 이에 따라 광 투과도가 상대적으로 높아지게 된다.
[위조 및 변조 방지 장치의 구성]
본 발명의 일 실시예에 따르면, 위조 및 변조 방지 장치는 자기 가변 물질 포함부(100)[도 7 내지 도 18 참조], 자기장 발생부(200)[도 7 내지 도 10 참조]를 포함하여 구성될 수 있다.
먼저, 본 발명의 일 실시예에 따르면, 자기 가변 물질 포함부(100)는 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함할 수 있다. 구체적으로, 자기 가변 물질 포함부(100)에 포함되는 자기 가변 물질은 특정 세기와 방향의 자기장이 인가될 때 특정 파장의 광의 반사시키거나 특정 광 투과도를 나타내도록 구성(또는 설정)될 수 있으며, 후술할 바와 같이 이러한 자기 가변 물질은 일반 사용자가 육안으로 위조 및 변조 방지 대상물의 진위 여부를 확인함에 있어서 시각적인 지표로서 활용될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 자기 가변 물질 포함부(100)는 위조 및 변조 방지 대상물이 개봉되는 경우에 파괴되도록 구성될 수 있으며, 이에 따라 위조 및 변조 방지 대상물이 개봉된 이후에는 자기 가변 물질에 대하여 자기장이 인가되어도 자기 가변 물질의 반사광 또는 투과광이 변화되지 못하게 되고, 이에 따라 자기 가변 물질이 기설정된 파장의 광을 반사시키거나 기설정된 광의 투과도를 나타내지 못하게 될 수 있다.
다음으로, 본 발명의 일 실시예에 따르면, 자기장 발생부(200)는 자기 가변 물질에 대하여 인가될 수 있는 자기장을 발생시키는 기능을 수행할 수 있다. 본 발명의 일 실시예에 따르면, 자기장 발생부(200)는 자기 가변 물질이 기설정된 색이나 기설정된 광 투과도를 소정의 패턴에 따라 나타내도록 하기 위하여, 기설정된 패턴을 따라 형성될 수 있다. 예를 들면, 자기장 발생부는 위조 및 변조 방지 대상물의 위조 및 변조 여부를 판별하는 데에 있어서 기준이 되는 로고, 문자, 바코드, 도형 등의 형상에 따라 소정의 세기와 방향의 자기장을 발생시키도록 구성될 수 있다.
한편, 본 발명의 일 실시예에 따르면, 외부 자극이 가해지는 것에 대응하여, 자기장이 자기 가변 물질에 대하여 인가되는 상태(즉, 자기장의 세기, 방향 또는 패턴)를 변화시킴으로써 자기 가변 물질의 표시 상태를 변화시키는 기능을 수행하는 가동부(미도시)를 더 구비할 수 있다. 여기서, 가동부에 가해지는 외부 자극은 위조 및 변조 방지 대상물의 진위 여부를 확인하고자 하는 사용자, 위조 및 변조 방지 대상물을 개봉하고자 하는 사용자, 위조 및 변조 방지 대상물을 사용하고자 하는 사용자 등에 의하여 유발될 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 가동부는, 외부 자극이 가해지는 것에 대응하여 이동하거나 회전하거나 또는 휘어짐으로써, 자기 가변 물질 포함부(100)를 자기장 발생부(200)에 의하여 발생되는 자기장이 인가되는 영역으로 이동시키는 기능을 수행할 수 있다.
또한, 본 발명의 일 실시예에 따른 가동부는, 외부 자극이 가해지는 것에 대응하여 이동하거나 회전하거나 휘어지거나 또는 파괴됨으로써, 자기 가변 물질 포함부(100)에 포함되는 자기 가변 물질을 자기장 발생부(200)에 의하여 발생되는 자기장이 인가되는 영역으로 이동시키는 기능을 수행할 수 있다.
또한, 본 발명의 일 실시예에 따른 가동부는, 외부 자극이 가해지는 것에 대응하여 이동하거나 회전하거나 또는 휘어짐으로써, 자기장 발생부(200)를 자기 가변 물질에 대하여 자기장을 인가할 수 있는 영역으로 이동시키는 기능을 수행할 수 있다.
이하에서는, 도면을 참조로 하여 본 발명에 따른 위조 및 변조 방지 장치의 다양한 실시예에 대하여 구체적으로 살펴보기로 한다.
도 7 내지 도 18은 본 발명의 다양한 실시예들에 따른 위조 및 변조 방지 장치의 구성을 예시적으로 나타내는 도면이다. 이하의 실시예들에 따른 위조 및 변조 방지 장치는, 태그, 카드, 필름 및 스티커와 같은 형태로 제조되는 것을 상정하여 설명하지만, 반드시 이 형태로 제한되지 않음을 밝혀둔다.
먼저, 도 7을 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 자기 가변 물질 포함부(100), 자기장 발생부(200) 및 자기 가변 물질 포함부(100)와 자기장 발생부(200) 사이에 개재되어 자기 가변물질 포함부(100)와 자기장 발생부(200)의 간격(d)을 조절하는 스페이서(300: 310, 320, 330)를 포함할 수 있다.
스페이서(300)는 자기 가변물질 포함부(100)와 자기장 발생부(200)의 간격(d)을 조절할 수 있는 구성이라면 제한이 없다. 이에 따라, 스페이서(300)는 에어(air)층, 박막층, 필름층, 시트층, 접착층, 패턴과 같은 정보가 표시되는 정보표시층, 열, 습도 pH, 전기, 빛과 같은 인자에 의해 상(phase)[또는, 부피]이 변화하는 상변화 물질(phase change materials)층 등을 포함할 수 있고, 이들을 복수의 층으로 적층하여 구성할 수도 있다. 도 7의 (a)는 에어층(310)을, 도 7의 (b)는 시트층(320)을, 도 7의 (c)는 3개의 층(330: 331, 332, 333)을 스페이서(300)로 구성한 실시예를 나타낸다.
스페이서(300)는 한 층의 두께(d)를 조절하거나, 복수의 층을 적층함에 따라 복수의 층 전체의 두께(d)를 조절함에 따라, 자기장 발생부(200)에서 자기 가변 물질에 대하여 인가되는 자기장의 세기를 조절함으로써, 자기 가변 물질 포함부(100)에서 반사되거나 투과되는 광(L)을 변화시킬 수 있다. 그리하여, 위조 및 변조 방지 장치의 컬러, 시인성 등을 제어할 수 있는 효과가 있다.
예를 들어, 스페이서(300)의 두께(d)를 얇게 구성하면, 자기장 발생부(200)에서 자기 가변 물질에 강한 자기장을 인가하므로, 입자(11)간의 간격이 작아져서, 적색에 가까운 파장이 반사되고, 반대로 스페이서(300)의 두께(d)를 두껍게 구성하면, 자기장 발생부(200)에서 자기 가변 물질에 약한 자기장을 인가하므로, 입자(11)간의 간격이 커져서, 청색에 가까운 파장이 반사될 수 있다.
한편, 스페이서(300)의 투자율을 조절함에 따라, 자기장 발생부(200)에서 자기 가변 물질에 대하여 인가되는 자기장의 세기를 조절함으로써, 자기 가변 물질 포함부(100)에서 반사되거나 투과되는 광(L)을 변화시킬 수도 있다.
본 발명의 일 실시예에 따른 위조 및 변조 방지 장치의 두께는 1㎛ 에서 수cm 일 수 있다. 그리고, 스페이서(300)가 두께에서 차지하는 비율은 5% 에서 90% 일 수 있다.
다음으로, 도 8을 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 스페이서(300)가 광흡수층(400)을 포함할 수 있다. 도 8에는 광흡수층(400)이 스페이서(300)와 별도의 구성인 것으로 도시되어 있으나, 광흡수층(400)의 두께를 조절하여 자기 가변 물질에 대하여 인가되는 자기장의 세기를 조절할 수 있으므로, 광흡수층(400)도 스페이서(300)에 포함되는 것으로 이해되어야 한다.
광흡수층(400)은 블랙, 레드, 블루 등의 소정의 색을 가지는 필름층일 수 있다. 소정의 색을 가지는 필름층을 광흡수층(400)으로 사용한 경우, 자기 가변 물질 포함부(100)를 투과하고 광흡수층(400)에서 반사되는 광과, 자기 가변 물질 포함부(100)에서 반사되는 광(L')이 서로 중첩되거나, 간섭되어 컬러, 시인성 등을 변화시킬 수 있는 효과가 있다. 또한, 광흡수층(400)에서 특정 파장대를 흡수하므로, 광흡수층(400)에서 반사되는 광과 자기 가변 물질 포함부(100)에서 반사되는 광(L')이 서로 중첩되거나 간섭되어 선명한 컬러를 구현하지 못하는 문제점을 해결할 수 있는 이점도 있다. 예를 들어, 블랙 필름을 광흡수층(400)으로 사용하면, 광흡수층(400)에서 넓은 파장대의 광을 흡수하므로, 자기 가변 물질 포함부(100)에서 반사되는 광과의 중첩, 간섭 문제를 대폭 줄여, 결과적으로 시인성을 월등히 향상시킬 수 있다.
다음으로, 도 9를 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 스페이서(300)가 투명 또는 반투명의 광투과층(500)을 포함할 수 있다.
도 9에는 광투과층(500)이 스페이서(300)와 별도의 구성인 것으로 도시되어 있으나, 광투과층(500)의 두께를 조절하여 자기 가변 물질에 대하여 인가되는 자기장의 세기를 조절할 수 있으므로, 광투과층(500)도 스페이서(300)에 포함되는 것으로 이해되어야 한다.
광투과층(500)은, 적어도 일면에 패턴(510), 이미지, 문자, 도형, 바코드 등이 형성될 수 있다. 패턴(510) 등이 형성된 부분에서 반사하는 광(L')과 패턴(510) 등이 형성되지 않은 부분과 반사하는 파장대의 광(L)이 상이하므로, 결과적으로 자기 가변 물질 포함부(100)를 통해, 소정의 컬러 외에 패턴(510) 등의 형태도 확인할 수 있는 효과가 있다.
다음으로 도 10을 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 자기 가변 물질 포함부(100), 자기장 발생부(200), 또는 스페이서(300)에 외력(F)을 가하여 변형시킴에 따라, 자기 가변 물질 포함부(100)에 인가되는 자기장의 세기를 변화시켜, 자기 가변 물질 포함부(100)에서 반사되거나 투과되는 광을 변화(L -> L')시킬 수 있다.
도 10의 (a)를 참조하면, 자기 가변 물질을 탄성 기판에 코팅하여 자기 가변 물질 포함부(100a)를 형성할 수 있다. 외력(F)을 가하지 않은 상태에서는 자기 가변 물질 포함부(100a)가 기설정된 파장의 광(L)을 반사하지만, 외력(F)을 가하면, 자기 가변 물질 포함부(100a)가 휘어짐(100a')에 따라 스페이서(300)를 압박하므로, 두께가 변화(d1-> d2)된 부분에서 자기 가변 물질 포함부에 인가되는 자기장의 세기에 변화가 생겨 반사하는 광(L')의 파장이 변화할 수 있다. 자기 가변 물질 포함부(100a)가 탄성 기판을 포함하므로, 외력(F)이 가해지는 상태를 해제하면, 원상태로 복귀하여 기설정된 파장의 광(L)을 반사할 수 있다.
또한, 스페이서(300)가 탄성 재질로 구성되어, 외력(F)을 ...... 가할 때 스페이서(300)가 변형되어, 자기 가변 물질 포함부(100)에 인가되는 자기장의 세기를 변화시킴으로써 자기 가변 물질 포함부(100)에서 반사되거나 투과되는 광을 변화(L -> L')시키고, 외력(F)을 가하지 않을때 스페이서(300)가 원상태로 복귀하여 기설정된 파장의 광(L)을 반사할 수 있다.
또한, 자기 가변 물질 포함부(100) 또는 자기장 발생부(200)가 굴곡지게 형성되어, 굴곡진 부분에 외력(F)을 가함에 따라 자기 가변 물질 포함부(100)에 인가되는 자기장의 세기를 변화시킴으로써, 자기 가변 물질 포함부(100)에서 반사되거나 투과되는 광을 변화(L -> L')시킬 수 있다.
다음으로, 도 11을 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 자기 가변 물질 포함부(100)의 일측에 자기장 발생부(700)가 배치되고, 자기 가변 물질 포함부(100)의 타측에 자기장 발생부(700)에서 인가되는 자기장에 따라 적어도 일부(610)가 자기 유도(magnetic indcuction)되는 자기 유도부(600)를 포함할 수 있다.
자기 유도부(600)는 자기 유도되는 영역인 자기 유도 패턴(610)이 형성될 수 있는데, 자기 유도 패턴(610)은 철가루 등의 자화물질이 코팅되어 형성될 수 있다.
자기장 발생부(700)가 자기 가변 물질 포함부(100)의 상부에 근접하면, 자기장 발생부(700)에서 자기 가변 물질 포함부(100)에 자기장을 인가할 뿐만 아니라, 자기 유도부(600)에도 자기장을 인가하며, 특히, 자기 유도 패턴(610)에 자기 유도가 발생하여 자기력의 세기가 증폭될 수 있다. 그리하여, 증폭된 자기장이 인가된 자기 가변 물질 포함부(100)의 부분(110), 즉, 자기 유도 패턴(610)에 대향하는 자기 가변 물질 포함부(100)의 부분(110)에서 반사하는 광의 파장이 변화(L -> L')할 수 있다. 예를 들어, 자기 유도 패턴(610)이 이미지나 문자 형태로 형성되면, 자기 가변 물질 포함부(100)의 상면을 통해 자기 유도 패턴(610)와 동일하게 이미지나 문자 형태를 확인할 수 있는 것이다.
이처럼, 본 실시예에 따른 위조 및 변조 방지 장치는, 위조 및 변조 방지 대상물에 자기 가변 물질 포함부(100) 및 자기 유도부(600)가 일체로 부착된 경우에도, 자기장 발생부(700)를 자기 가변 물질 포함부(100)의 상부에서 접근하여 패턴을 곧바로 확인할 수 있는 효과가 있다.
다음으로, 도 12을 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 자기 가변 물질 포함부(100), 자기 가변 물질 포함부(100)와 적어도 일부가 대향되는 제1 자기 유도부(810), 제1 자기 유도부(810)에 일체로 연장되는 제2 자기 유도부(820), 및 제2 자기 유도부(820)에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부(700)를 포함할 수 있다.
도 12의 (a)를 참조하면, 제1 자기 유도부(810)와 제2 자기 유도부(820)는 일체이며, 자기 가변 물질 포함부(100)는 제1 자기 유도부(810)와 수직 상에서 중첩되는 부분을 가지며, 제2 자기 유도부(820)와는 수직 상에서 중첩되는 부분을 가지지 않는다. 제1 자기 유도부(810)와 제2 자기 유도부(820)는 일체로서, 물리적으로 분리되어 있지 않으므로 당연히 동일한 재질인 것이 바람직하다.
도 12의 (b)를 참조하면, 자기장 발생부(700)가 자기 가변 물질 포함부(100) 및 제1 자기 유도부(810)에 자기장을 인가함이 없이, 제2 자기 유도부(820)에만 자기장을 인가하면, 제2 자기 유도부(820)가 자기 유도됨과 동시에, 제2 자기 유도부(820)와 일체로 연장되는 제1 자기 유도부(810)가 자기 유도될 수 있다. 자기 유도된 제1 자기 유도부(810)에서는 자기 가변 물질 포함부(100)에 자기장을 인가할 수 있으므로, 이에 따라 제1 자기 유도부(810)에 대향하는 자기 가변 물질 포함부(100)의 부분에서 반사되거나 투과되는 광이 변화할 수 있다.
이처럼 본 실시예에 따른 위조 및 변조 방지 장치는, 자기 가변 물질 포함부(100)에 직접적으로 자기장 발생부(700)를 근접시키지 않아도, 자기 가변 물질 포함부(100)와 다른 축 상에서, 제1 자기 유도부(810) 및 제2 자기 유도부(820)를 통해 간접적으로 자기장을 인가하여 진위 여부를 확인할 수 있는 효과가 있다.
다음으로, 도 13을 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 자기 가변 물질 포함부(100) 및 적어도 하나의 영구자석 또는 가변자석으로 구성된 자기장 발생부(700: 710, 720)를 포함할 수 있다.
도 13의 (a) 및 도 13의 (b)를 참조하면, 자기장 발생부(700)를 회전수단(미도시) 또는 이동수단(미도시)을 이용하여 회전시키거나, 위치를 변화시킴에 따라, 자기 가변 물질 포함부(100)에서 반사되거나 투과되는 광을 변화(L -> L')시킬 수 있다.
도 13의 (c) 및 도 13의 (d)를 참조하면, 자기장 발생부(700)를 복수(710, 720) 배치할 수 있다. 도 13의 (c)를 참조하면, 자기 가변 물질 포함부(100)의 양단에 각각 같은 극성의 자기장을 인가하도록 자기장 발생부(710, 720)를 배치할 경우, 자화부(800)의 양단이 자화되어 자기 가변 물질 포함부(100)의 중심부에서 반사되는 광(L)과 양단에서 반사되는 광(L')의 파장이 다르게 될 수 있다. 도 13의 (d)를 참조하면, 자기 가변 물질 포함부(100)의 양단에 각각 반대 극성의 자기장을 인가하도록 자기장 발생부(710, 720)를 배치할 경우, 자화부(800)의 전체가 자화되어 자기 가변 물질 포함부(100)의 중심부와 양단에서 반사되는 광(L")의 파장이 동일하게 될 수 있다.
이 외에도, 자기장 발생부(700)는 영구자석과 가변자석을 조합하거나, 복수의 층으로 구성할 수도 있다. 이에 따라, 자기장 발생부(700)에서 인가하는 자기장의 극성, 세기, 증폭, 간섭 등을 조절하여 자기 가변 물질 포함부(100)에서 반사되거나 투과되는 광을 조절할 수 있다. 또한, 자화부(800)도 복수의 층으로 구성하여 자기장 발생부(700)에서 인가하는 자기장의 극성, 세기, 증폭, 간섭 등을 조절할 수도 있다.
다음으로, 도 14의 (a)를 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 자기 가변 물질 포함부(100) 및 자기 가변 물질 포함부가 임의의 상대물(미도시)[또는, 상품]에 부착되도록 상기 자기 가변 물질 포함부의 일측에 형성된 접착부(900)를 포함하며, 접착부(900)의 일부 부분(910)의 접착력은 나머지 부분(920)의 접착력과 상이할 수 있다.
일부 부분(910)은 패턴화되어 이미지, 문자, 도형, 바코드 등의 형태를 가질 수 있다. 일부 부분(910)의 접착력이 나머지 부분(920)의 접착력보다 강할 경우, 일부 부분(910)과 자기 가변 물질 포함부(100)가 강하게 접착되어 있기 때문에, 자기 가변 물질 포함부(100)를 임의의 상대물(미도시)로부터 분리하는 과정에서 일부만이 분리되고 나머지는 분리되지 않을 수 있다.
도 14의 (b)를 참조하면, 외력(F)을 가하여 자기 가변 물질 포함부(100)를 분리시킬 경우, 일부 부분(910)에 접착된 자기 가변 물질 포함부(100)의 부분(120)은 접착된 상태를 유지하고, 일부 부분(910)을 제외한 나머지 부분(920)에 접착된 자기 가변 물질 포함부(100)의 부분(100b)만이 분리될 수 있다.
이에 따라, 자기 가변 물질 포함부(100)를 상대물로부터 한번 떼어내면, 자기 가변 물질 포함부(100)의 일부(100b)가 파손되기 때문에, 위조 및 변조 방지 장치를 재사용하는 것을 방지할 수 있는 효과가 있다. 그리고, 자기 가변 물질 포함부(100)를 분리한 경우에도, 접착력이 강한 접착부(900)의 패턴화된 일부 부분(910) 상에는 여전히 자기 가변 물질 포함부(120)가 붙어 있기 때문에, 임의의 상대물이 정품이라는 정보를 계속 남길 수 있는 효과가 있다.
다음으로, 도 15의 (a)를 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 자기 가변 물질 포함부(100) 및 자기 가변 물질 포함부가 임의의 상대물(미도시)[또는, 상품]에 부착되도록 상기 자기 가변 물질 포함부의 일측에 형성된 접착부(900)를 포함하며, 자기 가변 물질 포함부(100)에 절취 패턴(P)이 형성될 수 있다.
접착부(900)의 전 부분에서 접착력이 동일할 수 있고, 절취 패턴(P)은 이미지, 문자, 도형 등의 형태를 가질 수 있다.
도 15의 (b)를 참조하면, 외력(F)을 가하여 자기 가변 물질 포함부(100)를 분리시킬 경우, 절취 패턴(P)에 해당되는 부분(130)만이 분리되고, 나머지 부분(140)은 접착된 상태를 유지할 수 있다. 반대로, 절취 패턴(P) 해당되는 부분(130)은 접착된 상태를 유지하고, 나머지 부분(140)이 분리될 수도 있을 것이다.
예를 들어, 절취 패턴(P)이 "정품"이라는 문자 형태인 경우, 자기 가변 물질 포함부(100)를 분리시켰을 때, 절취 패턴(P)에 해당되는 부분(130)은 분리되고, 나머지 부분(140)이 "정품"이라는 문자 형태를 가지며 임의의 상대물(미도시)에 접착된 상태를 유지할 수 있다.
이에 따라, 자기 가변 물질 포함부(100)를 상대물로부터 한번 떼어내면, 자기 가변 물질 포함부(100)가 파손되기 때문에, 위조 및 변조 방지 장치를 재사용하는 것을 방지할 수 있는 효과가 있다. 그리고, 자기 가변 물질 포함부(100)를 분리한 경우에도, 일부 부분(140)은 여전히 임의의 상대물에 붙어 있기 때문에, 임의의 상대물이 정품이라는 정보를 계속 남길 수 있는 효과가 있다.
다음으로, 도 16을 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 자기 가변 물질 포함부(100), 자기장 발생부(200) 및 자기 가변 물질 포함부 상에 배치되며, 자기 가변 물질 포함부(100)와 접하는 면에 이미지(1010), 패턴, 문자, 도형, 바코드 등이 형성된 정보 박막층(1000)을 포함할 수 있다.
정보 박막층(1000)은 광을 투과할 수 있는 재질로 구성될 수 있다. 정보 박막층(1000)은 자기 가변 물질 포함부(100)와 접하는 면에 이미지(1010) 등이 형성되어 있으므로, 외부에서 바로 이미지(1010) 등을 확인할 수 있고, 외부에서 이미지(1010)를 임의로 위조하는 것을 방지할 수 있다.
한편, 정보 박막층(1000)을 떼어내어 이미지(1010)를 위조하는 것을 더욱 효과적으로 방지하기 위해, 정보 박막층(1000)과 자기 가변 물질 포함부(100) 사이에 개재되는 접착부(미도시)의 접착력을 상이하게 하거나, 자기 가변 물질 포함부(100)에 절취 패턴(미도시)을 형성[도 14 내지 도 15 참조]할 수도 있다.
다음으로, 도 17을 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 이미지, 패턴, 문자, 도형, 바코드 등의 정보 표시부(150)가 형성된 자기 가변 물질 포함부(100)를 포함할 수 있다. 정보 표시부(150)는 펀칭(punching), 레이저 조사, UV 조사 등의 방법으로 자기 가변 물질 포함부(100)의 일부를 선택적으로 제거하여 형성할 수 있다. 이에 따라, 자기 가변 물질 포함부(100)에는 정보 표시부(150)가 형성되어 있기 때문에, 다른 종류의 상품에 자기 가변 물질 포함부(100)를 재사용하는 것을 방지할 수 있는 효과가 있다.
다음으로, 도 18을 참조하면, 본 발명의 일 실시예에 따른 위조 및 변조 방지 장치는, 소정의 패턴(1110)을 가지며 패턴(1110) 부분이 자화된 자화부(1100), 자기 가변 물질 포함부(100) 및 자화부(1100)에서 인가된 자기장에 의해 자기 가변 물질 포함부(100)에서 반사되거나 투과된 광을 수광하는 수광부(1200)를 포함할 수 있다.
자화부(1100)의 패턴(1110)은 철가루 등의 자화물질을 코팅하여 형성할 수 있다. 자기 가변 물질 포함부(100)에서 반사되거나 투과되는 광(L, L')의 패턴 또는 파장 값은, 자화부(1100)의 패턴(1110) 형상에 대응할 수 있다.
수광부(1200)는 자기 가변 물질 포함부(100)에서 반사되거나 투과된 광(L, L')을 수광할 수 있도록 포토 다이오드 등으로 구성될 수 있다.
수광부(1200)는 미리 입력된 광의 패턴 또는 파장 값을, 자기 가변 물질 포함부(100)에서 수광한 광(L, L')과 비교하여 진위 여부를 판단할 수 있다.
이처럼 본 실시예에 따른 위조 및 변조 방지 장치는, 정품에 해당하는 광의 패턴 또는 파장 값을 입력받아, 자기 가변 물질 포함부(100))에서 수광한 광(L, L')과 비교하므로, 보다 정밀하게 진위 여부를 확인할 수 있는 효과가 있다. 특히, 자기 가변 물질 포함부(100)에서 반사되거나 투과되는 광(L, L')의 패턴 또는 파장 값이 육안으로 식별이 불가능하도록 패턴(1110)을 형성하면, 위조를 더욱 방지할 수 있는 효과가 있다.
한편, 본 발명에 따른 위조 및 변조 방지 장치는 홀로그램, RFID(Radio Frequency IDentification) 및 생체 정보 인식 중 적어도 하나를 이용하는 추가적인 위조 및 변조 방지 수단을 더 포함할 수 있으며, 이로써 대상물에 대한 위조 및 변조 방지의 효과를 더 높일 수 있게 된다.
[자기 가변 물질의 또 다른 구성]
본 발명의 또 다른 실시예에 따르면, 상기 자기 가변 물질은 자성 물질 입자 등과 다른 형태의 컬러 나노 복합체일 수 있다.
상기 컬러 나노 복합체는 전기장 또는 자기장의 인가에 의하여 색 가변되며, CIE 표색계의 색좌표에 따른 전기장 또는 자기장의 인가 전후의 색차(ΔE*ab)가 2.2 이상이며, 입도분포곡선의 반치폭(full width at half maximum, FWHM)이 30nm 이하인 것을 특징으로 한다.
본 실시예에서 상기 색차(ΔE*ab)는 전기장 또는 자기장의 인가 전후에 본 발명이 컬러 나노 복합체의 재배열 또는 전하 상태의 변화를 통해 색상(반사광 또는 투과광에 의해 유발되는 색상)의 변화 정도를 나타내는 지표로서 2.2 이상, 바람직하게는 3.0 이상, 더욱 바람직하게는 3.2 이상의 색차를 나타냄으로써 색상의 변화를 시각적으로 명확히 확인할 수 있는 정도의 색 변화를 나타내는 것을 의미한다.
또한, 본 실시예에서 상기 입도분포곡선의 반치폭은 입자의 균일성을 나타내는 지표로서, 입도분석에 의해 측정되는 단일 피크의 D50을 중심으로 피크의 반치폭이 30nm 이하, 바람직하게는 20nm 이하, 더욱 바람직하게는 10nm 이하가 되도록 균일한 입도 분포를 가진 컬러 나노 복합체를 제조함으로써, 전기장 또는 자기장의 인가에 의해 용이하게 재배열되며, 입사광의 회절이나 산란을 통해 균일한 색상을 구현할 수 있게 된다.
본 실시예에서 컬러 나노 복합체가 색상을 구현하는 원리는 나노 복합체 내에 포함된 착색제 입자로 인한 입자의 고유색을 통해 구현될 수 있으며, 이와 동시에, 전기장 또는 자기장의 외부로부터의 인가에 의해 상기 나노 복합체가 재배열되거나 전하 상태가 변함으로써 특정 파장의 광을 투과 또는 반사시켜 색상을 구현할 수도 있다.
따라서 상기 컬러 나노 복합체는 입자의 재배열 또는 전하 상태의 변화를 통한 색상 구현을 위해 매우 균일한 입자 크기를 가지며 매질 내의 이동성이 높아 재배열이 용이한 특성을 가져야 한다.
상기 컬러 나노 복합체는 매체에 분산되어 존재할 수 있으며, 전하를 갖는 입자의 형태로 분산되어 존재할 수도 있다. 또한, 상기 컬러 나노 복합체는 코어-셀 구조나 멀티 코어-셀 구조로 구성될 수 있다.
또한, 본 발명의 컬러 나노 복합체는 입자 크기가 50 내지 1000nm, 바람직하게는 100 내지 500nm, 더욱 바람직하게는 100 내지 300nm의 범위에서 균일한 크기를 나타낸다. 또한, 착색제를 포함하는 경우 입자 크기보다는 입자의 균일성이 더 중요한 요인이 될 수 있으므로, 상기 입자 크기의 범위를 벗어날 수도 있다.
상기 컬러 나노 복합체는 나노 입자를 포함하여 구성되는데, 상기 나노 입자는 전도성 입자, 금속 입자, 유기금속 입자, 금속산화물 입자, 자성 입자, 소수성 유기고분자 입자일 수 있고, 외부 에너지의 인가에 의해 입자의 배열, 간격에 규칙성이 부여되는 광결정 특성을 나타내는 입자일 수 있다. 예를 들면, 실리콘(Si), 티타늄(Ti), 바륨(Ba), 스트론튬(Sr), 철(Fe), 니켈(Ni), 코발트(Co), 납(Pb), 알루미늄(Al), 구리(Cu), 은(Ag), 금(Au), 텅스텐(W), 몰리브덴(Mo), 아연(Zn), 지르코늄(Zr) 중 어느 하나 또는 그 이상의 금속 또는 이들의 질화물 또는 산화물로 이루어질 수 있다.
또한, 유기물질 나노 입자로서 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리에틸렌 테레프탈레이트 등의 고분자 물질로도 이루어질 수 있으며, 탄화수소기를 갖는 유기화합물에 의하여 표면이 수식된 입자, 카르복실기, 에스테르기, 아실기 중 어느 하나 또는 그 이상을 갖는 유기화합물에 의하여 표면이 수식된 입자, 할로겐 원소를 포함하는 착화합물에 의하여 표면이 수식된 입자, 아민, 티올, 포스핀을 포함하는 배위화합물에 의하여 표면이 수식된 입자, 표면에 라디칼을 형성하여 전하를 갖는 입자를 들 수 있다.
또한, 상기 나노 입자는 전기 분극 특성을 부여한 입자일 수 있다. 즉, 매개체와의 분극을 위하여 외부 자기장 또는 전기장이 인가됨에 따라 이온 또는 원자의 분극이 추가 유발되어 분극량이 크게 증가하고, 외부 자기장 또는 전기장이 인가되지 않는 경우에도 잔류 분극량이 존재하며 자기장 또는 전기장 인가 방향에 따라 이력(hysteresis)이 남는 강유전성(ferroelectric) 물질을 포함할 수 있고, 외부 자기장 또는 전기장이 인가됨에 따라 이온 또는 원자 분극이 추가 유발되어 분극량이 크게 증가하지만, 외부 자기장 또는 전기장이 인가되지 않는 경우에는 잔류 분극량과 이력(hysteresis)이 남지 않는 상유전성 물질, 초상유전성(superparaelectric) 물질을 포함할 수 있다.
이러한 물질로는 페로브스카이트(perovskite) 구조를 갖는 물질을 포함할 수 있다. 즉, ABO3 구조를 갖는 물질로서 PbZrO3, PbTiO3, Pb(Zr,Ti)O3, SrTiO3, BaTiO3, (Ba, Sr)TiO3, CaTiO3, LiNbO3 등의 물질을 그 예로 들 수 있다.
또한, 상기 나노 입자는 단일 또는 이종의 금속이 함유된 입자, 산화물 입자 또는 광결정성 입자로도 이루어질 수 있다.
금속의 경우, 금속 나이트레이트계 화합물, 금속 설페이트계 화합물, 금속 플루오르아세토아세테이트계 화합물, 금속 할라이드계 화합물, 금속 퍼클로로레이트계 화합물, 금속 설파메이트계 화합물, 금속 스티어레이트계 화합물 및 유기 금속 계열 화합물로 이루어진 군에서 선택되는 자성 선구물질과 알킬트리메틸암모늄할라이드계 양이온 리간드, 알킬산, 트리알킬포스핀, 트리알킬포스핀옥사이드, 알킬아민, 알킬티올 등의 중성 리간드, 소듐알킬설페이트, 소듐알킬카복실레이트, 소듐알킬포스페이트, 소듐아세테이트 등의 음이온 리간드로 이루어진 군에서 선택되는 리간드를 용매에 첨가하여 녹임으로써 비정질 금속 겔을 제조하고, 이를 가열하여 결정성 입자로 상전이시킴으로써 제조할 수 있다.
이때 이종의 선구물질을 함유함으로써 최종적으로 얻어지는 입자의 자기적 특성이 증강되거나, 초상자성, 상자성, 강자성, 반강자성, 페리자성, 반자성 등의 다양한 자성 물질을 얻을 수 있다.
본 발명의 컬러 나노 복합체는 매체에 분산된 상태로 있다가 전기장 또는 자기장의 인가에 의해 재배열될 수 있다. 이러한 매체로는 극성 또는 비극성 매체를 사용할 수 있다. 예를 들어, 물, 메탄올, 에탄올, 프로판올, 부탄올, 프로필렌카보네이트, 톨루엔, 벤젠, 헥산, 클로로포름, 할로카본오일, 퍼클로로에틸렌, 트리클로로에틸렌, 아이소파라핀 오일의 일종인 isopar-G, isopar-M, isopar-H 중 어느 하나 또는 그 이상을 사용할 수 있다.
본 발명의 컬러 나노 복합체는 자체의 고유색을 가질 수 있고, 입자의 재배열에 의해 색상을 나타낼 수도 있으나, 이와 더불어 매체에 소정의 색을 부여함으로써 다양한 색상을 구현할 수도 있다. 이 경우, 상기 매체는 염료 또는 안료를 포함할 수 있다.
상기 염료는 아조 염료, 안트라퀴논 염료, 카르보늄 염료, 인디고 염료, 황화염료, 프탈로시아닌 염료 등을 사용할 수 있고, 상기 안료는 산화티탄(Titanium dioxide), 산화아연(Zinc oxide), 리토폰(Lithopon), 황화아연(Zinc sulfonate), 카본블랙(Carbon black), 흑연(Graphite), 황연(Chrome yellow), 징크 크로메이트(Zinc chromate), 철적(Redoxide of iron), 연단(Red lead), 카드뮴적(Cardmium red), 모르브덴적(Molybdate chrome orange), 감청(Milori blue, pressian blue, iron blue), 코발트 블루(Cobalt blue), 크롬녹(chrome green), 수산화크롬(Viridian), 아연녹(Zinc green), 은분(Alluminium powder), 금분(Bronze powder), 형광안료, 펄안료 등의 무기안료, 또는 불용성 아조계, 용성 아조계, 프탈로시아닌계, 퀴나크리돈계, 디옥사진계, 이소인돌리논계, 건염염료계, 필로콜린계, 플루오르빈계, 퀴노프탈론계, 메탈 콤플렉스 등의 유기안료를 사용할 수 있다
본 발명의 컬러 나노 복합체를 제조하는 방법은 다양한 방법이 적용될 수 있다. 예를 들어, 에멀전의 형성에 따른 다양한 나노 복합체 제조 방법으로 아래 표 1과 같은 다양한 방법을 들 수 있다.
에멀전 종류 특징
W/O 내부수상 콜로이드 입자
콜로이드 입자 + 경화제
콜로이드 입자 + 염료
콜로이드 입자 + 기능성 물질
외부유상 유화제
에너지 열, UV, 냉각
O/W 내부유상 콜로이드 입자
콜로이드 입자 + 착색제
콜로이드 입자 + 경화제
콜로이드 입자 + 저비점 용매
콜로이드 입자 + 기능성 물질
외부수상 유화제
크기제어 초음파, 나노노즐, 스프레이
에너지 열, UV, 냉각
즉, 표 1과 같이 내부수상/외부유상(W/O) 또는 내부유상/외부수상(O/W)에 따라 내부 상에 포함되는 물질의 조합, 크기제어 방법, 에너지의 종류, 크기에 따라 다양한 형태의 나노 복합체를 제조할 수 있게 된다.
본 발명에 따른 다양한 나노 복합체의 예시로 도 19에서는 다양한 실시형태에 따른 컬러 나노 복합체를 나타내었다.
도 19를 참조하면, 본 발명의 나노 복합체는 콜로이드 입자와 염료 또는 안료가 혼합되어 형성할 수 있고(도 19a), 발현물질을 추가적으로 포함하여 나노 복합체를 형성할 수도 있으며(도 19b), 경화물질을 추가적으로 포함하여 나노 복합체를 형성할 수도 있고(도 19c), 경화물질과 발현물질을 추가적으로 포함하여 나노 복합체를 형성할 수도 있다(도 19d).
본 발명에서 상기와 같은 나노 복합체를 제조하는 구체적인 방법에 대하여 몇 가지 예시를 통해 설명하면 다음과 같다.
한 가지 실시예에서 상기 나노 복합체는 착색제 입자와 나노 입자를 혼합하여 혼합물을 제조하는 단계; 상기 혼합물에 소수성 물질을 혼합하여 미니에멀전을 형성하는 단계; 상기 미니에멀전과 단량체를 중합하는 단계;를 포함하여 제조될 수 있다.
이 경우, 미니에멀전을 형성하기 위하여, 음이온 계면활성제, 양이온 계면활성제 또는 비이온 계면활성제를 포함하여 구성됨으로써 콜로이드 입자의 분산도를 유지할 수 있다. 또한, 상기 에멀전은 계면 화학적 성질을 이용한 화학적 방법 또는 초음파 분산, 회전식 교반, 콜로이드 밀, 호모게나이저 등의 물리적 방법에 의해서 제조될 수도 있다.
이때, 상기 중합하는 단계는 미니에멀전의 액적을 매질에 투입함으로써 수행할 수 있으며, 상기 소수성 물질과 상기 착색제 입자의 현탁액을 제조한 후, 개시제를 부가함으로써 수행할 수도 있다.
또한, 본 발명의 미니에멀전에 적용되는 상기 단량체는 스티렌(styrene), 피리딘(pyridine), 피롤(pyrrole), 아닐린(aniline), 피롤리돈(pyrrolidone), 아크릴산(acrylate), 우레탄(urethane), 티오펜(thiophene), 카바졸(carbazole), 플루오렌(fluorene), 비닐알코올(vinylalcohol), 에틸렌글리콜(ethylene glycol), 에톡시아크릴레이트(ethoxy acrylate) 중 어느 하나 또는 그 이상일 수 있다.
또 다른 실시예에서는 상기 나노 복합체는 나노 입자의 표면을 반응성기를 포함하는 물질로 표면 수식(修飾)된 나노 입자를 제조하는 단계; 상기 표면 수식된 나노 입자 및 착색제 입자를 혼합하여 분산액을 제조하는 단계; 상기 표면 수식된 나노 입자 및 착색제 입자의 흡착 반응을 일으키는 단계;를 포함하여 제조될 수 있다.
상기 표면 수식은 나노 입자의 표면을 수산화기(-OH), 아민기(-NH) 등의 반응성기로 만드는 것으로, 예를 들어, 반응성기인 수산화기를 포함하는 실리카를 나노 입자에 코팅하여 표면 수식을 일으킬 수 있다. 또한, 아미노실란의 코팅을 통해 아민기(-NH)로 수식할 수도 있다.
표면기의 종류는 흡착할 착색제의 종류에 따라 달라지게 된다. 예를 들어, 카본 나노 입자를 착색제로 사용할 경우, 표면을 수산화기로 치환하여 흡착시키게 되며, 메틸렌 블루와 같은 염료 입자를 착색제로 사용할 경우, 표면을 아민기로 치환할 수 있다.
카본 나노 입자를 흡착할 경우, 흡착 반응 효율을 높이기 위하여 카본 나노 입자 대신 에틸렌 디아민이 그래프트된 산화그래핀을 사용하거나, 수산화기로 수식된 카본 나노 입자를 사용할 수도 있다.
또한, 이와 같이 착색제의 표면 수식을 통해 흡착반응을 일으킬 수 있다.
또 다른 실시예에서는 상기 컬러 나노 복합체는 착색제 입자의 표면을 수식(修飾)하는 단계; 상기 착색제 입자 및 나노 입자를 혼합하여 분산액을 제조하는 단계; 상기 착색제 입자 및 나노 입자의 흡착 반응을 일으키는 단계;를 포함하여 제조된다.
예를 들어, 5%의 산화그래핀을 에탄올과 혼합한 후 2시간 동안 초음파 분산기로 분산시키고, 이 분산액을 반응기에 담고 교반하면서 암모니아를 사용하여 pH 11로 조정한다. 이후 아미노실란을 투입하여 산화그래핀의 표면을 아민기로 전환시킨다. 이를 세척한 후 실리카로 코팅된 산화철 나노입자 클러스터 콜리이드 수용액과 혼합하고 80℃로 승온하고 12시간 교반하여 흡착 반응을 일으키면 -45mV 내지 -50mV의 제타전위값이 (+)값을 가지거나 (-) 전하를 가져도 매우 낮은 값을 보여 흡착이 양호하게 이루어지는 것을 확인할 수 있다.
또한, 150nm급의 나노 복합체를 제조할 때, 10~30nm급 카본블랙 입자를 산처리하여 표면을 수산화기로 수식한 후 아민기로 수식된 산화철 나노입자 클러스터 콜로이드와 반응시킬 수도 있다.
또 다른 예로, 실리카로 코팅되어 수산화기로 표면 수식된 산화철 나노 입자 클러스터와 아민기로 수식된 메틸렌 블루를 이용하여 나노 복합체를 제조할 수 있다.
즉, 분산된 산화철 나노 입자 클러스터 콜로이드를 암모니아를 사용하여 pH 11로 조정하고, 1% 메틸렌 블루를 용해시킨 에탄올 용액과 혼합하여 12시간 교반함으로써 나노 복합체를 제조하게 되는데, 제타 전위 값이 -7 내지 +10mV로 측정되었다. 이것은 실리카로 코팅된 일반적인 산화철 나노 입자 클러스터의 제타 전위 값인 -48 내지 -35mV과 비교하면 반응이 견고하게 일어나는 것을 확인할 수 있다.
또한, 이 경우 입자의 표면 색상이 갈색에서 짙은 군청색 내지 검은색으로 변화하여 고유색을 가진 나노 복합체를 제조할 수 있음을 확인하였다.
또 다른 실시예에서, 상기 컬러 나노 복합체는 나노 입자 클러스터 및 착색제 입자를 혼합하는 단계; 상기 나노 입자 클러스터 및 상기 착색제 입자의 응집 반응을 일으키는 단계;를 포함하여 제조된다.
이 경우, 두 종류의 입자가 혼합되어 나노 복합체를 형성하므로, 입자간 혼합 및 분산이 매우 중요한 요인이 된다. 따라서, 상기 나노 입자 클러스터 및 상기 착색제 입자는 입도분포곡선에 따른 중앙입경의 차이(ΔD50) 및 평균입경의 차이(ΔDm)가 5nm 이하의 범위를 만족해야 한다.
입도분포곡선이 D50을 중심으로 대칭인 경우에는 D50과 Dm의 차이가 없으나, 입도분포곡선이 비대칭인 경우, D50과 Dm의 차이가 발생하며, 이러한 차이가 클 수록 입자 크기 분포의 균일성이 떨어지는 것을 의미한다.
즉, ΔD50은 두 종류의 입자간 크기를 나타내는 지표로 5nm 이하인 경우 두 종류의 입자가 실질적으로 동일한 크기로 균일하게 혼합되어 나노 복합체를 형성할 수 있게 된다. 또한, ΔDm은 두 종류의 입자의 입자 균일성과 입자간 크기 차이를 나타내는 지표로 ΔD50과 ΔDm의 5nm 이하인 값을 동시에 만족함으로써, 입자의 크기가 균일하고, 입자간 크기 차이가 실질적으로 동일한 특성을 나타내는 지표로 사용되게 된다.
예를 들어, 20 내지 50nm급 카본 블랙의 표면을 산화시켜 수산화기로 표면 수식하여 에틸렌글리콜 용매에 용이하게 분산될 수 있도록 처리한 후 산화철 나노 입자 클러스터와 혼합하여 나노 복합체를 제조한 경우, 카본 블랙의 농도가 증가할 수록 표면 색상이 블랙으로 변하여 두 종류의 입자를 혼합하는 비율에 따른 색상 조절이 가능함을 확인하였다.
본 발명에서 표면 수식에 의한 제조방법과 응집에 의한 제조방법의 차이는 표면 수식에 의하여 제조된 나노 복합체(도 20)와 응집에 의해 제조된 나노 복합체(도 21)를 형성하게 된다.
도 20을 참조하면, 표면 수식에 의한 제조방법의 경우, 나노 입자의 표면에 반응기를 부여할 수 있는 물질(예를 들어, 실리카)을 코팅함으로써 표면에 (-) 전하를 부여하고(2), (+) 전하를 가진 메틸렌 블루의 아민기(1)와 반응시킴으로써 나노 입자의 표면에 염료 입자가 물리흡착 또는 화학흡착되어 나노 복합체를 형성(3)하게 된다.
도 21을 참조하면, 응집에 의한 제조방법의 경우, 유상/수상의 조건에서 나노 입자(1)와 산화된 카본 블랙 입자(2)를 에틸렌글리콜 용매 중에서 분산한 후 응집시킴(3)으로써 하나의 나노 복합체가 형성되게 된다. 이 경우, 카본 블랙의 혼합량에 따라 나노 복합체의 고유색이 변하게 되므로, 용도에 따라 색상의 조정이 가능하게 된다.
본 발명에 적용되는 모든 제조방법에 있어서, 상기 착색제 입자는 염료 입자, 안료 입자, 표면 수식되거나 되지 않은 카본 나노 입자, 흑연, 표면 수식되거나 되지 않은 산화그래핀 입자 중 어느 하나 또는 그 이상일 수 있다.
이때, 상기 염료 입자는 아조 염료, 안트라퀴논 염료, 카르보늄 염료, 인디고 염료, 황화 염료, 프탈로시아닌 염료 중 어느 하나 또는 그 이상의 염료로 이루어진 입자이며, 상기 안료 입자는 안료는 산화티타늄(titanium dioxide), 산화아연(zinc oxide), 리토폰(lithopon), 황화아연(zinc sulfonate), 황연(chrome yellow), 크롬산아연(zinc chromate), 철적(red oxide of iron), 연단(red lead), 카드뮴적(cardmium red), 모르브덴적(molybdate chrome orange), 감청(milori blue, pressian blue, iron blue), 코발트 블루(cobalt blue), 크롬녹(chrome green), 수산화크롬(viridian), 아연녹(zinc green), 은분(alluminium powder), 금분(bronze powder), 형광안료, 펄안료 중 어느 하나 또는 그 이상의 무기안료, 또는 불용성 아조계, 용성 아조계, 프탈로시아닌계, 퀴나크리돈계, 디옥사진계, 이소인돌리논계, 건염염료계, 필로콜린계, 플루오르빈계, 퀴노프탈론계, 메탈 콤플렉스 중 어느 하나 또는 그 이상의 유기안료일 수 있다.
[자기 가변 물질의 또 다른 구성]
본 발명의 자기 가변 물질을 구성하는 또 다른 예로서 마이크로 입자를 들 수 있다.
상기 마이크로 입자는 전기장 또는 자기장의 인가에 의해 재배열되는 컬러 나노 복합체를 함유하는 마이크로 입자로서, 상기 컬러 나노 복합체는 전술한 바와 같고, 상기 마이크로 입자는 연필경도가 4B 이하이며, 질소 가스를 사용한 비표면적 측정에 따른 공극도분포(pore size distribution)에서 5nm 이하 영역의 공극부피(pore volume)가 전체 공극 부피의 20% 이하인 것을 특징으로 한다.
본 발명의 마이크로 입자는 통상의 캡슐에 비하여 벽재의 탄성이 낮고 단단한 성질을 가진다. 따라서 입자 내에 포함된 컬러 나노 복합체의 보관성이 우수하고, 캡슐과는 달리 인쇄시 입자가 파괴되지 않아 인쇄성이 용이하다. 이러한 특성을 나타내는 컬러 나노 복합체는 건조 분말 상태에서의 연필경도가 4B 이하, 바람직하게는 3B 이하의 특성을 나타낸다. 이에 비하여 통상의 마이크로 캡슐은 연필경도 9B 또는 그 이상의 값을 가져 벽재의 강도가 매우 약한 점을 고려하면, 상기 마이크로 입자는 벽재의 강도가 크게 향상되는 점을 알 수 있다.
이러한 마이크로 입자의 벽재의 강도는 벽재에 존재하는 마이크로 세공의 공극부피로부터 유추할 수 있다. 공극부피는 가스 흡착-탈착법을 이용한 BET 비표면적 측정법을 통해 측정할 수 있다. 이 경우, 질소, 아르곤, 크립톤, 산소, 헬륨, 일산화탄소 등의 가스를 흡착-탈착함으로써 표면적을 측정하게 된다.
마이크로 세공은 5nm 이하의 세공으로서 벽재를 구성하는 고분자의 밀도가 높을수록 마이크로 세공의 공극부피는 감소하게 된다. 따라서 마이크로 세공 영역의 공극 부피는 벽재의 강도와 반비례하는 경향이 있으며, 본 발명에서 마이크로 캡슐의 충분한 강도를 얻기 위해서는 5nm 이하 영역의 공극 부피가 전체 공극 부피의 20% 이하인 조건을 만족해야 한다. 5nm 이하 영역의 공극부피가 전체 공극 부피의 20%를 초과할 경우, 벽재가 고분자의 집합체(agglomerate)로 형성된 구조로 관찰되며, 이는 마이크로 세공 영역의 부피가 감소하는 경향과 연관된다.
본 발명에서 컬러 나노 복합체가 마이크로 입자 내에서 색상을 구현하는 원리는 나노 복합체 내에 포함된 착색제 입자로 인한 입자의 고유색을 통해 구현될 수 있으며, 이와 동시에, 전기장 또는 자기장의 외부로부터의 인가에 의해 상기 나노 복합체가 재배열되어 특정 파장의 광을 반사시켜 색상을 구현할 수도 있다.
따라서 본 발명에서 상기 컬러 나노 복합체는 입자의 재배열이나 마이크로 입자의 재배열을 통해 색상을 구현할 수 있다. 입자의 재배열을 통한 색상구현을 위해 매우 균일한 입자 크기를 가지며 매질 내의 이동성이 높아 재배열이 용이한 특성을 가져야 한다.
이러한 재배열을 위하여 본 발명의 컬러 나노 복합체는 매체에 분산되어 존재할 수 있으며, 전하를 갖는 입자의 형태로 분산되어 존재할 수도 있다.
또한, 상기 컬러 나노 복합체는 코어-셀 구조나 멀티 코어-셀 구조로 구성될 수 있다.
또한, 본 발명의 컬러 나노 복합체는 입자 크기가 50 내지 1000nm, 바람직하게는 50 내지 500nm, 더욱 바람직하게는 50 내지 300nm의 범위에서 균일한 크기를 나타낸다. 또한, 착색제를 포함하는 경우 입자 크기보다는 입자의 균일성이 더 중요한 요인이 될 수 있으므로, 상기 입자 크기의 범위를 벗어날 수도 있다.
본 발명의 컬러 나노 복합체는 분산매에 분산되어 마이크로 입자 내의 심(core)으로 존재하며, 전기장 또는 자기장의 인가에 의해 재배열될 수 있다.
이러한 분산매로는 극성 또는 비극성 분산매를 사용할 수 있다. 예를 들어, 물, 메탄올, 에탄올, 프로판올, 부탄올, 프로필렌카보네이트, 톨루엔, 벤젠, 클로로포름, 헥산, 시클로헥산, 도데칸, 퍼클로로에틸렌, 트리클로로에틸렌, 아이소파라핀 오일의 일종인 isopar-G, isopar-M, isopar-H 중 어느 하나 또는 그 이상을 사용할 수 있다.
본 발명에 따른 마이크로 입자는, 도 22에 도시된 바와 같이, 에멀전을 형성하여 코어-셀 구조화하는 반응 과정을 통해 제조할 수 있다.
우선, 컬러 나노 복합체를 분산매에 분산시켜 심 물질을 제조한다(S110). 이때, 상기 컬러 나노 복합체는 분산매에 대하여 0.1 내지 25 중량%의 비율로 분산될 수 있으나, 필요에 따라 더 많은 양을 분산시킬 수도 있다. 상기 심물질의 분산액은 초음파 분산기 또는 호모게나이저를 이용하여 분산을 수행한다.
다음으로, 마이크로 입자의 벽재를 형성할 고분자를 혼합하여 산도조절에 의하여 프리폴리머를 제조한다(S120). 이 공정은 컬러 나노 복합체의 분산액을 제조하는 공정과 동시에 수행할 수 있다.
상기 벽재를 형성하기 위한 고분자는 탄성이 낮고 단단한 성질을 나타낼 수 있는 고분자 전구체를 사용할 수 있는데, 우레아-포름알데하이드, 멜라민-포름알데하이드, 메틸비닐에테르 코말레산 무수물과 같은 공중합체나 젤라틴, 폴리비닐알코올, 폴리비닐아세테이트, 셀룰로오스성 유도체, 아카시아, 카라기난, 카르복시메틸렐룰로스, 가수분해된 스티렌 무수물 공중합체, 아가, 알기네이트, 카제인, 알부민, 셀룰로오스 프탈레이트 등의 고분자를 사용할 수 있다. 이러한 고분자의 친수성과 소수성을 조절함으로써 나노 복합체를 둘러싸며 벽재를 형성할 수 있다. 또한, 상기 프리폴리머는 나노 복합체와 마찬가지로 분산매에 분산되어 분산액으로 제조될 수 있다.
상기 S110 단계에서 제조된 나노 복합체의 분산액과 상기 S120 단계에서 제조된 벽재 물질의 프리폴리머 분산액을 혼합하고 교반하여 에멀전을 형성하는 단계를 수행할 수 있다(S130). 이러한 에멀전을 형성하기 위한 조건으로 나노 복합체와 프리폴리머의 비율을 최적화할 필요가 있으며, 두 분산액을 부피 비율로 1:5 내지 1:12이 되도록 혼합할 수 있다. 또한, 분산성 향상을 위하여 안정제를 첨가할 수도 있다. 상기 에멀전 내에서 컬러 나노 복합체는 분산상이 되고 벽재 물질은 연속상이 될 수 있다.
상기 S130 단계에서 에멀전의 안정성을 높이기 위해 첨가제를 첨가할 수 있다. 이러한 첨가제로는 수상에서 용해 후 점도가 높은 습윤성이 우수한 유기 고분자일 수 있으며, 구체적으로는, 젤라틴, 폴리비닐알코올, 소듐 카르복시메틸 셀룰로오스, 전분, 하이드록시에틸 셀룰로오스, 폴리비닐피롤리돈, 알기네이트 중 적어도 어느 하나를 사용할 수 있다.
상기 S130 단계에서 형성된 에멀전의 pH와 온도를 조절하여 연속상인 벽재 물질 분산액이 분산상인 자성 변색 잉크 주위에 침착되어 캡슐의 벽이 형성되도록 함으로써 심 물질 분산액을 캡슐화할 수 있다(S140). 즉, 인 시튜 중합방법에 의하여 캡슐화를 수행하는데, 이 경우, 캡슐 벽재를 더 치밀하게 구성하여 탄성을 감소시킴으로써 벽재의 경도를 높이기 위해 첨가제를 첨가하는 과정을 포함할 수 있다.
첨가되는 첨가제의 종류는 수상에서 용해가 잘 되는 이온성 또는 극성 물질일 수 있다. 예를 들어, 경화 촉매제인 염화암모늄, 레조르시놀, 하이드로퀴논, 카테콜 중 적어도 어느 하나를 사용할 수 있다.
본 발명의 컬러 나노 복합체를 함유하는 마이크로 입자는 상기와 같이 인 시튜 중합법으로 제조할 수 있으나, 코아세르베이션 방법(coacervation approach) E또는 계면 중합법(interfacial polymerization)으로 제조할 수도 있다.
코아세르베이션 방법의 경우, 내부상 및 외부상의 유상/수상 에멀전을 이용하게 된다. 컬러 나노 복합체 콜로이드는 수성 외부상으로부터 밖으로 코아세르베이션(괴상화)되며, 온도, pH, 상대 농도 등을 제어함으로써 내부상의 유상 액적에 벽재를 형성하여 입자화된다. 코아세르베이션의 경우, 벽재 재료로서, 우레아-포름알데하이드, 멜라민-포름알데하이드, 젤라틴, 또는 아라빅 고무 등을 사용할 수 있다.
계면 중합법의 경우, 내부상의 친유성 단량체의 존재에 따라 수성 외부상에 있어서의 에멀전으로 존재하게 된다. 상기 내부상 액정 중의 단량체는 수성 외부상에 도입된 단량체와 반응하고, 내부상의 액적과 주위의 수성 외부상과의 계면에서 중합반응이 일어나며, 상기 액적 주위에서 입자의 벽이 형성된다. 형성된 벽은 비교적 얇고 침투성이 있으나, 다른 제조방법과 달리 가열이 필요하지 않으므로, 다양한 유전성 액체를 적용할 수 있는 장점이 있다.
본 발명에 따른 마이크로 입자는 10 내지 100㎛, 바람직하게는 10 내지 50㎛, 더욱 바람직하게는 10 내지 40㎛의 균일한 구형으로 이루어져 있다. 이러한 캡슐 형태 및 크기의 균일성은 전기장 또는 자기장에 의해 재배열되는 컬러 나노 복합체의 거시적 균일성을 확보하는 원인이 되며, 이에 따라 색상의 변화 및 구현되는 색상의 선명도가 더욱 향상되게 된다. 마이크로 입자의 형태와 크기의 균일성이 확보되지 못하면, 상기 마이크로 입자 내에 분산된 컬러 나노 복합체가 균일하게 재배열된다고 하더라도 거시적으로는 불규칙성이 증가되어 색상의 변화 및 구현이 불충분하게 된다.
본 발명에 의해 제조된 마이크로 입자(실시예)와 안정제를 사용하지 않고, 경화 촉매제의 양을 1/2로 줄여 제조한 마이크로 입자(비교예)의 입도 분포를 측정한 결과가 표 2에 기재되어 있다.
D[4,3](㎛) D(ν,0.1)(㎛) D(ν,0.5)(㎛) D(ν,0.9)(㎛)
실시예 23.58 12.99 23.23 35.67
비교예 113.95 23.08 104.53 216.64
표 2를 살펴보면, 본 발명에 따른 마이크로 입자는 D50이 23.23㎛으로 본 발명에서 요구하는 입자의 크기를 가지나, 제조 조건을 변경하면 D50이 급격히 증가하는 것을 확인할 수 있다. 입도 분포의 균일성은 실시예 및 비교예에 따른 마이크로 입자의 입도 분포 그래프를 살펴보아도 알 수 있다(도 23).
또한, D[4,3]에서도 비교예는 113.95㎛로 실시예에 비하여 평균 입도 분포의 균일성이 크게 악화되는 것을 알 수 있다. 따라서 본 발명에서 마이크로 입자의 제조 조건, 물성을 대단히 엄격하게 조절함으로써 본 발명이 목적으로 하는 마이크로 입자를 얻을 수 있음을 확인할 수 있었다.
제조 조건을 일부 변경한 상기 실시예(도 24a)와 비교예(도 24b)의 마이크로 입자에 대한 에멀전 상태 및 수상에서의 상태(도 25)에 대한 광학 현미경 사진을 살펴보아도, 제조 조건을 일부 변경할 때 본 발명에서 목적하는 형태 및 입도 균일성을 담보할 수 없음을 확인할 수 있다.
본 발명의 마이크로 입자는 벽재의 탄성이 낮고 단단한 성질로 인하여 건조 후에도 입자끼리의 응집 현상이 적다. 이는 실시예(도 26a) 및 비교예(도 26b)의 상온 건조에 의해 제조된 분말 상태의 광학 현미경 사진을 살펴보아도 알 수 있다. 실시예에서는 건조 후에도 응집이 발생하지 않으며 입자의 형태 변화가 거의 관찰되지 않으나, 비교예에서는 형태 변화 및 부분적인 응집이 발생하는 것을 확인할 수 있었다. 따라서 비교예에 따른 입자는 종래의 캡슐과 유사한 성질을 나타내는 것으로 볼 수 있다.
도 27은 본 발명의 마이크로 입자를 슬라이드 글래스에 100㎛ 두께로 도포한 후 100 가우스의 자기장 세기를 가진 고무 자석을 상기 슬라이드 글래스 뒷면에 근접했을 때 색상이 발현되는 모습을 촬영한 사진이다. 본 발명의 마이크로 입자의 균일성은 약한 자장에도 뚜렷한 색상 변화를 유발하는 효과를 나타낸다.
도 28은 본 발명의 마이크로 입자를 분말 상태로 하여 자기장 세기에 따른 반사율을 측정한 것이다. 화살표의 방향으로 자기장 세기가 증가하면 반사 피크가 화살표 방향으로 저파장 이동하는 것을 알 수 있다. 따라서 자성 세기에 따라 색상이 변화하는 현상을 분광학적 데이터를 통해 확인할 수 있다.
본 발명의 마이크로 입자는 벽재의 탄성이 낮고 단단한 성질로 인하여 우수한 내열성을 나타낸다. 도 29을 살펴보면, 실시예와 비교예에 따른 마이크로 입자를 슬라이드 글래스 위에 골고루 뿌리고 100℃의 열풍 건조기에 24시간 동안 방치한 후, 입자의 형태 변화를 관찰한 결과이다. 상기 결과로부터 본 발명에 따른 마이크로 입자의 벽재의 견고도가 높아 열적 안정성이 뛰어난 것을 확인할 수 있었다.
이러한 특성은 고온의 인쇄 조건에서도 견딜 수 있음을 의미하므로, 다양한 형태의 표시 소자나 인쇄 매체에 적용이 가능함을 의미한다.
또한, 벽재를 우레아-포름알데하이드로 형성한 마이크로 캡슐의 푸리에 변환 적외선 분광법(FT-IR) 측정 결과를 도 30에 나타내었다. 상기 FT-IR 스펙트럼을 살펴보면, C-N 신축에 해당하는 1097㎝-1 및 N-C-N 신축에 해당하는 1041㎝-1가 관측되어 고분자에 의해 벽재가 제대로 구성되고 있음을 확인할 수 있었다.
또한, 실시예와 비교예에 따른 마이크로 입자의 연필경도를 측정한 결과 실시예에서는 3B, 비교예에서는 9B의 측정 결과를 얻어 본 발명의 마이크로 입자의 벽재의 강도가 매우 향상된 것을 확인할 수 있었다.
이러한 연필경도의 측정결과와 마이크로 세공 영역의 공극 부피 비율로부터 본 발명의 마이크로 입자의 벽재는 매우 조밀한 구조를 이루며, 강도가 매우 높은 탄성이 낮고 단단한 성질을 가지는 것으로 파악되었다.
본 발명의 컬러 나노 복합체를 포함하는 마이크로 입자는 건조 보관시 응집이 없고, 열적 안정성 및 벽재의 강도가 우수하므로 다양한 형태의 인쇄에 적용할 수 있으며, 특히 실크스크린 인쇄와 같이 내열성, 내응집성이 요구되는 잉크에 적용할 수 있으므로 응용의 폭을 넓힐 수 있다.
본 발명에 따른 마이크로 입자를 인쇄를 위한 잉크에 적용할 경우, 수용성 고분자, 수분산 고분자, 유용성 고분자, 열경화성 고분자, 열가소성 고분자, UV 경화 고분자, 방사선 경화 고분자 등의 바인더에 분산하여 사용할 수 있다. 이러한 바인더에 경계면 활성제 및 가교제를 부가하여 인쇄 또는 코팅 공정의 내구성을 향상시킬 수도 있다.
상기 마이크로 입자를 사용한 인쇄는 인쇄 및 코팅의 모든 형태를 포함하며, 롤 코팅, 그라비어 코팅, 침지 코팅, 스프레이 코팅, 메니스커스 코팅, 스핑 코팅, 브러시 코팅, 에어나이프 코팅과 같은 코팅이나, 실크스크린 인쇄, 정전 인쇄, 열인쇄, 잉크젯 인쇄와 같은 인쇄를 통해 수행될 수 있다.
따라서 인쇄성이 뛰어난 상기 마이크로 입자를 사용하여 자기 가변 물질 포함부를 구성하면 고품질의 제품을 제조할 수 있게 된다.
[자기 가변 물질의 또 다른 구성]
본 발명의 자기 가변 물질을 구성하는 또 다른 예로서 에멀전, 젤리형 볼 및 이를 이용한 입자를 사용할 수도 있다.
상기 에멀전은 상기 컬러 나노 복합체를 포함하는 에멀전으로서, 전기장 또는 자기장의 인가에 의해 재배열되는 컬러 나노 복합체를 포함하는 에멀전으로서, 상기 컬러 나노 복합체는 젤리형 볼 형태의 구체를 이루며, 상기 에멀전은 상기 젤리형 볼 형태의 구체가 분산되어 이루어지는 것을 특징으로 한다.
본 발명에서 사용되는 컬러 나노 복합체는 상술한 바와 같은데, 용매 분자와 수소결합하는 고분자와 혼합되어 분산된다. 따라서 컬러 나노 복합체 입자의 표면을 수산화기, 아민기 등의 반응성기로 만들기 위하여 표면 수식을 하는 것이 바람직하다. 예를 들어, 아미노실란의 코팅을 통해 아민기로 표면 수식하거나, 실리카 코팅을 통해 수산화기로 표면 수식을 할 수 있다.
통상적으로 마이크로 캡슐을 제조하기 위해서는 이러한 표면 수식한 컬러 나노 복합체를 오일에 분산시키고 물과 같은 친수성 용매에 적하(droplet)함으로써 캡슐화하게 된다.
그러나 본 실시예에서는 이러한 복잡한 제조공정을 단순화하여, 상기 표면 수식한 컬러 나노 복합체 입자를 용매와 상기 용매 분자와 수소결합하는 고분자에 분산시킴으로써 이를 오일에 적하할 때 water-in oil 구조의 역에멀전(inverse emulsion) 시스템을 형성하여 젤리형 볼 형태의 구체를 형성하게 된다.
도 31을 참조하면, 이러한 젤리형 볼 형태의 구체는 구체 내부에 컬러 나노 복합체를 포함하고 있어 전기장 또는 자기장의 인가시 종래의 마이크로 캡슐 내에 분산된 컬러 나노 복합체 입자에 비해 비약적으로 빠른 속도로 재배열이 가능하게 된다. 이는 상기 컬러 나노 복합체 입자가 고분자에 의해 고정되어 분산됨으로써 응집이 발생하지 않고, 전기장 또는 자기장 인가시 짧은 거리를 이동해도 충분히 재배열이 가능하기 때문에 일어나는 현상이다.
결국, 상기 컬러 나노 복합체와 용매 분자와 수소결합하는 고분자가 안정적으로 결합해야 분산성이 향상될 수 있는데, 이를 위해서는 상기 컬러 나노 복합체의 표면을 정전기적인 반발력이 발휘될 수 있도록 표면 처리해야 하며, 이를 위하여 표면 수식이 필요하게 되는 것이다.
상기 젤리볼 형태의 구체를 형성하기 위한 상기 용매로는 극성 또는 비극성 용매를 사용할 수 있다. 이러한 용매의 예로는, 물, 메탄올, 에탄올, 프로판올, 부탄올, 프로필렌카보네이트, 톨루엔, 벤젠, 헥산, 클로로포름, 할로카본오일, 퍼클로로에틸렌, 트리클로로에틸렌, 아이소파라핀 오일의 일종인 isopar-G, isopar-M, isopar H 중 어느 하나 또는 그 이상을 사용할 수 있다.
비극성 용매를 사용할 경우, 역에멀전 시스템을 제조하기 위하여 수용성 매체에 적하하게 되므로, 이 경우 컬러 나노 복합체는 표면 수식이 필요없게 된다. 어떠한 경우에서든 역에멀전 시스템을 통한 젤리볼 형태의 구체를 형성할 수 있도록 상기 컬러 나노 복합체, 용매, 고분자는 적절한 형태로 변형하여 사용할 수 있다.
또한, 상기 용매 분자와 수소결합하는 고분자는 용매에 분산되어 상기 컬러 나노 복합체 입자와 안정적으로 결합할 수 있는 것이면 어떠한 것이든 사용할 수 있으나, 예를 들어, 젤라틴, 폴리비날알코올, 폴리비닐아세테이트, 셀룰로오스성 유도체, 아카시아, 카라기난, 카르복시메틸셀룰로오스, 가수분해된 스티렌 무수물 공중합체, 아가로스, 알기네이트, 카제인, 알부민, 셀룰로오스 프탈레이트 등의 고분자를 사용할 수 있다. 이러한 고분자로는 수용성 고분자를 사용하는 것이 바람직하며, 생산 단가 등을 고려하여 젤라틴, 아가로스, 셀룰로오스성 유도체 등의 천연 고분자를 사용하는 것이 바람직하다.
따라서 이러한 구조에서는 컬러 나노 복합체 입자가 분산된 젤리형 볼 형태의 구체는 매우 적은 양의 전기장 또는 자기장의 인가에 의해 탄성력을 보유한 고점도의 젤리형 볼의 미세한 기공에 분산되어 쉽게 등간격으로 배열되게 된다.
상기 젤리형 볼을 형성하기 위한 오일로는 광유, 파라핀 오일, 식물성 글리세라이드 오일, 동물성 글리세라이드 오일, 합성 에스테르 오일, 합성 에테르 오일, 실리콘 오일, 지방산 알코올 프로폭실레이트, 왁스, 도데칸, 등유, 솔트롤 등을 사용할 수 있다.
상기 젤리형 볼 형태의 구체는 매우 유동적이므로 표면장력이 낮은 원형으로 형성될 수 있으나, 타원형으로 변형되거나 인접한 젤리형 볼 형태의 구체와 접합하여 찌그러진 구형의 형태를 취할 수도 있다(도 32). 이러한 젤리형 볼 형태의 구체는 공정 조건을 조절함으로써 다양한 크기로 제조할 수 있는데, 그 용도에 따라 1㎛에서 10㎜ 직경의 구체를 제조할 수 있다.
일 실시예에서 용매 분자와 수소결합하는 고분자로 아가로스를 선택하여 젤리형 볼 형태의 구체를 제조하였다. 이 경우, 아가로스는 70℃를 전후하여 상변화를 일으키므로, 70℃ 이상의 교반조에서 아가로스의 수용액에 실리카가 코팅된 산화철 나노 복합체와 같은 컬러 나노 복합체를 배합, 분산함으로써 콜로이드 용액을 제조할 수 있다.
이러한 콜로이드 용액을 아가로스의 상변화 온도인 70℃ 정도의 오일에 주입하고 교반함으로써 젤리형 볼 형태의 구체를 제조할 수 있다.
이러한 구체에 자기장을 인가하면 도 33에 나타난 바와 같이 색가변이 성능을 나타내게 된다. 즉, 자기장을 인가하기 전(a)에 비해 자기장을 인가한 후(b)에 있어서 갈색에서 푸른색으로 색가변되어 색 변화가 매우 큰 구체를 얻을 수 있게 된다.
또한, 균일한 크기의 젤리형 볼 형태의 구체를 제조하기 위해서는 공정 조건을 조절함으로써 간단하게 크기 및 입도 분포가 다른 구체를 얻을 수 있다.
도 34는 평균 입도가 15㎛인 젤리형 볼 형태의 구체의 현미경 사진이다. 이러한 구체는 컬러 나노 복합체 입자와 고분자 및 용매의 비율을 조절함으로써 얻어질 수 있는 것으로, 본 발명에서는 1㎛에서 10㎜의 범위에서 그 크기를 조절할 수 있다.
이러한 구체는 공기중에 방치할 경우, 용매가 증발하면서 단단해지므로 컬러 나노 복합체 입자의 재배열 성능이 급격히 저하된다. 이를 방지하기 위하여 상기 젤리형 볼 형태의 구체를 경화성 고분자로 코팅하여 외피를 형성함으로써 컬러 나노 복합체를 포함하는 구체를 제조할 수 있다.
상기 외피를 형성하는 경화성 고분자로는 열경화성 또는 자외선 경화성 고분자를 사용할 수 있으며, 폴리에틸렌, 폴리메틸메타크릴레이트, 폴리스티렌, 폴리아미드, 폴리염화비닐 중 어느 하나를 사용할 수 있다.
상기 경화성 고분자를 상기 구체의 표면에 노즐 등을 통하여 분사한 후 경화함으로써 외피를 형성할 수 있으며, 상기 외피를 형성하면 상기 젤리형 볼 형태의 구체의 건조, 부피 감소 등이 거의 발생하지 않아 장기 보전성이 증가하며, 인쇄용 잉크로 제조할 경우에도 컬러 나노 복합체의 유출이 없는 내구성이 뛰어난 구체를 얻을 수 있게 된다.
본 발명의 컬러 나노 복합체를 포함하는 에멀전은 분산성이 뛰어나 이형지 또는 광투과성 필름 등의 필름 기재에 도포한 후 냉각시켜 경화함으로써 간단히 필름으로 제조할 수 있다.
또한, 외피를 씌운 구체는 건조 보관시에도 응집이 없고, 열적 안정성 및 벽재의 강도가 우수하므로 다양한 형태의 인쇄에 적용할 수 있으며, 특히 실크스크린 인쇄와 같이 내열성, 내응집성이 요구되는 잉크에까지 적용할 수 있으므로 응용의 폭을 넓힐 수 있다.
본 발명에 따른 마이크로 입자를 인쇄를 위한 잉크에 적용할 경우, 수용성 고분자, 수분산 고분자, 유용성 고분자, 열경화성 고분자, 열가소성 고분자, UV 경화 고분자, 방사선 경화 고분자 등의 바인더에 분산하여 사용할 수 있다. 이러한 바인더에 경계면 활성제 및 가교제를 부가하여 인쇄 또는 코팅 공정의 내구성을 향상시킬 수도 있다.
상기 마이크로 입자를 사용한 인쇄는 인쇄 및 코팅의 모든 형태를 포함하며, 롤 코팅, 그라비어 코팅, 침지 코팅, 스프레이 코팅, 메니스커스 코팅, 스핀 코팅, 브러시 코팅, 에어나이프 코팅과 같은 코팅이나, 실크스크린 인쇄, 정전 인쇄, 열인쇄, 잉크젯 인쇄와 같은 인쇄를 통해 수행될 수 있다.
구체적인 제조방법을 몇 가지 예시하면 아래와 같다.
[제조예 1]
잔탄검을 이용하여 나노 복합체의 젤리형 볼을 제조하는 경우 아래와 같이 제조할 수 있다.
1. 잔탄검 0.1 내지 10 중량부를 80 내지 100℃의 증류수 5 내지 20 중량부에 0.5 내지 3시간 동안 용해시켜 50 내지 80℃ 교반조에 보관한다.
2. 실리카가 코팅된 단분산 산화철 나노 입자를 10 내지 40%농도로 증류수에 분산시킨 후 60 내지 80℃로 승온하여 잔탄검 수용액과 온도가 동일하게 한다.
3. 잔탄검 수용액과 산화철 나노 입자 수분산 콜로이드를 1:0.5~0.5:1의 중량 비율로 혼합하여 균일한 분산액을 배합한다.
4. 60 내지 80℃로 온도가 설정된 도데칸 오일에 산화철 나노 입자 잔탄검 콜로이드액을 주입하고 100 내지 1,000 rpm으로 0.5 내지 3시간 교반시킨다.
5. 10분후 오일을 상온으로 냉각시킨 후 구형의 갈색 볼을 분리한다.
[제조예 2]
합성 고분자인 hydrolyzed polyacrylamide (HPAA)를 이용하여 나노 복합체의 젤리형 볼을 제조하는 경우 아래와 같이 제조한다.
1. 수화 폴리아크릴 아마이드 0.1 내지 10 중량부를 80 내지 100℃의 증류수 5 내지 20 중량부에 0.5 내지 3시간 동안 용해시켜 50 내지 80℃ 교반조에 보관한다.
2. 실리카가 코팅된 단분산 산화철 나노입자를 10 내지 40%농도로 증류수에 분산시킨 후 60 내지 80℃로 승온하여 폴리아크릴아마이드 수용액과 온도가 동일하게 한다.
3. 폴리아크릴아마이드 수용액과 산화철 나노입자 수분산 콜로이드를 0.1:1~1:0.1의 중량 비율로 혼합하여 균일한 분산액을 배합한다.
4. 60 내지 80℃로 온도가 설정된 미네랄 오일에 산화철 나노입자 폴리아크릴아마이드 콜로이드액을 주입하고 100 내지 1,000 rpm으로 0.5 내지 1시간 교반시킨다.
5. 10분후 오일을 상온으로 냉각시킨 후 구형의 갈색 볼을 분리한다.
[제조예 3]
합성 고분자인 Hydrolyzed Guar Gum(HGG)를 이용하여 나노 복합체의 젤리형 볼을 제조하는 경우 아래와 같다.
1. HGG 0.1 내지 10 중량부를 80 내지 100℃의 증류수 5 내지 20 중량부에 0.5 내지 3시간 동안 용해시켜 50 내지 80℃ 교반조에 보관한다.
2. 실리카가 코팅된 단분산 산화철 나노입자를 10 내지 40%농도로 증류수에 분산시킨 후 60 내지 80℃로 승온하여 HGG 수용액과 온도가 동일하게 한다.
3. HGG 수용액과 산화철 나노입자 수분산 콜로이드를 1:0.2~0.2:1의 중량 비율로 혼합하여 균일한 분산액을 배합한다.
4. 60 내지 80℃로 온도가 설정된 mineral 오일에 산화철 나노입자 HGG 콜로이드액을 주입하고 100 내지 1,000 rpm으로 0.5 내지 1시간 교반시킨다.
5. 10분후 오일을 상온으로 냉각시킨 후 구형의 갈색 볼을 분리한다.
[제조예 4]
1mm 이상 크기를 갖는 나노 복합체의 젤리형 볼을 제조하는 경우 아래와 같이 제조할 수 있다.
1. 아가로스 0.1 내지 10 중량부를 80 내지 100℃의 증류수 5 내지 20 중량부에 0.5 내지 3시간 동안 용해시켜 50 내지 80℃ 교반조에 보관한다.
2. 실리카가 코팅된 단분산 산화철 나노입자를 10 내지 40%농도로 증류수에 분산시킨 후 60 내지 80℃로 승온하여 아가로스 수용액과 온도가 동일하게 한다.
3. 아가로스 수용액과 산화철 나노입자 수분산 콜로이드를 1:0.1~0.1:1의 중량 비율로 혼합하여 균일한 분산액을 배합한다.
4. 60 내지 80℃로 온도가 설정된 도데칸 오일에 산화철 나노입자 아가로스 콜로이드액을 주입하고 100 내지 1,000 rpm으로 0.5 내지 3시간 교반시킨다.
5. 10분후 오일을 상온으로 냉각시킨 후 구형의 갈색 볼을 분리한다.
[제조예 5]
10㎛ 이상 크기를 갖는 나노 복합체의 젤리형 볼 제조하는 경우 아래와 같이 제조할 수 있다.
1. 아가로스 0.1 내지 10 중량부를 80 내지 100℃의 증류수 5 내지 20 중량부에 0.5 내지 3시간 동안 용해시켜 50 내지 80℃ 교반조에 보관한다.
2. 실리카가 코팅된 단분산 산화철 나노입자를 10 내지 40%농도로 증류수에 분산시킨 후 60 내지 80℃로 승온하여 아가로스 수용액과 온도가 동일하게 한다.
3. 아가로스 수용액과 산화철 나노입자 수분산 콜로이드를 1:0.1~0.1:1의 중량 비율로 혼합하여 균일한 분산액을 배합한다.
4. 60 내지 80℃로 온도가 설정된 도데칸 오일에 산화철 나노입자 아가로스 콜로이드액을 주입하고 800 내지 3,000 rpm으로 0.5 내지 3시간 교반시킨다.
5. 10분후 오일을 상온으로 냉각시킨 후 구형의 갈색 볼을 분리한다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
[부호의 설명]
10: 자기 가변 물질 11: 입자
12: 용매 13: 캡슐
100: 자기 가별 물질 포함부 200, 700: 자기장 발생부
300: 스페이서 400: 광흡수층
500: 광투과층 600, 800: 자기 유도부
900: 접착부 1000: 정보 박막층
1100: 자화부 1200: 수광부
F: 외력 L: 광

Claims (22)

  1. 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부,
    상기 자기 가변 물질에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부, 및 상기 자기 가변 물질 포함부와 상기 자기장 발생부 사이에 개재되어 상기 자기 가변물질 포함부와 상기 자기장 발생부의 간격을 조절하는 스페이서를 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치.
  2. 제1항에 있어서,
    상기 스페이서는, 에어(air)층, 박막층, 필름층, 시트층, 접착증, 정보표시층, 상변화 물질(phase change materials)층 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치.
  3. 제1항에 있어서,
    상기 스페이서의 두께를 조절하여, 상기 자기 가변 물질에 대하여 인가되는 자기장의 세기를 조절함에 따라, 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시키는 것을 특징으로 하는 위조 및 변조 방지 장치.
  4. 제1항에 있어서,
    상기 스페이서의 자화율을 조절하여, 상기 자기 가변 물질에 대하여 인가되는 자기장의 세기를 조절함에 따라, 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시키는 것을 특징으로 하는 위조 및 변조 방지 장치.
  5. 제1항에 있어서,
    상기 스페이서는 광흡수층을 포함하며, 상기 광흡수층은 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시키는 것을 특징으로 하는 위조 및 변조 방지 장치.
  6. 제1항에 있어서,
    상기 스페이서는 투명 또는 반투명의 광투과층을 포함하며, 상기 광투과층은 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시키는 것을 특징으로 하는 위조 및 변조 방지 장치.
  7. 제6항에 있어서,
    상기 광투과층의 적어도 일면에 이미지, 패턴, 문자, 도형, 바코드 등이 형성된 것을 특징으로 하는 위조 및 변조 방지 장치.
  8. 제1항에 있어서,
    상기 자기 가변 물질 포함부 또는 상기 자기장 발생부는 굴곡지게 형성되고, 상기 자기 가변 물질 포함부 또는 상기 자기장 발생부에 외력을 가하여 변형시킴에 따라, 상기 자기 가변 물질 포함부에 인가되는 자기장이 변화하는 것을 특징으로 하는 위조 및 변조 방지 장치.
  9. 제1항에 있어서,
    상기 자기 가변 물질 포함부는 상기 자기 가변 물질을 탄성 기판에 코팅하여 형성한 것을 특징으로 하는 위조 및 변조 방지 장치.
  10. 제1항에 있어서,
    상기 스페이서는 탄성 재질로 구성되고, 상기 스페이서가 외력에 의해 변형됨에 따라, 상기 자기 가변 물질 포함부에 인가되는 자기장이 변화하는 것을 특징으로 하는 위조 및 변조 방지 장치.
  11. 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부,
    상기 자기 가변 물질 포함부의 일측에 배치되며, 상기 자기 가변 물질에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부, 및
    상기 자기 가변 물질 포함부의 타측에 배치되며, 상기 자기장 발생부에서 인가되는 자기장에 따라 적어도 일부가 자기 유도(magnetic indcuction)되는 자기 유도부를 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치.
  12. 제11항에 있어서,
    상기 자기 유도부는 자기 유도 되는 영역인 자기 유도 패턴이 형성되는 것을 특징으로 하는 위조 및 변조 방지 장치.
  13. 제12항에 있어서,
    상기 자기 유도 패턴에 대향하는 상기 자기 가변 물질 포함부의 부분에서 반사되거나 투과되는 광이 변화되는 것을 특징으로 하는 위조 및 변조 방지 장치.
  14. 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부,
    상기 자기 가변 물질 포함부와 적어도 일부가 대향되는 제1 자기 유도부, 상기 제1 자기 유도부에 일체로 연장되는 제2 자기 유도부, 및
    상기 제2 자기 유도부에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부를 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치.
  15. 제14항에 있어서,
    상기 자기장 발생부에서 인가되는 자기장에 따라 제2 자기 유도부가 자기 유도됨과 동시에, 상기 제2 자기 유도부와 일체로 연장되는 상기 제1 자기 유도부가 자기 유도되며, 상기 제1 자기 유도부에 대향하는 상기 자기 가변 물질 포함부의 부분에서 반사되거나 투과되는 광이 변화되는 것을 특징으로 하는 위조 및 변조 방지 장치.
  16. 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 및 상기 자기 가변 물질에 대하여 인가될 수 있는 자기장을 발생시키는 자기장 발생부를 포함하며,
    상기 자기장 발생부는, 적어도 하나의 영구자석 또는 가변자석을 포함하는
    것을 특징으로 하는 위조 및 변조 방지 장치.
  17. 제16항에 있어서,
    상기 자기장 발생부는 상기 자기 가변 물질 포함부에 대해서 회전되거나, 위치가 변화됨으로써, 상기 자기 가변 물질 포함부에서 반사되거나 투과되는 광을 변화시키는 것을 특징으로 하는 위조 및 변조 방지 장치.
  18. 제17항에 있어서,
    상기 자기 가변 물질 포함부와 상기 자기장 발생부 사이에 적어도 하나의 층을 가지는 자화부를 더 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치.
  19. 소정의 패턴을 가지며, 상기 패턴 부분이 자화된 자화부, 인가되는 자기장이 변화하면 반사광 또는 투과광이 변화되는 자기 가변 물질을 포함하는 자기 가변 물질 포함부, 및 상기 자화부에서 인가된 자기장에 의해 상기 자기 가변 물질 포함부에서 반사되거나 투과된 광을 수광하는 수광부
    를 포함하는 것을 특징으로 하는 위조 및 변조 방지 장치.
  20. 제19항에 있어서,
    상기 수광부는 기입력된 패턴 또는 파장 값과, 상기 자화부의 상기 패턴에 의해 상기 자기 가변 물질 포함부에서 반사되거나 투과된 광의 파장을 비교하여 진위 여부를 판단하는 것을 특징으로 하는 위조 및 변조 방지 장치.
  21. 제1항 내지 제20항 중 어느 한 항에 있어서,
    상기 자기 가변 물질은 상기 자기장이 인가됨에 따라 기설정된 파장의 광을 반사시키거나 기설정된 투과도로 광을 투과시키도록 설정되는 것을 특징으로 하는 위조 및 변조 방지 장치.
  22. 제1항 내지 제20항 중 어느 한 항에 있어서,
    상기 자기 가변 물질 포함부, 상기 자기장 발생부 중 적어도 하나는, 태그, 카드, 필름 및 스티커 중 적어도 하나의 형태로 이루어지는 것을 특징으로 하는 위조 및 변조 방지 장치.
PCT/KR2016/014091 2014-12-03 2016-12-02 위조 및 변조 방지 장치 WO2017095178A1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020140171854A KR20150063309A (ko) 2014-12-03 2014-12-03 위조 및 변조 방지 장치
KR10-2015-0171649 2015-12-03
KR1020150171649A KR20160067057A (ko) 2014-12-03 2015-12-03 위조 및 변조 방지 장치

Publications (1)

Publication Number Publication Date
WO2017095178A1 true WO2017095178A1 (ko) 2017-06-08

Family

ID=53503878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014091 WO2017095178A1 (ko) 2014-12-03 2016-12-02 위조 및 변조 방지 장치

Country Status (3)

Country Link
KR (9) KR20150063309A (ko)
CN (11) CN106157426B (ko)
WO (1) WO2017095178A1 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296852B1 (ko) * 2015-06-26 2021-09-01 엘지디스플레이 주식회사 마그네틱 디스플레이 장치
KR101837710B1 (ko) * 2015-11-27 2018-03-13 한국과학기술연구원 위조 변조 및 재사용 방지를 위한 구조체, 이의 제조방법 및 이를 이용한 위조 변조 및 재사용 진위 판별방법
KR102559091B1 (ko) * 2016-04-29 2023-07-24 엘지디스플레이 주식회사 포토닉 크리스탈 광학 소자 및 그를 이용한 표시 장치
KR102152408B1 (ko) * 2016-12-07 2020-09-04 주식회사 나노브릭 히든 이미지 효과를 나타내는 정품인증용 라벨 및 이의 제조방법.
KR102071444B1 (ko) * 2017-12-29 2020-03-02 한국조폐공사 형광 물질을 포함한 마이크로캡슐
CN108761849B (zh) 2018-01-24 2021-10-01 友达光电股份有限公司 磁致变色显示器
US11256971B2 (en) * 2018-02-06 2022-02-22 Xerox Corporation Authentication tag
KR200490792Y1 (ko) * 2018-06-08 2020-01-03 (주)나노브릭 정품인증 및 위조방지용 연포장재.
KR20190022302A (ko) * 2018-06-14 2019-03-06 주식회사 나노브릭 컬러 입자를 포함하는 마이크로 캡슐 및 이를 포함하는 인쇄 매체.
CN108986641A (zh) * 2018-06-28 2018-12-11 新乡市李烨科技发展有限公司 一种防转移特磁材料防伪标签及其制作方法
KR102586123B1 (ko) 2018-10-05 2023-10-10 주식회사 나노브릭 위조 및 변조 방지 방법.
EP3854602A4 (en) 2018-10-31 2022-07-06 Korea Institute of Machinery & Materials STRUCTURAL COLORING SUBSTRATE, METHOD OF PREPARING A STRUCTURAL COLORING SUBSTRATE AND SAFETY TESTING SYSTEM USING A STRUCTURAL COLORING SUBSTRATE MANUFACTURED THEREFORE
KR102218675B1 (ko) 2018-10-31 2021-02-22 한국기계연구원 광변환 구조체를 포함한 구조색 기판, 이의 제조방법, 및 이를 이용한 보안 검증시스템
KR102159085B1 (ko) 2018-10-31 2020-09-23 한국기계연구원 구조색 기판의 제조방법 및 이에 의해 제조된 구조색 기판을 이용한 보안 검증시스템
KR20200059561A (ko) 2018-11-21 2020-05-29 주식회사 나노브릭 위조 및 변조 방지용 전사라벨 및 상기 전사라벨의 전사방법.
KR102358505B1 (ko) * 2019-10-23 2022-02-04 엔비에스티(주) 광결정물질 복합체를 포함하는 위변조 방지수단
CN111330461B (zh) * 2020-04-08 2021-08-03 中国科学院过程工程研究所 一种磁响应油水分离膜及其制备方法和自清洁方法
KR102296087B1 (ko) * 2020-05-13 2021-09-01 주식회사 인큐스타 가변 표시 소자 및 색 가변 포장재
KR102358512B1 (ko) * 2020-05-13 2022-02-04 엔비에스티(주) 탈자기를 이용한 위변조 방지수단 및 그 제조방법
KR102522644B1 (ko) * 2020-08-13 2023-04-18 (주)오리온엔이에스 코어-쉘 구조의 변색 복합체가 분산된 광감응 변색소자
USD1015350S1 (en) 2021-10-26 2024-02-20 Samsung Electronics Co., Ltd. Display screen or portion thereof with transitional graphical user interface
KR20230105917A (ko) 2022-01-05 2023-07-12 한국조폐공사 동작 반응형 보안장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100354883B1 (ko) * 1993-10-06 2002-12-26 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 변조및변경을자동검출하는보안판독기
KR20080080412A (ko) * 2005-12-28 2008-09-03 니혼 하츠쵸 가부시키가이샤 식별 매체
KR20120082380A (ko) * 2012-06-08 2012-07-23 주식회사 나노브릭 색 가변 물질을 이용한 위조 방지 방법 및 장치
KR20130107262A (ko) * 2010-08-16 2013-10-01 주식회사 나노브릭 반사광을 제어하기 위한 표시 방법 및 필름

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713206A (ja) * 1993-06-18 1995-01-17 Tokyo Jiki Insatsu Kk 書換え可能型表示媒体
JPH1086562A (ja) * 1996-04-12 1998-04-07 Konica Corp 認証識別媒体、その作成方法、作成装置及び画像形成装置
CN1169030C (zh) * 1996-04-12 2004-09-29 柯尼卡株式会社 认证识别媒体及制作方法以及图像生成装置
JP3307243B2 (ja) * 1996-10-11 2002-07-24 富士ゼロックス株式会社 可逆表示媒体及び画像表示方法
DE10217632A1 (de) * 2002-04-19 2003-11-06 Giesecke & Devrient Gmbh Sicherheitsdokument
JP4925003B2 (ja) * 2006-03-20 2012-04-25 株式会社ビーエフ 手書き込みが可能な表示媒体、表示装置および表示方法
US20090061222A1 (en) * 2007-08-31 2009-03-05 Tesa Aktiengesellschaft Multi-layer adhesive closure
GB0720550D0 (en) * 2007-10-19 2007-11-28 Rue De Int Ltd Photonic crystal security device multiple optical effects
CN101441382B (zh) * 2007-11-19 2010-08-04 中国科学院理化技术研究所 电子纸微杯的一步封盖方法及封盖材料
DE102007059550A1 (de) * 2007-12-11 2009-06-25 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement
KR101068206B1 (ko) * 2009-09-21 2011-09-28 주식회사 나노브릭 색 가변성 태양전지
EP2491456B1 (en) * 2009-10-21 2017-06-21 Sun Chemical Corporation Piezochromic device
US8970943B2 (en) * 2010-08-02 2015-03-03 Nanobrick Co., Ltd. Composite film for preventing forgery, and composite method for preventing forgery
DE102011015837A1 (de) * 2011-04-01 2012-10-04 Giesecke & Devrient Gmbh Optisch variabeles Sicherheitselement mit optisch variabeler Farbschicht
WO2012162095A2 (en) * 2011-05-21 2012-11-29 E Ink Corporation Electro-optic displays
KR101267943B1 (ko) * 2011-07-14 2013-05-27 주식회사 한림포스텍 무선 전력 전송 장치용 접촉 시트 및 이를 포함하는 무선 전력 전송 장치
KR20120035170A (ko) * 2012-02-07 2012-04-13 주식회사 나노브릭 자기 표시 소자 구조 및 장치
JP2013235022A (ja) 2012-05-02 2013-11-21 Seiko Epson Corp 表示装置および表示装置の製造方法
CN104769488B (zh) * 2012-11-14 2019-06-04 纳诺布雷克株式会社 防伪造变造装置
CN103268657A (zh) * 2013-03-13 2013-08-28 上海印钞有限公司 一种可动态感应磁场位置变化的防伪元件及其制作方法
CN104098955A (zh) * 2014-05-28 2014-10-15 中国人民银行印制科学技术研究所 具有磁场可控的光变效果的防伪元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100354883B1 (ko) * 1993-10-06 2002-12-26 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 변조및변경을자동검출하는보안판독기
KR20080080412A (ko) * 2005-12-28 2008-09-03 니혼 하츠쵸 가부시키가이샤 식별 매체
KR20130107262A (ko) * 2010-08-16 2013-10-01 주식회사 나노브릭 반사광을 제어하기 위한 표시 방법 및 필름
KR20120082380A (ko) * 2012-06-08 2012-07-23 주식회사 나노브릭 색 가변 물질을 이용한 위조 방지 방법 및 장치
KR20130138149A (ko) * 2012-06-08 2013-12-18 주식회사 나노브릭 위조 및 변조 방지 장치

Also Published As

Publication number Publication date
CN106200200B (zh) 2019-07-09
KR20150063309A (ko) 2015-06-09
KR101731623B1 (ko) 2017-05-02
KR20160067057A (ko) 2016-06-13
KR20150063325A (ko) 2015-06-09
CN205416814U (zh) 2016-08-03
KR20150063319A (ko) 2015-06-09
CN106200201B (zh) 2019-09-24
CN106157426B (zh) 2019-03-01
KR20150063321A (ko) 2015-06-09
CN205281974U (zh) 2016-06-01
CN105676486B (zh) 2019-01-22
CN105676486A (zh) 2016-06-15
CN205644606U (zh) 2016-10-12
CN205281973U (zh) 2016-06-01
CN205416819U (zh) 2016-08-03
CN205451663U (zh) 2016-08-10
KR101703914B1 (ko) 2017-02-22
KR20150066498A (ko) 2015-06-16
KR101655374B1 (ko) 2016-09-08
KR101622379B1 (ko) 2016-05-19
KR20150063317A (ko) 2015-06-09
KR20150063327A (ko) 2015-06-09
CN205594249U (zh) 2016-09-21
CN106200200A (zh) 2016-12-07
CN106157426A (zh) 2016-11-23
KR101689393B1 (ko) 2016-12-23
KR20150063320A (ko) 2015-06-09
CN106200201A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2017095178A1 (ko) 위조 및 변조 방지 장치
KR101024880B1 (ko) 안료 박편들의 자기(磁氣) 평탄화
WO2014077604A1 (ko) 위조 및 변조 방지 장치
JP5882793B2 (ja) コーティングされた磁気ナノ粒子を含む溶媒系インクおよびそれを調製するためのプロセス
US6759097B2 (en) Methods for producing imaged coated articles by using magnetic pigments
KR20170124763A (ko) 광학적 가변 물질을 포함하는 위변조 방지용 인쇄물 및 이의 제조방법
WO2012011695A2 (ko) 표시 장치, 표시 방법 및 머신 판독 가능한 기록 매체
US7352502B2 (en) Electrophoretic particle, process for its production, and its use
US5223360A (en) Materials coated with plate-like pigments
WO2017074152A1 (ko) 컬러 나노 복합체를 함유하는 마이크로 입자 및 이의 제조방법.
US20080261003A1 (en) Improvements in and Relating to Image Articles
JP5209908B2 (ja) 硬化した場整列特殊効果フレークのコーティングの打ち抜き加工およびそれによって形成される画像
WO2014042472A1 (ko) 입체이동 히든이미지 효과를 나타내는 자성 보안 요소 및 그 인쇄 방법
CA2770959A1 (en) Solvent based magnetic ink comprising carbon coated magnetic nanoparticles and process for preparing same
CN112105348A (zh) 含有彩色颗粒的微胶囊和包括所述微胶囊的打印介质
WO2019098599A1 (ko) 보안잉크용 alnico계 자성 입자
WO2013119046A1 (ko) 자성 입자를 이용한 표시 방법, 필름 및 표시 장치
KR101819091B1 (ko) 정품인증을 위한 표시장치 및 이의 사용방법.
JP4088343B2 (ja) 液晶表示素子用スペーサ及び液晶表示素子
KR20100033344A (ko) 수불용성 화합물의 미립자와 그 분산물, 그 미립자와 분산물의 제조 방법, 및 이들을 이용한 컬러 필터
JPH1176801A (ja) 磁性体内包マイクロカプセル及びその利用
JP2004345322A (ja) 導電性インクジェットインク受容層形成用インクおよびそれを用いたシート
KR101880908B1 (ko) 컬러 나노 복합체 및 이의 제조방법
KR20210010020A (ko) 자성 입자를 이용한 위조 방지 물품의 제조 방법
WO2022114295A1 (ko) 위조 및 변조 방지 장치의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16871074

Country of ref document: EP

Kind code of ref document: A1