WO2017094479A1 - 感放射線性組成物、パターン形成方法及び感放射線性酸発生剤 - Google Patents

感放射線性組成物、パターン形成方法及び感放射線性酸発生剤 Download PDF

Info

Publication number
WO2017094479A1
WO2017094479A1 PCT/JP2016/083609 JP2016083609W WO2017094479A1 WO 2017094479 A1 WO2017094479 A1 WO 2017094479A1 JP 2016083609 W JP2016083609 W JP 2016083609W WO 2017094479 A1 WO2017094479 A1 WO 2017094479A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
radiation
polymer
sensitive composition
Prior art date
Application number
PCT/JP2016/083609
Other languages
English (en)
French (fr)
Inventor
永井 智樹
岳彦 成岡
研 丸山
宗大 白谷
恭志 中川
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020187015095A priority Critical patent/KR102648061B1/ko
Priority to JP2017553743A priority patent/JP6886113B2/ja
Publication of WO2017094479A1 publication Critical patent/WO2017094479A1/ja
Priority to US15/988,436 priority patent/US11204552B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/32Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/06Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing halogen atoms, or nitro or nitroso groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/07Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
    • C07C309/12Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing esterified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/19Sulfonic acids having sulfo groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/24Sulfonic acids having sulfo groups bound to acyclic carbon atoms of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam

Definitions

  • the present invention relates to a radiation-sensitive composition, a pattern formation method, and a radiation-sensitive acid generator.
  • a resist film is formed using a radiation-sensitive composition, and electromagnetic waves such as deep ultraviolet rays (ArF excimer laser light, KrF excimer laser light, etc.), extreme ultraviolet rays (EUV), electron beams are formed on the resist film. Irradiation with charged particle beam etc. generates acid in the exposed area, and a chemical reaction using this acid as a catalyst causes a difference in the dissolution rate in the developer between the exposed area and the unexposed area. Form a pattern.
  • electromagnetic waves such as deep ultraviolet rays (ArF excimer laser light, KrF excimer laser light, etc.), extreme ultraviolet rays (EUV), electron beams are formed on the resist film.
  • Irradiation with charged particle beam etc. generates acid in the exposed area, and a chemical reaction using this acid as a catalyst causes a difference in the dissolution rate in the developer between the exposed area and the unexposed area.
  • Such a radiation-sensitive composition is required to improve the performance as a resist film as the processing technique becomes finer.
  • the types and molecular structures of polymers, acid generators and other components used in the composition have been studied, and further their combinations have been studied in detail (Japanese Patent Application Laid-Open No. 11-125907, special features). (See Kaihei 8-146610 and JP-A 2000-298347).
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a radiation-sensitive composition, a pattern forming method, and a radiation-sensitive acid generator that are excellent in sensitivity and nanoedge roughness performance. is there.
  • the invention made in order to solve the above-mentioned problems includes a first polymer having a first structural unit containing an acid-dissociable group, and a first compound containing a metal cation and a first anion that is a conjugate base of an acid. It is a radiation sensitive composition which contains and pKa of acid (I) is 0 or less.
  • Another invention made to solve the above-mentioned problems comprises a step of forming a film, a step of exposing the film, and a step of developing the exposed film, and the film is made of the radiation-sensitive composition. This is a pattern forming method to be formed.
  • Still another invention made in order to solve the above-mentioned problems is from a compound containing a metal cation and an anion which is a conjugate base of an acid which is a sulfonic acid, nitric acid, organic azionic acid, disulfonylimide acid or a combination thereof.
  • the acid is generated by the action of EUV or electron beam, and the acid has a pKa of 0 or less.
  • the “metal cation” refers to an ion generated when a metal atom emits electrons and is oxidized. This metal cation may be coordinated with a sigma ligand.
  • ⁇ ligand refers to a ligand that binds to a metal cation at one or more coordination sites via a ⁇ bond.
  • Acid pKa refers to the common logarithm of the reciprocal of the acid dissociation constant of the acid, for example, a value at 298 K obtained by calculation using a calculation plug-in module of “Marvin Sketch” of ChemAxon.
  • the “acid-dissociable group” refers to a group that substitutes for a hydrogen atom, such as a carboxy group, a sulfo group, or a phenolic hydroxyl group, and dissociates by the action of an acid.
  • the radiation-sensitive composition and the pattern forming method of the present invention a pattern with high sensitivity and small nano edge roughness can be formed.
  • the radiation sensitive acid generator of this invention can be used suitably as an acid generator component of the said radiation sensitive composition. Therefore, these can be suitably used for manufacturing semiconductor devices that are expected to be further miniaturized in the future.
  • the radiation-sensitive composition is a first polymer (hereinafter also referred to as “[A] polymer”) having a first structural unit containing an acid-dissociable group (hereinafter also referred to as “structural unit (I)”). And a first anion (hereinafter also referred to as “anion (I)”) which is a conjugate base of a metal cation (hereinafter also referred to as “cation (I)”) and an acid (hereinafter also referred to as “acid (I)”). ) And a first compound (hereinafter, also referred to as “[B] compound”).
  • the radiation-sensitive composition includes, as suitable components, a radiation-sensitive acid generator other than the [B] compound (hereinafter also referred to as “[C] acid generator”), an acid diffusion controller (hereinafter referred to as “[D]”). Also referred to as “acid diffusion controller”), [A] second polymer (hereinafter also referred to as “[E] polymer”) having a larger total mass content of fluorine atoms and silicon atoms than [A] polymer, and [F] solvent. In the range which does not impair the effect of this invention, you may contain other arbitrary components. Hereinafter, each component will be described.
  • the polymer is a polymer having the structural unit (I).
  • “Polymer” refers to a compound formed by combining monomers by the formation of a covalent bond, and includes polymers and oligomers.
  • the lower limit of the molecular weight of the polymer is, for example, 500, preferably 1,000.
  • the acid-dissociable group is dissociated by the action of an acid generated from the [B] compound and / or [C] acid generator described later. As a result, the solubility of the [A] polymer in the developer changes, so that a pattern can be formed with the radiation-sensitive composition.
  • the polymer is not particularly limited as long as it has the structural unit (I).
  • [A1] polymer a polymer having the structural unit (I)
  • [A2] polymer the structural unit (I).
  • Examples thereof include cyclic oligomers (such as calixarene) in which a plurality of aromatic rings to which a hydroxy group is bonded or heteroaromatic rings to which a hydroxy group is bonded are bonded cyclically via a hydrocarbon group.
  • the polymer is a polymer having the structural unit (I).
  • the polymer includes a second structural unit represented by the formula (3) (hereinafter also referred to as “structural unit (II)”), a lactone structure, and a cyclic carbonate structure. , May have a structural unit (III) containing a sultone structure or a combination thereof, and may have other structural units other than (I) to (III).
  • a polymer can introduce various structural units more easily, and can adjust the solubility in a developer. According to the radiation sensitive composition, resist performance can be further improved.
  • the polymer may have one or more of each structural unit. Hereinafter, each structural unit will be described.
  • the structural unit (I) is a structural unit containing an acid dissociable group.
  • the structural unit (I) in the polymer for example, a structural unit represented by the following formula (2-1) (hereinafter also referred to as “structural unit (I-1)”), a structural formula (2-2) ) (Hereinafter also referred to as “structural unit (I-2)”) and the like.
  • R 2 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 3 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 4 and R 5 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring member having 3 to 5 members composed of these groups together with the carbon atom to which they are bonded. 20 alicyclic structures are represented.
  • R 6 is a hydrogen atom or a methyl group.
  • L 1 is a single bond, —COO— or —CONH—.
  • R 7 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 8 and R 9 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent oxyhydrocarbon group having 1 to 20 carbon atoms.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • Numberer of ring members means the number of atoms constituting the ring of the alicyclic structure, aromatic ring structure, aliphatic heterocyclic structure and aromatic heterocyclic structure, and in the case of polycyclic, the number of atoms constituting this polycyclic ring Say.
  • structural unit (I-1) structural units represented by the following formulas (2-1-1) to (2-1-5) (hereinafter referred to as “structural units (I-1-1) to (I-1) ⁇ 5) ”) is preferred.
  • structural unit (I-2) a structural unit represented by the following formula (2-2-1) (hereinafter also referred to as “structural unit (I-2-1)”) is preferable.
  • R 2 to R 5 have the same meanings as the above formula (2-1).
  • n a is each independently an integer of 1 to 4.
  • R 6 to R 9 are synonymous with the above formula (2-2).
  • Examples of the structural unit (I-1) include a structural unit represented by the following formula.
  • R 2 has the same meaning as in the above formula (2-1).
  • Examples of the structural unit (I-2) include a structural unit represented by the following formula.
  • R 6 has the same meaning as in the above formula (2-2).
  • a structural unit (I-1-2), a structural unit (I-1-3) and a structural unit (I-1-5) are preferable, and 1-alkylcyclopentane-1-
  • a structural unit derived from yl (meth) acrylate, a structural unit derived from 2-adamantyl-2-propyl (meth) acrylate, and a structural unit derived from 1-alkylinden-1-yl (meth) acrylate are more preferred.
  • the structural unit (I-2) is preferably a structural unit (I-2-1), more preferably a structural unit derived from p- (1-oxyhydrocarbon-substituted-1-alkyloxy) styrene, and p- ( More preferred are structural units derived from 1-cycloalkyloxy-1-alkyloxy) styrene and p- (1-alkyloxy-1-alkyloxy) styrene, p- (1-methoxy-2-methylpropane-1- A structural unit derived from (yloxy) styrene is particularly preferred.
  • the content rate of structural unit (I) 15 mol% is preferable with respect to all the structural units which comprise a [A1] polymer, 20 mol% is more preferable, 30 mol% is further more preferable, 40 mol% % Is particularly preferred.
  • 80 mol% is preferable, 70 mol% is more preferable, 60 mol% is further more preferable, 55 mol% is especially preferable.
  • the structural unit (II) is a structural unit containing a phenolic hydroxyl group.
  • the solubility in the developer can be adjusted more appropriately, and as a result, the nanoedge roughness performance of the radiation-sensitive composition is further improved. be able to.
  • the adhesion of the pattern to the substrate can be further improved.
  • the sensitivity of the radiation sensitive composition can be further increased.
  • structural unit (II) examples include a structural unit represented by the following formula (3) (hereinafter also referred to as “structural unit (II-1)”).
  • R 15 is a hydrogen atom or a methyl group.
  • L 2 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • R 16 is a monovalent organic group having 1 to 20 carbon atoms.
  • p is an integer of 0-2.
  • q is an integer of 0 to 9. When q is 2 or more, the plurality of R 16 may be the same or different.
  • r is an integer of 1 to 3.
  • structural unit (II) examples include structural units represented by the following formulas (3-1) to (3-7) (hereinafter also referred to as “structural units (II-1) to (II-7)”), etc. Is mentioned.
  • R 15 has the same meaning as in the above formula (3).
  • the lower limit of the content ratio of the structural unit (II) is preferably 10 mol% with respect to all the structural units constituting the polymer. Mole% is more preferable, and 45 mol% is more preferable. As an upper limit of the said content rate, 80 mol% is preferable, 75 mol% is more preferable, and 70 mol% is further more preferable.
  • the content rate of structural unit (II) into the said range, the nano edge roughness performance of the said radiation sensitive composition can further be improved.
  • the sensitivity in the case of KrF exposure, EUV exposure, or electron beam exposure can be further increased.
  • the structural unit (III) is a structural unit including a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof.
  • the polymer further includes the structural unit (III), so that the solubility in the developer can be further adjusted, and as a result, the nano-edge roughness performance of the radiation-sensitive composition is further improved. be able to. Further, the adhesion between the pattern and the substrate can be further improved.
  • Examples of the structural unit (III) include a structural unit represented by the following formula.
  • R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the structural unit (III) is preferably a structural unit containing a lactone structure, more preferably a structural unit containing a norbornane lactone structure, and still more preferably a structural unit derived from norbornane lactone-yl (meth) acrylate.
  • the lower limit of the content ratio of the structural unit (III) is preferably 10 mol% with respect to all the structural units constituting the polymer. Mole% is more preferable, and 40 mol% is more preferable. As an upper limit of the said content rate, 70 mol% is preferable, 60 mol% is more preferable, and 50 mol% is further more preferable. By making the said content rate into the said range, the nano edge roughness performance of the said radiation sensitive composition can further be improved. Further, the adhesion of the pattern to the substrate can be further improved.
  • the polymer may have other structural units in addition to the structural units (I) to (III).
  • other structural units include a structural unit containing a polar group, a structural unit containing a non-dissociable hydrocarbon group, and a structural unit derived from an aromatic ring-containing cycloalkene.
  • the polar group include an alcoholic hydroxyl group, a carboxy group, a cyano group, a nitro group, and a sulfonamide group.
  • the non-dissociable hydrocarbon group include a linear alkyl group.
  • aromatic ring-containing cycloalkene examples include indene, dihydronaphthalene, acenaphthylene and the like.
  • As an upper limit of the content rate of another structural unit 20 mol% is preferable, 15 mol% is more preferable, and 10 mol% is further more preferable.
  • the lower limit of polystyrene-equivalent weight average molecular weight (Mw) by gel permeation chromatography (GPC) of the polymer is preferably 1,500, more preferably 2,000, still more preferably 4,000, 000 is particularly preferred.
  • the upper limit of Mw is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 10,000.
  • the upper limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 5, more preferably 3, and even more preferably 2.
  • the lower limit of the ratio is usually 1, and 1.1 is preferable.
  • Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
  • GPC column 2 "G2000HXL” from Tosoh Corporation, 1 "G3000HXL", 1 "G4000HXL” Column temperature: 40 ° C
  • Elution solvent Tetrahydrofuran (Wako Pure Chemical Industries)
  • Flow rate 1.0 mL / min
  • Sample concentration 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the polymer is a cyclic oligomer in which a plurality of aromatic rings to which a hydroxy group having the structural unit (I) is bonded or a heteroaromatic ring to which a hydroxy group is bonded are bonded cyclically via a hydrocarbon group.
  • the said radiation sensitive composition can improve nano edge roughness performance more by containing a [A2] polymer.
  • Examples of the structural unit (I) in the polymer include a structural unit represented by the following formula (2-3) (hereinafter also referred to as “structural unit (I-3)”).
  • the polymer has a structure in which the structural unit (I) is linked by a chain hydrocarbon group.
  • R 10 is a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent oxyhydrocarbon group having 1 to 20 carbon atoms.
  • R 11 is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R 12 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 13 and R 14 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring member having 3 to 3 members together with the carbon atoms to which these groups are combined with each other.
  • 20 alicyclic structures are represented.
  • a is an integer of 0 to 5.
  • b is an integer of 0 to 5. However, a + b is 5 or less.
  • k is 0 or 1.
  • the plurality of R 10 may be the same or different.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms and the monovalent oxyhydrocarbon group having 1 to 20 carbon atoms represented by R 10 include R p1 in the formula (A) of the compound [B] described later. And a group similar to the monovalent hydrocarbon group exemplified as the above, a group containing an oxygen atom at the end of the bond side of this group, and the like.
  • R 10 is preferably an oxyhydrocarbon group, more preferably an alkoxy group, and still more preferably a methoxy group.
  • Examples of the divalent hydrocarbon group having 1 to 10 carbon atoms represented by R 11 include one hydrogen atom from the groups exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 10. Among the groups excluding, those having 1 to 10 carbon atoms are exemplified.
  • R 11 is preferably a single bond or an alkanediyl group, more preferably a methanediyl group.
  • each group represented by R 12 , R 13 and R 14 include the same groups as those exemplified as R 3 , R 4 and R 5 in the above formula (2-1).
  • A is preferably an integer of 0 to 2, and more preferably 1.
  • b is preferably an integer of 0 to 2, and more preferably 1.
  • the polymer may have other structural units in addition to the structural unit (I).
  • Examples of other structural units include structural units containing a phenolic hydroxyl group.
  • the lower limit of the molecular weight of the polymer is preferably 500, more preferably 1,000, and even more preferably 1,500.
  • the upper limit of the molecular weight is preferably 3,000, more preferably 2,000, and even more preferably 1,500.
  • the lower limit of the content of the polymer is preferably 70% by mass, more preferably 80% by mass, and still more preferably 85% by mass with respect to the total solid content of the radiation-sensitive composition.
  • the polymer is obtained by polymerizing a monomer that gives each structural unit in an appropriate solvent using a radical polymerization initiator or the like, or by subjecting the obtained polymer to an appropriate treatment such as acetalization. Can be synthesized.
  • radical polymerization initiators examples include azobisisobutyronitrile (AIBN), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropio). Nitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), azo radical initiators such as dimethyl 2,2′-azobisisobutyrate; benzoyl peroxide, t-butyl hydroperoxide, cumene And peroxide radical initiators such as hydroperoxide. Of these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferred, and AIBN is more preferred. These radical initiators can be used alone or in combination of two or more.
  • Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, methyl ethyl ket
  • the lower limit of the reaction temperature in the polymerization is preferably 40 ° C, more preferably 50 ° C.
  • 150 degreeC is preferable and 120 degreeC is more preferable.
  • As a minimum of reaction time in a polymer 1 hour is preferred and 2 hours is more preferred.
  • the upper limit of the reaction time is preferably 48 hours, more preferably 24 hours.
  • the polymer is, for example, a compound having a phenolic hydroxyl group represented by the following formula (a) and an aldehyde represented by the following formula (b) in the presence of an acid such as trifluoroacetic acid, chloroform or the like.
  • a compound which gives an acid-dissociable group such as 2-bromoacetyloxy-2-methyladamantane in a solvent such as N-methylpyrrolidone in the presence of a base such as potassium carbonate. It can synthesize
  • R 10 ′ is a hydrocarbon group having 1 to 20 carbon atoms.
  • a ′ is an integer of 0 to 7.
  • b ′ is an integer of 1 to 7.
  • k is 0 or 1.
  • Y represents a substituted or unsubstituted j-valent hydrocarbon group having 1 to 30 carbon atoms or a hydrogen atom.
  • j is 1 or 2.
  • J is preferably 2.
  • Y is preferably an unsubstituted divalent hydrocarbon group, more preferably an alkanediyl group, and still more preferably a propanediyl group.
  • a compound is a compound containing cation (I) and anion (I).
  • the compound [B] functions as a radiation-sensitive acid generator that generates acid (I) by the action of radiation such as EUV or electron beam.
  • the radiation-sensitive composition is excellent in sensitivity and nanoedge roughness performance by containing the [B] compound in addition to the [A] polymer.
  • the reason why the radiation-sensitive composition has the above-described configuration provides the above-mentioned effect is not necessarily clear, but can be inferred as follows, for example. That is, by the action of the metal cation of the [B] compound, secondary electrons are generated from the exposure light, and acid (I) is generated from the secondary electrons and the anion (I).
  • the radiation-sensitive composition exhibits high sensitivity because the anion (I) is a conjugate base of the acid (I) having a pKa of 0 or less and the coordination power to the metal is relatively weak. It is thought that you can. Moreover, it is thought that the nano edge roughness of a pattern can be made small by disperse
  • the cation (I) and the anion (I) will be described.
  • the cation (I) is a metal cation.
  • a ⁇ ligand may be coordinated to the cation (I).
  • the metal contained in the cation (I) is not particularly limited, and may be a transition metal or a typical metal.
  • cation (I) for example, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 12 And cations of group elements.
  • cations of elements of Group 2, Group 3, Group 11 and Group 12 are preferred.
  • the cation (I) is preferably a cation of copper, zinc, barium, lanthanum, cerium or silver from the viewpoint of further increasing sensitivity.
  • Anion (I) is a conjugate base of acid (I) whose pKa is 0 or less.
  • the upper limit of the pKa of acid (I) is 0, preferably -1, and more preferably -2.
  • the lower limit of the pKa is preferably -8, more preferably -6, and still more preferably -4.
  • Examples of the acid (I) include sulfonic acid, nitric acid, organic azinic acid, disulfonylimide acid and the like.
  • Organic azinic acid means R X R Y C ⁇ N (O) OH (R X and R Y are each independently a monovalent organic group, or these groups are combined with each other Represents a ring structure composed of carbon atoms to be bonded).
  • the upper limit of the van der Waals volume is preferably 1.0 ⁇ 10 ⁇ 27 m 3, more preferably 6.0 ⁇ 10 ⁇ 28 m 3 .
  • the “van der Waals volume” refers to the volume of the region occupied by the van der Waals sphere based on the van der Waals radius of the atoms constituting the acid (I), for example, WinMOPAC (Fujitsu, Ver. 3.9). .0) and the like, and a value calculated by obtaining a stable structure by the PM3 method.
  • Examples of the compound include compounds represented by the following formula (1).
  • M is a cation (I).
  • A is an anion (I).
  • x is an integer of 1 to 6. When x is 2 or more, a plurality of A may be the same or different.
  • R 1 is a ⁇ ligand.
  • y is an integer of 0 to 5. When y is 2 or more, the plurality of R 1 may be the same or different. However, x + y is 6 or less.
  • the cation (I) of M is not particularly limited as long as it is a metal cation, and may be a monovalent cation, a divalent cation, a trivalent cation or a tetravalent or higher cation.
  • the anion (I) of A is not particularly limited as long as it is a conjugate base of acid (I), and may be a monovalent anion or a divalent or higher anion. Of these, monovalent anions are preferred.
  • X is preferably 1 to 3.
  • the ⁇ ligand represented by R 1 include, for example, monodentate ligands, and polydentate ligand.
  • monodentate ligands examples include hydroxo ligands (OH), carboxy ligands (COOH), amide ligands, acyloxy ligands, amine ligands, substituted or unsubstituted hydrocarbon group ligands Etc.
  • amide ligand examples include an unsubstituted amide ligand (NH 2 ), a methylamide ligand (NHMe), a dimethylamide ligand (NMe 2 ), a diethylamide ligand (NEt 2 ), and a dipropylamide ligand.
  • NH 2 unsubstituted amide ligand
  • NHSe methylamide ligand
  • NMe 2 dimethylamide ligand
  • NEt 2 diethylamide ligand
  • NPr 2 dipropylamide ligand
  • acyloxy ligand examples include formyloxy ligand, acetyloxy ligand, propionyloxy ligand, stearoyloxy ligand, acryloxy ligand and the like.
  • Examples of the amine ligand include a pyridine ligand, a trimethylamine ligand, a piperidine ligand, and an ammonia ligand.
  • alkyl group ligands such as methyl group ligands, cycloalkyl group ligands such as cyclohexyl group ligands, aryl group ligands such as phenyl group ligands, benzyl And aralkyl group ligands such as group ligands.
  • Examples of the substituent of the hydrocarbon group ligand include an alkoxy group, a hydroxy group, and a halogen atom.
  • polydentate ligand examples include hydroxy acid ester, ⁇ -diketone, ⁇ -keto ester, ⁇ -dicarboxylic acid ester, o-acylphenol, diphosphine and the like.
  • hydroxy acid ester examples include glycolic acid ester, lactic acid ester, 2-hydroxycyclohexane-1-carboxylic acid ester, and salicylic acid ester.
  • ⁇ -diketone examples include acetylacetone, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, 2,2-dimethyl-3,5-hexanedione, and the like.
  • ⁇ -ketoesters examples include acetoacetate ester, ⁇ -alkyl-substituted acetoacetate ester, ⁇ -ketopentanoic acid ester, benzoyl acetate ester, 1,3-acetone dicarboxylic acid ester and the like.
  • ⁇ -dicarboxylic acid esters include malonic acid diesters, ⁇ -alkyl substituted malonic acid diesters, ⁇ -cycloalkyl substituted malonic acid diesters, ⁇ -aryl substituted malonic acid diesters, and the like.
  • o-acylphenol examples include o-hydroxyacetophenone and o-hydroxybenzophenone.
  • diphosphine examples include 1,1-bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 2,2′-bis (diphenylphosphine). Phino) -1,1′-binaphthyl, 1,1′-bis (diphenylphosphino) ferrocene and the like.
  • an acyloxy ligand As the ⁇ ligand represented by R 1 , an acyloxy ligand, an amine ligand, a substituted or unsubstituted hydrocarbon group ligand, ⁇ -diketone and o-acylphenol are preferable, and acetyloxy coordination More preferred are a thiol, a stearoyloxy ligand, a substituted or unsubstituted aryl group ligand, pyridine, acetylacetone, 3,3-dimethyl-3,5-hexanedione and o-hydroxyacetophenone, and a mesityl group ligand is Further preferred.
  • Y is preferably 0 to 3, more preferably 0 to 2, more preferably 0 and 1, and particularly preferably 0. That is, as the [B] compound, a compound comprising a cation (I) and an anion (I) (hereinafter also referred to as “metal acid salt”) is particularly preferable.
  • metal acid salts include metal sulfonates, metal nitrates, metal organic azinates, and metal disulfonylimide salts.
  • Examples of the [B] compound include a metal sulfonate represented by the following formula (A) (hereinafter also referred to as “compound (A)”).
  • R p1 is a hydrogen atom, a fluorine atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R p2 is a divalent linking group.
  • R p3 and R p4 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R p5 and R p6 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • n p1 is an integer of 0 to 10.
  • n p2 is an integer of 0 to 10.
  • n p3 is an integer of 1 to 10.
  • the plurality of R p2 may be the same or different.
  • the plurality of R p3 may be the same or different, and the plurality of R p4 may be the same or different.
  • the plurality of R p5 may be the same or different, and the plurality of R p6 may be the same or different.
  • M n + is an n-valent cation (I).
  • n is an integer of 1 to 6.
  • the monovalent organic group represented by R p1 for example, monovalent hydrocarbon group, the carbon of the hydrocarbon group having 1 to 20 carbon atoms - a group containing a divalent heteroatom-containing group between carbon (alpha ), A group obtained by substituting a part or all of the hydrogen atoms of the hydrocarbon group and the group ( ⁇ ) with a monovalent heteroatom-containing group, and the like.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 carbon atoms. And 20 monovalent aromatic hydrocarbon groups.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group; A monocyclic cycloalkenyl group such as a cyclopentenyl group and a cyclohexenyl group; A polycyclic cycloalkyl group such as a norbornyl group, an adamantyl group and a tricyclodecyl group; Examples thereof include polycyclic cycloalkenyl groups such as norbornenyl group and tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
  • hetero atom constituting the monovalent and divalent heteroatom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the divalent heteroatom-containing group include —O—, —CO—, —S—, —CS—, —NR′—, a group in which two or more of these are combined, and the like.
  • R ' is a hydrogen atom or a monovalent hydrocarbon group.
  • Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group, sulfanyl group (—SH) and the like.
  • the monovalent organic group represented by R p1 is preferably a monovalent group including a ring structure having 6 or more ring members.
  • the monovalent group containing a ring structure having 6 or more ring members include a monovalent group containing an alicyclic structure having 6 or more ring members, a monovalent group containing an aliphatic heterocyclic structure having 6 or more ring members, Examples thereof include a monovalent group containing an aromatic ring structure having 6 or more ring members and a monovalent group containing an aromatic heterocyclic structure having 6 or more ring members.
  • Examples of the alicyclic structure having 6 or more ring members include monocyclic cycloalkane structures such as a cyclohexane structure, a cycloheptane structure, a cyclooctane structure, a cyclononane structure, a cyclodecane structure, and a cyclododecane structure; Monocyclic cycloalkene structures such as cyclohexene structure, cycloheptene structure, cyclooctene structure, cyclodecene structure; Polycyclic cycloalkane structures such as norbornane structure, adamantane structure, tricyclodecane structure and tetracyclododecane structure; Examples thereof include polycyclic cycloalkene structures such as a norbornene structure and a tricyclodecene structure.
  • Examples of the aliphatic heterocyclic structure having 6 or more ring members include lactone structures such as a hexanolactone structure and a norbornane lactone structure; Sultone structures such as hexanosultone structure and norbornane sultone structure; An oxygen atom-containing heterocyclic structure such as an oxacycloheptane structure or an oxanorbornane structure; Nitrogen atom-containing heterocyclic structures such as azacyclohexane structure and diazabicyclooctane structure; Examples thereof include a thicyclohexane structure and a sulfur atom-containing heterocyclic structure having a thianorbornane structure.
  • Examples of the aromatic ring structure having 6 or more ring members include a benzene structure, a naphthalene structure, a phenanthrene structure, and an anthracene structure.
  • aromatic heterocyclic structure having 6 or more ring members examples include oxygen atom-containing heterocyclic structures such as pyran structure and benzopyran structure, nitrogen atom-containing heterocyclic structures such as pyridine structure, pyrimidine structure and indole structure.
  • the lower limit of the number of ring members of the ring structure of R p1 is preferably 7, more preferably 8, more preferably 9, and particularly preferably 10.
  • the upper limit of the number of ring members is preferably 15, more preferably 14, still more preferably 13, and particularly preferably 12.
  • a part or all of the hydrogen atoms contained in the ring structure of R p1 may be substituted with a substituent.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, Examples include an acyloxy group. Of these, a hydroxy group is preferred.
  • R p1 is preferably a fluorine atom, a monovalent group containing an alicyclic structure having 6 or more ring members, and a monovalent group containing an aliphatic heterocyclic structure having 6 or more ring members, and has a fluorine atom or 9 or more ring members. More preferred are a monovalent group containing an alicyclic structure and a monovalent group containing an aliphatic heterocyclic structure having 9 or more ring members, such as a fluorine atom, an adamantyl group, a 4-oxoadamantyl group, and 5,6- (diphenylmethanediyldi). More preferred is an oxy) norbornan-2-yl group.
  • Examples of the divalent linking group represented by R p2 include a carbonyl group, an ether group, a carbonyloxy group, a sulfide group, a thiocarbonyl group, a sulfonyl group, and a divalent hydrocarbon group.
  • the divalent linking group represented by R p2 is preferably a carbonyloxy group, a sulfonyl group, an alkanediyl group and a cycloalkanediyl group, more preferably a carbonyloxy group and a cycloalkanediyl group, a carbonyloxy group and a norbornanediyl group.
  • a group is more preferred, and a carbonyloxy group is particularly preferred.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R p3 and R p4 include an alkyl group having 1 to 20 carbon atoms.
  • Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p3 and R p4 include a fluorinated alkyl group having 1 to 20 carbon atoms.
  • R p3 and R p4 are preferably a hydrogen atom, a fluorine atom and a fluorinated alkyl group, more preferably a fluorine atom and a perfluoroalkyl group, and still more preferably a fluorine atom and a trifluoromethyl group.
  • Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p5 and R p6 include a fluorinated alkyl group having 1 to 20 carbon atoms.
  • R p5 and R p6 are preferably a fluorine atom and a fluorinated alkyl group, more preferably a fluorine atom and a perfluoroalkyl group, still more preferably a fluorine atom and a trifluoromethyl group, and particularly preferably a fluorine atom.
  • n p1 is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, more preferably an integer of 0 to 2, and particularly preferably 0 and 1.
  • n p2 is preferably an integer of 0 to 5, more preferably an integer of 0 to 2, still more preferably 0 and 1, and particularly preferably 0.
  • n p3 is preferably an integer of 1 to 5, more preferably an integer of 1 to 4, still more preferably an integer of 1 to 3, and particularly preferably 1 and 2.
  • N is preferably 1 to 5, more preferably 1 to 4, and still more preferably 1 to 3.
  • Examples of the compound (A) include compounds represented by the following formulas (i-1) to (i-16) (hereinafter referred to as compounds (i-1) to (i-16)).
  • M n + is an n-valent cation (I) to which a ⁇ ligand may be coordinated.
  • Compound (A) includes compound (i-3), compound (i-5), compound (i-14), compound (i-15), compound (i-16), metal nonafluorobutanesulfonate and metal 2 -Dodecylbenzenesulfonate is preferable, the zinc (II) compound represented by the above formula (i-3), the lanthanum (III) compound represented by the above formula (i-5), and the formula (i-5)
  • cerium (III) compound represented by formula (i-16), yttrium (III) compound represented by formula (i-16), barium (II) nonafluorobutane Sulfonate and cerium (III) 2-dodecyl benzene sulfonate is more preferable.
  • the [B] compound includes, for example, copper (II) nitrate, zinc (II) nitrate, barium (II) nitrate, lanthanum nitrate (III), cerium nitrate (III), silver nitrate ( Examples thereof include metal nitrates such as I). Of these, lanthanum (III) nitrate is preferred.
  • the [B] compound includes, for example, an organic copper azinate (II), an organic zinc azinate (II), an organic barium (II) azinate, an organic lanthanum azinate (III ), Metal organic azinates such as organic cerium (III) azide and silver (I) organic azinate.
  • Examples of the [B] compound include disulfonylimide acid salt (hereinafter also referred to as “compound (B)”) represented by the following formula (B). .
  • R A and R B are each independently a monovalent organic group having 1 to 20 carbon atoms, or a ring with an atomic chain in which these groups are combined with each other and bonded to each other. Represents a ring structure having 5 to 20 members.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R A and R B include groups similar to those exemplified as the monovalent organic group for R p1 above.
  • R A and R B are preferably an alkyl group, a substituted or unsubstituted fluorinated alkyl group and a substituted or unsubstituted aryl group, an alkyl group, an organic sulfonyl group-substituted or unsubstituted fluorinated alkyl group and a fluorine-substituted group, More preferred are chlorine-substituted, nitro-substituted or unsubstituted aryl groups, alkyl groups, piperidylsulfonyl-substituted, cyclohexylphenylsulfonyl-substituted or unsubstituted perfluoroalkyl groups and fluorine-substituted, trifluoromethyl group-substituted, chlorine-substituted, nitro-substituted or An unsubstituted phenyl group is more preferable, and a methyl
  • Examples of the ring structure having 3 to 20 ring members constituted by an atomic chain in which the groups R A and R B are combined with each other include ethylene disulfonylimide ring structure, propylene disulfonylimide ring structure, butylene disulfonyl Examples thereof include imide ring structures and sulfonylimide ring structures such as pentylene disulfonylimide ring structures.
  • the group in which R A and R B are represented together is preferably a fluorinated alkanediyl group, more preferably a perfluoroalkanediyl group, a tetrafluoroethanediyl group, a hexafluoropropanediyl group, and an octafluorobutanediyl group. Further preferred.
  • Examples of the compound (B) include the following formulas (ii-1) to (ii-26) (hereinafter referred to as compounds (ii-1) to (ii-26)).
  • M n + is an n-valent cation (I).
  • Compound (B) is preferably compound (ii-24), more preferably a barium (II) compound represented by the above formula (ii-24).
  • the lower limit of the content of the compound is preferably 0.1 parts by mass, more preferably 0.5 parts by mass, further preferably 1 part by mass, with respect to 100 parts by mass of the polymer [A]. Part is particularly preferred, and 2.5 parts by weight is even more preferred.
  • As an upper limit of the said content 200 mass parts is preferable, 100 mass parts is more preferable, 50 mass parts is more preferable, 10 mass parts is especially preferable, 5 mass parts is further especially preferable.
  • the said radiation sensitive composition can further improve a sensitivity and nanoedge roughness performance.
  • the said radiation sensitive composition may contain only 1 type of [B] compounds, and may contain it 2 or more types.
  • the [C] acid generator is a radiation sensitive acid generator other than the [B] compound. Since the [B] compound generates an acid upon exposure, the [C] acid generator is not always necessary for the radiation-sensitive composition, but the radiation-sensitive composition contains a [C] acid generator. As a result, the sensitivity can be further increased.
  • the radiation sensitive composition contains the [C] acid generator in the form of a low molecular compound as will be described later (hereinafter also referred to as “[C] acid generator” as appropriate). Or may be both of these forms.
  • Examples of the [C] acid generator include onium salt compounds, N-sulfonyloxyimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • [C] acid generator examples include compounds described in paragraphs [0080] to [0113] of JP2009-134088A.
  • sulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept- 2-yl-1,1,2,2-tetrafluoroethanesulfonate, triphenylsulfonium 2-bicyclo [2.2.1] hept-2-yl-1,1-difluoroethanesulfonate, triphenylsulfonium camphorsulfonate, 4 -Cyclohexylphenyldiphenylsulfonium trifluoromethanesulfonate, 4-cyclohexylphenyldiphenylsulfonium nonafluoro-n-butanesulfonate,
  • tetrahydrothiophenium salt examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nona.
  • iodonium salt examples include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl- 1,1,2,2-tetrafluoroethanesulfonate, diphenyliodonium camphorsulfonate, bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-tert-butylphenyl) iodonium nonafluoro-n-butanesulfonate, Bis (4-t-butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-t-butylphenyl) iodonium 2-bic
  • N-sulfonyloxyimide compounds include N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluoro-n-butanesulfonyloxy).
  • [C] As the acid generator a compound represented by the following formula (4) can be used. Since the [C] acid generator has the following structure, the diffusion length of the acid generated from the [C] acid generator upon exposure due to the interaction with the polar structure of the [A] polymer and the like in the resist film is reduced. It is thought that it becomes shorter moderately, As a result, the resist performance of the said radiation sensitive composition can be improved more.
  • R q1 is a monovalent group containing a ring structure having 6 or more ring members.
  • R q2 is a divalent linking group.
  • R q3 and R q4 each independently represent a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R q5 and R q6 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • m p1 is an integer of 0 to 10.
  • m p2 is an integer of 0 to 10.
  • m p3 is an integer of 1 to 10.
  • the plurality of R q2 may be the same or different.
  • the plurality of R q3 may be the same or different, and the plurality of R q4 may be the same or different.
  • the plurality of R q5 may be the same or different, and the plurality of R q6 may be the same or different.
  • G + is a monovalent radiation-sensitive onium cation.
  • Examples of the groups represented by R q1 to R q6 include the groups exemplified as R p1 to R p6 in the above formula (A).
  • the monovalent radiation-sensitive onium cation represented by G + is a cation that decomposes upon exposure to exposure light. In the exposed portion, sulfonic acid is generated from protons generated by the decomposition of the radiation-sensitive onium cation and sulfonate anions.
  • Examples of the monovalent radiation-sensitive onium cation represented by G + include elements such as S, I, O, N, P, Cl, Br, F, As, Se, Sn, Sb, Te, and Bi. Examples include radiation-sensitive onium cations.
  • Examples of the cation containing S (sulfur) as an element include a sulfonium cation and a tetrahydrothiophenium cation.
  • Examples of the cation containing I (iodine) as an element include an iodonium cation.
  • an iodonium cation examples include an iodonium cation.
  • a sulfonium cation represented by the following formula (G-1), a cation represented by the following formula (G-2), and an iodonium cation represented by the following formula (G-3) are preferable.
  • R a1 , R a2 and R a3 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted group.
  • aromatic hydrocarbon group having 6 to 12 carbon atoms represents or is a -OSO 2 -R P or -SO 2 -R Q, or two or more are combined with each other configured ring of these groups .
  • R P and R Q are each independently a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms.
  • R a1 ⁇ R a3 and R P and R Q are a plurality each of the plurality of R a1 ⁇ R a3 and R P and R Q may be the same as or different from each other.
  • R b1 represents a substituted or unsubstituted linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon having 6 to 8 carbon atoms. It is a group.
  • k4 is an integer of 0 to 7. If R b1 is plural, the plurality of R b1 may be the same or different, and plural R b1 may represent a constructed ring aligned with each other.
  • R b2 is a substituted or unsubstituted linear or branched alkyl group having 1 to 7 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon group having 6 or 7 carbon atoms.
  • k5 is an integer of 0 to 6. If R b2 is plural, the plurality of R b2 may be the same or different, and plural R b2 may represent a keyed configured ring structure.
  • r is an integer of 0 to 3.
  • R b3 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • t is an integer of 0-2.
  • R c1 and R c2 each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted carbon number of 6 aromatic hydrocarbon group having 1-12, indicating whether it is -OSO 2 -R R or -SO 2 -R S, or two or more are combined with each other configured ring of these groups.
  • R R and R S each independently represent a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 25 carbon atoms.
  • R c1, R c2, R when R and R S is plural respective plurality of R c1, R c2, R R and R S may have respectively the same or different.
  • Examples of the unsubstituted linear alkyl group represented by R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group. Is mentioned.
  • Examples of the unsubstituted branched alkyl group represented by R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include i-propyl group, i-butyl group, sec-butyl group, t- A butyl group etc. are mentioned.
  • Examples of the unsubstituted aromatic hydrocarbon group represented by R a1 to R a3 , R c1 and R c2 include aryl groups such as phenyl group, tolyl group, xylyl group, mesityl group and naphthyl group; benzyl group and phenethyl group And an aralkyl group such as a group.
  • Examples of the unsubstituted aromatic hydrocarbon group represented by R b1 and R b2 include a phenyl group, a tolyl group, and a benzyl group.
  • Examples of the divalent organic group represented by R b3 include the same groups as those exemplified as the divalent organic group of L 2 in the above formula (3).
  • Examples of the substituent that may be substituted for the hydrogen atom of the alkyl group and the aromatic hydrocarbon group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxy group, a carboxy group, a cyano group, Examples thereof include a nitro group, an alkoxy group, an alkoxycarbonyl group, an alkoxycarbonyloxy group, an acyl group, and an acyloxy group.
  • a halogen atom is preferable and a fluorine atom is more preferable.
  • R a1 to R a3 , R b1 , R b2 , R c1 and R c2 include an unsubstituted linear or branched alkyl group, a fluorinated alkyl group, an unsubstituted monovalent aromatic hydrocarbon group, —OSO 2 —R ′′ and —SO 2 —R ′′ are preferable, fluorinated alkyl groups and unsubstituted monovalent aromatic hydrocarbon groups are more preferable, and fluorinated alkyl groups are more preferable.
  • R ′′ is an unsubstituted monovalent alicyclic hydrocarbon group or an unsubstituted monovalent aromatic hydrocarbon group.
  • k1, k2 and k3 are preferably integers of 0 to 2, more preferably 0 and 1, and even more preferably 0.
  • K4 in the formula (G-2) is preferably an integer of 0 to 2, more preferably 0 and 1, and still more preferably 1.
  • k5 is preferably an integer of 0 to 2, more preferably 0 and 1, and still more preferably 0.
  • r, 2 and 3 are preferable, and 2 is more preferable.
  • As t, 0 and 1 are preferable, and 0 is more preferable.
  • K6 and k7 in the formula (G-3) are preferably integers of 0 to 2, more preferably 0 and 1, and still more preferably 0.
  • the G + among these, the cation (G-1) are preferred, triphenyl sulfonium cation are more preferable.
  • Examples of the acid generator represented by the above formula (4) include compounds represented by the following formulas (4-1) to (4-14) (hereinafter referred to as “compounds (4-1) to (4-14)”. Also).
  • G + has the same meaning as in the above formula (4).
  • the acid generator is preferably an onium salt compound, more preferably a sulfonium salt, still more preferably a triphenylsulfonium salt, and particularly preferably triphenylsulfonium nonafluoro-n-butanesulfonate and the compound (4-14).
  • the [C] acid generator a polymer in which the structure of an acid generator such as a polymer having a structural unit represented by the following formula (5) is incorporated as a part of the polymer is also preferable.
  • R 19 is a hydrogen atom or a methyl group.
  • L 3 is a single bond, —COO—, —Ar—, —COO—Ar— or —Ar—OSO 2 —.
  • Ar is a substituted or unsubstituted arenediyl group having 6 to 20 carbon atoms.
  • R 20 is a fluorinated alkanediyl group having 1 to 10 carbon atoms.
  • G + is a monovalent radiation-sensitive onium cation.
  • the lower limit of the content of the [C] acid generator is preferably 0.1 parts by mass with respect to 100 parts by mass of the [A] polymer, 1 mass part is more preferable, 5 mass parts is further more preferable, 10 mass parts is especially preferable, and 20 mass parts is further especially preferable.
  • As an upper limit of the said content 50 mass parts is preferable, 40 mass parts or less are more preferable, 35 mass parts or less are more preferable, 30 mass parts is especially preferable.
  • [C] By making content of an acid generator into the said range, the sensitivity of the said radiation sensitive composition can further be improved.
  • [C] 1 type (s) or 2 or more types can be used for an acid generator.
  • the said radiation sensitive composition may contain a [D] acid diffusion control body as needed.
  • [D] The acid diffusion control body controls the diffusion phenomenon in the resist film of the acid generated from the [B] compound and the [C] acid generator upon exposure, and has an effect of suppressing an undesirable chemical reaction in the non-exposed region.
  • the storage stability of the radiation-sensitive composition is further improved, and the resolution as a resist is further improved.
  • a change in the line width of the resist pattern due to fluctuations in the holding time from exposure to development processing can be suppressed, and a radiation-sensitive composition excellent in process stability can be obtained.
  • the content of the acid diffusion controller in the radiation-sensitive composition may be a low molecular compound that is not a polymer even if incorporated as part of a polymer (hereinafter referred to as “[D] acid diffusion control as appropriate”). Or a form of both of them.
  • Examples of the acid diffusion controller include a compound represented by the following formula (6a) (hereinafter, also referred to as “nitrogen-containing compound (I)”), and an acyclic compound having two nitrogen atoms in the same molecule. (Hereinafter also referred to as “nitrogen-containing compound (II)”), compounds having 3 or more nitrogen atoms (hereinafter also referred to as “nitrogen-containing compound (III)”), amide group-containing compounds, urea compounds, nitrogen-containing heterocycles Compounds and the like.
  • R 21 , R 22 and R 23 are each independently a hydrogen atom, an optionally substituted linear, branched or cyclic alkyl group, aryl group or aralkyl group. .
  • nitrogen-containing compound (I) examples include monoalkylamines such as n-hexylamine; dialkylamines such as di-n-butylamine; trialkylamines such as triethylamine and tri-n-pentylamine; and aromatics such as aniline Group amines and the like.
  • nitrogen-containing compound (II) examples include ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, and the like.
  • nitrogen-containing compound (III) examples include polyamine compounds such as polyethyleneimine and polyallylamine; and polymers such as dimethylaminoethylacrylamide.
  • amide group-containing compound examples include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone and the like. It is done.
  • urea compound examples include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tributylthiourea and the like.
  • nitrogen-containing heterocyclic compound examples include pyridines such as pyridine and 2-methylpyridine; morpholines such as N-propylmorpholine and N- (undecan-1-ylcarbonyloxyethyl) morpholine; imidazole, 2-phenylimidazole, Examples include imidazoles such as 2,4,5-triphenylimidazole; pyrazine, pyrazole and the like.
  • a compound having an acid dissociable group can also be used as the nitrogen-containing organic compound.
  • the nitrogen-containing organic compound having such an acid dissociable group include Nt-butoxycarbonylpiperidine, Nt-butoxycarbonylimidazole, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl-2 -Phenylbenzimidazole, N- (t-butoxycarbonyl) di-n-octylamine, N- (t-butoxycarbonyl) diethanolamine, N- (t-butoxycarbonyl) dicyclohexylamine, N- (t-butoxycarbonyl) diphenylamine Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-amyloxycarbonyl-4-hydroxypiperidine and the like.
  • a photodegradable base that is exposed to light and generates a weak acid
  • the photodegradable base include an onium salt compound that loses acid diffusion controllability by being decomposed by exposure.
  • the onium salt compound include a sulfonium salt compound represented by the following formula (6b-1), an iodonium salt compound represented by the following formula (6b-2), and the like.
  • R 24 to R 28 each independently represents a hydrogen atom, an alkyl group, an alkoxy group, a hydroxy group or a halogen atom.
  • E ⁇ and Q ⁇ are each independently an anion represented by OH ⁇ , R ⁇ —COO ⁇ , R ⁇ —SO 3 — or the following formula (6b-3).
  • R ( beta) is an alkyl group, an aryl group, or an aralkyl group.
  • R 29 is a linear or branched alkyl group having 1 to 12 carbon atoms in which part or all of the hydrogen atoms may be substituted with fluorine atoms, or 1 carbon atom 12 to 12 linear or branched alkoxy groups.
  • u is an integer of 0-2. When u is 2, two R 29 may be the same or different.
  • Examples of the photodegradable base include the compounds shown below.
  • the photodegradable base is preferably a sulfonium salt, more preferably a triarylsulfonium salt, and even more preferably triphenylsulfonium salicylate and triphenylsulfonium 10-camphorsulfonate.
  • the acid diffusion control agent may be any agent that is sensitive to light and generates an acid weaker than the acid generated from the [B] compound, such as zinc acetate (III) and silver cyclohexanebutyrate (I Metal organic acid salts such as) can also be used.
  • zinc acetate (III) and silver cyclohexanebutyrate (I Metal organic acid salts such as) can also be used.
  • the radiation-sensitive composition contains a [D] acid diffusion controller
  • the [D] acid diffusion controller is a [D] acid diffusion controller
  • the lower limit of the content of the [D] acid diffusion controller As for [A] polymer 100 mass parts, 0.1 mass part is preferable, 0.5 mass part is more preferable, 1 mass part is further more preferable, 1.5 mass part is especially preferable. As an upper limit of the said content, 20 mass parts is preferable, 15 mass parts is more preferable, 10 mass parts is further more preferable, and 5 mass parts is especially preferable. [D] By making content of an acid diffusion control agent into the said range, the resolution of the said radiation sensitive composition, storage stability, etc. can be improved more.
  • the [E] polymer is a polymer having a larger total mass content of fluorine atoms and silicon atoms than the [A] polymer.
  • the radiation-sensitive composition contains an [E] polymer
  • the distribution is unevenly distributed near the resist film surface due to the oil-repellent characteristics of the fluorine atom-containing polymer in the resist film.
  • the [E] polymer is unevenly distributed in the vicinity of the resist film surface, defects in the formed resist pattern are further suppressed.
  • the [E] polymer unevenly distributed in the vicinity of the resist film surface can suppress the elution of the acid generator, the acid diffusion controller and the like during the immersion exposure into the immersion medium.
  • the said radiation sensitive composition can form the resist film suitable for an immersion exposure method by further containing a [E] polymer.
  • the lower limit of the total mass content of fluorine atoms and silicon atoms in the polymer is preferably 1% by mass, more preferably 2% by mass, further preferably 4% by mass, and particularly preferably 7% by mass.
  • the upper limit of the total mass content is preferably 60% by mass, more preferably 50% by mass, further preferably 40% by mass, and particularly preferably 30% by mass.
  • the content of fluorine atoms and silicon atoms in the polymer is not particularly limited, and may be bonded to any of the main chain, side chain, and terminal.
  • the polymer preferably has a structural unit containing an atom (hereinafter also referred to as “structural unit (F)”).
  • structural unit (F) the polymer preferably has a structural unit containing an acid-dissociable group from the viewpoint of further improving the development defect suppression of the radiation-sensitive composition.
  • the structural unit containing an acid dissociable group include the structural unit (I) in the [A] polymer.
  • the [E] polymer preferably has an alkali dissociable group.
  • the “alkali dissociable group” is a group that replaces a hydrogen atom such as a carboxy group or a hydroxy group, and dissociates in an aqueous alkali solution (eg, 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C.) Refers to the group.
  • structural unit (F) a structural unit represented by the following formula (f-1) (hereinafter also referred to as “structural unit (F-1)”) and a structural unit represented by the following formula (f-2) (Hereinafter also referred to as “structural unit (F-2)”) is preferred.
  • the structural unit (F) may have one or more structural units (F-1) and structural units (F-2).
  • the structural unit (F-1) is a structural unit represented by the following formula (f-1). [E] By having the structural unit (F-1) in the polymer, the mass content of fluorine atoms can be adjusted.
  • R a is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • G is a single bond, an oxygen atom, a sulfur atom, —COO—, —SO 2 ONH—, —CONH— or —OCONH—.
  • R b is a monovalent fluorinated chain hydrocarbon group having 1 to 6 carbon atoms or a monovalent fluorinated alicyclic hydrocarbon group having 4 to 20 carbon atoms.
  • R a is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer that provides the structural unit (F-1).
  • G is preferably —COO—, —SO 2 ONH—, —CONH— or —OCONH—, more preferably —COO—.
  • Examples of the monovalent fluorinated chain hydrocarbon group having 1 to 6 carbon atoms represented by R b include trifluoromethyl group, 2,2,2-trifluoroethyl group, perfluoroethyl group, 2,2 , 3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoropropyl group, perfluoro-n-propyl group, perfluoro-i-propyl group, perfluoro-n- Examples thereof include a butyl group, a perfluoro-i-butyl group, a perfluoro-t-butyl group, a 2,2,3,3,4,4,5,5-octafluoropentyl group, and a perfluorohexyl group.
  • Examples of the monovalent fluorinated alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by R b include, for example, a monofluorocyclopentyl group, a difluorocyclopentyl group, a perfluorocyclopentyl group, a monofluorocyclohexyl group, and a difluorocyclopentyl group.
  • R b is preferably a fluorinated chain hydrocarbon group, more preferably a 2,2,2-trifluoroethyl group and a 1,1,1,3,3,3-hexafluoro-2-propyl group. More preferred is a 2,2-trifluoroethyl group.
  • the lower limit of the content ratio of the structural unit (F-1) is 10 mol% with respect to all the structural units constituting the [E] polymer. Is preferable, and 20 mol% is more preferable. As an upper limit of the said content rate, 90 mol% is preferable, 70 mol% is more preferable, and 50 mol% is further more preferable.
  • the structural unit (F-2) is a structural unit represented by the following formula (f-2). [E] Since the polymer has the structural unit (F-2), it adjusts the mass content of fluorine atoms and has hydrophilicity with respect to an alkali developer, or the surface of the resist film before and after alkali development. The water repellency can be changed to hydrophilic.
  • R C represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R D represents an (s + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, or an oxygen atom, a sulfur atom, —NR′—, a carbonyl group, —COO— or — at the R E side terminal of this hydrocarbon group. It is a structure in which CONH- is bonded.
  • R ′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R E is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • W 1 is a single bond or a divalent fluorinated chain hydrocarbon group having 1 to 20 carbon atoms.
  • a 1 is an oxygen atom, —NR ′′ —, —COO— *, or —SO 2 O— *.
  • R ′′ is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. * Indicates a site binding to R F.
  • R F is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • s is an integer of 1 to 3. However, when s is 1, RD may be a single bond. When s is 2 or 3, a plurality of R E , W 1 , A 1 and R F may be the same or different.
  • W 1 is a single bond
  • R F is a group containing a fluorine atom.
  • R C is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer that provides the structural unit (F-2).
  • Examples of the (s + 1) -valent hydrocarbon group having 1 to 20 carbon atoms represented by RD include monovalent carbon atoms having 1 to 20 carbon atoms exemplified as R 7 to R 9 in the above formula (2-2). And a group obtained by removing s hydrogen atoms from a hydrogen group.
  • S is preferably 1 or 2, and more preferably 1.
  • RD is preferably a single bond or a divalent hydrocarbon group, more preferably a single bond or an alkanediyl group, still more preferably a single bond or an alkanediyl group having 1 to 4 carbon atoms, Bonds, methanediyl groups and propanediyl groups are particularly preferred.
  • Examples of the divalent organic group having 1 to 20 carbon atoms represented by R E include one hydrogen atom from the monovalent organic group having 1 to 20 carbon atoms exemplified as R p1 in the above formula (A). Excluded groups and the like.
  • R E is preferably a group having a single bond and a lactone structure, more preferably a group having a single bond and a polycyclic lactone structure, and more preferably a group having a single bond and a norbornane lactone structure.
  • Examples of the divalent fluorinated chain hydrocarbon group having 1 to 20 carbon atoms represented by W 1 include a fluoromethanediyl group, a difluoromethanediyl group, a fluoroethanediyl group, a difluoroethanediyl group, and a tetrafluoroethanediyl group.
  • Fluorinated alkanediyl groups such as hexafluoropropanediyl group, octafluorobutanediyl group; Examples thereof include fluorinated alkenediyl groups such as a fluoroethenediyl group and a difluoroethenediyl group.
  • a fluorinated alkanediyl group is preferable, and a difluoromethanediyl group is more preferable.
  • a 1 is preferably an oxygen atom, —COO— *, —SO 2 O— *, more preferably —COO— *.
  • the monovalent organic group having 1 to 30 carbon atoms represented by R F for example, an alkali dissociative group, the acid-dissociable group, and the like hydrocarbon group having 1 to 30 carbon atoms.
  • R F an alkali dissociable group is preferable.
  • R F is an alkali-dissociable group
  • R F is preferably a group represented by the following formulas (iii) to (v) (hereinafter also referred to as “groups (iii) to (v)”).
  • R 5a and R 5b are each independently a monovalent organic group having 1 to 20 carbon atoms, or these groups are combined with each other to form a carbon atom to which they are bonded. Represents an alicyclic structure having 3 to 20 ring members.
  • R 5c and R 5d are each independently a monovalent organic group having 1 to 20 carbon atoms, or these groups are combined with each other to form a nitrogen atom to which they are bonded. Represents a heterocyclic structure having 3 to 20 ring members.
  • R 5e is a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms and the monovalent hydrocarbon group having 1 to 20 carbon atoms include groups similar to those exemplified as R 2 in the above formula (I).
  • the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms for example, part or all of the hydrogen atoms of the group exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms are substituted with fluorine atoms. And the like.
  • groups represented by the following formulas (iii-1) to (iii-4) are represented by the group (iv) Is a group represented by the following formula (iv-1) (hereinafter also referred to as “group (iv-1)”), and the group (v) is a group represented by the following formulas (v-1) to (v-5):
  • group (v-1) to (v-5) are preferable.
  • group (v-3) and group (v-5) are preferred.
  • RF is a hydrogen atom because the affinity of the [E] polymer for an alkaline developer is improved.
  • a 1 is an oxygen atom and W 1 is a 1,1,1,3,3,3-hexafluoro-2,2-propanediyl group, the affinity is further improved.
  • the lower limit of the content ratio of the structural unit (F-2) is 10 mol% with respect to all the structural units constituting the [E] polymer. Is preferable, 20 mol% is more preferable, and 40 mol% is further more preferable. As an upper limit of the said content rate, 90 mol% is preferable, 85 mol% is more preferable, and 80 mol% is further more preferable.
  • a structural unit (F) As a minimum of the content rate of a structural unit (F), 10 mol% is preferable with respect to all the structural units which comprise a [E] polymer, 20 mol% is more preferable, and 25 mol% is further more preferable. As an upper limit of the said content rate, 90 mol% is preferable, 85 mol% is more preferable, and 80 mol% is further more preferable.
  • the lower limit of the structural unit containing an acid-dissociable group in the polymer is preferably 10 mol%, more preferably 20 mol%, more preferably 50 mol%, based on all structural units constituting the [E] polymer. Is more preferable.
  • As an upper limit of the said content rate 90 mol% is preferable, 80 mol% is more preferable, and 75 mol% is further more preferable.
  • the said radiation sensitive composition contains a [E] polymer
  • 0.1 mass part is preferable with respect to 100 mass parts of [A] polymers, 0.5 mass parts is more preferable, 1 mass part is further more preferable, and 2 mass parts is especially preferable.
  • As an upper limit of the said content 20 mass parts is preferable, 15 mass parts is more preferable, 10 mass parts is further more preferable, and 5 mass parts is especially preferable.
  • the radiation-sensitive composition may contain one or more [E] polymers.
  • the polymer can be synthesized by the same method as the above-mentioned [A] polymer.
  • the lower limit of Mw by GPC of the polymer is preferably 1,000, more preferably 3,000, still more preferably 4,000, and particularly preferably 5,000.
  • the upper limit of Mw is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 10,000.
  • the lower limit of the ratio of Mw to Mn (Mw / Mn) by GPC of the polymer is usually 1, and preferably 1.2.
  • As an upper limit of the ratio 5 is preferable, 3 is more preferable, and 2 is more preferable.
  • the radiation-sensitive composition usually contains a [F] solvent.
  • the solvent is particularly limited as long as it is a solvent capable of dissolving or dispersing at least the [A] polymer, the [B] compound, and the optionally contained [C] acid generator and [D] acid diffusion controller. Not.
  • Solvents include, for example, alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • alcohol solvent examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol , Sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec -und
  • ether solvents examples include dialkyl ether solvents such as diethyl ether, dipropyl ether, and dibutyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; Aromatic ring-containing ether solvents such as diphenyl ether and anisole (methylphenyl ether) are exemplified.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone (methyl-n-pentyl ketone), ethyl-n-butyl ketone.
  • Chain ketone solvents such as methyl-n-hexyl ketone, di-iso-butyl ketone and trimethylnonanone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone: Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
  • chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, i-pentyl acetate, sec Acetate solvents such as pentyl, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate; Acetic acid ethylene glycol monomethyl ether, acetic acid ethylene glycol monoethyl ether, acetic acid diethylene glycol monomethyl ether, acetic acid diethylene glycol monoethyl ether, acetic acid diethylene
  • hydrocarbon solvents examples include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane , Aliphatic hydrocarbon solvents such as methylcyclohexane; Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
  • ester solvents and ketone solvents are preferable, polyhydric alcohol partial ether acetate solvents, lactate esters solvents and cyclic ketone solvents are more preferable, and propylene glycol monomethyl ether acetate, ethyl lactate and cyclohexanone are more preferable.
  • the radiation-sensitive composition may contain one or more [F] solvents.
  • the radiation-sensitive composition may contain, for example, a surfactant as another optional component.
  • the radiation-sensitive composition may contain one or more other optional components, respectively.
  • Surfactants have the effect of improving coatability, striation, developability, and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
  • Nonionic surfactants such as stearate; commercially available products include KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the [A] polymer, the [B] compound, and optionally the optional component and the [F] solvent are mixed at a predetermined ratio. It can be prepared by filtering with a membrane filter of about 2 ⁇ m.
  • the lower limit of the solid content concentration of the radiation-sensitive composition is preferably 0.1% by mass, more preferably 0.5% by mass, further preferably 1% by mass, and particularly preferably 1.5% by mass.
  • the upper limit of the solid content concentration is preferably 50% by mass, more preferably 30% by mass, further preferably 10% by mass, and particularly preferably 5% by mass.
  • the radiation-sensitive composition can be used both for forming a positive pattern using an alkaline developer and for forming a negative pattern using a developer containing an organic solvent.
  • the pattern forming method includes a step of forming a film (hereinafter also referred to as “film forming step”), a step of exposing the film (hereinafter also referred to as “exposure step”), and a step of developing the exposed film. (Hereinafter also referred to as “development process”).
  • the said pattern formation method forms the said film
  • a film is formed using the radiation-sensitive composition.
  • the film can be formed, for example, by applying a radiation sensitive composition on a substrate.
  • coating method for example, appropriate application
  • the substrate include a silicon wafer and a wafer coated with aluminum.
  • the lower limit of the average thickness of the film is preferably 1 nm, more preferably 10 nm, still more preferably 20 nm, and particularly preferably 30 nm.
  • the upper limit of the average thickness is preferably 1,000 nm, more preferably 200 nm, still more preferably 100 nm, and particularly preferably 70 nm.
  • the lower limit of the PB temperature is usually 60 ° C., preferably 80 ° C.
  • As an upper limit of the temperature of PB it is 140 degreeC normally and 120 degreeC is preferable.
  • the lower limit of the PB time is usually 5 seconds, and preferably 10 seconds.
  • the upper limit of the PB time is usually 600 seconds, and preferably 300 seconds.
  • the film formed in the film forming step is exposed.
  • this exposure is performed by irradiating radiation through a mask having a predetermined pattern through an immersion medium such as water.
  • the radiation include visible rays, ultraviolet rays, far ultraviolet rays, vacuum ultraviolet rays (extreme ultraviolet rays (EUV); wavelength 13.5 nm), electromagnetic waves such as X-rays and ⁇ rays, and charged particle beams such as electron rays and ⁇ rays.
  • EUV extreme ultraviolet rays
  • radiation that emits more secondary electrons from the [B] compound by exposure is preferable, and EUV and electron beams are more preferable.
  • PEB post-exposure baking
  • the upper limit of the PEB temperature is usually 180 ° C, preferably 130 ° C.
  • the lower limit of the PEB time is usually 5 seconds, and preferably 10 seconds.
  • the upper limit of the PEB time is usually 600 seconds, and preferably 300 seconds.
  • an organic or inorganic antireflection film can be formed on the substrate to be used.
  • a protective film can also be provided, for example on a coating film.
  • an immersion protective film may be provided on the film, for example, in order to avoid direct contact between the immersion medium and the film.
  • the film exposed in the exposure step is developed.
  • the developer used for the development include an alkaline aqueous solution and an organic solvent-containing solution.
  • alkaline aqueous solution examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, Ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4. 3.0] -5-nonene, and an alkaline aqueous solution in which at least one alkaline compound is dissolved.
  • TMAH tetramethylammonium hydroxide
  • the lower limit of the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass, more preferably 0.5% by mass, and even more preferably 1% by mass.
  • 20 mass% is preferable, 10 mass% is more preferable, and 5 mass% is further more preferable.
  • TMAH aqueous solution As the alkaline aqueous solution, a TMAH aqueous solution is preferable, and a 2.38 mass% TMAH aqueous solution is more preferable.
  • organic solvent in the organic solvent-containing liquid examples include the same organic solvents exemplified as the [D] solvent of the radiation-sensitive composition. Of these, ester solvents are preferred, and butyl acetate is more preferred.
  • the lower limit of the content of the organic solvent in the organic solvent developer is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
  • These developers may be used alone or in combination of two or more.
  • the substrate is washed with water or the like and dried.
  • the radiation-sensitive acid generator is composed of a compound containing a metal cation and an anion which is a conjugate base of an acid which is a sulfonic acid, nitric acid, organic azinic acid, disulfonylimide acid, or a combination thereof, and EUV or electron beam An acid is generated by the action of the above, and the pKa of the acid is 0 or less.
  • the radiation-sensitive acid generator can be suitably used as the acid generator component of the radiation-sensitive composition described above, and improves the sensitivity and nanoedge roughness performance of the radiation-sensitive composition containing the same. Can do.
  • the compound represented by the above formula (1) is preferable.
  • the radiation-sensitive acid generator is described in the section of the [B] compound of the radiation-sensitive composition.
  • Mw and Mn of the polymer are GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL, Tosoh Corporation), flow rate 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1.0 mass%, sample Measurement was performed by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard, using a differential refractometer as a detector under the analysis conditions of an injection amount of 100 ⁇ L and a column temperature of 40 ° C.
  • GPC gel permeation chromatography
  • the 13 C-NMR analysis for determining the content of the structural unit of the polymer uses a nuclear magnetic resonance apparatus (“JNM-ECX400” manufactured by JEOL Ltd.), uses CDCl 3 as a measurement solvent, and uses tetramethylsilane ( TMS) was performed as an internal standard.
  • JNM-ECX400 nuclear magnetic resonance apparatus
  • TMS tetramethylsilane
  • the polymer (A-2) had Mw of 6,000 and Mw / Mn of 1.90.
  • the content ratios of the structural unit derived from p-hydroxystyrene and the structural unit derived from the compound (M-1) were 50 mol% and 50 mol%, respectively.
  • the reaction solution was heated and stirred for 4 hours, and then the reaction solution was cooled to room temperature.
  • the obtained polymerization reaction liquid was dropped into a large amount of n-heptane, and an operation for precipitating the polymer was performed.
  • the precipitated polymer was filtered, washed and dried to obtain 3 g of polymer (E-1). .
  • the polymer (E-1) had Mw of 21,500 and Mw / Mn of 1.25.
  • the content ratios of structural units derived from (M-10) and (M-11) were 78 mol% and 22 mol%, respectively.
  • B-3 Zinc (II) trifluoromethanesulfonate
  • B-4 Compound represented by the following formula (B-4)
  • B-5 Barium (II) nonafluorobutanesulfonate
  • B-6 Compound represented by the following formula (B-6)
  • B-7 Lanthanum nitrate (III)
  • B-8 Compound represented by the following formula (B-8)
  • B-9 Cerium (III) trifluoromethanesulfonate
  • B-10 Cerium (III) 2-dodecylbenzenesulfonate
  • B-11 Yttrium (III) trifluoromethanesulfonate
  • B-12 Represented by the following formula (B-12) Compound
  • B-13 Indium (III) trifluoromethanesulfonate
  • B-14 Compound represented by the following formula (B-14)
  • C-1 Triphenylsulfonium nonafluoro-n-butanesulfonate (compound represented by the following formula (C-1))
  • C-2 Triphenylsulfonium 2- (4-oxo-adamantan-1-ylcarbonyloxy) -1,1,3,3,3-pentafluoropropane-1-sulfonate (represented by the following formula (C-2) Compound)
  • D-1 Triphenylsulfonium salicylate (compound represented by the following formula (D-1))
  • D-2 2,4,5-triphenylimidazole (compound represented by the following formula (D-2))
  • D-3 Zinc (II) acetate (pKa of acetic acid: 4.76)
  • D-4 Silver (I) cyclohexanebutyrate (pKa of cyclohexanebutyrate: 4.95)
  • F-1 Propylene glycol monomethyl ether acetate
  • F-2 Ethyl lactate
  • F-3 Cyclohexanone
  • Example 1 [A] 100 parts by mass of (A-1) as a polymer, 3 parts by mass of (B-1) as a compound [B], [C] 27 parts by mass of (C-1) as an acid generator, [D ] 2.6 parts by mass of (D-1) as an acid diffusion controller and 4,300 parts by mass of (F-1) as a solvent [F] and 1,900 parts by mass of (E-3) were obtained.
  • the obtained mixed solution was filtered through a membrane filter having a pore size of 0.20 ⁇ m to prepare a radiation sensitive composition (R-2).
  • Example 1 In the “Clean Track ACT-8” of Tokyo Electron Co., Ltd., the radiation sensitive composition (R-2) prepared in Example 1 was spin-coated on a silicon wafer, and then PB was formed at 110 ° C. for 60 seconds. And a resist film having an average thickness of 50 nm was formed. Subsequently, patterning was performed by irradiating an electron beam using a simple electron beam drawing apparatus (“HL800D” manufactured by Hitachi, Ltd., output: 50 KeV, current density: 5.0 ampere / cm 2 ). After the electron beam irradiation, PEB was performed in the clean track ACT-8 at 100 ° C. for 60 seconds.
  • HL800D simple electron beam drawing apparatus
  • TMAH tetramethylammonium hydroxide
  • sensitivity By patterning with an electron beam drawing apparatus (EB), a line-and-space pattern (1L1S) composed of a line portion having a line width of 150 nm and a space portion having a space of 150 nm formed by adjacent line portions is formed in a one-to-one relationship.
  • the exposure amount formed in the line width was the optimum exposure amount, and this optimum exposure amount was the sensitivity ( ⁇ C / cm 2 ).
  • the improvement in sensitivity was 30% or more compared to the corresponding reference example, it was evaluated as “A (good)”, and when the improvement in sensitivity was less than 30%, it was evaluated as “B (defect)”.
  • Reference Example 1 for Examples 1 and 2
  • Reference Examples 2 for Examples 3 to 7, 18, 19 and Comparative Examples 1 to 3
  • Reference Example 4 for Examples 10 to 12, Reference Example 5 for Examples 13 to 15, 20, and 21, and Reference Example 6 for Examples 16 and 17.
  • the radiation-sensitive compositions of the examples are excellent in sensitivity and nanoedge roughness performance.
  • EUV exposure has the same tendency as in the case of electron beam exposure, and according to the radiation-sensitive compositions of the examples, the sensitivity and nanoedge roughness performance are excellent also in the case of EUV exposure. Guessed.
  • the radiation-sensitive composition and the pattern forming method of the present invention a pattern with high sensitivity and small nano edge roughness can be formed.
  • the radiation sensitive acid generator of this invention can be used suitably as an acid generator component of the said radiation sensitive composition. Therefore, these can be suitably used for manufacturing semiconductor devices that are expected to be further miniaturized in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

感度及びナノエッジラフネス性能に優れる感放射線性組成物、パターン形成方法及び感放射線性酸発生剤の提供を目的とする。本発明は、酸解離性基を含む第1構造単位を有する第1重合体、及び金属カチオンと、酸の共役塩基である第1アニオンとを含む第1化合物を含有し、上記酸のpKaが0以下である感放射線性組成物である。上記酸は、スルホン酸、硝酸、有機アジン酸、ジスルホニルイミド酸又はこれらの組み合わせが好ましい。上記第1化合物は下記式(1)で表されることが好ましい。下記式(1)中、Mは、金属カチオンである。Aは、上記第1アニオンである。xは、1~6の整数である。Rは、σ配位子である。yは、0~5の整数である。但し、x+yは6以下である。上記酸のファンデルワールス体積は、2.5×10-28以上が好ましい。

Description

感放射線性組成物、パターン形成方法及び感放射線性酸発生剤
 本発明は、感放射線性組成物、パターン形成方法及び感放射線性酸発生剤に関する。
 リソグラフィーによる微細加工では、感放射線性組成物を用いてレジスト膜を形成し、このレジスト膜に遠紫外線(ArFエキシマレーザー光、KrFエキシマレーザー光等)、極端紫外線(EUV)等の電磁波、電子線等の荷電粒子線などを照射することにより露光部に酸を発生させ、この酸を触媒とする化学反応により露光部と未露光部との現像液に対する溶解速度に差を生じさせ、基板上にパターンを形成する。
 かかる感放射線性組成物には、加工技術の微細化に伴ってレジスト膜としての性能を向上させることが要求される。この要求に対し、組成物に用いられる重合体、酸発生剤、その他の成分の種類や分子構造が検討され、さらにその組み合わせについても詳細に検討されている(特開平11-125907号公報、特開平8-146610号公報及び特開2000-298347号公報参照)。
特開平11-125907号公報 特開平8-146610号公報 特開2000-298347号公報
 現状、パターンの微細化は線幅40nm以下のレベルまで進展しているが、感放射線性組成物には、レジスト膜としてのさらに高い性能、特に電子線、EUV等の露光光に対しても感度が高いこと、加えて、パターンのナノエッジラフネスが小さいことが要求される。しかし、上記の感放射線性組成物はこれらの要求を共に満たすことができていない。
 本発明は以上のような事情に基づいてなされたものであり、その目的は、感度及びナノエッジラフネス性能に優れる感放射線性組成物、パターン形成方法及び感放射線性酸発生剤を提供することにある。
 上記課題を解決するためになされた発明は、酸解離性基を含む第1構造単位を有する第1重合体、及び金属カチオンと、酸の共役塩基である第1アニオンとを含む第1化合物を含有し、酸(I)のpKaが0以下である感放射線性組成物である。
 上記課題を解決するためになされた別の発明は、膜を形成する工程、上記膜を露光する工程、及び上記露光された膜を現像する工程を備え、上記膜を当該感放射線性組成物により形成するパターン形成方法である。
 上記課題を解決するためになされたさらに別の発明は、金属カチオンと、スルホン酸、硝酸、有機アジン酸、ジスルホニルイミド酸又はこれらの組み合わせである酸の共役塩基であるアニオンとを含む化合物からなり、EUV又は電子線の作用により酸を発生し、上記酸のpKaが0以下である感放射線性酸発生剤である。
 ここで、「金属カチオン」とは、金属原子が電子を放出し酸化されて生じるイオンをいう。この金属カチオンにはσ配位子が配位していてもよい。「σ配位子」とは、σ結合を介して1以上の配位座において金属カチオンと結合する配位子をいう。「酸のpKa」とは、酸の酸解離定数の逆数の常用対数値をいい、例えばChemAxon社の「Marvin Sketch」の計算用プラグインモジュールを用いた計算により求めた298Kでの値である。「酸解離性基」とは、カルボキシ基、スルホ基、フェノール性水酸基等の水素原子に置換する基であって、酸の作用により解離する基をいう。
 本発明の感放射線性組成物及びパターン形成方法によれば、高い感度で、ナノエッジラフネスが小さいパターンを形成することができる。本発明の感放射線性酸発生剤は、当該感放射線性組成物の酸発生剤成分として好適に用いることができる。従って、これらは今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。
ラインパターンを上方から見た際の模式的な平面図である。 ラインパターン形状の模式的な断面図である。
<感放射線性組成物>
 当該感放射線性組成物は、酸解離性基を含む第1構造単位(以下、「構造単位(I)」ともいう)を有する第1重合体(以下、「[A]重合体」ともいう)、及び金属カチオン(以下、「カチオン(I)」ともいう)と、酸(以下、「酸(I)」ともいう)の共役塩基である第1アニオン(以下、「アニオン(I)」ともいう)とを含む第1化合物(以下、「[B]化合物」ともいう)を含有する。当該感放射線性組成物は、好適成分として、[B]化合物以外の感放射線性酸発生体(以下、「[C]酸発生体」ともいう)、酸拡散制御体(以下、「[D]酸拡散制御体」ともいう)、[A]重合体よりもフッ素原子及びケイ素原子の合計質量含有率が大きい第2重合体(以下、「[E]重合体」ともいう)並びに[F]溶媒を含有していてもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有してもよい。以下、各成分について説明する。
<[A]重合体>
 [A]重合体は、構造単位(I)を有する重合体である。「重合体」とは、単量体が共有結合の生成により結合して形成される化合物をいい、ポリマー及びオリゴマーを含む。[A]重合体の分子量の下限としては、例えば500であり、1,000が好ましい。[A]重合体が構造単位(I)を有することで、後述する[B]化合物及び/又は[C]酸発生体から生じる酸の作用によりその酸解離性基が解離する。その結果、[A]重合体の現像液に対する溶解性が変化するので、当該感放射線性組成物によればパターンを形成することができる。
 [A]重合体としては、構造単位(I)を有する限り特に限定されず、例えば[A1]重合体:構造単位(I)を有する重合体、[A2]重合体:構造単位(I)を有するヒドロキシ基が結合する芳香環又はヒドロキシ基が結合するヘテロ芳香環が炭化水素基を介して複数個環状に結合した環状オリゴマー(カリックスアレーン等)等が挙げられる。
[[A1]重合体]
 [A1]重合体は、構造単位(I)を有するポリマーである。[A1]重合体は、構造単位(I)以外にも、後述する式(3)で表される第2構造単位(以下、「構造単位(II)」ともいう)、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位(III)を有していてもよく、(I)~(III)以外のその他の構造単位を有していてもよい。[A1]重合体は、種々の構造単位をより簡便に導入することができ、現像液に対する溶解性を調整することができる。当該感放射線性組成物によれば、レジスト諸性能をより高めることができる。[A1]重合体は、各構造単位を1種又は2種以上有していてもよい。以下、各構造単位について説明する。
[構造単位(I)]
 構造単位(I)は、酸解離性基を含む構造単位である。[A1]重合体における構造単位(I)としては、例えば下記式(2-1)で表される構造単位(以下、「構造単位(I-1)」ともいう)、下記式(2-2)で表される構造単位(以下、「構造単位(I-2)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記式(2-1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造を表す。
 上記式(2-2)中、Rは、水素原子又はメチル基である。Lは、単結合、-COO-又は-CONH-である。Rは、水素原子又は炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のオキシ炭化水素基である。「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。「環員数」とは、脂環構造、芳香環構造、脂肪族複素環構造及び芳香族複素環構造の環を構成する原子数をいい、多環の場合は、この多環を構成する原子数をいう。
 構造単位(I-1)としては下記式(2-1-1)~(2-1-5)で表される構造単位(以下、「構造単位(I-1-1)~(I-1-5)」ともいう)が好ましい。構造単位(I-2)としては、下記式(2-2-1)で表される構造単位(以下、「構造単位(I-2-1)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記式(2-1-1)~(2-1-5)中、R~Rは、上記式(2-1)と同義である。nは、それぞれ独立して、1~4の整数である。
 上記式(2-2-1)中、R~Rは、上記式(2-2)と同義である。
 構造単位(I-1)としては例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 上記式中、Rは、上記式(2-1)と同義である。
 構造単位(I-2)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 上記式中、Rは、上記式(2-2)と同義である。
 構造単位(I-1)としては、構造単位(I-1-2)、構造単位(I-1-3)及び構造単位(I-1-5)が好ましく、1-アルキルシクロペンタン-1-イル(メタ)アクリレートに由来する構造単位、2-アダマンチル-2-プロピル(メタ)アクリレートに由来する構造単位及び1-アルキルインデン-1-イル(メタ)アクリレートに由来する構造単位がより好ましい。
 構造単位(I-2)としては、構造単位(I-2-1)が好ましく、p-(1-オキシ炭化水素置換-1-アルキルオキシ)スチレンに由来する構造単位がより好ましく、p-(1-シクロアルキルオキシ-1-アルキルオキシ)スチレン及びp-(1-アルキルオキシ-1-アルキルオキシ)スチレンに由来する構造単位がさらに好ましく、p-(1-メトキシ-2-メチルプロパン-1-イルオキシ)スチレンに由来する構造単位が特に好ましい。
 構造単位(I)の含有割合の下限としては、[A1]重合体を構成する全構造単位に対して、15モル%が好ましく、20モル%がより好ましく、30モル%がさらに好ましく、40モル%が特に好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましく、55モル%が特に好ましい。上記含有割合を上記範囲とすることで、当該感放射線性組成物の感度及びナノエッジラフネス性能をより向上させることができる。
[構造単位(II)]
 構造単位(II)は、フェノール性水酸基を含む構造単位である。[A1]重合体は構造単位(II)をさらに有することで、現像液に対する溶解性をより適度に調整することができ、その結果、当該感放射線性組成物のナノエッジラフネス性能をより向上させることができる。また、パターンの基板への密着性をさらに向上させることができる。さらに、KrF露光、EUV露光又は電子線露光の場合、当該感放射線性組成物の感度をより高めることができる。
 構造単位(II)としては、例えば下記式(3)で表される構造単位(以下、「構造単位(II-1)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 上記式(3)中、R15は、水素原子又はメチル基である。Lは、単結合又は炭素数1~20の2価の有機基である。R16は、炭素数1~20の1価の有機基である。pは、0~2の整数である。qは、0~9の整数である。qが2以上の場合、複数のR16は同一でも異なっていてもよい。rは、1~3の整数である。
 構造単位(II)としては、例えば下記式(3-1)~(3-7)で表される構造単位(以下、「構造単位(II-1)~(II-7)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記式(3-1)~(3-7)中、R15は、上記式(3)と同義である。
 これらの中で、構造単位(II-1)が好ましい。
 [A1]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A1]重合体を構成する全構造単位に対して、10モル%が好ましく、30モル%がより好ましく、45モル%がさらに好ましい。上記含有割合の上限としては、80モル%が好ましく、75モル%がより好ましく、70モル%がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、当該感放射線性組成物のナノエッジラフネス性能をさらに向上させることができる。また、KrF露光、EUV露光又は電子線露光の場合の感度をさらに高めることができる。
[構造単位(III)]
 構造単位(III)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である。[A1]重合体は、構造単位(III)をさらに有することで、現像液への溶解性をより調整することができ、その結果、当該感放射線性組成物のナノエッジラフネス性能をより向上させることができる。また、パターンと基板との密着性をより向上させることができる。
 構造単位(III)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 構造単位(III)としては、これらの中で、ラクトン構造を含む構造単位が好ましく、ノルボルナンラクトン構造を含む構造単位がより好ましく、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位がさらに好ましい。
 [A1]重合体が構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A1]重合体を構成する全構造単位に対して、10モル%が好ましく、30モル%がより好ましく、40モル%がさらに好ましい。上記含有割合の上限としては、70モル%が好ましく、60モル%がより好ましく、50モル%がさらに好ましい。上記含有割合を上記範囲とすることで、当該感放射線性組成物のナノエッジラフネス性能をさらに向上させることができる。またパターンの基板への密着性をさらに向上させることができる。
[その他の構造単位]
 [A]重合体は、構造単位(I)~(III)以外にもその他の構造単位を有してもよい。その他の構造単位としては、例えば極性基を含む構造単位、非解離性の炭化水素基を含む構造単位、芳香環含有シクロアルケンに由来する構造単位等が挙げられる。極性基としては、例えばアルコール性水酸基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等が挙げられる。非解離性の炭化水素基としては、例えば直鎖状のアルキル基等が挙げられる。芳香環含有シクロアルケンとしては、例えばインデン、ジヒドロナフタレン、アセナフチレン等が挙げられる。その他の構造単位の含有割合の上限としては、20モル%が好ましく、15モル%がより好ましく、10モル%がさらに好ましい。
 [A1]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1,500が好ましく、2,000がより好ましく、4,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、10,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、当該感放射線性組成物の感度及びナノエッジラフネス性能をより向上させることができる。
 [A1]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の上限としては、5が好ましく、3がより好ましく、2がさらに好ましい。上記比の下限は、通常1であり、1.1が好ましい。
 本明細書における重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本、「G4000HXL」1本
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン(和光純薬工業社)
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
[[A2]重合体]
 [A2]重合体は、構造単位(I)を有するヒドロキシ基が結合する芳香環又はヒドロキシ基が結合するヘテロ芳香環が炭化水素基を介して複数個環状に結合した環状オリゴマーである。当該感放射線性組成物は、[A2]重合体を含有することで、ナノエッジラフネス性能をより向上させることができる。[A2]重合体における構造単位(I)としては、例えば下記式(2-3)で表される構造単位(以下、「構造単位(I-3)」ともいう)等が挙げられる。[A2]重合体は、構造単位(I)が鎖状炭化水素基で連結された構造を有する。
Figure JPOXMLDOC01-appb-C000016
 上記式(2-3)中、R10は、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のオキシ炭化水素基である。R11は、単結合又は炭素数1~10の2価の炭化水素基である。R12は、炭素数1~20の1価の炭化水素基である。R13及びR14は、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造を表す。aは、0~5の整数である。bは、0~5の整数である。但し、a+bは5以下である。kは、0又は1である。aが2以上の場合、複数のR10は同一でも異なっていてもよい。
 R10で表される炭素数1~20の1価の炭化水素基及び炭素数1~20の1価のオキシ炭化水素基としては、例えば後述する[B]化合物の式(A)のRp1として例示した1価の炭化水素基と同様の基、この基の結合手側の末端に酸素原子を含む基等がそれぞれ挙げられる。
 R10としては、オキシ炭化水素基が好ましく、アルコキシ基がより好ましく、メトキシ基がさらに好ましい。
 R11で表される炭素数1~10の2価の炭化水素基としては、例えばR10で表される炭素数1~20の1価の炭化水素基として例示した基から1個の水素原子を除いた基のうち、炭素数1~10のもの等が挙げられる。
 R11としては、単結合及びアルカンジイル基が好ましく、メタンジイル基がより好ましい。
 R12、R13及びR14で表されるそれぞれの基としては、上記式(2-1)のR、R及びRとして例示した各基と同様のもの等が挙げられる。
 aとしては、0~2の整数が好ましく、1がより好ましい。bとしては、0~2の整数が好ましく、1がより好ましい。
 [A2]重合体は、構造単位(I)以外にも、他の構造単位を有していてもよい。他の構造単位としては、例えばフェノール性水酸基を含む構造単位等が挙げられる。
 [A2]重合体の分子量の下限としては、500が好ましく、1,000がより好ましく、1,500がさらに好ましい。上記分子量の上限としては、3,000が好ましく、2,000がより好ましく、1,500がさらに好ましい。[A2]重合体の分子量を上記範囲とすることで、当該感放射線性組成物の感度及びナノエッジラフネス性能をさらに向上させることができる。
 [A]重合体の含有量の下限としては、当該感放射線性組成物の全固形分に対して、70質量%が好ましく、80質量%がより好ましく、85質量%がさらに好ましい。
<[A]重合体の合成方法>
 [A1]重合体は、例えば各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶媒中で重合するか、または得られた重合体をさらにアセタール化などの適切な処理を行うことにより合成できる。
 ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等が挙げられる。これらの中で、AIBN及びジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル開始剤は1種単独で又は2種以上を混合して用いることができる。
 重合に使用される溶媒としては、例えば
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 アセトン、メチルエチルケトン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
 メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの重合に使用される溶媒は、1種単独で又は2種以上を併用してもよい。
 重合における反応温度の下限としては、40℃が好ましく、50℃がより好ましい。上記反応温度の上限としては、150℃が好ましく、120℃がより好ましい。重合体における反応時間の下限としては、1時間が好ましく、2時間がより好ましい。上記反応時間の上限としては、48時間が好ましく、24時間がより好ましい。
 [A2]重合体は、例えば下記式(a)で表されるフェノール性水酸基を有する化合物と、下記式(b)で表されるアルデヒドとを、トリフルオロ酢酸等の酸の存在下、クロロホルム等の溶媒中で反応させ、得られた化合物を、炭酸カリウム等の塩基存在下、N-メチルピロリドン等の溶媒中で、2-ブロモアセチロキシ-2-メチルアダマンタン等の酸解離性基を与える化合物と反応させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000017
 上記式(a)中、R10’は、炭素数1~20の炭化水素基である。a’は、0~7の整数である。b’は、1~7の整数である。但し、a’+b’は6以下である。kは、0又は1である。a’が2以上の場合、複数のR10’は同一でも異なっていてもよい。
 上記式(b)中、Yは、置換若しくは非置換の炭素数1~30のj価の炭化水素基又は水素原子である。jは、1又は2である。
 jとしては、2が好ましい。Yとしては、非置換の2価の炭化水素基が好ましく、アルカンジイル基がより好ましく、プロパンジイル基がさらに好ましい。
<[B]化合物>
 [B]化合物は、カチオン(I)と、アニオン(I)とを含む化合物である。[B]化合物は、EUV、電子線等の放射線の作用により、酸(I)を発生する感放射線性酸発生剤として機能する。当該感放射線性組成物は、[A]重合体に加えて、[B]化合物を含有することにより、感度及びナノエッジラフネス性能に優れる。当該感放射線性組成物が上記構成を有することで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[B]化合物の金属カチオンの作用により、露光光から二次電子が生じ、この二次電子とアニオン(I)とから酸(I)が発生する。この場合、アニオン(I)がpKaが0以下の酸(I)の共役塩基であり、金属への配位力が比較的弱いこと等により、当該感放射線性組成物は高い感度を発揮することができると考えられる。また、[B]化合物の膜中での分散性が良好であることにより、塗布膜中に均一に分布することにより、パターンのナノエッジラフネスを小さくすることができると考えられる。以下、カチオン(I)及びアニオン(I)について説明する。
[カチオン(I)]
 カチオン(I)は、金属カチオンである。カチオン(I)には、σ配位子が配位していてもよい。カチオン(I)の金属に配位子がσ結合で配位する限り、カチオン(I)に含まれる金属の電子状態を維持することができると考えられ、当該感放射線性組成物の感度及びナノエッジラフネス性能を優れたものに維持することができる。カチオン(I)に含まれる金属としては、特に限定されず、遷移金属でも典型金属でもよい。
 カチオン(I)としては、例えば第2族、第3族、第4族、第5族、第6族、第7族、第8族、第9族、第10族、第11族、第12族の元素のカチオン等が挙げられる。これらの中で、感度がより高くなる観点から、第2族、第3族、第11族及び第12族の元素のカチオンが好ましい。
 上記カチオン(I)としては、感度がさらに高くなる観点から、銅、亜鉛、バリウム、ランタン、セリウム及び銀のカチオンが好ましい。
[アニオン(I)]
 アニオン(I)は、pKaが0以下である酸(I)の共役塩基である。
 酸(I)のpKaの上限としては、0であり、-1が好ましく、-2がより好ましい。上記pKaの下限としては、-8が好ましく、-6がより好ましく、-4がさらに好ましい。酸(I)のpKaを上記範囲とすることで、当該感放射線性組成物のナノエッジラフネス性能を向上させることができる。
 酸(I)としては、例えばスルホン酸、硝酸、有機アジン酸、ジスルホニルイミド酸等が挙げられる。「有機アジン酸」とは、RC=N(O)OH(R及びRは、それぞれ独立して1価の有機基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環構造を表す)で表される化合物をいう。
 酸(I)のファンデルワールス体積の下限としては、1.5×10-28が好ましく、2.5×10-28がより好ましく、3.0×10-28がさらに好ましく、3.2×10-28が特に好ましく、3.5×10-28がさらに特に好ましい。一方、上記ファンデルワールス体積の上限としては、1.0×10-27が好ましく、6.0×10-28がより好ましい。上記ファンデルワールス体積を上記範囲とすることで、当該感放射線性組成物は、酸の拡散を適度に短くすることができ、ナノエッジラフネス性能をより向上させることができる。「ファンデルワールス体積」とは、酸(I)を構成する原子のファンデルワールス半径に基づいたファンデルワールス球により占有される領域の体積をいい、例えばWinMOPAC(富士通社、Ver.3.9.0)等の計算ソフトを用いて、PM3法により安定構造を求めることによって計算される値である。
 [B]化合物としては、例えば下記式(1)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 上記式(1)中、Mは、カチオン(I)である。Aは、アニオン(I)である。xは、1~6の整数である。xが2以上の場合、複数のAは同一でも異なっていてもよい。Rは、σ配位子である。yは、0~5の整数である。yが2以上の場合、複数のRは同一でも異なっていてもよい。但し、x+yは6以下である。
 Mのカチオン(I)としては金属カチオンである限り特に限定されず、1価のカチオンでも、2価のカチオンでも、3価のカチオンでも、4価以上のカチオンであってもよい。
 Aのアニオン(I)としては、酸(I)の共役塩基である限り特に限定されず、1価のアニオンでも、2価以上のアニオンであってもよい。これらの中で、1価のアニオンが好ましい。
 xとしては、1~3が好ましい。
 Rで表されるσ配位子としては、例えば単座配位子及び多座配位子が挙げられる。
 単座配位子としては、例えばヒドロキソ配位子(OH)、カルボキシ配位子(COOH)、アミド配位子、アシロキシ配位子、アミン配位子、置換又は非置換の炭化水素基配位子等が挙げられる。
 アミド配位子としては、例えば無置換アミド配位子(NH)、メチルアミド配位子(NHMe)、ジメチルアミド配位子(NMe)、ジエチルアミド配位子(NEt)、ジプロピルアミド配位子(NPr)等が挙げられる。
 アシロキシ配位子としては、例えばホルミルオキシ配位子、アセチルオキシ配位子、プロピオニルオキシ配位子、ステアロイルオキシ配位子、アクリルオキシ配位子等が挙げられる。
 アミン配位子としては、例えばピリジン配位子、トリメチルアミン配位子、ピペリジン配位子、アンモニア配位子等が挙げられる。
 炭化水素基配位子としては、メチル基配位子等のアルキル基配位子、シクロヘキシル基配位子等のシクロアルキル基配位子、フェニル基配位子等のアリール基配位子、ベンジル基配位子等のアラルキル基配位子などが挙げられる。炭化水素基配位子の置換基としては、アルコキシ基、ヒドロキシ基、ハロゲン原子等が挙げられる。
 多座配位子としては、例えばヒドロキシ酸エステル、β-ジケトン、β-ケトエステル、β-ジカルボン酸エステル、o-アシルフェノール、ジホスフィン等が挙げられる。
 ヒドロキシ酸エステルとしては例えばグリコール酸エステル、乳酸エステル、2-ヒドロキシシクロヘキサン-1-カルボン酸エステル、サリチル酸エステル等が挙げられる。
 β-ジケトンとしては、例えばアセチルアセトン、3-メチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン、2,2-ジメチル-3,5-ヘキサンジオン等が挙げられる。
 β-ケトエステルとしては、例えばアセト酢酸エステル、α-アルキル置換アセト酢酸エステル、β-ケトペンタン酸エステル、ベンゾイル酢酸エステル、1,3-アセトンジカルボン酸エステル等が挙げられる。
 β-ジカルボン酸エステルとしては、例えばマロン酸ジエステル、α-アルキル置換マロン酸ジエステル、α-シクロアルキル置換マロン酸ジエステル、α-アリール置換マロン酸ジエステル等が挙げられる。
 o-アシルフェノールとしては、例えばo-ヒドロキシアセトフェノン、o-ヒドロキシベンゾフェノン等が挙げられる。
 ジホスフィンとしては、例えば1,1-ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン等が挙げられる。
 Rで表されるσ配位子としては、アシロキシ配位子、アミン配位子、置換又は非置換の炭化水素基配位子、β-ジケトン及びo-アシルフェノールが好ましく、アセチルオキシ配位子、ステアロイルオキシ配位子、置換又は非置換のアリール基配位子、ピリジン、アセチルアセトン、3,3-ジメチル-3,5-ヘキサンジオン及びo-ヒドロキシアセトフェノンがより好ましく、メシチル基配位子がさらに好ましい。
 yとしては、0~3が好ましく、0~2がより好ましく、0及び1がさらに好ましく、0が特に好ましい。すなわち、[B]化合物としては、カチオン(I)とアニオン(I)とからなる化合物(以下、「金属酸塩」ともいう)が特に好ましい。
 金属酸塩としては、例えば金属スルホン酸塩、金属硝酸塩、金属有機アジン酸塩、金属ジスルホニルイミド酸塩等が挙げられる。
(金属スルホン酸塩)
 酸(I)がスルホン酸である場合、[B]化合物としては、例えば下記式(A)で表される金属スルホン酸塩(以下、「化合物(A)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 上記式(A)中、Rp1は、水素原子、フッ素原子又は炭素数1~20の1価の有機基である。Rp2は、2価の連結基である。Rp3及びRp4は、それぞれ独立して、水素原子、フッ素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。Rp5及びRp6は、それぞれ独立して、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。np1は、0~10の整数である。np2は、0~10の整数である。np3は、1~10の整数である。np1が2以上の場合、複数のRp2は同一でも異なっていてもよい。np2が2以上の場合、複数のRp3は同一でも異なっていてもよく、複数のRp4は同一でも異なっていてもよい。np3が2以上の場合、複数のRp5は同一でも異なっていてもよく、複数のRp6は同一でも異なっていてもよい。Mn+は、n価のカチオン(I)である。nは、1~6の整数である。
 Rp1で表される1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基(α)、上記炭化水素基及び基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。
 炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 炭素数1~20の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3~20の1価の脂環式炭化水素基としては、例えば
 シクロペンチル基、シクロヘキシル基等の単環のシクロアルキル基;
 シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環のシクロアルキル基;
 ノルボルネニル基、トリシクロデセニル基等の多環のシクロアルケニル基などが挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 1価及び2価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。
 1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基(-SH)等が挙げられる。
 Rp1で表される1価の有機基としては、環員数6以上の環構造を含む1価の基が好ましい。この環員数6以上の環構造を含む1価の基としては、例えば環員数6以上の脂環構造を含む1価の基、環員数6以上の脂肪族複素環構造を含む1価の基、環員数6以上の芳香環構造を含む1価の基、環員数6以上の芳香族複素環構造を含む1価の基等が挙げられる。Rp1を上記基とすることで、酸(I)の拡散長をさらに適度に短くすることができ、その結果、当該感放射線性組成物のナノエッジラフネス性能をより向上させることができる。
 上記環員数6以上の脂環構造としては、例えば
 シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロノナン構造、シクロデカン構造、シクロドデカン構造等の単環のシクロアルカン構造;
 シクロヘキセン構造、シクロヘプテン構造、シクロオクテン構造、シクロデセン構造等の単環のシクロアルケン構造;
 ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環のシクロアルカン構造;
 ノルボルネン構造、トリシクロデセン構造等の多環のシクロアルケン構造などが挙げられる。
 上記環員数6以上の脂肪族複素環構造としては、例えば
 ヘキサノラクトン構造、ノルボルナンラクトン構造等のラクトン構造;
 ヘキサノスルトン構造、ノルボルナンスルトン構造等のスルトン構造;
 オキサシクロヘプタン構造、オキサノルボルナン構造等の酸素原子含有複素環構造;
 アザシクロヘキサン構造、ジアザビシクロオクタン構造等の窒素原子含有複素環構造;
 チアシクロヘキサン構造、チアノルボルナン構造の硫黄原子含有複素環構造などが挙げられる。
 上記環員数6以上の芳香環構造としては、例えば
 ベンゼン構造、ナフタレン構造、フェナントレン構造、アントラセン構造等が挙げられる。
 上記環員数6以上の芳香族複素環構造としては、例えばピラン構造、ベンゾピラン構造等の酸素原子含有複素環構造、ピリジン構造、ピリミジン構造、インドール構造等の窒素原子含有複素環構造などが挙げられる。
 Rp1の環構造の環員数の下限としては、7が好ましく、8がより好ましく、9がさらに好ましく、10が特に好ましい。一方、上記環員数の上限としては、15が好ましく、14がより好ましく、13がさらに好ましく、12が特に好ましい。上記環員数を上記範囲とすることで、上述の酸の拡散長をさらに適度に短くすることができ、その結果、当該感放射線性組成物のナノエッジラフネス性能をより向上させることができる。
 Rp1の環構造が有する水素原子の一部又は全部は、置換基で置換されていてもよい。上記置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中でヒドロキシ基が好ましい。
 Rp1としては、フッ素原子、環員数6以上の脂環構造を含む1価の基及び環員数6以上の脂肪族複素環構造を含む1価の基が好ましく、フッ素原子、環員数9以上の脂環構造を含む1価の基及び環員数9以上の脂肪族複素環構造を含む1価の基がより好ましく、フッ素原子、アダマンチル基、4-オキソアダマンチル基及び5,6-(ジフェニルメタンジイルジオキシ)ノルボルナン-2-イル基がさらに好ましい。
 Rp2で表される2価の連結基としては、例えばカルボニル基、エーテル基、カルボニルオキシ基、スルフィド基、チオカルボニル基、スルホニル基、2価の炭化水素基等が挙げられる。Rp2で表される2価の連結基としては、カルボニルオキシ基、スルホニル基、アルカンジイル基及びシクロアルカンジイル基が好ましく、カルボニルオキシ基及びシクロアルカンジイル基がより好ましく、カルボニルオキシ基及びノルボルナンジイル基がさらに好ましく、カルボニルオキシ基が特に好ましい。
 Rp3及びRp4で表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20のアルキル基等が挙げられる。Rp3及びRp4で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp3及びRp4としては、水素原子、フッ素原子及びフッ素化アルキル基が好ましく、フッ素原子及びパーフルオロアルキル基がより好ましく、フッ素原子及びトリフルオロメチル基がさらに好ましい。
 Rp5及びRp6で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp5及びRp6としては、フッ素原子及びフッ素化アルキル基が好ましく、フッ素原子及びパーフルオロアルキル基がより好ましく、フッ素原子及びトリフルオロメチル基がさらに好ましく、フッ素原子が特に好ましい。
 np1としては、0~5の整数が好ましく、0~3の整数がより好ましく、0~2の整数がさらに好ましく、0及び1が特に好ましい。
 np2としては、0~5の整数が好ましく、0~2の整数がより好ましく、0及び1がさらに好ましく、0が特に好ましい。
 np3としては、1~5の整数が好ましく、1~4の整数がより好ましく、1~3の整数がさらに好ましく、1及び2が特に好ましい。
 nとしては、1~5が好ましく、1~4がより好ましく、1~3がさらに好ましい。
 化合物(A)としては、例えば下記式(i-1)~(i-16)で表される化合物(以下、化合物(i-1)~(i-16)という)等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 上記式(i-1)~(i-16)中、Mn+は、σ配位子が配位していてもよいn価のカチオン(I)である。
 化合物(A)としては、化合物(i-3)、化合物(i-5)、化合物(i-14)、化合物(i-15)、化合物(i-16)、金属ノナフルオロブタンスルホネート及び金属2-ドデシルベンゼンスルホネートが好ましく、上記式(i-3)で表される亜鉛(II)化合物、上記式(i-5)で表されるランタン(III)化合物、上記式(i-5)で表されるインジウム(III)化合物、上記式(i-14)で表される銅(II)化合物、上記式(i-15)で表される銅(II)化合物、上記式(i-15)で表される亜鉛(II)化合物、上記式(i-15)で表されるセリウム(III)化合物、上記式(i-16)で表されるイットリウム(III)化合物、バリウム(II)ノナフルオロブタンスルホネート及びセリウム(III)2-ドデシルベンゼンスルホネートがより好ましい。
(金属硝酸塩)
 酸(I)が硝酸である場合、[B]化合物としては、例えば硝酸銅(II)、硝酸亜鉛(II)、硝酸バリウム(II)、硝酸ランタン(III)、硝酸セリウム(III)、硝酸銀(I)等の金属硝酸塩などが挙げられる。これらの中で硝酸ランタン(III)が好ましい。
(金属有機アジン酸塩)
 酸(I)が有機アジン酸である場合、[B]化合物としては、例えば有機アジン酸銅(II)、有機アジン酸亜鉛(II)、有機アジン酸バリウム(II)、有機アジン酸ランタン(III)、有機アジン酸セリウム(III)、有機アジン酸銀(I)等の金属有機アジン酸塩などが挙げられる。
(金属ジスルホニルイミド酸塩)
 酸(I)がジスルホニルイミド酸の場合、[B]化合物としては、例えば下記式(B)で表されるジスルホニルイミド酸塩(以下、「化合物(B)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 上記式(B)中、R及びRは、それぞれ独立して、炭素数1~20の1価の有機基であるか、又はこれらの基が互いに合わせられこれらが結合する原子鎖と共に環員数5~20の環構造を表す。
 R及びRで表される炭素数1~20の1価の有機基としては、例えば上記Rp1の1価の有機基として例示したものと同様の基等が挙げられる。
 R及びRとしては、アルキル基、置換又は非置換のフッ素化アルキル基及び置換又は非置換のアリール基が好ましく、アルキル基、有機スルホニル基置換又は非置換のフッ素化アルキル基及びフッ素置換、塩素置換、ニトロ置換又は非置換のアリール基がより好ましく、アルキル基、ピペリジルスルホニル置換、シクロヘキシルフェニルスルホニル置換又は非置換のパーフルオロアルキル基及びフッ素置換、トリフルオロメチル基置換、塩素置換、ニトロ置換又は非置換のフェニル基がさらに好ましく、メチル基、ピペリジルスルホニルヘキサフルオロプロピル基、シクロヘキシルフェニルスルホニルヘキサフルオロプロピル基、トリフルオロメチル基、ペンタフルオロエチル基、ノナフルオロブチル基、ヘプタデカフルオロオクチル基、ペンタフルオロフェニル基、ジ(トリフルオロメチル)フェニル基、クロロフェニル基、ニトロフェニル基及びフェニル基が特に好ましい。
 R及びRの基が互いに合わせられこれらが結合する原子鎖と共に構成される環員数3~20の環構造としては、例えばエチレンジスルホニルイミド環構造、プロピレンジスルホニルイミド環構造、ブチレンジスルホニルイミド環構造、ペンチレンジスルホニルイミド環構造等のスルホニルイミド環構造などが挙げられる。
 R及びRが互いに合わせられ表される基としてはフッ素化アルカンジイル基が好ましく、パーフルオロアルカンジイル基がより好ましく、テトラフルオロエタンジイル基、ヘキサフルオロプロパンジイル基及びオクタフルオロブタンジイル基がさらに好ましい。
 化合物(B)としては、例えば下記式(ii-1)~(ii-26)(以下、化合物(ii-1)~(ii-26)という)等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 上記式(ii-1)~(ii-26)中、Mn+は、n価のカチオン(I)である。
 化合物(B)としては、化合物(ii-24)が好ましく、上記式(ii-24)で表されるバリウム(II)化合物がより好ましい。
 [B]化合物の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、2質量部が特に好ましく、2.5質量部がさらに特に好ましい。上記含有量の上限としては、200質量部が好ましく、100質量部がより好ましく、50質量部がさらに好ましく、10質量部が特に好ましく、5質量部がさらに特に好ましい。[B]化合物の含有量を上記範囲とすることで、当該感放射線性組成物は、感度及びナノエッジラフネス性能をさらに向上させることができる。当該感放射線性組成物は、[B]化合物を1種のみ含有してもよく、2種以上含有してもよい。
<[C]酸発生体>
 [C]酸発生体は、[B]化合物以外の感放射線性酸発生体である。当該感放射線性組成物は、[B]化合物が露光により酸を発生するため、[C]酸発生体は必ずしも必要ではないが、当該感放射線性組成物は[C]酸発生体を含有することにより、さらに感度を高めることができる。当該感放射線性組成物における[C]酸発生体の含有形態としては、後述するような低分子化合物の形態(以下、適宜「[C]酸発生剤」ともいう)でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 [C]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 [C]酸発生剤の具体例としては、例えば特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物等が挙げられる。
 スルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、トリフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1-ジフルオロエタンスルホネート、トリフェニルスルホニウムカンファースルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムカンファースルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、4-メタンスルホニルフェニルジフェニルスルホニウムカンファースルホネート、トリフェニルスルホニウム1,1,2,2-テトラフルオロ-6-(1-アダマンタンカルボニロキシ)-ヘキサン-1-スルホネート等が挙げられる。
 テトラヒドロチオフェニウム塩としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムカンファースルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(6-n-ブトキシナフタレン-2-イル)テトラヒドロチオフェニウムカンファースルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムカンファースルホネート等が挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ジフェニルヨードニウムカンファースルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムカンファースルホネート等が挙げられる。
 N-スルホニルオキシイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-(3-テトラシクロ[4.4.0.12,5.17,10]ドデカニル)-1,1-ジフルオロエタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(カンファースルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等を挙げることができる。
 [C]酸発生剤としては、下記式(4)で表される化合物を用いることができる。[C]酸発生剤が下記構造を有することで、[A]重合体等が有する極性構造との相互作用等により、露光により[C]酸発生剤から生じる酸のレジスト膜中の拡散長がより適度に短くなると考えられ、その結果、当該感放射線性組成物のレジスト諸性能をより向上させることができる。
Figure JPOXMLDOC01-appb-C000025
 上記式(4)中、Rq1は、環員数6以上の環構造を含む1価の基である。Rq2は、2価の連結基である。Rq3及びRq4は、それぞれ独立して、水素原子、フッ素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。Rq5及びRq6は、それぞれ独立して、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。mp1は、0~10の整数である。mp2は、0~10の整数である。mp3は、1~10の整数である。mp1が2以上の場合、複数のRq2は同一でも異なっていてもよい。mp2が2以上の場合、複数のRq3は同一でも異なっていてもよく、複数のRq4は同一でも異なっていてもよい。mq3が2以上の場合、複数のRq5は同一でも異なっていてもよく、複数のRq6は同一でも異なっていてもよい。Gは、1価の感放射線性オニウムカチオンである。
 上記Rq1~Rq6で表される各基としては、例えば上記式(A)のRp1~Rp6として例示したそれぞれの基等が挙げられる。
 上記Gで表される1価の感放射線性オニウムカチオンは、露光光の照射により分解するカチオンである。露光部では、この感放射線性オニウムカチオンの分解により生成するプロトンと、スルホネートアニオンとからスルホン酸を生じる。上記Gで表される1価の感放射線性オニウムカチオンとしては、例えばS、I、O、N、P、Cl、Br、F、As、Se、Sn、Sb、Te、Bi等の元素を含む感放射線性オニウムカチオンが挙げられる。元素としてS(硫黄)を含むカチオンとしては、例えばスルホニウムカチオン、テトラヒドロチオフェニウムカチオン等が挙げられ、元素としてI(ヨウ素)を含むカチオンとしては、ヨードニウムカチオン等が挙げられる。これらの中で、下記式(G-1)で表されるスルホニウムカチオン、下記式(G-2)で表されるカチオン及び下記式(G-3)で表されるヨードニウムカチオンが好ましい。
Figure JPOXMLDOC01-appb-C000026
 上記式(G-1)中、Ra1、Ra2及びRa3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、-OSO-R若しくは-SO-Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k1、k2及びk3は、それぞれ独立して0~5の整数である。Ra1~Ra3並びにR及びRがそれぞれ複数の場合、複数のRa1~Ra3並びにR及びRはそれぞれ同一でも異なっていてもよい。
 上記式(G-2)中、Rb1は、置換若しくは非置換の炭素数1~8の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6~8の芳香族炭化水素基である。k4は0~7の整数である。Rb1が複数の場合、複数のRb1は同一でも異なっていてもよく、また、複数のRb1は、互いに合わせられ構成される環構造を表してもよい。
b2は、置換若しくは非置換の炭素数1~7の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6若しくは7の芳香族炭化水素基である。k5は、0~6の整数である。Rb2が複数の場合、複数のRb2は同一でも異なっていてもよく、また、複数のRb2は互いに合わせられ構成される環構造を表してもよい。rは、0~3の整数である。Rb3は、単結合又は炭素数1~20の2価の有機基である。tは、0~2の整数である。
 上記式(G-3)中、Rc1及びRc2は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、-OSO-R若しくは-SO-Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k6及びk7は、それぞれ独立して0~5の整数である。Rc1、Rc2、R及びRがそれぞれ複数の場合、複数のRc1、Rc2、R及びRはそれぞれ同一でも異なっていてもよい。
 Ra1~Ra3、Rb1、Rb2、Rc1及びRc2で表される非置換の直鎖状のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、n-ブチル基等が挙げられる。
 Ra1~Ra3、Rb1、Rb2、Rc1及びRc2で表される非置換の分岐状のアルキル基としては、例えばi-プロピル基、i-ブチル基、sec-ブチル基、t-ブチル基等が挙げられる。
 Ra1~Ra3、Rc1及びRc2で表される非置換の芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
 Rb1及びRb2で表される非置換の芳香族炭化水素基としては、例えばフェニル基、トリル基、ベンジル基等が挙げられる。
 Rb3で表される2価の有機基としては、例えば上記式(3)のLの2価の有機基として例示したものと同様の基等が挙げられる。
 アルキル基及び芳香族炭化水素基が有する水素原子を置換していてもよい置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
 Ra1~Ra3、Rb1、Rb2、Rc1及びRc2としては、非置換の直鎖状又は分岐状のアルキル基、フッ素化アルキル基、非置換の1価の芳香族炭化水素基、-OSO-R”及び-SO-R”が好ましく、フッ素化アルキル基及び非置換の1価の芳香族炭化水素基がより好ましく、フッ素化アルキル基がさらに好ましい。R”は、非置換の1価の脂環式炭化水素基又は非置換の1価の芳香族炭化水素基である。
 式(G-1)におけるk1、k2及びk3としては、0~2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。式(G-2)におけるk4としては、0~2の整数が好ましく、0及び1がより好ましく、1がさらに好ましい。k5としては、0~2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。rとしては、2及び3が好ましく、2がより好ましい。tとしては、0及び1が好ましく、0がより好ましい。式(G-3)におけるk6及びk7としては、0~2の整数が好ましく、0及び1がより好ましく、0がさらに好ましい。
 Gとしては、これらの中で、カチオン(G-1)が好ましく、トリフェニルスルホニウムカチオンがより好ましい。
 上記式(4)で表される酸発生剤としては例えば下記式(4-1)~(4-14)で表される化合物(以下、「化合物(4-1)~(4-14)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 上記式(4-1)~(4-14)中、Gは、上記式(4)と同義である。
 [C]酸発生剤としては、オニウム塩化合物が好ましく、スルホニウム塩がより好ましく、トリフェニルスルホニウム塩がさらに好ましく、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート及び化合物(4-14)が特に好ましい。
 また、[C]酸発生体としては、下記式(5)で表される構造単位を有する重合体等の酸発生体の構造が重合体の一部として組み込まれた重合体も好ましい。
Figure JPOXMLDOC01-appb-C000028
 上記式(5)中、R19は、水素原子又はメチル基である。Lは、単結合、-COO-、-Ar-、-COO-Ar-又は-Ar-OSO-である。Arは、炭素数6~20の置換又は非置換のアレーンジイル基である。R20は、炭素数1~10のフッ素化アルカンジイル基である。Gは、1価の感放射線性オニウムカチオンである。
 [C]酸発生体が[C]酸発生剤の場合、[C]酸発生剤の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、1質量部がより好ましく、5質量部がさらに好ましく、10質量部が特に好ましく、20質量部がさらに特に好ましい。上記含有量の上限としては、50質量部が好ましく、40質量部以下がより好ましく、35質量部以下がさらに好ましく、30質量部が特に好ましい。[C]酸発生剤の含有量を上記範囲とすることで、当該感放射線性組成物の感度をさらに向上させることができる。[C]酸発生体は、1種又は2種以上を用いることができる。
<[D]酸拡散制御体>
 当該感放射線性組成物は、必要に応じて、[D]酸拡散制御体を含有してもよい。[D]酸拡散制御体は、露光により[B]化合物及び[C]酸発生体から生じる酸のレジスト膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。また、感放射線性組成物の貯蔵安定性がさらに向上すると共に、レジストとしての解像度がより向上する。さらに、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れた感放射線性組成物が得られる。[D]酸拡散制御体の当該感放射線性組成物における含有形態としては、重合体の一部として組み込まれた形態でも、重合体ではない低分子化合物(以下、適宜「[D]酸拡散制御剤」という)の形態でも、これらの両方の形態でもよい。
 [D]酸拡散制御剤としては、例えば下記式(6a)で表される化合物(以下、「含窒素化合物(I)」ともいう)、同一分子内に窒素原子を2個有する非環状の化合物(以下、「含窒素化合物(II)」ともいう)、窒素原子を3個以上有する化合物(以下、「含窒素化合物(III)」ともいう)、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000029
 上記式(6a)中、R21、R22及びR23は、それぞれ独立して、水素原子、置換されていてもよい直鎖状、分岐状若しくは環状のアルキル基、アリール基又はアラルキル基である。
 含窒素化合物(I)としては、例えばn-ヘキシルアミン等のモノアルキルアミン類;ジ-n-ブチルアミン等のジアルキルアミン類;トリエチルアミン、トリn-ペンチルアミン等のトリアルキルアミン類;アニリン等の芳香族アミン類等が挙げられる。
 含窒素化合物(II)としては、例えばエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン等が挙げられる。
 含窒素化合物(III)としては、例えばポリエチレンイミン、ポリアリルアミン等のポリアミン化合物;ジメチルアミノエチルアクリルアミド等の重合体等が挙げられる。
 アミド基含有化合物としては、例えばホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等が挙げられる。
 ウレア化合物としては、例えば尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリブチルチオウレア等が挙げられる。
 含窒素複素環化合物としては、例えばピリジン、2-メチルピリジン等のピリジン類;N-プロピルモルホリン、N-(ウンデカン-1-イルカルボニルオキシエチル)モルホリン等のモルホリン類;イミダゾール、2-フェニルイミダゾール、2,4,5-トリフェニルイミダゾール等のイミダゾール類;ピラジン、ピラゾール等が挙げられる。
 また上記含窒素有機化合物として、酸解離性基を有する化合物を用いることもできる。このような酸解離性基を有する含窒素有機化合物としては、例えばN-t-ブトキシカルボニルピペリジン、N-t-ブトキシカルボニルイミダゾール、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-(t-ブトキシカルボニル)ジ-n-オクチルアミン、N-(t-ブトキシカルボニル)ジエタノールアミン、N-(t-ブトキシカルボニル)ジシクロヘキシルアミン、N-(t-ブトキシカルボニル)ジフェニルアミン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-アミルオキシカルボニル-4-ヒドロキシピペリジン等が挙げられる。
 また、[D]酸拡散制御剤として、露光により感光し弱酸を発生する光崩壊性塩基を用いることもできる。光崩壊性塩基としては、例えば露光により分解して酸拡散制御性を失うオニウム塩化合物等が挙げられる。オニウム塩化合物としては、例えば下記式(6b-1)で表されるスルホニウム塩化合物、下記式(6b-2)で表されるヨードニウム塩化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000030
 上記式(6b-1)及び式(6b-2)中、R24~R28は、それぞれ独立して、水素原子、アルキル基、アルコキシ基、ヒドロキシ基又はハロゲン原子である。E及びQは、それぞれ独立して、OH、Rβ-COO、Rβ-SO 又は下記式(6b-3)で表されるアニオンである。但し、Rβは、アルキル基、アリール基又はアラルキル基である。
Figure JPOXMLDOC01-appb-C000031
 上記式(6b-3)中、R29は、水素原子の一部又は全部がフッ素原子で置換されていてもよい炭素数1~12の直鎖状若しくは分岐状のアルキル基、又は炭素数1~12の直鎖状若しくは分岐状のアルコキシ基である。uは、0~2の整数である。uが2の場合、2つのR29は同一でも異なっていてもよい。
 光崩壊性塩基としては、下記に示す化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000032
 上記光崩壊性塩基としては、これらの中で、スルホニウム塩が好ましく、トリアリールスルホニウム塩がより好ましく、トリフェニルスルホニウムサリチレート及びトリフェニルスルホニウム10-カンファースルホネートがさらに好ましい。
 また、[D]酸拡散制御剤としては、露光により感光し、上記[B]化合物から発生する酸よりも弱い酸を発生するものであればよく、酢酸亜鉛(III)、シクロヘキサン酪酸銀(I)等の金属有機酸塩なども用いることができる。
 当該感放射線性組成物が[D]酸拡散制御体を含有する場合、[D]酸拡散制御体が[D]酸拡散制御剤である場合、[D]酸拡散制御体の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、1.5質量部が特に好ましい。上記含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましく、5質量部が特に好ましい。[D]酸拡散制御剤の含有量を上記範囲とすることで、当該感放射線性組成物の解像性、保存安定性等をより向上させることができる。
<[E]重合体>
 [E]重合体は、[A]重合体よりもフッ素原子及びケイ素原子の合計質量含有率が大きい重合体である。当該感放射線性組成物が[E]重合体を含有すると、レジスト膜を形成した際に、レジスト膜中のフッ素原子含有重合体の撥油性的特徴により、その分布がレジスト膜表面近傍に偏在化する傾向がある。このレジスト膜表面近傍に[E]重合体が偏在することにより、形成されるレジストパターンの欠陥がより抑制される。また、このレジスト膜表面近傍に偏在化した[E]重合体により、液浸露光等の際における酸発生体、酸拡散制御体等が液浸媒体に溶出することを抑制することができる。また、この[E]重合体の撥水性的特徴により、レジスト膜と液浸媒体との前進接触角を所望の範囲に制御でき、バブル欠陥の発生をより抑制することができる。さらに、レジスト膜と液浸媒体との後退接触角が高くなり、水滴が残らずに高速でのスキャン露光が可能となる。このように、当該感放射線性組成物は、[E]重合体をさらに含有することで、液浸露光法に好適なレジスト膜を形成することができる。
 [E]重合体のフッ素原子及びケイ素原子の合計質量含有率の下限としては、1質量%が好ましく、2質量%がより好ましく、4質量%がさらに好ましく、7質量%が特に好ましい。上記合計質量含有率の上限としては、60質量%が好ましく、50質量%がより好ましく、40質量%がさらに好ましく、30質量%が特に好ましい。フッ素原子及びケイ素原子の合計質量含有率を上記範囲とすることで、[E]重合体のレジスト膜における偏在化をより適度に調整することができる。なお、重合体のフッ素原子及びケイ素原子の合計質量含有率は、13C-NMRスペクトル測定により重合体の構造を求め、その構造から算出することができる。
 [E]重合体におけるフッ素原子及びケイ素原子の含有形態は特に限定されず、主鎖、側鎖及び末端のいずれに結合するものでもよいが、[E]重合体がフッ素原子を有する場合、フッ素原子を含む構造単位(以下、「構造単位(F)」ともいう)を有することが好ましい。[E]重合体は、構造単位(F)以外にも、当該感放射線性組成物の現像欠陥抑制性をより向上させる観点から、酸解離性基を含む構造単位を有することが好ましい。酸解離性基を含む構造単位としては、例えば、[A]重合体における構造単位(I)等が挙げられる。
 また、[E]重合体は、アルカリ解離性基を有することが好ましい。[E]重合体がアルカリ解離性基を有すると、アルカリ現像時にレジスト膜表面を疎水性から親水性に効果的に変えることができ、当該感放射線性組成物の欠陥抑制性がより向上する。「アルカリ解離性基」とは、カルボキシ基、ヒドロキシ基等の水素原子を置換する基であって、アルカリ水溶液(例えば、23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液)中で解離する基をいう。
 構造単位(F)としては、下記式(f-1)で表される構造単位(以下、「構造単位(F-1)」ともいう)及び下記式(f-2)で表される構造単位(以下、「構造単位(F-2)」ともいう)が好ましい。構造単位(F)は、構造単位(F-1)及び構造単位(F-2)をそれぞれ1種又は2種以上有していてもよい。
[構造単位(F-1)]
 構造単位(F-1)は、下記式(f-1)で表される構造単位である。[E]重合体は構造単位(F-1)を有することでフッ素原子の質量含有率を調整することができる。
Figure JPOXMLDOC01-appb-C000033
 上記式(f-1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Gは、単結合、酸素原子、硫黄原子、-COO-、-SOONH-、-CONH-又は-OCONH-である。Rは、炭素数1~6の1価のフッ素化鎖状炭化水素基又は炭素数4~20の1価のフッ素化脂環式炭化水素基である。
 Rとしては、構造単位(F-1)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
 Gとしては、-COO-、-SOONH-、-CONH-及び-OCONH-が好ましく、-COO-がより好ましい。
 Rで表される炭素数1~6の1価のフッ素化鎖状炭化水素基としては、例えばトリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロピル基、パーフルオロ-n-プロピル基、パーフルオロ-i-プロピル基、パーフルオロ-n-ブチル基、パーフルオロ-i-ブチル基、パーフルオロ-t-ブチル基、2,2,3,3,4,4,5,5-オクタフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。
 上記Rで表される炭素数4~20の1価のフッ素化脂環式炭化水素基としては、例えばモノフルオロシクロペンチル基、ジフルオロシクロペンチル基、パーフルオロシクロペンチル基、モノフルオロシクロヘキシル基、ジフルオロシクロペンチル基、パーフルオロシクロヘキシルメチル基、フルオロノルボルニル基、フルオロアダマンチル基、フルオロボルニル基、フルオロイソボルニル基、フルオロトリシクロデシル基、フルオロテトラシクロデシル基等が挙げられる。
 Rとしては、フッ素化鎖状炭化水素基が好ましく、2,2,2-トリフルオロエチル基及び1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基がより好ましく、2,2,2-トリフルオロエチル基がさらに好ましい。
 [E]重合体が構造単位(F-1)を有する場合、構造単位(F-1)の含有割合の下限としては、[E]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましい。上記含有割合の上限としては、90モル%が好ましく、70モル%がより好ましく、50モル%がさらに好ましい。構造単位(F-1)の含有割合を上記範囲とすることで、[E]重合体のフッ素原子の質量含有率をさらに適度に調整することができる。
[構造単位(F-2)]
 構造単位(F-2)は、下記式(f-2)で表される構造単位である。[E]重合体は構造単位(F-2)を有することで、フッ素原子の質量含有率を調整すると共に、アルカリ現像液に対して親水性を有するか、アルカリ現像前後において、レジスト膜表面を撥水性から親水性へ変化させることができる。
Figure JPOXMLDOC01-appb-C000034
 上記式(f-2)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、炭素数1~20の(s+1)価の炭化水素基、又はこの炭化水素基のR側の末端に酸素原子、硫黄原子、-NR’-、カルボニル基、-COO-若しくは-CONH-が結合された構造である。R’は、水素原子又は炭素数1~10の1価の炭化水素基である。Rは、単結合又は炭素数1~20の2価の有機基である。Wは、単結合又は炭素数1~20の2価のフッ素化鎖状炭化水素基である。Aは、酸素原子、-NR”-、-COO-*又は-SOO-*である。R”は、水素原子又は炭素数1~10の1価の炭化水素基である。*は、Rに結合する部位を示す。Rは、水素原子又は炭素数1~30の1価の有機基である。sは、1~3の整数である。但し、sが1の場合、Rは単結合であってもよい。sが2又は3の場合、複数のR、W、A及びRはそれぞれ同一でも異なっていてもよい。Wが単結合の場合、Rは、フッ素原子を含む基である。
 Rとしては、構造単位(F-2)を与える単量体の共重合性等の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
 Rで表される炭素数1~20の(s+1)価の炭化水素基としては、例えば上記式(2-2)のR~Rとして例示した炭素数1~20の1価の炭化水素基からs個の水素原子を除いた基等が挙げられる。
 sとしては、1及び2が好ましく、1がより好ましい。
 Rとしては、sが1の場合、単結合及び2価の炭化水素基が好ましく、単結合及びアルカンジイル基がより好ましく、単結合及び炭素数1~4のアルカンジイル基がさらに好ましく、単結合、メタンジイル基及びプロパンジイル基が特に好ましい。
 Rで表される炭素数1~20の2価の有機基としては、例えば上記式(A)のRp1として例示した炭素数1~20の1価の有機基から1個の水素原子を除いた基等が挙げられる。
 Rとしては、単結合及びラクトン構造を有する基が好ましく、単結合及び多環のラクトン構造を有する基がより好ましく、単結合及びノルボルナンラクトン構造を有する基がより好ましい。
 Wで表される炭素数1~20の2価のフッ素化鎖状炭化水素基としては、例えば
 フルオロメタンジイル基、ジフルオロメタンジイル基、フルオロエタンジイル基、ジフルオロエタンジイル基、テトラフルオロエタンジイル基、ヘキサフルオロプロパンジイル基、オクタフルオロブタンジイル基等のフッ素化アルカンジイル基;
 フルオロエテンジイル基、ジフルオロエテンジイル基等のフッ素化アルケンジイル基などが挙げられる。これらの中で、フッ素化アルカンジイル基が好ましく、ジフルオロメタンジイル基がより好ましい。
 Aとしては、酸素原子、-COO-*、-SOO-*が好ましく、-COO-*がより好ましい。
 Rで表される炭素数1~30の1価の有機基としては、例えばアルカリ解離性基、酸解離性基、炭素数1~30の炭化水素基等が挙げられる。Rとしては、これらの中で、アルカリ解離性基が好ましい。Rをアルカリ解離性基とすることで、アルカリ現像時に、レジスト膜表面を疎水性から親水性により効果的に変えることができ、当該感放射線性組成物の現像欠陥抑制性がさらに向上する。
 Rがアルカリ解離性基である場合、Rとしては、下記式(iii)~(v)で表される基(以下、「基(iii)~(v)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000035
 上記式(iii)中、R5a及びR5bは、それぞれ独立して、炭素数1~20の1価の有機基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造を表す。
Figure JPOXMLDOC01-appb-C000036
 上記式(iv)中、R5c及びR5dは、それぞれ独立して、炭素数1~20の1価の有機基であるか、又はこれらの基が互いに合わせられこれらが結合する窒素原子と共に構成される環員数3~20の複素環構造を表す。
Figure JPOXMLDOC01-appb-C000037
 上記式(v)中、R5eは、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。
 上記炭素数1~20の1価の有機基及び上記炭素数1~20の1価の炭化水素基としては、上記式(I)のRとして例示したものと同様の基等が挙げられる。
 炭素数1~20の1価のフッ素化炭化水素基としては、例えば上記炭素数1~20の1価の炭化水素基として例示した基が有する水素原子の一部又は全部がフッ素原子で置換された基等が挙げられる。
 基(iii)としては下記式(iii-1)~(iii-4)で表される基(以下、「基(iii-1)~(iii-4)」ともいう)が、基(iv)としては下記式(iv-1)で表される基(以下、「基(iv-1)」ともいう)が、基(v)としては下記式(v-1)~(v-5)で表される基(以下、「基(v-1)~(v-5)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000038
 これらの中で、基(v-3)及び基(v-5)が好ましい。
 また、Rが水素原子であると、[E]重合体のアルカリ現像液に対する親和性が向上するため好ましい。この場合、Aが酸素原子かつWが1,1,1,3,3,3-ヘキサフルオロ-2,2-プロパンジイル基であると、上記親和性がさらに向上する。
 [E]重合体が構造単位(F-2)を有する場合、構造単位(F-2)の含有割合の下限としては、[E]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましく、40モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、85モル%がより好ましく、80モル%がさらに好ましい。構造単位(F-2)の含有割合を上記範囲とすることで当該感放射線性組成物から形成されたレジスト膜表面をアルカリ現像前後で撥水性から親水性へより適切に変えることができる。
 構造単位(F)の含有割合の下限としては、[E]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましく、25モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、85モル%がより好ましく、80モル%がさらに好ましい。
 [E]重合体における酸解離性基を含む構造単位の下限としては、[E]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましく、50モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、80モル%がより好ましく、75モル%がさらに好ましい。酸解離性基を含む構造単位の含有割合を上記範囲とすることで、当該感放射線性組成物の欠陥抑制性をさらに向上させることができる。
 当該感放射線性組成物が[E]重合体を含有する場合、[E]重合体の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、2質量部が特に好ましい。上記含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましく、5質量部が特に好ましい。当該感放射線性組成物は[E]重合体を1種又は2種以上含有していてもよい。
 [E]重合体は、上述した[A]重合体と同様の方法で合成することができる。
 [E]重合体のGPCによるMwの下限としては、1,000が好ましく、3,000がより好ましく、4,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、10,000が特に好ましい。[E]重合体のMwを上記範囲とすることで、当該感放射線性組成物の塗布性及び欠陥抑制性がより向上する。
 [E]重合体のGPCによるMnに対するMwの比(Mw/Mn)の下限としては、通常1であり、1.2が好ましい。上記比の上限としては、5が好ましく、3がより好ましく、2がさらに好ましい。
<[F]溶媒>
 当該感放射線性組成物は、通常、[F]溶媒を含有する。[F]溶媒は、少なくとも[A]重合体、[B]化合物及び所望により含有される[C]酸発生体及び[D]酸拡散制御体等を溶解又は分散可能な溶媒であれば特に限定されない。
 [F]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
 エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒等が挙げられる。
 エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶媒等が挙げられる。
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン(メチル-n-ペンチルケトン)、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒:
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒等が挙げられる。
 エステル系溶媒としては、例えば
 酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸i-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル等の酢酸エステル系溶媒;
 酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル等の多価アルコール部分エーテルアセテート系溶媒;
 γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
 ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;
 乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル系溶媒;
 ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、iso-ペンタン、n-ヘキサン、iso-ヘキサン、n-ヘプタン、iso-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、iso-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
 ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、iso-プロピルベンゼン、ジエチルベンゼン、iso-ブチルベンゼン、トリエチルベンゼン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒等が挙げられる。
 これらの中で、エステル系溶媒及びケトン系溶媒が好ましく、多価アルコール部分エーテルアセテート系溶媒、乳酸エステル系溶媒及び環状ケトン系溶媒がより好ましく、酢酸プロピレングリコールモノメチルエーテル、乳酸エチル及びシクロヘキサノンがさらに好ましい。当該感放射線性組成物は、[F]溶媒を1種又は2種以上含有していてもよい。
<その他の任意成分>
 当該感放射線性組成物は、上記[A]~[F]成分以外にも、その他の任意成分として、例えば界面活性剤等を含有していてもよい。当該感放射線性組成物は、その他の任意成分をそれぞれ、1種又は2種以上含有していてもよい。
[界面活性剤]
 界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤;市販品としては、KP341(信越化学工業社)、ポリフローNo.75、同No.95(以上、共栄社化学社)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社)、メガファックF171、同F173(以上、DIC社)、フロラードFC430、同FC431(以上、住友スリーエム社)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子工業社)等が挙げられる。上記界面活性剤の含有量の上限としては、[A]重合体100質量部に対して、2質量部が好ましい。
<感放射線性組成物の調製方法>
 当該感放射線性組成物は、例えば[A]重合体、[B]化合物及び必要に応じて任意成分並びに[F]溶媒を所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のメンブランフィルターでろ過することにより調製することができる。当該感放射線性組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、1.5質量%が特に好ましい。上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、10質量%がさらに好ましく、5質量%が特に好ましい。
 当該感放射線性組成物は、アルカリ現像液を用いるポジ型パターン形成用にも、有機溶媒を含有する現像液を用いるネガ型パターン形成用にも用いることができる。
<パターン形成方法>
 当該パターン形成方法は、膜を形成する工程(以下、「膜形成工程」ともいう)、上記膜を露光する工程(以下、「露光工程」ともいう)、及び上記露光された膜を現像する工程(以下、「現像工程」ともいう)を備える。当該パターン形成方法は、上記膜を当該感放射線性組成物により形成する。当該パターン形成方法によれば、上述の当該感放射線性組成物を用いているので、高い感度で、ナノエッジラフネスが小さいパターンを形成することができる。以下、各工程について説明する。
[膜形成工程]
 本工程では、当該感放射線性組成物を用い、膜を形成する。膜の形成は、例えば感放射線性組成物を基板上に塗布することにより行うことができる。塗布方法としては特に限定されないが、例えば回転塗布、流延塗布、ロール塗布等の適宜の塗布手段を採用することができる。基板としては、例えばシリコンウエハ、アルミニウムで被覆されたウエハ等が挙げられる。具体的には、得られる膜が所定の厚さになるように感放射線性組成物を塗布した後、必要に応じてプレベーク(PB)することで塗膜中の溶媒を揮発させる。
 膜の平均厚みの下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましく、30nmが特に好ましい。上記平均厚みの上限としては、1,000nmが好ましく、200nmがより好ましく、100nmがさらに好ましく、70nmが特に好ましい。
 PBの温度の下限としては、通常60℃であり、80℃が好ましい。PBの温度の上限としては、通常140℃であり、120℃が好ましい。PBの時間の下限としては、通常5秒であり、10秒が好ましい。PBの時間の上限としては、通常600秒であり、300秒が好ましい。
[露光工程]
 本工程では、上記膜形成工程で形成された膜を露光する。この露光は、場合によっては、水等の液浸媒体を介し、所定のパターンを有するマスクを介して放射線を照射することにより行う。上記放射線としては、例えば可視光線、紫外線、遠紫外線、真空紫外線(極端紫外線(EUV);波長13.5nm)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中で、露光により[B]化合物から二次電子がより多く放出される放射線が好ましく、EUV及び電子線がより好ましい。
 また、露光後にポストエクスポージャーベーク(PEB)を行ってもよい。PEBの温度の下限としては、通常50℃であり、80℃が好ましい。PEBの温度の上限としては、通常180℃であり、130℃が好ましい。PEBの時間の下限としては、通常5秒であり、10秒が好ましい。PEBの時間の上限としては、通常600秒であり、300秒が好ましい。
 本発明においては、感放射線性組成物の潜在能力を最大限に引き出すため、例えば使用される基板上に有機系又は無機系の反射防止膜を形成しておくこともできる。また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば塗膜上に保護膜を設けることもできる。また、液浸露光を行う場合は、液浸媒体と膜との直接的な接触を避けるため、例えば膜上に液浸用保護膜を設けてもよい。
[現像工程]
 本工程では、上記露光工程で露光された膜を現像する。この現像に用いる現像液としては、アルカリ水溶液、有機溶媒含有液等が挙げられる。
 アルカリ水溶液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液等が挙げられる。
 アルカリ水溶液中のアルカリ性化合物の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記含有量の上限としては、20質量%が好ましく、10質量%がより好ましく、5質量%がさらに好ましい。
 アルカリ水溶液としては、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 有機溶媒含有液中の有機溶媒としては、例えば当該感放射線性組成物の[D]溶媒として例示した有機溶媒と同様のもの等が挙げられる。これらの中で、エステル系溶媒が好ましく、酢酸ブチルがより好ましい。
 有機溶媒現像液における有機溶媒の含有量の下限としては80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。
 これらの現像液は、単独で又は2種以上を組み合わせて用いてもよい。なお、現像後は、水等で洗浄し、乾燥することが一般的である。
 現像液としてアルカリ水溶液を用いた場合、ポジ型のパターンを得ることができる。また、現像液として有機溶媒を用いた場合、ネガ型のパターンを得ることができる。
<感放射線性酸発生剤>
 当該感放射線性酸発生剤は、金属カチオンと、スルホン酸、硝酸、有機アジン酸、ジスルホニルイミド酸又はこれらの組み合わせである酸の共役塩基であるアニオンとを含む化合物からなり、EUV又は電子線の作用により酸を発生し、上記酸のpKaが0以下である。当該感放射線性酸発生剤は、上述した当該感放射線性組成物の酸発生剤成分として好適に用いることができ、これを含有する感放射線性組成物の感度及びナノエッジラフネス性能を向上させることができる。
 上記化合物は上記式(1)で表されるものが好ましい。
 当該感放射線性酸発生剤については、上記感放射線性組成物の[B]化合物の項で説明している。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本実施例における物性値の測定方法を以下に示す。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 重合体のMw及びMnは、GPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本、以上東ソー社)を用い、流量1.0mL/分、溶出溶媒テトラヒドロフラン、試料濃度1.0質量%、試料注入量100μL、カラム温度40℃の分析条件で、検出器として示差屈折計を使用し、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
13C-NMR分析]
 重合体の構造単位の含有割合を求めるための13C-NMR分析は、核磁気共鳴装置(日本電子社の「JNM-ECX400」)を使用し、測定溶媒としてCDClを用い、テトラメチルシラン(TMS)を内部標準として行った。
<重合体の合成>
[[A]重合体の合成]
 [A]重合体の合成に用いた単量体(M-1)~(M-6)、及び(M-8)を下記に示す。化合物(M-3)はp-ヒドロキシスチレンに由来する構造単位を与える。化合物(M-5)により、[A]重合体中に、酸発生体の構造が組み込まれる。また、化合物(M-7)に由来する構造単位の重合体への導入は、化合物(M-3)に由来する構造単位を合成後に脱保護することにより、p-ヒドロキシスチレンに由来する構造単位に変換した後、メチル2-メチル-1-プロペニルエーテルを用いて常法によりアセタール化することにより行った。
Figure JPOXMLDOC01-appb-C000039
[合成例1]
 上記化合物(M-2)55g(50モル%)、化合物(M-1)45g(50モル%)及びAIBN3gを、メチルエチルケトン300gに溶解した後、窒素雰囲気下、反応温度を78℃に保持して、6時間重合させた。重合後、反応溶液を2,000gのメタノール中に滴下して、重合体を凝固させた。次いで、この重合体を300gのメタノールで2回洗浄し、得られた白色粉末をろ過して、減圧下50℃で一晩乾燥し、重合体(A-1)を得た。重合体(A-1)は、Mwが7,000、Mw/Mnが2.10であった。また、13C-NMR分析の結果、(M-1)及び(M-2)に由来する構造単位の含有割合は、それぞれ52モル%及び48モル%であった。
[合成例2]
 上記化合物(M-3)55g(58モル%)、化合物(M-1)45g(42モル%)、AIBN3g及びt-ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル150gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して、16時間重合させた。重合後、反応溶液を1,000gのn-ヘキサン中に滴下して、重合体を凝固精製した。次いで、この重合体に、再度プロピレングリコールモノメチルエーテル150gを加えた後、さらに、メタノール150g、トリエチルアミン37g及び水7gを加えて、沸点にて還流させながら、8時間加水分解反応を行い、(M-3)に由来する構造単位の脱アセチル化を行った。反応後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン150gに溶解した後、2,000gの水中に滴下して凝固させ、生成した白色粉末をろ過して、減圧下50℃で一晩乾燥し、重合体(A-2)を得た。重合体(A-2)は、Mwが6,000、Mw/Mnが1.90であった。また、13C-NMR分析の結果、p-ヒドロキシスチレンに由来する構造単位及び化合物(M-1)に由来する構造単位の含有割合は、それぞれ50モル%及び50モル%であった。
[合成例3~5]
 下記表1に示す種類及び量の単量体を用いた以外は合成例2と同様に操作して重合体(A-3)~(A-5)を合成した。表1に、得られた各重合体のMw、Mw/Mn及び13C-NMR分析により求めた各構造単位含有割合(モル%)について合わせて示す。重合体(A-4)における(M-3)及び(M-7)に由来する各構造単位の含有割合は、(M-3)から形成されるp-ヒドロキシスチレンに由来する構造単位のうちの一部をアセタール化して(M-7)に由来する構造単位として得られた重合体(A-4)について、13C-NMR測定により求めた値である。表1のM-3は、重合体中ではp-ヒドロキシスチレンに由来する構造単位となる。
Figure JPOXMLDOC01-appb-T000040
[合成例6]
 グルタルアルデヒド(50質量%水溶液)10g、3-メトキシフェノール24.8g及びトリフルオロ酢酸37.5gをクロロホルム50mLに溶解し、48時間還流させた。この溶液をメタノールに加え、析出した沈殿を真空乾燥させることで、メトキシ基で保護された下記式(M-9)で表される化合物を11.3g得た。次に、この化合物8.0gと、炭酸カリウム8.2gと、テトラブチルアンモニウムブロミド0.064gとをN-メチルピロリドン(NMP)95mLに溶解し、60℃で3時間撹拌させた。次に、2-ブロモアセチロキシ-2-メチルアダマンタン4.3gとNMP5mLとの混合溶液を加え、さらに60℃で48時間撹拌させた。次いで、この反応液をクロロホルムに注ぎ、0.1Mのシュウ酸水溶液で洗浄した後、硫酸マグネシウムで乾燥後セライトろ過し、ろ液を減圧濃縮した。濃縮後の溶液をメタノールに加えることで固体を析出させ、これを減圧乾燥させることで、下記式(M-9)における水酸基の18%が2-アセチロキシ-2-メチルアダマンタン基で保護された化合物(A-6)を5.9g得た。
Figure JPOXMLDOC01-appb-C000041
[[E]重合体の合成]
 [E]重合体の合成に用いた単量体を下記に示す。
Figure JPOXMLDOC01-appb-C000042
[合成例7]
 温度計及び還流管を繋いだ3つ口フラスコに、上記化合物(M-10)12.4g(41mmol)及び化合物(M-11)3.0g(13.5mmol)を23gのテトラヒドロフラン(THF)を加えて溶解させた。得られた溶液に、重合開始剤としてのアゾビスイソ酪酸ジメチル11mmolを添加し溶解させた。これを窒素雰囲気下、3時間かけて、67℃に加熱したテトラヒドロフラン12.87gに滴下し、重合反応を行った。滴下終了後、反応液を4時間加熱撹拌し、その後、反応液を室温まで冷却した。得られた重合反応液を大量のn-ヘプタンに滴下し、重合体を析出させる操作を行い、沈殿した重合体をろ別、洗浄、乾燥して、重合体(E-1)3gを得た。重合体(E-1)は、Mwが21,500、Mw/Mnが1.25であった。また、13C-NMR分析の結果、(M-10)及び(M-11)に由来する構造単位の含有割合は、それぞれ78モル%及び22モル%であった。
[合成例8及び9]
 下記表2に示す種類及び量の単量体並びに重合溶媒を用い、表2に示す重合温度及び重合時間で、合成例7と同様にして重合反応を行い、その後、表2に示す重合体析出溶媒を用いて重合体を析出させ、重合体(E-2)及び(E-3)を得た。なお(E-2)の合成においては、重合反応液を減圧濃縮してから重合体析出溶媒と混合した。また、重合体(E-3)の合成においては、重合反応液を減圧濃縮した後、重合体のトルエン/メチルエチルケトン(質量比9/1)の40質量%溶液となるように調整してから、重合体析出溶媒と混合した。表2に、得られた各重合体のMw、Mw/Mn及び各構造単位含有割合(モル%)について合わせて示す。
Figure JPOXMLDOC01-appb-T000043
<感放射線性組成物の調製>
 感放射線性組成物の調製に用いた[A]重合体及び[E]重合体以外の各成分を以下に示す。
[[B]化合物]
 下記各[B]化合物について、放射線の照射により[B]化合物から発生する酸(I)のpKa及び発生する酸(I)のファンデルワールス体積の値について、下記表3に示す。
 B-1:銅(II)トリフルオロメタンスルホネート
 B-2:下記式(B-2)で表される化合物
Figure JPOXMLDOC01-appb-C000044
 B-3:亜鉛(II)トリフルオロメタンスルホネート
 B-4:下記式(B-4)で表される化合物
Figure JPOXMLDOC01-appb-C000045
 B-5:バリウム(II)ノナフルオロブタンスルホネート
 B-6:下記式(B-6)で表される化合物
Figure JPOXMLDOC01-appb-C000046
 B-7:硝酸ランタン(III)
 B-8:下記式(B-8)で表される化合物
Figure JPOXMLDOC01-appb-C000047
 B-9:セリウム(III)トリフルオロメタンスルホネート
 B-10:セリウム(III)2-ドデシルベンゼンスルホネート
 B-11:イットリウム(III)トリフルオロメタンスルホネート B-12:下記式(B-12)で表される化合物 
Figure JPOXMLDOC01-appb-C000048
 B-13:インジウム(III)トリフルオロメタンスルホネート
 B-14:下記式(B-14)で表される化合物
Figure JPOXMLDOC01-appb-C000049
B-15:テトラブチルアンモニウムトリフルオロメタンスルホネート
Figure JPOXMLDOC01-appb-T000050
[[C]酸発生剤]
 C-1:トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート(下記式(C-1)で表される化合物)
 C-2:トリフェニルスルホニウム2-(4-オキソ-アダマンタン-1-イルカルボニルオキシ)-1,1,3,3,3-ペンタフルオロプロパン-1-スルホネート(下記式(C-2)で表される化合物)
Figure JPOXMLDOC01-appb-C000051
[[D]酸拡散制御剤]
 D-1:トリフェニルスルホニウムサリチレート(下記式(D-1)で表される化合物)
 D-2:2,4,5-トリフェニルイミダゾール(下記式(D-2)で表される化合物)
 D-3:酢酸亜鉛(II)(酢酸のpKa:4.76)
 D-4:シクロヘキサン酪酸銀(I)(シクロヘキサン酪酸のpKa:4.95)
Figure JPOXMLDOC01-appb-C000052
[[F]溶媒]
 F-1:酢酸プロピレングリコールモノメチルエーテル
 F-2:乳酸エチル
 F-3:シクロヘキサノン
[実施例1]
 [A]重合体としての(A-1)100質量部、[B]化合物としての(B-1)3質量部、[C]酸発生剤としての(C-1)27質量部、[D]酸拡散制御剤としての(D-1)2.6質量部並びに[F]溶媒としての(F-1)4,300質量部及び(E-3)1,900質量部を混合し、得られた混合液を孔径0.20μmのメンブランフィルターでろ過して、感放射線性組成物(R-2)を調製した。
[参照例1~6、実施例2~21及び比較例1~3]
 下記表4に示す種類及び含有量の各成分を用いた以外は実施例1と同様に操作して感放射線性組成物(R-1)及び(R-3)~(R-30)を調製した。表4中の成分の欄における「-」は、該当する成分を用いなかったことを示す。
 なお、比較例2における化合物(D-3)は、金属カチオンを含有し、かつアニオン(I)から発生する酸のpKaが0を超える化合物である(酢酸のpKa:4.76)。
<パターンの形成>
[実施例1]
 東京エレクトロン社の「クリーントラックACT-8」内で、シリコンウエハ上に上記実施例1で調製した感放射線性組成物(R-2)をスピンコートした後、110℃、60秒の条件でPBを行い、平均厚み50nmのレジスト膜を形成した。続いて、簡易型の電子線描画装置(日立製作所社の「HL800D」、出力;50KeV、電流密度;5.0アンペア/cm)を用いて電子線を照射し、パターニングを行った。電子線の照射後、上記クリーントラックACT-8内で、100℃、60秒の条件でPEBを行った。その後、上記クリーントラックACT-8内で、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用い、23℃で1分間、パドル法により現像した後、純水で水洗し、乾燥して、ポジ型レジストパターンを形成した。
[参照例1~6、実施例2~21及び比較例1~3]
 下記表4に示す感放射線性組成物を用いた以外は、実施例1と同様に操作し、それぞれポジ型レジストパターンを形成した。
<評価>
 上記形成したポジ型レジストパターンについて、下記方法に従い、感度及びナノエッジラフネス性能の評価を行った。評価結果を表4に合わせて示す。なお、EB評価欄における「-」は評価の基準であることを示す。
[感度]
 電子線描画装置(EB)によるパターニングで、線幅150nmのライン部と、隣り合うライン部によって形成される間隔が150nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する露光量を最適露光量とし、この最適露光量を感度(μC/cm)とした。対応する参照例と比較して感度の向上が30%以上の場合は「A(良好)」と、感度の向上が30%未満の場合は「B(不良)」と評価した。なお、対応する参照例とは、実施例1及び2については参照例1、実施例3~7、18、19及び比較例1~3については参照例2、実施例8及び9については参照例3、実施例10~12については参照例4、実施例13~15、20、21については参照例5、実施例16及び17については参照例6である。
[ナノエッジラフネス性能]
 電子線描画装置によるパターニングにおいて、上記ライン・アンド・スペースパターン(1L1S)のラインパターンを、高分解能FEB測長装置(日立製作所社の「S-9220」)を用いて観察した。基板内の任意の20点を観察し、各観察点での形状について、図1及び図2に示すように、シリコンウエハ1上に形成したレジスト膜のライン部2の横側面2aに沿って生じた凹凸の最大線幅と、設計線幅150nmとの差「ΔCD」を測定し、このΔCDの平均値をナノエッジラフネス性能(nm)とした。参照例のナノエッジラフネスと比較して数値が減少若しくは同等であるか、又は数値の増大が15%未満の場合は「AA(非常に良好)」、15%以上30%未満の場合は「A(良好)」、30%以上の場合は「B(不良)」と評価した。
Figure JPOXMLDOC01-appb-T000053
 表4の結果から分かるように、実施例の感放射線性組成物は、感度及びナノエッジラフネス性能に優れている。なお、EUV露光においては電子線露光の場合と同様の傾向があることが知られており、実施例の感放射線性組成物によれば、EUV露光の場合も感度及びナノエッジラフネス性能に優れると推測される。
 本発明の感放射線性組成物及びパターン形成方法によれば、高い感度で、ナノエッジラフネスが小さいパターンを形成することができる。本発明の感放射線性酸発生剤は、当該感放射線性組成物の酸発生剤成分として好適に用いることができる。従って、これらは今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。
 1 シリコンウエハ
 2 パターンのライン部
 2a パターンのライン部の横側面

Claims (13)

  1.  酸解離性基を含む第1構造単位を有する第1重合体、及び
     金属カチオンと、酸の共役塩基である第1アニオンとを含む第1化合物
    を含有し、
     上記酸のpKaが0以下である感放射線性組成物。
  2.  放射線の照射により、上記第1化合物から発生する酸が、スルホン酸、硝酸、有機アジン酸、ジスルホニルイミド酸又はこれらの組み合わせである請求項1に記載の感放射線性組成物。
  3.  上記第1化合物が下記式(1)で表される請求項1又は請求項2に記載の感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Mは、上記金属カチオンである。Aは、上記第1アニオンである。xは、1~6の整数である。xが2以上の場合、複数のAは同一でも異なっていてもよい。Rは、σ配位子である。yは、0~5の整数である。yが2以上の場合、複数のRは同一でも異なっていてもよい。但し、x+yは6以下である。)
  4.  上記酸のファンデルワールス体積が、2.5×10-28以上である請求項1、請求項2又は請求項3に記載の感放射線性組成物。
  5.  上記金属カチオンが、銅、亜鉛、バリウム、ランタン、セリウム、イットリウム、インジウム又は銀のカチオンである請求項1から請求項4のいずれか1項に記載の感放射線性組成物。
  6.  上記第1構造単位が、下記式(2-1)で表される構造単位、下記式(2-2)で表される構造単位又はこれらの組み合わせである請求項1から請求項5のいずれか1項に記載の感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2-1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造を表す。
     式(2-2)中、Rは、水素原子又はメチル基である。Lは、単結合、-COO-又は-CONH-である。Rは、水素原子又は炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のオキシ炭化水素基である。)
  7.  上記第1重合体が下記式(3)で表される第2構造単位をさらに有する請求項1から請求項6のいずれか1項に記載の感放射線性組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R15は、水素原子又はメチル基である。Lは、単結合又は炭素数1~20の2価の有機基である。R16は、炭素数1~20の1価の有機基である。pは、0~2の整数である。qは、0~9の整数である。qが2以上の場合、複数のR16は同一でも異なっていてもよい。rは、1~3の整数である。)
  8.  上記第1化合物の上記第1重合体100質量部に対する含有量が、0.1質量部以上200質量部以下である請求項1から請求項7のいずれか1項に記載の感放射線性組成物。
  9.  上記第1化合物以外の感放射線性酸発生体をさらに含有する請求項1から請求項8のいずれか1項に記載の感放射線性組成物。
  10.  上記第1重合体よりもフッ素原子及びケイ素原子の合計質量含有率が大きい第2重合体をさらに含有する請求項1から請求項9のいずれか1項に記載の感放射線性組成物。
  11.  膜を形成する工程、
     上記膜を露光する工程、及び
     上記露光された膜を現像する工程
    を備え、
     上記膜を請求項1から請求項10のいずれか1項に記載の感放射線性組成物により形成するパターン形成方法。
  12.  金属カチオンと、スルホン酸、硝酸、有機アジン酸、ジスルホニルイミド酸又はこれらの組み合わせである酸の共役塩基であるアニオンとを含む化合物からなり、EUV又は電子線の作用により酸を発生し、上記酸のpKaが0以下である感放射線性酸発生剤。
  13.  上記化合物が下記式(1)で表される請求項12に記載の感放射線性酸発生剤。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Mは、上記金属カチオンである。Aは、上記アニオンである。xは、1~6の整数である。xが2以上の場合、複数のAは同一でも異なっていてもよい。Rは、σ配位子である。yは、0~5の整数である。yが2以上の場合、複数のRは同一でも異なっていてもよい。但し、x+yは6以下である。)
PCT/JP2016/083609 2015-12-01 2016-11-11 感放射線性組成物、パターン形成方法及び感放射線性酸発生剤 WO2017094479A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187015095A KR102648061B1 (ko) 2015-12-01 2016-11-11 감방사선성 조성물, 패턴 형성 방법 및 감방사선성 산 발생제
JP2017553743A JP6886113B2 (ja) 2015-12-01 2016-11-11 感放射線性組成物、パターン形成方法及び感放射線性酸発生剤
US15/988,436 US11204552B2 (en) 2015-12-01 2018-05-24 Radiation-sensitive composition, pattern-forming method and radiation-sensitive acid generating agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015235237 2015-12-01
JP2015-235237 2015-12-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/988,436 Continuation US11204552B2 (en) 2015-12-01 2018-05-24 Radiation-sensitive composition, pattern-forming method and radiation-sensitive acid generating agent

Publications (1)

Publication Number Publication Date
WO2017094479A1 true WO2017094479A1 (ja) 2017-06-08

Family

ID=58797113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083609 WO2017094479A1 (ja) 2015-12-01 2016-11-11 感放射線性組成物、パターン形成方法及び感放射線性酸発生剤

Country Status (5)

Country Link
US (1) US11204552B2 (ja)
JP (1) JP6886113B2 (ja)
KR (1) KR102648061B1 (ja)
TW (1) TWI697735B (ja)
WO (1) WO2017094479A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144542A (ja) * 2018-02-22 2019-08-29 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP2019200418A (ja) * 2018-05-09 2019-11-21 東京応化工業株式会社 化学増幅型ポジ型感光性樹脂組成物、感光性ドライフィルム、感光性ドライフィルムの製造方法、パターン化されたレジスト膜の製造方法、鋳型付き基板の製造方法、及びめっき造形物の製造方法
WO2021029422A1 (ja) * 2019-08-15 2021-02-18 Jsr株式会社 感放射線性組成物及びレジストパターン形成方法
JPWO2021039429A1 (ja) * 2019-08-29 2021-03-04
JPWO2021095202A1 (ja) * 2019-11-14 2021-05-20

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115079517A (zh) * 2017-11-30 2022-09-20 罗门哈斯电子材料有限责任公司 盐和包含其的光致抗蚀剂
TWI733069B (zh) 2017-12-31 2021-07-11 美商羅門哈斯電子材料有限公司 單體、聚合物及包含其的微影組合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226658A (ja) * 1996-10-03 1998-08-25 Alain Vallee フッ素化されたイオン性スルホニルイミド及びスルホニルメチリド、それらの製造方法並びに光開始剤としての使用
JP2009180949A (ja) * 2008-01-31 2009-08-13 Jsr Corp 着色層形成用感放射線性組成物、カラーフィルタおよびカラー液晶表示素子
JP2015172727A (ja) * 2014-02-21 2015-10-01 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、及び、パターン形成方法、並びに、これらを用いた電子デバイスの製造方法、及び、電子デバイス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146610A (ja) 1994-11-17 1996-06-07 Nippon Zeon Co Ltd レジスト組成物及びそれを用いたパターン形成方法
KR100551653B1 (ko) 1997-08-18 2006-05-25 제이에스알 가부시끼가이샤 감방사선성수지조성물
JP3991462B2 (ja) 1997-08-18 2007-10-17 Jsr株式会社 感放射線性樹脂組成物
US6136501A (en) 1998-08-28 2000-10-24 Shipley Company, L.L.C. Polymers and photoresist compositions comprising same
TWI432408B (zh) * 2007-01-09 2014-04-01 Jsr Corp 化合物及敏輻射線性組成物
US7875417B2 (en) * 2007-07-04 2011-01-25 Shin-Etsu Chemical Co., Ltd. Silicone-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method
JP2009134088A (ja) 2007-11-30 2009-06-18 Jsr Corp 感放射線性樹脂組成物
WO2010029907A1 (ja) * 2008-09-12 2010-03-18 住友化学株式会社 レジスト処理方法及びポジ型レジスト組成物の使用
JP5293168B2 (ja) * 2008-12-25 2013-09-18 富士通株式会社 レジスト組成物及びそれを用いた半導体装置の製造方法
JP5368270B2 (ja) * 2009-02-19 2013-12-18 信越化学工業株式会社 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法
EP2472321A1 (en) * 2010-12-31 2012-07-04 Rohm and Haas Electronic Materials LLC Method of preparing photoacid-generating monomer
EP2472322A2 (en) * 2010-12-31 2012-07-04 Rohm and Haas Electronic Materials LLC Photoacid generating monomer and precursor thereof
JP5732306B2 (ja) * 2011-04-20 2015-06-10 東京応化工業株式会社 化合物、高分子化合物、酸発生剤、レジスト組成物、レジストパターン形成方法
US20140120469A1 (en) * 2012-10-31 2014-05-01 Rohm And Haas Electronic Materials Llc Thermal acid generators for use in photoresist

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226658A (ja) * 1996-10-03 1998-08-25 Alain Vallee フッ素化されたイオン性スルホニルイミド及びスルホニルメチリド、それらの製造方法並びに光開始剤としての使用
JP2009180949A (ja) * 2008-01-31 2009-08-13 Jsr Corp 着色層形成用感放射線性組成物、カラーフィルタおよびカラー液晶表示素子
JP2015172727A (ja) * 2014-02-21 2015-10-01 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、及び、パターン形成方法、並びに、これらを用いた電子デバイスの製造方法、及び、電子デバイス

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144542A (ja) * 2018-02-22 2019-08-29 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP7024744B2 (ja) 2018-02-22 2022-02-24 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP2019200418A (ja) * 2018-05-09 2019-11-21 東京応化工業株式会社 化学増幅型ポジ型感光性樹脂組成物、感光性ドライフィルム、感光性ドライフィルムの製造方法、パターン化されたレジスト膜の製造方法、鋳型付き基板の製造方法、及びめっき造形物の製造方法
JP7313186B2 (ja) 2018-05-09 2023-07-24 東京応化工業株式会社 化学増幅型ポジ型感光性樹脂組成物、感光性ドライフィルム、感光性ドライフィルムの製造方法、パターン化されたレジスト膜の製造方法、鋳型付き基板の製造方法、及びめっき造形物の製造方法
WO2021029422A1 (ja) * 2019-08-15 2021-02-18 Jsr株式会社 感放射線性組成物及びレジストパターン形成方法
JPWO2021039429A1 (ja) * 2019-08-29 2021-03-04
JPWO2021095202A1 (ja) * 2019-11-14 2021-05-20
WO2021095202A1 (ja) * 2019-11-14 2021-05-20 共栄社化学株式会社 熱硬化性樹脂組成物、硬化膜、複層塗膜の形成方法、エステル化合物、及び、重合体
JP7264538B2 (ja) 2019-11-14 2023-04-25 共栄社化学株式会社 熱硬化性樹脂組成物、硬化膜、複層塗膜の形成方法、エステル化合物、及び、重合体

Also Published As

Publication number Publication date
US20180267406A1 (en) 2018-09-20
TW201728997A (zh) 2017-08-16
JPWO2017094479A1 (ja) 2018-11-01
US20200041902A9 (en) 2020-02-06
TWI697735B (zh) 2020-07-01
KR20180084824A (ko) 2018-07-25
KR102648061B1 (ko) 2024-03-18
JP6886113B2 (ja) 2021-06-16
US11204552B2 (en) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2017094479A1 (ja) 感放射線性組成物、パターン形成方法及び感放射線性酸発生剤
JP6075369B2 (ja) フォトレジスト組成物、レジストパターン形成方法及び酸拡散制御剤
JP7041359B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6666572B2 (ja) 感放射線性組成物及びパターン形成方法
KR102070058B1 (ko) 포토레지스트 조성물, 화합물 및 그의 제조 방법
JP6323460B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
KR102166206B1 (ko) 감방사선성 수지 조성물, 레지스트 패턴 형성 방법, 산 확산 제어제, 화합물 및 화합물의 제조 방법
JP6115377B2 (ja) 樹脂組成物及びレジストパターン形成方法
JP6421449B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸発生体及び化合物
WO2014148241A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物の製造方法
JP6152804B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP6540293B2 (ja) レジストパターン微細化組成物及び微細パターン形成方法
JP6241226B2 (ja) フォトレジスト組成物、レジストパターン形成方法、重合体及び化合物
JP6319291B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物
JP6555011B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2017181696A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6036545B2 (ja) フォトレジスト組成物、レジストパターン形成方法、重合体及び化合物
WO2019194018A1 (ja) レジストパターン形成方法及び化学増幅型レジスト材料
JP6821988B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2017016068A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6304347B2 (ja) 樹脂組成物及びレジストパターン形成方法
WO2016159187A1 (ja) 感放射線性組成物及びパターン形成方法
WO2017057203A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2016224123A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553743

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187015095

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870418

Country of ref document: EP

Kind code of ref document: A1