WO2019194018A1 - レジストパターン形成方法及び化学増幅型レジスト材料 - Google Patents
レジストパターン形成方法及び化学増幅型レジスト材料 Download PDFInfo
- Publication number
- WO2019194018A1 WO2019194018A1 PCT/JP2019/012617 JP2019012617W WO2019194018A1 WO 2019194018 A1 WO2019194018 A1 WO 2019194018A1 JP 2019012617 W JP2019012617 W JP 2019012617W WO 2019194018 A1 WO2019194018 A1 WO 2019194018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- monovalent
- atom
- resist material
- carbon atoms
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/039—Macromolecular compounds which are photodegradable, e.g. positive electron resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/38—Treatment before imagewise removal, e.g. prebaking
Definitions
- the present invention relates to a resist pattern forming method and a chemically amplified resist material.
- EUV extreme ultraviolet
- 13.5 nm extreme ultraviolet
- the light source device having a high output (100 W) necessary for mass production.
- the light source device remains at a 10 W level, and it takes time to perform exposure for forming a pattern latent image.
- a fine pattern can be formed with high dimensional accuracy because the beam diameter is small, but on the other hand, the more complex the pattern becomes, the longer the drawing time becomes. Take it.
- the exposure technique using EUV or electron beam can form a fine pattern, but has a problem of low throughput.
- the sensitivity of resist materials is being increased so as to reduce the exposure time as much as possible.
- sensitivity and resolution are improved by a composition containing a specific resin and compound.
- the present invention has been made based on the circumstances as described above, and an object thereof is to use a resist pattern forming method capable of forming a resist pattern having high sensitivity and excellent nano edge roughness, and the resist pattern forming method. It is an object of the present invention to provide a chemically amplified resist material.
- the invention made in order to solve the above problems includes a step of applying a chemically amplified resist material directly or indirectly to a substrate (hereinafter also referred to as “coating step”), and a resist formed by the coating step.
- a step of irradiating a second exposure light (hereinafter also referred to as “exposure light (II)”) including the step of heating the resist material film after the entire surface irradiation step. (Hereinafter also referred to as “heating step”) and the above-mentioned register after the heating step.
- a base component (hereinafter, referred to as “developing step”) in which the chemically amplified resist material is (1) soluble or insoluble in the developer by the action of an acid.
- developer step in which the chemically amplified resist material is (1) soluble or insoluble in the developer by the action of an acid.
- a component that generates a photosensitizer and an acid by the action of the exposure light (I) (hereinafter also referred to as “[B] component”).
- the component [B] contains a radiation-sensitive onium cation and an anion, and the radiation-sensitive onium cation has two or more aromatic carbon rings having 6 to 20 ring members bonded to the onium atom.
- At least one of the aromatic carbocycles has a substituent, and at least one of the aromatic carbocycles has a hydrogen atom bonded to a carbon atom para to the onium atom
- the anion is represented by the following formula (3-1) or (3- ) Is a pattern forming method which is represented by.
- R p1 is a monovalent group containing a ring structure having 5 or more ring members.
- R p2 is a divalent linking group.
- R p3 and R p4 are each independently selected.
- R q1 and R q2 are each independently a monovalent organic group having 1 to 20 carbon atoms.
- a chemically amplified resist material comprising a [A] component and a [B] component, wherein the [B] component comprises a radiation-sensitive onium cation and an anion, and the radiation-sensitive onium cation
- the [B] component comprises a radiation-sensitive onium cation and an anion
- the radiation-sensitive onium cation Have two or more aromatic carbocycles having 6 to 20 ring members bonded to the onium atom, at least one of the aromatic carbocycles has a substituent, and the aromatic carbocycles At least one of them has a hydrogen atom bonded to a carbon atom para to the onium atom, and the anion is represented by the formula (3-1) or (3-2).
- the resist pattern forming method and the chemically amplified resist material of the present invention it is possible to form a resist pattern with high sensitivity and excellent nano edge roughness. Therefore, these can be suitably used for manufacturing semiconductor devices that are expected to be further miniaturized in the future.
- the resist pattern forming method includes a coating process, a partial irradiation process, a full-surface irradiation process, a heating process, and a development process.
- the chemically amplified resist material hereinafter also referred to as “resist material (I)”
- resist material (I) used in the resist pattern forming method
- the resist material (I) is applied directly or indirectly to the substrate.
- a resist material film 12 is formed directly or indirectly on the substrate 11 in the coating step (S101). Specifically, a substrate 11 (for example, a wafer) is prepared, a resist material (I) is applied onto the substrate 11 and prebaked to form the resist material film 12.
- a substrate 11 for example, a wafer
- a resist material (I) is applied onto the substrate 11 and prebaked to form the resist material film 12.
- Examples of the resist material (I) coating method include spin coating, roll coating, and dipping.
- prebaking temperature 50 ° C is preferred and 80 ° C is more preferred.
- As an upper limit of the temperature of prebaking 150 degreeC is preferable and 120 degreeC is more preferable.
- the lower limit of the pre-baking time is preferably 10 seconds, and more preferably 30 seconds.
- the upper limit of the pre-baking time is preferably 600 seconds, and more preferably 300 seconds.
- the lower limit of the average thickness of the resist material film is preferably 10 nm, and more preferably 20 nm.
- the upper limit of the average thickness is preferably 300 nm, and more preferably 150 nm.
- the developer when the developer is an alkaline developer, if the amount of energy irradiated to the resist material film exceeds a threshold value Ea (hereinafter also referred to as “latent image formation energy”), the resist material film 12 A latent image is formed, and the portion where the latent image is formed starts to dissolve in the developer.
- a threshold value Ea hereinafter also referred to as “latent image formation energy”
- Et a threshold Et
- the resist pattern forming method may further include a step of forming an organic underlayer film directly or indirectly on the substrate (hereinafter also referred to as “organic underlayer film forming step”) before the coating step.
- organic underlayer film forming step examples include an organic film formed using a resist underlayer film composition and a carbon film formed by a conventionally known CVD (Chemical Vapor Deposition) method.
- a step of forming a silicon-containing film directly or indirectly on the organic underlayer film (hereinafter also referred to as “silicon-containing film forming step”) between the organic underlayer film forming step and the coating step is further performed.
- the silicon-containing film is formed using, for example, a polysiloxane composition containing polysiloxane and a solvent.
- the polysiloxane is not particularly limited as long as it is a polymer having a siloxane bond, but a hydrolysis condensate of a compound containing a silane compound having a hydrolyzable group is preferable.
- a step of forming a protective film directly or indirectly on the resist material film may be provided.
- a protective film By forming a protective film, the immersion liquid in immersion exposure is prevented from coming into direct contact with the resist material film, so that the immersion liquid penetrates into the resist material film and the resist material film components enter the immersion liquid. Degradation of resist performance due to elution can be suppressed, and lens contamination of the exposure apparatus due to elution components in the immersion liquid can be prevented. In addition, evaporation of outgas from the resist material film can be reduced during exposure using radiation such as EUV or electron beam, so that contamination of the exposure apparatus can be prevented.
- the protective film can be formed using, for example, a composition containing a polymer having a fluorine atom and / or a silicon atom and a solvent.
- the resist material film 12 is exposed by irradiation with exposure light (I).
- the exposure light (I) includes radiation having a wavelength (I) that can be absorbed by the [B] component to generate a photosensitizer and an acid.
- a photosensitizer and an acid are generated from the [B] component in the resist material film 12. Due to the action of the acid generated from the [B] component, polarity conversion, crosslinking, decomposition reaction and the like occur in the [A] component, and as a result, the solubility of the [A] component in the developer changes.
- Examples of the exposure light (I) include ionizing radiation and non-ionizing radiation having a wavelength of 400 nm or less.
- “Ionizing radiation” refers to radiation that ionizes a substance by irradiation, and examples thereof include ⁇ rays, electron beams, ⁇ rays, X rays, extreme ultraviolet rays, and far ultraviolet rays.
- the lower limit of the wavelength (I) is, for example, 0.01 pm, preferably 1 pm, and more preferably 1 nm.
- the exposure light (I) does not substantially contain radiation having a wavelength (II) in exposure light (II) described later. Since the exposure light (I) does not substantially contain the radiation having the wavelength (II), the nano edge roughness of the resist pattern can be further improved.
- the partial irradiation process is performed in a vacuum or an inert atmosphere, for example.
- the exposure light (I) is emitted from the exposure light source (1) 21 so as to irradiate the resist material film 12 from above.
- the exposure light (I) is applied to a part of the resist material film 12 to a region such as a pattern via a mask pattern, for example.
- the exposure light (I) is an electromagnetic wave such as UV (ultraviolet), DUV (deep ultraviolet), EUV, or X-ray.
- the exposure light (I) may be an electron beam or an ion beam. Of these, EUV and electron beam are preferable as the exposure light (I).
- the exposure light (I) irradiation amount Ef is an irradiation amount that does not exceed the latent image forming energy amount Ea. That is, in the partial irradiation step (S103), less acid than the amount necessary for forming a resist pattern during development is generated from the [B] component. For this reason, at the stage where the partial irradiation step (S103) is executed, the resist material film 12 is not dissolved in the developer and a resist pattern is not formed.
- a step of holding the state of the resist material film 12 may be provided in the holding step (S105). Specifically, the resist material film is irradiated with the exposure light (I) in the partial irradiation step (S103) without performing pre-baking until the entire surface irradiation step (S107) described later is performed. 12 reduces the amount of the photosensitizer and acid generated from the [B] component in 12.
- the environment around the resist material film 12 is an atmosphere in which the decrease in the amount of photosensitizer and acid generated in the partial irradiation process can be controlled.
- the atmosphere that can control the decrease in the amount of the photosensitizer and the acid may be an inert gas atmosphere or a vacuum atmosphere that does not contain a basic substance.
- a protective film that blocks basic substances and / or oxygen may be provided.
- an inert gas atmosphere for example, nitrogen gas, helium gas, argon gas or the like is used as the inert gas, and can be used under reduced pressure or increased pressure.
- a vacuum atmosphere it is sufficient that the periphery of the resist material film 12 is under vacuum.
- the periphery of the resist material film 12 is set to a vacuum of 1 Pa or less. In an environment of an inert gas atmosphere or a vacuum atmosphere, a decrease in the amount of sensitizer generated in the resist material film 12 is suppressed.
- the environment around the resist material film 12 may be an atmosphere or a liquid that can increase the amount of photosensitizer and / or acid in the resist material film 12.
- An active gas atmosphere is used as an atmosphere that can increase the amount of photosensitizer and / or acid.
- a reactive gas for shifting the absorption wavelength is used as the active gas atmosphere.
- an active liquid capable of increasing the amount of photosensitizer and acid for example, a reactive liquid for shifting the absorption wavelength is used.
- the sensitizer generated in the resist material film 12 reacts with the active gas or the active liquid, and is converted into the active substance ⁇ or the stable substance ⁇ 1 in the entire surface irradiation step (S107) described later.
- the active substance ⁇ or the stable substance ⁇ 1 can function as a photosensitizer in the same manner as the photosensitizer generated from the component [B].
- the active substance ⁇ is, for example, an aromatic compound radical or an iodine compound radical
- the stable substance ⁇ 1 is, for example, an aromatic compound or an iodine compound.
- the active liquid may be removed from the resist material film 12 before the entire surface irradiation step (S107) is performed, or the entire surface irradiation step (S107) without removing the active liquid. May be executed.
- a method for controlling the temperature of the resist material film 12 may be used.
- the temperature of the resist material film 12 exceeds a certain threshold temperature, the amount of photosensitizer and / or acid decreases. Therefore, by maintaining the temperature of the resist material film 12 below the threshold temperature, the light of the resist material film 12 A decrease in the amount of sensitizer and / or acid can be suppressed.
- the temperature of the resist material film 12 is lowered below the threshold temperature by performing a rapid cooling process in the holding step (S105).
- the threshold temperature is, for example, 30 ° C.
- the partial irradiation step (S103) may be performed at a predetermined temperature or lower, and the temperature of the resist material film 12 may be maintained at a threshold temperature or lower in the holding step (S105).
- the resist material film 12 is irradiated with unexpected radiation before the entire surface irradiation step (S107) is executed, the amount of the photosensitizer and / or acid may be decreased. For this reason, in the holding step (S105), the resist material film 12 is positioned in an environment that is not irradiated with radiation.
- the amount of photosensitizer and / or acid decreases with time, by controlling the elapsed time between the partial irradiation step (S103) and the entire surface irradiation step (S107) described below, It is also possible to suppress a decrease in the amount of photosensitizer and / or acid in the resist material film 12.
- the time from the partial irradiation process to the entire surface irradiation process described later is preferably within 60 minutes.
- the control of temperature, illuminance, or time may be performed simultaneously with the control of the environment around the resist material film 12.
- the entire surface irradiation step (S107) is performed as shown in FIG. 1D.
- a pattern latent image is formed on the resist material film 12 exposed with the exposure light (I) by irradiation with the exposure light (II) containing radiation having a wavelength (II) longer than the wavelength (I).
- the exposure light (II) includes a wavelength (II) that acts on the photosensitizer, the active substance ⁇ and / or the stable substance ⁇ 1 generated from the [B] component, and can generate an acid from the [B] component. Radiation.
- the photosensitizer generated from the [B] component and the photosensitizer from the [B] component are produced by the action of the active substance ⁇ / stable substance ⁇ 1. And acid (or an acid having a different structure from this acid) occurs.
- the exposure light (II) generates an acid from the [B] component by the action of the photosensitizer and the active substance ⁇ / stabilizing substance ⁇ 1, and in the resist material film 12, the photosensitizer from the [B] component. And radiation that generates acid.
- a photosensitizer and an acid are generated from the [B] component, and this photosensitization is performed.
- a photosensitizer and an acid (or an acid having a structure different from this acid) are generated from the component [B] by the action of the sensitizer and the active substance ⁇ / stabilizing substance ⁇ 1.
- Examples of the exposure light (II) include non-ionizing radiation having a wavelength longer than the wavelength of the exposure light (I) and exceeding 200 nm.
- the wavelength (II) is preferably more than 250 nm, more preferably more than 280 nm, still more preferably more than 300 nm, and particularly preferably more than 320 nm. Further, the wavelength (II) is preferably 600 nm or less, more preferably 500 nm or less, and further preferably 400 nm or less.
- the exposure light (II) dose Ep is a dose that does not exceed the latent image forming energy amount Ea, and the exposure light (II) dose Ep. And the total exposure dose (Ef) of the exposure light (I) exceeds the required energy amount Et.
- the amount of acid generated from the component [B] by the action of the photosensitizer and the active substance ⁇ / stabilizing substance ⁇ 1 is the amount necessary for forming a resist pattern during development.
- the total amount of the acid generated from the component [B] in the partial irradiation step (S103) and the amount of the acid obtained from the component [B] in the entire irradiation step (S107) is less than It exceeds the amount necessary to form a resist pattern.
- the exposure light (II) is emitted from the exposure light source (2) 22 so as to irradiate the resist material film 12 from above.
- the exposure light source (2) 22 may be the same as the exposure light source (1) 21 that emits the exposure light (I), or may be different from the exposure light source (1) 21.
- the entire surface of the resist material film 12 irradiated with the exposure light (I) is irradiated with the exposure light (II).
- the exposure light (II) can be selected according to the resolution of the pattern to be formed.
- the exposure light (II) may be an electromagnetic wave such as UV, DUV, EUV, or X-ray, and may be an electron beam or an ion beam.
- the entire surface irradiation step (2) is performed in, for example, a vacuum atmosphere, an active gas atmosphere, or an inert atmosphere.
- the resist material film 12 is exposed to the exposure part (A) 121 irradiated only by the exposure light (I) and the exposure part (B) irradiated by both the exposure light (I) and the exposure light (II). ) 122 (see FIG. 1D).
- Heating is performed in an atmosphere of an inert gas such as nitrogen or argon.
- an inert gas such as nitrogen or argon.
- 50 ° C is preferred and 70 ° C is more preferred.
- an upper limit of heating temperature 200 degreeC is preferable and 180 degreeC is more preferable.
- heating time 10 seconds are preferred and 30 seconds are more preferred.
- the upper limit of the heating time is preferably 10 minutes, and more preferably 5 minutes.
- the resist material film after the heating step is developed.
- the development of the resist material film 12 is performed, for example, by placing the substrate 11 in a developer tank after the heating step.
- the irradiation amount Ef received by the exposed portion (A) 121 of the resist material film 12 does not exceed the latent image forming energy amount Ea. Since the amount of acid generated from the component [B] in the exposed portion (A) 121 is less than the amount necessary for forming the resist pattern, the exposed portion (A) 121 is not dissolved in the developer.
- the energy amount Es (that is, Ef + Ep) received by the exposed portion (B) 122 of the resist material film 12 exceeds the required energy amount Et.
- the exposed portion (B) 122 In the exposed portion (B) 122, the sum of the amount of acid generated from the component [B] in the exposure step (1) and the amount of acid generated by the action of a photosensitizer or the like is necessary for forming a resist pattern. Therefore, the exposed portion (B) 122 is dissolved in the developer. Thus, a predetermined resist pattern is formed on the substrate 11 (FIG. 1E).
- the developer used in the development step may be an alkali developer or an organic solvent developer.
- an alkaline developer By using an alkaline developer, a positive resist pattern can be obtained.
- an organic solvent developer By using an organic solvent developer, a negative resist pattern can be obtained.
- alkali developer examples include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine , Ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide (TMAH), pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [4 .3.0] -5-nonene, an alkaline aqueous solution in which at least one alkaline compound is dissolved, and the like.
- TMAH aqueous solution is preferable and a 2.38 mass% TMAH aqueous solution is more preferable.
- organic solvent developer examples include organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, and liquids containing these organic solvents.
- organic solvent such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, and liquids containing these organic solvents.
- an organic solvent the 1 type (s) or 2 or more types of the solvent illustrated as the [D] solvent of resist material (I) mentioned later, for example are mentioned.
- ester solvents and ketone solvents are preferable.
- an acetate solvent is preferable, and n-butyl acetate is more preferable.
- the ketone solvent is preferably a chain ketone, more preferably 2-heptanone.
- the lower limit of the content of the organic solvent in the organic solvent developer is preferably 80% by mass, more preferably 90% by mass, further preferably 95% by mass, and particularly preferably 99% by mass.
- components other than the organic solvent in the organic solvent developer include water and silicone oil.
- These developers may be used alone or in combination of two or more.
- the substrate is washed with water or the like and dried.
- the resist material (I) contains a [A] component and a [B] component.
- the resist material (I) preferably contains a [C] acid diffusion controller and / or a [D] solvent, and may contain other components as long as the effects of the present invention are not impaired.
- each component will be described.
- the component [A] is a base component that becomes soluble or insoluble in the developer by the action of an acid.
- the [A] component is not particularly limited as long as it has the above properties, but a polymer having an acid dissociable group (hereinafter also referred to as “[A] polymer”) is preferable.
- the “acid-dissociable group” refers to a group that replaces a hydrogen atom such as a carboxy group, a sulfo group, or a phenolic hydroxyl group and that dissociates by the action of an acid.
- the polymer is a polymer having an acid dissociable group (hereinafter also referred to as “acid dissociable group (a)”).
- acid dissociable group (a) Since the polymer has an acid dissociable group (a), the acid dissociable group (a) is dissociated by the action of an acid generated from the component [B] described later. As a result, the solubility of the [A] polymer in the developer changes, so that a resist pattern can be formed.
- the polymer usually has a structural unit containing an acid dissociable group (a) (hereinafter also referred to as “structural unit (I)”).
- structural unit (I) In addition to the structural unit (I), the polymer has a structural unit (II) containing a phenolic hydroxyl group, a lactone structure, a cyclic carbonate structure, a sultone structure, or a structural unit (III) containing a combination thereof. It may have other structural units other than the structural units (I) to (III).
- the polymer may have one or more of each structural unit. Hereinafter, each structural unit will be described.
- the structural unit (I) is a structural unit containing an acid dissociable group (a).
- the acid dissociable group (a) include a group represented by the following formula (1-1) (hereinafter also referred to as “group (I-1)”), and a group represented by the following formula (1-2). (Hereinafter also referred to as “group (I-2)”) and the like.
- R X is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
- R Y and R Z are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a ring member having 3 to 3 ring atoms composed of these groups together with the carbon atom to which they are bonded. This represents a part of the 20 alicyclic structures.
- R U is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms
- R V and R W are each independently 1 to 20 carbon atoms.
- a ring structure having 4 to 20 ring members, which is a valent hydrocarbon group or composed of two or more of R U , R V and R W together with the carbon atom or C—O bonded to each other Represents a part of
- the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
- the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
- the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
- alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups.
- “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
- Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R X , R Y , R Z , R U , R V or R W include, for example, monovalent chain hydrocarbons having 1 to 20 carbon atoms. Groups, monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms, monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms, and the like.
- Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
- Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group; Monocyclic alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group and cyclohexenyl group; Polycyclic alicyclic saturated hydrocarbon groups such as norbornyl group, adamantyl group and tricyclodecyl group; Examples thereof include polycyclic alicyclic unsaturated hydrocarbon groups such as a norbornenyl group and a tricyclodecenyl group.
- Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
- Examples of the alicyclic structure having 3 to 20 ring members constituted by R Y and R Z include monocyclic saturated alicyclic structures such as a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, and a cyclohexane structure; Polycyclic saturated alicyclic structures such as norbornane structure, adamantane structure, tricyclodecane structure and tetracyclododecane structure; Monocyclic unsaturated alicyclic structure such as cyclopropene structure, cyclobutene structure, cyclopentene structure, cyclohexene structure; Examples thereof include polycyclic unsaturated alicyclic structures such as a norbornene structure, a tricyclodecene structure, and a tetracyclododecene structure.
- Examples of the ring structure having 4 to 20 ring members constituted by two or more of R U , R V and R W include, for example, those having 4 ring members among those exemplified as the alicyclic structure constituted by the above R Y and R Z. ⁇ 20 things; Examples thereof include oxacycloalkane structures such as oxacyclobutane structure, oxacyclopentane structure, and oxacyclohexane structure; oxacycloalkene structures such as oxacyclobutene structure, oxacyclopentene structure, and oxacyclohexene structure.
- structural unit (I) examples include a structural unit represented by the following formula (1-1A) (hereinafter also referred to as “structural unit (I-1-1)”), and a structural unit represented by the following formula (1-1B).
- Structural unit hereinafter also referred to as “structural unit (I-1-2)”
- structural unit (I-2-1) a structural unit represented by the following formula (1-2A)
- structural unit (I-2-2) A structural unit represented by the following formula (1-2B) (hereinafter also referred to as “structural unit (I-2-2)”), and the like.
- R X , R Y and R Z have the same meanings as in the above formula (1-1).
- R U , R V and R W are as defined in the above formula (1-2).
- R T is each independently a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- R T is preferably a hydrogen atom or a methyl group from the viewpoint of the copolymerizability of the monomer giving the structural unit (I).
- the content rate of structural unit (I) 10 mol% is preferable with respect to all the structural units which comprise a [A] polymer, 25 mol% is more preferable, 40 mol% is further more preferable, 55 mol % Is particularly preferred.
- As an upper limit of the said content rate 90 mol% is preferable, 80 mol% is more preferable, 75 mol% is further more preferable, 70 mol% is especially preferable.
- the structural unit (II) is a structural unit containing a phenolic hydroxyl group. “Phenolic hydroxyl group” means not only a hydroxy group directly bonded to a benzene ring but also a general hydroxy group directly bonded to an aromatic ring. [A] By further having the structural unit (II), the polymer can adjust the solubility in the developer more appropriately, and as a result, the nano edge roughness can be further improved. In addition, the adhesion of the pattern to the substrate can be improved. Furthermore, in the case of KrF exposure, EUV exposure or electron beam exposure, the sensitivity can be further increased.
- structural unit (II) examples include a structural unit represented by the following formula (2) (hereinafter also referred to as “structural unit (II-1)”).
- Ar 1 is a group obtained by removing a hydrogen atom on a (p + q + 1) aromatic ring from an arene having 6 to 20 carbon atoms.
- RP is a halogen atom or a monovalent organic group having 1 to 20 carbon atoms.
- p is an integer of 0 to 11.
- q is an integer of 1 to 11.
- p + q is 11 or less.
- L 1 is a single bond, an oxygen atom, or a divalent organic group having 1 to 20 carbon atoms.
- RQ is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- Examples of the C6-C20 arene that gives Ar 1 include benzene, naphthalene, anthracene, phenanthrene, tetracene, and pyrene.
- Organic group refers to a group containing at least one carbon atom.
- the monovalent organic group having 1 to 20 carbon atoms represented by R P for example, monovalent hydrocarbon group having 1 to 20 carbon atoms, the hydrocarbon group having a carbon - divalent heteroatom-containing between carbon A group containing a group ( ⁇ ), a group ( ⁇ ) in which part or all of the hydrogen atoms of the hydrocarbon group and group ( ⁇ ) are substituted with a monovalent heteroatom-containing group, the hydrocarbon group, group ( ⁇ ) And a group ( ⁇ ) and a group ( ⁇ ) in which at least one of the groups ( ⁇ ) and a divalent heteroatom-containing group are combined.
- Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms for example, the R X, R Y, R Z , R U, same groups exemplified as the monovalent hydrocarbon groups R V and R W, etc. Is mentioned.
- hetero atom constituting the monovalent or divalent heteroatom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- Examples of the divalent heteroatom-containing group include —O—, —CO—, —S—, —CS—, —NR′—, a group in which two or more of these are combined, and the like.
- R ' is a hydrogen atom or a monovalent hydrocarbon group.
- Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group.
- the R P a halogen atom or a monovalent hydrocarbon group.
- p is preferably 0 to 2, more preferably 0 or 1, and still more preferably 0.
- q is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
- L 1 is preferably a single bond, an oxygen atom or a carbonyloxy group.
- the R Q from the viewpoint of copolymerizability of the monomer giving the structural unit (II), preferably a hydrogen atom or a methyl group, a single bond is more preferable.
- Examples of the structural unit (II) include a structural unit derived from hydroxystyrene.
- the content ratio of the structural unit (II) is preferably 10 mol%, preferably 25 mol% with respect to all structural units constituting the [A] polymer. Is more preferable, and 35 mol% is still more preferable. As an upper limit of the said content rate, 80 mol% is preferable, 70 mol% is more preferable, and 60 mol% is further more preferable.
- the content rate of structural unit (II) into the said range, nano edge roughness can be improved more.
- the sensitivity in the case of KrF exposure, EUV exposure, or electron beam exposure can be further increased.
- the structural unit (III) is a structural unit including a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof. [A] Since the polymer further has the structural unit (III), the solubility in the developer can be further adjusted, and as a result, the nano edge roughness can be further improved. Further, the adhesion between the pattern and the substrate can be further improved.
- Examples of the structural unit (III) include a structural unit represented by the following formula.
- R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
- the structural unit (III) is preferably a structural unit containing a lactone structure, more preferably a structural unit containing a norbornane lactone structure, a structural unit derived from norbornanelactone-yl (meth) acrylate, or cyanonorbornane lactone -More preferred are structural units derived from yl (meth) acrylate.
- the lower limit of the content ratio of the structural unit (III) is preferably 5 mol% with respect to all the structural units constituting the [A] polymer. Mole% is more preferable, and 40 mol% is more preferable. As an upper limit of the said content rate, 70 mol% is preferable, 60 mol% is more preferable, and 55 mol% is further more preferable. By making the said content rate into the said range, nano edge roughness can further be improved. Further, the adhesion of the pattern to the substrate can be further improved.
- the polymer may have other structural units in addition to the structural units (I) to (III).
- other structural units include a structural unit containing a polar group (excluding the structural unit (II)), a structural unit containing a non-dissociable hydrocarbon group, and the like.
- the polar group include an alcoholic hydroxy group, a hydroxyfluorinated hydrocarbon group, a carboxy group, a cyano group, a nitro group, and a sulfonamide group.
- the non-dissociable hydrocarbon group include a linear alkyl group. As an upper limit of the content rate of another structural unit, 20 mol% is preferable and 10 mol% is more preferable.
- Mw polystyrene conversion weight average molecular weight
- GPC gel permeation chromatography
- 2,000 is preferred, 4,000 is more preferred, 5,500 is still more preferred, 500 is particularly preferred.
- the upper limit of Mw is preferably 50,000, more preferably 20,000, still more preferably 10,000, and particularly preferably 9,000.
- the upper limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 5, more preferably 3, and even more preferably 2.
- the lower limit of the ratio is usually 1 and is preferably 1.3.
- Mw and Mn of the polymer in this specification are values measured using GPC under the following conditions.
- GPC column For example, two “G2000HXL”, one “G3000HXL” and one “G4000HXL” manufactured by Tosoh Corporation Column temperature: 40 ° C.
- Elution solvent Tetrahydrofuran (Wako Pure Chemical Industries, Ltd.) Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
- Detector Differential refractometer Standard material: Monodisperse polystyrene
- the lower limit of the content of the [A] component is preferably 70% by mass, more preferably 80% by mass, and still more preferably 85% by mass with respect to all components other than the [D] solvent of the resist material (I).
- the polymer [A] can be synthesized, for example, by polymerizing monomers that give each structural unit in a suitable solvent using a radical polymerization initiator or the like.
- the component [B] is a component that generates a photosensitizer and an acid upon exposure, and is a radiation-sensitive onium cation (hereinafter also referred to as “cation (X)”) and an anion (hereinafter referred to as “anion (Y)”). ")".
- the cation (X) has two or more aromatic carbon rings having 6 to 20 ring members bonded to the onium atom, at least one of the aromatic carbon rings has a substituent, and the aromatic At least one of the carbocycles has a hydrogen atom bonded to a carbon atom that is para to the onium atom.
- the anion (Y) is an anion represented by the formula (3-1) or (3-2).
- the resist material (I) including the above steps includes the [A] component and the [B] component, thereby forming a resist pattern with high sensitivity and excellent nanoedge roughness. can do.
- the reason why the resist pattern forming method has the above-described configuration provides the above-mentioned effect is not necessarily clear, for example, it can be inferred as follows. That is, the cation (X) of the component [B] has two or more aromatic carbocycles, and at least one of these aromatic carbocycles has a substituent, and the para position is It has a specific structure that is a hydrogen atom.
- the cation (X) having such a specific structure is decomposed to give a decomposition product.
- This decomposition product has a relatively maximum absorption wavelength. It becomes a long wavelength, functions as an effective photosensitizer in the above-described entire surface irradiation step, and can generate acid with high efficiency by the exposure light (II) in the entire surface irradiation step.
- the anion (Y) of the component [B] have the above specific structure. It is thought that you can.
- the cation (X) and the anion (Y) will be described.
- the cation (X) is a radiation-sensitive onium cation having an aromatic carbocyclic ring having 6 to 20 ring members bonded to an onium atom, and at least one of the aromatic carbocyclic rings is a substituent. (Hereinafter also referred to as “substituent (a)”), and at least one of the aromatic carbocycles has a hydrogen atom bonded to a carbon atom in the para position relative to the onium atom.
- the “onium atom” refers to a heteroatom that bears a positive charge of the cation (X) by combining two or more aromatic carbocycles having 6 to 20 ring members among the atoms constituting the cation (X). Point to.
- the onium atom in the cation (X) include an oxygen atom, a nitrogen atom, a phosphorus atom, a sulfur atom, an arsenic atom, a selenium atom, a tellurium atom, a chlorine atom, a bromine atom, and an iodine atom.
- a sulfur atom or an iodine atom is preferable.
- the lower limit of the number of aromatic carbocycles bonded to the onium atom is 2, and 3 is preferable.
- the upper limit of the number is, for example, 4.
- Examples of the aromatic carbon ring having 6 to 20 ring members include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a tetracene ring, and a pyrene ring.
- a benzene ring or a naphthalene ring is preferable, and a benzene ring is more preferable.
- Examples of the substituent (a) include a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a halogen atom, and a nitro group.
- Examples of the monovalent organic group having 1 to 20 carbon atoms of the substituent (a) include the same groups as those exemplified as the monovalent organic group of R P in the above formula (2).
- the substituent (a) is preferably an electron withdrawing group.
- the substituent (a) is an electron-attracting group, the maximum absorption wavelength of the photosensitizer generated from the [B] component becomes a longer wavelength, and as a result, sensitivity and nanoedge roughness are further improved.
- Examples of the electron withdrawing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, alkoxy groups such as cyano group, nitro group, methoxy group and ethoxy group, acyl groups such as acetyl group and benzoyl group And alkoxycarbonyl groups such as methoxycarbonyl group and ethoxycarbonyl group, alkylsulfonyl groups such as methylsulfonyl group and ethylsulfonyl group, alkyl groups such as methyl group, i-propyl group and t-butyl group.
- halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom
- alkoxy groups such as cyano group, nitro group, methoxy group and ethoxy group
- acyl groups such as acetyl group and benzoyl group
- the bonding position of the substituent (a) in the aromatic carbocycle is preferably a carbon atom in the para position relative to the onium atom.
- the maximum absorption wavelength of the photosensitizer generated from the [B] component becomes longer, and as a result, sensitivity and nanoedge roughness are further improved.
- the number of substituents (a) bonded to one aromatic carbocycle is usually 1 to 3.
- the number of substituents (a) in the cation (X) is usually 1-6.
- the cation (X) is preferably a cation having both an aromatic carbocyclic ring having a substituent (a) and an aromatic carbocyclic ring having a hydrogen atom bonded to a carbon atom in the para position with respect to the onium atom.
- a cation represented by the following formula (a1) or (a2) is preferable. Since such a cation has both an aromatic carbocyclic ring having an electron withdrawing group and an aromatic carbocyclic ring having a hydrogen atom bonded to a carbon atom in the para position with respect to the onium atom, the component [B] The maximum absorption wavelength of the photosensitizer generated from is longer, and as a result, the sensitivity and nanoedge roughness are further improved.
- x is an integer of 0-4.
- R 1 is a monovalent substituent.
- x is 2 or more, the plurality of R 1 are the same or different and are monovalent substituents, or two or more of the plurality of R 1 are combined with each other and configured with a carbon chain to which they are bonded.
- y is an integer of 0 to 5.
- R 2 is a monovalent substituent.
- y is 2 or more, the plurality of R 2 are the same or different and are monovalent substituents, or two or more of the plurality of R 2 are combined with each other and configured with a carbon chain to which they are bonded.
- z is an integer of 0 to 5.
- R 3 is a monovalent substituent.
- the plurality of R 3 are the same or different and are monovalent substituents, or two or more of the plurality of R 3 are combined with each other and configured with a carbon chain to which they are bonded.
- v is an integer of 0-4.
- R 4 is a monovalent substituent.
- the plurality of R 4 are the same or different and are monovalent substituents, or two or more of the plurality of R 4 are combined with each other and configured with a carbon chain to which they are bonded.
- w is an integer of 1 to 5.
- R 5 is a monovalent substituent.
- the plurality of R 5 are the same or different, and a ring structure having 4 to 20 ring members constituted by a carbon chain in which two or more of the plurality of R 5 are combined with each other and bonded to each other. Represents part. However, at least one of R 5 is an electron withdrawing group.
- Examples of the monovalent substituent represented by R 1 to R 5 include the same groups as those exemplified as the substituent (a).
- Examples of the ring structure having 4 to 20 ring members constituted by two or more of R 1 to R 5 include cycloalkene structures such as a cyclobutene structure, a cyclopentene structure, and a cyclohexene structure; Examples thereof include aromatic carbocyclic structures such as a benzene structure, a naphthalene structure, an anthracene structure, and a phenanthrene structure.
- x and v are preferably 0 to 2, more preferably 0 or 1, and still more preferably 0.
- y, z and w are preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
- Examples of the cation (X) include, for example, 4-alkylsulfonylphenyldiphenylsulfonium cation, 4-alkoxyphenyldiphenylsulfonium cation, 4-halophenyldiphenylsulfonium cation, 4-cyanophenyldiphenylsulfonium cation, 4-arylcarbonylphenyl as sulfonium cation.
- Diphenylsulfonium cation 4-alkoxycarbonylphenylsulfonium cation, di (4-alkylsulfonylphenyl) phenylsulfonium cation, 4-alkylsulfonylphenyl 4-halophenylphenylsulfonium cation, etc.
- the iodonium cation include a 4-nitrophenylphenyl iodonium cation and a 4-alkylphenylphenyl iodonium cation.
- the anion (Y) is an anion represented by the following formula (3-1) or (3-2).
- An anion (Y) forms an acid with the proton produced
- R p1 is a monovalent group containing a ring structure having 5 or more ring members.
- R p2 is a divalent linking group.
- R p3 and R p4 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
- R p5 and R p6 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
- n p1 is an integer of 0 to 10.
- n p2 is an integer of 0 to 10.
- n p3 is an integer of 2 to 10.
- n p1 + n p2 + n p3 is 2 to 30.
- the plurality of R p2 are the same or different.
- the plurality of R p3 are the same or different, and the plurality of R p4 are the same or different.
- a plurality of R p5 are the same or different, and a plurality of R p6 are the same or different.
- the “number of ring members” refers to the number of atoms constituting the ring of the alicyclic structure, aromatic ring structure, aliphatic heterocyclic structure and aromatic heterocyclic structure. The number of atoms.
- R q1 and R q2 are each independently a monovalent organic group having 1 to 20 carbon atoms.
- Examples of the monovalent group including a ring structure having 5 or more ring members represented by R p1 include a monovalent group including an alicyclic structure having 5 or more ring members and an aliphatic heterocyclic structure having 5 or more ring members.
- Examples of the alicyclic structure having 5 or more ring members include monocyclic saturated alicyclic structures such as a cyclopentane structure, a cyclohexane structure, a cycloheptane structure, a cyclooctane structure, a cyclononane structure, a cyclodecane structure, and a cyclododecane structure; Monocyclic unsaturated alicyclic structure such as cyclopentene structure, cyclohexene structure, cycloheptene structure, cyclooctene structure, cyclodecene structure; Polycyclic saturated alicyclic structures such as norbornane structure, adamantane structure, tricyclodecane structure and tetracyclododecane structure; Examples thereof include polycyclic unsaturated alicyclic structures such as a norbornene structure and a tricyclodecene structure.
- Examples of the aliphatic heterocyclic structure having 5 or more ring members include lactone structures such as a hexanolactone structure and a norbornane lactone structure; Sultone structures such as hexanosultone structure and norbornane sultone structure; An oxygen atom-containing heterocyclic structure such as an oxacycloheptane structure or an oxanorbornane structure; Nitrogen atom-containing heterocyclic structures such as azacyclohexane structure and diazabicyclooctane structure; And sulfur atom-containing heterocyclic structures such as a thiacyclohexane structure and a thianorbornane structure.
- Examples of the aromatic ring structure having 5 or more ring members include a benzene structure, a naphthalene structure, a phenanthrene structure, and an anthracene structure.
- Examples of the aromatic heterocyclic structure having 5 or more ring members include oxygen atom-containing heterocyclic structures such as a furan structure, a pyran structure, a benzofuran structure, and a benzopyran structure; Examples thereof include a nitrogen atom-containing heterocyclic structure such as a pyridine structure, a pyrimidine structure and an indole structure.
- the lower limit of the number of ring members of the ring structure of R p1 is preferably 6, more preferably 8, more preferably 9, and particularly preferably 10.
- the upper limit of the number of ring members is preferably 15, more preferably 14, more preferably 13, and particularly preferably 12.
- a part or all of the hydrogen atoms contained in the ring structure of R p1 may be substituted with a substituent.
- substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, Examples include an acyloxy group. Of these, a hydroxy group is preferred.
- R p1 is preferably a monovalent group containing an alicyclic structure having 5 or more ring members or a monovalent group containing an aliphatic heterocyclic structure having 5 or more ring members, and 1 containing an alicyclic structure having 9 or more ring members. More preferred are monovalent groups or monovalent groups containing an aliphatic heterocyclic structure having 9 or more ring members, such as an adamantyl group, a hydroxyadamantyl group, a norbornane lactone-yl group, a norbornane sultone-yl group, or a 5-oxo-4-oxa group. A tricyclo [4.3.1.1 3,8 ] undecan-yl group is more preferred, and an adamantyl group is particularly preferred.
- Examples of the divalent linking group represented by R p2 include a carbonyl group, an ether group, a carbonyloxy group, a sulfide group, a thiocarbonyl group, a sulfonyl group, and a divalent hydrocarbon group.
- a carbonyloxy group, a sulfonyl group, an alkanediyl group or a divalent alicyclic saturated hydrocarbon group is preferable
- a carbonyloxy group or a divalent alicyclic saturated hydrocarbon group is more preferable
- a carbonyloxy group Or a norbornanediyl group is more preferable
- a carbonyloxy group is particularly preferable.
- Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R p3 and R p4 include an alkyl group having 1 to 20 carbon atoms.
- Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p3 and R p4 include a fluorinated alkyl group having 1 to 20 carbon atoms.
- R p3 and R p4 are preferably a hydrogen atom, a fluorine atom or a fluorinated alkyl group, more preferably a hydrogen atom, a fluorine atom or a perfluoroalkyl group, and even more preferably a hydrogen atom, a fluorine atom or a trifluoromethyl group.
- Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p5 and R p6 include a fluorinated alkyl group having 1 to 20 carbon atoms.
- R p5 and R p6 are preferably a fluorine atom or a fluorinated alkyl group, more preferably a fluorine atom or a perfluoroalkyl group, still more preferably a fluorine atom or a trifluoromethyl group, and particularly preferably a fluorine atom.
- n p1 is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, further preferably an integer of 0 to 2, and particularly preferably 0 or 1.
- n p2 is preferably an integer of 0 to 5, more preferably an integer of 1 to 4, further preferably 3 or 4, and particularly preferably 4.
- the lower limit of n p3 is 2. By setting n p3 to 2 or more, the strength of the acid generated from the compound (3-1) can be increased, and as a result, the nano edge roughness can be further improved.
- the upper limit of n p3 is preferably 6, more preferably 4, and even more preferably 3.
- the lower limit of n p1 + n p2 + n p3 is preferably 4, and more preferably 6.
- the upper limit of n p1 + n p2 + n p3 is preferably 20, and more preferably 10.
- R q1 and R q2 are preferably a monovalent hydrocarbon group, more preferably a monovalent alicyclic hydrocarbon group, still more preferably a cycloalkyl group, and particularly preferably a cyclohexyl group.
- the lower limit of the maximum absorption wavelength of the photosensitizer generated from the component [B] is preferably 310 nm, more preferably 315 nm, further preferably 320 nm, particularly preferably 330 nm, further particularly preferably 340 nm, and most preferably 350 nm.
- the lower limit of the content of the component is preferably 1 part by weight, more preferably 3 parts by weight, still more preferably 5 parts by weight, and particularly preferably 10 parts by weight with respect to 100 parts by weight of the component (A). 15 parts by mass is more particularly preferable, and 20 parts by mass is most preferable.
- [[C] acid diffusion controller] The acid diffusion controller controls the diffusion phenomenon in the resist material film of the acid generated from the [B] component by exposure, and has an effect of suppressing an undesirable chemical reaction in the non-exposed region. Further, the storage stability of the resist material (I) is further improved, and the resolution as the resist material is further improved. Furthermore, a change in the line width of the resist pattern due to fluctuations in the holding time from exposure to development processing can be suppressed, and a resist material having excellent process stability can be obtained. [C] The acid diffusion control substance contained in the resist material (I) was incorporated as part of the polymer even in the form of a low molecular compound (hereinafter referred to as “[C] acid diffusion control agent” as appropriate). It may be in the form or both forms.
- Examples of the acid diffusion controller include nitrogen-containing compounds and photo-disintegrating bases.
- nitrogen-containing compounds examples include amine compounds, amide group-containing compounds, urea compounds, and nitrogen-containing heterocyclic compounds.
- amine compound examples include monoalkylamines such as n-hexylamine; Dialkylamines such as di-n-butylamine; Trialkylamines such as triethylamine, tri-n-pentylamine, trioctylamine; Aromatic amines such as aniline; Ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine and the like; Polyamine compounds such as polyethyleneimine and polyallylamine; Examples thereof include polymers such as dimethylaminoethylacrylamide.
- amide group-containing compound examples include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone and the like. It is done.
- urea compound examples include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tributylthiourea and the like.
- nitrogen-containing heterocyclic compound examples include pyridines such as pyridine and 2-methylpyridine; morpholines such as N-propylmorpholine and N- (undecan-1-ylcarbonyloxyethyl) morpholine; pyrazine, pyrazole and the like.
- a compound having an acid dissociable group can be used as the nitrogen-containing compound.
- the nitrogen-containing compound having an acid dissociable group include Nt-butoxycarbonylpiperidine, Nt-butoxycarbonylimidazole, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl-2- Phenylbenzimidazole, N- (t-butoxycarbonyl) di-n-octylamine, N- (t-butoxycarbonyl) diethanolamine, N- (t-butoxycarbonyl) dicyclohexylamine, N- (t-butoxycarbonyl) diphenylamine, Examples thereof include Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-amyloxycarbonyl-4-hydroxypiperidine and the like.
- a photodegradable base is a compound having basicity, the basicity of which is reduced or lost by exposure.
- the photodegradable base exhibits acid diffusion controllability due to its basicity in the unexposed area, but loses acid diffusion controllability in the exposed area because the basicity is reduced by the acid generated by decomposition by exposure.
- Examples of the photodegradable base include compounds represented by the following formula (4-1) or (4-2).
- R A to R E are each independently a hydrogen atom, an alkyl group, an alkoxy group, a hydroxy group, or a halogen atom.
- E ⁇ and Q ⁇ are each independently an OH ⁇ , R ⁇ —COO ⁇ , R ⁇ —OCOCOO ⁇ , R ⁇ —SO 3 — or an anion represented by the following formula (5).
- R ⁇ and R ⁇ are each independently an alkyl group, a monovalent alicyclic saturated hydrocarbon group or an aralkyl group.
- R ⁇ is an alkyl group, an oxo group-substituted or unsubstituted monovalent alicyclic saturated hydrocarbon group or aralkyl group.
- R S is an alkyl group having 1 to 12 carbon atoms, a fluorinated alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
- u is an integer of 0-2. When u is 2, two R S are the same or different.
- Examples of the alkyl group represented by R A to R E include the same groups as those exemplified as the alkyl group in R X , R Y and R Z of the above formula (1-1).
- Examples of the alkoxy group represented by R A to R E include the same groups as those exemplified as the alkoxy group in the substituent (a) of the cation (X).
- Examples of the alkyl group, monovalent alicyclic saturated hydrocarbon group, and aralkyl group represented by R ⁇ , R ⁇ , and R ⁇ include alkyls of R X , R Y, and R Z in the above formula (1-1). Examples thereof include the same groups as those exemplified as the group, monocyclic or polycyclic alicyclic saturated hydrocarbon group and aralkyl group. Examples of the oxo-substituted monovalent alicyclic saturated hydrocarbon group represented by R ⁇ include 4-oxocyclohexyl group, 2-oxo-7,7-dimethylbicyclo [2.2.1] heptane- Examples include 1-ylmethyl group.
- Examples of the alkyl group having 1 to 12 carbon atoms represented by RS include, for example, those having 1 to 12 carbon atoms among the groups exemplified as the alkyl group in R X , R Y and R Z of the above formula (1-1). And the like.
- Examples of the fluorinated alkyl group having 1 to 12 carbon atoms represented by RS include groups in which part or all of the hydrogen atoms of the above-exemplified alkyl groups having 1 to 12 carbon atoms are substituted with fluorine atoms.
- Examples of the alkoxy group having 1 to 12 carbon atoms represented by R S include the same groups as those exemplified as the alkoxy group in the substituent (a) of the cation (X). u is preferably 0 or 1.
- E - and Q - include anions represented by the following formulas.
- photodegradable base examples include triphenylsulfonium salicylate, triphenylsulfonium 2-hydroxy-4-trifluoromethyl-1-benzoate, triphenylsulfonium adamantane-1-yl oxalate, triphenylsulfonium 10-camphor sulfonate. Etc.
- the lower limit of the content of the [C] acid diffusion control agent is 0.1 part by mass with respect to 100 parts by mass of the [A] component.
- 0.5 mass part is more preferable, and 1 mass part is further more preferable.
- the upper limit of the content is preferably 20 parts by mass, more preferably 10 parts by mass, further preferably 5 parts by mass, and particularly preferably 3 parts by mass.
- the resist material (I) usually contains a [D] solvent.
- the solvent is not particularly limited as long as it is a solvent capable of dissolving or dispersing at least the [A] component, the [B] component, and the optionally contained [C] acid diffusion controller.
- Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
- alcohol solvent examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol, n-pentanol, iso-pentanol, 2-methylbutanol, sec-pentanol, tert-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, 3-heptanol, n-octanol, 2-ethylhexanol , Sec-octanol, n-nonyl alcohol, 2,6-dimethyl-4-heptanol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec -und
- ether solvents examples include dialkyl ether solvents such as diethyl ether, dipropyl ether, and dibutyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
- ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Linear ketone solvents such as di-iso-butyl ketone and trimethylnonanone; Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, methylcyclohexanone; Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
- amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
- cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
- chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
- ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, iso-propyl acetate, n-butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, i-pentyl acetate, sec Acetate solvents such as pentyl, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate; Ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-l
- hydrocarbon solvents examples include n-pentane, iso-pentane, n-hexane, iso-hexane, n-heptane, iso-heptane, 2,2,4-trimethylpentane, n-octane, iso-octane, cyclohexane , Aliphatic hydrocarbon solvents such as methylcyclohexane; Fragrances such as benzene, toluene, xylene, mesitylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, iso-propylbenzene, diethylbenzene, iso-butylbenzene, triethylbenzene, di-iso-propylbenzene, n-amylnaphthalene Group hydrocarbon solvents and the like.
- a solvent selected from the group consisting of ester solvents and ketone solvents is preferable, and it is selected from the group consisting of polyhydric alcohol partial ether acetate solvents, lactic acid ester solvents, lactone solvents, and cyclic ketone solvents.
- a solvent is more preferable, and a solvent selected from the group consisting of propylene glycol monomethyl ether acetate, ethyl lactate, ⁇ -butyrolactone, and cyclohexanone is more preferable.
- [D] 1 type (s) or 2 or more types can be used for a solvent.
- the resist material (I) may contain one or more other components.
- the fluorine atom-containing polymer is a polymer having a higher fluorine atom content than the component [A].
- resist material (I) contains a fluorine atom-containing polymer
- the distribution is unevenly distributed near the resist film surface due to the oil-repellent characteristics of the fluorine atom-containing polymer in the resist film. It is possible to prevent the acid generator, the acid diffusion controller and the like from being eluted into the immersion medium during immersion exposure.
- resist material (I) can form a resist material film suitable for the immersion exposure method by further containing a fluorine atom-containing polymer.
- 0.1 mass part is preferred to 100 mass parts of [A] ingredient, 0.5 mass part is more preferred, and 1 mass part is still more preferred.
- 20 mass parts is preferable, 15 mass parts is more preferable, and 10 mass parts is further more preferable.
- Surfactants have the effect of improving coatability, striation, developability, and the like.
- the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
- Nonionic surfactants such as stearate; commercially available products include KP341 (Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
- the [A] component, the [B] component, the [C] acid diffusion controller, the [D] solvent, and other components as necessary are mixed in a predetermined ratio, and preferably obtained.
- the obtained mixture can be prepared by filtering with a membrane filter having a pore size of about 0.2 ⁇ m.
- the lower limit of the concentration of the resist material (I) is preferably 0.1% by mass, more preferably 0.5% by mass, further preferably 1% by mass, and particularly preferably 1.5% by mass.
- concentration 50 mass% is preferable, 30 mass% is more preferable, 10 mass% is further more preferable, and 5 mass% is especially preferable.
- Mw and Mn of the polymer were measured by gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- the measurement uses GPC columns (2 G2000HXL, 1 G3000HXL, and 1 G4000HXL, Tosoh Corporation), flow rate 1.0 mL / min, elution solvent tetrahydrofuran, sample concentration 1.0 mass%, sample injection amount
- a differential refractometer was used as a detector, and monodisperse polystyrene was used as a standard substance.
- the 13 C-NMR analysis for determining the content ratio of the structural unit of the polymer uses a nuclear magnetic resonance apparatus (“JNM-ECX400” from JEOL Ltd.), uses CDCl 3 as a measurement solvent, and uses tetramethyl. Silane (TMS) was used as an internal standard.
- the compounds (M-1), (M-4) and (M-6) are structural units (I), the compound (M-3) is structural units (II), the compounds (M-2) and (M-7) gives structural unit (III), and compounds (M-5) and (M-8) give other structural units.
- the polymer (A-2) had Mw of 6,000 and Mw / Mn of 1.90. Further, as a result of 13 C-NMR analysis, the content ratio of the p-hydroxystyrene structural unit obtained by deacetylation of the structural unit derived from (M-3) and the structural unit derived from the compound (M-1) Were 50 mol% and 50 mol%, respectively.
- the monomer solution prepared above was dropped over 3 hours, and further aged for 3 hours.
- the polymerization reaction liquid was cooled with water and cooled to 30 ° C. or lower.
- This polymerization reaction liquid was put into 400 g of hexane, and the precipitated solid content was separated by filtration.
- the solid content after filtration was washed twice with 80 g of hexane, further filtered, and dried at 50 ° C. for 17 hours. This solid content was put into a 100 mL eggplant flask containing 20 g of propylene glycol monomethyl ether and dissolved.
- B-S1 to B-S11 Compounds represented by the following formulas (B-S1) to (B-S11)
- B-I1 to B-I4 represented by the following formulas (B-I1) to (B-I4) Compound
- the maximum absorption wavelength of the photosensitizer generated by the decomposition reaction of the cation (X) was calculated by using TD-DFT (Time Dependent Density Functional Method) calculation using quantum chemical calculation software Gaussian09 as a functional B3LYP, basis The function was calculated using 6-311G ++ (d, p).
- TD-DFT Time Dependent Density Functional Method
- the compounds (B-S1), (B-S2), (B-S3), (B-S6), (B-S7), (B-S9), (B-S10), (B-I1) ) And (B-I2) the maximum absorption wavelength of the sensitizer was 310 nm or more.
- C-1 Triphenylsulfonium 2-hydroxy-4-trifluoromethyl-1-benzoate (compound represented by the following formula (C-1))
- C-2 Triphenylsulfonium adamantane-1-yloxylate (compound represented by the following formula (C-2))
- C-3 Trioctylamine
- Example 1 [A] 100 parts by mass of (A-1) as a polymer, 15 parts by mass of (B-S1) as a [B] compound, and [C] 7.0 parts by mass of (C-1) as an acid diffusion controller In addition, (D-1) 4,300 parts by mass and (D-2) 1,900 parts by mass as a solvent [D] were mixed. Next, the obtained mixed solution was filtered through a membrane filter having a pore diameter of 0.20 ⁇ m to prepare a chemically amplified resist material (R-1).
- Example 2 to 12 and Comparative Examples 1 to 6 Chemically amplified resist materials (R-2) to (R-18) were prepared in the same manner as in Example 1 except that the components of the types and blending amounts shown in Table 2 were used.
- Example 2 to 12 and Comparative Examples 1 to 6 Each positive resist pattern was formed in the same manner as in Example 1 except that the chemically amplified resist material shown in Table 3 below was used.
- Optimum exposure amount (Eop) for forming a line-and-space pattern (1L1S) having a line width of 150 nm and a space portion having a space of 150 nm formed by adjacent line portions in a one-to-one line width. was measured.
- Eop in the above operation (1) is changed to Eop (1)
- Eop in the above operation (2) is changed to Eop (2)
- the value of Eop (2) / Eop (1) is 0.90 or less, “AA (very good)”, and when it exceeds 0.90 and is 0.95 or less, “A (Good) ”and when it exceeded 0.95, it was evaluated as“ B (defect) ”.
- the nano edge roughness in the above operation (1) is NER (1) and the nano edge roughness in the above operation (2) is NER (2)
- the nano edge roughness is expressed as NER (2) / NER (1).
- it was 1.0 or less it was evaluated as “A (good)”, and when it exceeded 1.0, it was evaluated as “B (defective)”.
- a resist pattern having high sensitivity and excellent nano edge roughness can be formed.
- a resist pattern having excellent nano edge roughness can be formed by the operation (1) in which the black light irradiation is not performed after the electron beam irradiation, but the sensitivity is improved by performing the operation (2) in which the black light irradiation is performed after the electron beam irradiation. It can be made excellent, and the nano edge roughness can be further improved.
- the electron beam exposure it is known to show the same tendency as in the case of EUV exposure. Therefore, according to the resist pattern forming method of the example, even in the case of EUV exposure, It is presumed that a resist pattern having high sensitivity and excellent nano edge roughness can be formed.
- the resist pattern forming method and the chemically amplified resist material of the present invention it is possible to form a resist pattern with high sensitivity and excellent nano edge roughness. Therefore, these can be suitably used for manufacturing semiconductor devices that are expected to be further miniaturized in the future.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials For Photolithography (AREA)
Abstract
高い感度でナノエッジラフネスに優れるレジストパターンを形成できるレジストパターン形成方法の提供を目的とする。本発明は、塗工工程と、一部照射工程と、全面照射工程と、加熱工程と、現像工程とを備え、化学増幅型レジスト材料が、(1)酸の作用により上記現像液に可溶又は不溶となるベース成分と、(2)上記第1露光光の作用により光増感剤及び酸を発生する成分とを含有し、(2)成分が、感放射線性オニウムカチオンと、アニオンとを含み、感放射線性オニウムカチオンが、オニウム原子に結合する2つ以上の環員数6~20の芳香族炭素環を有し、上記芳香族炭素環のうちの少なくとも1つが置換基を有し、かつ上記芳香族炭素環のうちの少なくとも1つがオニウム原子に対してパラ位の炭素原子に結合する水素原子を有し、上記アニオンが下記式(3-1)又は(3-2)で表されるパターン形成方法である。
Description
本発明は、レジストパターン形成方法及び化学増幅型レジスト材料に関する。
半導体デバイスの露光工程において、回路の高集積化と高速度化に伴い、より微細なパターンが求められている。パターン微細化の手法として、主に露光源の短波長化が求められており、例えば、極端紫外線(EUV、波長:13.5nm)は、次世代半導体デバイスの製造に有望な技術として盛んに開発されている。しかし、量産適用に必要な高出力(100W)を持つ光源装置の開発が困難で、現状では10Wレベルに留まっており、パターン潜像を形成するための露光に時間がかかる。また、電子線(EB)を用いた電子線直接描画法では、ビーム径が小さいことから高寸法精度で微細なパターンを形成することができる反面、パターンが複雑で大面積になるほど描画に時間がかかる。このように、EUVや電子線を用いた露光技術では、微細なパターンを形成できるものの、スループットが低いという問題がある。
この問題を解決すべく、露光時間をできるだけ減らすように、レジスト材料の高感度化が進められている。例えば、特許文献1に開示されているレジスト組成物では、特定の樹脂及び化合物を含む組成によって、感度及び解像度の向上を図っている。
しかしながら、感度、解像度、ナノエッジラフネスというレジストの重要な3つの性能の間にはトレードオフの関係があり、レジストの高感度化を行った場合、解像度やナノエッジラフネスが低下するという問題が生じる。このため、ナノエッジラフネスを低下させずにレジストを高解像度化かつ高感度化するには限界があり、スループットが低いという問題を十分に解決することはできていない。
本発明は、以上のような事情に基づいてなされたものであり、その目的は、高い感度でナノエッジラフネスに優れるレジストパターンを形成することができるレジストパターン形成方法及びこのレジストパターン形成方法に用いられる化学増幅型レジスト材料を提供することにある。
上記課題を解決するためになされた発明は、基板に直接又は間接に化学増幅型レジスト材料を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成されたレジスト材料膜の一部に、第1波長(以下、「波長(I)」ともいう)の放射線を含む第1露光光(以下、「露光光(I)」ともいう)を照射する工程(以下、「一部照射工程」ともいう)と、上記一部照射工程後の上記レジスト材料膜の全面に、上記第1波長よりも長い第2波長(以下、「波長(II)」ともいう)の放射線を含む第2露光光(以下、「露光光(II)」ともいう)を照射する工程(以下、「全面照射工程」ともいう)と、上記全面照射工程後の上記レジスト材料膜を加熱する工程(以下、「加熱工程」ともいう)と、上記加熱工程後の上記レジスト材料膜を現像する工程(以下、「現像工程」ともいう)とを備え、上記化学増幅型レジスト材料が、(1)酸の作用により上記現像液に可溶又は不溶となるベース成分(以下、「[A]成分」ともいう)と、(2)上記露光光(I)の作用により光増感剤及び酸を発生する成分(以下、「[B]成分」ともいう)とを含有し、上記[B]成分が、感放射線性オニウムカチオンと、アニオンとを含み、上記感放射線性オニウムカチオンが、オニウム原子に結合する2つ以上の環員数6~20の芳香族炭素環を有し、上記芳香族炭素環のうちの少なくとも1つが置換基を有し、かつ上記芳香族炭素環のうちの少なくとも1つがオニウム原子に対してパラ位の炭素原子に結合する水素原子を有し、上記アニオンが、下記式(3-1)又は(3-2)で表されるパターン形成方法である。
(式(3-1)中、Rp1は、環員数5以上の環構造を含む1価の基である。Rp2は、2価の連結基である。Rp3及びRp4は、それぞれ独立して、水素原子、フッ素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。Rp5及びRp6は、それぞれ独立して、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。np1は、0~10の整数である。np2は、0~10の整数である。np3は、2~10の整数である。但し、np1+np2+np3は、2~30である。np1が2以上の場合、複数のRp2は同一又は異なる。np2が2以上の場合、複数のRp3は同一又は異なり、複数のRp4は同一又は異なる。複数のRp5は同一又は異なり、複数のRp6は同一又は異なる。
式(3-2)中、Rq1及びRq2は、それぞれ独立して、炭素数1~20の1価の有機基である。)
式(3-2)中、Rq1及びRq2は、それぞれ独立して、炭素数1~20の1価の有機基である。)
上記課題を解決するためになされた別の発明は、上記塗工工程と、上記一部照射工程と、上記全面照射工程と、上記加熱工程と、上記現像工程とを備えるレジストパターン形成方法に用いられる化学増幅型レジスト材料であって、[A]成分と、[B]成分とを含有し、上記[B]成分が、感放射線性オニウムカチオンと、アニオンとを含み、上記感放射線性オニウムカチオンが、オニウム原子に結合する2つ以上の環員数6~20の芳香族炭素環を有し、上記芳香族炭素環のうちの少なくとも1つが置換基を有し、かつ上記芳香族炭素環のうちの少なくとも1つがオニウム原子に対してパラ位の炭素原子に結合する水素原子を有し、上記アニオンが、上記式(3-1)又は(3-2)で表されることを特徴とする。
本発明のレジストパターン形成方法及び化学増幅型レジスト材料によれば、高い感度でナノエッジラフネスに優れるレジストパターンを形成することができる。従って、これらは今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。
<レジストパターン形成方法>
当該レジストパターン形成方法は、塗工工程と、一部照射工程と、全面照射工程と、加熱工程と、現像工程とを備える。当該レジストパターン形成方法において用いられる化学増幅型レジスト材料(以下、「レジスト材料(I)」ともいう)については後述する。
以下、各工程について説明する。
当該レジストパターン形成方法は、塗工工程と、一部照射工程と、全面照射工程と、加熱工程と、現像工程とを備える。当該レジストパターン形成方法において用いられる化学増幅型レジスト材料(以下、「レジスト材料(I)」ともいう)については後述する。
以下、各工程について説明する。
<塗工工程>
本工程では、基板に直接又は間接にレジスト材料(I)を塗工する。
本工程では、基板に直接又は間接にレジスト材料(I)を塗工する。
図1Aに示すように、塗工工程(S101)において、基板11に直接又は間接にレジスト材料膜12を形成する。具体的には、基板11(例えばウェハー)を用意し、基板11上にレジスト材料(I)を塗工してプレベークを行うことでレジスト材料膜12を形成する。
レジスト材料(I)の塗工方法としては、例えばスピンコート法、ロールコート法、ディップ法等が挙げられる。プレベークの温度の下限としては、50℃が好ましく、80℃がより好ましい。プレベークの温度の上限としては、150℃が好ましく、120℃がより好ましい。プレベークの時間の下限としては、10秒が好ましく、30秒がより好ましい。プレベークの時間の上限としては、600秒が好ましく、300秒がより好ましい。レジスト材料膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、300nmが好ましく、150nmがより好ましい。
図2に示すように、現像液がアルカリ現像液である場合、レジスト材料膜へ照射したエネルギー量が閾値Ea(以下、「潜像形成エネルギー」ともいう)を超えると、レジスト材料膜12には潜像が形成され、潜像が形成された部分は、現像液において溶解し始める。エネルギー量がさらに増加して閾値Et(以下、「必要エネルギー量」ともいう)を超えると、潜像が形成した部分は現像液において完全に溶解し除去される。
当該レジストパターン形成方法においては、この塗工工程の前に、上記基板に直接又は間接に有機下層膜を形成する工程(以下、「有機下層膜形成工程」ともいう)をさらに備えていてもよい。有機下層膜としては、例えばレジスト下層膜用組成物を用いて形成する有機膜、従来公知のCVD(Chemical Vapor Deposition)法により形成される炭素膜等が挙げられる。
また、上記有機下層膜形成工程と上記塗工工程との間に、上記有機下層膜に対し直接又は間接にシリコン含有膜を形成する工程(以下、「シリコン含有膜形成工程」ともいう)をさらに備えていてもよい。シリコン含有膜は、例えばポリシロキサン及び溶媒を含有するポリシロキサン組成物を用いて形成される。ポリシロキサンとしては、シロキサン結合を有するポリマーである限り特に限定されないが、加水分解性基を有するシラン化合物を含む化合物の加水分解縮合物が好ましい。
上記塗工工程の後に、上記レジスト材料膜に対し直接又は間接に保護膜を形成する工程を備えていてもよい。保護膜の形成により、液浸露光を行う場合の液浸液がレジスト材料膜と直接接触することを防ぎ、レジスト材料膜内部への液浸液の浸透及びレジスト材料膜成分の液浸液への溶出によるレジスト性能の劣化を抑制し、また、液浸液への溶出成分による露光装置のレンズ汚染を防止することができる。また、EUV、電子線等の放射線を用いる露光の際に、レジスト材料膜からのアウトガスの蒸散を低減することができるので、露光装置の汚染を防止することができる。保護膜は、例えばフッ素原子及び/又はケイ素原子を有する重合体と溶媒とを含有する組成物を用いて形成することができる。
<一部照射工程>
本工程では、上記露光工程により形成されたレジスト材料膜の一部に、露光光(I)を照射する。
本工程では、上記露光工程により形成されたレジスト材料膜の一部に、露光光(I)を照射する。
図1Bに示すように、一部照射工程(S103)において、露光光(I)の照射によってレジスト材料膜12を露光する。この露光光(I)は、[B]成分が吸収して光増感剤及び酸を発生することができる波長(I)の放射線を含む。露光光(I)の照射により、レジスト材料膜12内の[B]成分から光増感剤及び酸が発生する。[B]成分から発生した酸の作用により、[A]成分において極性変換、架橋、分解反応等が起こり、その結果、[A]成分の現像液への溶解性が変化する。現像によりレジストパターンを形成するには、[B]成分からの一定量の酸の発生が必要である。
露光光(I)としては、例えば電離放射線、400nm以下の波長を有する非電離放射線等が挙げられる。「電離放射線」とは、その照射により物質に電離作用を及ぼす放射線をいい、例えばα線、電子線、γ線、X線、極端紫外線、遠紫外線等が挙げられる。波長(I)の上限としては、300nmが好ましく、200nmがより好ましく、100nmがさらに好ましく、50nmが特に好ましい。波長(I)の下限としては、例えば0.01pmであり、1pmが好ましく、1nmがより好ましい。なお、粒子線である電子線の波長(λ(nm))は、加速電圧E(V)の値を用いて、λ=1.23/(E×(1+9.78×10-7×E))1/2の式で求めることができる。
露光光(I)は、後述する露光光(II)における波長(II)の放射線を実質的に含まないことが好ましい。露光光(I)が波長(II)の放射線を実質的に含まないことで、レジストパターンのナノエッジラフネスをより向上させることができる。
一部照射工程は、例えば真空又は不活性雰囲気で行われる。露光光(I)は、レジスト材料膜12を上方から照射するように、露光光源(1)21から出射される。ここでは、露光光(I)はレジスト材料膜12内の一部に、例えばマスクパターンを介してパターン状等の領域に照射される。なお、露光光(I)は、例えばUV(紫外線)、DUV(深紫外線)、EUV、X線のような電磁波である。また、露光光(I)は電子線やイオンビームであってもよい。露光光(I)としては、これらの中で、EUV及び電子線が好ましい。
図2に示すように、一部照射工程(S103)において、露光光(I)の照射量Efは、潜像形成エネルギー量Eaを超えない照射量である。即ち、一部照射工程(S103)では、[B]成分から現像時にレジストパターンを形成するのに必要な量よりも少ない酸を生成する。このため、一部照射工程(S103)を実行した段階では、現像液においてレジスト材料膜12は溶解せず、レジストパターンは形成されない。
<保持工程>
一部照射工程の後、図1Cに示すように、保持工程(S105)において、レジスト材料膜12の状態を保持する工程を備えていてもよい。具体的には、後述する全面照射工程(S107)が実行されるまでに、プレベークを行うことなく、環境を制御し、一部照射工程(S103)において露光光(I)を照射したレジスト材料膜12内の[B]成分から発生した光増感剤及び酸の量の減少を抑制する。
一部照射工程の後、図1Cに示すように、保持工程(S105)において、レジスト材料膜12の状態を保持する工程を備えていてもよい。具体的には、後述する全面照射工程(S107)が実行されるまでに、プレベークを行うことなく、環境を制御し、一部照射工程(S103)において露光光(I)を照射したレジスト材料膜12内の[B]成分から発生した光増感剤及び酸の量の減少を抑制する。
例えばレジスト材料膜12周辺の環境は、一部照射工程において生成した光増感剤及び酸の量の減少を制御できる雰囲気である。光増感剤及び酸の量の減少を制御できる雰囲気は、塩基性物質を含まない不活性ガス雰囲気又は真空雰囲気であってもよい。また、塩基性物質及び/又は酸素を遮断する保護膜が設けられてもよい。不活性ガス雰囲気の場合には、不活性ガスとして、例えば窒素ガス、ヘリウムガス、アルゴンガス等が用いられ、減圧、加圧下で用いることが可能である。真空雰囲気の場合には、レジスト材料膜12の周辺が真空下であれば良く、好ましくは、レジスト材料膜12の周辺を1Pa以下の真空にする。不活性ガス雰囲気又は真空雰囲気の環境中では、レジスト材料膜12に生成された増感体の量の減少が抑制される。
また、レジスト材料膜12周辺の環境は、レジスト材料膜12中の光増感剤及び/又は酸の量を増大できる雰囲気又は液体であってもよい。光増感剤及び/又は酸の量を増大できる雰囲気として活性ガス雰囲気を使用する。活性ガス雰囲気として、例えば吸収波長シフト用の反応性ガスを使用する。光増感剤及び酸の量を増大できる活性液体として、例えば吸収波長シフト用の反応性液体を使用する。レジスト材料膜12に生成された増感体は、活性ガス又は活性液体と反応し、後述する全面照射工程(S107)において活性物質α又は安定物質α1に変換される。活性物質α又は安定物質α1は[B]成分から生成した光増感剤と同様に光増感剤として機能し得る。活性物質αは、例えば芳香族化合物ラジカル、ヨウ素化合物ラジカルであり、安定物質α1は例えば芳香族化合物、ヨウ素化合物である。なお、活性液体を使用した場合には、全面照射工程(S107)が実行される前にレジスト材料膜12から活性液体を除去してもよく、活性液体を除去せずに全面照射工程(S107)を実行してもよい。
また、環境の制御の手法として、レジスト材料膜12の温度を制御する手法を用いてもよい。レジスト材料膜12の温度がある閾値温度を超えると光増感剤及び/又は酸の量が減少するため、レジスト材料膜12の温度を閾値温度以下に保持することにより、レジスト材料膜12の光増感剤及び/又は酸の量の減少を抑制することができる。例えば、一部照射工程(S103)の後に、保持工程(S105)において急冷処理を行うことによってレジスト材料膜12の温度を閾値温度以下に下げる。閾値温度は例えば30℃である。また、一部照射工程(S103)を所定の温度以下で行い、保持工程(S105)においてレジスト材料膜12の温度を閾値温度以下のままに保持してもよい。
また、全面照射工程(S107)が実行されるまでの間に、レジスト材料膜12が予期しない放射線に照射されると、光増感剤及び/又は酸の量が減少してしまうことがある。このため、保持工程(S105)において、レジスト材料膜12を放射線に照射されない環境に位置させる。
また、光増感剤及び/又は酸の量は時間が経過するにつれて減少するため、一部照射工程(S103)と後述する全面照射工程(S107)との間の経過時間を制御することで、レジスト材料膜12の光増感剤及び/又は酸の量の減少を抑制することもできる。一部照射工程から後述する全面照射工程までの時間は、60分以内であることが好ましい。なお、温度、照度又は時間の制御は、レジスト材料膜12周辺の環境の制御と同時に行われてもよい。
<全面照射工程>
本工程では、上記一部照射工程後の上記レジスト材料膜の全面に、露光光(II)を照射する。
本工程では、上記一部照射工程後の上記レジスト材料膜の全面に、露光光(II)を照射する。
一部照射工程(S103)又は保持工程(S105)の後に、図1Dに示すように、全面照射工程(S107)を実行する。全面照射工程では、波長(I)よりも長い波長(II)の放射線を含む露光光(II)の照射によって、露光光(I)で露光されたレジスト材料膜12にパターン潜像を形成する。露光光(II)は、[B]成分から生成した光増感剤、活性物質α及び/又は安定物質α1に作用し、[B]成分から酸を発生させることができる波長(II)を含む放射線である。露光光(II)によって照射されたレジスト材料膜12の部位では、[B]成分から生成した光増感剤及び活性物質α/安定物質α1の作用により、[B]成分からの光増感剤及び酸(又はこの酸とは構造が異なる酸)の発生が起こる。また、露光光(II)は、光増感剤及び活性物質α/安定物質α1の作用により[B]成分から酸を発生させると共に、レジスト材料膜12において、[B]成分から光増感剤及び酸を発生させる放射線であってもよい。この場合、露光光(II)によって照射されたレジスト材料膜12の部位では、[B]成分から光増感剤及び酸(又はこの酸とは構造が異なる酸)が生成すると共に、この光増感剤及び活性物質α/安定物質α1の作用により[B]成分から光増感剤及び酸(又はこの酸とは構造が異なる酸)が発生する。
露光光(II)としては、例えば波長が露光光(I)の放射線の波長より長く、かつ200nmを超える非電離放射線等が挙げられる。波長(II)としては、250nm超が好ましく、280nm超がより好ましく、300nm超がさらに好ましく、320nm超が特に好ましい。また、波長(II)としては、600nm以下が好ましく、500nm以下がより好ましく、400nm以下がさらに好ましい。
図2に示すように、全面照射工程(S107)において、露光光(II)の照射量Epは、潜像形成エネルギー量Eaを超えない照射量であり、かつ露光光(II)の照射量Epと露光光(I)の照射量Efの総和は、必要エネルギー量Etを超える。言い換えると、全面照射工程(S107)において、光増感剤及び活性物質α/安定物質α1の作用により[B]成分から発生した酸の量は、現像時にレジストパターンを形成するのに必要な量よりも少ないが、一部照射工程(S103)において[B]成分から生成された酸の量と全面照射工程(S107)において[B]成分から得られた酸の量との総和は、現像時にレジストパターンを形成するのに必要な量を超える。
露光光(II)は、レジスト材料膜12を上方から照射するように、露光光源(2)22から出射される。露光光源(2)22は、露光光(I)を出射する露光光源(1)21と同一であってもよく、露光光源(1)21と異なってもよい。ここでは、露光光(I)を一部に照射したレジスト材料膜12の領域内に対して、露光光(II)を全面に照射する。なお、露光光(II)は、形成するパターンの解像度に応じて選択でき、例えばUV、DUV、EUV、X線のような電磁波であってよく、電子線やイオンビームであってもよい。全面照射工程(2)は、例えば真空雰囲気、活性ガス雰囲気又は不活性雰囲気で行われる。このように、レジスト材料膜12には、露光光(I)のみによって照射された露光部位(A)121と、露光光(I)及び露光光(II)の両方によって照射された露光部位(B)122を有する(図1D参照)。
<加熱工程>
本工程では、上記全面照射工程後の上記レジスト材料膜を加熱する。
本工程では、上記全面照射工程後の上記レジスト材料膜を加熱する。
加熱は、例えば大気中、窒素、アルゴン等の不活性ガス雰囲気下で行う。加熱温度の下限としては、50℃が好ましく、70℃がより好ましい。加熱温度の上限としては、200℃が好ましく、180℃がより好ましい。加熱時間の下限としては、10秒が好ましく、30秒がより好ましい。加熱時間の上限としては、10分が好ましく、5分がより好ましい。
<現像工程>
本工程では、加熱工程後の上記レジスト材料膜を現像する。レジスト材料膜12の現像は、例えば、加熱工程の後、基板11を現像液槽に入れること等によって実行される。本実施形態において、レジスト材料膜12の露光部位(A)121が受けた照射量Efは、潜像形成エネルギー量Eaを超えていない。露光部位(A)121で[B]成分から生成された酸の量がレジストパターンの形成に必要な量より少ないため、現像液において露光部位(A)121は溶解しない。一方、レジスト材料膜12の露光部位(B)122が受けたエネルギー量Es(即ち、Ef+Ep)は、必要エネルギー量Etを超えている。露光部位(B)122では、露光工程(1)において[B]成分から生成された酸の量と、光増感剤等の作用により生成した酸の量との総和がレジストパターンの形成に必要な量を超えているため、現像液に露光部位(B)122は溶解する。このように、基板11上には、所定のレジストパターンが形成される(図1E)。
本工程では、加熱工程後の上記レジスト材料膜を現像する。レジスト材料膜12の現像は、例えば、加熱工程の後、基板11を現像液槽に入れること等によって実行される。本実施形態において、レジスト材料膜12の露光部位(A)121が受けた照射量Efは、潜像形成エネルギー量Eaを超えていない。露光部位(A)121で[B]成分から生成された酸の量がレジストパターンの形成に必要な量より少ないため、現像液において露光部位(A)121は溶解しない。一方、レジスト材料膜12の露光部位(B)122が受けたエネルギー量Es(即ち、Ef+Ep)は、必要エネルギー量Etを超えている。露光部位(B)122では、露光工程(1)において[B]成分から生成された酸の量と、光増感剤等の作用により生成した酸の量との総和がレジストパターンの形成に必要な量を超えているため、現像液に露光部位(B)122は溶解する。このように、基板11上には、所定のレジストパターンが形成される(図1E)。
現像工程で用いる現像液としては、アルカリ現像液でも、有機溶媒現像液でもよい。アルカリ現像液を用いることにより、ポジ型のレジストパターンが得られる。有機溶媒現像液を用いることにより、ネガ型のレジストパターンが得られる。
アルカリ現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中で、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
有機溶媒現像液としては、例えば炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、これらの有機溶媒を含有する液などが挙げられる。有機溶媒としては、例えば後述するレジスト材料(I)の[D]溶媒として例示した溶媒の1種又は2種以上等が挙げられる。これらの中でも、エステル系溶媒及びケトン系溶媒が好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸n-ブチルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。有機溶媒現像液中の有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。有機溶媒現像液中の有機溶媒以外の成分としては、例えば水、シリコンオイル等が挙げられる。
これらの現像液は、単独で又は2種以上を組み合わせて用いてもよい。なお、現像後は、水等で洗浄し、乾燥することが一般的である。
<化学増幅型レジスト材料>
レジスト材料(I)は、[A]成分と、[B]成分とを含有する。レジスト材料(I)は、[C]酸拡散制御体及び/又は[D]溶媒を含有することが好ましく、本発明の効果を損なわない範囲において、その他の成分を含有していてもよい。以下、各成分について説明する。
レジスト材料(I)は、[A]成分と、[B]成分とを含有する。レジスト材料(I)は、[C]酸拡散制御体及び/又は[D]溶媒を含有することが好ましく、本発明の効果を損なわない範囲において、その他の成分を含有していてもよい。以下、各成分について説明する。
<[A]成分>
[A]成分は、酸の作用により上記現像液に可溶又は不溶となるベース成分である。[A]成分としては、上記性質を有するものであれば特に限定されないが、酸解離性基を有する重合体(以下、「[A]重合体」ともいう)が好ましい。「酸解離性基」とは、カルボキシ基、スルホ基、フェノール性水酸基等の水素原子を置換する基であって、酸の作用により解離する基をいう。
[A]成分は、酸の作用により上記現像液に可溶又は不溶となるベース成分である。[A]成分としては、上記性質を有するものであれば特に限定されないが、酸解離性基を有する重合体(以下、「[A]重合体」ともいう)が好ましい。「酸解離性基」とは、カルボキシ基、スルホ基、フェノール性水酸基等の水素原子を置換する基であって、酸の作用により解離する基をいう。
[[A]重合体]
[A]重合体は、酸解離性基(以下、「酸解離性基(a)」ともいう)を有する重合体である。[A]重合体は酸解離性基(a)を有するので、後述する[B]成分から生じる酸の作用によりその酸解離性基(a)が解離する。その結果、[A]重合体の現像液に対する溶解性が変化するので、レジストパターンを形成することができる。
[A]重合体は、酸解離性基(以下、「酸解離性基(a)」ともいう)を有する重合体である。[A]重合体は酸解離性基(a)を有するので、後述する[B]成分から生じる酸の作用によりその酸解離性基(a)が解離する。その結果、[A]重合体の現像液に対する溶解性が変化するので、レジストパターンを形成することができる。
[A]重合体は、通常、酸解離性基(a)を含む構造単位(以下、「構造単位(I)」ともいう)を有している。[A]重合体は、構造単位(I)以外にも、フェノール性水酸基を含む構造単位(II)、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位(III)を有していてもよく、構造単位(I)~(III)以外のその他の構造単位を有していてもよい。[A]重合体は、各構造単位を1種又は2種以上有していてもよい。以下、各構造単位について説明する。
[構造単位(I)]
構造単位(I)は、酸解離性基(a)を含む構造単位である。酸解離性基(a)としては、例えば下記式(1-1)で表される基(以下、「基(I-1)」ともいう)、下記式(1-2)で表される基(以下、「基(I-2)」ともいう)等が挙げられる。
構造単位(I)は、酸解離性基(a)を含む構造単位である。酸解離性基(a)としては、例えば下記式(1-1)で表される基(以下、「基(I-1)」ともいう)、下記式(1-2)で表される基(以下、「基(I-2)」ともいう)等が挙げられる。
上記式(1-1)中、RXは、炭素数1~20の1価の炭化水素基である。RY及びRZは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造の一部を表す。
上記式(1-2)中、RUは、水素原子又は炭素数1~20の1価の炭化水素基であり、RV及びRWは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はRU、RV及びRWのうちの2つ以上が互いに合わせられこれらが結合する炭素原子又はC-Oと共に構成される環員数4~20の環構造の一部を表す。
上記式(1-2)中、RUは、水素原子又は炭素数1~20の1価の炭化水素基であり、RV及びRWは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はRU、RV及びRWのうちの2つ以上が互いに合わせられこれらが結合する炭素原子又はC-Oと共に構成される環員数4~20の環構造の一部を表す。
「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。
RX、RY、RZ、RU、RV又はRWで表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
炭素数1~20の1価の鎖状炭化水素基としては、例えば
メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
エテニル基、プロペニル基、ブテニル基等のアルケニル基;
エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
エテニル基、プロペニル基、ブテニル基等のアルケニル基;
エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
炭素数3~20の1価の脂環式炭化水素基としては、例えば
シクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基;
シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基;
ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基;
ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
シクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基;
シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基;
ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基;
ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
炭素数6~20の1価の芳香族炭化水素基としては、例えば
フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
RY及びRZが構成する環員数3~20の脂環構造としては、例えば
シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造等の単環の飽和脂環構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の飽和脂環構造;
シクロプロペン構造、シクロブテン構造、シクロペンテン構造、シクロヘキセン構造等の単環の不飽和脂環構造;
ノルボルネン構造、トリシクロデセン構造、テトラシクロドデセン構造等の多環の不飽和脂環構造などが挙げられる。
シクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造等の単環の飽和脂環構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の飽和脂環構造;
シクロプロペン構造、シクロブテン構造、シクロペンテン構造、シクロヘキセン構造等の単環の不飽和脂環構造;
ノルボルネン構造、トリシクロデセン構造、テトラシクロドデセン構造等の多環の不飽和脂環構造などが挙げられる。
RU、RV及びRWのうちの2つ以上が構成する環員数4~20の環構造としては、例えば上記RY及びRZが構成する脂環構造として例示したもののうち、環員数4~20のもの;
オキサシクロブタン構造、オキサシクロペンタン構造、オキサシクロヘキサン構造等のオキサシクロアルカン構造;オキサシクロブテン構造、オキサシクロペンテン構造、オキサシクロヘキセン構造等のオキサシクロアルケン構造などが挙げられる。
オキサシクロブタン構造、オキサシクロペンタン構造、オキサシクロヘキサン構造等のオキサシクロアルカン構造;オキサシクロブテン構造、オキサシクロペンテン構造、オキサシクロヘキセン構造等のオキサシクロアルケン構造などが挙げられる。
構造単位(I)としては、例えば下記式(1-1A)で表される構造単位(以下、「構造単位(I-1-1)」ともいう)、下記式(1-1B)で表される構造単位(以下、「構造単位(I-1-2)」ともいう)、下記式(1-2A)で表される構造単位(以下、「構造単位(I-2-1)」ともいう)、下記式(1-2B)で表される構造単位(以下、「構造単位(I-2-2)」ともいう)等が挙げられる。
上記式(1-1A)、(1-1B)、(1-2A)及び(1-2B)中、RX、RY及びRZは、上記式(1-1)と同義である。RU、RV及びRWは、上記式(1-2)と同義である。RTは、それぞれ独立して、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
RTとしては、構造単位(I)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましい。
構造単位(I)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、10モル%が好ましく、25モル%がより好ましく、40モル%がさらに好ましく、55モル%が特に好ましい。上記含有割合の上限としては、90モル%が好ましく、80モル%がより好ましく、75モル%がさらに好ましく、70モル%が特に好ましい。上記含有割合を上記範囲とすることで、感度及びナノエッジラフネスをより向上させることができる。
[構造単位(II)]
構造単位(II)は、フェノール性水酸基を含む構造単位である。「フェノール性水酸基」とは、ベンゼン環に直結するヒドロキシ基に限らず、芳香環に直結するヒドロキシ基全般をいう。[A]重合体は構造単位(II)をさらに有することで、現像液に対する溶解性をより適度に調整することができ、その結果、ナノエッジラフネスをより向上させることができる。また、パターンの基板への密着性を向上させることができる。さらに、KrF露光、EUV露光又は電子線露光の場合、感度をより高めることができる。
構造単位(II)は、フェノール性水酸基を含む構造単位である。「フェノール性水酸基」とは、ベンゼン環に直結するヒドロキシ基に限らず、芳香環に直結するヒドロキシ基全般をいう。[A]重合体は構造単位(II)をさらに有することで、現像液に対する溶解性をより適度に調整することができ、その結果、ナノエッジラフネスをより向上させることができる。また、パターンの基板への密着性を向上させることができる。さらに、KrF露光、EUV露光又は電子線露光の場合、感度をより高めることができる。
構造単位(II)としては、例えば下記式(2)で表される構造単位(以下、「構造単位(II-1)」ともいう)等が挙げられる。
上記式(2)中、Ar1は、炭素数6~20のアレーンから(p+q+1)個の芳香環上の水素原子を除いた基である。RPは、ハロゲン原子又は炭素数1~20の1価の有機基である。pは、0~11の整数である。qは、1~11の整数である。p+qは、11以下である。pが2以上の場合、複数のRPは同一又は異なる。L1は、単結合、酸素原子又は炭素数1~20の2価の有機基である。RQは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
Ar1を与える炭素数6~20のアレーンとしては、例えばベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、ピレン等が挙げられる。
「有機基」とは、少なくとも1個の炭素原子を含む基をいう。RPで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間に2価のヘテロ原子含有基を含む基(α)、上記炭化水素基及び基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基(β)、上記炭化水素基、基(α)及び基(β)のうち少なくとも1つと2価のヘテロ原子含有基とを組み合わせた基(γ)等が挙げられる。
炭素数1~20の1価の炭化水素基としては、例えば上記RX、RY、RZ、RU、RV及びRWの1価の炭化水素基として例示した基と同様の基等が挙げられる。
1価又は2価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。
1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。
RPとしては、ハロゲン原子又は1価の炭化水素基が好ましい。
pとしては、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。
qとしては、1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。
qとしては、1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。
L1で表される炭素数1~20の2価の有機基としては、例えば上記RPの1価の有機基として例示した基から1個の水素原子を除いた基等が挙げられる。
L1としては、単結合、酸素原子又はカルボニルオキシ基が好ましい。
RQとしては、構造単位(II)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、単結合がより好ましい。
構造単位(II)としては、例えばヒドロキシスチレンに由来する構造単位等が挙げられる。
[A]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合としては、[A]重合体を構成する全構造単位に対して、10モル%が好ましく、25モル%がより好ましく、35モル%がさらに好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、ナノエッジラフネスをより向上させることができる。また、KrF露光、EUV露光又は電子線露光の場合の感度をさらに高めることができる。
[構造単位(III)]
構造単位(III)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である。[A]重合体は、構造単位(III)をさらに有することで、現像液への溶解性をより調整することができ、その結果、ナノエッジラフネスをより向上させることができる。また、パターンと基板との密着性をより向上させることができる。
構造単位(III)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である。[A]重合体は、構造単位(III)をさらに有することで、現像液への溶解性をより調整することができ、その結果、ナノエッジラフネスをより向上させることができる。また、パターンと基板との密着性をより向上させることができる。
構造単位(III)としては、例えば下記式で表される構造単位等が挙げられる。
上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
構造単位(III)としては、これらの中で、ラクトン構造を含む構造単位が好ましく、ノルボルナンラクトン構造を含む構造単位がより好ましく、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位又はシアノノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位がさらに好ましい。
[A]重合体が構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、40モル%がさらに好ましい。上記含有割合の上限としては、70モル%が好ましく、60モル%がより好ましく、55モル%がさらに好ましい。上記含有割合を上記範囲とすることで、ナノエッジラフネスをさらに向上させることができる。またパターンの基板への密着性をさらに向上させることができる。
[その他の構造単位]
[A]重合体は、構造単位(I)~(III)以外にもその他の構造単位を有してもよい。その他の構造単位としては、例えば極性基を含む構造単位(但し、構造単位(II)を除く)、非解離性の炭化水素基を含む構造単位等が挙げられる。極性基としては、例えばアルコール性ヒドロキシ基、ヒドロキシフッ素化炭化水素基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等が挙げられる。非解離性の炭化水素基としては、例えば直鎖状のアルキル基等が挙げられる。その他の構造単位の含有割合の上限としては、20モル%が好ましく、10モル%がより好ましい。
[A]重合体は、構造単位(I)~(III)以外にもその他の構造単位を有してもよい。その他の構造単位としては、例えば極性基を含む構造単位(但し、構造単位(II)を除く)、非解離性の炭化水素基を含む構造単位等が挙げられる。極性基としては、例えばアルコール性ヒドロキシ基、ヒドロキシフッ素化炭化水素基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等が挙げられる。非解離性の炭化水素基としては、例えば直鎖状のアルキル基等が挙げられる。その他の構造単位の含有割合の上限としては、20モル%が好ましく、10モル%がより好ましい。
[A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、2,000が好ましく、4,000がより好ましく、5,500がさらに好ましく、6,500が特に好ましい。上記Mwの上限としては、50,000が好ましく、20,000がより好ましく、10,000がさらに好ましく、9,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、感度及びナノエッジラフネス性能をより向上させることができる。
[A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の上限としては、5が好ましく、3がより好ましく、2がさらに好ましい。上記比の下限は、通常1であり、1.3が好ましい。
本明細書における重合体のMw及びMnは、以下の条件によるGPCを用いて測定される値である。
GPCカラム:例えば東ソー(株)の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本
カラム温度:40℃
溶出溶媒:テトラヒドロフラン(和光純薬工業(株))
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
GPCカラム:例えば東ソー(株)の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本
カラム温度:40℃
溶出溶媒:テトラヒドロフラン(和光純薬工業(株))
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
[A]成分の含有量の下限としては、レジスト材料(I)の[D]溶媒以外の全成分に対して、70質量%が好ましく、80質量%がより好ましく、85質量%がさらに好ましい。
<[A]成分の合成方法>
[A]成分のうち、[A]重合体は、例えば各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶媒中で重合することにより合成できる。
[A]成分のうち、[A]重合体は、例えば各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶媒中で重合することにより合成できる。
<[B]成分>
[B]成分は、露光により光増感剤及び酸を発生する成分であって、感放射線性オニウムカチオン(以下、「カチオン(X)」ともいう)と、アニオン(以下、「アニオン(Y)」ともいう)とを含む。カチオン(X)は、オニウム原子に結合する2つ以上の環員数6~20の芳香族炭素環を有し、上記芳香族炭素環のうちの少なくとも1つが置換基を有し、かつ上記芳香族炭素環のうちの少なくとも1つがオニウム原子に対してパラ位の炭素原子に結合する水素原子を有する。アニオン(Y)は、式(3-1)又は(3-2)で表されるアニオンである。
[B]成分は、露光により光増感剤及び酸を発生する成分であって、感放射線性オニウムカチオン(以下、「カチオン(X)」ともいう)と、アニオン(以下、「アニオン(Y)」ともいう)とを含む。カチオン(X)は、オニウム原子に結合する2つ以上の環員数6~20の芳香族炭素環を有し、上記芳香族炭素環のうちの少なくとも1つが置換基を有し、かつ上記芳香族炭素環のうちの少なくとも1つがオニウム原子に対してパラ位の炭素原子に結合する水素原子を有する。アニオン(Y)は、式(3-1)又は(3-2)で表されるアニオンである。
当該レジストパターン形成方法によれば、上記各工程を備え、用いるレジスト材料(I)が[A]成分と[B]成分とを含有することで、高い感度でナノエッジラフネスに優れるレジストパターンを形成することができる。当該レジストパターン形成方法が上記構成を備えることで上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[B]成分のカチオン(X)において、2つ以上の芳香族炭素環を有し、これらの芳香族炭素環の少なくともいずれかにおいて、置換基を有しており、また、パラ位が水素原子である特定構造を有している。上述の一部照射工程における露光光(I)の照射により、このような特定構造を有するカチオン(X)は分解して分解生成物を与えるが、この分解生成物は、最大吸収波長が比較的長波長のものとなり、上述の全面照射工程において効果的な光増感剤として機能し、全面照射工程における露光光(II)により、高い効率で酸を発生させることができる。その結果、高い感度でレジストパターンを形成することが可能となり、また、[B]成分のアニオン(Y)を上記特定構造のものとすることで、形成するレジストパターンのナノエッジラフネスを向上させることができると考えられる。
以下、カチオン(X)及びアニオン(Y)について説明する。
以下、カチオン(X)及びアニオン(Y)について説明する。
(カチオン(X))
カチオン(X)は、感放射線性オニウムカチオンであって、オニウム原子に結合する2以上の環員数6~20の芳香族炭素環を有し、上記芳香族炭素環のうちの少なくとも1つが置換基(以下、「置換基(a)」ともいう)を有し、かつ上記芳香族炭素環のうちの少なくとも1つがオニウム原子に対してパラ位の炭素原子に結合する水素原子を有する。
カチオン(X)は、感放射線性オニウムカチオンであって、オニウム原子に結合する2以上の環員数6~20の芳香族炭素環を有し、上記芳香族炭素環のうちの少なくとも1つが置換基(以下、「置換基(a)」ともいう)を有し、かつ上記芳香族炭素環のうちの少なくとも1つがオニウム原子に対してパラ位の炭素原子に結合する水素原子を有する。
ここで、「オニウム原子」とは、カチオン(X)を構成する原子のうち、2以上の環員数6~20の芳香族炭素環が結合し、カチオン(X)の正電荷を担うヘテロ原子を指す。カチオン(X)におけるオニウム原子としては、例えば酸素原子、窒素原子、リン原子、硫黄原子、ヒ素原子、セレン原子、テルル原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。これらの中で、硫黄原子又はヨウ素原子が好ましい。
オニウム原子に結合する芳香族炭素環の数の下限としては、2であり、3が好ましい。上記数の上限としては、例えば4である。
環員数6~20の芳香族炭素環としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラセン環、ピレン環等が挙げられる。これらの中で、ベンゼン環又はナフタレン環が好ましく、ベンゼン環がより好ましい。
置換基(a)としては、例えば炭素数1~20の1価の有機基、ヒドロキシ基、ハロゲン原子、ニトロ基等が挙げられる。
置換基(a)の炭素数1~20の1価の有機基としては、例えば上記式(2)のRPの1価の有機基として例示した基と同様の基等が挙げられる。
置換基(a)としては、電子求引性基が好ましい。置換基(a)が電子求引性基であると、[B]成分から発生する光増感剤の最大吸収波長がより長波長となり、その結果、感度及びナノエッジラフネスがより向上する。電子求引性基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、シアノ基、ニトロ基、メトキシ基、エトキシ基等のアルコキシ基、アセチル基、ベンゾイル基等のアシル基、メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基、メチルスルホニル基、エチルスルホニル基等のアルキルスルホニル基、メチル基、i-プロピル基、t-ブチル基等のアルキル基などが挙げられる。
芳香族炭素環における置換基(a)の結合位置としては、オニウム原子に対してパラ位の炭素原子が好ましい。置換基(a)がパラ位に結合すると、[B]成分から発生する光増感剤の最大吸収波長がより長波長となり、その結果、感度及びナノエッジラフネスがより向上する。
1つの芳香族炭素環に結合する置換基(a)の数は、通常1~3である。
カチオン(X)中の置換基(a)の数は、通常1~6である。
カチオン(X)中の置換基(a)の数は、通常1~6である。
カチオン(X)としては、置換基(a)を有する芳香族炭素環と、オニウム原子に対してパラ位の炭素原子に結合する水素原子を有する芳香族炭素環とを共に有するカチオンが好ましい。
カチオン(X)としては、下記式(a1)又は(a2)で表されるカチオンが好ましい。このようなカチオンは、電子求引性基を有する芳香族炭素環と、オニウム原子に対してパラ位の炭素原子に結合する水素原子を有する芳香族炭素環とを共に有するので、[B]成分から発生する光増感剤の最大吸収波長がより長波長となり、その結果、感度及びナノエッジラフネスがさらに向上する。
上記式(a1)中、xは、0~4の整数である。xが1の場合、R1は、1価の置換基である。xが2以上の場合、複数のR1は、同一又は異なり、1価の置換基であるか、又は複数のR1のうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。yは、0~5の整数である。yが1の場合、R2は、1価の置換基である。yが2以上の場合、複数のR2は、同一又は異なり、1価の置換基であるか、又は複数のR2のうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。zは、0~5の整数である。zが1の場合、R3は、1価の置換基である。zが2以上の場合、複数のR3は、同一又は異なり、1価の置換基であるか、又は複数のR3のうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。但し、y及びzの少なくとも一方は1以上であり、R2及びR3のうちの少なくとも1つは電子求引性基である。
上記式(a2)中、vは、0~4の整数である。vが1の場合、R4は、1価の置換基である。vが2以上の場合、複数のR4は、同一又は異なり、1価の置換基であるか、又は複数のR4のうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。wは、1~5の整数である。wが1の場合、R5は、1価の置換基である。wが2以上の場合、複数のR5は、同一又は異なり、複数のR5のうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。但し、R5のうちの少なくとも1つは電子求引性基である。
R1~R5で表される1価の置換基としては、例えば上記置換基(a)として例示した基と同様の基等が挙げられる。
複数のR1~R5のうちの2つ以上が構成する環員数4~20の環構造としては、例えば
シクロブテン構造、シクロペンテン構造、シクロヘキセン構造等のシクロアルケン構造;
ベンゼン構造、ナフタレン構造、アントラセン構造、フェナントレン構造等の芳香族炭素環構造などが挙げられる。
シクロブテン構造、シクロペンテン構造、シクロヘキセン構造等のシクロアルケン構造;
ベンゼン構造、ナフタレン構造、アントラセン構造、フェナントレン構造等の芳香族炭素環構造などが挙げられる。
x及びvとしては、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。
y、z及びwとしては、1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。
y、z及びwとしては、1~3が好ましく、1又は2がより好ましく、1がさらに好ましい。
カチオン(X)としては、例えば
スルホニウムカチオンとして、4-アルキルスルホニルフェニルジフェニルスルホニウムカチオン、4-アルコキシフェニルジフェニルスルホニウムカチオン、4-ハロフェニルジフェニルスルホニウムカチオン、4-シアノフェニルジフェニルスルホニウムカチオン、4-アリールカルボニルフェニルジフェニルスルホニウムカチオン、4-アルコキシカルボニルフェニルスルホニウムカチオン、ジ(4-アルキルスルホニルフェニル)フェニルスルホニウムカチオン、4-アルキルスルホニルフェニル4-ハロフェニルフェニルスルホニウムカチオン等が、
ヨードニウムカチオンとして、4-ニトロフェニルフェニルヨードニウムカチオン、4-アルキルフェニルフェニルヨードニウムカチオン等が挙げられる。
スルホニウムカチオンとして、4-アルキルスルホニルフェニルジフェニルスルホニウムカチオン、4-アルコキシフェニルジフェニルスルホニウムカチオン、4-ハロフェニルジフェニルスルホニウムカチオン、4-シアノフェニルジフェニルスルホニウムカチオン、4-アリールカルボニルフェニルジフェニルスルホニウムカチオン、4-アルコキシカルボニルフェニルスルホニウムカチオン、ジ(4-アルキルスルホニルフェニル)フェニルスルホニウムカチオン、4-アルキルスルホニルフェニル4-ハロフェニルフェニルスルホニウムカチオン等が、
ヨードニウムカチオンとして、4-ニトロフェニルフェニルヨードニウムカチオン、4-アルキルフェニルフェニルヨードニウムカチオン等が挙げられる。
(アニオン(Y))
アニオン(Y)は、下記式(3-1)又は(3-2)で表されるアニオンである。アニオン(Y)は、カチオン(X)の分解により生成するプロトンと共に酸を形成する。
アニオン(Y)は、下記式(3-1)又は(3-2)で表されるアニオンである。アニオン(Y)は、カチオン(X)の分解により生成するプロトンと共に酸を形成する。
上記式(3-1)中、Rp1は、環員数5以上の環構造を含む1価の基である。Rp2は、2価の連結基である。Rp3及びRp4は、それぞれ独立して、水素原子、フッ素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。Rp5及びRp6は、それぞれ独立して、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。np1は、0~10の整数である。np2は、0~10の整数である。np3は、2~10の整数である。但し、np1+np2+np3は、2~30である。np1が2以上の場合、複数のRp2は同一又は異なる。np2が2以上の場合、複数のRp3は同一又は異なり、複数のRp4は同一又は異なる。複数のRp5は同一又は異なり、複数のRp6は同一又は異なる。なお、「環員数」とは、脂環構造、芳香環構造、脂肪族複素環構造及び芳香族複素環構造の環を構成する原子数をいい、多環の場合は、この多環を構成する原子数をいう。
上記式(3-2)中、Rq1及びRq2は、それぞれ独立して、炭素数1~20の1価の有機基である。
Rp1で表される環員数5以上の環構造を含む1価の基としては、例えば環員数5以上の脂環構造を含む1価の基、環員数5以上の脂肪族複素環構造を含む1価の基、環員数5以上の芳香環構造を含む1価の基、環員数5以上の芳香族複素環構造を含む1価の基等が挙げられる。
環員数5以上の脂環構造としては、例えば
シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロノナン構造、シクロデカン構造、シクロドデカン構造等の単環の飽和脂環構造;
シクロペンテン構造、シクロヘキセン構造、シクロヘプテン構造、シクロオクテン構造、シクロデセン構造等の単環の不飽和脂環構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の飽和脂環構造;
ノルボルネン構造、トリシクロデセン構造等の多環の不飽和脂環構造等が挙げられる。
シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロノナン構造、シクロデカン構造、シクロドデカン構造等の単環の飽和脂環構造;
シクロペンテン構造、シクロヘキセン構造、シクロヘプテン構造、シクロオクテン構造、シクロデセン構造等の単環の不飽和脂環構造;
ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の飽和脂環構造;
ノルボルネン構造、トリシクロデセン構造等の多環の不飽和脂環構造等が挙げられる。
環員数5以上の脂肪族複素環構造としては、例えば
ヘキサノラクトン構造、ノルボルナンラクトン構造等のラクトン構造;
ヘキサノスルトン構造、ノルボルナンスルトン構造等のスルトン構造;
オキサシクロヘプタン構造、オキサノルボルナン構造等の酸素原子含有複素環構造;
アザシクロヘキサン構造、ジアザビシクロオクタン構造等の窒素原子含有複素環構造;
チアシクロヘキサン構造、チアノルボルナン構造等の硫黄原子含有複素環構造などが挙げられる。
ヘキサノラクトン構造、ノルボルナンラクトン構造等のラクトン構造;
ヘキサノスルトン構造、ノルボルナンスルトン構造等のスルトン構造;
オキサシクロヘプタン構造、オキサノルボルナン構造等の酸素原子含有複素環構造;
アザシクロヘキサン構造、ジアザビシクロオクタン構造等の窒素原子含有複素環構造;
チアシクロヘキサン構造、チアノルボルナン構造等の硫黄原子含有複素環構造などが挙げられる。
環員数5以上の芳香環構造としては、例えばベンゼン構造、ナフタレン構造、フェナントレン構造、アントラセン構造等が挙げられる。
環員数5以上の芳香族複素環構造としては、例えば
フラン構造、ピラン構造、ベンゾフラン構造、ベンゾピラン構造等の酸素原子含有複素環構造;
ピリジン構造、ピリミジン構造、インドール構造等の窒素原子含有複素環構造などが挙げられる。
フラン構造、ピラン構造、ベンゾフラン構造、ベンゾピラン構造等の酸素原子含有複素環構造;
ピリジン構造、ピリミジン構造、インドール構造等の窒素原子含有複素環構造などが挙げられる。
Rp1の環構造の環員数の下限としては、6が好ましく、8がより好ましく、9がさらに好ましく、10が特に好ましい。上記環員数の上限としては、15が好ましく、14がより好ましく、13がさらに好ましく、12が特に好ましい。上記環員数を上記範囲とすることで、上述の酸の拡散長をさらに適度に短くすることができ、その結果、ナノエッジラフネスをより向上させることができる。
Rp1の環構造が有する水素原子の一部又は全部は、置換基で置換されていてもよい。上記置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中でヒドロキシ基が好ましい。
Rp1としては、環員数5以上の脂環構造を含む1価の基又は環員数5以上の脂肪族複素環構造を含む1価の基が好ましく、環員数9以上の脂環構造を含む1価の基又は環員数9以上の脂肪族複素環構造を含む1価の基がより好ましく、アダマンチル基、ヒドロキシアダマンチル基、ノルボルナンラクトン-イル基、ノルボルナンスルトン-イル基又は5-オキソ-4-オキサトリシクロ[4.3.1.13,8]ウンデカン-イル基がさらに好ましく、アダマンチル基が特に好ましい。
Rp2で表される2価の連結基としては、例えばカルボニル基、エーテル基、カルボニルオキシ基、スルフィド基、チオカルボニル基、スルホニル基、2価の炭化水素基等が挙げられる。これらの中で、カルボニルオキシ基、スルホニル基、アルカンジイル基又は2価の脂環式飽和炭化水素基が好ましく、カルボニルオキシ基又は2価の脂環式飽和炭化水素基がより好ましく、カルボニルオキシ基又はノルボルナンジイル基がさらに好ましく、カルボニルオキシ基が特に好ましい。
Rp3及びRp4で表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20のアルキル基等が挙げられる。Rp3及びRp4で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp3及びRp4としては、水素原子、フッ素原子又はフッ素化アルキル基が好ましく、水素原子、フッ素原子又はパーフルオロアルキル基がより好ましく、水素原子、フッ素原子又はトリフルオロメチル基がさらに好ましい。
Rp5及びRp6で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp5及びRp6としては、フッ素原子又はフッ素化アルキル基が好ましく、フッ素原子又はパーフルオロアルキル基がより好ましく、フッ素原子又はトリフルオロメチル基がさらに好ましく、フッ素原子が特に好ましい。
np1としては、0~5の整数が好ましく、0~3の整数がより好ましく、0~2の整数がさらに好ましく、0又は1が特に好ましい。
np2としては、0~5の整数が好ましく、1~4の整数がより好ましく、3又は4がさらに好ましく、4が特に好ましい。
np3の下限は、2である。np3を2以上とすることで、化合物(3-1)から生じる酸の強さを高めることができ、その結果、ナノエッジラフネスをより向上させることができる。np3の上限としては、6が好ましく、4がより好ましく、3がさらに好ましい。
np1+np2+np3の下限としては、4が好ましく、6がより好ましい。np1+np2+np3の上限としては、20が好ましく、10がより好ましい。
上記式(3-2)におけるRq1及びRq2で表される炭素数1~20の1価の有機基としては、例えば上記式(2)のRPの1価の有機基として例示した基と同様の基等が挙げられる。
Rq1及びRq2としては、1価の炭化水素基が好ましく、1価の脂環式炭化水素基がより好ましく、シクロアルキル基がさらに好ましく、シクロヘキシル基が特に好ましい。
[B]成分から発生する光増感剤の最大吸収波長の下限としては、310nmが好ましく、315nmがより好ましく、320nmがさらに好ましく、330nmが特に好ましく、340nmがさらに特に好ましく、350nmが最も好ましい。
[B]成分の含有量の下限としては、[A]成分100質量部に対して、1質量部が好ましく、3質量部がより好ましく、5質量部がさらに好ましく、10質量部が特に好ましく、15質量部がさらに特に好ましく、20質量部が最も好ましい。[B]成分の含有量を上記範囲とすることで、感度及びナノエッジラフネスをより向上させることができる。
[[C]酸拡散制御体]
[C]酸拡散制御体は、露光により[B]成分から生じる酸のレジスト材料膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。また、レジスト材料(I)の貯蔵安定性がさらに向上すると共に、レジスト材料としての解像度がより向上する。さらに、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れたレジスト材料が得られる。[C]酸拡散制御体のレジスト材料(I)における含有形態としては、低分子化合物(以下、適宜「[C]酸拡散制御剤」という)の形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
[C]酸拡散制御体は、露光により[B]成分から生じる酸のレジスト材料膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する効果を奏する。また、レジスト材料(I)の貯蔵安定性がさらに向上すると共に、レジスト材料としての解像度がより向上する。さらに、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れたレジスト材料が得られる。[C]酸拡散制御体のレジスト材料(I)における含有形態としては、低分子化合物(以下、適宜「[C]酸拡散制御剤」という)の形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
[C]酸拡散制御剤としては、例えば窒素含有化合物、光崩壊性塩基等が挙げられる。
窒素含有化合物としては、例えばアミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。
アミン化合物としては、例えば
n-ヘキシルアミン等のモノアルキルアミン類;
ジ-n-ブチルアミン等のジアルキルアミン類;
トリエチルアミン、トリn-ペンチルアミン、トリオクチルアミン等のトリアルキルアミン類;
アニリン等の芳香族アミン類;
エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン等;
ポリエチレンイミン、ポリアリルアミン等のポリアミン化合物;
ジメチルアミノエチルアクリルアミド等の重合体などが挙げられる。
n-ヘキシルアミン等のモノアルキルアミン類;
ジ-n-ブチルアミン等のジアルキルアミン類;
トリエチルアミン、トリn-ペンチルアミン、トリオクチルアミン等のトリアルキルアミン類;
アニリン等の芳香族アミン類;
エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン等;
ポリエチレンイミン、ポリアリルアミン等のポリアミン化合物;
ジメチルアミノエチルアクリルアミド等の重合体などが挙げられる。
アミド基含有化合物としては、例えばホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等が挙げられる。
ウレア化合物としては、例えば尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリブチルチオウレア等が挙げられる。
含窒素複素環化合物としては、例えばピリジン、2-メチルピリジン等のピリジン類;N-プロピルモルホリン、N-(ウンデカン-1-イルカルボニルオキシエチル)モルホリン等のモルホリン類;ピラジン、ピラゾール等が挙げられる。
また、上記窒素含有化合物として、酸解離性基を有する化合物を用いることもできる。このような酸解離性基を有する窒素含有化合物としては、例えばN-t-ブトキシカルボニルピペリジン、N-t-ブトキシカルボニルイミダゾール、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-(t-ブトキシカルボニル)ジ-n-オクチルアミン、N-(t-ブトキシカルボニル)ジエタノールアミン、N-(t-ブトキシカルボニル)ジシクロヘキシルアミン、N-(t-ブトキシカルボニル)ジフェニルアミン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-アミルオキシカルボニル-4-ヒドロキシピペリジン等が挙げられる。
光崩壊性塩基は、塩基性を有する化合物であって、その塩基性が露光により低下又は喪失する化合物である。光崩壊性塩基は、未露光部ではその塩基性により酸拡散制御性を発揮するが、露光部では、露光により分解して発生した酸により塩基性が低減するため、酸拡散制御性を失う。光崩壊性塩基としては、例えば下記式(4-1)又は(4-2)で表される化合物等が挙げられる。
上記式(4-1)及び(4-2)中、RA~REは、それぞれ独立して、水素原子、アルキル基、アルコキシ基、ヒドロキシ基又はハロゲン原子である。E-及びQ-は、それぞれ独立して、OH-、Rα-COO-、Rβ-OCOCOO-、Rγ-SO3
-又は下記式(5)で表されるアニオンである。Rα及びRβは、それぞれ独立して、アルキル基、1価の脂環式飽和炭化水素基又はアラルキル基である。Rγは、アルキル基、オキソ基置換若しくは非置換の1価の脂環式飽和炭化水素基又はアラルキル基である。
上記式(5)中、RSは、炭素数1~12のアルキル基、炭素数1~12のフッ素化アルキル基又は炭素数1~12のアルコキシ基である。uは、0~2の整数である。uが2の場合、2つのRSは同一又は異なる。
RA~REで表されるアルキル基としては、例えば上記式(1-1)のRX、RY及びRZにおいてアルキル基として例示した基と同様の基等が挙げられる。RA~REで表されるアルコキシ基としては、例えば上記カチオン(X)の置換基(a)においてアルコキシ基として例示した基と同様の基等が挙げられる。
Rα、Rβ及びRγで表されるアルキル基、1価の脂環式飽和炭化水素基及びアラルキル基としては、例えば上記式(1-1)のRX、RY及びRZのアルキル基、単環又は多環の脂環式飽和炭化水素基及びアラルキル基として例示した基と同様の基等が挙げられる。Rγで表されるオキソ基置換の1価の脂環式飽和炭化水素基としては、例えば4-オキソシクロヘキシル基、2-オキソ-7,7-ジメチルビシクロ[2.2.1]へプタン-1-イルメチル基等が挙げられる。
RSで表される炭素数1~12のアルキル基としては、例えば上記式(1-1)のRX、RY及びRZにおいてアルキル基として例示した基のうち炭素数が1~12のもの等が挙げられる。RSで表される炭素数1~12のフッ素化アルキル基としては、上記例示した炭素1~12のアルキル基が有する水素原子の一部又は全部をフッ素原子で置換した基等が挙げられる。RSで表される炭素数1~12のアルコキシ基としては、例えば上記カチオン(X)の置換基(a)においてアルコキシ基として例示した基と同様の基等が挙げられる。uとしては、0又は1が好ましい。
E-及びQ-としては、例えば下記式で表されるアニオン等が挙げられる。
光崩壊性塩基としては、例えばトリフェニルスルホニウムサリチレート、トリフェニルスルホニウム2-ヒドロキシ-4-トリフルオロメチル-1-ベンゾエート、トリフェニルスルホニウムアダマンタン-1-イルオキサレート、トリフェニルスルホニウム10-カンファースルホネート等が挙げられる。
レジスト材料(I)が[C]酸拡散制御剤を含有する場合、[C]酸拡散制御剤の含有量の下限としては、[A]成分100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、10質量部がより好ましく、5質量部がさらに好ましく、3質量部が特に好ましい。[C]酸拡散制御剤の含有量を上記範囲とすることで、ナノエッジラフネスをより向上させることができる。
<[D]溶媒>
レジスト材料(I)は、通常[D]溶媒を含有する。[D]溶媒は、少なくとも[A]成分、[B]成分及び所望により含有される[C]酸拡散制御体等を溶解又は分散可能な溶媒であれば特に限定されない。
レジスト材料(I)は、通常[D]溶媒を含有する。[D]溶媒は、少なくとも[A]成分、[B]成分及び所望により含有される[C]酸拡散制御体等を溶解又は分散可能な溶媒であれば特に限定されない。
[D]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
アルコール系溶媒としては、例えば
メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒等が挙げられる。
メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、sec-ブタノール、tert-ブタノール、n-ペンタノール、iso-ペンタノール、2-メチルブタノール、sec-ペンタノール、tert-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、3-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチル-4-ヘプタノール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フルフリルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等のモノアルコール系溶媒;
エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の多価アルコール系溶媒;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル等の多価アルコール部分エーテル系溶媒等が挙げられる。
エーテル系溶媒としては、例えば
ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶媒;
テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒等が挙げられる。
ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶媒;
テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒等が挙げられる。
ケトン系溶媒としては、例えば
アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒;
シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;
2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒;
シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒;
2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
アミド系溶媒としては、例えば
N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒等が挙げられる。
N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒等が挙げられる。
エステル系溶媒としては、例えば
酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸i-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル等の酢酸エステル系溶媒;
エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶媒;
エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒;
γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル系溶媒;
ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。
酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸iso-プロピル、酢酸n-ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸i-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル等の酢酸エステル系溶媒;
エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶媒;
エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒;
γ-ブチロラクトン、δ-バレロラクトン等のラクトン系溶媒;
乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル系溶媒;
ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、アセト酢酸メチル、アセト酢酸エチル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチルなどが挙げられる。
炭化水素系溶媒としては、例えば
n-ペンタン、iso-ペンタン、n-ヘキサン、iso-ヘキサン、n-ヘプタン、iso-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、iso-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、iso-プロピルベンゼン、ジエチルベンゼン、iso-ブチルベンゼン、トリエチルベンゼン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒等が挙げられる。
n-ペンタン、iso-ペンタン、n-ヘキサン、iso-ヘキサン、n-ヘプタン、iso-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、iso-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;
ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンゼン、iso-プロピルベンゼン、ジエチルベンゼン、iso-ブチルベンゼン、トリエチルベンゼン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶媒等が挙げられる。
これらの中で、エステル系溶媒及びケトン系溶媒からなる群から選ばれる溶媒が好ましく、多価アルコール部分エーテルアセテート系溶媒、乳酸エステル系溶媒、ラクトン系溶媒及び環状ケトン系溶媒からなる群から選ばれる溶媒がより好ましく、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、γ-ブチロラクトン及びシクロヘキサノンからなる群から選ばれる溶媒がさらに好ましい。[D]溶媒は、1種又は2種以上を用いることができる。
<その他の成分>
その他の成分としては、例えばフッ素原子含有重合体、界面活性剤等が挙げられる。レジスト材料(I)は、その他の成分をそれぞれ1種又は2種以上含有していてもよい。
その他の成分としては、例えばフッ素原子含有重合体、界面活性剤等が挙げられる。レジスト材料(I)は、その他の成分をそれぞれ1種又は2種以上含有していてもよい。
[フッ素原子含有重合体]
フッ素原子含有重合体は[A]成分よりもフッ素原子含有率が大きい重合体である。レジスト材料(I)がフッ素原子含有重合体を含有すると、レジスト材料膜を形成した際に、レジスト膜中のフッ素原子含有重合体の撥油性的特徴により、その分布がレジスト膜表面近傍に偏在化する傾向があり、液浸露光等の際における酸発生体、酸拡散制御体等が液浸媒体に溶出することを抑制することができる。また、このフッ素原子含有重合体の撥水性的特徴により、レジスト膜と液浸媒体との前進接触角を所望の範囲に制御でき、バブル欠陥の発生を抑制することができる。さらに、レジスト膜と液浸媒体との後退接触角が高くなり、水滴が残らずに高速でのスキャン露光が可能となる。このように、レジスト材料(I)は、フッ素原子含有重合体をさらに含有することで、液浸露光法に好適なレジスト材料膜を形成することができる。
フッ素原子含有重合体は[A]成分よりもフッ素原子含有率が大きい重合体である。レジスト材料(I)がフッ素原子含有重合体を含有すると、レジスト材料膜を形成した際に、レジスト膜中のフッ素原子含有重合体の撥油性的特徴により、その分布がレジスト膜表面近傍に偏在化する傾向があり、液浸露光等の際における酸発生体、酸拡散制御体等が液浸媒体に溶出することを抑制することができる。また、このフッ素原子含有重合体の撥水性的特徴により、レジスト膜と液浸媒体との前進接触角を所望の範囲に制御でき、バブル欠陥の発生を抑制することができる。さらに、レジスト膜と液浸媒体との後退接触角が高くなり、水滴が残らずに高速でのスキャン露光が可能となる。このように、レジスト材料(I)は、フッ素原子含有重合体をさらに含有することで、液浸露光法に好適なレジスト材料膜を形成することができる。
フッ素原子含有重合体の含有量の下限としては、[A]成分100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましい。上記含有量の上限としては、20質量部が好ましく、15質量部がより好ましく、10質量部がさらに好ましい。
[界面活性剤]
界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤;市販品としては、KP341(信越化学工業(株))、ポリフローNo.75、同No.95(以上、共栄社化学(株))、エフトップEF301、同EF303、同EF352(以上、(株)トーケムプロダクツ)、メガファックF171、同F173(以上、DIC(株))、フロラードFC430、同FC431(以上、住友スリーエム(株))、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子(株))等が挙げられる。上記界面活性剤の含有量の上限としては、[A]成分100質量部に対して、2質量部が好ましい。
界面活性剤は、塗布性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤;市販品としては、KP341(信越化学工業(株))、ポリフローNo.75、同No.95(以上、共栄社化学(株))、エフトップEF301、同EF303、同EF352(以上、(株)トーケムプロダクツ)、メガファックF171、同F173(以上、DIC(株))、フロラードFC430、同FC431(以上、住友スリーエム(株))、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子(株))等が挙げられる。上記界面活性剤の含有量の上限としては、[A]成分100質量部に対して、2質量部が好ましい。
<化学増幅型レジスト材料の調製方法>
レジスト材料(I)は、例えば[A]成分、[B]成分、[C]酸拡散制御体、[D]溶媒及び必要に応じて他の成分を所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のメンブランフィルターでろ過することにより調製することができる。レジスト材料(I)の濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、1.5質量%が特に好ましい。上記濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、10質量%がさらに好ましく、5質量%が特に好ましい。
レジスト材料(I)は、例えば[A]成分、[B]成分、[C]酸拡散制御体、[D]溶媒及び必要に応じて他の成分を所定の割合で混合し、好ましくは、得られた混合物を孔径0.2μm程度のメンブランフィルターでろ過することにより調製することができる。レジスト材料(I)の濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましく、1.5質量%が特に好ましい。上記濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、10質量%がさらに好ましく、5質量%が特に好ましい。
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。本実施例における物性値の測定方法を以下に示す。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。測定は、GPCカラム(G2000HXL 2本、G3000HXL 1本、及びG4000HXL 1本、以上東ソー(株))を用い、流量1.0mL/分、溶出溶媒テトラヒドロフラン、試料濃度1.0質量%、試料注入量100μL、カラム温度40℃の分析条件で、検出器として示差屈折計を使用し、単分散ポリスチレンを標準物質として行った。
重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。測定は、GPCカラム(G2000HXL 2本、G3000HXL 1本、及びG4000HXL 1本、以上東ソー(株))を用い、流量1.0mL/分、溶出溶媒テトラヒドロフラン、試料濃度1.0質量%、試料注入量100μL、カラム温度40℃の分析条件で、検出器として示差屈折計を使用し、単分散ポリスチレンを標準物質として行った。
[13C-NMR分析]
重合体の構造単位の含有割合を求めるための13C-NMR分析は、核磁気共鳴装置(日本電子(株)の「JNM-ECX400」)を使用し、測定溶媒としてCDCl3を用い、テトラメチルシラン(TMS)を内部標準として行った。
重合体の構造単位の含有割合を求めるための13C-NMR分析は、核磁気共鳴装置(日本電子(株)の「JNM-ECX400」)を使用し、測定溶媒としてCDCl3を用い、テトラメチルシラン(TMS)を内部標準として行った。
<[A]成分の合成>
[A]成分としての[A]重合体の合成に用いた単量体を下記に示す。
[A]成分としての[A]重合体の合成に用いた単量体を下記に示す。
なお、上記化合物(M-1)、(M-4)及び(M-6)は構造単位(I)を、化合物(M-3)は構造単位(II)を、化合物(M-2)及び(M-7)は構造単位(III)を、化合物(M-5)及び(M-8)はその他の構造単位をそれぞれ与える。
[合成例1](重合体(A-1)の合成)
上記化合物(M-1)45g(50モル%)、上記化合物(M-2)55g(50モル%)及びアゾビスイソブチロニトリル(AIBN)3gを、メチルエチルケトン300gに溶解した後、窒素雰囲気下、反応温度を78℃に保持して、6時間重合させた。重合反応終了後、重合反応液を2,000gのメタノール中に滴下して、重合体を凝固させた。次いで、この重合体を300gのメタノールで2回洗浄し、得られた白色粉末をろ過して、減圧下50℃で一晩乾燥し、[A]重合体としての重合体(A-1)を得た。重合体(A-1)は、Mwが7,000、Mw/Mnが2.10であった。また、13C-NMR分析の結果、化合物(M-1)及び化合物(M-2)に由来する各構造単位の含有割合は、それぞれ52モル%及び48モル%であった。
上記化合物(M-1)45g(50モル%)、上記化合物(M-2)55g(50モル%)及びアゾビスイソブチロニトリル(AIBN)3gを、メチルエチルケトン300gに溶解した後、窒素雰囲気下、反応温度を78℃に保持して、6時間重合させた。重合反応終了後、重合反応液を2,000gのメタノール中に滴下して、重合体を凝固させた。次いで、この重合体を300gのメタノールで2回洗浄し、得られた白色粉末をろ過して、減圧下50℃で一晩乾燥し、[A]重合体としての重合体(A-1)を得た。重合体(A-1)は、Mwが7,000、Mw/Mnが2.10であった。また、13C-NMR分析の結果、化合物(M-1)及び化合物(M-2)に由来する各構造単位の含有割合は、それぞれ52モル%及び48モル%であった。
[合成例2](重合体(A-2)の合成)
上記化合物(M-1)45g(44モル%)、上記化合物(M-3)55g(56モル%)、AIBN3g及びt-ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル150gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して、16時間重合させた。重合反応終了後、重合反応液を1,000gのn-ヘキサン中に滴下して、重合体を凝固精製した。次いで、この重合体に、プロピレングリコールモノメチルエーテル150gを加えた後、さらに、メタノール150g、トリエチルアミン37g及び水7gを加えて、沸点にて還流させながら、8時間加水分解反応を行って、化合物(M-3)に由来する構造単位の脱アセチル化を行った。反応後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン150gに溶解した後、2,000gの水中に滴下して凝固させ、生成した白色粉末をろ過して、減圧下50℃で一晩乾燥し、[A]重合体としての重合体(A-2)を得た。重合体(A-2)は、Mwが6,000、Mw/Mnが1.90であった。また、13C-NMR分析の結果、(M-3)に由来する構造単位の脱アセチル化により得られたp-ヒドロキシスチレン構造単位、及び化合物(M-1)に由来する構造単位の含有割合は、それぞれ50モル%及び50モル%であった。
上記化合物(M-1)45g(44モル%)、上記化合物(M-3)55g(56モル%)、AIBN3g及びt-ドデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル150gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して、16時間重合させた。重合反応終了後、重合反応液を1,000gのn-ヘキサン中に滴下して、重合体を凝固精製した。次いで、この重合体に、プロピレングリコールモノメチルエーテル150gを加えた後、さらに、メタノール150g、トリエチルアミン37g及び水7gを加えて、沸点にて還流させながら、8時間加水分解反応を行って、化合物(M-3)に由来する構造単位の脱アセチル化を行った。反応後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン150gに溶解した後、2,000gの水中に滴下して凝固させ、生成した白色粉末をろ過して、減圧下50℃で一晩乾燥し、[A]重合体としての重合体(A-2)を得た。重合体(A-2)は、Mwが6,000、Mw/Mnが1.90であった。また、13C-NMR分析の結果、(M-3)に由来する構造単位の脱アセチル化により得られたp-ヒドロキシスチレン構造単位、及び化合物(M-1)に由来する構造単位の含有割合は、それぞれ50モル%及び50モル%であった。
[合成例3及び4](重合体(A-3)及び(A-4)の合成)
表1に示す種類及び使用量の単量体を用いた以外は合成例2と同様に操作し、[A]重合体としての重合体(A-3)及び(A-4)を合成した。下記表1に、得られた各重合体のMw、Mw/Mn及び各構造単位の含有割合について合わせて示す。
表1に示す種類及び使用量の単量体を用いた以外は合成例2と同様に操作し、[A]重合体としての重合体(A-3)及び(A-4)を合成した。下記表1に、得られた各重合体のMw、Mw/Mn及び各構造単位の含有割合について合わせて示す。
[合成例5](重合体(A-5)の合成)
化合物(M-1)6.99g(40モル%)、化合物(M-3)6.22g(40モル%)及び化合物(M-8)6.79g(20モル%)をプロピレングリコールモノメチルエーテル40gに溶解し、ラジカル重合開始剤としてのAIBN0.79g(化合物の合計モル数に対して5モル%)を溶解させて単量体溶液を調製した。100mLの3つ口フラスコに20gのプロピレングリコールモノメチルエーテルを投入し、30分窒素パージした後、反応釜を攪拌しながら80℃に加熱した。そこへ、上記調製した単量体溶液を3時間かけて滴下し、さらに3時間熟成した。重合終了後、重合反応液を水冷して30℃以下に冷却した。この重合反応液を400gのヘキサン中に投入し、析出した固形分をろ別した。ろ別した固形分を80gのヘキサンで2回洗浄した後、さらにろ別し、50℃で17時間乾燥させた。プロピレングリコールモノメチルエーテル20gを入れた100mLのナスフラスコにこの固形分を投入し、溶解させた。さらに、トリエチルアミン3.49g、純水0.56gを加えて80℃に加熱し、6時間反応させて加水分解した。加水分解終了後、反応液を水冷して30℃以下に冷却した。この反応液を400gのヘキサン中に投入し、析出した固形分をろ別した。ろ別した固形分を80gのヘキサンで2回洗浄した後、さらにろ別し、50℃で17時間乾燥させ重合体(A-5)を12.2g(収率61%)得た。重合体(A-5)のMwは7,500、Mw/Mnは1.52であった。13C-NMR分析の結果、(M-1)に由来する構造単位、(M-3)に由来する構造単位の脱アセチル化により得られたp-ヒドロキシスチレン構造単位、及び(M-8)に由来する各構造単位の含有割合は、それぞれ40モル%、40モル%、及び20モル%であった。
化合物(M-1)6.99g(40モル%)、化合物(M-3)6.22g(40モル%)及び化合物(M-8)6.79g(20モル%)をプロピレングリコールモノメチルエーテル40gに溶解し、ラジカル重合開始剤としてのAIBN0.79g(化合物の合計モル数に対して5モル%)を溶解させて単量体溶液を調製した。100mLの3つ口フラスコに20gのプロピレングリコールモノメチルエーテルを投入し、30分窒素パージした後、反応釜を攪拌しながら80℃に加熱した。そこへ、上記調製した単量体溶液を3時間かけて滴下し、さらに3時間熟成した。重合終了後、重合反応液を水冷して30℃以下に冷却した。この重合反応液を400gのヘキサン中に投入し、析出した固形分をろ別した。ろ別した固形分を80gのヘキサンで2回洗浄した後、さらにろ別し、50℃で17時間乾燥させた。プロピレングリコールモノメチルエーテル20gを入れた100mLのナスフラスコにこの固形分を投入し、溶解させた。さらに、トリエチルアミン3.49g、純水0.56gを加えて80℃に加熱し、6時間反応させて加水分解した。加水分解終了後、反応液を水冷して30℃以下に冷却した。この反応液を400gのヘキサン中に投入し、析出した固形分をろ別した。ろ別した固形分を80gのヘキサンで2回洗浄した後、さらにろ別し、50℃で17時間乾燥させ重合体(A-5)を12.2g(収率61%)得た。重合体(A-5)のMwは7,500、Mw/Mnは1.52であった。13C-NMR分析の結果、(M-1)に由来する構造単位、(M-3)に由来する構造単位の脱アセチル化により得られたp-ヒドロキシスチレン構造単位、及び(M-8)に由来する各構造単位の含有割合は、それぞれ40モル%、40モル%、及び20モル%であった。
<化学増幅型レジスト材料の調製>
化学増幅型レジスト材料の調製に用いた[A]成分以外の各成分を以下に示す。
化学増幅型レジスト材料の調製に用いた[A]成分以外の各成分を以下に示す。
[[B]成分]
B-S1~B-S11:下記式(B-S1)~(B-S11)で表される化合物
B-I1~B-I4:下記式(B-I1)~(B-I4)で表される化合物
B-S1~B-S11:下記式(B-S1)~(B-S11)で表される化合物
B-I1~B-I4:下記式(B-I1)~(B-I4)で表される化合物
なお、カチオン(X)の分解反応により発生する光増感剤の最大吸収波長を、量子化学計算ソフトウェアGaussian09を使用したTD-DFT(時間依存密度汎関数法)計算により、汎関数としてB3LYP、基底関数は6-311G++(d,p)を使用して算出した。
その結果、化合物(B-S1)、(B-S2)、(B-S3)、(B-S6)、(B-S7)、(B-S9)、(B-S10)、(B-I1)及び(B-I2)は、増感剤の最大吸収波長が310nm以上となった。
その結果、化合物(B-S1)、(B-S2)、(B-S3)、(B-S6)、(B-S7)、(B-S9)、(B-S10)、(B-I1)及び(B-I2)は、増感剤の最大吸収波長が310nm以上となった。
[[C]酸拡散制御剤]
C-1:トリフェニルスルホニウム2-ヒドロキシ-4-トリフルオロメチル-1-ベンゾエート(下記式(C-1)で表される化合物)
C-2:トリフェニルスルホニウムアダマンタン-1-イルオキシレート(下記式(C-2)で表される化合物)
C-3:トリオクチルアミン
C-1:トリフェニルスルホニウム2-ヒドロキシ-4-トリフルオロメチル-1-ベンゾエート(下記式(C-1)で表される化合物)
C-2:トリフェニルスルホニウムアダマンタン-1-イルオキシレート(下記式(C-2)で表される化合物)
C-3:トリオクチルアミン
[[D]溶媒]
D-1:プロピレングリコールモノメチルエーテルアセテート
D-2:シクロヘキサノン
D-3:乳酸エチル
D-1:プロピレングリコールモノメチルエーテルアセテート
D-2:シクロヘキサノン
D-3:乳酸エチル
[実施例1]
[A]重合体としての(A-1)100質量部、[B]化合物としての(B-S1)15質量部、[C]酸拡散制御剤としての(C-1)7.0質量部並びに[D]溶媒としての(D-1)4,300質量部及び(D-2)1,900質量部を混合した。次に、得られた混合液を孔径0.20μmのメンブランフィルターでろ過し、化学増幅型レジスト材料(R-1)を調製した。
[A]重合体としての(A-1)100質量部、[B]化合物としての(B-S1)15質量部、[C]酸拡散制御剤としての(C-1)7.0質量部並びに[D]溶媒としての(D-1)4,300質量部及び(D-2)1,900質量部を混合した。次に、得られた混合液を孔径0.20μmのメンブランフィルターでろ過し、化学増幅型レジスト材料(R-1)を調製した。
[実施例2~12及び比較例1~6]
表2に示す種類及び配合量の各成分を用いた以外は実施例1と同様に操作して化学増幅型レジスト材料(R-2)~(R-18)を調製した。
表2に示す種類及び配合量の各成分を用いた以外は実施例1と同様に操作して化学増幅型レジスト材料(R-2)~(R-18)を調製した。
<レジストパターンの形成>
[実施例1]
東京エレクトロン(株)の「クリーントラックACT-8」内で、シリコンウェハ上に上記調製した化学増幅型レジスト材料(R-1)をスピンコートした後、130℃、60秒の条件でプレベークを行い、厚み50nmのレジスト材料膜を形成した。次に、このレジスト材料膜に、簡易型の電子線描画装置((株)日立製作所の「HL800D」、出力50KeV、電流密度5.0A/cm2)を用いてレジスト材料膜に電子線を照射し、パターニングを行った。
このパターニングとしては、マスクを用い、線幅150nmのライン部と、隣り合うライン部によって形成される間隔が150nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)とした。電子線の照射後、続いて以下の(1)及び(2)の操作それぞれについて評価を行った。
[実施例1]
東京エレクトロン(株)の「クリーントラックACT-8」内で、シリコンウェハ上に上記調製した化学増幅型レジスト材料(R-1)をスピンコートした後、130℃、60秒の条件でプレベークを行い、厚み50nmのレジスト材料膜を形成した。次に、このレジスト材料膜に、簡易型の電子線描画装置((株)日立製作所の「HL800D」、出力50KeV、電流密度5.0A/cm2)を用いてレジスト材料膜に電子線を照射し、パターニングを行った。
このパターニングとしては、マスクを用い、線幅150nmのライン部と、隣り合うライン部によって形成される間隔が150nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)とした。電子線の照射後、続いて以下の(1)及び(2)の操作それぞれについて評価を行った。
(操作(1):通常プロセス)
電子線の照射後、上記クリーントラックACT-8内で、110℃、60秒の条件で加熱を行い、次いで上記クリーントラックACT-8内で、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用い、23℃で1分間、パドル法により現像した。現像後、純水での水洗及び乾燥によりポジ型レジストパターンを形成した。
電子線の照射後、上記クリーントラックACT-8内で、110℃、60秒の条件で加熱を行い、次いで上記クリーントラックACT-8内で、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液を用い、23℃で1分間、パドル法により現像した。現像後、純水での水洗及び乾燥によりポジ型レジストパターンを形成した。
(操作(2):全面露光あり)
電子線の照射後、i線ステッパー((株)ニコンの「NSR 2205 i12D」、波長365nm)を用いレジスト材料膜の電子線照射部を含む領域を2J/cm2で全面露光した。次いで、上記クリーントラックACT-8内で、110℃、60秒の条件で露光後加熱(ポストエクスポージャーベーク、PEB)を行った。その後、上記操作(1)と同様にして現像、水洗及び乾燥を行い、ポジ型レジストパターンを形成した。
電子線の照射後、i線ステッパー((株)ニコンの「NSR 2205 i12D」、波長365nm)を用いレジスト材料膜の電子線照射部を含む領域を2J/cm2で全面露光した。次いで、上記クリーントラックACT-8内で、110℃、60秒の条件で露光後加熱(ポストエクスポージャーベーク、PEB)を行った。その後、上記操作(1)と同様にして現像、水洗及び乾燥を行い、ポジ型レジストパターンを形成した。
[実施例2~12及び比較例1~6]
下記表3に示す化学増幅型レジスト材料を用いた以外は、実施例1と同様に操作し、各ポジ型レジストパターンを形成した。
下記表3に示す化学増幅型レジスト材料を用いた以外は、実施例1と同様に操作し、各ポジ型レジストパターンを形成した。
<評価>
上記形成したポジ型レジストパターンについて、下記に示す手順により感度及びナノエッジラフネスについての評価を行った。評価結果を下記表3に合わせて示す。
上記形成したポジ型レジストパターンについて、下記に示す手順により感度及びナノエッジラフネスについての評価を行った。評価結果を下記表3に合わせて示す。
[感度]
線幅150nmのライン部と、隣り合うライン部によって形成される間隔が150nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する最適露光量(Eop)を測定した。
上記操作(1)におけるEopをEop(1)
上記操作(2)におけるEopをEop(2)
とした際に、Eop(2)/Eop(1)の値が0.90以下である場合は「AA(非常に良好)」と、0.90を越え0.95以下である場合は「A(良好)」と、0.95を超える場合は「B(不良)」と評価した。
線幅150nmのライン部と、隣り合うライン部によって形成される間隔が150nmのスペース部とからなるライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する最適露光量(Eop)を測定した。
上記操作(1)におけるEopをEop(1)
上記操作(2)におけるEopをEop(2)
とした際に、Eop(2)/Eop(1)の値が0.90以下である場合は「AA(非常に良好)」と、0.90を越え0.95以下である場合は「A(良好)」と、0.95を超える場合は「B(不良)」と評価した。
[ナノエッジラフネス]
上記ライン・アンド・スペースパターン(1L1S)のラインパターンを、高分解能FEB測長装置((株)日立製作所の「S-9380」)を用いて観察した。ラインパターンの任意の20点において形状を観察し、それぞれの点について図3及び図4に示すように、基材(シリコンウェハ)1上に形成したレジストパターンにおけるライン部2の横側面2aに沿って生じた凹凸が最も著しい箇所における線幅と、設計線幅150nmとの差「ΔCD」を測定した。20点のΔCDの平均値をナノエッジラフネスの指標とした。なお、図3及び図4で示す凹凸は、実際より誇張して記載している。
上記ライン・アンド・スペースパターン(1L1S)のラインパターンを、高分解能FEB測長装置((株)日立製作所の「S-9380」)を用いて観察した。ラインパターンの任意の20点において形状を観察し、それぞれの点について図3及び図4に示すように、基材(シリコンウェハ)1上に形成したレジストパターンにおけるライン部2の横側面2aに沿って生じた凹凸が最も著しい箇所における線幅と、設計線幅150nmとの差「ΔCD」を測定した。20点のΔCDの平均値をナノエッジラフネスの指標とした。なお、図3及び図4で示す凹凸は、実際より誇張して記載している。
上記操作(1)におけるナノエッジラフネスをNER(1)、上記操作(2)におけるナノエッジラフネスをNER(2)としたとき、ナノエッジラフネスは、NER(2)/NER(1)の値が1.0以下である場合は「A(良好)」と、1.0を超える場合は「B(不良)」と評価した。
表3の結果から分かるように、実施例のレジストパターン形成方法によれば、高い感度でナノエッジラフネスに優れるレジストパターンを形成することができる。電子線照射後にブラックライト照射をしない操作(1)によってもナノエッジラフネスに優れるレジストパターンを形成することができるが、電子線照射後にブラックライト照射を行う操作(2)を行うことにより、感度を優れたものにすることができ、かつナノエッジラフネスをさらに向上させることができる。なお、一般的に、電子線露光によれば、EUV露光の場合と同様の傾向を示すことが知られており、従って、実施例のレジストパターン形成方法によれば、EUV露光の場合においても、高い感度でナノエッジラフネスに優れるレジストパターンを形成することができると推測される。
本発明のレジストパターン形成方法及び化学増幅型レジスト材料によれば、高い感度でナノエッジラフネスに優れるレジストパターンを形成することができる。従って、これらは今後さらに微細化が進行すると予想される半導体デバイス製造用に好適に用いることができる。
1 基材
2 レジストパターンのライン部
2a レジストパターンのライン部の横側面
11 基板
12 レジスト材料膜
21 露光光源(1)
22 露光光源(2)
121 露光部位(A)
122 露光部位(B)
2 レジストパターンのライン部
2a レジストパターンのライン部の横側面
11 基板
12 レジスト材料膜
21 露光光源(1)
22 露光光源(2)
121 露光部位(A)
122 露光部位(B)
Claims (8)
- 基板に直接又は間接に化学増幅型レジスト材料を塗工する工程と、
上記塗工工程により形成されたレジスト材料膜の一部に、第1波長の放射線を含む第1露光光を照射する工程と、
上記一部照射工程後の上記レジスト材料膜の全面に、上記第1波長よりも長い第2波長の放射線を含む第2露光光を照射する工程と、
上記全面照射工程後の上記レジスト材料膜を加熱する工程と、
上記加熱工程後の上記レジスト材料膜を現像する工程と
を備え、
上記化学増幅型レジスト材料が、
(1)酸の作用により上記現像液に可溶又は不溶となるベース成分と、
(2)上記第1露光光の作用により光増感剤及び酸を発生する成分と
を含有し、
上記(2)成分が、感放射線性オニウムカチオンと、アニオンとを含み、
上記感放射線性オニウムカチオンが、オニウム原子に結合する2つ以上の環員数6~20の芳香族炭素環を有し、上記芳香族炭素環のうちの少なくとも1つが置換基を有し、かつ上記芳香族炭素環のうちの少なくとも1つがオニウム原子に対してパラ位の炭素原子に結合する水素原子を有し、
上記アニオンが、下記式(3-1)又は(3-2)で表されるパターン形成方法。
式(3-2)中、Rq1及びRq2は、それぞれ独立して、炭素数1~20の1価の有機基である。) - 上記感放射線性オニウムカチオンが、オニウム原子に結合し置換基を有する環員数6~20の芳香族炭素環と、オニウム原子に結合しオニウム原子に対してパラ位の炭素原子に結合する水素原子を有する芳香族炭素環とを有する請求項1に記載のレジストパターン形成方法。
- 上記芳香族炭素環が有する置換基の少なくとも1つが電子求引性基である請求項1又は請求項2に記載のレジストパターン形成方法。
- 上記感放射線性オニウムカチオンが下記式(a1)又は(a2)で表される請求項3に記載のレジストパターン形成方法。
式(a2)中、vは、0~4の整数である。vが1の場合、R4は、1価の置換基である。vが2以上の場合、複数のR4は、同一又は異なり、1価の置換基であるか、又は複数のR4のうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。wは、1~5の整数である。wが1の場合、R5は、1価の置換基である。wが2以上の場合、複数のR5は同一又は異なり、複数のR5のうちの2つ以上が互いに合わせられこれらが結合する炭素鎖と共に構成される環員数4~20の環構造の一部を表す。但し、R5のうちの少なくとも1つは電子求引性基である。) - 上記(2)成分から発生する光増感剤の最大吸収波長が310nm以上である請求項1から請求項4のいずれか1項に記載のレジストパターン形成方法。
- 上記化学増幅型レジスト材料が酸拡散制御体をさらに含有する請求項1から請求項5のいずれか1項に記載のレジストパターン形成方法。
- 上記酸拡散制御体が光崩壊性塩基を含み、上記光崩壊性塩基が下記式(4-1)又は式(4-2)で表される請求項6に記載のレジストパターン形成方法。
- 基板に直接又は間接に化学増幅型レジスト材料を塗工する工程と、
上記塗工工程により形成されたレジスト材料膜の一部に、第1波長の放射線を含む第1露光光を照射する工程と、
上記一部照射工程後の上記レジスト材料膜の全面に、上記第1波長よりも長い第2波長の放射線を含む第2露光光を照射する工程と、
上記全面照射工程後の上記レジスト材料膜を加熱する工程と、
上記加熱工程後の上記レジスト材料膜を現像する工程と
を備えるレジストパターン形成方法に用いられる化学増幅型レジスト材料であって、
(1)酸の作用により上記現像液に可溶又は不溶となるベース成分と、
(2)上記第1露光光の作用により感放射線性増感剤及び酸を発生する成分と
を含有し、
上記(2)成分が、感放射線性オニウムカチオンと、アニオンとを含み、
上記感放射線性オニウムカチオンが、オニウム原子に結合する2つ以上の環員数6~20の芳香族炭素環を有し、上記芳香族炭素環のうちの少なくとも1つが置換基を有し、かつ上記芳香族炭素環のうちの少なくとも1つがオニウム原子に対してパラ位の炭素原子に結合する水素原子を有し、
上記アニオンが、下記式(3-1)又は(3-2)で表されることを特徴とする化学増幅型レジスト材料。
式(3-2)中、Rq1及びRq2は、それぞれ独立して、炭素数1~20の1価の有機基である。)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-074172 | 2018-04-06 | ||
JP2018074172 | 2018-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019194018A1 true WO2019194018A1 (ja) | 2019-10-10 |
Family
ID=68100727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/012617 WO2019194018A1 (ja) | 2018-04-06 | 2019-03-25 | レジストパターン形成方法及び化学増幅型レジスト材料 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019194018A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024038802A1 (ja) * | 2022-08-15 | 2024-02-22 | 富士フイルム株式会社 | 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017040833A (ja) * | 2015-08-20 | 2017-02-23 | 国立大学法人大阪大学 | 化学増幅型レジスト材料 |
JP2017054116A (ja) * | 2015-09-10 | 2017-03-16 | Jsr株式会社 | レジストパターン形成方法 |
JP2018025739A (ja) * | 2015-11-09 | 2018-02-15 | Jsr株式会社 | 化学増幅型レジスト材料及びレジストパターン形成方法 |
-
2019
- 2019-03-25 WO PCT/JP2019/012617 patent/WO2019194018A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017040833A (ja) * | 2015-08-20 | 2017-02-23 | 国立大学法人大阪大学 | 化学増幅型レジスト材料 |
JP2017054116A (ja) * | 2015-09-10 | 2017-03-16 | Jsr株式会社 | レジストパターン形成方法 |
JP2018025739A (ja) * | 2015-11-09 | 2018-02-15 | Jsr株式会社 | 化学増幅型レジスト材料及びレジストパターン形成方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024038802A1 (ja) * | 2022-08-15 | 2024-02-22 | 富士フイルム株式会社 | 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6052283B2 (ja) | フォトレジスト組成物 | |
JP7041359B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP6075369B2 (ja) | フォトレジスト組成物、レジストパターン形成方法及び酸拡散制御剤 | |
JP6666572B2 (ja) | 感放射線性組成物及びパターン形成方法 | |
WO2013024756A1 (ja) | フォトレジスト組成物 | |
WO2015141504A1 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤及び化合物 | |
WO2017094479A1 (ja) | 感放射線性組成物、パターン形成方法及び感放射線性酸発生剤 | |
JP5724791B2 (ja) | 感放射線性樹脂組成物及びレジストパターンの形成方法 | |
WO2014148241A1 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物の製造方法 | |
JP6540293B2 (ja) | レジストパターン微細化組成物及び微細パターン形成方法 | |
JP6052280B2 (ja) | フォトレジスト組成物、レジストパターン形成方法、化合物、酸発生剤及び光崩壊性塩基 | |
JP7061268B2 (ja) | レジストパターンの形成方法及び感放射線性樹脂組成物 | |
WO2017057203A1 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
WO2019194018A1 (ja) | レジストパターン形成方法及び化学増幅型レジスト材料 | |
JP7091762B2 (ja) | 感放射線性樹脂組成物及びレジストパターンの形成方法 | |
JP6485298B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP5857522B2 (ja) | 化合物及びフォトレジスト組成物 | |
JP6528692B2 (ja) | 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物 | |
JP6555011B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP2022095677A (ja) | 感放射線性樹脂組成物及びレジストパターンの形成方法 | |
JP2017181696A (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP6821988B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
JP6507853B2 (ja) | 感放射線性樹脂組成物及びレジストパターン形成方法 | |
WO2023058369A1 (ja) | 感放射線性樹脂組成物、樹脂、化合物及びパターン形成方法 | |
JP2024032658A (ja) | カルボン酸塩、それを含むフォトレジスト組成物、及びそのフォトレジスト組成物を用いるパターン形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19781725 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19781725 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |