WO2017092715A1 - 仿鱼鳞微织构电极丝材料及其制备方法与应用 - Google Patents

仿鱼鳞微织构电极丝材料及其制备方法与应用 Download PDF

Info

Publication number
WO2017092715A1
WO2017092715A1 PCT/CN2016/108423 CN2016108423W WO2017092715A1 WO 2017092715 A1 WO2017092715 A1 WO 2017092715A1 CN 2016108423 W CN2016108423 W CN 2016108423W WO 2017092715 A1 WO2017092715 A1 WO 2017092715A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire material
electrode wire
layer
wire
electrode
Prior art date
Application number
PCT/CN2016/108423
Other languages
English (en)
French (fr)
Inventor
刘二勇
曾志翔
姜吉良
郑芳
王立平
Original Assignee
宁波康强微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波康强微电子技术有限公司 filed Critical 宁波康强微电子技术有限公司
Priority to KR1020177024833A priority Critical patent/KR20170109061A/ko
Priority to KR1020207004547A priority patent/KR102233844B1/ko
Priority to PL16870025.0T priority patent/PL3251777T3/pl
Priority to ES16870025T priority patent/ES2972619T3/es
Priority to EP16870025.0A priority patent/EP3251777B1/en
Priority to US15/554,965 priority patent/US10926345B2/en
Priority to JP2017564789A priority patent/JP6829213B2/ja
Publication of WO2017092715A1 publication Critical patent/WO2017092715A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • B23H1/06Electrode material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/22Electrodes specially adapted therefor or their manufacture
    • B23H7/24Electrode material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • C23C2/385Tubes of specific length
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size

Definitions

  • the invention relates to the field of materials, in particular to a fish scale micro-textured electrode wire material and a preparation method and application thereof.
  • EDM cutting is mainly used in mold manufacturing, and is also widely used in the processing of forming tools, precision small parts and special materials.
  • the cutting speed of EDM affects the production efficiency, so how to improve the cutting speed of wire It is the key research direction in related fields.
  • the material, surface state and thermophysical properties of the electrode wire are the key factors affecting the cutting efficiency.
  • the wire is prone to thermal overheating due to the absorption of a large amount of heat, which requires an increase in the cooling efficiency of the wire; at the same time, the grinding debris is likely to accumulate in the cutting area, which requires smooth discharge of the grinding debris.
  • the contact angle of the wire material to the coolant is 105-150°.
  • the contact angle of the wire material to the coolant is from 107 to 140°.
  • the contact angle of the wire material to the coolant is from 110 to 135, preferably from 112 to 130.
  • the wire material has a diameter of from 0.05 to 1 mm, preferably from 0.1 to 0.8 mm, more preferably from 0.15 to 0.6 mm.
  • the inner layer has a diameter of 0.15-0.6 mm; and/or
  • the thickness of the intermediate layer is 5-30 ⁇ m; and/or
  • the outer layer has a thickness of 2-20 ⁇ m.
  • the inner layer has a diameter of 0.15 to 0.4 mm.
  • the intermediate layer has a thickness of 10-20 ⁇ m.
  • the outer layer has a thickness of 4 to 10 ⁇ m.
  • the fish scale microtexture layer has a thickness of 2-20 ⁇ m.
  • the scale-like microtextured layer has a thickness of from 3 to 18 ⁇ m, preferably from 5 to 15 ⁇ m.
  • the elements constituting the alloy base layer are selected from the group consisting of copper, zinc, tin, lead, or a combination thereof.
  • the elements constituting the interdiffusion layer are selected from the group consisting of copper, zinc, tin, lead, or a combination thereof.
  • the elements constituting the plating layer are selected from the group consisting of copper, zinc, tin, lead, or a combination thereof.
  • the wire material has a tensile strength of from 900 to 1200 MPa, preferably from 1100 MPa to 1200 MPa.
  • the wire material has an elongation of 1-5%, preferably 3-5%.
  • the wire material is prepared by the method of the second aspect of the invention.
  • a method for preparing a wire material according to the first aspect of the present invention includes the following steps:
  • Annealing treatment step 2) The drawn wire electrode is obtained to obtain the electrode wire material of the first aspect of the invention.
  • the plated electrode wire includes an alloy layer as a core layer and a metal plating layer on a surface of the core layer.
  • the material constituting the alloy layer is selected from the group consisting of copper alloys and stainless steel.
  • the metal constituting the metal plating layer is selected from the group consisting of zinc, copper, tin, lead, or a combination thereof.
  • the coated electrode wire has a diameter of from 0.01 to 5 mm, preferably from 0.05 to 3 mm, more preferably from 0.1 to 2 mm.
  • the metal plating layer has a thickness of from 1 to 50 ⁇ m, preferably from 2 to 30 ⁇ m, more preferably from 4 to 15 ⁇ m.
  • the heat treatment temperature of the heat treatment of step 1) is 550-850 ° C; and / or
  • Step 1) The heat treatment at the heat treatment temperature is 5 s to 60 s.
  • the heat treatment temperature of the heat treatment in the step 1) is 580 to 830 ° C, preferably 600 to 800 ° C.
  • the heat treatment time of the heat treatment at the heat treatment temperature in the step 1) is from 8 to 55 s, preferably from 10 s to 50 s.
  • the treatment of the heat treatment in step 1) is selected from the group consisting of resistance heating, radiant heating, or a combination thereof.
  • the treatment of the heat treatment in step 1) is a composite heating method of resistance heating and radiant heating.
  • the resistance heating is performed by the resistance heating of the plating electrode wire itself, and when the resistance heating is employed, the power applied to the plating electrode wire is 0.1-10 KW, preferably 0.3-5 KW.
  • the radiant heating zone has a radiation treatment temperature of 550-850 ° C, preferably 600-800 ° C.
  • the radiation treatment time at the radiation treatment temperature is from 5 to 60 s, preferably from 15 to 30 s.
  • the heat-treated electrode wire has a diameter of 0.03-5 mm, preferably 0.05-4.5 mm.
  • the heat treated electrode wire comprises: a first inner layer, a first intermediate layer, and a first outer layer.
  • the first inner layer has a diameter of 0.02-4 mm, preferably 0.5-3 mm.
  • the first intermediate layer has a thickness of from 3 to 30 ⁇ m, preferably from 5 to 20 ⁇ m.
  • the first outer layer has a thickness of from 2 to 20 ⁇ m, preferably from 5 to 10 ⁇ m.
  • step 2) is performed in a lubricating oil tank;
  • Step 2) the drawing process is performed at room temperature;
  • Step 2 The drawing speed of the drawing process is 600-1500 m/min.
  • the drawing speed of the drawing process in step 2) is from 700 to 1400 m/min, preferably from 800 to 1300 m/min.
  • the drawn wire has a diameter of 0.1 to 1 mm, preferably 0.15 to 0.6mm.
  • the annealing treatment temperature of the annealing treatment in step 3) is 20-100 ° C; and / or
  • Step 3 The annealing treatment time at the annealing treatment temperature of the annealing treatment is 1 s to 20 s.
  • the annealing treatment temperature of the annealing treatment in the step 3) is from 30 ° C to 80 ° C, preferably from 35 to 70 ° C.
  • the annealing treatment time of the annealing treatment at the annealing treatment temperature in the step 3) is 3-15 s, preferably 4-10 s.
  • the annealing treatment of the step 3) is carried out by electrically heating a wire-wound copper roll, and the voltage is 10-50 V and the current is 5-30 A during the annealing treatment.
  • a use of the electrode wire material of the first aspect of the invention for performing precision cutting is provided.
  • an article comprising the electrode wire material of the first aspect of the invention or the electrode wire material of the first aspect of the invention.
  • FIG. 1 is a schematic view showing the structure of a fish-like micro-textured electrode wire material according to the present invention.
  • FIG. 2 is a schematic view showing the process of the preparation method of the present invention.
  • Example 3 is a SEM cross-sectional topography test result of the heat-treated three-layered wire material blank 1 in Example 1.
  • Example 4 is a SEM surface topography test result of the electrode wire material 1 obtained in Example 1, wherein (a) is a fish scale morphology of the fish, and (b) is an enlarged SEM surface topography of the wire material 1.
  • Fig. 5 is a SEM sectional topography test result of the electrode wire material 1 obtained in Example 1.
  • Figure 6 is a test result of contact angle between a copper alloy wire, a copper alloy wire 1 and a wire material 1 and a coolant, wherein (a) is a copper alloy wire, (b) is a copper alloy wire 1, (c) And (d) is a fish scale micro-textured electrode wire material 1.
  • Fig. 7 is a graph showing the relative cutting speed of the copper alloy wire, the copper alloy wire 1 and the wire material 1.
  • Fig. 8 is a three-dimensional shape test result of the mold steel sample after being cut by the copper alloy wire 1 and the wire material 1 at the same cutting speed, wherein (a) is a three-dimensional shape of the sample after being cut by the copper alloy wire 1. The appearance, (b) is the three-dimensional shape after the imitation of the fish scale micro-textured electrode wire material 1.
  • Example 9 is a SEM surface topography test result of the electrode wire material 2-4 obtained in Example 2-4, wherein (a) is a wire material 2, (b) is a wire material 3, and (c) is a wire material 4 .
  • Fig. 10 is a SEM surface topography test result of the electrode wire material C1 obtained in Comparative Example 1.
  • Figure 11 is a SEM surface topography test result of the electrode wire material C2 obtained in Comparative Example 2.
  • the inventors have conducted long-term and intensive research to obtain a wire material having a special biomimetic structure by using a specific preparation process. Specifically, the inventors prepared a wire material having a micro-texture surface morphology of a fish scale using a specific heat treatment process in combination with a specific drawing process, and the porous surface of the material causes the electrode wire material and the sample to be cut. The resistance is obviously reduced, and the discharge of the grinding debris and the circulation effect of the cooling liquid during the cutting process can be effectively improved, and the cutting speed of the electrode wire is finally improved. On this basis, the inventors completed the present invention.
  • coolant refers to an industrial liquid used to cool and lubricate chip tools and workpieces during metal cutting and grinding processes, with good cooling, lubrication, rust resistance, and Oil cleaning function and anti-corrosion function.
  • the invention provides a wire material, the surface of the wire material has a fish scale micro-texture layer, and the wire material comprises:
  • the contact angle of the wire material to the coolant is 105-150°.
  • FIG. 1 is a schematic view showing the structure of a fish-like micro-textured electrode wire material according to the present invention.
  • the contact angle of the wire material to the coolant is from 107 to 140°.
  • the contact angle of the wire material to the coolant is from 110 to 135, preferably from 112 to 130.
  • the wire material has a diameter of from 0.05 to 1 mm, preferably from 0.1 to 0.8 mm, more preferably from 0.15 to 0.6 mm.
  • the inner layer has a diameter of 0.15-0.6 mm; and/or
  • the thickness of the intermediate layer is 5-30 ⁇ m; and/or
  • the outer layer has a thickness of 2-20 ⁇ m.
  • the inner layer has a diameter of 0.15 to 0.4 mm.
  • the intermediate layer has a thickness of 10-20 ⁇ m.
  • the outer layer has a thickness of 4 to 10 ⁇ m.
  • the fish scale microtexture layer has a thickness of 2-20 ⁇ m.
  • the scale-like microtextured layer has a thickness of from 3 to 18 ⁇ m, preferably from 5 to 15 ⁇ m.
  • the thickness of the micro-textured layer of the fish scale is greater than 20 ⁇ m, the microstructure depth of the fish scale micro-texture layer is shallow, so that the contact angle of the electrode wire with the cooling liquid is reduced, so that the cutting speed of the wire is made.
  • the thickness of the micro-textured layer of the fish scale is less than 2 ⁇ m, the micro-textured layer of the fish scale is too thin to be early due to wear, so that the cutting speed of the wire can not be effectively improved.
  • elements of the inner layer, the intermediate layer, and the outer layer are formed by thermal diffusion, and thus the element may have a certain concentration gradient.
  • the elements constituting the alloy base layer include, but are not limited to, copper, zinc, tin, lead, or a combination thereof.
  • the elements constituting the interdiffusion layer include, but are not limited to, copper, zinc, tin, lead, or a combination thereof.
  • the elements constituting the plating layer include, but are not limited to, copper, zinc, tin, lead, or a combination thereof.
  • the wire material has a tensile strength of from 900 to 1200 MPa, preferably from 1100 MPa to 1200 MPa.
  • the wire material has an elongation of 1-5%, preferably 3-5%.
  • the wire material is prepared by the method of the present invention.
  • the wire material since the surface of the electrode wire material has a special imitation scale micro-texture, the wire material has a larger contact angle to the coolant, thereby significantly improving the cooling effect of the coolant and greatly improving Cutting speed.
  • the invention also provides a preparation method of the electrode wire material, comprising the following steps:
  • Annealing treatment step 2) The drawn wire electrode is obtained to obtain the wire material.
  • FIG. 2 is a schematic view showing the process of the preparation method of the present invention.
  • the plated electrode wire includes an alloy layer as a core layer and a metal plating layer on a surface of the core layer.
  • the materials constituting the alloy layer include, but are not limited to, a copper alloy, stainless steel.
  • the metals constituting the metal plating layer include, but are not limited to, zinc, copper, tin, lead, or a combination thereof.
  • the coated electrode wire has a diameter of from 0.01 to 5 mm, preferably from 0.05 to 3 mm, more preferably from 0.1 to 2 mm.
  • the metal plating layer has a thickness of from 1 to 50 ⁇ m, preferably from 2 to 30 ⁇ m, more preferably from 4 to 15 ⁇ m.
  • the thickness selection of the metal plating of the coated electrode wire of step 1) has an important influence on the subsequent heat treatment step and drawing step.
  • the thickness of the metal plating layer is greater than 50 ⁇ m, the metal plating layer and the inner layer base layer are not well interdiffused during the heat treatment, and the wire material blank having insufficient interdiffusion is not able to obtain obvious imitation in the subsequent drawing step.
  • Fish scale micro-texture structure when the thickness of the metal plating layer is less than 1 ⁇ m, the zinc plating layer is lost due to high temperature melting and sublimation, so that it cannot form interdiffusion with the matrix, thereby affecting the preparation of the micro-texture structure of the fish scale, and finally affecting the electrode The cutting speed of the wire.
  • the heat treatment temperature of the heat treatment of step 1) is 550-850 ° C; and / or
  • Step 1) The heat treatment at the heat treatment temperature is 5 s to 60 s.
  • the treatment temperature range and the portion of the heat treatment of step 1) The time range also has a significant impact on the properties of the resulting electrode wire material.
  • the heat treatment temperature is lower than 550 ° C, the electrode wire material obtained by the heat treatment does not have a fish scale micro-structure; when the heat treatment temperature is higher than 850 ° C, the metal plating layer is obviously melted and volatilized during the heat treatment, resulting in The resulting electrode wire material also showed no significant fish scale microstructure.
  • the metal plating layer is also prone to obvious melting and volatilization, and the resulting electrode wire material also fails to exhibit obvious fish scale microstructure; when heat treatment at the heat treatment temperature When the time is less than 5 s, the resulting electrode wire material also has no obvious fish scale microstructure.
  • the heat treatment temperature of the heat treatment in the step 1) is 580 to 830 ° C, preferably 600 to 800 ° C.
  • the heat treatment time of the heat treatment at the heat treatment temperature in the step 1) is from 8 to 55 s, preferably from 10 s to 50 s.
  • the treatment of the heat treatment in step 1) includes, but is not limited to, resistance heating, radiant heating, or a combination thereof.
  • the treatment of the heat treatment in step 1) is a composite heating method of resistance heating and radiant heating.
  • the resistance heating is performed by the resistance heating of the plating electrode wire itself, and when the resistance heating is employed, the power applied to the plating electrode wire is 0.1-10 KW, preferably 0.3-5 KW.
  • the radiant heating zone has a radiation treatment temperature of 550-850 ° C, preferably 600-800 ° C.
  • the radiation treatment time at the radiation treatment temperature is from 5 to 60 s, preferably from 15 to 30 s.
  • the heat-treated electrode wire has a diameter of 0.03-5 mm, preferably 0.05-4.5 mm.
  • the heat treated electrode wire comprises: a first inner layer, a first intermediate layer, and a first outer layer.
  • the first inner layer has a diameter of 0.02-4 mm, preferably 0.5-3 mm.
  • the first intermediate layer has a thickness of from 3 to 30 ⁇ m, preferably from 5 to 20 ⁇ m.
  • the first outer layer has a thickness of from 2 to 20 ⁇ m, preferably from 5 to 10 ⁇ m.
  • step 2) is performed in a lubricating oil tank;
  • Step 2) the drawing process is performed at room temperature;
  • Step 2 The drawing speed of the drawing process is 600-1500 m/min.
  • the drawing speed of the step 2) when the drawing speed of the step 2) is more than 1500 m/min, the drawn electrode wire is very easily broken during the drawing; when the step 2) is pulled When the pulling speed is less than 600 m/min, the electrode wire material obtained after the drawing has no obvious fish scale microstructure.
  • the drawing speed of the drawing process in step 2) is from 700 to 1400 m/min, preferably from 800 to 1300 m/min.
  • the drawn wire has a diameter of from 0.1 to 1 mm, preferably from 0.15 to 0.6 mm.
  • the annealing treatment temperature of the annealing treatment in step 3) is 20-100 ° C; and / or
  • Step 3 The annealing treatment time at the annealing treatment temperature of the annealing treatment is 1 s to 20 s.
  • the annealing treatment temperature of the annealing treatment in the step 3) is from 30 ° C to 80 ° C, preferably from 35 to 70 ° C.
  • the annealing treatment time of the annealing treatment at the annealing treatment temperature in the step 3) is 3-15 s, preferably 4-10 s.
  • the annealing treatment of the step 3) is carried out by electrically heating a wire-wound copper roll, and the voltage is 10-50 V and the current is 5-30 A during the annealing treatment.
  • the invention also provides the use of the electrode wire material for precision cutting.
  • the invention also provides an article comprising or consisting of the wire material.
  • the present invention has the following main advantages:
  • the surface of the electrode wire material has a fish scale-like micro-texture, and the special bionic structure enables the electrode wire material to have an excellent cooling effect on the coolant, thereby obtaining a higher cutting rate, thereby further enhancing the obtained electrode.
  • the use properties of the silk material, such as the cutting speed, are 10% to 20% higher than the ordinary copper wire with zinc plating, and at least 23% higher than the ordinary copper wire without the zinc plating;
  • the preparation method of the electrode wire material has the advantages of simple process, low cost, and easy industrial production.
  • Galvanizing of copper alloy wire Firstly, the copper alloy wire with a diameter of about 1.5 mm after derusting and degreasing cleaning is placed in an electroplating equipment, galvanized, and the thickness of the zinc coating is obtained by adjusting the galvanizing process. A copper alloy wire 1 of about 5 ⁇ m.
  • the copper alloy wire 1 is subjected to diffusion heat treatment, and the heating method is selected by the resistance/radiation composite heating method, so that the copper alloy wire 1 passes through the resistance furnace at a temperature of 750 ° C and a length of 1 m at 0.05 m/s.
  • the power applied to the wire is 1KW (the equivalent heat treatment temperature of the composite heating method is 800 ° C in this embodiment, and the equivalent heat treatment time is 20 s), and the metal plating layer, the interdiffusion layer and the copper alloy base layer are obtained.
  • a layered wire blank 1 having a diameter of about 1.5 mm.
  • the wire material blank 1 of the heat-treated three-layer structure in Example 1 and the obtained electrode wire material 1 were subjected to tests for surface and sectional morphology and composition analysis, contact angle and cutting property.
  • Example 3 is a SEM cross-sectional test test of the heat-treated three-layered wire blank 1 in Example 1. fruit.
  • the obtained wire material blank 1 has a three-layer structure including an alloy base layer, an interdiffusion layer and a metal plating layer, wherein the alloy base layer has a diameter of 1.25 mm and the interdiffusion layer has a thickness of 12 ⁇ m.
  • the metal plating layer has a thickness of 4 ⁇ m.
  • Example 4 is a SEM surface topography test result of the electrode wire material 1 obtained in Example 1, wherein (a) is a fish scale morphology of the fish, and (b) is an enlarged SEM surface topography of the wire material 1.
  • the microscopic surface of the electrode wire material 1 obtained in Example 1 had a very high degree of simulation of the fish scale micrograin, and the obtained electrode wire material 1 had a diameter of 0.25 mm.
  • Fig. 5 is a SEM sectional topography test result of the electrode wire material 1 obtained in Example 1.
  • the electrode wire material 1 obtained in Example 1 has a three-layer structure including an alloy base layer, an interdiffusion layer, and a biomimetic coating layer, wherein the alloy base layer has a diameter of 0.25 mm, and the thickness of the interdiffusion layer is 15 ⁇ m, the thickness of the metal plating layer was 5 ⁇ m.
  • the content of Zn in the obtained electrode wire material 1 from the outside to the inside in the radial direction gradually decreased, the content of Cu gradually increased, and a trace amount of O was present in the outer layer.
  • the above results further indicate that the obtained fish scale micro-textured electrode wire material is also a three-layer structure.
  • the electrode wire material 1 of the present invention having a specific fish scale micro-texture and cooling is compared to the copper alloy wire which is not plated with zinc plating and the copper alloy wire which is only plated with zinc plating.
  • the liquid has a larger contact angle, which can significantly improve the lubrication effect of the coolant on the wire material during the cutting process.
  • Fig. 7 is a graph showing the relative cutting speed of the copper alloy wire, the copper alloy wire 1 and the wire material 1.
  • the cutting speed of the fish-like micro-textured electrode wire material 1 of the present invention is improved by about 23% compared to the ordinary ungalvanized copper alloy wire, compared to the copper alloy of the galvanized layer.
  • the cutting speed of the wire 1 is increased by about 16%.
  • Fig. 8 is a three-dimensional shape test result of the mold steel sample after being cut by the copper alloy wire 1 and the wire material 1 at the same cutting speed, wherein (a) is a three-dimensional shape of the sample after being cut by the copper alloy wire 1. Appearance, (b) The three-dimensional shape after cutting the electrode wire material 1 by the imitation fish scale micro-texture.
  • the surface roughness of the sample cut by the fish scale micro-textured electrode wire material 1 is comparable to the surface roughness of the sample cut by the copper alloy wire 1.
  • the mechanical properties of the copper alloy wire, the copper alloy wire 1 and the wire material 1 showed that the three had comparable tensile strength (about 1100 MPa) and elongation (about 5%).
  • Copper alloy wire galvanizing Firstly, the copper alloy wire with a diameter of about 1 mm after derusting and degreasing cleaning is placed in an electroplating equipment for galvanizing treatment, and the thickness of the zinc plating layer is obtained by adjusting the galvanizing process. 10 ⁇ m copper alloy wire 2;
  • the copper alloy wire 2 is subjected to diffusion heat treatment, and the heating method is selected as a resistance/radiation composite heating method, so that the copper alloy wire 2 passes through a resistance furnace having a temperature of 650 ° C and a length of 1 m at 0.02 m/s.
  • the power applied to the wire is 0.5KW (the equivalent heat treatment temperature of the composite heating method is 690 ° C in this embodiment, and the equivalent heat treatment time is 50 s), and the metal plating layer, the interdiffusion layer and the copper alloy base layer are obtained.
  • a three-layered wire blank 2 having a diameter of 1.5 mm;
  • Copper alloy wire galvanizing Firstly, the copper alloy wire with a diameter of 1.2 mm after derusting and degreasing cleaning is placed in an electroplating equipment for galvanizing treatment, and the thickness of the zinc plating layer is obtained by adjusting the galvanizing process. 10 ⁇ m copper alloy wire 3.
  • the copper alloy wire 1 is subjected to diffusion heat treatment, and the heating method is selected as a resistance/radiation composite heating method, so that the copper alloy wire 3 is passed through a resistance furnace having a temperature of 680 ° C and a length of 1 m at 0.1 m/s.
  • the power applied to the wire is 1KW (the equivalent heat treatment temperature of the composite heating method is 710 ° C in this embodiment, and the equivalent heat treatment time is 10 s), and the metal plating layer, the interdiffusion layer and the copper alloy base layer are obtained.
  • Layer material wire blank 3 the equivalent heat treatment temperature of the composite heating method is 710 ° C in this embodiment, and the equivalent heat treatment time is 10 s
  • Copper alloy wire galvanizing Firstly, the copper alloy wire with a diameter of 1.5 mm after derusting and degreasing cleaning is placed in an electroplating equipment for galvanizing treatment, and the thickness of the zinc plating layer is obtained by adjusting the galvanizing process. 8 ⁇ m copper alloy wire 4;
  • the copper alloy wire 4 is subjected to diffusion heat treatment, and the heating method is selected as the resistance/radiation composite heating method, so that the copper alloy wire 4 passes through the resistance furnace at a temperature of 700 ° C and a length of 1 m at 0.05 m/s.
  • the power applied to the wire is 1.5 KW (the equivalent heat treatment temperature of the composite heating method is 780 ° C in this embodiment, and the equivalent heat treatment time is 20 s), and the metal plating layer, the interdiffusion layer and the copper alloy base layer are obtained.
  • the equivalent heat treatment temperature of the composite heating method is 780 ° C in this embodiment, and the equivalent heat treatment time is 20 s
  • Example 9 is a SEM surface topography test result of the electrode wire material 2-4 obtained in Example 2-4, wherein (a) is a wire material 2, (b) is a wire material 3, and (c) is a wire material 4 .
  • the electrode wire materials 2-4 obtained by the specific plating treatment process, the heat treatment process, the drawing process and the annealing process of the present invention all exhibit the surface texture of the fish scale micro-texture.
  • Example 2 The same as in Example 1, except that the heat treatment temperature was 500 °C.
  • Fig. 10 is a SEM surface topography test result of the electrode wire material C1 obtained in Comparative Example 1.
  • Figure 11 is a SEM surface topography test result of the electrode wire material C2 obtained in Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Non-Insulated Conductors (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)

Abstract

一种仿鱼鳞微织构电极丝材料及其制备方法与应用。具体地,该电极丝材料表面具有仿鱼鳞微织构层,且所述电极丝材料包括:i)作为内层的合金基体层;ii)作为中间层的互扩散层;和iii)作为外层的镀层;并且,所述电极丝材料对冷却液的接触角为105-150°。一种电极丝材料的制备方法与应用。所述电极丝由于其特殊的表面仿生结构,可明显降低切割阻力,提高冷却速率,进而提高切割速率,有效改善电极丝的使用性能。所述制备方法工艺简单、易于工业化生产。

Description

仿鱼鳞微织构电极丝材料及其制备方法与应用 技术领域
本发明涉及材料领域,具体地涉及一种仿鱼鳞微织构电极丝材料及其制备方法与应用。
背景技术
电火花切割加工主要用于模具制造,同时也在成形刀具、精密细小零件和特殊材料的加工中得到日益广泛的应用,电火花加工的切割速度影响生产效率,因此如何提高丝材的切割速度一直是相关领域的重点研究方向。
在设备、加工工艺及切割电极丝方面,电极丝的材质、表面状态及热物理特性是影响切割效率的关键因素。在切割过程中,电极丝因吸收大量的热量而易于发生过热熔断,这就要求提高电极丝的冷却效率;同时,磨屑易于在切割区域堆积,这就要求顺利排出磨屑。
为了满足日益提高的市场需求,本领域急需开发一种新型的切割性能优异的电极丝材料及其制备方法。
发明内容
本发明的目的在于提供一种新型的切割性能优异的电极丝材料及其制备方法。
本发明的第一方面,提供了一种电极丝材料,所述电极丝材料表面具有仿鱼鳞微织构层,且所述电极丝材料包括:
i)作为内层的合金基体层;
ii)作为中间层的互扩散层;和
iii)作为外层的镀层;
并且,所述电极丝材料对冷却液的接触角为105-150°。
在另一优选例中,所述电极丝材料对冷却液的接触角为107-140°。
在另一优选例中,所述电极丝材料对冷却液的接触角为110-135°,较佳地为为112-130°。
在另一优选例中,所述电极丝材料的直径为0.05-1mm,较佳地为0.1-0.8mm,更佳地为0.15-0.6mm。
在另一优选例中,所述电极丝材料中,所述内层的直径为0.15-0.6mm;和/或
中间层的厚度为5-30μm;和/或
外层的厚度为2-20μm。
在另一优选例中,所述内层的直径为0.15-0.4mm。
在另一优选例中,所述中间层的厚度10-20μm。
在另一优选例中,所述外层的厚度为4-10μm。
在另一优选例中,所述仿鱼鳞微织构层的厚度为2-20μm。
在另一优选例中,所述仿鱼鳞微织构层的厚度为3-18μm,较佳地为5-15μm。
在另一优选例中,组成所述合金基体层的元素选自下组:铜、锌、锡、铅、或其组合。
在另一优选例中,组成所述互扩散层的元素选自下组:铜、锌、锡、铅、或其组合。
在另一优选例中,组成所述镀层的元素选自下组:铜、锌、锡、铅、或其组合。
在另一优选例中,所述电极丝材料的抗拉强度为900-1200MPa,较佳地为1100MPa-1200MPa。
在另一优选例中,所述电极丝材料的延伸率为1-5%,较佳地为3-5%。
在另一优选例中,所述电极丝材料是采用本发明第二方面所述的方法制备的。
本发明的第二方面,提供了一种本发明第一方面所述电极丝材料的制备方法,包括如下步骤:
1)提供镀层电极丝,热处理所述镀层电极丝,得到经热处理的电极丝;
2)拉拔处理步骤1)所得经热处理的电极丝,得到经拉拔处理的电极丝;和
3)退火处理步骤2)所得经拉拔处理的电极丝,得到本发明第一方面所述电极丝材料。
在另一优选例中,所述镀层电极丝包括作为芯层的合金层和位于所述芯层表面的金属镀层。
在另一优选例中,组成所述合金层的材料选自下组:铜合金、不锈钢。
在另一优选例中,组成所述金属镀层的金属选自下组:锌、铜、锡、铅、或其组合。
在另一优选例中,所述镀层电极丝的直径为0.01-5mm,较佳地为0.05-3mm,更佳地为0.1-2mm。
在另一优选例中,所述金属镀层的厚度为1-50μm,较佳地为2-30μm,更佳地为4-15μm。
在另一优选例中,步骤1)所述热处理的热处理温度为550-850℃;和/或
步骤1)所述热处理在所述热处理温度的热处理时间为5s-60s。
在另一优选例中,步骤1)所述热处理的热处理温度为580-830℃,较佳地为600-800℃。
在另一优选例中,步骤1)所述热处理在所述热处理温度的热处理时间为8-55s,较佳地10s-50s。
在另一优选例中,步骤1)所述热处理的处理方式选自下组:电阻加热、辐射加热、或其组合。
在另一优选例中,步骤1)所述热处理的处理方式为电阻加热和辐射加热的复合加热方式。
在另一优选例中,所述电阻加热通过镀层电极丝自身的电阻发热进行,采用电阻加热时,对所述镀层电极丝施加的功率为0.1-10KW,较佳地0.3-5KW。
在另一优选例中,所述辐射加热区间的辐射处理温度为550-850℃,较佳地600-800℃。
在另一优选例中,在所述辐射处理温度的辐射处理时间为5-60s,较佳地15-30s。
在另一优选例中,所述经热处理的电极丝的直径为0.03-5mm,较佳地0.05-4.5mm。
在另一优选例中,所述经热处理的电极丝包括:第一内层、第一中间层和第一外层。
在另一优选例中,第一内层的直径为0.02-4mm,较佳地为0.5-3mm。
在另一优选例中,第一中间层的厚度为3-30μm,较佳地为5-20μm。
在另一优选例中,第一外层的厚度为2-20μm,较佳地为5-10μm。
在另一优选例中,步骤2)所述拉拔处理在润滑油槽中进行;和/或
步骤2)所述拉拔处理在室温下进行;和/或
步骤2)所述拉拔处理的拉拔速度为600-1500m/min。
在另一优选例中,步骤2)所述拉拔处理的拉拔速度为700-1400m/min,较佳地800-1300m/min。
在另一优选例中,所述经拉拔处理的电极丝的直径为0.1-1mm,较佳地0.15- 0.6mm。
在另一优选例中,步骤3)所述退火处理的退火处理温度为20-100℃;和/或
步骤3)所述退火处理在所述退火处理温度下的退火处理时间为1s-20s。
在另一优选例中,步骤3)所述退火处理的退火处理温度为30℃-80℃,较佳地35-70℃。
在另一优选例中,步骤3)所述退火处理在所述退火处理温度下的退火处理时间为3-15s,较佳地4-10s。
在另一优选例中,步骤3)所述退火处理采用电加热绕丝铜辊而进行,退火处理时其电压为10-50V,电流为5-30A。
本发明的第三方面,提供了一种本发明第一方面所述电极丝材料的用途,用于进行精密切割。
本发明的第四方面,提供了一种制品,所述制品含有本发明第一方面所述电极丝材料或由本发明第一方面所述电极丝材料制成。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
图1是本发明所述仿鱼鳞微织构电极丝材料的结构示意图。
图2为本发明所述制备方法的工艺示意图。
图3为实施例1中经热处理的三层结构的丝材坯料1的SEM断面形貌测试结果。
图4为实施例1所得电极丝材料1的SEM表面形貌测试结果,其中(a)为鱼的鱼鳞形貌,(b)为电极丝材料1的放大的SEM表面形貌。
图5为实施例1所得电极丝材料1的SEM断面形貌测试结果。
图6是铜合金丝材、铜合金丝材1和电极丝材料1与冷却液的接触角测试结果,其中(a)为铜合金丝材,(b)为铜合金丝材1,(c)和(d)为仿鱼鳞微织构电极丝材料1。
图7为铜合金丝材、铜合金丝材1和电极丝材料1的相对切割速度对比图。
图8为模具钢样品分别经铜合金丝材1和电极丝材料1在相同的切割速度下切割后的三维形貌测试结果,其中(a)为经铜合金丝材1切割后的样品三维形貌,(b)为经仿鱼鳞微织构电极丝材料1切割后的三维形貌。
图9为实施例2-4所得电极丝材料2-4的SEM表面形貌测试结果,其中(a)为电极丝材料2,(b)为电极丝材料3,(c)为电极丝材料4。
图10为对比例1所得电极丝材料C1的SEM表面形貌测试结果。
图11为对比例2所得电极丝材料C2的SEM表面形貌测试结果。
具体实施方式
本发明人经过长期而深入的研究,通过采用特定的制备工艺制得了一种具有特殊的仿生结构的电极丝材料。具体地,本发明人采用特定的热处理工艺结合特定的拉拔工艺制备得到一种具有仿鱼鳞微织构表面形貌的电极丝材料,该材料表面的多孔形貌使得电极丝材料与被切割样品的阻力明显减小,并可有效改善切削过程中磨屑的排出以及冷却液的循环效果,最终提高电极丝的切割速度。在此基础上,发明人完成了本发明。
术语
如本文所用,术语“冷却液”指一种用在金属切削、磨加工过程中冷却和润滑切屑工具和加工件的工业用液体,其同时具备良好的冷却性能、润滑性能、防锈性能、除油清洗功能及防腐功能。
电极丝材料
本发明提供了一种电极丝材料,所述电极丝材料表面具有仿鱼鳞微织构层,且所述电极丝材料包括:
i)作为内层的合金基体层;
ii)作为中间层的互扩散层;和
iii)作为外层的镀层;
并且,所述电极丝材料对冷却液的接触角为105-150°。
图1是本发明所述仿鱼鳞微织构电极丝材料的结构示意图。
在另一优选例中,所述电极丝材料对冷却液的接触角为107-140°。
在另一优选例中,所述电极丝材料对冷却液的接触角为110-135°,较佳地为为112-130°。
在另一优选例中,所述电极丝材料的直径为0.05-1mm,较佳地为0.1-0.8mm,更佳地为0.15-0.6mm。
在另一优选例中,所述电极丝材料中,所述内层的直径为0.15-0.6mm;和/或
中间层的厚度为5-30μm;和/或
外层的厚度为2-20μm。
在另一优选例中,所述内层的直径为0.15-0.4mm。
在另一优选例中,所述中间层的厚度10-20μm。
在另一优选例中,所述外层的厚度为4-10μm。
在另一优选例中,所述仿鱼鳞微织构层的厚度为2-20μm。
在另一优选例中,所述仿鱼鳞微织构层的厚度为3-18μm,较佳地为5-15μm。
应理解,当所述仿鱼鳞微织构层的厚度大于20μm时,仿鱼鳞微织构层的微结构深度较浅,从而使得电极丝与冷却液的接触角减小,使得电极丝的切割速度降低;当所述仿鱼鳞微织构层的厚度小于2μm时,仿鱼鳞微织构层太薄易因磨损而早期失效,从而不能有效提高电极丝的切割速度。
在本发明中,在所述电极丝材料中,所述内层、中间层和外层的元素由于经热扩散作用而成,故其中元素会存在一定的浓度梯度。
在另一优选例中,组成所述合金基体层的元素包括(但并不限于):铜、锌、锡、铅、或其组合。
在另一优选例中,组成所述互扩散层的元素包括(但并不限于):铜、锌、锡、铅、或其组合。
在另一优选例中,组成所述镀层的元素包括(但并不限于):铜、锌、锡、铅、或其组合。
在另一优选例中,所述电极丝材料的抗拉强度为900-1200MPa,较佳地为1100MPa-1200MPa。
在另一优选例中,所述电极丝材料的延伸率为1-5%,较佳地为3-5%。
在另一优选例中,所述电极丝材料是采用本发明所述的方法制备的。
在本发明中,由于所述电极丝材料表面具有特殊的仿鱼鳞微织构,使得该电极丝材料对冷却液具有更大的接触角,因而可显著改善冷却液的冷却效果,并极大地提高切割速度。
制备方法
本发明还提供了一种所述电极丝材料的制备方法,包括如下步骤:
1)提供镀层电极丝,热处理所述镀层电极丝,得到经热处理的电极丝;
2)拉拔处理步骤1)所得经热处理的电极丝,得到经拉拔处理的电极丝;和
3)退火处理步骤2)所得经拉拔处理的电极丝,得到所述电极丝材料。
图2为本发明所述制备方法的工艺示意图。
在另一优选例中,所述镀层电极丝包括作为芯层的合金层和位于所述芯层表面的金属镀层。
在另一优选例中,组成所述合金层的材料包括(但并不限于):铜合金、不锈钢。
在另一优选例中,组成所述金属镀层的金属包括(但并不限于):锌、铜、锡、铅、或其组合。
在另一优选例中,所述镀层电极丝的直径为0.01-5mm,较佳地为0.05-3mm,更佳地为0.1-2mm。
在另一优选例中,所述金属镀层的厚度为1-50μm,较佳地为2-30μm,更佳地为4-15μm。
应理解,在本发明中,步骤1)所述镀层电极丝的金属镀层的厚度选择对后续的热处理步骤和拉拔步骤具有重要影响。当金属镀层厚度大于50μm时,在热处理过程中,所述金属镀层与内层基体层无法很好地进行互扩散,上述互扩散不充足的丝材坯料在后续拉拔步骤中无法获得明显的仿鱼鳞微织构结构;当所述金属镀层的厚度小于1μm时,锌镀层则因高温熔化与升华而损失,从而不能与基体形成互扩散,进而影响仿鱼鳞微织构结构的制备,最终影响电极丝的切割速度。
在另一优选例中,步骤1)所述热处理的热处理温度为550-850℃;和/或
步骤1)所述热处理在所述热处理温度的热处理时间为5s-60s。
应理解,在本发明所述制备方法中,步骤1)所述热处理的处理温度范围和处 理时间范围对最终所制得的电极丝材料的性能也具有重要影响。当热处理温度低于550℃时,经所述热处理所得电极丝材料未出现仿鱼鳞微结构;当热处理温度高于850℃时,在热处理过程中,所述金属镀层出现明显的熔化、挥发,导致最终所得电极丝材料同样未出现明显的仿鱼鳞微结构。当在所述热处理温度下的热处理时间大于60s时,金属镀层也容易出现明显的熔化、挥发,最终所得电极丝材料同样未能出现明显的仿鱼鳞微结构;当在所述热处理温度下的热处理时间小于5s时,最终所得电极丝材料同样未出现明显的仿鱼鳞微结构。
在另一优选例中,步骤1)所述热处理的热处理温度为580-830℃,较佳地为600-800℃。
在另一优选例中,步骤1)所述热处理在所述热处理温度的热处理时间为8-55s,较佳地10s-50s。
在另一优选例中,步骤1)所述热处理的处理方式包括(但并不限于):电阻加热、辐射加热、或其组合。
在另一优选例中,步骤1)所述热处理的处理方式为电阻加热和辐射加热的复合加热方式。
在另一优选例中,所述电阻加热通过镀层电极丝自身的电阻发热进行,采用电阻加热时,对所述镀层电极丝施加的功率为0.1-10KW,较佳地0.3-5KW。
在另一优选例中,所述辐射加热区间的辐射处理温度为550-850℃,较佳地600-800℃。
在另一优选例中,在所述辐射处理温度的辐射处理时间为5-60s,较佳地15-30s。
在另一优选例中,所述经热处理的电极丝的直径为0.03-5mm,较佳地0.05-4.5mm。
在另一优选例中,所述经热处理的电极丝包括:第一内层、第一中间层和第一外层。
在另一优选例中,第一内层的直径为0.02-4mm,较佳地为0.5-3mm。
在另一优选例中,第一中间层的厚度为3-30μm,较佳地为5-20μm。
在另一优选例中,第一外层的厚度为2-20μm,较佳地为5-10μm。
在另一优选例中,步骤2)所述拉拔处理在润滑油槽中进行;和/或
步骤2)所述拉拔处理在室温下进行;和/或
步骤2)所述拉拔处理的拉拔速度为600-1500m/min。
应理解,在本发明所述制备方法中,当步骤2)的拉拔速度大于1500m/min时,在该拉拔过程中所述被拉拔的电极丝非常容易断裂;当步骤2)的拉拔速度小于600m/min时,经所述拉拔后所得电极丝材料未出现明显的仿鱼鳞微结构。
在另一优选例中,步骤2)所述拉拔处理的拉拔速度为700-1400m/min,较佳地800-1300m/min。
在另一优选例中,所述经拉拔处理的电极丝的直径为0.1-1mm,较佳地0.15-0.6mm。
在另一优选例中,步骤3)所述退火处理的退火处理温度为20-100℃;和/或
步骤3)所述退火处理在所述退火处理温度下的退火处理时间为1s-20s。
在另一优选例中,步骤3)所述退火处理的退火处理温度为30℃-80℃,较佳地35-70℃。
在另一优选例中,步骤3)所述退火处理在所述退火处理温度下的退火处理时间为3-15s,较佳地4-10s。
在另一优选例中,步骤3)所述退火处理采用电加热绕丝铜辊而进行,退火处理时其电压为10-50V,电流为5-30A。
应用
本发明还提供了一种所述电极丝材料的用途,用于进行精密切割。
本发明还提供了一种制品,所述制品含有所述电极丝材料或由所述电极丝材料制成。
与现有技术相比,本发明具有以下主要优点:
(1)所述电极丝材料表面呈仿鱼鳞状微织构,该特殊的仿生结构使得电极丝材料对于冷却液具有优异的冷却效果,从而可获得更高的切割速率,进而可以显著提升所得电极丝材料的使用性能,如切割速度较普通的带锌镀层的铜电极丝提高10%~20%,较不含锌镀层的普通铜丝提高至少23%;
(2)所述电极丝材料表面特殊的仿鱼鳞状微织构使得其在切割过程中具有非常低的切割阻力,且可非常顺利地排出磨屑,利于提高切割速度,同时不降低切割样品的表面粗糙度;
(3)所述电极丝材料的制备方法具有工艺简单、成本低、易于工业化生产等优点。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计算。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
实施例1电极丝材料1
(1)铜合金丝材镀锌:首先将经过除锈、除油清洗后的直径约为1.5mm的铜合金丝材放入电镀设备,进行镀锌处理,通过调整镀锌工艺获得锌镀层厚度约为5μm的铜合金丝材1。
(2)扩散热处理:对铜合金丝材1进行扩散热处理,选择加热方式为电阻/辐射复合加热方式,使铜合金丝材1以0.05m/s通过温度为750℃、长度为1m的电阻炉,同时该段丝材所加功率为1KW(本实施例中复合加热方式的等效热处理温度为800℃,等效热处理时间为20s),获得具有金属镀层、互扩散层与铜合金基体层三层结构的丝材坯料1,其直径约为1.5mm。
(3)拉拔处理:将上述以1000m/min的拉制速度拉制成直径为0.25mm的微织构电极丝,随后以电压为30V、电流为10A(对丝材而言,其等效退火温度为40℃)进行去应力退火处理5s,获得电极丝材料1。
结果
对实施例1中经热处理的三层结构的丝材坯料1、所得电极丝材料1进行表面及断面形貌和成分分析、接触角和切割性能等测试。
图3为实施例1中经热处理的三层结构的丝材坯料1的SEM断面形貌测试结 果。
从图3可以看出,经热处理后,所得丝材坯料1具有三层结构,包括合金基体层、互扩散层和金属镀层,其中合金基体层的直径为1.25mm,互扩散层的厚度为12μm,金属镀层的厚度为4μm。
进一步采用能谱仪对图3中位点1、2、3、4、5、6和7的成分进行测试,结果如表1所示。
表1
Figure PCTCN2016108423-appb-000001
从表1可以看出,经热处理的三层结构的丝材坯料1从外到内沿径向(即从位点1到7)Zn的含量逐渐降低,Cu的含量逐渐升高,由于热处理过程在高温空气气氛中进行,因此在外层上还存在微量的O。上述结果表明:在热处理过程中,锌镀层与基体合金发生了明显的互扩散,形成了包括合金基体层、互扩散层和金属镀层的三层结构。
图4为实施例1所得电极丝材料1的SEM表面形貌测试结果,其中(a)为鱼的鱼鳞形貌,(b)为电极丝材料1的放大的SEM表面形貌。
从图4可以看出,实施例1所得电极丝材料1的微观表面具有仿真度非常高的仿鱼鳞微织构,且所得电极丝材料1的直径为0.25mm。
图5为实施例1所得电极丝材料1的SEM断面形貌测试结果。
从图5可以看出,实施例1所得电极丝材料1具有三层结构,包括合金基体层、互扩散层和仿生镀层,其中合金基体层的直径为0.25mm,互扩散层的厚度为 15μm,金属镀层的厚度为5μm。
进一步采用能谱仪对图5中位点1、2、3、4、5和6的成分进行测试,结果如表2所示。
表2
Figure PCTCN2016108423-appb-000002
从表2可以看出,所得电极丝材料1从外到内沿径向(即从位点1到6)Zn的含量逐渐降低,Cu的含量逐渐升高,且在外层还存在微量的O。上述结果进一步表明所得仿鱼鳞微织构电极丝材料同样为三层结构。
图6是铜合金丝材(即不带镀层的铜合金丝材)、铜合金丝材1(即带锌镀层的铜合金丝材)和电极丝材料1与冷却液的接触角测试结果,其中(a)为铜合金丝材,(b)为铜合金丝材1,(c)和(d)为仿鱼鳞微织构电极丝材料1。
从图6可以看出,相比于未镀覆锌镀层的铜合金丝材以及仅镀覆锌镀层的铜合金丝材,本发明的具有特定的仿鱼鳞微织构的电极丝材料1与冷却液具有更大的接触角,进而可明显改善切割过程中冷却液对电极丝材料的润滑效果。
图7为铜合金丝材、铜合金丝材1和电极丝材料1的相对切割速度对比图。
从图7可以看出,本发明仿鱼鳞微织构电极丝材料1相比于普通的未镀锌层的铜合金丝材的切割速度提高了约23%,相比于镀锌层的铜合金丝材1的切割速度提高了约16%。
图8为模具钢样品分别经铜合金丝材1和电极丝材料1在相同的切割速度下切割后的三维形貌测试结果,其中(a)为经铜合金丝材1切割后的样品三维形貌,(b) 为经仿鱼鳞微织构电极丝材料1切割后的三维形貌。
从图8可以看出,经仿鱼鳞微织构电极丝材料1切割的样品的表面粗糙度与经铜合金丝材1切割的样品的表面粗糙度相当。
此外,对铜合金丝材、铜合金丝材1和电极丝材料1的力学性能测试结果表明三者具有相当的抗拉强度(约为1100MPa)和延伸率(约为5%)。
实施例2电极丝材料2
(1)铜合金丝材镀锌:首先将经过除锈、除油清洗后的直径约为1mm的铜合金丝材放入电镀设备,进行镀锌处理,通过调整镀锌工艺获得锌镀层厚度为10μm的铜合金丝材2;
(2)扩散热处理:对铜合金丝材2进行扩散热处理,选择加热方式为电阻/辐射复合加热方式,使铜合金丝材2以0.02m/s通过温度为650℃、长度为1m的电阻炉,同时该段丝材所加功率为0.5KW(本实施例中复合加热方式的等效热处理温度为690℃,等效热处理时间为50s),获得具有金属镀层、互扩散层与铜合金基体层三层结构的丝材坯料2,其直径为1.5mm;
(3)拉拔处理:将上述经热处理的三层结构的丝材坯料2以1200m/min的拉制速度拉制成直径为0.25mm的微织构电极丝,随后以电压为30V、电流为10A(对丝材而言,其等效退火温度为40℃)进行去应力退火处理5s,获得电极丝材料2。
实施例3电极丝材料3
(1)铜合金丝材镀锌:首先将经过除锈、除油清洗后的直径为1.2mm的铜合金丝材放入电镀设备,进行镀锌处理,通过调整镀锌工艺获得锌镀层厚度为10μm的铜合金丝材3。
(2)扩散热处理:对铜合金丝材1进行扩散热处理,选择加热方式为电阻/辐射复合加热方式,使铜合金丝材3以0.1m/s通过温度为680℃、长度为1m的电阻炉,同时该段丝材所加功率为1KW(本实施例中复合加热方式的等效热处理温度为710℃,等效热处理时间为10s),获得具有金属镀层、互扩散层与铜合金基体层三层结构的丝材坯料3。
(3)拉拔处理:将上述经热处理的三层结构的丝材坯料3以1000m/min的拉制速度拉制直径为0.2mm的微织构电极丝,随后以电压为30V、电流为10A(对丝材而言,其等效退火温度为40℃)进行去应力退火处理5s,获得电极丝材料3。
实施例4电极丝材料4
(1)铜合金丝材镀锌:首先将经过除锈、除油清洗后的直径为1.5mm的铜合金丝材放入电镀设备,进行镀锌处理,通过调整镀锌工艺获得锌镀层厚度为8μm的铜合金丝材4;
(2)扩散热处理:对铜合金丝材4进行扩散热处理,选择加热方式为电阻/辐射复合加热方式,使铜合金丝材4以0.05m/s通过温度为700℃、长度为1m的电阻炉,同时该段丝材所加功率为1.5KW(本实施例中复合加热方式的等效热处理温度为780℃,等效热处理时间为20s),获得具有金属镀层、互扩散层与铜合金基体层三层结构的丝材坯料4;
(3)拉拔处理:将上述经热处理的三层结构的丝材坯料4以800m/min的拉制速度拉制直径为0.3mm的微织构电极丝,随后以电压为30V、电流为10A(对丝材而言,其等效退火温度为40℃)进行去应力退火处理5s,获得电极丝材料4。
结果
图9为实施例2-4所得电极丝材料2-4的SEM表面形貌测试结果,其中(a)为电极丝材料2,(b)为电极丝材料3,(c)为电极丝材料4。
从图9可以看出,通过本发明的特定的电镀处理工艺、热处理工艺、拉拔处理工艺和退火处理工艺处理后所得电极丝材料2-4均呈现仿鱼鳞微织构表面形貌。
对比例1电极丝材料C1
同实施例1,区别在于:热处理温度为500℃。
结果
图10为对比例1所得电极丝材料C1的SEM表面形貌测试结果。
从图10可以看出,在对比例1所述热处理温度下处理后,所得电极丝材料C1 表面未出现明显的仿鱼鳞结构,使用该电极丝材料C1进行切割模具钢样品,相比于使用常规的镀锌层铜丝材,其切割速度基本不变。
对比例2电极丝材料C2
同实施例1,区别在于:热处理温度为880℃
结果
图11为对比例2所得电极丝材料C2的SEM表面形貌测试结果。
从图11可以看出,在该热处理温度下处理所得电极丝材料C2表面出现大量微裂纹,且并未发现明显的微织构,使用该电极丝材料C2进行切割模具钢样品,相比于使用常规的镀锌层铜丝材,其切割速度基本不变。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (15)

  1. 一种电极丝材料,其特征在于,所述电极丝材料表面具有仿鱼鳞微织构层,且所述电极丝材料包括:
    i)作为内层的合金基体层;
    ii)作为中间层的互扩散层;和
    iii)作为外层的镀层;
    并且,所述电极丝材料对冷却液的接触角为105-150°。
  2. 如权利要求1所述的电极丝材料,其特征在于,所述电极丝材料对冷却液的接触角为107-140°。
  3. 如权利要求1所述的电极丝材料,其特征在于,所述电极丝材料中,所述内层的直径为0.15-0.6mm;和/或
    中间层的厚度为5-30μm;和/或
    外层的厚度为2-20μm。
  4. 如权利要求1所述的电极丝材料,其特征在于,所述仿鱼鳞微织构层的厚度为2-20μm。
  5. 如权利要求1所述的电极丝材料,其特征在于,组成所述合金基体层的元素选自下组:铜、锌、锡、铅、或其组合。
  6. 如权利要求1所述的电极丝材料,其特征在于,组成所述互扩散层的元素选自下组:铜、锌、锡、铅、或其组合。
  7. 如权利要求1所述的电极丝材料,其特征在于,组成所述镀层的元素选自下组:铜、锌、锡、铅、或其组合。
  8. 如权利要求1所述的电极丝材料,其特征在于,所述电极丝材料的抗拉强度为900-1200MPa。
  9. 如权利要求1所述的电极丝材料,其特征在于,所述电极丝材料的延伸率为1-5%。
  10. 如权利要求1所述的电极丝材料,其特征在于,所述电极丝材料是如下制备的:
    1)提供镀层电极丝,热处理所述镀层电极丝,得到经热处理的电极丝;
    2)拉拔处理步骤1)所得经热处理的电极丝,得到经拉拔处理的电极丝;和
    3)退火处理步骤2)所得经拉拔处理的电极丝,得到所述电极丝材料。11.一种 权利要求1所述电极丝材料的制备方法,其特征在于,包括如下步骤:
    1)提供镀层电极丝,热处理所述镀层电极丝,得到经热处理的电极丝;
    2)拉拔处理步骤1)所得经热处理的电极丝,得到经拉拔处理的电极丝;和
    3)退火处理步骤2)所得经拉拔处理的电极丝,得到权利要求1所述电极丝材料。
  11. 如权利要求11所述的方法,其特征在于,步骤1)所述热处理的热处理温度为550-850℃;和/或
    步骤1)所述热处理在所述热处理温度的热处理时间为5s-60s。
  12. 如权利要求11所述的方法,其特征在于,步骤2)所述拉拔处理在润滑油槽中进行;和/或
    步骤2)所述拉拔处理在室温下进行;和/或
    步骤2)所述拉拔处理的拉拔速度为600-1500m/min。
  13. 如权利要求11所述的方法,其特征在于,步骤3)所述退火处理的退火处理温度为20-100℃;和/或
    步骤3)所述退火处理在所述退火处理温度下的退火处理时间为1s-20s。
  14. 一种权利要求1所述电极丝材料的用途,其特征在于,用于进行精密切割。
  15. 一种制品,其特征在于,所述制品含有权利要求1所述电极丝材料或由权利要求1所述电极丝材料制成。
PCT/CN2016/108423 2015-12-02 2016-12-02 仿鱼鳞微织构电极丝材料及其制备方法与应用 WO2017092715A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177024833A KR20170109061A (ko) 2015-12-02 2016-12-02 비늘형 미세 재질 전극 와이어 재료 및 이의 제조 방법과 응용
KR1020207004547A KR102233844B1 (ko) 2015-12-02 2016-12-02 미세 결정립 재질 전극 와이어 재료 및 이의 제조 방법과 응용
PL16870025.0T PL3251777T3 (pl) 2015-12-02 2016-12-02 Materiał drutu elektrodowego mający mikroteksturę przypominającą łuskę oraz sposób jego przygotowania oraz jego zastosowanie
ES16870025T ES2972619T3 (es) 2015-12-02 2016-12-02 Material de cable de electrodo de microtextura de estilo escala y método de preparación para el mismo y uso del mismo
EP16870025.0A EP3251777B1 (en) 2015-12-02 2016-12-02 Scale-style micro-texture electrode wire material and preparation method therefor and use thereof
US15/554,965 US10926345B2 (en) 2015-12-02 2016-12-02 Scale-style micro-texture electrode wire material and preparation method therefor and use thereof
JP2017564789A JP6829213B2 (ja) 2015-12-02 2016-12-02 鱗状微細組織の電極線材料およびその製造方法と使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510868517.7A CN106808037B (zh) 2015-12-02 2015-12-02 仿鱼鳞微织构电极丝材料及其制备方法与应用
CN201510868517.7 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017092715A1 true WO2017092715A1 (zh) 2017-06-08

Family

ID=58796307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108423 WO2017092715A1 (zh) 2015-12-02 2016-12-02 仿鱼鳞微织构电极丝材料及其制备方法与应用

Country Status (8)

Country Link
US (1) US10926345B2 (zh)
EP (1) EP3251777B1 (zh)
JP (1) JP6829213B2 (zh)
KR (2) KR20170109061A (zh)
CN (1) CN106808037B (zh)
ES (1) ES2972619T3 (zh)
PL (1) PL3251777T3 (zh)
WO (1) WO2017092715A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107671379A (zh) 2017-09-26 2018-02-09 宁波康强微电子技术有限公司 织构化镀层电极丝的制备方法
CN107971591A (zh) * 2017-12-19 2018-05-01 宁波康强微电子技术有限公司 超精密切割极细铜线的制备方法
CN113070539A (zh) * 2017-12-31 2021-07-06 宁波博德高科股份有限公司 一种电极丝及其制备方法
JP7260267B2 (ja) * 2018-09-11 2023-04-18 日鉄Sgワイヤ株式会社 ワイヤ放電加工用電極線
CN109986153A (zh) * 2019-03-07 2019-07-09 成都虹波实业股份有限公司 一种电极丝涂覆材料、电极丝的制备方法及应用
CN110814449B (zh) * 2019-11-29 2020-09-08 深圳大学 梯度材料电极及其制备方法
CN111334843B (zh) * 2020-04-26 2021-09-14 重庆理工大学 一种金属管内壁冶金结合涂层的制备装置
CN113909599B (zh) * 2021-11-02 2023-12-05 江西凯强新材料有限公司 一种镀锌电极丝制造方法
CN114472564B (zh) * 2022-04-14 2022-06-21 天津市天欣金属制品有限公司 一种用于镀锌丝生产的拉丝设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201239836Y (zh) * 2008-07-16 2009-05-20 金劲 快走丝用复合电极丝
CN103537768A (zh) * 2013-11-12 2014-01-29 宁波博威麦特莱科技有限公司 慢走丝电火花放电加工用电极丝及其制备方法
WO2014198254A1 (de) * 2013-06-11 2014-12-18 Heinrich Stamm Gmbh Drahtelektrode zum funkenerosiven schneiden von gegenständen
CN104400159A (zh) * 2014-10-28 2015-03-11 苏州市宝玛数控设备有限公司 一种高效多层复合电极丝
CN105834533A (zh) * 2016-04-25 2016-08-10 宁波博威麦特莱科技有限公司 用于慢走丝电火花切割用的电极丝及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003291030A (ja) 2002-03-29 2003-10-14 Oki Electric Cable Co Ltd ワイヤ放電加工用電極線
JP4089551B2 (ja) * 2003-08-25 2008-05-28 日立電線株式会社 高強度ワイヤ放電加工用電極線
KR100543847B1 (ko) * 2005-04-01 2006-01-20 주식회사 엠에이씨티 방전가공용 전극선 및 그 제조 방법
ES2390167T3 (es) * 2008-10-01 2012-11-07 Berkenhoff Gmbh Electrodos de alambre para corte por descarga eléctrica
ES2390168T3 (es) * 2008-12-03 2012-11-07 Berkenhoff Gmbh Electrodo de alambre para corte por descarga eléctrica y método para fabricar dicho electrodo de alambre
KR101284495B1 (ko) 2011-04-29 2013-07-16 성기철 방전가공용 전극선 및 그 제조방법
KR101292343B1 (ko) 2011-08-08 2013-07-31 성기철 방전가공용 전극선 및 그 제조방법
KR20140051734A (ko) * 2012-10-23 2014-05-02 성기철 방전가공용 전극선 및 그 제조방법
JP2014136285A (ja) 2013-01-17 2014-07-28 Hitachi Metals Ltd 放電加工用ワイヤーおよびその製造方法
CN105081490B (zh) * 2014-04-23 2017-09-12 北京富纳特创新科技有限公司 线切割电极丝及线切割装置
CN104191056B (zh) 2014-08-13 2016-06-29 宁波博威麦特莱科技有限公司 一种高精度锌基合金电极丝及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201239836Y (zh) * 2008-07-16 2009-05-20 金劲 快走丝用复合电极丝
WO2014198254A1 (de) * 2013-06-11 2014-12-18 Heinrich Stamm Gmbh Drahtelektrode zum funkenerosiven schneiden von gegenständen
CN103537768A (zh) * 2013-11-12 2014-01-29 宁波博威麦特莱科技有限公司 慢走丝电火花放电加工用电极丝及其制备方法
CN104400159A (zh) * 2014-10-28 2015-03-11 苏州市宝玛数控设备有限公司 一种高效多层复合电极丝
CN105834533A (zh) * 2016-04-25 2016-08-10 宁波博威麦特莱科技有限公司 用于慢走丝电火花切割用的电极丝及其制备方法

Also Published As

Publication number Publication date
US20180050401A1 (en) 2018-02-22
JP6829213B2 (ja) 2021-02-10
US10926345B2 (en) 2021-02-23
EP3251777A4 (en) 2018-04-04
KR102233844B1 (ko) 2021-03-30
CN106808037A (zh) 2017-06-09
EP3251777A1 (en) 2017-12-06
JP2018516769A (ja) 2018-06-28
EP3251777C0 (en) 2024-02-07
KR20170109061A (ko) 2017-09-27
CN106808037B (zh) 2020-07-03
ES2972619T3 (es) 2024-06-13
KR20200020015A (ko) 2020-02-25
PL3251777T3 (pl) 2024-06-10
EP3251777B1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
WO2017092715A1 (zh) 仿鱼鳞微织构电极丝材料及其制备方法与应用
KR102326967B1 (ko) 텍스처링된 코팅 전극 와이어의 제조 방법
EP0930131A1 (en) Method of manufacturing porous electrode wire for electric discharge machining and structure of the electrode wire
JP5231486B2 (ja) 放電加工用電極線
JP2016093887A (ja) 放電加工用電極線の製造方法
CN107299306A (zh) 一种中锰钢热浸镀的方法
CN107429322B (zh) 散热元件用铜合金板和散热元件
CN108856935A (zh) 放电加工用电极丝及其制造方法
CN108368566A (zh) 散热元件用铜合金板
JP7056653B2 (ja) ワイヤ放電加工用電極線
CN111001658B (zh) 一种汽车覆盖件用钢铝复合板及其制备方法
CN105887145B (zh) 一种传动机械零部件用复合镀层钢带的生产方法
KR100767718B1 (ko) 고속가공용 전극선 및 그 제조방법
JP2006159304A (ja) ワイヤ放電加工用電極線及びその製造方法
JP2018090885A (ja) 溶融Zn−Al−Mg系めっき鋼板および溶融Zn−Al−Mg系めっき鋼板の製造方法
JP2003291030A (ja) ワイヤ放電加工用電極線
KR20140100796A (ko) 방전가공용 전극선 및 그 제조방법
JPH02125833A (ja) 溶融亜鉛メッキ浴中浸漬部材及びその製造方法
JP5602657B2 (ja) ゴム物品補強用ワイヤの製造方法およびゴム物品補強用ワイヤ
JPS6171925A (ja) 放電加工用複合電極線の製造法
JPS6176215A (ja) 放電加工用複合電極線の製造法
KR20090034474A (ko) 방전가공용 전극선 및 그 제조방법
KR20140075442A (ko) 방전가공용 전극선 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870025

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016870025

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15554965

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177024833

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2017564789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE