WO2017092133A1 - 采用无黑色矩阵技术的va型液晶显示面板及其制作方法 - Google Patents

采用无黑色矩阵技术的va型液晶显示面板及其制作方法 Download PDF

Info

Publication number
WO2017092133A1
WO2017092133A1 PCT/CN2015/099623 CN2015099623W WO2017092133A1 WO 2017092133 A1 WO2017092133 A1 WO 2017092133A1 CN 2015099623 W CN2015099623 W CN 2015099623W WO 2017092133 A1 WO2017092133 A1 WO 2017092133A1
Authority
WO
WIPO (PCT)
Prior art keywords
color resist
layer
disposed
column spacer
liquid crystal
Prior art date
Application number
PCT/CN2015/099623
Other languages
English (en)
French (fr)
Inventor
于承忠
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/912,609 priority Critical patent/US10031374B2/en
Publication of WO2017092133A1 publication Critical patent/WO2017092133A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a VA type liquid crystal display panel using a black matrix-free technology and a manufacturing method thereof.
  • LCD Liquid crystal display
  • PDA personal digital assistant
  • digital camera computer screen Or laptop screens, etc.
  • the liquid crystal display panel generally includes an array substrate, a color filter substrate, and a liquid crystal layer interposed between the array substrate and the color filter substrate.
  • a thin film transistor (TFT) arranged in a matrix is usually disposed on the array substrate, and a color for filtering is usually disposed on the color filter substrate.
  • the PS further includes a main spacer (Main PS) and a sub-substrate (Sub PS).
  • the height of the Main PS is higher than that of the Sub PS.
  • the Main PS is placed against the array.
  • the substrate, the Sub PS is spaced apart from the array substrate.
  • the Main PS is a PS that plays a supporting role in the normal working environment of the liquid crystal display panel.
  • the Sub PS is added to jointly support the array substrate to increase the support strength of the PS.
  • FIG. 1 is a schematic diagram showing the structure of a conventional VA type liquid crystal display panel using a COA technology.
  • the VA type liquid crystal display panel includes a TFT array substrate 100 and a matrix disposed on the TFT array substrate 100.
  • the VA type liquid crystal display panel drives the arrangement of the liquid crystal by the vertical electric field, in order to reduce the manufacturing cost, it is not necessary to rotate like a plane.
  • IPS In-Plane Switching
  • FIG. 2 is a schematic diagram showing the structure of a VA liquid crystal display panel using BM-less technology: a gate line (not shown) and a data line (not shown) are provided in the corresponding TFT array substrate 10.
  • a gate line (not shown)
  • a data line (not shown) are provided in the corresponding TFT array substrate 10.
  • the stacking of two color resists of red, green, and blue color resists 11, 12, and 13 (exemplified by red and blue color resists 11, 13 in FIG.
  • the main columnar spacer 16 and the sub-columnar spacer 17 made of a black material are provided on the upper substrate 19 to support the thickness and light shielding of the liquid crystal layer 15;
  • the frame 20' on the substrate 19 and the sealing frame 20 disposed on the TFT array substrate 10 are used to achieve the bonding and sealing of the TFT array substrate 10 and the upper substrate 19; thereby eliminating the black matrix material and its process, The manufacturing cost of the liquid crystal display panel is greatly reduced.
  • the thermal expansion coefficient of the liquid crystal is greater than the thermal expansion coefficient of the glass substrate and other components such as the column spacer, generally, under high temperature conditions, the thermal expansion of the liquid crystal is significantly larger than that of other components, resulting in an increase in the cell thickness of the liquid crystal layer, and the column spacer
  • the pad can not be thermally expanded correspondingly, which easily causes the liquid crystal in the vertically placed liquid crystal display panel to flow downward due to gravity, causing unevenness of gravity display, that is, gravity Mura; if under low temperature conditions, liquid crystal heat shrinkage is greater than other
  • the component that is, while still maintaining the thickness of the liquid crystal layer, the liquid crystal will not be able to fill the entire liquid crystal cell assembly and cause vacuum bubbles, that is, bubble defects at low temperatures.
  • the liquid crystal layer shrinks when cooling, at ⁇ d ⁇ > ⁇ H M -H S .
  • the liquid crystal amount limit range (LC Margin), which does not allow the gravity Mura to occur at high temperatures or the bubble amount which is allowed to occur at low temperatures.
  • gate lines (not shown) and data lines (not shown) are disposed in the corresponding TFT array substrate 10'.
  • a direct deposition stack of red and blue color resists 11', 13' is implemented to prevent color mixing of red, green, and blue colors.
  • the height difference between the main column spacer 16' and the sub-columnar spacer 17' is 0.4 um or more to ensure sufficient LC Margin. This requires that the height of the main column spacer 16' needs to be 2.5 um or more.
  • the film thicknesses of red, green, and blue are designed to be 3.0um, 3.0um, and 3.2um, respectively.
  • the anti-mixing color region is higher than the other pixel regions by a height of about 2.8 um at the stack of the two color resists, and at this time, it is disposed at the two color resist stacks.
  • the height of the main column spacer 16' is only 1.0 um, and the height of the sub-columnar spacer 17' is about 0.85 to 0.90 um, that is, the main column spacer 16' and the sub-columnar spacer 17'
  • the height difference is only 0.1 to 0.15 um, and the lack of height difference between the two will result in insufficient LC Margin of the liquid crystal display panel, thereby affecting the product yield.
  • An object of the present invention is to provide a VA type liquid crystal display panel using a black matrix-free technology, which can improve the height difference between the main column spacer and the sub-columnar spacer, expand the limit range of the liquid crystal amount, and ensure the product yield.
  • Another object of the present invention is to provide a method for fabricating a VA liquid crystal display panel using a black matrix-free technology, which can improve the height difference between the main column spacer and the sub-columnar spacer, and expand the limit range of the liquid crystal amount to ensure Product yield.
  • the present invention provides a VA type liquid crystal display panel using a black matrix-free technology, comprising: a lower substrate, a TFT layer disposed on the lower substrate, a protective layer disposed on the TFT layer, a color resist layer disposed on the protective layer, a passivation layer disposed on the color resist layer, a pixel electrode layer disposed on the passivation layer, and an upper substrate disposed opposite the lower substrate a common electrode layer disposed on a side of the upper substrate adjacent to the lower substrate, a main column spacer and a sub-column spacer disposed on the common electrode layer, a seal frame adhesive disposed on an edge of the lower substrate, and a a sealing frame disposed opposite the edge of the common electrode layer and a liquid crystal layer disposed between the lower substrate and the upper substrate;
  • the color resist layer comprises a red color resist, a green color resist, and a blue color resist arranged in a matrix, and an anti-mixing area formed by stacking red color resist and blue color resist between adjacent two color resists ;
  • the main column spacer and the sub column spacer are disposed corresponding to the anti-mixing area; the anti-color mixing area is provided with a groove corresponding to the main column spacer and the sub-column spacer The main column spacer is in contact with the bottom of the groove;
  • the material of the main column spacer, the sub column spacer, and the frame are all black materials.
  • a blue color resist is laminated on the red color resist, the recess is disposed in the blue color resist, and an upper surface of the red color resist is a flat surface.
  • a blue color resist is laminated on the red color resist, the recess is disposed in the blue color resist, and the red color resist is disposed corresponding to a portion below the recess The second groove.
  • the TFT layer includes: a gate electrode disposed on the lower substrate, a gate insulating layer disposed on the lower substrate and the gate, a semiconductor layer disposed on the gate insulating layer, and a semiconductor layer disposed on the gate layer a source and a drain respectively contacting the two ends of the semiconductor layer on the gate insulating layer;
  • the pixel electrode layer is in contact with the drain through a via hole penetrating the passivation layer, the anti-color mixing region, and the protective layer.
  • the color resist layer further includes at least one of a white color resist and a yellow color resist.
  • the invention also provides a manufacturing method of a VA type liquid crystal display panel adopting a black matrix-free technology, comprising the following steps:
  • Step 1 providing a substrate, and forming a TFT layer on the lower substrate;
  • Step 2 depositing a protective layer on the TFT layer and the lower substrate;
  • Step 3 forming a color color resist layer on the protective layer
  • the color resist layer comprises a red color resist, a green color resist, and a blue color resist arranged in a matrix, and an anti-mixing area formed by stacking red color resist and blue color resist between adjacent two color resists a groove is arranged in the anti-mixing color zone;
  • Step 4 depositing and patterning a passivation layer on the color resist layer, forming a pixel electrode layer on the passivation layer, and applying a sealant on the edge of the lower substrate;
  • Step 5 providing an upper substrate, forming a common electrode layer on a side of the upper substrate adjacent to the lower substrate;
  • Step 6 forming a main column spacer, a sub-columnar spacer, and a frame on the common electrode layer by using a black material;
  • Step 7 The lower substrate and the upper substrate of the group are filled with a liquid crystal layer, so that the main column spacer and the sub-column spacer correspond to the groove, and the main column spacer interferes with the bottom of the groove.
  • the frame is matched with the seal frame glue.
  • the step 3 includes:
  • Step 31 sequentially forming a red color resist and a green color resist on the protective layer by using a common photomask
  • Step 32 coating a blue color resist film, patterning the blue color resist film with a halftone mask to form a blue color resist, and including a red color resist between the adjacent two color resists and laminating on the red color resist a blue color resisting anti-color mixing region, wherein the recess is etched in the blue color resist of the anti-color mixing region by the halftone mask.
  • the step 3 includes:
  • Step 31 applying a red color resist film on the protective layer, patterning the red color resist film with a halftone mask to form a red color resist and a second recess located in the red color resist;
  • Step 32 using a common mask to produce a green color resistance
  • Step 33 coating and patterning the blue color resist film with a common mask to produce a blue color resist, and an anti-mixing color between the adjacent two color resists including a red color resist and a blue color resist laminated on the red color resist.
  • the blue color resist is leveled on the red color resist having the second groove, and the groove naturally forms.
  • the TFT layer includes: a gate electrode disposed on the lower substrate, a gate insulating layer disposed on the lower substrate and the gate, a semiconductor layer disposed on the gate insulating layer, and a semiconductor layer disposed on the gate layer a source and a drain respectively contacting the two ends of the semiconductor layer on the gate insulating layer;
  • the pixel electrode layer is in contact with the drain through a via hole penetrating the passivation layer, the anti-color mixing region, and the protective layer.
  • the present invention also provides a VA type liquid crystal display panel using a black matrix-free technology, comprising: a lower substrate, a TFT layer disposed on the lower substrate, a protective layer disposed on the TFT layer, and the protection layer a color resist layer on the layer, a passivation layer provided on the color resist layer, a pixel electrode layer disposed on the passivation layer, and an upper substrate disposed opposite to the lower substrate; a common electrode layer on a side of the upper substrate adjacent to the lower substrate, a main column spacer and a sub-column spacer disposed on the common electrode layer, and a seal frame rubber disposed on an edge of the lower substrate, as opposed to the seal frame glue a frame disposed at an edge of the common electrode layer, and a liquid crystal layer disposed between the lower substrate and the upper substrate;
  • the color resist layer comprises a red color resist, a green color resist, and a blue color resist arranged in a matrix, and an anti-mixing area formed by stacking red color resist and blue color resist between adjacent two color resists ;
  • the main column spacer and the sub column spacer are disposed corresponding to the anti-mixing area; the anti-color mixing area is provided with a groove corresponding to the main column spacer and the sub-column spacer The main column spacer is in contact with the bottom of the groove;
  • the material of the main column spacer, the sub-column spacer, and the frame are all black materials
  • a blue color resist is laminated on the red color resist, the recess is disposed in the blue color resist, and an upper surface of the red color resist is a flat surface;
  • the TFT layer includes: a gate electrode disposed on the lower substrate, a gate insulating layer disposed on the lower substrate and the gate, a semiconductor layer disposed on the gate insulating layer, and a device a source and a drain respectively contacting the two ends of the semiconductor layer on the gate insulating layer;
  • the pixel electrode layer is in contact with the drain through a via hole penetrating the passivation layer, the anti-color mixing region, and the protective layer;
  • the color resist layer further comprises at least one of white color resistance and yellow color resistance.
  • the invention has the beneficial effects that the VA type liquid crystal display panel adopting the black matrix-free technology, the anti-mixing color zone formed by the stacked red color resistance and the blue color resistance, and the main columnar partition of the black material is matched and arranged.
  • Pad and sub-column spacers replace the black matrix a portion of the anti-color mixing area corresponding to the main column spacer and the sub-column spacer is provided with a groove, and the main column spacer abuts against the bottom of the groove, thereby improving the main column spacer and
  • the height difference between the sub-columnar spacers expands the limit range of the liquid crystal amount to ensure product yield.
  • the invention provides a method for fabricating a VA liquid crystal display panel using a black matrix-free technology, and fabricating a main column spacer by using a black color resisting color zone and a black color resisting zone.
  • the sub-columnar spacer replaces the black matrix, and the main column spacer and the sub-column spacer are improved by patterning the blue color resistance or the red color group by using a halftone mask to form a groove in the anti-color mixing area.
  • the height difference between the objects increases the limit range of the liquid crystal amount to ensure the product yield.
  • FIG. 1 is a schematic diagram showing the structure of a conventional VA type liquid crystal display panel adopting COA technology
  • FIG. 2 is a schematic diagram showing the structure of a conventional VA type liquid crystal display panel using a black matrix-free technology
  • FIG. 3 is a schematic structural view of a conventional VA type liquid crystal display panel using a black matrix-free technology
  • FIG. 4 is a schematic structural view of a first embodiment of a VA type liquid crystal display panel using a black matrix-free technology according to the present invention
  • FIG. 5 is a schematic structural view of a second embodiment of a VA type liquid crystal display panel using a black matrix-free technology according to the present invention.
  • FIG. 6 is a flow chart of a method for fabricating a VA type liquid crystal display panel using a black matrix-free technology according to the present invention.
  • the present invention first provides a VA type liquid crystal display panel using a black matrix-free technology.
  • 4 is a first embodiment of a VA liquid crystal display panel using a black matrix-free technology according to the present invention, comprising: a lower substrate 1, a TFT layer 2 disposed on the lower substrate 1, and a TFT layer disposed on the TFT layer. 2 a protective layer 3, a color resist layer 4 disposed on the protective layer 3, a passivation layer 5 disposed on the color resist layer 4, and a pixel electrode disposed on the passivation layer 5.
  • a layer 6 an upper substrate 9 disposed opposite to the lower substrate 1 , a common electrode layer 8 disposed on a side of the upper substrate 9 adjacent to the lower substrate 1 , and a main column spacer disposed on the common electrode layer 8 71 and a sub-columnar spacer 72, a sealant (not shown) provided on the edge of the lower substrate 1, and a frame (not shown) provided on the edge of the common electrode layer 8 opposite to the seal frame glue And a liquid crystal layer 19 disposed between the lower substrate 1 and the upper substrate 9.
  • the color resist layer 4 includes a red color resist 41 arranged in a matrix, a green color resist (not shown), and a blue color resist 42 having a red color resist 41 disposed by lamination between adjacent color resists. And the anti-color mixing area 30 formed by the blue color resist 42.
  • the main column spacer 71 and the sub column spacer 72 are disposed corresponding to the anti-color mixing area 30; the anti-color mixing area 30 corresponds to the main column spacer 71 and the sub-spacer 72 A groove 31 is partially provided, and the main column spacer 71 abuts against the bottom of the groove 31.
  • the materials of the main columnar spacer 71, the sub-columnar spacer 72, and the frame are all black materials.
  • a blue color resist 42 is laminated on the red color resist 41, and the recess 31 is disposed in the blue color resist 42, the red
  • the upper surface of the color resist 41 is a flat surface, and the groove 31 is formed in the blue color resist 42 by directly etching the blue color resist 42.
  • the presence of the groove 31 increases the space for accommodating the main columnar spacer 71 and the sub-columnar spacer 72, so that the installation height of the main columnar spacer 71 can be increased, and the main columnar spacer 71 can be enlarged.
  • the difference in height from the sub-columnar spacers 72 expands the limit range of the liquid crystal amount, improves the problem that the range of the liquid crystal amount is insufficient due to the black matrix-free technique, and ensures the product yield. Further, the height difference between the main column spacer 71 and the sub-columnar spacer 72 can be changed by changing the depth of the groove 31, and the maximum depth of the groove 31 is the film thickness of the blue color resist 42, so that In the case of the current common 3.8 um liquid crystal layer 19 box thickness, if the film thicknesses of the red, green, and blue resistances are designed to be 3.0 um, 3.0 um, and 3.2 um, respectively, since the grooves 31 are provided, the main column shape The height difference between the spacer 71 and the sub-columnar spacer 72 can be increased to 0.4 um or more, the liquid crystal amount limit range is secured, and unevenness in gravity display can be prevented.
  • the sub-columnar spacer 72 is also located in the recess 31, it is possible to prevent the sliding displacement of the tip end of the sub-columnar spacer 72 as a free end, thereby reducing the probability of occurrence of bubble defects at low temperatures.
  • the TFT layer 2 includes a gate electrode 21 disposed on the lower substrate 1 , a gate insulating layer 23 disposed on the lower substrate 1 and the gate electrode 21 , and a gate insulating layer disposed on the gate insulating layer.
  • the material of the pixel electrode layer 6 and the common electrode layer 8 are indium tin oxide (Indium Tin) Oxid, ITO).
  • the color resist layer 4 may further include at least one of white color resistance and yellow color resistance.
  • FIG. 5 shows a second embodiment of a VA type liquid crystal display panel using a black matrix-free technology according to the present invention.
  • the second embodiment is different from the above-described first embodiment in that blue is in the anti-color mixing area 30.
  • the color resist 42 is laminated on the red color resist 41.
  • the recess 31 is disposed in the blue color resist 42.
  • the red color resist 41 is disposed with a second recess 32 corresponding to a portion below the recess 31.
  • the second recess 32 is formed in the red color resist 41 by directly etching the red color resist 41.
  • the depth of the second recess 32 is the film thickness of the red color resist 41, and the recess 31 is due to the blue color.
  • the resistor 42 is leveled on the red color resist 41 having the second recess 32, and naturally formed without the need to etch the blue color resist 42.
  • the structure of the remaining portion and the function of the groove 31 are the same as those of the first embodiment, and the description thereof will not be repeated here.
  • the present invention further provides a method for fabricating a VA type liquid crystal display panel using a black matrix-free technology, including the following steps:
  • Step 1 The substrate 1 is provided, and the TFT layer 2 is formed on the lower substrate 1.
  • the lower substrate 1 is preferably a glass substrate;
  • the TFT layer 2 includes: a gate electrode 21 disposed on the lower substrate 1 and a gate insulating layer disposed on the lower substrate 1 and the gate electrode 21 A semiconductor layer 24 provided on the gate insulating layer 23 and a source 25 and a drain 26 provided on the gate insulating layer 23 in contact with both ends of the semiconductor layer 24, respectively.
  • Step 2 depositing a protective layer 3 on the TFT layer 2 and the lower substrate 1.
  • the protective layer 3 is made of an insulating material such as silicon nitride (SiNx) or silicon oxide (SiOx).
  • Step 3 forming a color resist layer 4 on the protective layer 3.
  • the color resist layer 4 includes a red color resist 41 arranged in a matrix, a green color resist, and a blue color resist 42.
  • the adjacent two color resists have a red color resist 41 and a blue color resist 42 disposed by lamination.
  • the anti-color mixing area 30 is formed; a groove 31 is disposed in the anti-color mixing area 30.
  • the step 3 includes:
  • Step 31 sequentially forming a red color resist 41 and a green color resist on the protective layer 3 by using a common photomask;
  • Step 32 Apply a blue color resist film, pattern the blue color resist film with a halftone mask, form a blue color resist 42, and include a red color resist 41 between the adjacent two color resists and a red color resist layer.
  • the anti-color mixing area 30 of the blue color resist 42 on 41 etches the recess 31 in the blue color resist 42 of the anti-color mixing area 30 by the halftone mask.
  • the step 32 can control the groove 31 by controlling the light transmittance of the halftone mask. Etching depth.
  • the maximum depth of the groove 31 is the film thickness of the blue color resist 42.
  • the step 3 includes:
  • Step 31 Apply a red color resist film on the protective layer 3, pattern the red color resist film with a halftone mask, form a red color resist 41, and form a second recess 32 in the red color resist 41. ;
  • the step 31 can control the etching depth of the second groove 32 by controlling the light transmittance of the halftone mask.
  • the maximum depth of the second groove 32 is the film thickness of the red color resist 41;
  • Step 32 using a common mask to produce a green color resistance
  • Step 33 coating and patterning the blue color resist film with a common mask to form a blue color resist 42, including a red color resist 41 between the adjacent two color resists and a blue color resist 42 laminated on the red color resist 41
  • a blue color resist 42 including a red color resist 41 between the adjacent two color resists and a blue color resist 42 laminated on the red color resist 41
  • the blue color resist 42 is leveled on the red color resist 41 having the second recess 32, and the groove 31 is naturally formed.
  • Step 4 depositing and patterning a passivation layer 5 on the color resist layer 4, forming a pixel electrode layer 6 on the passivation layer 5, and applying a sealant on the edge of the lower substrate 1.
  • the pixel electrode layer 6 is in contact with the drain electrode 26 through a via hole penetrating the passivation layer 5, the anti-color mixing region 30, and the protective layer 3.
  • the passivation layer 5 is made of an insulating material such as SiNx or SiOx.
  • the material of the pixel electrode layer 6 is ITO.
  • Step 5 an upper substrate 9 is provided, and a common electrode layer 8 is formed on a side of the upper substrate 9 close to the lower substrate 1.
  • the upper substrate 9 is preferably a glass substrate; the material of the common electrode layer 8 is ITO.
  • Step 6 The main column spacer 71, the sub-columnar spacer 72, and the frame are formed on the common electrode layer 8 by using a black material.
  • the main column spacer 71 produced in the step 6 is higher than the sub column spacer 72.
  • the height difference between the two can be controlled by controlling the light transmittance of the halftone mask or the gray scale mask.
  • Step 7 Pair the lower substrate 1 and the upper substrate 9 and fill the liquid crystal layer 19 so that the main column spacer 71 and the sub-columnar spacer 72 correspond to the groove 31, and the main column spacer 71 interferes.
  • the bottom of the groove 31, the frame is correspondingly attached to the seal frame glue.
  • the space for accommodating the main columnar spacer 71 and the sub-columnar spacer 72 is increased, so that the height of the main columnar spacer 71 can be increased, and the main portion can be increased.
  • the difference in height between the columnar spacers 71 and the sub-columnar spacers 72 expands the limit range of the liquid crystal amount, improves the problem of insufficient range of the liquid crystal amount caused by the black matrix-free technique, and ensures product yield.
  • the film thicknesses of the red, green, and blue resistances are designed to be 3.0 um, 3.0 um, and 3.2 um, respectively, since the grooves 31 are formed, The height difference between the main columnar spacer 71 and the sub-columnar spacer 72 can be increased to 0.4 um or more. The limit of the liquid crystal amount is ensured, and the unevenness of the gravity display can be prevented.
  • the sub-columnar spacer 72 is also located in the recess 31, it is possible to prevent the sliding displacement of the tip end of the sub-columnar spacer 72 as a free end, thereby reducing the probability of occurrence of bubble defects at low temperatures.
  • the VA type liquid crystal display panel adopting the black matrix-free technology of the present invention has an anti-mixing color zone formed by laminating red color resistance and blue color resistance, and a main column spacer and a pair of black materials are matched and arranged.
  • a columnar spacer to replace the black matrix, and a portion of the anti-color mixing area corresponding to the main column spacer and the sub-column spacer is provided with a groove, the main column spacer resisting the groove
  • the height difference between the main column spacer and the sub-columnar spacer can be increased, the liquid crystal limit range can be expanded, and the product yield can be ensured.
  • the main column spacer and the sub-column spacer are formed by fabricating a color mixing zone including a red color resistance and a blue color resistance which are stacked and a black material.
  • a halftone mask to pattern the blue color resist or the red color set to create a groove in the anti-mixing area to improve the relationship between the main column spacer and the sub-column spacer
  • the height difference is increased to extend the range of liquid crystal limits to ensure product yield.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种采用无黑色矩阵技术的VA型液晶显示面板及其制作方法。该采用无黑色矩阵技术的VA型液晶显示面板由层叠设置的红色色阻(41)及蓝色色阻(42)形成的防混色区(30)、配合设置采用黑色材料的主柱状隔垫物(71)与副柱状隔垫物(72)来取代黑色矩阵,同时所述防混色区(30)对应于所述主柱状隔垫物(71)、及副柱状隔垫物(72)的部分设置有凹槽(31),所述主柱状隔垫物(71)抵触所述凹槽(31)的底部,能够提高主柱状隔垫物(71)与副柱状隔垫物(72)之间的高度差,扩大液晶量极限范围,保证产品良率。

Description

采用无黑色矩阵技术的VA型液晶显示面板及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种采用无黑色矩阵技术的VA型液晶显示面板及其制作方法。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,如:液晶电视、移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等,在平板显示领域中占主导地位。
液晶显示面板通常包括阵列基板、彩膜基板、及夹设于阵列基板与彩膜基板之间的液晶层。对于传统的垂直配向(Vertical Alignment,VA)型液晶显示面板,其阵列基板上通常设置呈矩阵式排列的薄膜晶体管(Thin Film Transistor,TFT),在彩膜基板上通常设置用于滤光的彩色色阻层、用于遮光及防止不同颜色光混色的黑色矩阵(Black Matrix,BM)、与用于支撑阵列基板和彩膜基板之间的液晶层盒厚(Cell Gap)的柱状隔垫物(Photo Spacer,PS)。PS又包括主隔垫物(Main PS)和副隔垫物(Sub PS),Main PS的高度高于Sub PS,当液晶显示面板的阵列基板和彩膜基板贴合后,Main PS顶住阵列基板,Sub PS与阵列基板间隔开。Main PS是液晶显示面板正常工作环境下一直起支撑作用的PS,当液晶显示面板受到外界压力过大时,Sub PS加入,共同顶住阵列基板来增加PS的支撑强度。
为了降低液晶显示面板的制作难度,出现了COA(Color-filter on Array)技术,即将彩色色阻直接制作在TFT阵列基板上的集成技术。请参阅图1,为现有的一种采用COA技术的VA型液晶显示面板的结构示意简图,该VA型液晶显示面板包括:TFT阵列基板100、设于所述TFT阵列基板100上呈矩阵式排列的红色、绿色、及蓝色色阻110、120、130、设于所述TFT阵列基板100边缘的密封框胶200、与所述TFT阵列基板100相对设置的上基板180、设于上基板180靠近TFT阵列基板100一侧的黑色矩阵140、设于所述上基板180及黑色矩阵140上的公共电极190、于所述黑色矩阵140下方设于公共电极190上的主柱状隔垫物160与副柱状隔垫物170、以及设于TFT阵列基板100与上基板180之间的液晶层150。由于VA型液晶显示面板由垂直电场驱动液晶的排列,为了降低制作成本,无需像平面转 换(In-Plane Switching,IPS)型液晶显示面板那样在电场与色阻之间设置一层平坦层。
为了进一步降低液晶显示面板的制作成本,出现了省略掉黑色矩阵材料及制程的无黑色矩阵(BM-less)技术。图2所示为采用BM-less技术的VA型液晶显示面板的结构示意简图:在对应TFT阵列基板10设置栅极线(未图示)、与数据线(未图示的)的位置通过红色、绿色、及蓝色色阻11、12、13中的两种色阻(图1以红色、蓝色色阻11、13为示例)的堆叠来实现防止红、绿、蓝各颜色的混色;通过在上基板19上设置由黑色材料制成的主柱状隔垫物16与副柱状隔垫物17起到支撑液晶层15的盒厚及遮光的作用;通过同样由黑色材料制成的设于上基板19上的边框20’与对应设于TFT阵列基板10上的密封框胶20来实现TFT阵列基板10与上基板19的贴合与密封;从而能够省略掉黑色矩阵材料及其制程,在很大程度上降低了液晶显示面板的制作成本。
随着环境温度的升高或者降低,玻璃基板和液晶等材料会膨胀或者收缩。由于液晶的热胀系数会大于玻璃基板、和柱状隔垫物等其它部件的热膨胀系数,通常若在高温条件下,液晶的热膨胀显著大于其它部件,导致液晶层的盒厚增大,而柱状隔垫物不能相应程度地热膨胀,容易导致竖直放置的液晶显示面板中液晶由于重力作用而整体向下流动,造成重力显示不均匀缺陷,即重力Mura;若在低温条件下,液晶热收缩大于其它部件,即在仍然保持液晶层盒厚不变的情况下,液晶将不能充满整个液晶盒组件而出现真空气泡,即低温下气泡(bubble)缺陷。
假设液晶层盒厚为d,液晶层盒厚的变化值为Δd,主柱状隔垫物的高度为HM,副柱状隔垫物的高度为HS,降温时液晶层收缩,在│Δd│>│HM-HS│时出现气泡缺陷,升温时液晶层膨胀,在d+│Δd│>HM时出现重力Mura。本领域技术人员将既不在高温发生重力Mura,也不会在低温出现气泡缺陷所允许的液晶量控制范围称为液晶量极限范围(LC Margin)。
请参阅图3,在实际的采用无黑色矩阵技术的VA型液晶显示面板中,在对应TFT阵列基板10’设置栅极线(未图示)、与数据线(未图示的)的位置通过红色、蓝色色阻11’、13’的直接沉积堆叠来实现防止红、绿、蓝各颜色的混色。在目前通用的3.8um液晶层15’盒厚的情况下,主柱状隔垫物16’与副柱状隔垫物17’二者之间的高度差达到0.4um以上才能保证有足够的LC Margin,这就需要将主柱状隔垫物16’的高度需要做到2.5um以上。如果将红、绿、蓝色阻的膜厚分别设计为3.0um、3.0um、3.2um,在不设置 平坦层的情况下,考虑到色阻的流平性,在两种色阻的堆叠处防混色区比其它像素区高出约2.8um的高度,此时,设置于两种色阻堆叠处的主柱状隔垫物16’的高度仅为1.0um,而副柱状隔垫物17’的高度约为0.85~0.90um,也就是说,主柱状隔垫物16’与副柱状隔垫物17’的高度差仅为0.1~0.15um而已,二者高度差的不足将导致液晶显示面板的LC Margin不够,从而影响产品良率。
发明内容
本发明的目的在于提供一种采用无黑色矩阵技术的VA型液晶显示面板,能够提高主柱状隔垫物与副柱状隔垫物之间的高度差,扩大液晶量极限范围,保证产品良率。
本发明的目的还在于提供一种采用无黑色矩阵技术的VA型液晶显示面板的制作方法,能够提高主柱状隔垫物与副柱状隔垫物之间的高度差,扩大液晶量极限范围,保证产品良率。
为实现上述目的,本发明提供了一种采用无黑色矩阵技术的VA型液晶显示面板,包括:下基板、设于所述下基板上的TFT层、设于所述TFT层上的保护层、设于所述保护层上的彩色色阻层、设于所述彩色色阻层上的钝化层、设于所述钝化层上的像素电极层、与所述下基板相对设置的上基板、设于所述上基板靠近下基板一侧的公共电极层、设于所述公共电极层上的主柱状隔垫物与副柱状隔垫物、设于下基板边缘的密封框胶、与所述密封框胶相对的设于所述公共电极层边缘的边框、及设于下基板与上基板之间的液晶层;
所述彩色色阻层包括呈矩阵式排布的红色色阻、绿色色阻、及蓝色色阻,相邻两色阻之间具有由层叠设置的红色色阻及蓝色色阻形成的防混色区;
所述主柱状隔垫物、与副柱状隔垫物对应于所述防混色区设置;所述防混色区对应于所述主柱状隔垫物、及副柱状隔垫物的部分设置有凹槽,所述主柱状隔垫物抵触所述凹槽的底部;
所述主柱状隔垫物、副柱状隔垫物、及边框的材料均为黑色材料。
可选的,在所述防混色区内,蓝色色阻层叠于红色色阻上,所述凹槽设置于所述蓝色色阻内,所述红色色阻的上表面为平面。
可选的,在所述防混色区内,蓝色色阻层叠于红色色阻上,所述凹槽设置于所述蓝色色阻内,所述红色色阻对应所述凹槽下方的部分设置有第二凹槽。
所述TFT层包括:设于所述下基板上的栅极、设于所述下基板与栅极上的栅极绝缘层、设于所述栅极绝缘层上的半导体层、及设于所述栅极绝缘层上分别与所述半导体层的两端相接触的源极与漏极;
所述像素电极层通过贯穿所述钝化层、防混色区、及保护层的过孔与所述漏极相接触。
所述彩色色阻层还包括白色色阻、黄色色阻中的至少一种。
本发明还提供一种采用无黑色矩阵技术的VA型液晶显示面板的制作方法,包括如下步骤:
步骤1、提供一下基板,在所述下基板上制作TFT层;
步骤2、在所述TFT层与下基板上沉积形成保护层;
步骤3、在所述保护层上制作出彩色色阻层;
所述彩色色阻层包括呈矩阵式排布的红色色阻、绿色色阻、及蓝色色阻,相邻两色阻之间具有由层叠设置的红色色阻及蓝色色阻形成的防混色区;所述防混色区内设置有凹槽;
步骤4、在所述彩色色阻层上沉积并图案化钝化层,在所述钝化层上形成像素电极层,在下基板边缘涂布密封框胶;
步骤5、提供一上基板,在所述上基板靠近下基板的一侧形成公共电极层;
步骤6、采用黑色材料在所述公共电极层上制作主柱状隔垫物、副柱状隔垫物、及边框;
步骤7、对组下基板与上基板并填充液晶层,使所述主柱状隔垫物、与副柱状隔垫物与所述凹槽对应,主柱状隔垫物抵触所述凹槽的底部,所述边框与密封框胶对应贴合。
可选的,所述步骤3包括:
步骤31、采用普通光罩在所述保护层上依次制作出红色色阻、绿色色阻;
步骤32、涂布蓝色色阻薄膜,采用半色调光罩图案化所述蓝色色阻薄膜,形成蓝色色阻、和位于相邻两色阻之间的包括红色色阻及层叠于红色色阻上的蓝色色阻的防混色区,利用所述半色调光罩在所述防混色区的蓝色色阻内蚀刻出凹槽。
可选的,所述步骤3包括:
步骤31、在所述保护层上涂布红色色阻薄膜,采用半色调光罩图案化所述红色色阻薄膜,形成红色色阻、及位于红色色阻内的第二凹槽;
步骤32、采用普通光罩制作出绿色色阻;
步骤33、涂布并采用普通光罩图案化蓝色色阻薄膜,制作出蓝色色阻、和位于相邻两色阻之间包括红色色阻及层叠于红色色阻上的蓝色色阻的防混色区,在所述防混色区内,蓝色色阻在具有第二凹槽的红色色阻上流平,顺势自然形成凹槽。
所述TFT层包括:设于所述下基板上的栅极、设于所述下基板与栅极上的栅极绝缘层、设于所述栅极绝缘层上的半导体层、及设于所述栅极绝缘层上分别与所述半导体层的两端相接触的源极与漏极;
所述像素电极层通过贯穿所述钝化层、防混色区、及保护层的过孔与所述漏极相接触。
本发明还提供一种采用无黑色矩阵技术的VA型液晶显示面板,包括:下基板、设于所述下基板上的TFT层、设于所述TFT层上的保护层、设于所述保护层上的彩色色阻层、设于所述彩色色阻层上的钝化层、设于所述钝化层上的像素电极层、与所述下基板相对设置的上基板、设于所述上基板靠近下基板一侧的公共电极层、设于所述公共电极层上的主柱状隔垫物与副柱状隔垫物、设于下基板边缘的密封框胶、与所述密封框胶相对的设于所述公共电极层边缘的边框、及设于下基板与上基板之间的液晶层;
所述彩色色阻层包括呈矩阵式排布的红色色阻、绿色色阻、及蓝色色阻,相邻两色阻之间具有由层叠设置的红色色阻及蓝色色阻形成的防混色区;
所述主柱状隔垫物、与副柱状隔垫物对应于所述防混色区设置;所述防混色区对应于所述主柱状隔垫物、及副柱状隔垫物的部分设置有凹槽,所述主柱状隔垫物抵触所述凹槽的底部;
所述主柱状隔垫物、副柱状隔垫物、及边框的材料均为黑色材料;
其中,在所述防混色区内,蓝色色阻层叠于红色色阻上,所述凹槽设置于所述蓝色色阻内,所述红色色阻的上表面为平面;
其中,所述TFT层包括:设于所述下基板上的栅极、设于所述下基板与栅极上的栅极绝缘层、设于所述栅极绝缘层上的半导体层、及设于所述栅极绝缘层上分别与所述半导体层的两端相接触的源极与漏极;
所述像素电极层通过贯穿所述钝化层、防混色区、及保护层的过孔与所述漏极相接触;
其中,所述彩色色阻层还包括白色色阻、黄色色阻中的至少一种。
本发明的有益效果:本发明提供的一种采用无黑色矩阵技术的VA型液晶显示面板,由层叠设置的红色色阻及蓝色色阻形成的防混色区、配合设置采用黑色材料的主柱状隔垫物与副柱状隔垫物来取代黑色矩阵,同时所 述防混色区对应于所述主柱状隔垫物、及副柱状隔垫物的部分设置有凹槽,所述主柱状隔垫物抵触所述凹槽的底部,能够提高主柱状隔垫物与副柱状隔垫物之间的高度差,扩大液晶量极限范围,保证产品良率。本发明提供的一种采用无黑色矩阵技术的VA型液晶显示面板的制作方法,通过制作包括层叠设置的红色色阻及蓝色色阻的防混色区、配合采用黑色材料制作主柱状隔垫物与副柱状隔垫物来取代黑色矩阵,通过使用半色调光罩对蓝色色阻、或红色色组进行图案化处理在防混色区内制作出凹槽来提高主柱状隔垫物与副柱状隔垫物之间的高度差,扩大液晶量极限范围,保证产品良率。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的一种采用COA技术的VA型液晶显示面板的结构示意简图;
图2为现有的采用无黑色矩阵技术的VA型液晶显示面板的结构示意简图;
图3为现有的实际采用无黑色矩阵技术的VA型液晶显示面板的结构示意图;
图4为本发明的采用无黑色矩阵技术的VA型液晶显示面板的第一实施例的结构示意图;
图5为本发明的采用无黑色矩阵技术的VA型液晶显示面板的第二实施例的结构示意图;
图6为本发明的采用无黑色矩阵技术的VA型液晶显示面板的制作方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
本发明首先提供一种采用无黑色矩阵技术的VA型液晶显示面板。图4所示为本发明的采用无黑色矩阵技术的VA型液晶显示面板的第一实施例,包括:下基板1、设于所述下基板1上的TFT层2、设于所述TFT层2 上的的保护层3、设于所述保护层3上的彩色色阻层4、设于所述彩色色阻层4上的钝化层5、设于所述钝化层5上的像素电极层6、与所述下基板1相对设置的上基板9、设于所述上基板9靠近下基板1一侧的公共电极层8、设于所述公共电极层8上的主柱状隔垫物71与副柱状隔垫物72、设于下基板1边缘的密封框胶(未图示)、及与所述密封框胶相对的设于所述公共电极层8边缘的边框(未图示)、及设于下基板1与上基板9之间的液晶层19。
所述彩色色阻层4包括呈矩阵式排布的红色色阻41、绿色色阻(未图示)、及蓝色色阻42,相邻两色阻之间具有由层叠设置的红色色阻41及蓝色色阻42形成的防混色区30。
所述主柱状隔垫物71、与副柱状隔垫物72对应于所述防混色区30设置;所述防混色区30对应于所述主柱状隔垫物71、及副隔垫物72的部分设置有凹槽31,所述主柱状隔垫物71抵触所述凹槽31的底部。
所述主柱状隔垫物71、副柱状隔垫物72、及边框的材料均为黑色材料。
针对图1所示的第一实施例,在所述防混色区30内,蓝色色阻42层叠于红色色阻41上,所述凹槽31设置于所述蓝色色阻42内,所述红色色阻41的上表面为平面,所述凹槽31通过直接蚀刻蓝色色阻42而形成于蓝色色阻42内。所述凹槽31的存在增大了供容纳主柱状隔垫物71、与副柱状隔垫物72的空间,从而能够增加主柱状隔垫物71的设置高度,增大主柱状隔垫物71与副柱状隔垫物72之间的高度差,扩大液晶量极限范围,改善采用无黑色矩阵技术导致的液晶量极限范围不足的问题,保证产品良率。进一步地,可通过改变凹槽31的深度来改变主柱状隔垫物71、与副柱状隔垫物72之间的高度差,凹槽31的最大深度为蓝色色阻42的膜厚,这样,在目前通用的3.8um液晶层19盒厚的情况下,如果将红、绿、蓝色阻的膜厚分别设计为3.0um、3.0um、3.2um,由于设置了所述凹槽31,主柱状隔垫物71、与副柱状隔垫物72的高度差可增大至0.4um以上,保证了液晶量极限范围,能够防止重力显示不均匀缺陷。同时,由于所述副柱状隔垫物72也位于凹槽31内,能够避免由于副柱状隔垫物72的顶端为自由端而发生滑动移位,降低低温时气泡缺陷发生的概率。
具体地,所述TFT层2包括:设于所述下基板1上的栅极21、设于所述下基板1与栅极21上的栅极绝缘层23、设于所述栅极绝缘层23上的半导体层24、及设于所述栅极绝缘层23上分别与所述半导体层24的两端相接触的源极25与漏极26;所述像素电极层6通过贯穿所述钝化层5、防混色区30、及保护层3的过孔与所述漏极26相接触。
所述像素电极层6、及公共电极层8的材料均为氧化铟锡(Indium Tin  Oxid,ITO)。
特别地,所述彩色色阻层4还可包括白色色阻、黄色色阻中的至少一种。
图5所示为本发明的采用无黑色矩阵技术的VA型液晶显示面板的第二实施例,该第二实施例与上述第一实施例的区别在于,在所述防混色区30内,蓝色色阻42层叠于红色色阻41上,所述凹槽31设置于所述蓝色色阻42内,所述红色色阻41对应所述凹槽31下方的部分设置有第二凹槽32,所述第二凹槽32通过直接蚀刻红色色阻41形成于红色色阻41内,该第二凹槽32的深度最大值为红色色阻41的膜厚,而所述凹槽31是由于蓝色色阻42在具有第二凹槽32的红色色阻41上流平,顺势自然形成,无需对蓝色色阻42进行蚀刻。其余部分的结构、及凹槽31的作用均与第一实施例相同,此处不再重复叙述。
请参阅图6,结合图4或图5,本发明还提供一种采用无黑色矩阵技术的VA型液晶显示面板的制作方法,包括如下步骤:
步骤1、提供一下基板1,在所述下基板1上制作TFT层2。
具体地,所述下基板1优先为玻璃基板;所述TFT层2包括:设于所述下基板1上的栅极21、设于所述下基板1与栅极21上的栅极绝缘层23、设于所述栅极绝缘层23上的半导体层24、及设于所述栅极绝缘层23上分别与所述半导体层24的两端相接触的源极25与漏极26。
步骤2、在所述TFT层2与下基板1上沉积形成保护层3。
具体地,所述保护层3采用氮化硅(SiNx)、或氧化硅(SiOx)等绝缘材料。
步骤3、在所述保护层3上制作出彩色色阻层4。
所述彩色色阻层4包括呈矩阵式排布的红色色阻41、绿色色阻、及蓝色色阻42,相邻两色阻之间具有由层叠设置的红色色阻41及蓝色色阻42形成的防混色区30;所述防混色区30内设置有凹槽31。
可选的,要制作如图4所示的液晶显示面板,那么所述步骤3包括:
步骤31、采用普通光罩在所述保护层3上依次制作出红色色阻41、绿色色阻;
步骤32、涂布蓝色色阻薄膜,采用半色调光罩图案化所述蓝色色阻薄膜,形成蓝色色阻42、位于相邻两色阻之间的包括红色色阻41及层叠于红色色阻41上的蓝色色阻42的防混色区30,利用所述半色调光罩在所述防混色区30的蓝色色阻42内蚀刻出凹槽31。
具体地,所述步骤32可通过控制半色调光罩的透光率来控制凹槽31 的蚀刻深度。所述凹槽31的深度最大值为蓝色色阻42的膜厚。
可选的,要制作如图5所示的液晶显示面板,那么所述步骤3包括:
步骤31、在所述保护层3上涂布红色色阻薄膜,采用半色调光罩图案化所述红色色阻薄膜,形成红色色阻41、及位于红色色阻41内的第二凹槽32;
具体地,所述步骤31可通过控制半色调光罩的透光率来控制第二凹槽32的蚀刻深度。所述第二凹槽32的深度最大值为红色色阻41的膜厚;
步骤32、采用普通光罩制作出绿色色阻;
步骤33、涂布并采用普通光罩图案化蓝色色阻薄膜,制作出蓝色色阻42、位于相邻两色阻之间包括红色色阻41及层叠于红色色阻41上的蓝色色阻42的防混色区30,在所述防混色区30内,蓝色色阻42在具有第二凹槽32的红色色阻41上流平,顺势自然形成凹槽31。
步骤4、在所述彩色色阻层4上沉积并图案化钝化层5,在所述钝化层5上形成像素电极层6,在下基板1边缘涂布密封框胶。
具体地,所述像素电极层6通过贯穿所述钝化层5、防混色区30、及保护层3的过孔与所述漏极26相接触。所述钝化层5采用SiNx、或SiOx等绝缘材料。所述像素电极层6的材料为ITO。
步骤5、提供一上基板9,在所述上基板9靠近下基板1的一侧形成公共电极层8。
具体地,所述上基板9优选玻璃基板;所述公共电极层8的材料为ITO。
步骤6、采用黑色材料在所述公共电极层8上制作主柱状隔垫物71、副柱状隔垫物72、及边框。
具体地,该步骤6制作出的主柱状隔垫物71高于副柱状隔垫物72。二者之间的高度差可由控制半色调光罩、或灰阶光罩的透光率来控制。
步骤7、对组下基板1与上基板9并填充液晶层19,使所述主柱状隔垫物71、与副柱状隔垫物72与所述凹槽31对应,主柱状隔垫物71抵触所述凹槽31的底部,所述边框与密封框胶对应贴合。
上述方法由于制作出了所述凹槽31,增大了供容纳主柱状隔垫物71、与副柱状隔垫物72的空间,从而能够增加主柱状隔垫物71的设置高度,增大主柱状隔垫物71与副柱状隔垫物72之间的高度差,扩大液晶量极限范围,改善采用无黑色矩阵技术导致的液晶量极限范围不足的问题,保证产品良率。例如,在目前通用的3.8um液晶层19盒厚的情况下,如果将红、绿、蓝色阻的膜厚分别设计为3.0um、3.0um、3.2um,由于制作了所述凹槽31,主柱状隔垫物71、与副柱状隔垫物72的高度差可增大至0.4um以上, 保证了液晶量极限范围,能够防止重力显示不均匀缺陷。同时,由于所述副柱状隔垫物72也位于凹槽31内,能够避免由于副柱状隔垫物72的顶端为自由端而发生滑动移位,降低低温时气泡缺陷发生的概率。
综上所述,本发明的采用无黑色矩阵技术的VA型液晶显示面板,由层叠设置的红色色阻及蓝色色阻形成的防混色区、配合设置采用黑色材料的主柱状隔垫物与副柱状隔垫物来取代黑色矩阵,同时所述防混色区对应于所述主柱状隔垫物、及副柱状隔垫物的部分设置有凹槽,所述主柱状隔垫物抵触所述凹槽的底部,能够提高主柱状隔垫物与副柱状隔垫物之间的高度差,扩大液晶量极限范围,保证产品良率。本发明的采用无黑色矩阵技术的VA型液晶显示面板的制作方法,通过制作包括层叠设置的红色色阻及蓝色色阻的防混色区、配合采用黑色材料制作主柱状隔垫物与副柱状隔垫物来取代黑色矩阵,通过使用半色调光罩对蓝色色阻、或红色色组进行图案化处理在防混色区内制作出凹槽来提高主柱状隔垫物与副柱状隔垫物之间的高度差,扩大液晶量极限范围,保证产品良率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种采用无黑色矩阵技术的VA型液晶显示面板,包括:下基板、设于所述下基板上的TFT层、设于所述TFT层上的保护层、设于所述保护层上的彩色色阻层、设于所述彩色色阻层上的钝化层、设于所述钝化层上的像素电极层、与所述下基板相对设置的上基板、设于所述上基板靠近下基板一侧的公共电极层、设于所述公共电极层上的主柱状隔垫物与副柱状隔垫物、设于下基板边缘的密封框胶、与所述密封框胶相对的设于所述公共电极层边缘的边框、及设于下基板与上基板之间的液晶层;
    所述彩色色阻层包括呈矩阵式排布的红色色阻、绿色色阻、及蓝色色阻,相邻两色阻之间具有由层叠设置的红色色阻及蓝色色阻形成的防混色区;
    所述主柱状隔垫物、与副柱状隔垫物对应于所述防混色区设置;所述防混色区对应于所述主柱状隔垫物、及副柱状隔垫物的部分设置有凹槽,所述主柱状隔垫物抵触所述凹槽的底部;
    所述主柱状隔垫物、副柱状隔垫物、及边框的材料均为黑色材料。
  2. 如权利要求1所述的采用无黑色矩阵技术的VA型液晶显示面板,其中,在所述防混色区内,蓝色色阻层叠于红色色阻上,所述凹槽设置于所述蓝色色阻内,所述红色色阻的上表面为平面。
  3. 如权利要求1所述的采用无黑色矩阵技术的VA型液晶显示面板,其中,在所述防混色区内,蓝色色阻层叠于红色色阻上,所述凹槽设置于所述蓝色色阻内,所述红色色阻对应所述凹槽下方的部分设置有第二凹槽。
  4. 如权利要求1所述的采用无黑色矩阵技术的VA型液晶显示面板,其中,所述TFT层包括:设于所述下基板上的栅极、设于所述下基板与栅极上的栅极绝缘层、设于所述栅极绝缘层上的半导体层、及设于所述栅极绝缘层上分别与所述半导体层的两端相接触的源极与漏极;
    所述像素电极层通过贯穿所述钝化层、防混色区、及保护层的过孔与所述漏极相接触。
  5. 如权利要求1所述的采用无黑色矩阵技术的VA型液晶显示面板,其中,所述彩色色阻层还包括白色色阻、黄色色阻中的至少一种。
  6. 一种采用无黑色矩阵技术的VA型液晶显示面板的制作方法,包括如下步骤:
    步骤1、提供一下基板,在所述下基板上制作TFT层;
    步骤2、在所述TFT层与下基板上沉积形成保护层;
    步骤3、在所述保护层上制作出彩色色阻层;
    所述彩色色阻层包括呈矩阵式排布的红色色阻、绿色色阻、及蓝色色阻,相邻两色阻之间具有由层叠设置的红色色阻及蓝色色阻形成的防混色区;所述防混色区内设置有凹槽;
    步骤4、在所述彩色色阻层上沉积并图案化钝化层,在所述钝化层上形成像素电极层,在下基板边缘涂布密封框胶;
    步骤5、提供一上基板,在所述上基板靠近下基板的一侧形成公共电极层;
    步骤6、采用黑色材料在所述公共电极层上制作主柱状隔垫物、副柱状隔垫物、及边框;
    步骤7、对组下基板与上基板并填充液晶层,使所述主柱状隔垫物、与副柱状隔垫物与所述凹槽对应,主柱状隔垫物抵触所述凹槽的底部,所述边框与密封框胶对应贴合。
  7. 如权利要求6所述的采用无黑色矩阵技术的VA型液晶显示面板的制作方法,其中,所述步骤3包括:
    步骤31、采用普通光罩在所述保护层上依次制作出红色色阻、绿色色阻;
    步骤32、涂布蓝色色阻薄膜,采用半色调光罩图案化所述蓝色色阻薄膜,形成蓝色色阻、和位于相邻两色阻之间的包括红色色阻及层叠于红色色阻上的蓝色色阻的防混色区,利用所述半色调光罩在所述防混色区的蓝色色阻内蚀刻出凹槽。
  8. 如权利要求6所述的采用无黑色矩阵技术的VA型液晶显示面板的制作方法,其中,所述步骤3包括:
    步骤31、在所述保护层上涂布红色色阻薄膜,采用半色调光罩图案化所述红色色阻薄膜,形成红色色阻、及位于红色色阻内的第二凹槽;
    步骤32、采用普通光罩制作出绿色色阻;
    步骤33、涂布并采用普通光罩图案化蓝色色阻薄膜,制作出蓝色色阻、和位于相邻两色阻之间包括红色色阻及层叠于红色色阻上的蓝色色阻的防混色区,在所述防混色区内,蓝色色阻在具有第二凹槽的红色色阻上流平,顺势自然形成凹槽。
  9. 如权利要求6所述的采用无黑色矩阵技术的VA型液晶显示面板的制作方法,其中,所述TFT层包括:设于所述下基板上的栅极、设于所述下基板与栅极上的栅极绝缘层、设于所述栅极绝缘层上的半导体层、及设 于所述栅极绝缘层上分别与所述半导体层的两端相接触的源极与漏极;
    所述像素电极层通过贯穿所述钝化层、防混色区、及保护层的过孔与所述漏极相接触。
  10. 一种采用无黑色矩阵技术的VA型液晶显示面板,包括:下基板、设于所述下基板上的TFT层、设于所述TFT层上的保护层、设于所述保护层上的彩色色阻层、设于所述彩色色阻层上的钝化层、设于所述钝化层上的像素电极层、与所述下基板相对设置的上基板、设于所述上基板靠近下基板一侧的公共电极层、设于所述公共电极层上的主柱状隔垫物与副柱状隔垫物、设于下基板边缘的密封框胶、与所述密封框胶相对的设于所述公共电极层边缘的边框、及设于下基板与上基板之间的液晶层;
    所述彩色色阻层包括呈矩阵式排布的红色色阻、绿色色阻、及蓝色色阻,相邻两色阻之间具有由层叠设置的红色色阻及蓝色色阻形成的防混色区;
    所述主柱状隔垫物、与副柱状隔垫物对应于所述防混色区设置;所述防混色区对应于所述主柱状隔垫物、及副柱状隔垫物的部分设置有凹槽,所述主柱状隔垫物抵触所述凹槽的底部;
    所述主柱状隔垫物、副柱状隔垫物、及边框的材料均为黑色材料;
    其中,在所述防混色区内,蓝色色阻层叠于红色色阻上,所述凹槽设置于所述蓝色色阻内,所述红色色阻的上表面为平面;
    其中,所述TFT层包括:设于所述下基板上的栅极、设于所述下基板与栅极上的栅极绝缘层、设于所述栅极绝缘层上的半导体层、及设于所述栅极绝缘层上分别与所述半导体层的两端相接触的源极与漏极;
    所述像素电极层通过贯穿所述钝化层、防混色区、及保护层的过孔与所述漏极相接触;
    其中,所述彩色色阻层还包括白色色阻、黄色色阻中的至少一种。
PCT/CN2015/099623 2015-12-02 2015-12-29 采用无黑色矩阵技术的va型液晶显示面板及其制作方法 WO2017092133A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/912,609 US10031374B2 (en) 2015-12-02 2015-12-29 VA liquid crystal display panel based on BM-less technology and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510876145.2A CN105353567B (zh) 2015-12-02 2015-12-02 采用无黑色矩阵技术的va型液晶显示面板及其制作方法
CN201510876145.2 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017092133A1 true WO2017092133A1 (zh) 2017-06-08

Family

ID=55329559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099623 WO2017092133A1 (zh) 2015-12-02 2015-12-29 采用无黑色矩阵技术的va型液晶显示面板及其制作方法

Country Status (3)

Country Link
US (2) US10031374B2 (zh)
CN (1) CN105353567B (zh)
WO (1) WO2017092133A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511186A (zh) * 2016-01-27 2016-04-20 京东方科技集团股份有限公司 显示装置及其制造方法
CN105717702A (zh) * 2016-03-11 2016-06-29 深圳市华星光电技术有限公司 反射式液晶显示面板
CN105652546A (zh) * 2016-04-12 2016-06-08 深圳市华星光电技术有限公司 阵列基板及液晶显示面板
CN105759520A (zh) * 2016-04-21 2016-07-13 深圳市华星光电技术有限公司 液晶显示面板
CN105717695A (zh) * 2016-04-26 2016-06-29 深圳市华星光电技术有限公司 彩膜基板的制作方法和液晶面板的制作方法
CN106405964A (zh) * 2016-11-01 2017-02-15 深圳市华星光电技术有限公司 一种阵列基板及其制作方法、液晶显示器
US20180129108A1 (en) * 2016-11-09 2018-05-10 Samsung Display Co., Ltd. Display apparatus
CN106972032B (zh) * 2017-05-22 2020-08-25 上海天马有机发光显示技术有限公司 阵列基板及包含其的显示面板
US11133580B2 (en) * 2017-06-22 2021-09-28 Innolux Corporation Antenna device
CN107505778B (zh) * 2017-07-20 2020-05-12 深圳市华星光电半导体显示技术有限公司 一种显示器及其制程
CN107589596A (zh) * 2017-09-25 2018-01-16 惠科股份有限公司 显示面板及其制造方法
CN108121106A (zh) * 2017-12-27 2018-06-05 武汉华星光电技术有限公司 一种液晶显示面板及其制作方法
CN110412803A (zh) * 2018-04-28 2019-11-05 咸阳彩虹光电科技有限公司 一种coa阵列基板及其制备方法和液晶显示面板
WO2020056837A1 (zh) * 2018-09-20 2020-03-26 惠科股份有限公司 显示面板及显示装置
CN108957871A (zh) * 2018-09-20 2018-12-07 惠科股份有限公司 显示面板及显示装置
CN109212832B (zh) * 2018-10-30 2023-12-12 京东方科技集团股份有限公司 一种液晶显示面板及其制作方法、液晶显示装置
CN109254447A (zh) * 2018-11-14 2019-01-22 成都中电熊猫显示科技有限公司 液晶显示面板、显示装置及液晶显示面板的制造方法
CN109613739A (zh) * 2018-11-27 2019-04-12 武汉华星光电技术有限公司 彩膜基板及液晶显示面板
CN110267182B (zh) * 2019-06-17 2020-09-01 武汉华星光电技术有限公司 一种屏幕发声显示装置
CN110426905A (zh) * 2019-07-16 2019-11-08 深圳市华星光电技术有限公司 彩膜阵列基板的制备方法及彩膜阵列基板
KR20210057854A (ko) * 2019-11-12 2021-05-24 삼성디스플레이 주식회사 표시 장치
KR20210061506A (ko) * 2019-11-19 2021-05-28 삼성디스플레이 주식회사 표시 장치
CN111025719A (zh) 2019-12-13 2020-04-17 武汉华星光电技术有限公司 显示面板及显示装置
CN111308793B (zh) 2020-02-28 2021-08-24 Tcl华星光电技术有限公司 液晶显示面板和液晶显示装置
CN113433746A (zh) * 2021-06-10 2021-09-24 深圳市华星光电半导体显示技术有限公司 显示面板和显示装置
CN113359357B (zh) * 2021-06-17 2022-08-05 武汉华星光电技术有限公司 液晶显示面板及液晶显示装置
CN113741101A (zh) * 2021-08-31 2021-12-03 惠科股份有限公司 显示面板和显示装置
CN115857233B (zh) * 2022-12-30 2023-11-03 长沙惠科光电有限公司 显示母板及显示母板的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112485A1 (en) * 2003-11-24 2005-05-26 Lg Philips Lcd Co., Ltd. Fabrication method of liquid crystal display device using color filter substrate formed using back exposure
JP2006309159A (ja) * 2005-03-30 2006-11-09 Fuji Photo Film Co Ltd 液晶表示装置用基板、その製造方法、感光性樹脂組成物、液晶表示素子、液晶表示装置
CN101398571A (zh) * 2007-09-26 2009-04-01 北京京东方光电科技有限公司 液晶显示面板
CN102681067A (zh) * 2011-12-15 2012-09-19 京东方科技集团股份有限公司 彩色滤光片及其制备方法
CN102854668A (zh) * 2012-09-24 2013-01-02 京东方科技集团股份有限公司 显示基板的制作方法、显示基板及显示装置
CN102998851A (zh) * 2012-12-05 2013-03-27 京东方科技集团股份有限公司 一种液晶显示面板以及显示装置
CN103869548A (zh) * 2012-12-10 2014-06-18 京东方科技集团股份有限公司 液晶显示器的制造方法及其产品

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993101B1 (ko) * 2003-07-10 2010-11-08 엘지디스플레이 주식회사 액정표시패널 및 그 제조방법
US7785504B2 (en) * 2004-11-11 2010-08-31 Lg Display Co., Ltd. Thin film patterning apparatus and method of fabricating color filter array substrate using the same
KR101285637B1 (ko) * 2008-12-26 2013-07-12 엘지디스플레이 주식회사 전기영동 표시장치용 어레이 기판과 그 제조 방법 및 리페어 방법
TW201044081A (en) * 2009-06-11 2010-12-16 Chi Mei Optoelectronics Corp Liquid crystal panel, application and manufacturing method thereof
CN102109628A (zh) * 2011-01-28 2011-06-29 深圳市华星光电技术有限公司 彩色滤光片构造及其制造方法
US20130021688A1 (en) * 2011-07-22 2013-01-24 Shenzhen China Star Optoelectronics Technology Co., Ltd Color filter and manufacturing method thereof
CN103309081B (zh) * 2013-05-30 2016-12-28 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
US9543354B2 (en) * 2013-07-30 2017-01-10 Heptagon Micro Optics Pte. Ltd. Optoelectronic modules that have shielding to reduce light leakage or stray light, and fabrication methods for such modules
CN104317111A (zh) * 2014-10-14 2015-01-28 深圳市华星光电技术有限公司 液晶显示面板
US20160155908A1 (en) * 2014-12-01 2016-06-02 Shenzhen China Star Optoelectronics Technology Co., Ltd. Coa substrate and manufacturing method thereof
CN104360545B (zh) * 2014-12-03 2018-02-06 京东方科技集团股份有限公司 一种显示面板、显示装置
CN104460121B (zh) * 2014-12-19 2018-07-10 厦门天马微电子有限公司 液晶显示面板及其制作方法、液晶显示装置
CN104765201A (zh) * 2015-03-30 2015-07-08 深圳市华星光电技术有限公司 液晶显示装置及其液晶显示面板
CN104793403A (zh) * 2015-04-27 2015-07-22 深圳市华星光电技术有限公司 平面显示面板及制作方法
CN104808411A (zh) * 2015-05-19 2015-07-29 友达光电股份有限公司 一种薄膜晶体管液晶显示器
CN104965366B (zh) * 2015-07-15 2018-11-20 深圳市华星光电技术有限公司 阵列彩膜集成式液晶显示面板的制作方法及其结构
CN104991371A (zh) * 2015-07-16 2015-10-21 深圳市华星光电技术有限公司 显示面板及其制作方法
CN105093708A (zh) * 2015-09-02 2015-11-25 深圳市华星光电技术有限公司 液晶显示面板
CN105372889A (zh) * 2015-10-23 2016-03-02 深圳市华星光电技术有限公司 显示装置、coa基板及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050112485A1 (en) * 2003-11-24 2005-05-26 Lg Philips Lcd Co., Ltd. Fabrication method of liquid crystal display device using color filter substrate formed using back exposure
JP2006309159A (ja) * 2005-03-30 2006-11-09 Fuji Photo Film Co Ltd 液晶表示装置用基板、その製造方法、感光性樹脂組成物、液晶表示素子、液晶表示装置
CN101398571A (zh) * 2007-09-26 2009-04-01 北京京东方光电科技有限公司 液晶显示面板
CN102681067A (zh) * 2011-12-15 2012-09-19 京东方科技集团股份有限公司 彩色滤光片及其制备方法
CN102854668A (zh) * 2012-09-24 2013-01-02 京东方科技集团股份有限公司 显示基板的制作方法、显示基板及显示装置
CN102998851A (zh) * 2012-12-05 2013-03-27 京东方科技集团股份有限公司 一种液晶显示面板以及显示装置
CN103869548A (zh) * 2012-12-10 2014-06-18 京东方科技集团股份有限公司 液晶显示器的制造方法及其产品

Also Published As

Publication number Publication date
US20180031888A1 (en) 2018-02-01
CN105353567A (zh) 2016-02-24
US10031374B2 (en) 2018-07-24
CN105353567B (zh) 2019-01-15
US20180299717A1 (en) 2018-10-18
US10365515B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2017092133A1 (zh) 采用无黑色矩阵技术的va型液晶显示面板及其制作方法
US9933667B2 (en) Liquid crystal panel and manufacture method thereof
EP2980636B1 (en) Liquid crystal display panel
US20180031877A1 (en) Liquid crystal display
US9563083B2 (en) Display device including main light blocking portion and spacers
US9140916B2 (en) LCD panel and LCD device
CN106842687B (zh) 彩膜基板及其制作方法
CN102129141B (zh) 液晶显示器制造方法、液晶显示器以及电子设备
WO2017028325A1 (zh) 液晶面板
CN103149763B (zh) Tft-lcd阵列基板、显示面板及其制作方法
JP2019525256A (ja) 液晶表示パネル及び液晶表示装置
WO2019071846A1 (zh) Coa型液晶显示面板及其制作方法
KR20150026586A (ko) 컬럼스페이서를 구비한 액정표시소자
US11829038B2 (en) Liquid crystal display panel and liquid crystal display device
WO2020113654A1 (zh) 显示面板和显示装置
WO2019056993A1 (zh) 显示面板及其制备方法和显示装置
WO2020087615A1 (zh) 基板及显示面板
JP4876470B2 (ja) 表示素子
WO2018040265A1 (zh) 一种coa型液晶面板及制作方法
KR20080029397A (ko) 컬러 필터 기판 및 그 제조 방법, 이를 구비하는 액정 표시장치
KR101222141B1 (ko) 액정 표시 장치 및 그 제조 방법
WO2010079540A1 (ja) 液晶表示パネル
KR101356618B1 (ko) 컬러필터기판, 그 제조 방법 및 이를 포함하는 액정표시장치
CN111176023A (zh) 一种增大段差的显示面板及显示装置
JP2007017756A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14912609

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909647

Country of ref document: EP

Kind code of ref document: A1