WO2018040265A1 - 一种coa型液晶面板及制作方法 - Google Patents

一种coa型液晶面板及制作方法 Download PDF

Info

Publication number
WO2018040265A1
WO2018040265A1 PCT/CN2016/103401 CN2016103401W WO2018040265A1 WO 2018040265 A1 WO2018040265 A1 WO 2018040265A1 CN 2016103401 W CN2016103401 W CN 2016103401W WO 2018040265 A1 WO2018040265 A1 WO 2018040265A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
color resist
substrate
crystal panel
Prior art date
Application number
PCT/CN2016/103401
Other languages
English (en)
French (fr)
Inventor
彭邦银
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/325,202 priority Critical patent/US10324328B2/en
Publication of WO2018040265A1 publication Critical patent/WO2018040265A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13396Spacers having different sizes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal display panel and a manufacturing method thereof.
  • Liquid crystal display has many advantages such as thin body, power saving, no radiation, etc., and has been widely used, such as: LCD TV, mobile phone, personal digital assistant (PDA), digital camera, computer screen Or a notebook screen, etc.
  • the current liquid crystal display device adds a color film on the array substrate, thereby realizing the RGB three primary colors on the array substrate, thereby avoiding the alignment operation of the array substrate and the color filter substrate.
  • COA Color Filter on Array
  • COA Color Filter on Array
  • FIG. 1 is a schematic structural diagram of a liquid crystal display panel in the prior art. As shown in FIG. 1 , the upper substrate in the liquid crystal display panel faces the liquid crystal layer as a first substrate, a black matrix layer, and a common electrode.
  • the lower substrate of the liquid crystal display panel faces the liquid crystal layer in order of the second substrate substrate, the gate electrode insulating layer, the color resist layer, the protective layer, the flat layer and the pixel electrode layer; the light sequentially passes through the liquid crystal display panel a second substrate, a gate electrode insulating layer, a color resist layer, a protective layer, a flat layer, a pixel electrode layer, a liquid crystal layer, a common electrode layer, and a first substrate; wherein each layer absorbs light, resulting in transmittance reduce.
  • the color resist layer correspondingly contains a flat layer, and if the flat layer is used, It will reduce the cost of the process and create a cheaper LCD panel.
  • the object of the present invention is to provide a COA type liquid crystal panel and a manufacturing method thereof, which have high light transmittance, save material and low cost, and effectively solve the problem of low light transmittance and high cost of the conventional liquid crystal display panel.
  • the present application provides a COA type liquid crystal panel comprising: an upper substrate and a lower substrate disposed opposite to each other, and a liquid crystal layer interposed between the upper substrate and the lower substrate;
  • the upper substrate includes a first substrate, a black matrix layer, a common electrode layer, and a spacer;
  • the lower substrate includes a second substrate, a gate electrode insulating layer, a color resist layer, a protective layer, a pixel electrode layer, and a flat layer.
  • the black matrix layer is disposed on the first substrate; the common electrode layer is disposed on the black matrix layer and the exposed first substrate; The spacer is disposed on the common electrode and corresponds to the black matrix layer.
  • the color resist layer includes a red color resist, a blue color resist, and a green color resist; the red color resist and the green color resist are two protrusions, and the blue color resistance is a recessed portion. .
  • the red color resistance and the green color resistance are spaced apart, and the red color resistance is consistent with the thickness of the green color resistance; the blue color resistance has a thickness smaller than the red color resistance and the green color resistance. thickness of.
  • the spacer is a tapered column comprising a primary spacer and a secondary spacer.
  • the primary spacer and the secondary spacer are disposed corresponding to the blue color resistance.
  • the primary spacer and the secondary spacer are made of the same material and are elastic materials.
  • the height of the main spacer is greater than the height of the secondary spacer.
  • the gate electrode insulating layer is disposed on the second substrate On the substrate; the color resist layer is disposed on the gate electrode insulating layer; the protective layer is disposed on the color resist layer; the pixel electrode is disposed corresponding to the protruding portion of the color resist layer; the flat layer and color The depressed portions of the resist layer are correspondingly disposed.
  • the common electrode layer is formed by physical vapor deposition.
  • the black matrix layer is formed by a yellow light process.
  • the material of the black matrix layer is a black light group material.
  • the specific steps of the yellow light process include a photoresist coating step, an exposure step, a development step, and a curing step.
  • the material of the protective layer is silicon oxide
  • the material of the flat layer is a transparent organic material.
  • the material of the gate electrode insulating layer is silicon nitride.
  • the material of the common electrode layer is indium tin oxide.
  • the material of the pixel electrode layer is indium tin oxide.
  • the liquid crystal layer comprises at least one polar liquid single crystal and at least one non-polar liquid crystal monomer.
  • the liquid crystal molecules of the liquid crystal layer are negative liquid crystals.
  • the first base substrate is a glass substrate.
  • the second base substrate is a glass substrate.
  • the present application provides a method for fabricating a COA type liquid crystal panel, which includes the following steps:
  • Step 1 providing a first substrate, and then entering the yellow light, forming a black matrix layer on the first substrate by a yellow light process;
  • Step 2 forming a common electrode layer on the black matrix layer and the exposed first substrate by physical vapor deposition
  • Step 3 forming a spacer on a portion of the common electrode layer corresponding to the black matrix layer to obtain an upper substrate;
  • Step 4 providing a second substrate, forming a gate electrode insulating layer on the second substrate;
  • Step 5 forming a color resist layer on the gate electrode insulating layer;
  • the color resist layer comprises a red color resist, a blue color resist and a green color resist;
  • the red color resist and the green color resist are two protrusions, blue
  • the color resistance is a recess,
  • the red color resistance and the green color resistance are spaced apart, and the red color resistance is consistent with the thickness of the green color resistance;
  • the thickness of the blue color resistance is less than the thickness of the red color resistance and the green color resistance;
  • Step 6 Form a protective layer on the color resist layer
  • Step 7 forming a pixel electrode layer on the protective layer by physical vapor deposition on the protective layer corresponding to the protrusion of the color resist layer;
  • Step 8 depositing an organic material on the protective layer corresponding to the depressed portion of the color resist layer to form a flat layer, thereby obtaining a lower substrate;
  • Step 9 The side on which the upper substrate is provided with the spacer faces the side on which the lower substrate is provided with the flat layer, and then the liquid crystal is dripped between the upper substrate and the lower substrate, and the upper substrate and the lower substrate are vacuum-paired.
  • the group is bonded to form a liquid crystal layer between the upper substrate and the lower substrate to obtain a COA type liquid crystal panel.
  • the spacer is a tapered column comprising a primary spacer and a secondary spacer.
  • the primary spacer and the secondary spacer are disposed corresponding to the blue color resistance.
  • the primary spacer and the secondary spacer are made of the same material and are elastic materials.
  • the height of the main spacer is greater than the height of the secondary spacer.
  • the common electrode layer is formed by physical vapor deposition.
  • the black matrix layer is formed by a yellow light process.
  • the material of the black matrix layer is a black light group material.
  • the specific steps of the yellow light process include a photoresist coating step, an exposure step, a development step, and a curing step.
  • the material of the protective layer is silicon oxide
  • the material of the flat layer is a transparent organic material.
  • the material of the gate electrode insulating layer is silicon nitride.
  • the material of the common electrode is indium tin oxide.
  • the material of the pixel electrode is indium tin oxide.
  • the liquid crystal layer comprises at least one polar liquid single crystal and at least one non-polar liquid crystal monomer.
  • the liquid crystal molecules of the liquid crystal layer are negative liquid crystals.
  • the first base substrate is a glass substrate.
  • the second base substrate is a glass substrate.
  • the present invention reduces the use of a flat layer, that is, the light sequentially passes through the second substrate, the gate electrode insulating layer, the color resist layer, the protective layer, the pixel electrode layer, the liquid crystal layer, and the common electrode layer in the liquid crystal display panel.
  • the first substrate; the flat layer is reduced, that is, the absorption of light is reduced, the transmittance of the light is increased, and the process cost is reduced, thereby effectively solving the low light transmittance and high cost of the existing liquid crystal display panel. problem.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel in the prior art.
  • FIG. 2 is a flow chart of one embodiment of the present invention.
  • FIG 3 is a schematic view showing a black matrix layer formed on a first substrate in an embodiment of the present invention.
  • FIG. 4 is a schematic view of a common electrode layer formed on a black matrix layer and a bare first substrate in an embodiment of the present invention.
  • FIG. 5 is a schematic view showing a spacer formed on a portion of a common electrode layer corresponding to a black matrix layer in a specific embodiment of the present invention.
  • FIG. 6 is a schematic view showing a gate electrode insulating layer formed on a second substrate in an embodiment of the present invention.
  • FIG. 7 is a schematic view showing a state in which a color resist layer is formed on the gate electrode insulating layer in an embodiment of the present invention.
  • FIG. 8 is a schematic view showing a protective layer formed on the color resist layer in an embodiment of the present invention.
  • FIG. 9 is a schematic view showing a pixel electrode layer formed on a protective layer corresponding to a protrusion of a color resist layer in an embodiment of the present invention.
  • FIG. 10 is a schematic view showing a state in which an organic material is deposited on a protective layer corresponding to a depressed portion of a color resist layer in a specific embodiment of the present invention to form a flat layer.
  • Figure 11 is a schematic view of a COA type liquid crystal panel in an embodiment of the present invention.
  • 110 is a first substrate
  • 120 is a black matrix layer
  • 130 is a common electrode layer
  • 141 is a main spacer
  • 142 is a secondary spacer
  • 210 is a second substrate
  • 220 is a gate insulating layer
  • 231 is red.
  • Color resistance, 232 is green color resistance
  • 233 is blue color resistance
  • 240 is a protective layer
  • 250 is a pixel electrode layer
  • 260 is a flat layer
  • 300 is a liquid crystal layer.
  • a COA type liquid crystal panel comprising:
  • the upper substrate includes a first substrate, a black matrix layer, a common electrode layer, and a spacer;
  • the lower substrate includes a second substrate, a gate electrode insulating layer, a color resist layer, a protective layer, a pixel electrode layer, and a flat layer;
  • the COA type liquid crystal panel is prepared according to the flow shown in FIG. 2, and specifically includes the following steps:
  • Step 1 as shown in Figure 3, the first substrate 110 is provided, and then into the yellow light, a black matrix layer 120 is formed on the first substrate 110 by a yellow light process;
  • the material of the first substrate 110 is a glass substrate
  • the material of the black matrix layer 120 is a black light group material
  • the specific steps of the yellow light process include a photoresist coating step, an exposure step, a development step, and a curing step;
  • Step 2 as shown in FIG. 4, a common electrode layer 130 is formed on the black matrix layer 120 and the exposed first substrate 110 by physical vapor deposition;
  • the material of the common electrode layer 130 is indium tin oxide
  • Step 3 as shown in FIG. 5, a spacer is formed on a portion of the common electrode layer 130 corresponding to the black matrix layer 120 to obtain an upper substrate;
  • the spacer is a tapered pillar, including a primary spacer 141 and a secondary spacer 142;
  • the main spacer 141 and the secondary spacer 142 are made of the same material and are elastic materials; the height of the main spacer 141 is greater than the height of the secondary spacer 142;
  • Step 4 as shown in FIG. 6, providing a second substrate 210, forming a gate electrode insulating layer 220 on the second substrate 210;
  • the material of the second substrate 210 is a glass substrate
  • the material of the gate electrode insulating layer 220 is silicon nitride
  • a color resist layer is formed on the gate electrode insulating layer 220;
  • the color resist layer includes a red color resist 231, a blue color resist 232, and a green color resist 233;
  • the red color resist 231 The green color resist 232 is two protrusions, the blue color resist 233 is a recessed portion, the red color resist 231 is spaced apart from the green color resist 232, and the red color resist 231 and the green color resist 232 have the same thickness; the blue color resist The thickness of 233 is smaller than the thickness of the red color resist 231 and the green color resist 232;
  • the blue color resist 233 is disposed corresponding to the main spacer 141 and the secondary spacer 142;
  • Step 6 as shown in Figure 8, forming a protective layer 240 on the color resist layer;
  • the material of the protective layer 240 is silicon oxide
  • Step 7 as shown in Figure 9, by physical vapor deposition on the protective layer 240, corresponding to the color resist layer protrusions formed pixel electrode layer 250;
  • the material of the pixel electrode layer 250 is indium tin oxide
  • Step 8 as shown in FIG. 10, on the protective layer 240, an organic material is deposited corresponding to the recessed portion of the color resist layer to form a flat layer 260 to obtain a lower substrate;
  • the flat layer 260 is made of a transparent organic material
  • Step 9 as shown in FIG. 11, the side on which the upper substrate is provided with the spacer faces the side on which the lower substrate is provided with the flat layer 260, and then the liquid crystal is dripped between the upper substrate and the lower substrate, and The substrate and the lower substrate are vacuum-paired to form a liquid crystal layer 300 between the upper substrate and the lower substrate to obtain a COA type liquid crystal panel;
  • the liquid crystal layer 300 includes at least one polar liquid single crystal and at least one non-polar liquid crystal monomer, and The liquid crystal molecules of the liquid crystal layer 300 are negative liquid crystals.
  • the red color resist 231 and the red color resist 231 are formed corresponding to the pixel electrode 250, that is, the flat layer 260 is used, that is, the light is sequentially processed by the COA prepared by the embodiment.
  • the second base substrate 210, the gate electrode insulating layer 220, the color resist layer, the protective layer 240, the pixel electrode layer 250, the liquid crystal layer 300, the common electrode layer 130, and the first base substrate 110 in the liquid crystal panel are reduced in flatness
  • the layer 260 reduces the absorption of light, improves the transmittance of light, and reduces the process cost, thereby effectively solving the problem of low light transmittance and high cost of the existing liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

一种COA型液晶面板及制作方法,COA型液晶面板包括:相对设置的上基板与下基板、及夹设于上基板与下基板之间的液晶层(300)。在第一衬底(110)上形成黑色矩阵层(120),在黑色矩阵层(120)和裸露的第一衬底基板(11)上形成公共电极层(130),在公共电极层(130)上对应黑色矩阵层(120)的部分区域形成间隔物(141,142),得到上基板;在第二衬底基板(210)上形成栅电极绝缘层(220),在栅电极绝缘层(220)上形成色阻层(231,232,233),在色阻层(231,232,233)上形成保护层(240),在保护层(240)上,与色阻层(231,232,233)突出部相对应处形成像素电极层(250);在保护层(240)上,与色阻层(231,232,233)凹陷部相对应处形成平坦层(260),得到下基板;在上基板与下基板之间滴注液晶,得到COA型液晶面板。解决现有液晶显示面板的光线穿透率低,成本高的问题。

Description

一种COA型液晶面板及制作方法
相关申请的交叉引用
本申请要求享有于2016年08月31日提交的名称为“一种COA型液晶面板及制作方法”的中国专利申请CN2016107972569的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本发明涉及显示技术领域,具体涉及一种液晶显示面板及制作方法。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,如:液晶电视、移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本屏幕等、
随着科技的发展,液晶显示装置的应用越来越多。为了实现液晶显示装置较好的彩色显示,现在的液晶显示装置在阵列基板上增加一层彩膜,从而在阵列基板上就实现了RGB三基色,避免了阵列基板和彩膜基板的对位操作,以便液晶显示装置更好的进行全彩显示,上述技术被称为COA(Color Filter on Array)技术。
随着液晶面板的解析度越来越高,像素(Pixel)的开口率越来越小,再加上对组精度的极限限制,液晶面板的穿透率随着解析度的提高越来越低。COA(Color Filter on Array)由于把RGB都制作在array侧,提高了对位精度,在相同解析度的要求下,COA可以获得较高的开口率。
请参阅图1,图1是现有技术中的液晶显示面板的结构示意图,如图1所示,液晶显示面板中的上基板朝向液晶层依次为第一衬底基板、黑色矩阵层、公共电极层及间隔物;液晶显示面板的下基板朝向液晶层依次为第二衬底基板、栅电极绝缘层、色阻层、保护层、平坦层和像素电极层;光线依次通过液晶显示面板中的第二衬底基板、栅电极绝缘层、色阻层、保护层、平坦层、像素电极层、液晶层、公共电极层、第一衬底基板;其中,每一层都会吸收光,导致穿透率降低。
现有液晶显示面板中色阻层对应处均含有平坦层,如能减少平坦层的使用, 将可减少制程成本,而制造出更便宜的液晶显示面板。
针对上述存在的问题,在本领域希望寻求一种新型COA型液晶面板,减少有机材料的使用,减少制程成本,而制造出便宜、穿透率高的液晶显示面板,从而有效解决现有液晶显示面板光线穿透率低,成本高的问题。
发明内容
本发明的目的在于提供一种COA型液晶面板及制作方法,光线穿透率高,节省材料,成本低,有效解决现有液晶显示面板光线穿透率低,成本高的问题。
针对以上现有技术中的问题,本申请提出了一种COA型液晶面板,包括:相对设置的上基板与下基板、及夹设于所述上基板与下基板之间的液晶层;
所述上基板包括第一衬底基板、黑色矩阵层、公共电极层及间隔物;
所述下基板包括第二衬底基板、栅电极绝缘层、色阻层、保护层、像素电极层及平坦层。
在本发明的一个优选的实施方式中,所述黑色矩阵层设置于所述第一衬底基板上;所述公共电极层设置于所述黑色矩阵层和裸露的第一衬底基板上;所述间隔物设置于所述公共电极上,与黑色矩阵层相对应。
在本发明的一个优选的实施方式中,所述色阻层包括红色色阻、蓝色色阻及绿色色阻;所述红色色阻和绿色色阻为两个突出部,蓝色色阻为凹陷部。
在本发明的一个优选的实施方式中,红色色阻与绿色色阻间隔设置,且红色色阻与绿色色阻的厚度一致;所述蓝色色阻的厚度小于所述红色色阻及绿色色阻的厚度。
在本发明的一个优选的实施方式中,所述间隔物为锥形柱状物,包括主间隙物和次间隙物。
在本发明的一个优选的实施方式中,所述主间隙物和次间隙物与所述蓝色色阻相对应设置。
在本发明的一个优选的实施方式中,主间隙物和次间隙物的材质相同,为弹性材料。
在本发明的一个优选的实施方式中,所述主间隙物的高度大于次间隙物的高度。
在本发明的一个优选的实施方式中,所述栅电极绝缘层设置于所述第二衬底 基板上;所述色阻层设置于所述栅电极绝缘层上;所述保护层设置在色阻层上;所述像素电极与色阻层的突出部相对应设置;所述平坦层与色阻层的凹陷部相对应设置。
在本发明的一个优选的实施方式中,所述公共电极层通过物理气相沉积法形成。
在本发明的一个优选的实施方式中,所述黑色矩阵层通过黄光制程形成。
在本发明的一个优选的实施方式中,所述黑色矩阵层的材料为黑色光组材料。
在本发明的一个优选的实施方式中,所述黄光制程的具体步骤包括光阻涂布步骤、曝光步骤、显影步骤及固化步骤。
在本发明的一个优选的实施方式中,所述保护层的材料为氧化硅;
在本发明的一个优选的实施方式中,所述平坦层的材料为透明有机材料。
在本发明的一个优选的实施方式中,所述栅电极绝缘层的材质为氮化硅。
在本发明的一个优选的实施方式中,所述公共电极层的材料均为氧化铟锡。
在本发明的一个优选的实施方式中,所述像素电极层的材料均为氧化铟锡。
在本发明的一个优选的实施方式中,所述液晶层至少包含一种极性液单晶体和至少一种非极性液晶单体。
在本发明的一个优选的实施方式中,所述液晶层的液晶分子为负性液晶。
在本发明的一个优选的实施方式中,所述第一衬底基板为玻璃基板。
在本发明的一个优选的实施方式中,所述第二衬底基板为玻璃基板。
本申请提出一种COA型液晶面板的制作方法,包括如下步骤:
步骤1、提供第一衬底基板,然后使其进入黄光线,通过黄光制程在所述第一衬底基板上形成黑色矩阵层;
步骤2、通过物理气相沉积法在所述黑色矩阵层和裸露的第一衬底基板上形成公共电极层;
步骤3、在所述公共电极层上对应所述黑色矩阵层的部分区域形成间隔物,得到上基板;
步骤4、提供第二衬底基板,在第二衬底基板上形成栅电极绝缘层;
步骤5、在所述栅电极绝缘层上形成色阻层;所述色阻层包括红色色阻、蓝色色阻及绿色色阻;所述红色色阻和绿色色阻为两个突出部,蓝色色阻为凹陷部, 红色色阻与绿色色阻间隔设置,且红色色阻与绿色色阻的厚度一致;所述蓝色色阻的厚度小于所述红色色阻及绿色色阻的厚度;
步骤6、在所述色阻层上形成保护层;
步骤7、通过物理气相沉积法在保护层上,与色阻层突出部相对应处形成像素电极层;
步骤8、在保护层上,与色阻层凹陷部相对应处沉积有机材料,形成平坦层,得到下基板;
步骤9、使上基板设有间隔物的一侧与下基板设有平坦层的一侧相面对,再在上基板与下基板之间滴注液晶,并将上基板与下基板进行真空对组贴合,形成上基板与下基板之间的液晶层,得到COA型液晶面板。
在本发明的一个优选的实施方式中,所述间隔物为锥形柱状物,包括主间隙物和次间隙物。
在本发明的一个优选的实施方式中,所述主间隙物和次间隙物与所述蓝色色阻相对应设置。
在本发明的一个优选的实施方式中,主间隙物和次间隙物的材质相同,为弹性材料。
在本发明的一个优选的实施方式中,所述主间隙物的高度大于次间隙物的高度。
在本发明的一个优选的实施方式中,所述公共电极层通过物理气相沉积法形成。
在本发明的一个优选的实施方式中,所述黑色矩阵层通过黄光制程形成。
在本发明的一个优选的实施方式中,所述黑色矩阵层的材料为黑色光组材料。
在本发明的一个优选的实施方式中,所述黄光制程的具体步骤包括光阻涂布步骤、曝光步骤、显影步骤及固化步骤。
在本发明的一个优选的实施方式中,所述保护层的材料为氧化硅;
在本发明的一个优选的实施方式中,所述平坦层的材料为透明有机材料。
在本发明的一个优选的实施方式中,所述栅电极绝缘层的材质为氮化硅。
在本发明的一个优选的实施方式中,所述公共电极的材料均为氧化铟锡。
在本发明的一个优选的实施方式中,所述像素电极的材料均为氧化铟锡。
在本发明的一个优选的实施方式中,所述液晶层至少包含一种极性液单晶体和至少一种非极性液晶单体。
在本发明的一个优选的实施方式中,所述液晶层的液晶分子为负性液晶。
在本发明的一个优选的实施方式中,所述第一衬底基板为玻璃基板。
在本发明的一个优选的实施方式中,所述第二衬底基板为玻璃基板。
此外,上述技术特征可以各种适合的方式组合或由等效的技术特征来替代,只要能够达到本发明的目的。
相对于现有技术,本发明减少使用平坦层,即光线依次通过液晶显示面板中的第二衬底基板、栅电极绝缘层、色阻层、保护层、像素电极层、液晶层、公共电极层、第一衬底基板;减少了平坦层,即减少了对光的吸收,提高了光线的穿透率,降低了制程成本,从而有效解决现有液晶显示面板光线穿透率低,成本高的问题。
为了让本发明的上述内容更明显易懂,下文举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1为现有技术中的液晶显示面板的结构示意图。
图2本发明的一个具体实施方式的流程图。
图3为本发明的一个具体实施方式中在第一衬底基板形成黑色矩阵层后的示意图。
图4为本发明的一个具体实施方式中在黑色矩阵层和裸露的第一衬底基板上形成公共电极层后的示意图。
图5为本发明的一个具体实施方式中在公共电极层上对应黑色矩阵层的部分区域形成间隔物后的示意图。
图6为本发明的一个具体实施方式中在第二衬底基板上形成栅电极绝缘层后的示意图。
图7为本发明的一个具体实施方式中在所述栅电极绝缘层上形成色阻层后的示意图。
图8为本发明的一个具体实施方式中在所述色阻层上形成保护层后的示意 图。
图9为本发明的一个具体实施方式中在保护层上与色阻层突出部相对应处形成像素电极层后的示意图。
图10为本发明的一个具体实施方式中在保护层上与色阻层凹陷部相对应处沉积有机材料,形成平坦层后的示意图。
图11为本发明的一个具体实施方式中COA型液晶面板的示意图。
附图标记说明:
110为第一衬底基板,120为黑色矩阵层,130为公共电极层,141为主间隙物,142为次间隙物,210为第二衬底基板,220为栅电极绝缘层,231为红色色阻,232为绿色色阻,233为蓝色色阻,240为保护层,250为像素电极层,260为平坦层,300为液晶层。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种COA型液晶面板,包括:
相对设置的上基板与下基板、及夹设于所述上基板与下基板之间的液晶层;
所述上基板包括第一衬底基板、黑色矩阵层、公共电极层及间隔物;
所述下基板包括第二衬底基板、栅电极绝缘层、色阻层、保护层、像素电极层及平坦层;
具体地,按照如图2所示的流程制备COA型液晶面板,具体包括以下步骤:
步骤1、如图3所示,提供第一衬底基板110,然后使其进入黄光线,通过黄光制程在所述第一衬底基板110上形成黑色矩阵层120;
所述的第一衬底基板110的材质为玻璃基板;
所述黑色矩阵层120的材料为黑色光组材料;
所述黄光制程的具体步骤包括光阻涂布步骤、曝光步骤、显影步骤及固化步骤;
步骤2、如图4所示,通过物理气相沉积法在所述黑色矩阵层120和裸露的第一衬底基板110上形成公共电极层130;
所述公共电极层130的材料为氧化铟锡;
步骤3、如图5所示,在所述公共电极层130上对应所述黑色矩阵层120的部分区域形成间隔物,得到上基板;
所述间隔物为锥形柱状物,包括主间隙物141和次间隙物142;
所述主间隙物141和次间隙物142的材质相同,为弹性材料;所述主间隙物141的高度大于次间隙物142的高度;
步骤4、如图6所示,提供第二衬底基板210,在第二衬底基板210上形成栅电极绝缘层220;
所述的第二衬底基板210的材质为玻璃基板;
所述栅电极绝缘层220的材质为氮化硅;
步骤5、如图7所示,在所述栅电极绝缘层220上形成色阻层;所述色阻层包括红色色阻231、蓝色色阻232及绿色色阻233;所述红色色阻231和绿色色阻232为两个突出部,蓝色色阻233为凹陷部,红色色阻231与绿色色阻232间隔设置,且红色色阻231与绿色色阻232的厚度一致;所述蓝色色阻233的厚度小于所述红色色阻231及绿色色阻232的厚度;
所述蓝色色阻233与主间隙物141和次间隙物142相对应设置;
步骤6、如图8所示,在所述色阻层上形成保护层240;
所述保护层240的材料为氧化硅;
步骤7、如图9所示,通过物理气相沉积法在保护层240上,与色阻层突出部相对应处形成像素电极层250;
所述的像素电极层250的材料均为氧化铟锡;
步骤8、如图10所示,在保护层240上,与色阻层凹陷部相对应处沉积有机材料,形成平坦层260,得到下基板;
所述的平坦层260的材质为透明有机材料;
步骤9、如图11所示,使上基板设有间隔物的一侧与下基板设有平坦层260的一侧相面对,再在上基板与下基板之间滴注液晶,并将上基板与下基板进行真空对组贴合,形成上基板与下基板之间的液晶层300,得到COA型液晶面板;
所述液晶层300至少包含一种极性液单晶体和至少一种非极性液晶单体,且 所述液晶层300的液晶分子为负性液晶。
相对于现有技术,本具体实施方式在保护层240上,红色色阻231和红色色阻231相对应处形成像素电极250,即减少使用平坦层260,即光线依次通过本实施方式制备的COA型液晶面板中的第二衬底基板210、栅电极绝缘层220、色阻层、保护层240、像素电极层250、液晶层300、公共电极层130、第一衬底基板110;减少了平坦层260,即减少了对光的吸收,提高了光线的穿透率,降低了制程成本,从而有效解决现有液晶显示面板光线穿透率低,成本高的问题。
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。

Claims (10)

  1. 一种COA型液晶面板,其中,包括相对设置的上基板与下基板、及夹设于所述上基板与下基板之间的液晶层;
    所述上基板包括第一衬底基板、黑色矩阵层、公共电极层及间隔物;
    所述下基板包括第二衬底基板、栅电极绝缘层、色阻层、保护层、像素电极层及平坦层。
  2. 根据权利要求1所述的一种COA型液晶面板,其中,所述黑色矩阵层设置于所述第一衬底基板上;所述公共电极层设置于所述黑色矩阵层和裸露的第一衬底基板上;所述间隔物设置于所述公共电极上,与黑色矩阵层相对应。
  3. 根据权利要求1所述的一种COA型液晶面板,其中,所述色阻层包括红色色阻、蓝色色阻及绿色色阻;所述红色色阻和绿色色阻为两个突出部,蓝色色阻为凹陷部,红色色阻与绿色色阻间隔设置,且红色色阻与绿色色阻的厚度一致;所述蓝色色阻的厚度小于所述红色色阻及绿色色阻的厚度。
  4. 根据权利要求1所述的一种COA型液晶面板,其中,所述间隔物为锥形柱状物,包括主间隙物和次间隙物,所述主间隙物和次间隙物与所述蓝色色阻相对应设置,且材质相同,为弹性材料;所述主间隙物的高度大于次间隙物的高度。
  5. 根据权利要求1所述的一种COA型液晶面板,其中,所述栅电极绝缘层设置于所述第二衬底基板上;所述色阻层设置于所述栅电极绝缘层上;所述保护层设置在色阻层上;所述像素电极与色阻层的突出部相对应设置;所述平坦层与色阻层的凹陷部相对应设置。
  6. 根据权利要求1所述的一种COA型液晶面板,其中,所述公共电极层通过物理气相沉积法形成,所述黑色矩阵层通过黄光制程形成。
  7. 根据权利要求6所述的一种COA型液晶面板,其中,所述黑色矩阵层的材料为黑色光组材料,所述黄光制程的具体步骤包括光阻涂布步骤、曝光步骤、显影步骤及固化步骤。
  8. 根据权利要求1所述的一种COA型液晶面板,其中,所述保护层的材料为氧化硅;所述平坦层的材料为透明有机材料;所述栅电极绝缘层的材质为氮化硅;所述公共电极层及像素电极层的材料均为氧化铟锡。
  9. 根据权利要求1所述的一种COA型液晶面板,其中,所述液晶层至少包 含一种极性液单晶体和至少一种非极性液晶单体,且所述液晶层的液晶分子为负性液晶。
  10. 根据权利要求1所述的一种COA型液晶面板,其中所述一种COA型液晶面板的制作方法,包括如下步骤:
    步骤1、提供第一衬底基板,然后使其进入黄光线,通过黄光制程在所述第一衬底基板上形成黑色矩阵层;
    步骤2、通过物理气相沉积法在所述黑色矩阵层和裸露的第一衬底基板上形成公共电极层;
    步骤3、在所述公共电极层上对应所述黑色矩阵层的部分区域形成间隔物,得到上基板;
    步骤4、提供第二衬底基板,在第二衬底基板上形成栅电极绝缘层;
    步骤5、在所述栅电极绝缘层上形成色阻层;所述色阻层包括红色色阻、蓝色色阻及绿色色阻;所述红色色阻和绿色色阻为两个突出部,蓝色色阻为凹陷部,红色色阻与绿色色阻间隔设置,且红色色阻与绿色色阻的厚度一致;所述蓝色色阻的厚度小于所述红色色阻及绿色色阻的厚度;
    步骤6、在所述色阻层上形成保护层;
    步骤7、通过物理气相沉积法在保护层上,与色阻层突出部相对应处形成像素电极层;
    步骤8、在保护层上,与色阻层凹陷部相对应处沉积有机材料,形成平坦层,得到下基板;
    步骤9、使上基板设有间隔物的一侧与下基板设有平坦层的一侧相面对,再在上基板与下基板之间滴注液晶,并将上基板与下基板进行真空对组贴合,形成上基板与下基板之间的液晶层,得到COA型液晶面板。
PCT/CN2016/103401 2016-08-31 2016-10-26 一种coa型液晶面板及制作方法 WO2018040265A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/325,202 US10324328B2 (en) 2016-08-31 2016-10-26 COA liquid crystal panel and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610797256.9 2016-08-31
CN201610797256.9A CN106154630B (zh) 2016-08-31 2016-08-31 一种coa型液晶面板及制作方法

Publications (1)

Publication Number Publication Date
WO2018040265A1 true WO2018040265A1 (zh) 2018-03-08

Family

ID=57345581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103401 WO2018040265A1 (zh) 2016-08-31 2016-10-26 一种coa型液晶面板及制作方法

Country Status (3)

Country Link
US (1) US10324328B2 (zh)
CN (1) CN106154630B (zh)
WO (1) WO2018040265A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093689A (zh) * 2015-07-17 2015-11-25 深圳市华星光电技术有限公司 彩色滤光片整合晶体管式液晶面板及其制造方法
CN107490914A (zh) 2017-09-08 2017-12-19 深圳市华星光电半导体显示技术有限公司 阵列基板及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005204A (ja) * 2001-06-21 2003-01-08 Matsushita Electric Ind Co Ltd マルチギャップカラー液晶表示装置
CN102385196A (zh) * 2011-10-25 2012-03-21 深圳市华星光电技术有限公司 液晶显示面板及其形成方法
CN103278963A (zh) * 2013-05-23 2013-09-04 京东方科技集团股份有限公司 彩色滤光阵列基板及其制造方法、显示装置
CN103676297A (zh) * 2013-12-09 2014-03-26 京东方科技集团股份有限公司 一种彩膜基板及液晶显示装置
CN105259693A (zh) * 2015-11-11 2016-01-20 深圳市华星光电技术有限公司 液晶显示装置及其彩膜基板
CN105652546A (zh) * 2016-04-12 2016-06-08 深圳市华星光电技术有限公司 阵列基板及液晶显示面板
CN105700258A (zh) * 2016-04-08 2016-06-22 深圳市华星光电技术有限公司 液晶显示面板及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101006434B1 (ko) * 2003-06-26 2011-01-06 삼성전자주식회사 박막 트랜지스터 표시판 및 이를 포함하는 액정 표시장치의 수리 방법
KR101133754B1 (ko) * 2004-08-19 2012-04-09 삼성전자주식회사 액정 표시 장치
KR101541794B1 (ko) * 2008-12-09 2015-08-04 삼성디스플레이 주식회사 액정 표시 장치
JP2011237571A (ja) * 2010-05-10 2011-11-24 Hitachi Displays Ltd 液晶表示装置
TW201215970A (en) * 2010-10-04 2012-04-16 Chunghwa Picture Tubes Ltd Liquid crystal alignment process
US8797495B2 (en) 2011-10-25 2014-08-05 Shenzhen China Star Optoelectronics Technology Co., Ltd. LCD panel and method of forming the same
TWI486692B (zh) * 2012-06-29 2015-06-01 群康科技(深圳)有限公司 液晶顯示裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003005204A (ja) * 2001-06-21 2003-01-08 Matsushita Electric Ind Co Ltd マルチギャップカラー液晶表示装置
CN102385196A (zh) * 2011-10-25 2012-03-21 深圳市华星光电技术有限公司 液晶显示面板及其形成方法
CN103278963A (zh) * 2013-05-23 2013-09-04 京东方科技集团股份有限公司 彩色滤光阵列基板及其制造方法、显示装置
CN103676297A (zh) * 2013-12-09 2014-03-26 京东方科技集团股份有限公司 一种彩膜基板及液晶显示装置
CN105259693A (zh) * 2015-11-11 2016-01-20 深圳市华星光电技术有限公司 液晶显示装置及其彩膜基板
CN105700258A (zh) * 2016-04-08 2016-06-22 深圳市华星光电技术有限公司 液晶显示面板及其制作方法
CN105652546A (zh) * 2016-04-12 2016-06-08 深圳市华星光电技术有限公司 阵列基板及液晶显示面板

Also Published As

Publication number Publication date
CN106154630B (zh) 2019-07-12
US20180252961A1 (en) 2018-09-06
CN106154630A (zh) 2016-11-23
US10324328B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2017008369A1 (zh) Coa型液晶显示面板及其制作方法
US10634958B1 (en) Manufacturing method of black photo spacer array substrate and black photo spacer array substrate
WO2017092133A1 (zh) 采用无黑色矩阵技术的va型液晶显示面板及其制作方法
WO2016202060A1 (zh) 阵列基板及其制造方法、显示装置
WO2016086539A1 (zh) 液晶面板及其制作方法
WO2018196233A1 (zh) 液晶显示面板及其液晶显示装置
WO2017101204A1 (zh) 液晶显示装置
US8314911B2 (en) Liquid crystal panel and manufacturing method thereof
WO2018149010A1 (zh) 阵列基板及其制作方法与In Cell触控显示面板
US20220011629A1 (en) Color filter substrate, manufacturing method thereof, and display device
US7742129B2 (en) Color filter substrate and manufacturing method thereof and liquid crystal display panel
WO2020156040A1 (zh) 彩膜基板、显示装置以及彩膜基板制备方法
US20120081651A1 (en) Display panel
US20190219853A1 (en) Coa substrate, manufacturing method therefor, display panel, and display device
US7335450B2 (en) Liquid crystal display panel and manufacturing method of color filter and liquid crystal display panel
WO2017152469A1 (zh) 彩膜基板的制作方法及制得的彩膜基板
WO2019071846A1 (zh) Coa型液晶显示面板及其制作方法
WO2014139221A1 (zh) 彩膜基板的制作方法、彩膜基板及显示装置
WO2017031815A1 (zh) Coa型液晶显示面板
US20050019679A1 (en) [color filter substrate and fabricating method thereof]
WO2018040265A1 (zh) 一种coa型液晶面板及制作方法
WO2017031779A1 (zh) 阵列基板的制作方法及阵列基板
JPH03167524A (ja) カラー液晶表示装置
JP2004341527A (ja) 液晶表示装置及びこの製造方法
US20180180956A1 (en) Method For Manufacturing COA Type Liquid Crystal Panel, and COA Type Liquid Crystal Panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15325202

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914828

Country of ref document: EP

Kind code of ref document: A1