WO2017092086A1 - 一种固体氧化物燃料电池电解质膜及其制备方法和固体氧化物燃料电池 - Google Patents

一种固体氧化物燃料电池电解质膜及其制备方法和固体氧化物燃料电池 Download PDF

Info

Publication number
WO2017092086A1
WO2017092086A1 PCT/CN2015/098187 CN2015098187W WO2017092086A1 WO 2017092086 A1 WO2017092086 A1 WO 2017092086A1 CN 2015098187 W CN2015098187 W CN 2015098187W WO 2017092086 A1 WO2017092086 A1 WO 2017092086A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrolyte membrane
fuel cell
solid oxide
oxide fuel
Prior art date
Application number
PCT/CN2015/098187
Other languages
English (en)
French (fr)
Inventor
庞胜利
沈湘黔
潘铁政
范景波
赵程
冯玉华
Original Assignee
苏州攀特电陶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州攀特电陶科技股份有限公司 filed Critical 苏州攀特电陶科技股份有限公司
Publication of WO2017092086A1 publication Critical patent/WO2017092086A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of fuel cells, and relates to a component of a fuel cell, in particular to a solid oxide fuel cell electrolyte membrane, a preparation method thereof and a solid oxide fuel cell.
  • the cost of generating electricity from solid oxide fuel cells is still high, which is mainly related to the high production and operating costs of existing solid oxide fuel cells.
  • Most of the existing solid oxide fuel cells still use the traditional yttria-stabilized zirconia (YSZ) as the electrolyte, and the working temperature is 750 ° C - 1000 ° C.
  • Working at such a high temperature for a long period of time may cause side reactions between the materials of the various components of the battery, and the electrode microstructure may be damaged due to sintering.
  • the higher operating temperatures make the materials available for the solid oxide fuel cell components very limited, and relatively inexpensive sealing and electrode materials cannot be used.
  • Reducing the operating temperature of the solid oxide fuel cell to the temperature range of 300-750 ° C is expected to significantly alleviate the above problems, and is generally considered to be an effective way to achieve its practical application.
  • a decrease in the operating temperature of a solid oxide fuel cell also causes a problem in that its output power is significantly attenuated.
  • the traditional YSZ electrolyte has a higher activation energy of oxygen ion conductivity, and the electrolyte ion conduction resistance increases remarkably with the decrease of temperature, which has become one of the key factors restricting the low temperature in solid oxide fuel cells.
  • the technical problem to be solved by the present invention is to provide a structurally improved solid oxide fuel cell electrolyte membrane while overcoming the deficiencies of the prior art and at the same time provide a novel method for preparing the solid oxide fuel cell electrolyte membrane.
  • a technical solution adopted by the present invention is as follows: a solid oxide fuel cell electrolyte membrane including first and second electrolyte units alternately disposed, the first electrolyte unit It is composed of an oxygen ion conductor phase, and the second electrolyte unit is composed of a proton conductor phase.
  • the first electrolyte unit and the second electrolyte unit are both elongated and have a length extending direction perpendicular to a thickness direction of the electrolyte membrane. Further, the length of the first electrolyte unit is equal to the width of one side of the electrolyte membrane, and the thickness of the first electrolyte unit and the thickness of the second electrolyte unit are both equal to the thickness of the electrolyte membrane.
  • the plurality of first electrolyte units and the plurality of second electrolyte units are alternately arranged along a length direction and a width direction of a plane in which the electrolyte membrane is located.
  • a thickness of the first electrolyte unit and the second electrolyte unit is equal to a thickness of the electrolyte membrane
  • a length and a width of the first electrolyte unit and the second electrolyte unit are respectively 1 to 30 ⁇ m.
  • the first electrolyte unit and the second electrolyte unit have a length and a width of 2 to 20 ⁇ m, respectively, more preferably 2 to 10 ⁇ m.
  • a plurality of the plurality of first electrolyte units may be the same or different in size; the plurality of second electrolyte units may be the same size or different in size, the first electrolyte unit and the second electrolyte
  • the size and shape of the units can be the same or different.
  • the plurality of first electrolyte units and the second electrolyte unit are the same in size and shape.
  • the electrolyte membrane is printed by a 3D printer.
  • the proton conductor phase is BaZr 0.1 Ce 0.7 Y 0.2 O 3- ⁇
  • the oxygen ion conductor phase is Gd 0.1 Ce 0.9 O 1.95 (GDC10), Gd 0.2 Ce 0.8 O 1.9 (GDC20), Sm 0.1 Ce One or more of 0.9 O 1.95 (SDC10) and Sm 0.2 Ce 0.8 O 1.9 (SDC20).
  • Another object of the present invention is to provide a method for preparing the above solid oxide fuel cell electrolyte membrane, which comprises the following steps:
  • Step (b) is repeated until the desired thickness is obtained, printing is stopped, taken out, and subjected to a sintering treatment to obtain the electrolyte membrane.
  • the substrate is one of the sintered GDC10-NiO, GDC20-NiO, SDC10-NiO and SDC20-NiO composite anode plates, and the content of NiO in the composite anode plate is 50-70 wt%. .
  • the printing temperature of the 3D printer is set to 30 to 70 ° C, and the interval between adjacent secondary printings is set to 10 to 60 minutes.
  • step (a) is specifically: mixing the oxygen ion conductor phase powder and the proton conductor phase powder with the binder and placing the ball in a ball mill tank for ball milling.
  • the method of ball milling is as follows: firstly, 250 to 350 Ball milling for 30 to 180 minutes at a speed of rpm, then increasing the speed to 500 to 600 rpm for 120 to 480 minutes, and finally grinding for 30 to 180 minutes at a speed of 250 to 350 rpm.
  • the binder is an aqueous solution of polyvinyl alcohol, and the amount thereof is 200% to 400% of the mass of the oxygen ion conductor phase powder or the proton conductor phase powder. More preferably, the polyvinyl alcohol has a number average molecular weight of 10,000 to 60,000, and its content in the aqueous solution is 1 to 5 Wt%.
  • the thickness of each print can be controlled by controlling the viscosity of the slurry prepared in the step (a).
  • the thickness of each print is controlled to be 0.5 to 1 micron.
  • the oxygen ion conductor phase powder and the proton conductor phase powder have a primary particle diameter of less than 100 nanometers.
  • the sintering method is: heating at a rate of 0.5 to 1.5 ° C / minute to 400 to 600 ° C and holding for 60-240 minutes, and then raising the temperature to 1300 at a rate of 1 to 2 ° C / minute. ⁇ 1500 ° C and keep warm for 120 ⁇ 480 minutes, and finally to 1 ⁇ 2 ° C / minute to the room temperature.
  • the present invention still further provides a solid oxide fuel cell comprising the above solid oxide fuel cell electrolyte membrane.
  • the present invention has the following advantages compared with the prior art:
  • the solid oxide fuel cell electrolyte membrane of the present invention comprises an alternately disposed first electrolyte unit and a second electrolyte unit, the first electrolyte unit being composed of an oxygen ion conductor phase and the second electrolyte unit being composed of a proton conductor phase in a conventional oxygen ion conductor
  • the introduction of a proton conducting channel in the electrolyte membrane can effectively alleviate the problem that the electrolyte membrane is significantly reduced due to the decrease of the operating temperature of the battery, and is advantageous for realizing the low temperature and practical use of the solid oxide fuel cell, thereby effectively reducing the solid oxide fuel.
  • the preparation method of the solid oxide fuel cell electrolyte membrane provided by the invention has the characteristics of flexible structure design and precise controllable film thickness, since the electrolyte membrane prepared by the 3D printing technology has the characteristics of flexible structure design and precise controllability of the film thickness, so that the proton-oxygen ion can be flexibly designed according to the actual demand of the battery.
  • the grid structure of the mixed conducting electrolyte membrane and the thickness of the electrolyte membrane reduce the ionic resistance of the solid oxide fuel cell under working conditions, which is advantageous for achieving medium and low temperature of the solid oxide fuel cell; and the 3D printing technology has a simple process and is easy to process.
  • FIG. 1(a) is a plan view showing a solid oxide fuel cell electrolyte membrane of Embodiment 1, and FIG. 1(b) is a partially enlarged view of a portion A of FIG. 1(a);
  • Figure 2 (a) is a cross-sectional view of the electrolyte membrane of the solid oxide fuel cell of Example 1, and Figure 2 (b) is a diagram of Figure 2 (a) A partial enlarged view at B;
  • Figure 3 is a plan view showing a solid oxide fuel cell electrolyte membrane of Example 2.
  • the 3D printer was purchased from Fujifilm Corporation (FUJIFILM), and the operation of the 3D printer was carried out in the manner suggested by the manufacturer.
  • the present embodiment provides a solid oxide fuel cell electrolyte membrane, as shown in FIG. 2(a) and FIG. 2(b), which is formed on any surface of the substrate 2, and includes a plurality of alternately disposed first electrolytes.
  • the unit 11 and the second electrolyte unit 12, the first electrolyte unit 11 is composed of an oxygen ion conductor phase, and the second electrolyte unit 12 is composed of a proton conductor phase.
  • the introduction of proton conduction channels in the conventional oxygen ion conductor electrolyte membrane can effectively alleviate the problem that the electrolyte membrane is significantly reduced due to the decrease of the operating temperature of the battery, and is advantageous for realizing the medium and low temperature (300 ⁇ 800 ° C) of the solid oxide fuel cell. And practical.
  • the first electrolyte unit 11 and the second electrolyte unit 12 are elongated in the same size and shape, and their length extension directions are perpendicular to the thickness direction of the electrolyte membrane, and the length is equal to the width of one side of the electrolyte membrane. Their thickness is equal to the thickness of the electrolyte membrane, as shown in Fig. 1(a) and Fig. 1(b).
  • the proton-oxygen mixed conductor electrolyte membrane is composed of a plurality of first electrolyte units 11 and a plurality of second electrolyte units 12 alternately arranged. This structure can be printed by first printing the first electrolyte unit 11 through a 3D printer on the substrate, and then printing the second electrolyte unit 12.
  • the widths of the first electrolyte unit 11 and the second electrolyte unit 12 may be determined as needed (the width of the first electrolyte unit 11 and the width of the second electrolyte unit 12 may be the same or different; the width of each of the first electrolyte units 11 may be The same may be different, and the width of each of the second electrolyte units 12 may be the same or different).
  • the proton conductor phase is BaZr 0.1 Ce 0.7 Y 0.2 O 3- ⁇ (BZCY)
  • the oxygen ion conductor phase is selected from the group consisting of Gd 0.1 Ce 0.9 O 1.95 (GDC10), Gd 0.2 Ce 0.8 O 1.9 (GDC20), A mixture of one or more of Sm 0.1 Ce 0.9 O 1.95 (SDC10) and Sm 0.2 Ce 0.8 O 1.9 (SDC20).
  • the present embodiment provides a solid oxide fuel cell electrolyte membrane formed on any surface of the substrate 2, and also includes a plurality of alternately disposed first electrolyte units 11 and second electrolyte units 12, the material and the embodiment thereof. Consistent in 1 , the difference is that the plurality of first electrolyte units 11 and the plurality of second electrolyte units 12 are alternately arranged along the length and width directions of the electrolyte membrane, as shown in FIG. 3, such that each row or column The adjacent two electrolyte units are different electrolyte units.
  • the thicknesses of the first electrolyte unit 11 and the second electrolyte unit 12 are the thicknesses of the electrolyte membranes they constitute, and the length and width of the first electrolyte unit 11 and the second electrolyte unit 12 are both 3 ⁇ m.
  • the embodiment provides a method for preparing a solid oxide fuel cell electrolyte membrane, which comprises the following steps:
  • the above electrolyte slurry is collected and placed in a closed collection bottle for use; the 3D printer power supply is turned on, and the surface-cleaned GDC10-NiO printing substrate (also referred to as a substrate, which is subjected to 1000 ° C / 4 h sintering treatment) GDC10-NiO anode plate with a NiO content of 60 The wt%) is fixed on the 3D printing table, and the temperature of the printing table is set to 40 ° C; the GDC10 electrolyte slurry is first placed in the print cartridge, and the corresponding ink cartridge is fixed in the 3D printer cartridge position.
  • the 3D printer power supply is turned on, and the surface-cleaned GDC10-NiO printing substrate (also referred to as a substrate, which is subjected to 1000 ° C / 4 h sintering treatment) GDC10-NiO anode plate with a NiO content of 60 The wt%) is fixed on the 3D printing table, and
  • the printing material can adhere well to the substrate; replace the ink cartridge in the printer with the printing ink cartridge containing the BZCY electrolyte slurry, adjust the ink discharging mode of the ink cartridge and the printing start position, repeat the above steps, and start the first layer.
  • the printing work of the BZCY electrolyte is also waited for 35 minutes after the printing is completed, so that the moisture in the printing paste is sufficiently volatilized, and the printing material can adhere well to the substrate.
  • the electrolyte is printed, it is taken out of the 3D printer and placed in a muffle furnace for sintering.
  • the sintering system is heated to 400 ° C at a rate of 0.5 ° C / minute and held for 60 minutes, and then heated to 1400 at a rate of 1 ° C / minute.
  • the solid oxide fuel cell electrolyte membrane (having a total electrolyte thickness of 8 ⁇ m and a thickness of 0.8 ⁇ m per layer) was obtained by heating at ° C for 120 minutes and finally at room temperature of 1 ° C/min.
  • the embodiment provides a method for preparing a solid oxide fuel cell electrolyte membrane, and the steps thereof are basically the same as those in Embodiment 3.
  • the difference is as follows: 1.
  • the sintering parameters are different, specifically: heating at a rate of 0.5 ° C / minute to The solid oxide fuel cell electrolyte membrane is obtained by heating at 400 ° C for 240 minutes, then raising the temperature to 1400 ° C at a rate of 2 ° C / minute for 480 minutes, and finally dropping to room temperature at a rate of 2 ° C / minute;
  • the ball milling parameters are different, specifically: first ball milling at 350 rpm for 180 minutes, then increasing the rotation speed to 600 rpm for 120 minutes, and finally ball milling at 350 rpm for 180 minutes to obtain electrolyte slurry. .
  • the embodiment provides a method for preparing a solid oxide fuel cell electrolyte membrane, and the steps thereof are basically the same as those in Embodiment 3.
  • the difference is that the oxygen ion conductor phase is made of SDC10; the total electrolyte thickness is 10 micrometers.
  • Each layer has a thickness of 0.5 ⁇ m and a total of 20 layers; the sintering parameters are different, specifically: heating to 600 ° C at a rate of 1.5 ° C / min and holding for 240 minutes, then heating to 1300 ° C at a rate of 2 ° C / min and holding for 480 minutes Finally, the solid oxide fuel cell electrolyte membrane can be obtained by dropping to a room temperature at a rate of 2 ° C / minute; the ball milling parameters are different, specifically: ball milling at a speed of 300 rpm for 60 minutes, and then raising the rotation speed to Ball milling at 550 rpm for 200 minutes, and finally ball milling at 300 rpm for 60 minutes to obtain the corresponding slurry; the concentration of polyvinyl alcohol is 1 wt%, the average molecular weight is about 60,000, and the amount of binder added is Corresponding to 400% of the electrolyte powder mass; printing temperature is 30 ° C, interval is 60 minutes; 5, the content of NiO in
  • the embodiment provides a method for preparing a solid oxide fuel cell electrolyte membrane, and the steps thereof are basically the same as those in Embodiment 3.
  • the difference is that the oxygen ion conductor phase is made of SDC20, and the total electrolyte thickness is 10 micrometers.
  • Each layer has a thickness of 1 micron and a total of 10 layers; the sintering parameters are different, specifically: heating to 500 ° C at a rate of 1 ° C / minute and holding for 200 minutes, then heating to 1500 ° C at a rate of 1.5 ° C / minute and holding for 400 minutes Finally, the solid oxide fuel cell electrolyte membrane can be obtained by dropping to a room temperature at a rate of 1.5 ° C/min; the concentration of polyvinyl alcohol is 5 wt%, the average molecular weight is about 10,000, and the amount of the binder added is the corresponding electrolyte powder. 300% of body mass; printing temperature is 70 ° C, interval is 10 minutes; NiO content in anode plate is 70 Wt%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种固体氧化物燃料电池电解质膜及其制备方法和固体氧化物燃料电池,所述电解质膜包括交替设置的第一电解质单元和第二电解质单元,所述第一电解质单元由氧离子导体相构成,所述第二电解质单元由质子导体相构成。在传统氧离子导体电解质膜中引入质子传导通道可有效缓解电解质膜由于电池工作温度降低而导致的离子电导显著下降的问题,有利于实现固体氧化物燃料电池的中低温化和实用化,从而有效降低固体氧化物燃料电池在中低温工作条件下的离子电阻。

Description

一种固体氧化物燃料电池电解质膜及其制备方法和固体氧化物燃料电池 技术领域
本发明属于燃料电池领域,涉及一种燃料电池的部件,具体涉及一种固体氧化物燃料电池电解质膜及其制备方法及固体氧化物燃料电池。
背景技术
固体氧化物燃料电池作为一种能够直接将化学能转化为电能的能量转化装置由于兼具能量转化效率高、燃料适用广泛等优点受到人们广泛关注。如日本TOTO株式会社在申请号为201280016340.2的发明专利中通过在电解质中掺杂一部分氧化铝开发出了一种能够稳定工作90000小时固体氧化物燃料电池;美国LG燃料电池系统公司在申请号为201280045198.4和201280045187.6的发明专利中对燃料电池的系统进行了优化。
然而,到目前为止固体氧化物燃料电池发电的成本仍然较高,这主要与现有固体氧化物燃料电池生产和运行成本较高有关。现有固体氧化物燃料电池大多仍然采用传统的氧化钇稳定氧化锆(YSZ)为电解质,工作温度在750℃-1000℃。在如此高的温度下长时间工作会导致电池各组件材料之间的副反应,电极微结构由于烧结而受到破坏等问题。除此之外,较高的工作温度使得固体氧化物燃料电池各组件可选的材料非常有限,不能采用成本相对低廉的密封和电极材料。
降低固体氧化物燃料电池的工作温度到300-750℃温度范围有望显著缓解上述问题,被普遍认为是实现其实用化的有效途径。然而,固体氧化物燃料电池工作温度的降低也会导致其输出功率显著衰减的问题。其中传统的YSZ电解质氧离子电导活化能较高,随着温度的下降电解质离子传导电阻显著增加,已成为制约固体氧化物燃料电池中低温化的关键因素之一。
发明内容
本发明所要解决的技术问题是克服现有技术的不足提供一种结构改进的固体氧化物燃料电池电解质膜并同时提供该固体氧化物燃料电池电解质膜的制备新方法。
为解决以上技术问题,本发明采取的一种技术方案如下:一种固体氧化物燃料电池电解质膜,所述电解质膜包括交替设置的第一电解质单元和第二电解质单元,所述第一电解质单元由氧离子导体相构成,所述第二电解质单元由质子导体相构成。
优化地,所述第一电解质单元和所述第二电解质单元分别有多个。
根据本发明的一个具体且优选方面,所述第一电解质单元与所述第二电解质单元均为长条状,且其长度延伸方向与所述电解质膜的厚度方向垂直。进一步地,所述第一电解质单元的长度等于电解质膜的一条边的宽度,所述第一电解质单元的厚度和所述第二电解质单元的厚度均等于电解质膜的厚度。
根据本发明的又一具体且优选方面,所述多个第一电解质单元和所述多个第二电解质单元沿着所述的电解质膜所在平面的长度方向和宽度方向交替排列。进一步地,所述第一电解质单元和所述第二电解质单元的厚度等于所述电解质膜的厚度,所述第一电解质单元和所述第二电解质单元的长和宽分别为1~30微米。优选地,所述第一电解质单元和所述第二电解质单元的长和宽分别为2~20微米,更优选为2~10微米。
根据本发明,多个所述多个第一电解质单元的大小、形状可以相同或不同;所述多个第二电解质单元的大小可以相同或不同,所述第一电解质单元与所述第二电解质单元的大小、形状可以相同或不同。作为优选,所述多个第一电解质单元、第二电解质单元的大小、形状均相同。
优化地,所述电解质膜通过3D打印机打印而成。
优化地,所述质子导体相为BaZr0.1Ce0.7Y0.2O3-δ,所述氧离子导体相为Gd0.1Ce0.9O1.95(GDC10)、Gd0.2Ce0.8O1.9(GDC20)、Sm0.1Ce0.9O1.95(SDC10)和Sm0.2Ce0.8O1.9(SDC20)中的一种或多种。
本发明的又一目的在于提供一种上述固体氧化物燃料电池电解质膜的制备方法,它包括以下步骤:
(a)根据要制备的电解质膜,配制相应的氧离子导体相浆料和质子导体相浆料,以及制定相应的打印程序;
(b)利用3D打印机在基片上先后打印出一层氧离子导体相和质子导体相;
(c)重复步骤(b),直至获得需要的厚度,停止打印,取出,进行烧结处理,即得所述电解质膜。
进一步地,所述基片为经过烧结处理的GDC10-NiO、GDC20-NiO、SDC10-NiO和SDC20-NiO复合阳极板中的一种,且所述复合阳极板中NiO的含量为50~70wt%。
优选地,步骤(b)中,进行打印时,3D打印机的打印温度设为30~70℃,相邻二次打印之间的间隔设为10~60分钟。
进一步地,步骤(a)具体为:将氧离子导体相粉体、质子导体相粉体分别与粘结剂混合后置于球磨罐中进行球磨处理,球磨的方法如下为:首先在250~350转/分钟的速度下球磨30~180分钟,然后将转速提升至500~600转/分钟下球磨120~480分钟,最后在250~350转/分钟的速度下球磨30~180分钟。
优选地,所述粘结剂为聚乙烯醇的水溶液,其添加量为氧离子导体相粉体或质子导体相粉体质量的200%~400%。更优选地,所述聚乙烯醇的数均分子量为10000~60000,其在所述水溶液中的含量为1~5 wt%。
根据本发明,可通过控制步骤(a)所制备的浆料的粘稠度来控制每次打印的厚度。优选地,控制每次打印的厚度为0.5~1微米。
优选地,所述氧离子导体相粉体和所述质子导体相粉体的一次颗粒直径小于100纳米。
优选地,步骤(f)中,所述烧结方法为:以0.5~1.5℃/分钟的速度升温至400~600℃并保温60-240分钟,然后以1~2℃/分钟的速度升温至1300~1500℃并保温120~480分钟,最后以1~2℃/分钟的速度降至室温。
本发明还进一步提供一种固体氧化物燃料电池,它含有上述的固体氧化物燃料电池电解质膜。
由于以上技术方案的实施,本发明与现有技术相比具有如下优点:
本发明固体氧化物燃料电池电解质膜,包括交替设置的第一电解质单元和第二电解质单元,第一电解质单元由氧离子导体相构成,第二电解质单元由质子导体相构成,在传统氧离子导体电解质膜中引入质子传导通道可有效缓解电解质膜由于电池工作温度降低而导致的离子电导显著下降的问题,有利于实现固体氧化物燃料电池的中低温化和实用化,从而有效降低固体氧化物燃料电池在中低温工作条件下的离子电阻。
本发明所提供的固体氧化物燃料电池电解质膜的制备方法,由于采用3D打印技术制备的电解质膜具有结构设计灵活和薄膜厚度精确可控的特点,因此可以根据电池实际需求灵活设计质子-氧离子混合电导电解质膜的栅格结构和电解质膜的厚度,降低固体氧化物燃料电池在工作条件下的离子电阻,有利于实现固体氧化物燃料电池的中低温化;而且3D打印技术具有工艺简单,易规模化生产的特点。
附图说明
图1(a)是实施例1中固体氧化物燃料电池电解质膜的平面图,图1(b)是图1(a)图中A处的局部放大图;
图2(a)是实施例1中固体氧化物燃料电池电解质膜的剖视图,图2 (b)是图2 (a)图中 B处的局部放大图;
图3是实施例2中固体氧化物燃料电池电解质膜的平面图;
其中,1、电解质本体; 11、第一电解质单元;12、第二电解质单元;2、基片。
具体实施方式
以下将通过具体实施例进一步阐述本发明,但并不用于限制本发明的保护范围。下述实施例中,3D打印机购自富士胶片公司(FUJIFILM),3D打印机的操作按照厂商建议的方式进行。
实施例1
本实施例提供一种固体氧化物燃料电池电解质膜,如图2(a)和图2(b)所示,它形成在基片2的任一表面上,包括多个交替设置的第一电解质单元11和第二电解质单元12,第一电解质单元11由氧离子导体相构成,第二电解质单元12由质子导体相构成。这样在传统氧离子导体电解质膜中引入质子传导通道可有效缓解电解质膜由于电池工作温度降低而导致的离子电导显著下降的问题,有利于实现固体氧化物燃料电池的中低温(300~800℃)化和实用化。
在本实施例中,第一电解质单元11与第二电解质单元12为尺寸和形状相同的长条状,它们的长度延伸方向与电解质膜的厚度方向垂直,且长度等于电解质膜的一条边的宽度,它们的厚度等于电解质膜的厚度,即如图1(a)和图1(b)所示。质子-氧离子混合导体电解质膜由多个第一电解质单元11和多个第二电解质单元12交替排列构成。该结构可通过在基片上先将第一电解质单元11通过3D打印机打印出来,然后再将第二电解质单元12打印出来。
第一电解质单元11和第二电解质单元12的宽度可以根据需要进行确定(第一电解质单元11的宽度和第二电解质单元12的宽度可以相同也可以不同;每个第一电解质单元11的宽度可以相同也可以不同,同样每个第二电解质单元12的宽度可以相同也可以不同)。
本例中,质子导体相为BaZr0.1Ce0.7Y0.2O3-δ(BZCY),而氧离子导体相为选自Gd0.1Ce0.9O1.95(GDC10)、Gd0.2Ce0.8O1.9(GDC20)、Sm0.1Ce0.9O1.95(SDC10)和Sm0.2Ce0.8O1.9(SDC20)中的一种或几种组成的混合物。
实施例2
本实施例提供一种固体氧化物燃料电池电解质膜,它形成在基片2的任一表面上,也包括多个交替设置的第一电解质单元11和第二电解质单元12,其材质与实施例1中的一致,不同的是:多个第一电解质单元11和多个第二电解质单元12沿着电解质膜的长度和宽度方向交替排列,如图3所示,使得每一行中或者每一列中的相邻两个电解质单元为不同的电解质单元。在本实施例中,第一电解质单元11和第二电解质单元12的厚度为它们所构成电解质膜的厚度,第一电解质单元11和第二电解质单元12的长度和宽度均为3微米。
实施例3
本实施例提供一种固体氧化物燃料电池电解质膜的制备方法,它包括以下步骤:
(a)将5g一次颗粒尺寸约为50nm的GDC10纳米粉体、15g粘合剂和约20ml的玛瑙材质球磨珠放入50ml的第一玛瑙球磨罐中;将5g 一次颗粒尺寸约为90nm的BZCY纳米粉体、12g粘合剂和约20ml的玛瑙材质球磨珠放入50ml的第二玛瑙球磨罐中;将上述两个玛瑙球磨罐固定于球磨机中进行球磨;球磨方法为:首先在250转/分钟的转速下球磨30分钟,然后将转速提升至500转/分钟球磨480分钟,最后在250转/分钟转速下球磨30分钟以获得电解质浆料;其中,粘合剂为聚乙烯醇([C2H4O]n)的水溶液,聚乙烯醇的浓度为2 wt%,平均分子量约为50000,粘合剂的添加量为对应电解质粉体质量的200%。
收集上述电解质浆料,并将其置于密闭收集瓶内待用;打开3D打印机电源,将经过表面清洁处理的GDC10-NiO打印基片(也称基片,它为经过1000℃/4h烧结处理的GDC10-NiO阳极板,其中NiO的含量为60 wt%)固定于3D打印台上,并将打印台的温度设定为40℃;先将GDC10电解质浆料放入打印墨盒中,并将相应墨盒固定于3D打印机墨盒位置。
将打印程序输入至3D打印机中,并调整墨盒出墨方式及打印起始位置,开始第一层中GDC10电解质的打印工作;待打印完毕后等待35分钟,使打印浆料中的水分得到充分挥发,打印材料能够很好的粘附于基片上;将打印机中的墨盒更换为盛有BZCY电解质浆料的打印墨盒,调整墨盒出墨方式及打印起始位置,重复上述步骤,开始第一层中BZCY电解质的打印工作,同样待打印完毕后等待35分钟,使打印浆料中的水分得到充分挥发,打印材料能够很好的粘附于基片上。
重复上述步骤,继续后续各层的打印工作,共打印10层。待电解质打印完毕后将其从3D打印机中取出,置于马弗炉中进行烧结处理。其中所述烧结制度为以0.5℃/分钟的速度升温至400℃并保温60分钟,然后以1℃/分钟的速度升温至1400 ℃并保温120分钟,最后以1℃/分钟的速度降至室温即可得到所述固体氧化物燃料电池电解质膜(电解质总厚度为8微米,每层厚度为0.8微米)。
实施例4
本实施例提供一种固体氧化物燃料电池电解质膜的制备方法,其步骤与实施例3中的基本一致,不同的是:1、烧结参数不同,具体为:以0.5℃/分钟的速度升温至400℃并保温240分钟,然后以2℃/分钟的速度升温至1400℃并保温480分钟,最后以2℃/分钟的速度降至室温即可得到所述固体氧化物燃料电池电解质膜;2、球磨参数不同,具体为:先在350转/分钟的转速下球磨180分钟,然后将转速提升至600转/分钟球磨120分钟,最后在350转/分钟的转速下球磨180分钟以获得电解质浆料。
实施例5
本实施例提供一种固体氧化物燃料电池电解质膜的制备方法,其步骤与实施例3中的基本一致,不同的是:采用的氧离子导体相的材质为SDC10;电解质总厚度为10微米,每层厚度为0.5微米,共20层;烧结参数不同,具体为:以1.5℃/分钟的速度升温至600℃并保温240分钟,然后以2℃/分钟的速度升温至1300℃并保温480分钟,最后以2℃/分钟的速度降至室温即可得到所述固体氧化物燃料电池电解质膜;球磨参数不同,具体为:先在300转/分钟的速度下球磨60分钟,然后将转速提升至550转/分钟下球磨200分钟,最后在300转/分钟的速度下球磨60分钟以获得对应的浆料;聚乙烯醇的浓度为1wt%,平均分子量约为60000,粘合剂的添加量为对应电解质粉体质量的400%;打印温度为30℃,间隔为60分钟;5、阳极板中NiO的含量为50 wt%。
实施例6
本实施例提供一种固体氧化物燃料电池电解质膜的制备方法,其步骤与实施例3中的基本一致,不同的是:采用的氧离子导体相的材质为SDC20,电解质总厚度为10微米,每层厚度为1微米,共10层;烧结参数不同,具体为:以1℃/分钟的速度升温至500℃并保温200分钟,然后以1.5℃/分钟的速度升温至1500℃并保温400分钟,最后以1.5℃/分钟的速度降至室温即可得到所述固体氧化物燃料电池电解质膜;聚乙烯醇的浓度为5wt%,平均分子量约为10000,粘合剂的添加量为对应电解质粉体质量的300%;打印温度为70℃,间隔为10分钟;阳极板中NiO的含量为70 wt%。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (18)

  1. 一种固体氧化物燃料电池电解质膜,其特征在于:所述电解质膜包括交替设置的第一电解质单元和第二电解质单元,所述第一电解质单元由氧离子导体相构成,所述第二电解质单元由质子导体相构成。
  2. 据权利要求1所述的固体氧化物燃料电池电解质膜,其特征在于:所述第一电解质单元和所述第二电解质单元分别有多个。
  3. 根据权利要求1或2所述的固体氧化物燃料电池电解质膜,其特征在于:所述第一电解质单元与所述第二电解质单元均为长条状,且其长度延伸方向与所述电解质膜的厚度方向垂直。
  4. 根据权利要求3所述的固体氧化物燃料电池电解质膜,其特征在于:所述第一电解质单元的长度等于电解质膜的一条边的宽度,所述第一电解质单元的厚度和所述第二电解质单元的厚度均等于电解质膜的厚度。
  5. 根据权利要求2所述的固体氧化物燃料电池电解质膜,其特征在于:所述多个第一电解质单元和所述多个第二电解质单元沿着所述的电解质膜所在平面的长度方向和宽度方向交替排列。
  6. 根据权利要求1或5所述的固体氧化物燃料电池电解质膜,其特征在于:所述第一电解质单元和所述第二电解质单元的厚度等于所述电解质膜的厚度,所述第一电解质单元的长和宽均为1~30微米,所述第二电解质单元的长和宽均为1~30微米。
  7. 根据权利要求2所述的固体氧化物燃料电池电解质膜,其特征在于:多个所述第一电解质单元的大小、形状相同或不同;多个所述第二电解质单元的大小相同或不同,所述第一电解质单元与所述第二电解质单元的大小、形状相同或不同。
  8. 根据权利要求1所述的固体氧化物燃料电池电解质膜,其特征在于:所述电解质膜通过3D打印机打印而成。
  9. 根据权利要求1所述的固体氧化物燃料电池电解质膜,其特征在于:所述质子导体相为BaZr0.1Ce0.7Y0.2O3-δ,所述氧离子导体相为Gd0.1Ce0.9O1.95(GDC10)、Gd0.2Ce0.8O1.9(GDC20)、Sm0.1 Ce0.9O1.95(SDC10)和Sm0.2Ce0.8O1.9(SDC20)中的至少一种。
  10. 一种权利要求1至9中任一所述固体氧化物燃料电池电解质膜的制备方法,其特征在于,它包括以下步骤:
    (a)根据要制备的电解质膜,配制相应的氧离子导体相浆料和质子导体相浆料,以及制定相应的打印程序;
    (b)利用3D打印机在基片上先后打印出一层氧离子导体相和质子导体相;
    (c)重复步骤(b),直至获得需要的厚度,停止打印,取出,进行烧结处理,即得所述电解质膜。
  11. 根据权利要求10所述固体氧化物燃料电池电解质膜的制备方法,其特征在于:所述基片为经过烧结处理的GDC10-NiO、GDC20-NiO、SDC10-NiO和SDC20-NiO复合阳极板中的一种,且所述复合阳极板中NiO的含量为50~70 wt%。
  12. 根据权利要求10所述固体氧化物燃料电池电解质膜的制备方法,其特征在于:步骤(b)中,进行打印时,3D打印机的打印温度设为30~70℃,相邻两次打印之间的间隔设为10~60分钟。
  13. 根据权利要求10所述固体氧化物燃料电池电解质膜的制备方法,其特征在于,步骤(a)具体为:将氧离子导体相粉体、质子导体相粉体分别与粘结剂混合后置于球磨罐中进行球磨处理,球磨的方法如下为:首先在250~350转/分钟的速度下球磨30~180分钟,然后将转速提升至500~600转/分钟下球磨120~480分钟,最后在250~350转/分钟的速度下球磨30~180分钟。
  14. 根据权利要求13所述固体氧化物燃料电池电解质膜的制备方法,其特征在于:所述粘结剂为聚乙烯醇的水溶液,其添加量为氧离子导体相粉体或质子导体相粉体质量的200%~400%;所述聚乙烯醇的数均分子量为10000~60000,其在所述水溶液中的含量为1~5 wt%。
  15. 根据权利要求13或14所述固体氧化物燃料电池电解质膜的制备方法,其特征在于:通过控制步骤(a)所制备的浆料的粘稠度来控制每次打印的厚度为0.5~1微米。
  16. 根据权利要求13所述固体氧化物燃料电池电解质膜的制备方法,其特征在于:所述氧离子导体相粉体和所述质子导体相粉体的一次颗粒直径小于100纳米。
  17. 根据权利要求10所述固体氧化物燃料电池电解质膜的制备方法,其特征在于,步骤(c)中,所述烧结处理的方法为:以0.5~1.5℃/分钟的速度升温至400~600℃并保温60-240分钟,然后以1~2℃/分钟的速度升温至1300~1500℃并保温120~480分钟,最后以1~2℃/分钟的速度降至室温。
  18. 一种固体氧化物燃料电池,其特征在于:含有如权利要求1至9中任一项权利要求所述的固体氧化物燃料电池电解质膜。
PCT/CN2015/098187 2015-12-03 2015-12-22 一种固体氧化物燃料电池电解质膜及其制备方法和固体氧化物燃料电池 WO2017092086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510874668.3A CN105428679B (zh) 2015-12-03 2015-12-03 一种固体氧化物燃料电池电解质膜及其制备方法和固体氧化物燃料电池
CN201510874668.3 2015-12-03

Publications (1)

Publication Number Publication Date
WO2017092086A1 true WO2017092086A1 (zh) 2017-06-08

Family

ID=55506721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098187 WO2017092086A1 (zh) 2015-12-03 2015-12-22 一种固体氧化物燃料电池电解质膜及其制备方法和固体氧化物燃料电池

Country Status (2)

Country Link
CN (1) CN105428679B (zh)
WO (1) WO2017092086A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967689B (zh) * 2016-05-04 2019-04-02 内蒙古科技大学 一种电解质薄膜材料的制备方法
CN112886042A (zh) * 2021-01-29 2021-06-01 郑州大学 一种电解质结构及用其提高固体氧化物燃料电池长期稳定性的方法
CN117954663A (zh) * 2024-03-26 2024-04-30 成都华盛氢能工程技术中心(有限合伙) 一种固体氧化物燃料电池电解质膜及固体氧化物燃料电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307546A (ja) * 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd イオン伝導体
CN102024973A (zh) * 2010-11-16 2011-04-20 成都振中电气有限公司 固体氧化物燃料电池
CN102683722A (zh) * 2012-05-25 2012-09-19 南京工业大学 一种固体氧化物燃料电池复合阴极及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3843766B2 (ja) * 2000-07-04 2006-11-08 日産自動車株式会社 固体電解質型燃料電池
JP4946819B2 (ja) * 2007-11-20 2012-06-06 株式会社豊田自動織機 電気化学デバイスおよび排気ガスの浄化装置
EP2237357B1 (en) * 2009-03-23 2013-10-23 Sumitomo Metal Mining Co., Ltd. Ionic electrolyte membrane structure, method for its production and solid oxide fuel cell making use of ionic electrolyte membrane structure
CN105188893B (zh) * 2013-04-26 2018-11-20 科廷科技大学 带通道的制品及其制造方法
CN103811788A (zh) * 2014-02-27 2014-05-21 盐城工学院 中低温固体氧化物燃料电池的制备方法
CN205231183U (zh) * 2015-12-03 2016-05-11 苏州攀特电陶科技股份有限公司 一种固体氧化物燃料电池电解质膜及固体氧化物燃料电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307546A (ja) * 2000-02-14 2001-11-02 Matsushita Electric Ind Co Ltd イオン伝導体
CN102024973A (zh) * 2010-11-16 2011-04-20 成都振中电气有限公司 固体氧化物燃料电池
CN102683722A (zh) * 2012-05-25 2012-09-19 南京工业大学 一种固体氧化物燃料电池复合阴极及其制备方法

Also Published As

Publication number Publication date
CN105428679B (zh) 2018-07-06
CN105428679A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2016080681A1 (ko) 고체 산화물 연료 전지의 제조방법
TWI700856B (zh) 形成電解質之方法(二)
JP2007510255A (ja) 固体酸化物燃料電池の製造
WO2017092086A1 (zh) 一种固体氧化物燃料电池电解质膜及其制备方法和固体氧化物燃料电池
WO2014101330A1 (zh) 一种静电电能储存装置及其制备方法
WO2017092085A1 (zh) 一种固体氧化物燃料电池电极及其制备方法和基于其的固体氧化物燃料电池
CN109056194B (zh) 一种柔性锂镧钛氧陶瓷纳米纤维膜材料及其制备方法
WO2015016599A1 (ko) 고체 산화물 연료전지 및 이의 제조방법
WO2022152093A1 (zh) 一种制备NiO/磷灰石型硅酸镧亚微-纳米多孔阳极功能层的方法
CN103985888B (zh) 陶瓷膜燃料电池用连接材料薄膜和电解质薄膜的制备方法
JPH0997620A (ja) 溶融炭酸塩型燃料電池および溶融炭酸塩型燃料電池電解質板用保持材の製造方法
Mahata et al. Microstructural and chemical changes after high temperature electrolysis in solid oxide electrolysis cell
CN112448010A (zh) 一种多孔性次毫米层与高致密性复合微米层连接的多层结构复合块材的制备方法
WO2017155188A1 (ko) 고체산화물 연료전지 및 그 제조방법
CN109037698A (zh) 一种可储能的高温固态氧化物燃料电池
JP2004039573A (ja) 低温作動固体酸化物形燃料電池用シール材
JP2936001B2 (ja) 高温型燃料電池およびその製造方法
WO2015152494A1 (ko) 산소 분리막
CN110120508A (zh) 一种全固态电池及其制备方法
KR101081168B1 (ko) 나노 CeScSZ 분말 제조방법 및 고체산화물 연료전지용 전해질 및 단위전지의 제조방법
CN109346752B (zh) 一种电解质支撑的固体氧化物燃料电池锆基电解质薄膜的制备方法
CN106835191A (zh) 一种低温质子导体固体氧化物电解池
JP3547062B2 (ja) 燃料電池用封止材料
US20050019637A1 (en) Method for manufacturing fuel cell components by low temperature processing
KR20190138999A (ko) 연료전지용 적층체 및 그를 포함하는 양극 복합체 및 그를 포함하는 용융탄산염 연료전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909600

Country of ref document: EP

Kind code of ref document: A1