WO2014101330A1 - 一种静电电能储存装置及其制备方法 - Google Patents

一种静电电能储存装置及其制备方法 Download PDF

Info

Publication number
WO2014101330A1
WO2014101330A1 PCT/CN2013/070987 CN2013070987W WO2014101330A1 WO 2014101330 A1 WO2014101330 A1 WO 2014101330A1 CN 2013070987 W CN2013070987 W CN 2013070987W WO 2014101330 A1 WO2014101330 A1 WO 2014101330A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
thin film
storage device
nano
electrostatic energy
Prior art date
Application number
PCT/CN2013/070987
Other languages
English (en)
French (fr)
Inventor
白金
Original Assignee
冯刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 冯刚 filed Critical 冯刚
Publication of WO2014101330A1 publication Critical patent/WO2014101330A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrical energy storage device, and more particularly to an ultra-thin electrostatic electrical energy storage device having high energy density and high power density.
  • the commonly used electric energy storage device is a lithium ion battery
  • the lithium ion battery uses a carbon material as a negative electrode and a lithium-containing compound as a positive electrode.
  • the positive electrode material of the battery When a lithium ion battery is charged, the positive electrode material of the battery generates lithium ions, and the lithium ions move through the electrolyte to the negative electrode.
  • the carbon as the negative electrode has a layered structure, which has many micropores, and lithium ions reaching the negative electrode are embedded in the micropores of the carbon layer. The more lithium ions are embedded, the higher the charging capacity; when the battery is discharged, the lithium ions embedded in the carbon layer of the negative electrode come out and move back to the positive electrode. The more lithium ions return to the positive electrode, the higher the discharge capacity.
  • the power density of lithium ion batteries is only about 1 kW / kg. The smaller power density limits the use of lithium-ion batteries in power batteries.
  • Lithium-ion batteries have an energy density of 120-160 watt-hours/kg, which cannot be fully met in power applications such as electric vehicles.
  • Lithium-ion battery requires a charging time of 2 to 4 hours or more with a charging current of 0.5C to 1C. If charging at a high current of 2C or higher, the charging time can be reduced, but a large current can cause hydrogen and oxygen to be deposited in the electrolyte of the lithium ion battery, and at the same time, high temperature is generated, so that the lithium ion has a safety hazard of explosion. At the same time, large current charging can damage the microstructure of the positive and negative electrodes of the lithium ion battery, reduce the storage capacity, and greatly reduce the service life.
  • the charge and discharge cycle life of a lithium ion battery is about 300 to 500 times, and the service life is short.
  • Lithium-ion batteries are used in temperatures ranging from -20 ° C to 60 ° C. Higher than the temperature range not only reduces energy efficiency, damages the battery, and there is a risk of explosion. When used below the temperature range, battery efficiency and storage capacity are significantly reduced.
  • the electrostatic energy storage device proposed by the present invention comprises at least one electrostatic energy storage unit, wherein the electrostatic energy storage unit
  • the invention comprises two metal thin film electrodes constituting a capacitor, a composite nano insulating film layer attached to the inner side of the metal thin film electrode, and a ceramic nanocrystalline thin film layer between the composite nano insulating film layers. Static electricity
  • the electrical energy storage units are connected in parallel by a metal nanopowder current collector.
  • the metal thin film electrode is made of nickel, copper, zinc, tin, silver and an alloy thereof, preferably nickel, and has a thickness of 1.0 to 15 ⁇ m, preferably 2.5 ⁇ m;
  • the nano-insulating film layer is made of an organic nano-insulating material having a particle diameter of less than 50 nm and a breakdown voltage of the order of 10 6 to 10 7 V/cm, or an inorganic nano-insulating material, or an organic/inorganic hybrid nano-insulating material, the thickness thereof.
  • the ceramic nanocrystalline film layer is a ferroelectric or non-ferroelectric ceramic nanocrystalline material, and the non-ferroelectric ceramic nanocrystalline material is preferably 0.1 to 0.5 micron.
  • the thickness is from 1 micrometer to 20 micrometers, preferably 6.5 micrometers.
  • the invention also provides a method for preparing an electrostatic electrical energy storage device, comprising the following steps:
  • the metal film electrode is treated by photolithography, composite nano-electrodeposition or vapor deposition to form a nano-fine structure on the surface of the metal film electrode.
  • the surface-modified nano ceramic nanocrystals are hot pressed into a ceramic nanocrystalline thin film layer, or the ceramic nanocrystalline precursor film is formed by a sol-gel method, and then fired into a ceramic nanocrystalline thin film layer, or fired by laser scanning sintering. Ceramic nanocrystalline film layer , Then, a ceramic nanocrystalline film layer having an ultrahigh dielectric constant is further attached to the metal thin film by ion sputtering, or electrophoresis, or spin coating, or lift film formation, or screen printing, or inkjet printing. On the electrode, a three-layer structure is formed.
  • steps A to C to form a prefabricated metal film electrode, and lay it on the three-layer structure formed in step D to make static electricity
  • the positive and negative poles of the electric energy storage unit are respectively at both ends;
  • nano-metal conductive powder is overprinted to form a metal nano-powder current collector, and steps A to E are repeated until stacked in parallel to the designed storage capacity or thickness, and hot-pressed in a precision parallel plate vacuum hot press to form an electrostatic energy storage device.
  • the electrostatic induction plate capacitor is formed by using a metal thin film electrode with nano microstructure and a ceramic nanocrystalline film layer with an ultrahigh dielectric constant interposed therebetween to store electrostatic energy. All solid materials and nano-structures can improve this Electrostatic energy storage device The capacitance and the capacitor voltage, so as to obtain a high energy density, while there is only a small displacement current inside, the solid material of the whole solid can withstand high temperature, and there is no liquid temperature limit in the prior art, so that the electric energy storage device Provides high power density output without the risk of explosion.
  • the invention can adopt 1000V voltage for high-speed charging, greatly reducing the charging time, and the energy density which can be provided after charging can reach 500 watt-hour/kg, and the power density can reach 150 kW/kg.
  • the discharge rate is less than 0.5%/30 days, even if it provides a higher instantaneous discharge current, it will not damage the device. It has a wide temperature range and can be used normally at -70 °C ⁇ 200 °C.
  • FIG. 1 is a schematic structural view of an electrostatic energy storage unit of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of an electrostatic energy storage device according to the present invention.
  • Figure 3 is a flow chart of the preparation method of the present invention.
  • An electrostatic energy storage device includes at least one static electricity
  • the electric energy storage unit comprises an ultra-thin electrostatic energy storage unit using a high dielectric constant ceramic nanocrystalline film layer and a nano-structured ultra-thin metal film electrode having a large specific surface area, and the static electricity is
  • the electrical energy storage units are stacked in parallel to form an all-solid ceramic nanocrystalline electrostatic energy storage device having high energy density and ultra-high charge-discharge power density.
  • each of the electrostatic energy storage units 1 has a 5-layer structure in which the first and fifth layers have a nano-fine structure.
  • Metal thin film electrode 11, the two metal thin film electrodes 11 constitute a capacitor, the material thereof Conductive metals such as nickel, copper, zinc, tin, silver, etc. may be selected, or may be composed of their alloys. The preferred material is nickel metal.
  • the thickness of the metal film electrode is very thin, and the thickness ranges from 1.0 to 15 micrometers, preferably 2.5 micrometers.
  • the second layer and the fourth layer are composite nano-insulating film layers 12 attached to the inner side of the metal film electrode, and the composite nano-insulating film layer 12 is made of an organic nano-insulating material or an inorganic nano-insulating material which can select high electric strength.
  • the organic/inorganic hybrid nano-insulating material has a particle size requirement of less than 50 nm, and the breakdown voltage is required to be on the order of 10 6 to 10 7 V/cm, and its thickness is 0.1 to 0.5 ⁇ m, and the optimum thickness is 0.25 ⁇ m.
  • the layer is made of a ferroelectric or non-ferroelectric ceramic nanocrystalline material, preferably a non-ferroelectric ceramic nanocrystalline material having a thickness of from 1 micrometer to 20 micrometers, preferably 6.5 micrometers.
  • a plurality of electrostatic energy storage units 1 can be superposed to form a battery capacity that meets a predetermined design.
  • Electrostatic energy storage device between these electrostatic energy storage units The metal nano-powder current collector 2 is connected in parallel to form a structure in which two layers of the composite nano-insulating film layer sandwich a layer of the ceramic nano-crystalline film layer between any two adjacent metal film electrodes.
  • two static electricity are used.
  • the electric energy storage unit is superimposed to indicate the connection relationship between the electrostatic energy storage units, and the positive electrode of the two electrostatic energy storage units is connected with the positive electrode and the negative electrode and the negative electrode are connected by using the metal nanopowder current collector, and two static electricity are connected.
  • a composite nano-insulating film layer is also attached to the outer side of the two metal film electrodes adjacent to the electrical energy storage unit, and then a ceramic nanocrystalline film layer is disposed between them.
  • the method for preparing an electrostatic electrical energy storage device mainly comprises the following steps:
  • the first layer of metal film electrode is processed, mainly by vacuum coating or electrochemical deposition to prepare a metal film electrode, wherein the preferred method is electrochemical deposition;
  • the surface of the metal thin film electrode is treated by photolithography, composite nano-electrodeposition or vapor deposition, so that the surface of the metal thin film electrode forms a nano-fine structure, and the surface area of the metal thin film electrode is increased.
  • the composite nano-particle with high electric strength is used by ion sputtering, or electrophoresis, or spin coating, or lift film formation, or screen printing, or inkjet printing.
  • the insulating film layer is attached to the metal film electrode to form a two-layer structure of the electrostatic energy storage unit, and then the composite nano-insulating film layer at one end of the metal film electrode is removed to expose the conductive surface to form a positive/negative electrode.
  • the third layer is prepared, and the nano-ceramic nano-crystals modified by surface modification are hot-pressed into a ceramic nano-crystalline film layer, or the ceramic nano-crystalline film layer is formed by using a sol-gel method to form a ceramic nanocrystalline film layer, Or by laser scanning sintering to form a ceramic nanocrystalline film layer And then Further attaching a ceramic nanocrystalline film layer having an ultrahigh dielectric constant to the metal thin film electrode by ion sputtering, or electrophoresis, or spin coating, or lift film formation, or screen printing, or inkjet printing The three-layer structure of the electrostatic energy storage unit is formed.
  • the principle of electricity storage according to the present invention is completely different from the principle of storage of a lithium-ion battery, and it utilizes the principle of a plate electrostatic capacitance.
  • the capacity of the plate capacitor is proportional to the area of the opposing plate electrode, inversely proportional to the spacing between the plate electrodes, and proportional to the dielectric constant of the medium.
  • S the relative area
  • is the dielectric constant of the medium
  • d is the spacing between the plate electrodes.
  • the plate capacitor unit of the invention adopts nano ceramic powder with large dielectric constant and electric strength to form a nano film medium, the dielectric constant is on the order of 10 6 , and the spacing between the metal film electrodes reaches a micron level. The capacity of the capacitor is increased.
  • the nano-machining treatment of the metal thin film electrode enables the metal thin film electrode to have a nano-scale nano-porous fine structure or a nano-fleece structure, thereby greatly increasing the specific surface area thereof and further increasing the capacitance of the flat-plate capacitor.
  • a mirrored stainless steel substrate was used to form a nickel metal film on the mirror stainless steel substrate by electrochemical deposition, and the deposition current and deposition time were controlled to control the deposition thickness of the nickel film to 12 ⁇ m.
  • the area of the film is 10 cm * 10 cm, thereby forming a metal thin film electrode;
  • the photolithography method is used to apply a positive photoresist on both sides of the nickel film by using a spin coating film, and a photoresist dot pattern mask layer having a diameter of 1.2 ⁇ m is formed by mask exposure technology.
  • the chemical etching method is used to control the corrosion depth of both sides, so that each surface forms a micro-pit having a diameter of 1.25 ⁇ m and a depth of 3.6 ⁇ m, and a regular fine structure is formed on the surface of the nickel metal film, so that the thin film metal electrode has a huge surface area.
  • the insulating film sol required for the lift film forming method is first prepared.
  • the aluminum oxide nanoparticles having a particle diameter of 20 nm or less are dispersed in a DMF solvent by ultrasonic waves, the composition of the aluminum oxide is kept at 15%, and 1 to 5% of the polyimide is dissolved in a solvent, and the mixture is sufficiently stirred.
  • An insulating film sol is formed after an hour.
  • the prepared nickel metal film having a fine surface structure is immersed in the above insulating sol and slowly pulled, and an ultra-thin insulating film layer is formed on the surface of the nickel metal film as the solvent evaporates.
  • An insulating film having a side of about 5 mm on one side of the surface is removed by a DMF solvent to form a positive/negative electrode of the metal thin film electrode, that is, a current collector conductive electrode region;
  • a ceramic nanocrystalline copper titanate having a dielectric constant of 10 5 is selected as a material of the ceramic nanocrystalline film layer, and the particle size distribution is between 50 and 100 nm by centrifugal separation, and ultrasonically dispersed in ethanol water. Adjust the fluidity with ethylene glycol to have the same surface tension and fluidity as piezoelectric inkjet printers, and make ceramic nanocrystalline inkjet printing inks with high dielectric constant; select particle size between 5nm and 15nm
  • the nano-nickel particles are prepared by the above method to produce an inkjet printing ink containing nano-nickel ions as a material for a metal nano-powder current collector.
  • the surface of the ceramic nanocrystalline film layer of the fourth step is covered with the same metal film electrode, and the conductive electrode region is opposite to the conductive electrode of the metal film electrode on the other side and staggered to form an electrostatic energy storage unit (see the figure). 2);
  • Step 6 Repeat the above five-step process to make the entire electrostatic energy storage device reach 2000 layers, the thickness is between 30mm ⁇ 60mm, put it into the precision hot press, heat it to 950°C, and keep the pressure for 1 hour with 1MPa pressure.
  • a pre-designed electrostatic energy storage device is available.
  • the invention processes a metal thin film electrode with nano microstructure to form a nano film with high electric strength on the surface of the metal thin film electrode, thereby improving the electric strength of the whole capacitor, so that the withstand voltage of the flat capacitor unit is achieved. Kilovolts. Due to the all-solid material structure, the device can be charged and discharged at a high current density at a high speed, the charging time is greatly shortened, and the discharge power density is greatly improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种静电电能储存装置及其制备方法,包括至少一个静电电能储存单元,每个静电电能储存单元设有五层结构,包括构成电容的两个金属薄膜电极与其内侧复合纳米绝缘薄膜层,以及复合纳米绝缘薄膜层之间的陶瓷纳米晶薄膜层。

Description

一种静电电能储存装置及其制备方法
技术领域
本发明涉及电能储存装置,尤其涉及一种 高能量密度和高功率密度的超薄 静电电能储存装置 。
背景技术
目前常用的电能储存装置为锂离子电池,锂离子电池以炭材料作负极,以含锂的化合物作正极。当对锂离子电池进行充电时,电池的正极材料产生锂离子,锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子嵌入到碳层的微孔中。嵌入的锂离子越多,充电容量越高;当对电池进行放电时,嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。虽然业界对锂离子电池不断改进,使其性能和安全性等方面获得了较大的提高,但受其基本结构和充放电原理的限制,锂离子电池依旧存在以下几个主要缺陷:
1 、锂离子的功率密度较小
受限于锂离子电池的电极蓄电原理及电解液结构,锂离子电池的功率密度仅为1千瓦/公斤左右。较小的功率密度限制了锂离子电池在动力电池方面的应用。
2 、锂离子的能量密度较小
锂离子电池的能量密度为120-160瓦小时/公斤,在电动车等动力应用方面不能完全满足需求。
3 、充电时间较长
锂离子电池以0.5C~1C的充电电流,需要2~4小时以上的充电时间。若以2C以上高倍电流充电,虽然可以减少充电时间,但是大电流能够使锂离子电池的电解液析出氢气和氧气,同时产生高温,使锂离子存在爆炸的安全隐患。同时大电流充电会损坏锂离子电池的正负电极的微结构,降低蓄电容量,并较大幅度地减少使用寿命。
4 、循环寿命较短
深度放电情况下,锂离子电池的充放电循环寿命在300~500次左右,使用寿命较短。
5 、使用温度范围有限
锂离子电池的使用温度范围是-20℃~60℃,高于温度范围不仅降低能量效率,损坏电池,且有爆炸的危险。而低于温度范围使用,则显著降低电池效率和蓄电量。
因此,如何提供一种高能量密度和高功率密度的新型 静电电能储存装置是业界 亟待解决的技术问题。
发明内容
本发明为了解决目前的锂电池能量密度、功率密度较小,使用寿命短等缺点,提出一种新型的全固体的 静电电能储存装置及其制备方法。
本发明提出的静电电能储存装置包括至少一个静电 电能储存单元 ,其中静电 电能储存单元 包括构成电容的两个金属薄膜电极、附着在金属薄膜电极内侧的 复合纳米绝缘薄膜层、以及复合纳米绝缘薄膜层 之间的一 陶瓷纳米晶薄膜层。各 静电 电能储存单元之间通过金属纳米粉集流体并联。
在本技术方案中, 所述 金属薄膜电极的材质为镍、铜、锌、锡、银及其合金的一种,优选镍材质,其厚度为1.0~15微米,优选2.5微米; 所述的 复合纳米绝缘薄膜层的材质采用粒径小于50纳米、击穿电压为106~107V/cm数量级的有机纳米绝缘材料、或无机纳米绝缘材料、或有机/无机杂化纳米绝缘材料,其厚度为0.1~0.5微米,最佳厚度为0.25微米; 所述的 陶瓷纳米晶薄膜层采用铁电体、或非铁电体的陶瓷纳米晶材料,优选材质为非铁电体的陶瓷纳米晶材料,其厚度为1微米~20微米,优选6.5微米。
本发明还提出一种 静电电能储存装置的制备方法,包括如下步骤:
A. 采用真空镀膜、或电化学沉积法制作金属薄膜电极,优选为电化学沉积法;
B. 再采用光刻、或复合纳米电化学沉积法、或气相沉积法对金属薄膜电极处理,使金属薄膜电极表面形成纳米微细结构。
C. 采用离子溅射、或电泳、或旋转涂膜、或提拉成膜、或丝网印刷、或喷墨打印方法将具有高抗电强度的复合纳米绝缘薄膜层附着在所述金属薄膜电极上,然后除去金属薄膜电极一端的复合纳米绝缘薄膜层,露出导电表面,形成正/负极。
D. 采用表面改性修饰的纳米陶瓷纳米晶热压成陶瓷纳米晶薄膜层、或采用溶胶凝胶法用陶瓷纳米晶前驱体拉膜后烧制成陶瓷纳米晶薄膜层、或采用激光扫描烧结法烧制成陶瓷纳米晶薄膜层 , 然后采用离子溅射、或电泳、或旋转涂膜、或提拉成膜、或丝网印刷、或喷墨打印方法将具有超高介电常数的陶瓷纳米晶薄膜层进一步附着在所述金属薄膜电极上,形成三层结构。
E. 重复步骤A至C形成预制金属薄膜电极,并平铺于步骤D所形成的三层结构之上,使 静电 电能储存单元的正负极分别处于两端;
F .在正、负极 套印纳米金属导电粉形成金属纳米粉集流体,重复步骤A至E,直至并联堆叠到设计蓄电容量或厚度,在精密平行板真空热压机中热压,最终形成 静电电能储存装置 。
本发明依据静电平行板感应电容原理,利用具有纳米微结构的金属薄膜电极与其中间夹嵌的具有超高介电常数的陶瓷纳米晶薄膜层形成静电感应平板电容来储存静电能量的。全固体的材质和纳米微结构既能够提高该 静电电能储存装置 的电容量和电容电压,从而获得高的能量密度,同时其内部只存在较小的位移电流,全固体的材质能够耐高温,不存在现有技术中的液相温度限制,使得本电能存储装置能够提供大的功率密度输出,且无爆炸危险。与现有技术相比,本发明可采用1000V的电压进行高速充电,极大地减少了充电时间,充电后能够提供的能量密度可达到500瓦小时/公斤,功率密度可达到150千瓦/公斤,自放电率小于0.5%/30天,即便提供较高的瞬时放电电流也不会损坏本装置,使用温度范围较广泛,可以在-70℃~200℃下正常使用。
附图说明
图1为本发明静电 电能储存单元 的结构示意图;
图2为本发明静电 电能储存装置 的一实施例结构示意图;
图3为本发明制备方法的流程图。
具体实施方式
本发明一实施例提出的 静电电能储存装置,包括至少一个静电 电能储存单元,利用高介电常数的陶瓷纳米晶薄膜层和具有巨大比表面积的纳米微结构的超薄金属薄膜电极组成超薄的 静电 电能储存单元,并将此 静电 电能储存单元并联堆叠组合成具有高能量密度和超高充放电功率密度的全固体的陶瓷纳米晶静电电能储存装置。
如图1所示,每一个 静电 电能储存单元1都有5层结构,其中第一、第五层为具有纳米微细结构的 金属薄膜电极11,这两个金属薄膜电极11构成一电容,其材质 可选择镍、铜、锌、锡、银等导电金属,也可以由他们的合金构成,优选的材质镍金属,金属薄膜电极的厚度非常薄,厚度范围为1.0~15微米,优选2.5微米。
第二层和第四层为附着在金属薄膜电极内侧的 复合纳米绝缘薄膜层12,复合纳米绝缘薄膜层12的材质采用可选择高抗电强度的有机纳米绝缘材料或无机纳米绝缘材料,也可采用有机\无机杂化纳米绝缘材料,其粒径要求小于50纳米,其击穿电压要求在106~107V/cm数量级,它的厚度为0.1~0.5微米,最佳厚度为0.25微米。
最后是夹在中间的第三层,为 一 陶瓷纳米晶薄膜层13。该层采用铁电体、或非铁电体的陶瓷纳米晶材料,优选材质为非铁电体的陶瓷纳米晶材料,其厚度为1微米~20微米,优选6.5微米。
如图2所示,根据实际需要,可以将多个 静电 电能储存单元1叠加形成一符合预定设计的蓄电池容量的 静电电能储存装置,这些静电电能储存单元之间 通过金属纳米粉集流体2进行并联,形成任意相邻的两个金属薄膜电极之间都是两层复合纳米绝缘薄膜层夹着一层陶瓷纳米晶薄膜层的结构。在本实施例中,采用两个 静电 电能储存单元进行叠加来示意静电电能储存单元之间的连接关系,使用金属纳米粉集流体将两个静电电能储存单元的正极与正极相连接、负极与负极相连接,两个 静电 电能储存单元相邻的两个金属薄膜电极的外侧也附着着复合纳米绝缘薄膜层,然后它们之间设有一层陶瓷纳米晶薄膜层。
如图3所示,本发明提出的 静电电能储存装置的制备方法,主要包括以下的步骤:
A. 首先对第一层金属薄膜电极进行加工,主要是采用真空镀膜、或电化学沉积两种方法来制作金属薄膜电极,其中优选的方法为电化学沉积法;
B. 然后再对金属薄膜电极的表面采用光刻、或复合纳米电化学沉积法、或气相沉积法进行处理,使金属薄膜电极表面形成纳米微细结构,增加金属薄膜电极的表面积。
C. 第一层的金属薄膜电极加工好后,再采用离子溅射、或电泳、或旋转涂膜、或提拉成膜、或丝网印刷、或喷墨打印方法将具有高抗电强度的复合纳米绝缘薄膜层附着在金属薄膜电极上,形成静电电能储存单元的两层结构,然后除去金属薄膜电极一端的复合纳米绝缘薄膜层,露出导电表面,形成正/负极。
D. 接下来制作第三层,采用表面改性修饰的纳米陶瓷纳米晶热压成陶瓷纳米晶薄膜层、或采用溶胶凝胶法用陶瓷纳米晶前驱体拉膜后烧制成陶瓷纳米晶薄膜层、或采用激光扫描烧结法烧制成陶瓷纳米晶薄膜层 ,然后 采用离子溅射、或电泳、或旋转涂膜、或提拉成膜、或丝网印刷、或喷墨打印方法将具有超高介电常数的陶瓷纳米晶薄膜层进一步附着在所述金属薄膜电极上,形成静电电能储存单元的三层结构。
E. 重复步骤A至C制作静电电能储存单元的第四、第五层,并平铺于步骤D所形成的三层结构之上,同时,要注意使 静电 电能储存单元的正负极分别处于两端,这样静电电能储存单元就制作完成了。
当多个 静电电能储存单元进行叠加时,还可以采用下列的步骤:
F. 在 静电电能储存单元的 正、负极 套印纳米金属导电粉,形成金属纳米粉集流体,然后通过重复步骤A至E将 静电 电能储存单元并联堆叠,直至堆叠到设定的蓄电容量或厚度,在精密平行板真空热压机中热压,最终形成 静电电能储存装置 。
本发明所涉及的蓄电原理与锂电子电池的蓄电原理完全不同,它利用的是平板静电电容原理。平板电容的容量与相对的平板电极的面积成正比,与平板电极间的间距成反比,与介质的介电常数成正比,其电容容量公式如下:C = Sεε0/d,式中C是电容容量,S是相对面积,是ε0真空介电常数,ε是介质的介电常数,d为平板电极间的间距。
本发明所涉及的平板电容单元选用具有巨大介电常数和抗电强度的纳米陶瓷粉末形成纳米薄膜介质,介电常数在106数量级,并使金属薄膜电极间的间距达到微米级,较大幅度地提高了电容的容量。同时,本发明通过对金属薄膜电极的纳米微加工处理,使金属薄膜电极具有纳米级的纳米半孔微细结构或纳米绒毛结构,从而大幅提高其比表面面积,进一步提高平板电容的电容量。平板电容的蓄能公式如下:E=1/2CV2,式中E是平板电容储存的能量,C是平板电容的电容量,V是电容电极间的电压。
下面将详细描述采用本发明上述 制备方法的一个具体实施例。
第一步,以镜面不锈钢做衬底,采用电化学沉积法,在镜面不锈钢衬底上制作一层镍金属薄膜,并控制沉积电流和沉积时间,将镍膜的沉积厚度控制为12微米,镍膜的面积为10cm*10cm,从而形成金属薄膜电极;
第二步,用光刻法进行处理,在镍膜的两面采用旋转涂膜的方式涂覆正性光刻胶,利用掩膜曝光技术,制作直径为1.2微米的光阻圆点图案掩膜层,并采用化学腐蚀的方法控制两面腐蚀深度,使每面形成直径1.25微米,深度3.6微米的微坑,在镍金属薄膜的表面形成有规律的微细结构,从而使薄膜金属电极具有巨大的表面面积;
第三步,先制作提拉成膜法所需要的绝缘膜溶胶。将粒径在20纳米以下的三氧化二铝纳米粒子用超声波分散在DMF溶剂中,保持三氧化二铝的成分在15%,并在溶剂中溶解1~5%的聚亚酰胺,充分搅拌2小时后形成绝缘膜溶胶。将制作好的,带有微细表面结构的镍金属薄膜浸入上述绝缘溶胶,并缓慢提拉,随着溶剂的挥发,在镍金属薄膜表面形成超薄的绝缘膜层。用DMF溶剂擦除表面一边约5mm边距以内的绝缘薄膜,形成金属薄膜电极的正/负极,即集流体导电电极区;
第四步,选择具有105数量级介电常数的陶瓷纳米晶钛酸铜钙作为陶瓷纳米晶薄膜层的材料,采用离心分选使其粒径分布在50~100nm间,超声分散在乙醇水中,用乙二醇调整其流动性,使其具有与压电式喷墨打印机相同的表面张力和流动性,制成含有高介电常数的陶瓷纳米晶喷墨打印墨水;选择粒径在5nm~15nm的纳米镍粒子,采用以上的方法,制成含有纳米镍离子的喷墨打印的墨水,作为金属纳米粉集流体的材料。将第三步制得的金属薄膜电极固定在有恒温加热功能的平板上,保持平板的温度在75℃,使用压电式平板喷墨打印机将陶瓷纳米晶喷附在金属薄膜电极上,并将纳米镍离子喷附在导电电极区域,其厚度都控制在10~20微米,形成金属纳米粉集流体;
第五步,在第四步的陶瓷纳米晶薄膜层表面覆盖同样的金属薄膜电极,使其导电电极区域与另一侧的金属薄膜电极的导电电极相对并错开,形成静电电能储存单元(参见图2);
第六步:重复上述五步过程,使整个静电电能储存装置达到2000层,厚度在30mm~60mm之间,放入精密热压机中,加热到950℃,以1MPa的压强保温保压2小时,即可得到预先设计的静电电能储存装置。
本发明通过对具有纳米微结构的金属薄膜电极进行处理,在金属薄膜电极的表面形成一层具有高抗电强度的纳米薄膜,从而提高整个电容的抗电强度,使得平板电容单元的耐压达到千伏级。由于具有全固体的材质结构,使得此装置的能够以高电流密度高速充放电,极大地缩短了充电时间,并使放电功率密度获得极大地提高。
以上具体实施例仅用以举例说明本发明的结构,本领域的普通技术人员在本发明的构思下可以做出多种变形和变化,这些变形和变化均包括在本发明的保护范围之内。

Claims (10)

  1. 一种 静电电能储存装置,其特征在于:包括至少一个静电 电能储存单元 ,所述静电 电能储存单元 包括构成电容的两个金属薄膜电极、附着在金属薄膜电极内侧的 复合纳米绝缘薄膜层、以及复合纳米绝缘薄膜层 之间的一 陶瓷纳米晶薄膜层。
  2. 如权利要求1所述的静电电能储存装置,其特征在于:所述静电 电能储存单元之间通过金属纳米粉集流体并联。
  3. 如权利要求1所述的静电电能储存装置,其特征在于:所述 金属薄膜电极的材质为镍、铜、锌、锡、银及其合金的一种,优选镍材质。
  4. 如权利要求1所述的静电电能储存装置,其特征在于:所述 金属薄膜电极的厚度为1.0~15微米,优选2.5微米。
  5. 如权利要求1所述的静电电能储存装置,其特征在于:所述的 复合纳米绝缘薄膜层的材质采用粒径小于50纳米、击穿电压为106~107V/cm数量级的有机纳米绝缘材料、或无机纳米绝缘材料、或有机/无机杂化纳米绝缘材料。
  6. 如权利要求1所述的静电电能储存装置,其特征在于:所述的 复合纳米绝缘薄膜层的厚度为0.1~0.5微米,最佳厚度为0.25微米。
  7. 如权利要求1所述的静电电能储存装置,其特征在于:所述的 陶瓷纳米晶薄膜层采用铁电体、或非铁电体的陶瓷纳米晶材料,优选材质为非铁电体的陶瓷纳米晶材料。
  8. 如权利要求1所述的静电电能储存装置,其特征在于:所述的 陶瓷纳米晶薄膜层的厚度为1微米~20微米,优选6.5微米。
  9. 一种 静电电能储存装置的制备方法,其特征在于包括如下步骤:
    A. 采用真空镀膜、或电化学沉积法制作金属薄膜电极,优选为电化学沉积法;
    B. 再采用光刻、或复合纳米电化学沉积法、或气相沉积法对金属薄膜电极处理,使金属薄膜电极表面形成纳米微细结构。
    C. 采用离子溅射、或电泳、或旋转涂膜、或提拉成膜、或丝网印刷、或喷墨打印方法将具有高抗电强度的复合纳米绝缘薄膜层附着在所述金属薄膜电极上,然后除去金属薄膜电极一端的复合纳米绝缘薄膜层,露出导电表面,形成正/负极。
    D. 采用表面改性修饰的纳米陶瓷纳米晶热压成陶瓷纳米晶薄膜层、或采用溶胶凝胶法用陶瓷纳米晶前驱体拉膜后烧制成陶瓷纳米晶薄膜层、或采用激光扫描烧结法烧制成陶瓷纳米晶薄膜层 , 然后采用离子溅射、或电泳、或旋转涂膜、或丝网印刷、或喷墨打印方法将具有超高介电常数的陶瓷纳米晶薄膜层进一步附着在所述金属薄膜电极上,形成三层结构。
    E. 重复步骤A至C形成预制金属薄膜电极,并平铺于步骤D所形成的三层结构之上,使 静电 电能储存单元的正负极分别处于两端。
  10. 如权利要求9所述的 静电电能储存装置的制备方法,其特征在于,还包括步骤F:在正、负极
    套印纳米金属导电粉形成金属纳米粉集流体,重复步骤A至E,将 静电 电能储存单元并联堆叠,直至堆叠到设定的蓄电容量或厚度,在精密平行板真空热压机中热压,最终形成 静电电能储存装置 。
PCT/CN2013/070987 2012-12-28 2013-01-25 一种静电电能储存装置及其制备方法 WO2014101330A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210581088.1A CN103000370B (zh) 2012-12-28 2012-12-28 一种静电电能储存装置及其制备方法
CN201210581088.1 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014101330A1 true WO2014101330A1 (zh) 2014-07-03

Family

ID=47928828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070987 WO2014101330A1 (zh) 2012-12-28 2013-01-25 一种静电电能储存装置及其制备方法

Country Status (3)

Country Link
US (2) US9728812B2 (zh)
CN (1) CN103000370B (zh)
WO (1) WO2014101330A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347433B2 (en) 2009-04-13 2019-07-09 Blue Horizon Innovations, Llc. Advanced dielectric energy storage device and method of fabrication
TWI530973B (zh) * 2013-08-02 2016-04-21 Murata Manufacturing Co Laminated ceramic capacitor and laminated ceramic capacitor manufacturing method
CN104465478B (zh) * 2014-12-22 2017-01-25 北京中科信电子装备有限公司 一种静电吸盘的加工方法
CN106158364A (zh) * 2015-04-22 2016-11-23 陈锦棠 化学沉积法生产超级储能器的技术
SG10201804270VA (en) * 2016-05-28 2018-07-30 David Frank Advanced dielectric energy storage device and method of fabrication
CN106601478B (zh) * 2017-01-24 2018-08-21 庞业山 一种交替镀膜式电容器及其生产方法
US10650967B2 (en) * 2017-04-20 2020-05-12 L. Pierre de Rochemont Resonant high energy density storage device
US10833146B2 (en) * 2019-03-29 2020-11-10 International Business Machines Corporation Horizontal-trench capacitor
JP7411225B2 (ja) 2020-07-03 2024-01-11 国立研究開発法人産業技術総合研究所 セラミックコンデンサ及びその製造方法
CN113189433A (zh) * 2021-05-28 2021-07-30 南京邮电大学 一种自供能的新型陶瓷储能性能检测装置
CN113959603A (zh) * 2021-10-09 2022-01-21 厦门大学 一种柔性电容式压力传感器及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623174A (zh) * 2012-04-17 2012-08-01 电子科技大学 一种高能量密度电容器的制备方法
CN102709052A (zh) * 2012-06-21 2012-10-03 电子科技大学 一种制造纳米电容器的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587870A (en) * 1992-09-17 1996-12-24 Research Foundation Of State University Of New York Nanocrystalline layer thin film capacitors
EP1251530A3 (en) * 2001-04-16 2004-12-29 Shipley Company LLC Dielectric laminate for a capacitor
JP2004128222A (ja) * 2002-10-02 2004-04-22 Nippon Paint Co Ltd 蓄電素子
US20060176350A1 (en) * 2005-01-14 2006-08-10 Howarth James J Replacement of passive electrical components
CN203150391U (zh) * 2012-12-28 2013-08-21 白金 一种静电电能储存装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623174A (zh) * 2012-04-17 2012-08-01 电子科技大学 一种高能量密度电容器的制备方法
CN102709052A (zh) * 2012-06-21 2012-10-03 电子科技大学 一种制造纳米电容器的方法

Also Published As

Publication number Publication date
CN103000370B (zh) 2016-04-06
CN103000370A (zh) 2013-03-27
US20140185187A1 (en) 2014-07-03
US20160351965A1 (en) 2016-12-01
US9728812B2 (en) 2017-08-08
US10355314B2 (en) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2014101330A1 (zh) 一种静电电能储存装置及其制备方法
US20180019466A1 (en) Negative electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
WO2018024184A1 (zh) 锗/石墨烯/二氧化钛纳米纤维复合材料制备方法及电池
WO2012151880A1 (zh) 石墨烯涂层改性的锂二次电池的电极极片及其制作方法
US20170263939A1 (en) Electrode material and energy storage apparatus
CN104428899A (zh) 固态型二次电池的电极结构
CN108808058B (zh) 一种具有图案化结构的高电压固态薄膜锂电池片
US10269493B2 (en) Modular dense energy ultra cell and process for fabrication
JP2017182945A (ja) 全固体リチウムイオン二次電池
CN108336399A (zh) 固体电解质膜及其制备方法与二次电池及其制备方法
JP2017152147A (ja) 複合活物質二次粒子、積層体グリーンシート、全固体二次電池及びそれらの製造方法
JP2018063850A (ja) 積層体グリーンシート、全固体二次電池及びその製造方法
JP2013149373A (ja) 固体電解質材料、全固体電池および固体電解質材料の製造方法
CN113614947A (zh) 固体电池
WO2017145657A1 (ja) 全固体二次電池、全固体二次電池の製造方法、全固体二次電池用の積層体グリーンシート、全固体二次電池用の集電箔付き積層体グリーンシート及び全固体二次電池用の連続積層体グリーンシート
JP2020126791A (ja) 全固体二次電池
JP2018077989A (ja) 積層体グリーンシートおよび全固体二次電池
JP6554267B2 (ja) 固体イオンキャパシタ
JP6855749B2 (ja) スラリー、積層体グリーンシート、全固体二次電池及びそれらの製造方法
WO2020250981A1 (ja) 固体電池
CN203150391U (zh) 一种静电电能储存装置
JP2018063808A (ja) 積層体グリーンシート、全固体二次電池、並びにこれらの製造方法
US9088020B1 (en) Structures with sacrificial template
JP2017195033A (ja) 全固体二次電池及びその製造方法、並びに積層体グリーンシート
JP6953700B2 (ja) 積層体グリーンシート、連続積層体グリーンシート、全固体二次電池、並びにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.10.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13866919

Country of ref document: EP

Kind code of ref document: A1