WO2017090991A1 - 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법 - Google Patents

벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법 Download PDF

Info

Publication number
WO2017090991A1
WO2017090991A1 PCT/KR2016/013585 KR2016013585W WO2017090991A1 WO 2017090991 A1 WO2017090991 A1 WO 2017090991A1 KR 2016013585 W KR2016013585 W KR 2016013585W WO 2017090991 A1 WO2017090991 A1 WO 2017090991A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
crystalline form
solid
crystalline
Prior art date
Application number
PCT/KR2016/013585
Other languages
English (en)
French (fr)
Inventor
류재춘
박용균
김현규
신동엽
Original Assignee
한림제약(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한림제약(주) filed Critical 한림제약(주)
Priority to CA3001547A priority Critical patent/CA3001547C/en
Priority to EP16868887.7A priority patent/EP3381914B1/en
Priority to JP2018527768A priority patent/JP6768065B2/ja
Priority to DK16868887.7T priority patent/DK3381914T3/da
Priority to US15/779,236 priority patent/US10487074B2/en
Priority to BR112018006850-0A priority patent/BR112018006850B1/pt
Priority to ES16868887T priority patent/ES2861062T3/es
Priority to RU2018122936A priority patent/RU2729074C2/ru
Priority to AU2016361026A priority patent/AU2016361026B2/en
Priority to CN201680067212.9A priority patent/CN108290873A/zh
Priority to PL16868887T priority patent/PL3381914T3/pl
Publication of WO2017090991A1 publication Critical patent/WO2017090991A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention relates to a method for purifying crude benzopyran derivatives. More specifically, the present invention relates to a method for purifying a benzopyran derivative comprising converting an amorphous crude benzopyran derivative to its crystalline form. The present invention also relates to novel crystalline forms of the benzopyran derivatives and methods for their preparation.
  • the benzopyran derivative of the formula (1) has the chemical name (2R, 3R, 4S) -6-amino-4- [N- (4-chlorophenyl) -N- (1H-imidazol-2-ylmethyl) amino]- It is 3-hydroxy-2-methyl-2-dimethoxymethyl-3,4-dihydro-2H-1-benzopyran and is known as a compound having therapeutic effects such as cancer and rheumatoid arthritis. 10-0492252).
  • the compound of Formula 1 may be prepared as a low-molecular-based eye drop, and it is known that the compound may be useful for the prevention and treatment of macular degeneration without direct injection into the affected area, such as protein antibody injection therapy.
  • Korean Patent Publication No. 10-2012-0112162 Korean Patent Publication No. 10-2012-0112162).
  • the method for preparing a compound of Formula 1 includes converting an olefin compound of Formula 4a to an epoxide compound of Formula 3a; Reacting the epoxide compound of formula 3a with (4-chlorophenyl) (1H-imidazol-2-ylmethyl) amine to obtain a compound of formula 2a; And reducing the compound of Formula 2a to obtain a compound of Formula 1.
  • the compound of formula 1 obtained by the above production process is isolated by filtration of the reaction mixture obtained from the reduction process to remove solids, concentrating the filtrate, and then purifying the residue by silica gel column chromatography.
  • the inventors of the present invention performed the analysis of preparing the compound of formula 1 according to the method disclosed in Korean Patent Registration No. 10-0492252, and as a result, the obtained product not only has low purity (97 wt% or less as an anhydride) but also has a high water content ( 1 wt% or more).
  • the compound of Chemical Formula 1 prepared according to the method disclosed in Korean Patent Registration No. 10-0492252 may contain impurities (eg, organic impurities, inorganic impurities, residual solvents, etc.) remaining in the manufacturing process or decomposition products that decompose rapidly.
  • the compound of Formula 1 prepared according to the method disclosed in Korean Patent Registration No. 10-0492252 shows high hygroscopicity, for example, the water content is increased to 2.30% by weight in one day under accelerated conditions, and thus requires strict management.
  • the raw material itself obtained immediately after manufacture also has a high moisture content, and thus is unsuitable for use as a pharmaceutical raw material.
  • the present inventors have developed a method which can fundamentally solve the problem of low purity and high water content (moreover, high hygroscopicity) of a benzopyran derivative (ie, a compound of crude formula 1) obtained by a conventional manufacturing method. Various studies were conducted for this purpose. Surprisingly, the product obtained by the conventional manufacturing method (the method disclosed in Korean Patent Registration No.
  • the amorphous product is obtained in an amorphous form, and the amorphous product is obtained in crystalline form (e.g., a specific XRPD, DSC thermogram, or It has been found that the conversion to Form A) with a TGA thermogram can significantly increase the purity of the product and significantly lower the content of water remaining in the resulting crystalline form to 0.2 wt% or less. In addition, it has been found that the obtained crystalline form does not substantially exhibit hygroscopicity and can fundamentally solve the problem of the amorphous form having high hygroscopicity.
  • an object of the present invention is to provide a crystalline form of the compound of formula (1).
  • Another object of the present invention is to provide a method for preparing a crystalline form of the compound of Formula 1.
  • a process for purifying a compound of formula 1 comprising converting a crude compound of formula 1 to its crystalline form:
  • a crystalline form of the compound of formula 1 is provided.
  • the crystalline form of the compound of Formula 1 may be Form A having an XRPD pattern showing a peak at 12.27, 12.65, 16.07, 19.06 and 26.48 ° 2 ⁇ ⁇ 0.2 ° 2 ⁇ .
  • the step of dissolving the amorphous compound of Formula 1 in an organic solvent Stirring, distilling, cooling, or cooling after distillation of the resulting solution to produce a solid; And it provides a method for producing a crystalline form of the compound of Formula 1 comprising the step of isolating the solid.
  • the step of dissolving the amorphous compound of Formula 1 in an organic solvent Adding the obtained solution to the anti-solvent or adding the anti-solvent to the obtained solution to generate a solid; And it provides a method for producing a crystalline form of the compound of Formula 1 comprising the step of isolating the solid.
  • the compound of the formula (1) obtained by a conventional manufacturing method is obtained in an amorphous form having low purity and high water content (moreover, high hygroscopicity).
  • the purification method according to the present invention can obtain the compound of formula 1 in crystalline form with high purity and low water content.
  • the purification method has the advantage of easy to perform a large scale industrial scale.
  • the crystalline form eg, Form A of the compound of Formula 1 has a specific XRPD, DSC thermogram, or TGA thermogram, and has good initial quality (ie, high purity and low moisture content).
  • Form A of the compound of Formula 1 does not substantially exhibit hygroscopicity, and can be maintained in a form having excellent stability even without heat and acceleration conditions without changing the crystal form. Therefore, Form A of the compound of Formula 1 has an advantage that can be efficiently formulated without reducing the pharmacologically active substance, and can be stored for a long time because it has properties suitable for formulation in a therapeutic dosage form.
  • thermogram (FIG. 1)
  • XRPD spectrum (FIG. 2)
  • DSC of a benzopyran derivative (i.e., a compound of Formula 1) prepared by the method disclosed in Korean Patent Registration No. 10-0492252.
  • the thermogram (FIG. 3) and the TGA thermogram (FIG. 4) are shown respectively.
  • FIG. 5 to 8 show the 1 H-NMR spectrum (FIG. 5), XRPD spectrum (FIG. 6), DSC thermogram (FIG. 7), and TGA thermogram (FIG. 5) of crystalline Form A of the compound of Formula 1 prepared according to the present invention. 8) is shown respectively.
  • the present invention provides a process for purifying a compound of formula 1 comprising converting a crude compound of formula 1 to its crystalline form.
  • the term 'crude compound of formula 1' refers to a compound having a content of compound of formula 1 as anhydride in the product of 97% by weight or less, preferably less than 98% by weight.
  • the compound of Formula 1 may be a compound obtained by the method disclosed in Korean Patent Registration No. 10-0492252.
  • the compound of Formula 1 may be an amorphous compound of Formula 1 obtained by the method disclosed in Korean Patent Registration No. 10-0492252.
  • the compound of the formula (1) obtained by a conventional manufacturing method is obtained in an amorphous form having low purity and high water content (moreover, high hygroscopicity).
  • the purification method according to the present invention can obtain the compound of formula 1 in crystalline form with high purity and low water content.
  • the purification method has the advantage of easy to perform a large scale industrial scale.
  • 'high purity' refers to a compound having a content of the compound of formula 1 as an anhydride in the product of 98% by weight or more, preferably 99% by weight or more.
  • low moisture content refers to a compound having a water content of 0.5% by weight or less, preferably 0.3% by weight or less, more preferably 0.2% by weight or less.
  • the crystalline form may be Form A of the compound of Formula 1, wherein Form A is an X-ray showing characteristic peaks at 12.27, 12.65, 16.07, 19.06 and 26.48 ° 2 ⁇ ⁇ 0.2 ° 2 ⁇ It may have a X-Ray Powder Diffraction (XRPD) pattern.
  • XRPD X-Ray Powder Diffraction
  • Form A of Compound 1 may have an XRPD pattern exhibiting peaks at 12.27, 12.65, 16.07, 16.48, 17.89, 18.89, 19.06, 19.31 and 26.48 ° 2 ⁇ ⁇ 0.2 ° 2 ⁇ . More preferably, Form A of the compound of Formula 1 may have an XRPD pattern of FIG. 6.
  • Form A of the compound of Formula 1 may have a differential scanning calorimetry (DSC) thermogram showing a melting endothermic peak at 240 °C to 250 °C, for example, the DSC thermogram of FIG. Can have.
  • DSC differential scanning calorimetry
  • Form A of the compound of Formula 1 may have a thermogravimetric analysis (TGA) thermogram showing the weight loss at 300 °C to 310 °C, for example, have a TGA thermogram of Figure 8 Can be.
  • TGA thermogravimetric analysis
  • the present invention provides crystalline forms of the compounds of formula
  • Form A of the compound of Formula 1 has excellent initial quality (ie, high purity and low water content).
  • Form A of the compound of Formula 1 does not substantially exhibit hygroscopicity, and can be maintained in a form having excellent stability even without heat and acceleration conditions without changing the crystal form. Therefore, Form A of the compound of Formula 1 has an advantage that can be efficiently formulated without reducing the pharmacologically active substance, and can be stored for a long time because it has properties suitable for formulation in a therapeutic dosage form.
  • moisture content moisture content when stored for 2 weeks-initial moisture content
  • accelerated conditions 40 ° C, 75% RH
  • moisture content change moisture content when stored for 2 weeks—initial moisture content) when stored for 2 weeks under thermal conditions (100 ° C.) is 0.05 wt% or less;
  • compound having a moisture content change moisture content when stored for 2 weeks-initial moisture content) when stored for 2 weeks in a humidity condition (25 ° C, 98% RH) of 0.3 wt% or less, preferably 0.2 wt% or less
  • the crystalline form of the compound of Formula 1 may be Form A, which may have an XRPD pattern showing characteristic peaks at 12.27, 12.65, 16.07, 19.06 and 26.48 ° 2 ⁇ ⁇ 0.2 ° 2 ⁇ .
  • Form A of Compound 1 may have an XRPD pattern exhibiting peaks at 12.27, 12.65, 16.07, 16.48, 17.89, 18.89, 19.06, 19.31 and 26.48 ° 2 ⁇ ⁇ 0.2 ° 2 ⁇ . More preferably, Form A of the compound of Formula 1 may have an XRPD pattern of FIG. 6.
  • Form A of the compound of Formula 1 may have a differential scanning calorimeter (DSC) thermogram showing a melting endothermic peak at 240 °C to 250 °C, for example, may have a DSC thermogram of FIG.
  • DSC differential scanning calorimeter
  • Form A of the compound of Formula 1 may have a thermogravimetric analysis (TGA) thermogram showing a weight loss at 300 °C to 310 °C, for example, may have a TGA thermogram of FIG.
  • TGA thermogravimetric analysis
  • the present invention provides a method for preparing a crystalline form of a compound of Formula 1, which is easy to perform a large-scale process on an industrial scale.
  • the method for preparing the crystalline form of the compound of Formula 1 of the present invention uses an amorphous compound of Formula 1 as a starting material, which can be obtained by the method disclosed in Korean Patent Registration No. 10-0492252 as described above.
  • the present invention comprises the steps of dissolving an amorphous compound of Formula 1 in an organic solvent; Stirring, distilling, cooling, or cooling after distillation of the resulting solution to produce a solid; And it provides a method for producing a crystalline form of the compound of formula (1) comprising the step of isolating the solid (that is, a method using a recrystallization).
  • the organic solvent may be used without limitation as long as it is a solvent capable of dissolving the amorphous compound of Formula 1, and may use one organic solvent or a combination of two or more organic solvents.
  • the organic solvent may be methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, acetonitrile, ethyl acetate, dichloromethane, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide and N-methyl-2-pyrrolidone.
  • the dissolution can be carried out at room temperature to the reflux temperature of the solvent used.
  • the solid production step may be performed by reducing the volume of the solvent through stirring, distillation, cooling, or distillation, followed by cooling. Isolation of the solid (ie crystalline) may be carried out through conventional filtration (eg, vacuum filtration), drying (eg, vacuum drying at about 50 ° C.), and the like.
  • the present invention provides a method for preparing an organic solvent comprising dissolving an amorphous compound of Formula 1 in an organic solvent; Adding the obtained solution to an anti-solvent or adding an anti-solvent to the obtained solution to generate a solid; And it provides a method for producing a crystalline form of the compound of formula (1) comprising the step of isolating the solid (that is, a method using a solvent / anti-solvent).
  • the organic solvent may be used without limitation as long as it is a solvent capable of dissolving the amorphous compound of Formula 1, and may use one organic solvent or a combination of two or more organic solvents.
  • the organic solvent may be methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, acetonitrile, ethyl acetate, dichloromethane, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide and N-methyl-2-pyrrolidone. It may be selected from the group consisting of one or more.
  • the dissolution can be carried out at room temperature to the reflux temperature of the solvent used.
  • the antisolvent may be selected from one or more selected from the group consisting of water, hexane, heptane, diethyl ether, isopropyl ether, di-n-butyl ether, and toluene, but is not limited thereto.
  • Isolation of the solid (ie crystalline) may be carried out through conventional filtration (eg, vacuum filtration), drying (eg, vacuum drying at about 50 ° C.), and the like.
  • the present invention provides a method for preparing an amorphous compound of formula 1, which comprises dissolving an amorphous compound of formula 1 in water; Adding a base to the obtained solution to generate a solid; And it provides a method for producing a crystalline form of the compound of formula (1) comprising the step of isolating the solid (that is, a method using a crystallization by pH control).
  • the acid may be used without limitation so long as it is an acid capable of providing an acidic pH, for example, one or more selected from the group consisting of hydrochloric acid, acetic acid, and formic acid, but is not limited thereto.
  • the base may be used without limitation so long as it is a base capable of neutralizing the acid used to generate a solid, and for example, may be selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium bicarbonate, and sodium carbonate.
  • the present invention is not limited thereto.
  • the acid and / or base may typically be used in the form of an aqueous solution.
  • Form A may have an XRPD pattern exhibiting characteristic peaks at 12.27, 12.65, 16.07, 19.06 and 26.48 ° 2 ⁇ ⁇ 0.2 ° 2 ⁇ .
  • Form A of Compound 1 may have an XRPD pattern exhibiting peaks at 12.27, 12.65, 16.07, 16.48, 17.89, 18.89, 19.06, 19.31 and 26.48 ° 2 ⁇ ⁇ 0.2 ° 2 ⁇ .
  • Form A of the compound of Formula 1 may have an XRPD pattern of FIG. 6.
  • Form A of the compound of Formula 1 may have a differential scanning calorimeter (DSC) thermogram showing a melting endothermic peak at 240 °C to 250 °C, for example, may have a DSC thermogram of FIG.
  • Form A of the compound of Formula 1 may have a thermogravimetric analysis (TGA) thermogram showing a weight loss at 300 °C to 310 °C, for example, may have a TGA thermogram of FIG.
  • DSC differential scanning calorimeter
  • TGA thermogravimetric analysis
  • HPLC high performance liquid chromatography
  • Buffer 0.657 g of ammonium formate was added to a 1 L volumetric flask, dissolved in water to set the mark, and adjusted to pH 5.5 ⁇ 0.2 with diluted formic acid.
  • DSC Differential Scanning Calorimetry
  • Thermogravimetric analysis was performed using a TGA / SDTA 851 thermogravimetric analyzer from Mettler Toledo, and measured under conditions of a start temperature of 25 ° C., an end temperature of 700 ° C., and a temperature increase rate of 10 ° C./min.
  • the XRPD spectrum, DSC thermogram, and TGA thermogram of the obtained product are as shown in Figs.
  • No characteristic peak was observed in the measured X-ray powder diffraction spectrum, indicating the diffraction angle, the distance between crystal faces and the relative intensities, and thus the product obtained was an amorphous compound.
  • the obtained product showed a DSC pattern showing an exothermic peak in the temperature range of about 148 °C to 158 °C, an endothermic peak in the temperature range of about 229 °C to about 239 °C (Fig. 3), about 100 °C to about
  • the TGA pattern showed a characteristic thermogravimetric decrease in the temperature range of 110 ° C. and from about 274 ° C. to about 284 ° C. (FIG. 4).
  • the XRPD spectrum, DSC thermogram, and TGA thermogram of the obtained product are as shown in Figs.
  • the diffraction angle (2 ⁇ ) the distance between the crystal planes (d) and the relative intensity (relative intensity of each peak intensity (I) to the intensity of the largest peak (I 0 ), I / I 0 ) is shown in Table 1 below.
  • the obtained product was found to have crystalline patterns showing characteristic peaks, and thus the obtained product was a crystalline compound.
  • the crystalline compound is referred to as 'crystalline form A of the compound of formula 1.'
  • the compound of formula 1 was purified in the same manner as in Example 1, except that different solvents were used according to the conditions shown in Table 2, and the yield and purity of the obtained product (content of the compound of formula 1 as anhydride in the product) were obtained. Is shown in Table 2 below.
  • the XRPD spectrum of the obtained product showed the substantially same spectrum as FIG. 6, all the obtained products were the compound of crystalline Form A.
  • the compound of formula 1 was purified in the same manner as in Example 9, except that different solvents and antisolvents were used according to the conditions shown in Table 3, and the yield and purity of the obtained product (compound of formula 1 as anhydride in the product) Content) is shown in Table 3 below.
  • Table 3 the yield and purity of the obtained product (compound of formula 1 as anhydride in the product) Content) is shown in Table 3 below.
  • the XRPD spectrum of the obtained product showed the substantially same spectrum as FIG. 6, all the obtained products were the compound of crystalline Form A.
  • the compound of formula 1 was purified in the same manner as in Example 20, except that different solvents and antisolvents were used according to the conditions shown in Table 4, and the yield and purity of the obtained product (compound of formula 1 as anhydride in the product) Content) is shown in Table 4 below.
  • Table 4 the yield and purity of the obtained product (compound of formula 1 as anhydride in the product) Content) is shown in Table 4 below.
  • the XRPD spectrum of the obtained product showed the substantially same spectrum as FIG. 6, all the obtained products were the compound of crystalline Form A.
  • Form A of the compound of Chemical Formula 1 was a white crystalline powder, which was stably maintained without change in appearance, and the moisture increased from 0.16% to 0.18%. And no lead, 0.030% to 0.041%.
  • enantiomers were not detected during the test period, and the purity was suitable for 98.5% to 101.0%, which ranges from 99.43% to 99.34%, and only a decrease in the range of experimental error levels was observed.
  • the same Form A was maintained in XRPD analysis.
  • the amorphous compound of Formula 1 has a higher moisture content of 1.05% than the crystalline form from the beginning, and shows a phenomenon of increasing up to 2.64% over time, a very large hygroscopicity Indicated.
  • the purity of the anhydride was 96.96% as an anhydride, which was out of standard and no change was observed over time. Therefore, it can be seen that the amorphous compound of Formula 1 shows very high hygroscopicity under accelerated conditions for two weeks.
  • the stability test was performed while storing the compound of Formula 1 of Example 1 obtained in Example 1 and the amorphous Formula 1 obtained in Preparation Example under thermal conditions (100 ° C.) for 2 weeks, and the results are shown in Tables 7 and 8. .
  • Form A of the compound of Formula 1 was changed to pale yellow from the first week under thermal conditions (100 ° C.), and the moisture content was 0.11% to 0.16% without significant increase pattern.
  • the flexible material was also maintained at 0.031% to 0.055% without significant increase pattern.
  • enantiomers were not detected during the test period, and the purity was suitable for 98.5% to 101.0%, which ranges from 99.43% to 99.25%, and only a decrease in the range of experimental error levels was observed.
  • the same Form A was maintained in XRPD analysis.
  • the amorphous compound of Formula 1 was higher than the crystalline form of 1.05% of water from the beginning, and showed a phenomenon of decreasing up to 0.34% over time. The appearance was also changed to brown from day 1, which failed to meet the standard, and the lead increased from 0.047% to 1.811%. The enantiomer was not detected during the test period. Purity was out of standard with an initial value of 96.96% as anhydride and dropped to a maximum of 92.34% over time. Therefore, it can be seen that the amorphous compound of Formula 1 is remarkably lowered in terms of properties, flexible substances, and purity, especially under two weeks of thermal conditions.
  • the stability test was carried out while storing the compound of Formula 1 of Example 1 obtained in Example 1 and the amorphous Formula 1 obtained in Preparation Example under humidity conditions (25 ° C., 98% RH) for 2 weeks, and the results are shown in Table 9 and Table 10 shows.
  • the crystalline form A of the compound of Formula 1 was a white crystalline powder, stable without change in appearance, the moisture is 0.16% to 0.29 Although it increased slightly in%, it was not a significant increase pattern, and the lead material remained 0.029% to 0.036% without a significant increase pattern.
  • enantiomers were not detected during the test period, and the purity was suitable for 98.5% to 101.0%, which ranges from 99.43% to 99.32%, and only a decrease in the range of experimental error levels was observed.
  • the same Form A was maintained in XRPD analysis.
  • the amorphous compound of Formula 1 has a high moisture content of 1.05% from the initial stage compared to the crystalline form and shows a phenomenon of increasing up to 3.90% with time, showing high hygroscopicity It was. The appearance was almost unchanged as a white powder, but the tendency to increase from 0.047% to 0.090%. Enantiomers were not detected during the test period, but the purity was out of standard with an initial value of 96.96% as anhydride and no change over time was observed. Therefore, it can be seen that the amorphous compound of Formula 1 is hygroscopic under humidity conditions of two weeks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrane Compounds (AREA)

Abstract

본 발명은 무정형의 (2R,3R,4S)-6-아미노-4-[N-(4-클로로페닐)-N-(1H-이미다졸-2-일메틸)아미노]-3-하이드록시-2-메틸-2-다이메톡시메틸-3,4-다이하이드로-2H-1-벤조피란을 이의 결정형으로 전환하는 것을 포함하는 (2R,3R,4S)-6-아미노-4-[N-(4-클로로페닐)-N-(1H-이미다졸-2-일메틸)아미노]-3-하이드록시-2-메틸-2-다이메톡시메틸-3,4-다이하이드로-2H-1-벤조피란의 정제방법을 제공한다. 또한, 본 발명은 상기 (2R,3R,4S)-6-아미노-4-[N-(4-클로로페닐)-N-(1H-이미다졸-2-일메틸)아미노]-3-하이드록시-2-메틸-2-다이메톡시메틸-3,4-다이하이드로-2H-1-벤조피란의 신규 결정형 및 이의 제조방법을 제공한다.

Description

벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법
본 발명은 조(crude) 벤조피란 유도체의 정제방법에 관한 것이다. 더욱 상세하게는, 본 발명은 무정형의 조(crude) 벤조피란 유도체를 이의 결정형으로 전환하는 것을 포함하는 벤조피란 유도체의 정제방법에 관한 것이다. 또한, 본 발명은 상기 벤조피란 유도체의 신규 결정형 및 이의 제조방법에 관한 것이다.
하기 화학식 1의 벤조피란 유도체는 화학명이 (2R,3R,4S)-6-아미노-4-[N-(4-클로로페닐)-N-(1H-이미다졸-2-일메틸)아미노]-3-하이드록시-2-메틸-2-다이메톡시메틸-3,4-다이하이드로-2H-1-벤조피란이며, 암, 류마티스 관절염 등의 치료효과를 갖는 화합물로서 알려져 있다(대한민국 특허등록 제10-0492252호). 또한, 하기 화학식 1의 화합물은 저분자 물질 기반의 점안제로 제조될 수 있으며, 단백질 항체주사 치료법과 같이 환부에 직접 주사함이 없이 황반변성 질환의 예방 및 치료를 위해 유용하게 사용될 수 있는 것으로 알려져 있다(대한민국 특허공개 제10-2012-0112162호).
<화학식 1>
Figure PCTKR2016013585-appb-I000001
상기 화학식 1의 화합물의 제조방법은 대한민국 특허등록 제10-0492252호에 개시되어 있다. 구체적으로는 하기 반응식 1에 나타낸 바와 같이, 화학식 1의 화합물의 제조방법은 화학식 4a의 올레핀 화합물을 화학식 3a의 에폭사이드 화합물로 전환하는 단계; 화학식 3a의 에폭사이드 화합물을 (4-클로로페닐)(1H-이미다졸-2-일메틸)아민과 반응시켜 화학식 2a의 화합물을 얻는 단계; 및 화학식 2a의 화합물을 환원시켜 화학식 1의 화합물을 얻는 단계를 포함한다.
<반응식 1>
Figure PCTKR2016013585-appb-I000002
상기 제조방법에 의해 얻어진 화학식 1의 화합물은 환원 공정으로부터 얻어진 반응 혼합물을 여과하여 고체를 제거한 후, 여액을 농축시킨 다음, 잔류물을 실리카겔 관 크로마토그래피로 정제하여 단리된다.
본 발명자들은 대한민국 특허등록 제10-0492252호에 개시된 방법에 따라 화학식 1의 화합물을 제조하여 분석을 수행한 결과, 얻어진 생성물은 낮은 순도(무수물로서 97 중량% 이하)를 가질 뿐만 아니라 높은 수분함량(1 중량% 이상)을 갖는다는 것을 밝혀냈다. 특히, 대한민국 특허등록 제10-0492252호에 개시된 방법에 따라 제조된 화학식 1의 화합물은 제조과정에서 잔류하는 불순물(예를 들어, 유기불순물, 무기불순물, 잔류용매 등) 혹은 신속하게 분해되는 분해산물로 인하여, 식품의약품안전처의 「의약품의 품목허가·신고·심사규정」에 적합한 순도(예를 들어, 99.0 % 이상)에 적합하지 않아 의약 원료로서 사용될 수 없는 문제가 있다. 또한, 대한민국 특허등록 제10-0492252호에 개시된 방법에 따라 제조된 화학식 1의 화합물은 높은 흡습성을 나타내며, 예를 들어 가속조건에서 1일만에 수분함량이 2.30 중량%로 높아져 엄격한 관리를 필요로 하며, 제조 직후에 얻어진 원료 자체도 높은 수분함량을 가짐으로써 의약 원료로서 사용되기에 부적합한 문제가 있다.
본 발명자들은 종래의 제조방법에 의해 얻어지는 벤조피란 유도체(즉, 조(crude) 화학식 1의 화합물)의 낮은 순도 및 높은 수분함량(나아가, 높은 흡습성)의 문제를 근본적으로 해결할 수 있는 방법을 개발하기 위하여 다양한 연구를 수행하였다. 놀랍게도, 종래의 제조방법(대한민국 특허등록 제10-0492252호에 개시된 방법)에 의해 얻어지는 생성물은 무정형의 형태로 얻어지며, 상기 무정형의 생성물을 결정형(예를 들어, 특정 XRPD, DSC 써모그램, 또는 TGA 써모그램을 갖는 결정형 A)으로 전환할 경우 생성물의 순도를 현저하게 높일 수 있으며, 얻어지는 결정형에 잔류하는 수분의 함량을 0.2 중량% 이하로 현저하게 낮출 수 있다는 것을 발견하였다. 또한, 얻어지는 결정형은 실질적으로 흡습성을 나타내지 않아 높은 흡습성을 갖는 무정형 형태의 문제점을 근본적으로 해결할 수 있다는 것을 발견하였다.
따라서 조(crude) 벤조피란 유도체(즉, 화학식 1의 화합물)를 이의 결정형으로 전환하는 것을 포함하는 화학식 1의 화합물의 정제방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 화학식 1의 화합물의 결정형을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 화학식 1의 화합물의 결정형의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 일 태양에 따라, 조(crude) 화학식 1의 화합물을 이의 결정형으로 전환하는 것을 포함하는 화학식 1의 화합물의 정제방법이 제공된다:
<화학식 1>
Figure PCTKR2016013585-appb-I000003
본 발명의 다른 태양에 따라, 상기 화학식 1의 화합물의 결정형이 제공된다. 일 구현예에서, 상기 화학식 1의 화합물의 결정형은 12.27, 12.65, 16.07, 19.06 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 갖는 결정형 A일 수 있다.
본 발명의 또다른 태양에 따라, 무정형 화학식 1의 화합물을 유기용매에 용해시키는 단계; 얻어진 용액을 교반, 증류, 냉각, 또는 증류후 냉각하여 고체를 생성시키는 단계; 및 상기 고체를 단리하는 단계를 포함하는 상기 화학식 1의 화합물의 결정형의 제조방법이 제공된다.
본 발명의 또다른 태양에 따라, 무정형 화학식 1의 화합물을 유기용매에 용해시키는 단계; 얻어진 용액을 반용매에 가하거나 혹은 얻어진 용액에 반용매를 가하여 고체를 생성시키는 단계; 및 상기 고체를 단리하는 단계를 포함하는 상기 화학식 1의 화합물의 결정형의 제조방법이 제공된다.
본 발명의 또다른 태양에 따라, 무정형 화학식 1의 화합물을 물 중에서 산을 가하여 용해시키는 단계; 얻어진 용액에 염기를 가하여 고체를 생성시키는 단계; 및 상기 고체를 단리하는 단계를 포함하는 상기 화학식 1의 화합물의 결정형의 제조방법이 제공된다.
종래의 제조방법(대한민국 특허등록 제10-0492252호에 개시된 방법)에 의해 얻어지는 화학식 1의 화합물은 낮은 순도 및 높은 수분함량(나아가, 높은 흡습성)을 갖는 무정형의 형태로 얻어진다는 것이 본 발명에 의해 밝혀졌다. 본 발명에 따른 정제방법은 높은 순도 및 낮은 수분함량을 갖는 결정형 형태로 화학식 1의 화합물을 얻을 수 있다. 상기 정제방법은 산업적 규모의 대규모 공정 수행이 용이한 장점을 갖는다. 또한, 상기 결정형(예를 들어, 화학식 1의 화합물의 결정형 A)은 특정 XRPD, DSC 써모그램, 또는 TGA 써모그램을 가지며, 우수한 초기 품질(즉, 높은 순도 및 낮은 수분함량)을 갖는다. 특히, 화학식 1의 화합물의 결정형 A는 실질적으로 흡습성을 나타내지 않으며, 열과 가속조건에도 결정형의 변화 없이 우수한 안정성을 갖는 형태로 유지될 수 있다. 따라서, 화학식 1의 화합물의 결정형 A는 치료적 투약형태로 배합에 적합한 특성을 가지므로 약리활성 물질의 감소 없이 효율적인 제제화가 가능하고, 장기 보관이 가능한 장점이 있다.
도 1 내지 4는 대한민국 특허등록 제10-0492252호에 개시된 방법에 의해 제조된 벤조피란 유도체(즉, 화학식 1의 화합물)의 1H-NMR 스펙트럼(도 1), XRPD 스펙트럼(도 2), DSC 써모그램(도 3), 및 TGA 써모그램(도 4)을 각각 나타낸다.
도 5 내지 8은 본 발명에 따라 제조된 화학식 1의 화합물의 결정형 A의 1H-NMR 스펙트럼(도 5), XRPD 스펙트럼(도 6), DSC 써모그램(도 7), 및 TGA 써모그램(도 8)을 각각 나타낸다.
본 발명은 조(crude) 화학식 1의 화합물을 이의 결정형으로 전환하는 것을 포함하는 화학식 1의 화합물의 정제방법을 제공한다.
<화학식 1>
Figure PCTKR2016013585-appb-I000004
본 명세서에서 '조(crude) 화학식 1의 화합물'이라 함은 생성물 중 무수물로서의 화학식 1의 화합물의 함량이 97 중량% 이하, 바람직하게는 98 중량% 미만인 화합물을 말한다. 예를 들어, 상기 조 화학식 1의 화합물은 대한민국 특허등록 제10-0492252호에 개시된 방법에 의해 얻어진 화합물일 수 있다. 일 구현예에서, 상기 조 화학식 1의 화합물은 대한민국 특허등록 제10-0492252호에 개시된 방법에 의해 얻어진 무정형의 화학식 1의 화합물일 수 있다.
종래의 제조방법(대한민국 특허등록 제10-0492252호에 개시된 방법)에 의해 얻어지는 화학식 1의 화합물은 낮은 순도 및 높은 수분함량(나아가, 높은 흡습성)을 갖는 무정형의 형태로 얻어진다는 것이 본 발명에 의해 밝혀졌다. 본 발명에 따른 정제방법은 높은 순도 및 낮은 수분함량을 갖는 결정형 형태로 화학식 1의 화합물을 얻을 수 있다. 상기 정제방법은 산업적 규모의 대규모 공정 수행이 용이한 장점을 갖는다. 본 명세서에서 '높은 순도'라 함은 생성물 중 무수물로서의 화학식 1의 화합물의 함량이 98 중량% 이상, 바람직하게는 99 중량% 이상인 화합물을 말한다. 또한, '낮은 수분함량'이라 함은 화학식 1의 화합물 중의 수분함량이 0.5 중량% 이하, 바람직하게는 0.3 중량% 이하, 더욱 바람직하게는 0.2 중량% 이하인 화합물을 말한다.
본 발명의 정제방법에 있어서, 상기 결정형은 화학식 1의 화합물의 결정형 A일 수 있으며, 상기 결정형 A는 12.27, 12.65, 16.07, 19.06 및 26.48°2θ ± 0.2°2θ에서 특징적인 피크를 나타내는 X-선 분말 회절(X-Ray Powder Diffraction, XRPD) 패턴을 가질 수 있다. 바람직하게는, 상기 화학식 1의 화합물의 결정형 A는 12.27, 12.65, 16.07, 16.48, 17.89, 18.89, 19.06, 19.31 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 가질 수 있다. 더욱 바람직하게는, 상기 화학식 1의 화합물의 결정형 A는 도 6의 XRPD 패턴을 가질 수 있다.
또한, 상기 화학식 1의 화합물의 결정형 A는 240℃ 내지 250℃에서 용융 흡열 피크를 나타내는 시차 주사 열량계(Differential Scanning Calorimetry, DSC) 써모그램을 가질 수 있으며, 예를 들어, 도 7의 DSC 써모그램을 가질 수 있다.
또한, 상기 화학식 1의 화합물의 결정형 A는 300℃ 내지 310℃에서 중량 손실을 나타내는 열중량 분석(Thermo gravimetric Analysis, TGA) 써모그램을 가질 수 있으며, 예를 들어, 도 8의 TGA 써모그램을 가질 수 있다.
본 발명은 하기 화학식 1의 화합물의 결정형을 제공한다.
<화학식 1>
Figure PCTKR2016013585-appb-I000005
상기 화학식 1의 화합물의 결정형 A는 우수한 초기 품질(즉, 높은 순도 및 낮은 수분함량)을 갖는다. 특히, 화학식 1의 화합물의 결정형 A는 실질적으로 흡습성을 나타내지 않으며, 열과 가속조건에도 결정형의 변화 없이 우수한 안정성을 갖는 형태로 유지될 수 있다. 따라서, 화학식 1의 화합물의 결정형 A는 치료적 투약형태로 배합에 적합한 특성을 가지므로 약리활성 물질의 감소 없이 효율적인 제제화가 가능하고, 장기 보관이 가능한 장점이 있다.
본 명세서에서 '실질적으로 흡습성을 나타내지 않는다'라 함은 가속 조건(40℃, 75%RH)에서 2주간 보관시의 수분함량 변화(Δ수분함량 = 2주간 보관시 수분함량 - 초기 수분함량)가 0.05 중량% 이하, 바람직하게는 0.03 중량% 이하, 더욱 바람직하게는 0.02 중량% 이하이거나; 또는 열 조건(100℃)에서 2주간 보관시의 수분함량 변화(Δ수분함량 = 2주간 보관시 수분함량 - 초기 수분함량)가 0.05 중량% 이하이거나; 또는 습도 조건(25℃, 98%RH)에서 2주간 보관시의 수분함량 변화(Δ수분함량 = 2주간 보관시 수분함량 - 초기 수분함량)가 0.3 중량% 이하, 바람직하게는 0.2 중량% 이하인 화합물을 말한다.
화학식 1의 화합물의 결정형은 결정형 A일 수 있으며, 상기 결정형 A는 12.27, 12.65, 16.07, 19.06 및 26.48°2θ ± 0.2°2θ에서 특징적인 피크를 나타내는 XRPD 패턴을 가질 수 있다. 바람직하게는, 상기 화학식 1의 화합물의 결정형 A는 12.27, 12.65, 16.07, 16.48, 17.89, 18.89, 19.06, 19.31 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 가질 수 있다. 더욱 바람직하게는, 상기 화학식 1의 화합물의 결정형 A는 도 6의 XRPD 패턴을 가질 수 있다.
또한, 상기 화학식 1의 화합물의 결정형 A는 240℃ 내지 250℃에서 용융 흡열 피크를 나타내는 시차 주사 열량계(DSC) 써모그램을 가질 수 있으며, 예를 들어, 도 7의 DSC 써모그램을 가질 수 있다.
또한, 상기 화학식 1의 화합물의 결정형 A는 300℃ 내지 310℃에서 중량 손실을 나타내는 열중량 분석(TGA) 써모그램을 가질 수 있으며, 예를 들어, 도 8의 TGA 써모그램을 가질 수 있다.
본 발명은 화학식 1의 화합물의 결정형의 제조방법을 제공하며, 상기 제조방법은 산업적 규모의 대규모 공정 수행이 용이하다.
<화학식 1>
Figure PCTKR2016013585-appb-I000006
본 발명의 화학식 1의 화합물의 결정형의 제조방법은 출발물질로서 무정형의 화학식 1의 화합물을 사용하며, 이는 상기한 바와 같이 대한민국 특허등록 제10-0492252호에 개시된 방법에 의해 얻어질 수 있다.
일 태양에서, 본 발명은 무정형 화학식 1의 화합물을 유기용매에 용해시키는 단계; 얻어진 용액을 교반, 증류, 냉각, 또는 증류후 냉각하여 고체를 생성시키는 단계; 및 상기 고체를 단리하는 단계를 포함하는 화학식 1의 화합물의 결정형의 제조방법(즉, 재결정을 이용한 제조방법)을 제공한다. 상기 유기용매는 무정형 화학식 1의 화합물을 용해시킬 수 있는 용매라면 제한없이 사용될 수 있으며, 1종의 유기용매 또는 2종 이상의 유기용매 조합을 사용할 수 있다. 예를 들어, 상기 유기용매는 메탄올, 에탄올, 이소프로판올, 아세톤, 메틸에틸케톤, 아세토니트릴, 에틸아세테이트, 디클로로메탄, 테트라하이드로퓨란, 디메틸설폭시드, 디메틸포름아미드 및 N-메틸-2-피롤리돈으로 이루어진 군으로부터 1종 이상 선택될 수 있으며, 바람직하게는 메탄올, 에탄올, 이소프로판올, 아세톤, 아세토니트릴, 디클로로메탄, 에틸아세테이트, 및 메틸에틸케톤으로 이루어진 군으로부터 1종 이상 선택될 수 있다. 상기 용해는 실온 내지 사용된 용매의 환류온도 범위 내에서 수행될 수 있다. 상기 고체 생성 단계는 교반하거나, 증류하거나, 냉각하거나 혹은 증류를 통해 용매의 부피를 줄인 후 냉각함으로써 수행될 수 있다. 상기 고체(즉, 결정형)의 단리는 통상의 여과(예를 들어 감압 여과), 건조(예를 들어, 약 50 ℃에서 진공 건조), 등을 통하여 수행될 수 있다.
다른 태양에서, 본 발명은 무정형 화학식 1의 화합물을 유기용매에 용해시키는 단계; 얻어진 용액을 반용매(anti-solvent)에 가하거나 혹은 얻어진 용액에 반용매(anti-solvent)를 가하여 고체를 생성시키는 단계; 및 상기 고체를 단리하는 단계를 포함하는 화학식 1의 화합물의 결정형의 제조방법(즉, 용매/반용매를 이용한 제조방법)을 제공한다. 상기 유기용매는 무정형 화학식 1의 화합물을 용해시킬 수 있는 용매라면 제한없이 사용될 수 있으며, 1종의 유기용매 또는 2종 이상의 유기용매 조합을 사용할 수 있다. 예를 들어, 상기 유기용매는 메탄올, 에탄올, 이소프로판올, 아세톤, 메틸에틸케톤, 아세토니트릴, 에틸아세테이트, 디클로로메탄, 테트라하이드로퓨란, 디메틸설폭시드, 디메틸포름아미드 및 N-메틸-2-피롤리돈으로 이루어진 군으로부터 1종 이상 선택될 수 있다. 상기 용해는 실온 내지 사용된 용매의 환류온도 범위 내에서 수행될 수 있다. 상기 반용매는 물, 헥산, 헵탄, 디에틸에테르, 이소프로필에테르, 디-n-부틸에테르, 및 톨루엔으로 이루어진 군으로부터 1종 이상 선택될 수 있으나, 이에 제한되는 것은 아니다. 상기 고체(즉, 결정형)의 단리는 통상의 여과(예를 들어 감압 여과), 건조(예를 들어, 약 50 ℃에서 진공 건조), 등을 통하여 수행될 수 있다.
또다른 태양에서, 본 발명은 무정형 화학식 1의 화합물을 물 중에서 산을 가하여 용해시키는 단계; 얻어진 용액에 염기를 가하여 고체를 생성시키는 단계; 및 상기 고체를 단리하는 단계를 포함하는 화학식 1의 화합물의 결정형의 제조방법(즉, pH 조절에 의한 결정화를 이용한 제조방법)을 제공한다. 상기 산은 산성 pH를 제공할 수 있는 산이라면 제한 없이 사용될 수 있으며, 예를 들어 염산, 아세트산, 및 포름산으로 이루어진 군으로부터 1종 이상 선택될 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 염기는 사용된 산을 중화하여 고체를 생성시킬 수 있는 염기라면 제한 없이 사용될 수 있으며, 예를 들어 수산화나트륨, 수산화칼륨, 중탄산나트륨, 및 탄산나트륨으로 이루어진 군으로부터 1종 이상 선택될 수 있으나, 이에 제한되는 것은 아니다. 상기 산 및/또는 염기는 전형적으로 수용액의 형태로 사용될 수 있다.
상기한 본 발명의 화학식 1의 화합물의 결정형의 제조방법에 의해 얻어지는 결정형은 결정형 A의 형태로 얻어진다. 상기 결정형 A는 12.27, 12.65, 16.07, 19.06 및 26.48°2θ ± 0.2°2θ에서 특징적인 피크를 나타내는 XRPD 패턴을 가질 수 있다. 바람직하게는, 상기 화학식 1의 화합물의 결정형 A는 12.27, 12.65, 16.07, 16.48, 17.89, 18.89, 19.06, 19.31 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 가질 수 있다. 더욱 바람직하게는, 상기 화학식 1의 화합물의 결정형 A는 도 6의 XRPD 패턴을 가질 수 있다. 또한, 상기 화학식 1의 화합물의 결정형 A는 240℃ 내지 250℃에서 용융 흡열 피크를 나타내는 시차 주사 열량계(DSC) 써모그램을 가질 수 있으며, 예를 들어, 도 7의 DSC 써모그램을 가질 수 있다. 또한, 상기 화학식 1의 화합물의 결정형 A는 300℃ 내지 310℃에서 중량 손실을 나타내는 열중량 분석(TGA) 써모그램을 가질 수 있으며, 예를 들어, 도 8의 TGA 써모그램을 가질 수 있다.
이하, 본 발명을 실시예 및 시험예를 통하여 더욱 상세히 설명한다. 그러나, 하기 실시예 및 시험예는 본 발명을 예시하기 위한 것이며, 본 발명이 하기 실시예 및 시험예에 의해 제한되는 것은 아니다.
하기 실시예 및 시험예에서 고속액체크로마토그래피(HPLC) 분석은 다음 조건하에서 수행하였다.
- 분석컬럼: C18, 4.6 ×250 mm, 5 ㎛
- 이동상: 완충액/아세토니트릴 = 40/60 (v/v)
- 완충액: 포름산암모늄 0.657g을 취하여 1L 용량플라스크에 넣고 물로 용해하여 표선을 맞춘 후 묽은 포름산을 이용해 pH 5.5 ±0.2로 조정하였다.
- 파장: 254 nm
- 컬럼온도: 30℃
- 유속: 1.0 mL/min.
- 주입량: 10 uL
X-선 분말 회절(XRPD) 분석은 PANalytical사의 X-pert Pro X-선 분말 회절기를 사용하여 수행하였으며, 40mA, 40kV에서 조작되는 CuKα1선(λα1=1.54060Å)을 사용하여 3 내지 80˚의 2θ 값 사이를 초당 3˚의 스캔 속도로 측정하였다.
시차 주사 열량계(DSC) 분석은 Mettler Toledo사의 DSC 823e 시차 주사 열량계를 사용하여 수행하였으며, 시작온도 10℃, 종료온도 300℃, 승온속도 10℃/분, 질소기체 공급속도 50mL/분의 조건으로 측정하였다.
열 중량 분석(TGA)은 Mettler Toledo사의 TGA/SDTA 851 열중량 분석기를 사용하여 수행하였으며, 시작온도 25℃, 종료온도 700℃, 승온속도 10℃/분의 조건으로 측정하였다.
제조예 : (2R,3R,4S)-6-아미노-4-[N-(4-클로로페닐)-N-(1H-이미다졸-2-일메틸)아미노]-3-하이드록시-2-메틸-2-디메톡시메틸-3,4-디하이드로-2H-1-벤조피란(화학식 1의 화합물)
공지의 방법(대한민국 등록특허 제10-0492252호 실시예 23)에 따라 니트로 화합물 52.10 g(106.56 mmol)을 메탄올 300 mL에 녹인 후, 10% Pd/C 5.0 g을 가하였다. 3기압의 H2하에서 12시간 동안 반응시켰다. 셀라이트 패드로 여과하여 고체를 제거하고 여액을 농축시켰다. 잔류물을 실리카겔 관 크로마토그래피(메탄올:디클로로메탄 = 5:95 (v/v))로 정제하여 표제화합물 36.52g(수율 75%)을 얻었다. 얻어진 생성물의 녹는점, 순도(생성물 중 무수물로서의 화학식 1의 화합물의 함량), 수분함량, 및 1H-NMR 분석 결과(도 1)는 각각 아래와 같다.
녹는점: 191 - 195 ℃
순도: 96.96 중량%
수분함량: 1.05 중량%
1H-NMR (400 MHz, CD3OD) δ (ppm) : 1.309(s. 3H), 3.509(s. 3H), 3.554(s. 3H), 4.288(m. 2H), 4.443-4.492(d. 2H), 4.964-4.988(d. 1H), 6.437-6.442(d. 1H), 6.562-6.591(m, 1H), 6.626-6.647(d, 1H), 6.727-6.746(d, 2H), 6.925(s, 2H), 7.025-7.047(d, 2H).
또한, 얻어진 생성물의 XRPD 스펙트럼, DSC 써모그램, 및 TGA 써모그램은 각각 도 2 내지 도 4와 같다. 측정된 X-선 분말 회절 스펙트럼에서 회절각, 결정면 간의 거리 및 상대 강도를 나타내는 특징적인 피크는 관찰되지 않았으며, 따라서 얻어진 생성물은 무정형의 화합물이었다. 또한, 얻어진 생성물은 약 148℃ 내지 158℃의 온도 범위에서 발열 피크가 나타나며, 약 229℃ 내지 약 239℃의 온도 범위에서 흡열 피크가 나타나는 DSC 패턴을 보였으며(도 3), 약 100℃ 내지 약 110℃의 온도 범위와 약 274℃ 내지 약 284℃에서 특징적으로 열중량의 감소가 나타나는 TGA 패턴을 보였다(도 4).
실시예 1. 재결정을 통한 화학식 1의 화합물의 정제 및 특징분석
제조예에서 얻어진 화학식 1의 화합물 5.00 g을 메탄올 50 mL에 환류하여 용해시켰다. 얻어진 용액을 고체가 생성될 때까지 증류하고, 실온으로 냉각한 다음, 감압 여과하였다. 얻어진 고체를 50℃에서 18시간 동안 진공 건조하여 화학식 1의 화합물 3.53 g(수율 70.60%)을 얻었다. 얻어진 생성물의 녹는점, 순도(생성물 중 무수물로서의 화학식 1의 화합물의 함량), 수분함량, 및 1H-NMR 분석 결과(도 5)는 각각 아래와 같다.
녹는점: 227 - 231 ℃
순도: 99.43 중량%
수분함량: 0.16 중량%
1H-NMR (400 MHz, CD3OD) δ (ppm) : 1.310(s. 3H), 3.508(s. 3H), 3.552(s. 3H), 4.289(m. 2H), 4.442-4.493(d. 2H), 4.966-4.989(d. 1H), 6.436-6.442(d. 1H), 6.560-6.588(m, 1H), 6.625-6.647(d, 1H), 6.727-6.746(d, 2H), 6.923(s, 2H), 7.024-7.046(d, 2H).
또한, 얻어진 생성물의 XRPD 스펙트럼, DSC 써모그램, 및 TGA 써모그램은 각각 도 6 내지 도 8과 같다. 측정된 X-선 분말 회절 스펙트럼에서 회절각(2θ), 결정면 간의 거리(d) 및 상대 강도(가장 큰 피크의 강도(I0)에 대한 각 피크의 강도(I)의 상대 강도, I/I0)는 다음 표 1과 같다.
<표 1>
Figure PCTKR2016013585-appb-I000007
상기 표 1의 결과로부터, 얻어진 생성물은 특징적인 피크를 나타내는 결정형의 패턴들이 확인되었으며, 따라서 얻어진 생성물은 결정형 화합물이었다. 상기 결정형 화합물을 '화학식 1의 화합물의 결정형 A'로 지칭한다.
실시예 2-8
하기 표 2에 나타낸 조건에 따라 상이한 용매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 화학식 1의 화합물을 정제하였으며, 얻어진 생성물의 수율 및 순도(생성물 중 무수물로서의 화학식 1의 화합물의 함량)는 하기 표 2와 같다. 또한, 얻어진 생성물의 XRPD 스펙트럼은 도 6과 실질적으로 동일한 스펙트럼을 보였으므로, 얻어진 생성물은 모두 결정형 A의 화합물이었다.
<표 2>
Figure PCTKR2016013585-appb-I000008
실시예 9. 용매/반용매를 사용한 화학식 1의 화합물의 정제 및 특징분석
제조예에서 얻어진 화학식 1의 화합물 5.00 g을 메탄올 50 mL에 환류하여 용해시켰다. 얻어진 용액에 정제수 30 mL를 투입하고, 실온으로 냉각한 다음, 감압 여과하였다. 얻어진 고체를 50 ℃에서 18시간 동안 진공 건조하여 화학식 1의 화합물 4.42g(수율 88.40%)을 얻었다. 얻어진 생성물의 순도(생성물 중 무수물로서의 화학식 1의 화합물의 함량)는 99.61 중량%이었다. 또한, 얻어진 생성물의 XRPD 스펙트럼은 도 6과 실질적으로 동일한 스펙트럼을 보였으므로, 얻어진 생성물은 결정형 A의 화합물이었다.
실시예 10-18
하기 표 3에 나타낸 조건에 따라 상이한 용매 및 반용매를 사용한 것을 제외하고는, 실시예 9와 동일한 방법으로 화학식 1의 화합물을 정제하였으며, 얻어진 생성물의 수율 및 순도(생성물 중 무수물로서의 화학식 1의 화합물의 함량)는 하기 표 3과 같다. 또한, 얻어진 생성물의 XRPD 스펙트럼은 도 6과 실질적으로 동일한 스펙트럼을 보였으므로, 얻어진 생성물은 모두 결정형 A의 화합물이었다.
<표 3>
Figure PCTKR2016013585-appb-I000009
실시예 19. pH 조절에 의한 결정화를 통한 화학식 1의 화합물의 정제 및 특징분석
제조예에서 얻어진 화학식 1의 화합물 3.00 g을 정제수에 투입하고, 1N 염산 수용액으로 pH 1.0으로 조절하여 용해시켰다. 얻어진 용액에 1N 수산화나트륨 수용액으로 pH 7.0으로 조절하여 고체를 생성시킨 후, 감압 여과하였다. 얻어진 고체를 50 ℃에서 18시간 동안 진공 건조하여 화학식 1의 화합물 2.81 g(수율 93.67%)을 얻었다. 얻어진 생성물의 순도(생성물 중 무수물로서의 화학식 1의 화합물의 함량)는 99.55 중량%이었다. 또한, 얻어진 생성물의 XRPD 스펙트럼은 도 6과 실질적으로 동일한 스펙트럼을 보였으므로, 얻어진 생성물은 결정형 A의 화합물이었다.
실시예 20. 용매/반용매를 사용한 화학식 1의 화합물의 정제 및 특징분석
제조예에서 얻어진 화학식 1의 화합물 3.00 g을 디클로로메탄 30 mL에 용해시켰다. 얻어진 용액을 헥산 300 mL에 적가한 다음, 감압 여과하였다. 얻어진 고체를 50℃에서 18시간 동안 진공 건조하여 화학식 1의 화합물 2.93g(수율 97.67%)을 얻었다. 얻어진 생성물의 순도(생성물 중 무수물로서의 화학식 1의 화합물의 함량)는 99.47 중량%이었다. 또한, 얻어진 생성물의 XRPD 스펙트럼은 도 6과 실질적으로 동일한 스펙트럼을 보였으므로, 얻어진 생성물은 결정형 A의 화합물이었다.
실시예 21-24
하기 표 4에 나타낸 조건에 따라 상이한 용매 및 반용매를 사용한 것을 제외하고는, 실시예 20과 동일한 방법으로 화학식 1의 화합물을 정제하였으며, 얻어진 생성물의 수율 및 순도(생성물 중 무수물로서의 화학식 1의 화합물의 함량)는 하기 표 4와 같다. 또한, 얻어진 생성물의 XRPD 스펙트럼은 도 6과 실질적으로 동일한 스펙트럼을 보였으므로, 얻어진 생성물은 모두 결정형 A의 화합물이었다.
<표 4>
Figure PCTKR2016013585-appb-I000010
시험예 1. 가속 안정성 시험
실시예 1에서 얻어진 화학식 1의 화합물의 결정형 A 및 제조예에서 얻어진 무정형 화학식 1의 화합물을 가속 조건(40℃, 75%RH)에서 2주간 보관하면서 안정성 시험을 수행하였으며, 그 결과는 표 5 및 표 6과 같다.
<표 5>
Figure PCTKR2016013585-appb-I000011
<표 6>
Figure PCTKR2016013585-appb-I000012
상기 표 5의 결과로부터 알 수 있는 바와 같이, 가속조건에서 화학식 1의 화합물의 결정형 A는 흰색의 결정성 분말로서 성상의 변화 없이 안정적으로 유지되었으며, 수분은 0.16% 내지 0.18%로 유의적인 증가패턴 없이 유지되었고, 유연물질도 0.030% 내지 0.041%로 유의적인 증가패턴 없이 유지되었다. 또한 거울상 이성질체는 시험기간 동안 검출되지 않았으며, 순도는 99.43%에서 99.34%로 기준인 98.5% 내지 101.0%에 적합하며 실험 오차수준 범위의 감소만이 관찰되었다. XRPD 분석에서도 동일한 결정형 A가 유지되었다.
그러나, 상기 표 6의 결과로부터 알 수 있는 바와 같이, 무정형 화학식 1의 화합물은 초기부터 수분이 1.05%로 결정형에 비해 높았으며, 시간이 지남에 따라 최대 2.64%까지 증가하는 현상을 보여 매우 큰 흡습성을 나타내었다. 성상, 유연물질, 거울상 이성질체 항목에서는 초기값을 유지하는 경향을 나타내었으나, 순도는 초기값이 무수물로서 96.96%로 기준에서 벗어났으며 시간이 지남에 따른 변화는 관찰되지 않았다. 따라서 무정형 화학식 1의 화합물은 2주간의 가속조건에서 매우 높은 흡습성을 나타냄을 알 수 있다.
시험예 2. 열 안정성 시험
실시예 1에서 얻어진 화학식 1의 화합물의 결정형 A 및 제조예에서 얻어진 무정형 화학식 1의 화합물을 열 조건(100℃)에서 2주간 보관하면서 안정성 시험을 수행하였으며, 그 결과는 표 7 및 표 8과 같다.
<표 7>
Figure PCTKR2016013585-appb-I000013
<표 8>
Figure PCTKR2016013585-appb-I000014
상기 표 7의 결과로부터 알 수 있는 바와 같이, 열 조건(100℃)에서 화학식 1의 화합물의 결정형 A는 1주차부터 미황색으로 성상이 변화되었으며, 수분은 0.11% 내지 0.16%로 유의적인 증가패턴 없이 유지되었고, 유연물질도 0.031% 내지 0.055%로 유의적인 증가패턴 없이 유지되었다. 또한 거울상 이성질체는 시험기간 동안 검출되지 않았으며, 순도는 99.43%에서 99.25%로 기준인 98.5% 내지 101.0%에 적합하며 실험 오차수준 범위의 감소만이 관찰되었다. XRPD 분석에서도 동일한 결정형 A가 유지되었다.
그러나, 상기 표 8의 결과로부터 알 수 있는 바와 같이, 무정형 화학식 1의 화합물은 초기부터 수분이 1.05%로 결정형에 비해 높았으며, 시간이 지남에 따라 최대 0.34%까지 감소하는 현상을 보였다. 성상 또한 1일차부터 갈색으로 변화되어 기준에 부적합하였으며, 유연물질은 초기 0.047%에서 최대 1.811%로 증가하였고, 거울상 이성질체는 시험기간 동안 검출되지 않았다. 순도는 초기값이 무수물로서 96.96%로 기준에 벗어났으며 시간이 지남에 따라 최대 92.34%로 떨어져 기준에 부적합하였다. 따라서 무정형 화학식 1의 화합물은 2주간의 열 조건에서 특히 성상, 유연물질, 순도가 현저하게 저하됨을 알 수 있다.
시험예 3. 습도 안정성 시험
실시예 1에서 얻어진 화학식 1의 화합물의 결정형 A 및 제조예에서 얻어진 무정형 화학식 1의 화합물을 습도 조건(25℃, 98%RH)에서 2주간 보관하면서 안정성 시험을 수행하였으며, 그 결과는 표 9 및 표 10과 같다.
<표 9>
Figure PCTKR2016013585-appb-I000015
<표 10>
Figure PCTKR2016013585-appb-I000016
상기 표 9의 결과로부터 알 수 있는 바와 같이, 습도 조건(25℃, 98%RH)에서 화학식 1의 화합물의 결정형 A는 흰색의 결정성 분말로서 성상의 변화 없이 안정하였으며, 수분은 0.16% 내지 0.29%로 미미하게 증가하나 유의적인 증가패턴은 아니었으며, 유연물질도 0.029% 내지 0.036%로 유의적인 증가패턴 없이 유지되었다. 또한 거울상 이성질체는 시험기간 동안 검출되지 않았으며, 순도는 99.43%에서 99.32%로 기준인 98.5% 내지 101.0%에 적합하였고 실험 오차수준 범위의 감소만이 관찰되었다. XRPD 분석에서도 동일한 결정형 A가 유지되었다.
그러나, 상기 표 10의 결과로부터 알 수 있는 바와 같이, 무정형 화학식 1의 화합물은 초기부터 수분이 1.05%로 결정형에 비해 높았으며 시간이 지남에 따라 최대 3.90%까지 증가하는 현상을 보여 높은 흡습성을 나타내었다. 성상은 거의 흰색의 분말로서 변화되지 않았으나, 유연물질은 0.047% 에서 최대 0.090%로 증가하는 경향을 나타내었다. 거울상 이성질체는 시험기간 동안 검출되지 않았으나, 순도는 초기 값이 무수물로서 96.96%로 기준에 벗어났으며 시간이 지남에 따른 변화는 관찰되지 않았다. 따라서 무정형 화학식 1의 화합물은 2주간의 습도 조건에서 흡습성이 있음을 알 수 있다.

Claims (23)

  1. 조(crude) 화학식 1의 화합물을 이의 결정형으로 전환하는 것을 포함하는 화학식 1의 화합물의 정제방법:
    <화학식 1>
    Figure PCTKR2016013585-appb-I000017
  2. 제1항에 있어서, 상기 조 화학식 1의 화합물이 무정형 형태인 것을 특징으로 하는 정제방법.
  3. 제1항에 있어서, 상기 결정형이 12.27, 12.65, 16.07, 19.06 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 갖는 화학식 1의 화합물의 결정형 A인 것을 특징으로 하는 정제방법.
  4. 제1항에 있어서, 상기 결정형이 12.27, 12.65, 16.07, 16.48, 17.89, 18.89, 19.06, 19.31 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 갖는 화학식 1의 화합물의 결정형 A인 것을 특징으로 하는 정제방법.
  5. 제1항에 있어서, 상기 결정형이 240℃ 내지 250℃에서 용융 흡열 피크를 나타내는 시차 주사 열량계(DSC) 써모그램을 갖는 화학식 1의 화합물의 결정형 A인 것을 특징으로 하는 정제방법.
  6. 제1항에 있어서, 상기 결정형이 300℃ 내지 310℃에서 중량 손실을 나타내는 열중량 분석(TGA) 써모그램을 갖는 화학식 1의 화합물의 결정형 A인 것을 특징으로 하는 정제방법.
  7. 하기 화학식 1의 화합물의 결정형:
    <화학식 1>
    Figure PCTKR2016013585-appb-I000018
  8. 제7항에 있어서, 상기 화학식 1의 화합물의 결정형이 12.27, 12.65, 16.07, 19.06 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 갖는 결정형 A인 것을 특징으로 하는 화학식 1의 화합물의 결정형.
  9. 제7항에 있어서, 상기 화학식 1의 화합물의 결정형이 12.27, 12.65, 16.07, 16.48, 17.89, 18.89, 19.06, 19.31 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 갖는 결정형 A인 것을 특징으로 하는 화학식 1의 화합물의 결정형.
  10. 제7항에 있어서, 상기 화학식 1의 화합물의 결정형이 240℃ 내지 250℃에서 용융 흡열 피크를 나타내는 시차 주사 열량계(DSC) 써모그램을 갖는 결정형 A인 것을 특징으로 하는 화학식 1의 화합물의 결정형.
  11. 제7항에 있어서, 상기 화학식 1의 화합물의 결정형이 300℃ 내지 310℃에서 중량 손실을 나타내는 열중량 분석(TGA) 써모그램을 갖는 결정형 A인 것을 특징으로 하는 화학식 1의 화합물의 결정형.
  12. 무정형 화학식 1의 화합물을 유기용매에 용해시키는 단계; 얻어진 용액을 교반, 증류, 냉각, 또는 증류후 냉각하여 고체를 생성시키는 단계; 및 상기 고체를 단리하는 단계를 포함하는 화학식 1의 화합물의 결정형의 제조방법:
    <화학식 1>
    Figure PCTKR2016013585-appb-I000019
  13. 제12항에 있어서, 상기 유기용매가 메탄올, 에탄올, 이소프로판올, 아세톤, 메틸에틸케톤, 아세토니트릴, 에틸아세테이트, 디클로로메탄, 테트라하이드로퓨란, 디메틸설폭시드, 디메틸포름아미드 및 N-메틸-2-피롤리돈으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 제조방법.
  14. 무정형 화학식 1의 화합물을 유기용매에 용해시키는 단계; 얻어진 용액을 반용매에 가하거나 혹은 얻어진 용액에 반용매를 가하여 고체를 생성시키는 단계; 및 상기 고체를 단리하는 단계를 포함하는 화학식 1의 화합물의 결정형의 제조방법:
    <화학식 1>
    Figure PCTKR2016013585-appb-I000020
  15. 제14항에 있어서, 상기 유기용매가 메탄올, 에탄올, 이소프로판올, 아세톤, 메틸에틸케톤, 아세토니트릴, 에틸아세테이트, 디클로로메탄, 테트라하이드로퓨란, 디메틸설폭시드, 디메틸포름아미드 및 N-메틸-2-피롤리돈으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 제조방법.
  16. 제14항에 있어서, 상기 반용매가 물, 헥산, 헵탄, 디에틸에테르, 이소프로필에테르, 디-n-부틸에테르, 및 톨루엔으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 제조방법.
  17. 무정형 화학식 1의 화합물을 물 중에서 산을 가하여 용해시키는 단계; 얻어진 용액에 염기를 가하여 고체를 생성시키는 단계; 및 상기 고체를 단리하는 단계를 포함하는 화학식 1의 화합물의 결정형의 제조방법:
    <화학식 1>
    Figure PCTKR2016013585-appb-I000021
  18. 제17항에 있어서, 상기 산이 염산, 아세트산, 및 포름산으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 제조방법.
  19. 제17항에 있어서, 상기 염기가 수산화나트륨, 수산화칼륨, 중탄산나트륨, 및 탄산나트륨으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 제조방법.
  20. 제12항 내지 제19항 중 어느 한 항에 있어서, 상기 화학식 1의 화합물의 결정형이 12.27, 12.65, 16.07, 19.06 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 갖는 결정형 A인 것을 특징으로 하는 제조방법.
  21. 제12항 내지 제19항 중 어느 한 항에 있어서, 상기 화학식 1의 화합물의 결정형이 12.27, 12.65, 16.07, 16.48, 17.89, 18.89, 19.06, 19.31 및 26.48°2θ ± 0.2°2θ에서 피크를 나타내는 XRPD 패턴을 갖는 결정형 A인 것을 특징으로 하는 제조방법.
  22. 제12항 내지 제19항 중 어느 한 항에 있어서, 상기 화학식 1의 화합물의 결정형이 240℃ 내지 250℃에서 용융 흡열 피크를 나타내는 시차 주사 열량계(DSC) 써모그램을 갖는 결정형 A인 것을 특징으로 하는 제조방법.
  23. 제12항 내지 제19항 중 어느 한 항에 있어서, 상기 화학식 1의 화합물의 결정형이 300℃ 내지 310℃에서 중량 손실을 나타내는 열중량 분석(TGA) 써모그램을 갖는 결정형 A인 것을 특징으로 하는 제조방법.
PCT/KR2016/013585 2015-11-27 2016-11-24 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법 WO2017090991A1 (ko)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA3001547A CA3001547C (en) 2015-11-27 2016-11-24 Method for purifying benzopyran derivative, crystal form thereof, and method for preparing crystal form
EP16868887.7A EP3381914B1 (en) 2015-11-27 2016-11-24 Method for purifying benzopyran derivative, crystal form thereof, and method for preparing crystal form
JP2018527768A JP6768065B2 (ja) 2015-11-27 2016-11-24 ベンゾピラン誘導体の精製方法、ベンゾピラン誘導体の結晶形およびベンゾピラン誘導体の結晶形の製造方法
DK16868887.7T DK3381914T3 (da) 2015-11-27 2016-11-24 Fremgangsmåde til oprensning af benzopyranderivat, krystallinsk form deraf og fremgangsmåde til fremstilling af den krystallinske form
US15/779,236 US10487074B2 (en) 2015-11-27 2016-11-24 Method for purifying benzopyran derivative, crystal form thereof, and method for preparing crystal form
BR112018006850-0A BR112018006850B1 (pt) 2015-11-27 2016-11-24 Forma cristalina a de composto e processos para preparação da mesma
ES16868887T ES2861062T3 (es) 2015-11-27 2016-11-24 Procedimiento de purificación de un derivado de benzopirano, forma cristalina del mismo, y procedimiento de preparación de la forma cristalina
RU2018122936A RU2729074C2 (ru) 2015-11-27 2016-11-24 Способ очистки производного бензопирана, его кристаллическая форма и способ получения кристаллической формы
AU2016361026A AU2016361026B2 (en) 2015-11-27 2016-11-24 Method for purifying benzopyran derivative, crystal form thereof, and method for preparing crystal form
CN201680067212.9A CN108290873A (zh) 2015-11-27 2016-11-24 苯并吡喃衍生物的精制方法、其晶型及所述晶型的制备方法
PL16868887T PL3381914T3 (pl) 2015-11-27 2016-11-24 Sposób oczyszczania pochodnej benzopiranu, jej postać krystaliczna i sposób przygotowania postaci krystalicznej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0167238 2015-11-27
KR1020150167238A KR102484846B1 (ko) 2015-11-27 2015-11-27 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법

Publications (1)

Publication Number Publication Date
WO2017090991A1 true WO2017090991A1 (ko) 2017-06-01

Family

ID=58764306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013585 WO2017090991A1 (ko) 2015-11-27 2016-11-24 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법

Country Status (15)

Country Link
US (1) US10487074B2 (ko)
EP (1) EP3381914B1 (ko)
JP (1) JP6768065B2 (ko)
KR (1) KR102484846B1 (ko)
CN (2) CN113754643A (ko)
AU (1) AU2016361026B2 (ko)
BR (1) BR112018006850B1 (ko)
CA (1) CA3001547C (ko)
DK (1) DK3381914T3 (ko)
ES (1) ES2861062T3 (ko)
HU (1) HUE053626T2 (ko)
PL (1) PL3381914T3 (ko)
PT (1) PT3381914T (ko)
RU (1) RU2729074C2 (ko)
WO (1) WO2017090991A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102129159B1 (ko) * 2017-09-15 2020-07-01 주식회사 엘지화학 저색수 카바졸 화합물의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040014023A (ko) * 2002-08-09 2004-02-14 한국화학연구원 이미다졸을 포함하는 이차아민으로 치환된 벤조피란유도체 및 그의 제조방법
KR20110038011A (ko) * 2008-07-03 2011-04-13 라티오팜 게엠베하 시타글립틴의 결정질 염
KR101045616B1 (ko) * 2006-08-14 2011-07-01 시코르, 인크. 페메트렉세드 이산의 결정형 및 이의 제조 방법
KR20120112162A (ko) * 2011-03-30 2012-10-11 가톨릭대학교 산학협력단 황반변성 예방 또는 치료용 약학 조성물
KR20140146719A (ko) * 2013-06-17 2014-12-29 주식회사 대웅제약 (2-(3,4-다이메톡시페닐)-5-(3-메톡시프로필)벤조퓨란)의결정형 및 이의 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3447170A1 (de) * 1984-12-22 1986-07-03 Bayer Ag, 5090 Leverkusen Mischung unterschiedlicher dihydropyridine, verfahren zu ihrer herstellung sowie ihre verwendung in arzneimitteln
US5837702A (en) * 1993-10-07 1998-11-17 Bristol-Myers Squibb Co. 4-arylamino-benzopyran and related compounds
US5629429A (en) * 1995-06-07 1997-05-13 Bristol-Myers Squibb Company Process for preparing 4-arylamino-benzopyran and related compounds
US5869478A (en) * 1995-06-07 1999-02-09 Bristol-Myers Squibb Company Sulfonamido substituted benzopyran derivatives
US7414068B2 (en) * 2002-04-10 2008-08-19 Dongbu Hannong Chemical Co., Ltd. Benzopyran derivatives substituted with secondary amines including tetrazole, method for the preparation thereof and pharmaceutical compositions containing them
US20130261142A1 (en) * 2010-12-15 2013-10-03 Hung-Cheng Lai Compounds used for treating cancer and the use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040014023A (ko) * 2002-08-09 2004-02-14 한국화학연구원 이미다졸을 포함하는 이차아민으로 치환된 벤조피란유도체 및 그의 제조방법
KR101045616B1 (ko) * 2006-08-14 2011-07-01 시코르, 인크. 페메트렉세드 이산의 결정형 및 이의 제조 방법
KR20110038011A (ko) * 2008-07-03 2011-04-13 라티오팜 게엠베하 시타글립틴의 결정질 염
KR20120112162A (ko) * 2011-03-30 2012-10-11 가톨릭대학교 산학협력단 황반변성 예방 또는 치료용 약학 조성물
KR20140146719A (ko) * 2013-06-17 2014-12-29 주식회사 대웅제약 (2-(3,4-다이메톡시페닐)-5-(3-메톡시프로필)벤조퓨란)의결정형 및 이의 제조방법

Also Published As

Publication number Publication date
EP3381914A4 (en) 2019-05-08
US20190248768A1 (en) 2019-08-15
PT3381914T (pt) 2021-03-15
CN113754643A (zh) 2021-12-07
ES2861062T3 (es) 2021-10-05
KR20170061980A (ko) 2017-06-07
CN108290873A (zh) 2018-07-17
US10487074B2 (en) 2019-11-26
RU2018122936A3 (ko) 2020-01-21
EP3381914A1 (en) 2018-10-03
CA3001547C (en) 2023-08-22
KR102484846B1 (ko) 2023-01-05
EP3381914B1 (en) 2020-12-23
RU2729074C2 (ru) 2020-08-04
CA3001547A1 (en) 2017-06-01
BR112018006850A2 (pt) 2018-12-11
JP2018535240A (ja) 2018-11-29
BR112018006850B1 (pt) 2024-02-06
HUE053626T2 (hu) 2021-07-28
RU2018122936A (ru) 2019-12-31
DK3381914T3 (da) 2021-03-22
PL3381914T3 (pl) 2021-07-05
JP6768065B2 (ja) 2020-10-14
AU2016361026B2 (en) 2020-06-11
AU2016361026A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
WO2011071314A2 (en) Processes for preparing crystalline forms a and b of ilaprazole and process for converting the crystalline forms
JP3638874B2 (ja) 新規なピペラジンおよびピペリジン化合物
WO2011004980A2 (ko) 트리사이클릭 유도체의 제조방법
WO2012030106A2 (en) Production method of intermediate compound for synthesizing medicament
AU751629B2 (en) Process for the preparation of a piperazine derivative
WO2017119666A1 (ko) 극성 비양자성 용매를 이용한 n-[4-(1-아미노에틸)-페닐]-술폰아미드 유도체의 카이랄 분할 방법
CA2183976C (en) Process for making an epoxide
WO2017090991A1 (ko) 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법
WO2010110622A2 (en) Novel crystal forms of adefovir dipivoxil and processes for preparing the same
WO2016076573A2 (ko) 블로난세린의 제조방법 및 그를 위한 중간체
EP2531499A2 (en) Process for preparing voriconazole by using new intermediates
WO2020204647A1 (en) Processes for preparing (3r,4r)-1-benzyl-n,4-dimethylpiperidin-3-amine or a salt thereof and processes for preparing tofacitinib using the same
WO2013180403A1 (en) Process for preparing gefitinib and an intermediate used for preparing thereof
WO2023101115A1 (ko) 고순도의 1-(1-(2-벤질페녹시)프로판-2-일)-2-메틸피페리딘 단일 이성질체의 제조방법
WO2011105649A1 (ko) 새로운 중간체를 이용하는 피타바스타틴 헤미칼슘의 신규한 제조방법
AU2019268945B2 (en) Novel processes for preparing a diaminopyrimidine derivative or acid addition salt thereof
WO2024058311A1 (ko) 엑토인의 제조방법
WO2011111971A2 (ko) (r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법
WO2014098410A1 (ko) 보센탄 일수화물의 제조방법, 이에 사용되는 신규 중간체 및 이의 제조방법
WO2023277587A1 (ko) N-아실 유도체의 제조방법, 조성물 및 이를 포함하는 의약품 또는 농업용품
WO2009139593A2 (ko) HMG-CoA 환원 저해제의 제조를 위한 키랄 중간체의 제조방법
WO2022149638A1 (ko) 피롤로피리딘 유도체의 제조방법
WO2014175563A1 (en) Novel method of preparing 4-(4-aminophenyl)-3-morpholinone
WO2019045355A1 (ko) 리바스티그민 파모산염의 제조방법
WO2018147555A1 (ko) 4, 5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3001547

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018006850

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016361026

Country of ref document: AU

Date of ref document: 20161124

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018527768

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018122936

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112018006850

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180404