WO2011111971A2 - (r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법 - Google Patents

(r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법 Download PDF

Info

Publication number
WO2011111971A2
WO2011111971A2 PCT/KR2011/001579 KR2011001579W WO2011111971A2 WO 2011111971 A2 WO2011111971 A2 WO 2011111971A2 KR 2011001579 W KR2011001579 W KR 2011001579W WO 2011111971 A2 WO2011111971 A2 WO 2011111971A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
preparing
reacting
alkyl
Prior art date
Application number
PCT/KR2011/001579
Other languages
English (en)
French (fr)
Other versions
WO2011111971A3 (ko
Inventor
조영락
백성윤
채상은
이홍범
박태교
우성호
김용주
Original Assignee
㈜레고켐바이오사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜레고켐바이오사이언스 filed Critical ㈜레고켐바이오사이언스
Priority to US13/583,492 priority Critical patent/US8703939B2/en
Priority to CN201180013805.4A priority patent/CN102803256B/zh
Publication of WO2011111971A2 publication Critical patent/WO2011111971A2/ko
Publication of WO2011111971A3 publication Critical patent/WO2011111971A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D255/00Heterocyclic compounds containing rings having three nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D249/00 - C07D253/00
    • C07D255/02Heterocyclic compounds containing rings having three nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D249/00 - C07D253/00 not condensed with other rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/02Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 not condensed with other rings
    • C07D253/061,2,4-Triazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the present invention relates to (R) -3- (3-fluoro-4- (1-methyl-5,6-dihydro-1), which is an oxazolidinone antibiotic compound having a cyclic amidrazon group represented by the following formula (1):
  • Compound 1a ((R) -3- (3-fluoro-4- (1-methyl-5,6-dihydro-1,2,4-triazin-4 (1H) -yl) phenyl) having the structure -5- (hydroxymethyl) oxazolidin-2-one) is an oxazolidinone-based antibiotic and can be used to treat infections such as Gram-positive bacteria, especially MRSA and VRE.
  • the object of the present invention is to reduce the overall reaction step, and even in the separation and purification method using a crystallization method or extraction method suitable for industrial scale synthesis, compared to the prior art, a simpler, more economical and higher purity (R)- 3- (3-fluoro-4- (1-methyl-5,6-dihydro-1,2,4-triazine-4 (1H) -yl) phenyl) -5- (substituted methyl) oxazoli It is to provide a method for preparing a din-2-one derivative.
  • Another object of the present invention is (R) -3- (3-fluoro-4- (1-methyl-5,6-dihydro-1,2,4-triazine-4 (1H) -yl) It is to provide a manufacturing intermediate and a method for producing the phenyl) -5- (substituted methyl) oxazolidin-2-one derivative.
  • the present invention relates to (R) -3- (3-fluoro-4- (1-methyl-5,6-dihydro-1,2,4-triazine-), which is a compound of formula 1 useful as an oxazolidinone-based antibiotic.
  • the compound of Formula 1 may make various types of salts, and the present invention also includes forms of such salts.
  • This method can be applied on an industrial scale, and in particular, the present invention includes a novel synthesis process for preparing cyclic amidrazone groups in the process for preparing compounds of formula (I).
  • the invention also encompasses a process for the preparation of intermediates or addition salts thereof which benefit from cost-effective crystallization for chemical preparation methods suitable for industrial scale.
  • R 1 is (C1-C6) alkyl or (C1-C6) alkoxy;
  • R ' is (C1-C6) alkyl or (C6-C12) ar (C1-C6) alkyl.
  • X is halogen, substituted or unsubstituted (C1-C6) alkanesulfonyloxy or substituted or unsubstituted (C6-C12) arylsulfonyloxy.
  • step 2-2 2) a compound of Formula I to a leaving group X reagent (agent) and the reaction was was converted to a leaving group X to obtain a compound of formula II-1 groups of the alcohol compound of formula I (step 2-1 containing a), or Reacting the compound of formula I in the presence of a base to prepare an aziridine compound of formula II-2 (step 2-2);
  • the starting materials 3, 4-difluoronitrobenzene and ethanolamine were refluxed and stirred in an organic solvent.
  • a solvent which can be used Nitriles, such as acetonitrile; Alcohols such as ethanol and isopropanol; Ethers such as tetrahydrofuran, diisopropyl ether, dioxane and 1,2-dimethoxyethane; Aromatic hydrocarbons such as benzene and toluene; Amides such as dimethylacetamide and dimethylformamide can be exemplified, but the present invention is not limited to these inert solvents, and these solvents may be used alone or in combination.
  • acetonitrile, isopropanol, dioxane and the like are suitable, and more preferably acetonitrile is preferable.
  • This reaction can be carried out with or without a base depending on the amount of ethanolamine used.
  • a base When 1 equivalent of ethanolamine is used compared to 3,4-difluoronitrobenzene, it is preferable to use a base. Bases may not be used.
  • the amount of ethanolamine is preferably used in an amount of 1.5 to 3 equivalents.
  • the base which can be used is an organic base such as triethylamine or diethylisopropylamine or an inorganic base such as potassium carbonate or sodium carbonate. And preferably in the range of 1.1 equivalents to 2 equivalents.
  • the compounds of formula II-1 is obtained by conversion to the leaving group X is reacted with reagent (agent) containing a leaving group X of the compound represented by the general formula (I) an alcohol of the compound of formula (I). If the leaving group X represents a halogen atom with a suitable leaving group it is a chlorine, bromine or iodine atom.
  • leaving group X represents a sulfonyloxy group
  • this is preferably a substituted or unsubstituted (C1-C6) alkanesulfonyloxy group (e.g., methanesulfonyloxy group, ethanesulfonyloxy group or trifluoromethanesulfonyloxy group)
  • a substituted or unsubstituted (C6-C12) arylsulfonyloxy group e.g., benzenesulfonyloxy, P-toluenesulfonyloxy, p-bromophenylsulfonyloxy group, p-nitrobenzenesulfonyloxy group
  • C1-C6 alkanesulfonyloxy group e.g., methanesulfonyloxy group, ethanesulfonyloxy group or trifluoromethanesulfonyl
  • the conversion of alcohol groups to leaving groups for example to leaving groups such as chloro, bromo, mesylate, tosylate and benzenesulfonate, is known and recognized in the art.
  • the reaction is preferably carried out in a nonpolar organic solvent such as dichloromethane, and the base used is preferably an amine such as triethylamine.
  • the compound of formula ( II-2 ) is prepared by stirring the compound represented by formula ( I ) for at least 12 hours up to 72 hours in the presence of triphenylphosphine and base.
  • the base used in the reaction is most preferably triethylamine, and the solvent may be an ether such as THF or most nonpolar solvents.
  • a mixture of THF and tetrachloromethane is used.
  • the amount of methylhydrazine used in the reaction is preferably 5 to 10 equivalents, preferably at 20 to 80 ° C.
  • Compounds of formula IV are obtained by the reaction of compounds of formula III to form cyclic amidrazon rings.
  • This reaction can be obtained by reacting orthoformate, etc. in acetic acid, or by cyclization with formic acid and the like.
  • it is obtained by reflux stirring with an excess of trimethylorthoformate using acetic acid as a solvent. More preferably, 20 to 50% acetic acid solvent mixed with 2 to 10 equivalents of trimethyl orthoformate is used.
  • the amine compound represented by the formula ( V ) is obtained as a reduction reaction of the nitro group of the cyclic amidrazone compound of the formula ( IV) .
  • the solvent that can be used in the reaction include alcohols such as methanol, ethanol and propanol, ethers such as tetrahydrofuran, diisopropyl ether, dioxane and 1,2-dimethoxyethane.
  • Reduction of such nitro groups is well known and can be achieved by using metals such as zinc, iron, tin and tin chloride under acidic conditions, or by hydrogenating a transition metal such as Raney-nickel, palladium-carbon as a catalyst.
  • the mixture is stirred under hydrogen gas using palladium-carbon as a catalyst in an alcohol solvent.
  • the carbamate compound represented by Formula VI may be obtained by reacting an amine group of Formula V with carbonyl diimidazole and treating with alcohol or alkoxide.
  • the reaction can also be made using chloroformate derivatives or phosgene, but it is toxic for mass production and carbonate derivatives can be used.
  • the alcohols R'-OH [R ' which can be used in this reaction are (C1-C6) alkyl or (C6-C12) ar (C1-C6) alkyl] are alkyl alcohols such as methyl, ethyl and propyl or benzyl alcohol. desirable.
  • This reaction can also be used by mixing alcohol and alkoxide. In this case, the reaction proceeds much faster and the reaction is terminated at room temperature.
  • the reaction is most preferably a method in which ethyl alkoxide is added at room temperature using ethanol as a solvent or heated in an ethanol solvent.
  • an appropriate method may be selected according to the type of substituent R in Formula 1, and in the case of Compound 1a in which R is a hydroxyl group (-OH), (R) -glycidyl butyrate ((R)- Glycidyl butyrate) is suitable, and for compounds 1b in which R is N-acetyl, (S) -N- (bromo-2-acetoxypropyl) acetamide ((S) -N- (3-bromo -2-acetoxypropyl) acetamide) is appropriate.
  • the compounds of Formula 1 may make various derivatives such as Compound 1b or Compound 1c from Compound 1a.
  • carbamate compounds such as compound 1c are more preferably synthesized in such a manner.
  • the base used in the synthesis of Compound 1a may be butyllithium or lithium t-butoxide, but preferably lithium t-butoxide is used as the base.
  • the solvent that can be used for the reaction may be THF or DMF, but it is preferable to use a mixture of the two solvents. More preferably, THF and DMF are used in a 2: 1 ratio.
  • Derivatives of formula (1) may be made of various forms of salts, and possible salts include all possible salts that can be used as medicaments.
  • Pharmaceutically acceptable salts include acid addition salts formed by pharmaceutically acceptable free acid.
  • the inorganic acid and organic acid may be used as the free acid, and the inorganic acid used may include hydrochloric acid, bromic acid, sulfuric acid, and phosphoric acid, and the organic acid used may be citric acid, acetic acid, lactic acid, maleic acid, umarin acid, gluconic acid, and methane.
  • the present invention also encompasses hydrates of the salts of the oxazolidinone derivatives described above, particularly useful when used in the form of hydrates having crystallinity when the salts are hygroscopic
  • Solvents and reagents used in the present invention may be replaced with functional substitutes or derivatives thereof known in the art, and reaction conditions such as reaction time and temperature may be adjusted to optimize the reaction. Similar to the present invention, the product can be separated from the reaction and optionally further purified according to methods common in the art, such as extraction, crystallization, and trituration.
  • the present invention relates to a method for preparing an oxazolidinone derivative that acts as an antibiotic against resistant bacteria, including MRSA, VRE.
  • the compounds of the present invention contain a cyclic amidrazon group to form a salt, so that the solubility in water than the known compound is easier to develop oral or injection.
  • the method for preparing an oxazolidinone derivative having a cyclic amidrazon group or a pharmaceutically acceptable salt thereof according to the present invention increases the overall yield, and crystallization method or extraction method suitable for industrial scale synthesis also in separation and purification method.
  • (R) -3- (3-fluoro-4- (1-methyl-5,6-dihydro-1,2,4-triazine-4 ( 1H) -yl) phenyl) -5- (substituted methyl) oxazolidin-2-one derivatives can be synthesized on an industrial scale.
  • Example 1 Compound 1a ⁇ (R) -3- (3-fluoro-4- (1-methyl-5,6-dihydro-1,2,4-triazine-4 (1H) -Yl) phenyl) -5- (hydroxymethyl) oxazolidin-2-one ⁇
  • Methyl hydrazine (44.5 kg, 966 mol) was added to the reaction solution at 10 to 15 ° C, stirred for 5 hours, stirred at room temperature for 24 hours, and stirred at 35 to 40 ° C for 10 hours. After confirming the completion of the reaction, the mixture was cooled to room temperature and distilled water (100 kg) was added while stirring, and the mixture was left to be separated. The THF layer was separated, washed with distilled water (50 kg), dried over Na 2 SO 4 (20 kg) for 5 hours and filtered to give Compound III (11.5 kg, 50 mol) in a two-step yield of 41%.
  • the azido compound (6.1 g, 18.3 mmol) thus obtained was added to methanol (250 mL) together with Pd / C (0.9 g) and stirred for 1.5 hours under a hydrogen balloon. This solution was filtered through a Celite filter and concentrated to obtain amine compound quantitatively.
  • the amine compound thus obtained was dissolved in dichloromethane (100 mL), and CDI (8.9 g, 54.9 mmol) was added dropwise to a solution dissolved in dichloromethane (150 mL), followed by stirring at room temperature for 30 minutes.
  • Methanol (150 mL) was added to the solution and concentrated under reduced pressure. Then, 400 mL of methanol was added thereto, followed by concentration under reduced pressure until only about 200 mL of methanol remained. Then, 1M NaOMe (18.3 mL) was added thereto at room temperature. Stir for hours.
  • the present invention relates to a method for preparing an oxazolidinone derivative which acts as an antibiotic against resistant bacteria including MRSA, VRE.
  • the compounds of the present invention contain a cyclic amidrazon group to form a salt, so that the solubility in water than the known compound is easier to develop oral or injection.
  • the method for preparing an oxazolidinone derivative having a cyclic amidrazon group or a pharmaceutically acceptable salt thereof according to the present invention increases the overall yield, and crystallization method or extraction method suitable for industrial scale synthesis also in separation and purification method.
  • (R) -3- (3-fluoro-4- (1-methyl-5,6-dihydro-1,2,4-triazine-4 ( 1H) -yl) phenyl) -5- (substituted methyl) oxazolidin-2-one derivatives can be synthesized on an industrial scale.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 사이클릭 아미드라존 기를 가지는 옥사졸리디논계 항생제 화합물인 (R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체를 제조하는 방법 및 그 중간체에 관한 것으로, 출발물질로 3,4-다이플루오로-4-니트로벤젠을 사용한다. 본 발명의 제조방법에 따르면 종래 방법에 비해 간단한 방법으로 옥사졸리디논계 항생제로 유용한 화합물인 (R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체를 고순도 및 고수율로 제조할 수 있다.

Description

(R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법
본 발명은 하기 화학식 1로 표시되는 사이클릭 아미드라존 기를 가지는 옥사졸리디논계 항생제 화합물인 (R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체를 제조하는 방법 및 그 중간체에 관한 것이다.
[화학식 1]
Figure PCTKR2011001579-appb-I000001
[상기 R은 -OH 또는 -NHC(=O)R1 이며; R1은 (C1-C6)알킬 또는 (C1-C6)알콕시이다.]
하기 구조의 화합물 1a((R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(하이드록시메틸)옥사졸리딘-2-온)은 옥사졸리디논계 항생제로 그람양성균 특히, MRSA, VRE 등의 감염 치료에 사용될 수 있다.
Figure PCTKR2011001579-appb-I000002
상기 화합물에 대한 항생제로의 효능 및 제조방법은 본 발명자들에 의해 출원된 대한민국특허 출원번호 제 10-2008-0093712 호에 명시되어 있으나, 전체반응 단계가 길고 대다수의 각 단계별 정제공정에서 관크로마토그래피를 시행하여야 하므로 대량생산에는 적합하지 않다.
따라서 본 발명의 목적은 전체 반응단계를 줄이며, 분리 및 정제 방법에 있어서도 산업 규모의 합성에 적합한 결정화 방법이나 추출 방법 등을 사용하여 선행 기술과 비교하여 좀더 단순하고 경제적이며 높은 순도로 (R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체를 제조하는 방법을 제공하는 것이다.
또한, 본 발명의 다른 목적은 (R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체를 제조하는데 사용되는 제조중간체 및 그의 제조방법을 제공하는 것이다.
본 발명은 옥사졸리디논계 항생제로 유용한 화학식 1의 화합물인 (R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체를 제조하는 방법 및 그 중간체에 관한 것이다.
또한, 하기 화학식 1의 화합물은 다양한 형태의 염을 만들 수도 있으며 본 발명은 이러한 염의 형태까지도 포함한다. 이 방법은 산업적 규모로 적용될 수 있으며 특히, 본 발명은 화학식 1의 화합물을 제조하는 방법에서 사이클릭 아미드라존 기를 제조하는 신규한 합성법을 포함한다. 또한 산업 규모에 적합한 화학적 제조방법을 위해 본 발명은 비용-효과적인 결정화의 잇점이 있는 중간체 또는 그의 부가염을 제조하는 제조방법을 포함한다.
[화학식 1]
Figure PCTKR2011001579-appb-I000003
[상기 R은 -OH 또는 -NHC(=O)R1 이며; R1은 (C1-C6)알킬 또는 (C1-C6)알콕시이다.]
상기 화학식 1의 화합물의 제조방법을 하기 반응식 1에 도시하였다.
[반응식 1]
Figure PCTKR2011001579-appb-I000004
[R은 -OH 또는 -NHC(=O)R1 이며; R1은 (C1-C6)알킬 또는 (C1-C6)알콕시이고; R'는 (C1-C6)알킬 또는 (C6-C12)아르(C1-C6)알킬이다.]
본 발명의 화학식 1의 화합물을 제조하기 위한 출발물질인 화학식 IV 의 화합물은 하기 반응식 2에 도시된 바와 같이 각각 제조된다.
[반응식 2]
Figure PCTKR2011001579-appb-I000005
[X 는 할로겐, 치환 또는 비치환된 (C1-C6)알칸술포닐옥시 또는 치환 또는 비치환된 (C6-C12)아릴술포닐옥시이다.]
본 발명은 상기 반응식 1 및 2에 도시한 바와 같이,
1) 3,4-다이플루오로니트로벤젠과 에탄올아민을 반응시켜 화학식 I 의 화합물을 제조하는 단계;
2) 화학식 I 의 화합물을 이탈기 X를 함유하는 시약(agent)과 반응시켜 화학식 I 의 화합물의 알코올 기를 이탈기 X로 로 전환시켜 화학식 II-1 의 화합물을 제조(2-1단계)하거나, 화학식 I 의 화합물을 염기 존재 하에서 반응시켜 화학식 II-2 의 아지리딘 화합물을 제조(2-2단계)하는 단계;
3) 화학식 II-1 또는 화학식 II-2 의 화합물을 메틸하이드라진과 반응시켜 화학식 III의 화합물을 제조하는 단계;
4) 화학식 III 의 화합물을 트리메틸오르소포메이트와 반응시켜 화학식 IV 의 사이클릭 아미드라존 화합물을 제조하는 단계;
5) 화학식 IV 의 사이클릭 아미드라존 화합물의 니트로 기를 환원시켜 화학식 V 의 아민 화합물을 제조하는 단계;
6) 화학식 V 의 아민 화합물을 카보닐다이이미다졸과 R'-OH [R'= (C1-C6)알킬 또는 (C6-C12)아르(C1-C6)알킬]로 순차적으로 반응시켜 화학식 V 의 아민 기를 카바메이트로 전환시켜 화학식 VI 의 화합물을 제조하는 단계; 및
7) 화학식 VI 의 화합물을 고리화시켜 화학식 1 의 옥사졸리디논 화합물을 제조하는 단계를 포함하는 화학식 1의 사이클릭 아미드라존 기를 가지는 옥사졸리디논 유도체 또는 이들의 약제학적으로 허용되는 염의 제조방법을 제공한다.
이하, 각 단계에 대해 상세히 설명한다.
[1단계] 화학식 I의 화합물의 제조
화학식 I로 표시되는 화합물을 제조하기 위하여 출발 물질인 3, 4-다이플루오르니트로벤젠과 에탄올아민을 유기용매에서 환류교반시킨다. 이때 사용 가능한 용매로는 아세토나이트릴 등의 나이트릴류; 에탄올, 아이소프로판올 등의 알코올류; 테트라하이드로퓨란, 다이아이소프로필에테르, 다이옥산, 1,2-다이메톡시에탄 등의 에테르류; 벤젠, 톨루엔 등의 방향족 탄화수소류; 다이메틸아세트아마이드, 다이메틸포름아마이드 등의 아마이드류를 예시할 수 있으나, 본 발명은 이들 불활성 용매에 한정되지 않으며, 이들 용매는 단독으로 또는 혼합하여 사용할 수도 있다. 바람직하게는 아세토나이트릴, 아이소프로판올, 다이옥산 등이 적당하며 더욱 바람직하게는 아세토나이트릴이 좋다.
이 반응은 에탄올아민의 사용량에 따라 염기 존재 또는 부재하에서도 할 수 있는데 3, 4-다이플루오르니트로벤젠 대비 에탄올아민을 1당량 사용할 경우 염기를 사용하는 것이 바람직하고 1당량 이상의 과량으로 사용하는 경우에는 염기를 사용하지 않을 수도 있다. 에탄올아민을 과량 사용하는 반응에 있어서, 에탄올아민의 사용량은 1.5 내지 3당량이 바람직하며, 이 때 사용 가능한 염기는 트리에틸아민이나 다이에틸아이소프로필아민과 같은 유기염기나 탄산칼륨, 탄산나트륨 같은 무기염기가 가능하며 바람직하게는 1.1 당량에서 2당량의 범위가 적당하다.
[2단계] 화학식 II-1 및 II-2의 화합물의 제조
화학식 II-1 의 화합물은 화학식 I로 표시되는 화합물을 이탈기 X를 함유하는 시약(agent)과 반응시켜 화학식 I의 화합물의 알코올 기를 이탈기 X로 전환시켜 얻는다. 적합한 이탈 그룹으로 이탈기 X가 할로겐원자를 나타내는 경우에 이것은 염소, 브롬 또는 요오드원자이다. 이탈기 X가 술포닐옥시기를 나타내는 경우에 이것은 바람직하게는 치환 또는 비치환된 (C1-C6)알칸술포닐옥시 기 (예, 메탄술포닐옥시기, 에탄술포닐옥시기 또는 트리플루오로메탄술포닐옥시기), 또는 치환 또는 비치환된 (C6-C12)아릴술포닐옥시기 (예, 벤젠술포닐옥시, P-톨루엔술포닐옥시, p-브로모페닐술포닐옥시기, p-니트로벤젠술포닐옥시기) 등이 포함되지만 이에 국한되지는 않는다. 알코올기를 이탈기로 전환, 예를 들면, 클로로, 브로모, 메실레이트, 토실레이트 및 벤젠설포네이트와 같은 이탈 그룹으로의 전환은 당 업계에서 공지되어 있고 인지되어 있다. 상기 반응은 다이클로로메탄 과 같은 비극성 유기용매에서 수행하는 것이 바람직하며 사용되는 염기로는 트리에틸아민과 같은 아민류가 바람직하다.
화학식 II-2 의 화합물은 화학식 I로 표시되는 화합물을 트리페닐포스핀과 염기 존재 하에서 12시간 이상 최대 72시간 정도 교반시켜 제조된다. 이 반응에서 사용되는 염기는 트리에틸아민이 가장 바람직하고, 용매는 THF 와 같은 에테르(ether) 류나 대부분의 비극성 용매가 사용될 수 있으며, 바람직하게는 THF 와 테트라클로로메탄을 혼합하여 사용하는 것이 좋다.
[3단계] 화학식 III의 화합물 제조
화학식 III의 화합물은 화학식 II-1 혹은 II-2 의 화합물을 메틸하이드라진과 반응시켜 얻는다. 이때 사용 가능한 용매로는 에탄올 등의 알코올류를 비롯한 다양한 극성 유기용매가 가능하며, 화학식 II-2 의 화합물로부터 만들때는 화학식 II-2 의 반응에서 정제과정을 생략하고 반응용기에 메틸하이드라진을 첨가하여 바로 얻을 수 있다는 장점이 있다.
반응에 사용된 메틸하이드라진의 양은 바람직하게는 5~10 당량 사용하며, 20~80 ℃ 에서 반응시키는 것이 바람직하다.
[4단계] 화학식 IV의 화합물 제조
화학식 IV의 화합물은 화학식 III의 화합물을 사이클릭 아미드라존 고리를 만드는 반응으로 얻어진다. 이 반응은 오소포메이트(orthoformate)등을 아세트산 에서 반응시킴으로 얻어 질 수 있으며 또한 포름산 등으로 포밀레이션 시킨 뒤 고리화 반응을 통해서도 얻어 질 수 있다. 바람직하게는 아세트산을 용매로 하여 과량의 트리메틸오소포메이트(trimethylorthoformate)와 환류교반시켜 얻는 것이다. 더욱 바람직하게는 2~10 당량의 트리메틸오소포메이트를 섞은 20 ~ 50% 아세트산 용매를 사용하는 것이다.
[5단계] 화학식 V의 화합물 제조
화학식 V로 표시되는 아민 화합물은 화학식 IV의 사이클릭 아미드라존 화합물의 니트로 기의 환원반응으로서 얻어진다. 본 반응에서 사용할 수 있는 용매로는 메탄올, 에탄올, 프로판올 등의 알코올나 테트라히드로퓨란, 디이소프로필에테르, 디옥산, 1,2-디메톡시에탄 등의 에테르류 등을 들 수 있다. 이러한 니트로기의 환원은 많이 알려져 있으며 아연, 철, 주석 및 염화주석 등과 같은 금속을 산성조건에서 사용하거나, 라니-니켈, 팔라듐-탄소 등의 전이 금속을 촉매로 수소첨가반응하여 이루어질 수 있다. 바람직하게는 알코올 용매에서 팔라듐-탄소를 촉매로 사용하여 수소기체 하에서 교반하는 것이다.
[6단계] 화학식 VI의 화합물 제조
화학식 VI로 표시되는 카바메이트 화합물은 화학식 V의 아민기를 카보닐다이이미다졸 (carbonyl diimidazole) 과 반응시킨 뒤 알코올이나 알콕사이드로 처리하여 얻어질 수 있다. 또한 본 반응은 클로로포메이트 유도체나 포스겐 등을 사용하여서도 만들 수 있으나 대량생산에 사용하기에는 유독하며, 카보네이트 유도체도 사용 할 수도 있으나 반응성이 약한 단점이 있어 카보닐다이이미다졸을 사용하는것이 바람직스럽다.
본 반응에서 사용할 수 있는 알코올 R'-OH [R'는 (C1-C6)알킬 또는 (C6-C12)아르(C1-C6)알킬]은 메틸, 에틸, 프로필 등의 알킬 알코올류나 벤질 알코올류가 바람직하다. 또한 이 반응은 알코올과 알콕사이드를 혼합하여 사용할 수도 있다. 이 경우 반응이 훨씬 빨리 진행되며 상온에서 반응은 금방 종결된다. 이 반응은 에탄올을 용매로 하여 상온에서 에틸 알콕사이드를 넣거나 에탄올 용매에서 가열하는 방법이 가장 바람직하다.
[7단계] 화학식 1의 화합물 제조
화학식 VI의 카바메이트 화합물로부터 화학식 1의 옥사졸리디논 화합물을 합성하는 방법은 여러가지 방법이 많이 알려져 있으며 화학식 1의 R 그룹에 따라 다양한 방법을 선택할 수 있다. 아래의 반응식 3에 이러한 반응의 예를 나타내었으며 반응식 3은 이러한 반응의 한 예시이며 본 발명이 여기에만 국한되는 것은 아니다.
[반응식 3]
Figure PCTKR2011001579-appb-I000006
상기 반응식 3에 나타낸 것처럼 화학식 1의 치환기 R의 종류에 따라 적절한 방법을 선택할 수 있으며, R 이 하이드록실기(-OH)인 화합물 1a의 경우에는 (R)-글리시딜 부티레이트 ((R)-Glycidyl butyrate)을 사용하는 것이 적합하며, R 이 N-acetyl 인 화합물 1b의 경우에는 (S)-N-(브로모-2-아세톡시프로필)아세트아마이드 ((S)-N-(3-bromo-2-acetoxypropyl)acetamide) 를 이용하는 방법이 적절하다. 특히 화합물 1b의 합성 방법은 많이 알려져 있으며 특히 최근 출원된 특허 EP 2072513 A1, EP 2072514 A1, EP2141161 A1, EP 2141162 A1 에서 많이 사용되었으며 자세한 실험방법이 나와 있다. 또한 R 이 카바메이트인 화합물 1c의 경우에는 옥시라닐카바메이트 화합물을 이용할 수 있다.
또한 이 화합물들은 아래 반응식 4에 나타낸 바와 같이 화합물 1a로부터 모두 합성할 수 있다.
[반응식 4]
Figure PCTKR2011001579-appb-I000007
상기 반응식 4에 나타낸 바와 같이 화학식 1의 화합물들은 화합물 1a로부터 화합물 1b 또는 화합물 1c 와 같은 다양한 유도체를 만들 수도 있다. 특히 화합물 1c와 같은 카바메이트 화합물은 이와 같은 방법으로 합성하는 것이 더욱 바람직하다.
화합물 1a의 합성에서 사용하는 염기로는 부틸리튬이나 리튬 t-부톡사이드등이 가능하나 바람직스럽게는 리튬 t-부톡사이드를 염기로 사용하는 것이 좋다. 반응에 사용할 수 있는 용매는 THF 나 DMF 등이 가능하나 두 용매를 혼합하여 사용하는 것이 바람직 스럽다. 더욱 바람직스럽게는 THF 와 DMF 를 2:1의 비율로 사용 하는 것이다.
화합물 1b 및 1c의 합성은, 각각 1.3 당량씩의 트리페닐포스핀과 다이아이소프로필 아조다이카복실레이트 (DIAD), 다이페닐포스포닐아자이드(DPPA)를 THF 용매에서 넣어주어 아지도 화합물을 만든 뒤 Pd/C 촉매로 수소화 반응시켜 아민 화합물을 만들었다. 이렇게 얻은 아민 화합물을 Ac2O 와 반응시키면 화합물 1b가 만들어지며, 2~3 당량의 카보닐다이이미다졸과 반응시킨 뒤, 메탄올 용매에서 1 당량의 메톡사이드를 넣어주면 화합물 1c 가 만들어진다.
화학식 1의 유도체는 다양한 형태의 염으로 만들 수도 있으며 이때 가능한 염으로는 약제로 사용할 수 있는 가능한 모든 염을 포함한다. 악제학적으로 허용가능한 염은 약제학적으로 허용가능한 유리산(free acid)에 의해 형성된 산부가염을 포함한다. 상기 유리산으로는 무기산과 유기산을 모두 사용할 수 있으며, 사용되는 무기산은 염산, 브롬산, 황산 및 인산 등이 있으며, 사용되는 유기산은 구연산, 초산, 젖산, 말레인산, 우마린산, 글루콘산, 메탄술폰산, 글리콘산, 숙신산, 4-톨루엔술폰산, 트리플루오로아세트산, 갈룩투론산, 엠본산, 글루탐산 및 아스파르트산 등이 있다. 또한 본 발명은 상기한 옥사졸리디논 유도체의 염의 수화물을 포함하며, 특히 상기한 염이 흡습성을 갖는 경우 결정성을 갖는 수화물 형태의 사용하는 경우 유용하다.
본 발명에서 사용되는 용매 및 시약은 당업계에게 알려진 그의 기능적 대체물 또는 유도체로 대체될 수 있으며, 반응 시간 및 온도 등의 반응 조건은 반응을 최적화하기 위해 조정될 수 있다. 본 발명과 유사하게, 반응으로부터 생성물은 분리될 수 있고, 경우에 따라, 추출, 결정화, 및 트리투레이션(trituration)과 같은 당업계에 일반적인 방법에 따라 추가로 정제될 수 있다.
이상에서 살펴본 바와 같이, 본 발명은 MRSA, VRE를 비롯한 내성균에 대한 항생제로 작용하는 옥사졸리디논 유도체의 제조 방법에 관한 것이다. 또한 본 발명의 화합물들은 사이클릭 아미드라존 기를 포함하고 있어 염의 형태를 만들 수 있으므로 기존에 알려진 화합물보다 물에 대한 용해도가 높아 경구용 혹은 주사제로의 개발이 용이하다.
본 발명에 따른 사이클릭 아미드라존 기를 가지는 옥사졸리디논 유도체 또는 이들의 약제학적으로 허용되는 염의 제조방법은 전체수율을 높이며, 분리 및 정제 방법에 있어서도 산업 규모의 합성에 적합한 결정화 방법이나 추출 방법 등을 사용하여 선행 기술과 비교하여 경제적이며 높은 순도로 (R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체를 산업적 규모로 합성할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예 및 실험예를 제시한다. 그러나 하기의 실시예 및 실험예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예 1] 화학식 1의 화합물 1a {(R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(하이드록시메틸)옥사졸리딘-2-온}의 제조
화합물 I 의 제조
3, 4-다이플루오르니트로벤젠 (158 g, 0.99 mol, Aldrich사 제품)을 아세토니트릴 (800 mL)에 녹인 후 에탄올아민 (117 g, 1.9 mol)을 넣고 4시간 동안 환류 교반했다. 상기 반응물을 상온으로 식힌 후, 감압농축하고 다이에틸이서(diethylether)로 고체화(trituration) 한 뒤 여과하여 노란색의 화합물 I (199 g, 0.99 mol, 100%)을 얻었다.
1H NMR (400 MHz, chloroform-d1) δ = 7.97 (d, J = 8.8 Hz, 1H), 7.87 (dd, J 1 = 11.6 Hz, J 2 = 2.4 Hz, 1H), 6.65 (t, J = 8.8 Hz, 1H), 5.10-4.87 (br s, 1H), 3.97-3.83 (m, 2H), 3.43-3.37 (m, 2H).
LCMS: C8H9-FN2O3 에 대하여 201 (M+H+)
화합물 II-1 (X=OMs)의 제조
화합물 I (37.7 g, 188 mmol)을 다이클로로메탄 (400 mL)에 녹인 뒤 TEA (39.7 mL, 283 mmol)을 0 ℃에서 넣고 Ms-Cl (17.5 mL, 226 mmol)을 천천히 넣어주었다. 30분간 교반시킨 뒤 다이클로로메탄 (400 mL)로 묽히고 증류수 (500 mL)로 세척하고 물층은 다시 다이클로로메탄 (400 mL X 3)로 추출하였다. 유기층을 Na2SO4로 건조시킨 후 여과하여 감압농축하여 노란색 고체 화합물 II-1 (52.5 g, 99%)를 얻었다.
1H NMR (600 MHz, chloroform-d1) δ = 7.99 (d, J = 9.0 Hz, 1H), 7.90 (dd, J 1 = 11.4 Hz, J 2 = 2.4 Hz, 1H), 6.67 (t, J = 9.0 Hz, 1H), 4.99 (br s, 1H), 4.43 (t, J = 5.4 Hz, 2H), 3.65 (q, J = 5.4 Hz, 2H), 3.04 (s, 3H)
LCMS: C9H11-FN2O5S 에 대하여 279 (M+H+)
화합물 III 의 제조
화합물 II-1 (52.5 g, 188 mmol)을 EtOH (300 mL)에 넣고 교반하면서 DIPEA (32.8 mL, 188 mmol)을 넣고 40% 메틸하이드라진 수용액 (75 mL, 570 mmol)을 넣고 2시간 동안 환류교반하였다. 용매를 감압농축시키고 다이클로로메탄 (400 mL)로 묽히고 sat. NaHCO3 (400 mL)로 세척하였다. 물층을 다이클로로메탄 (250 mL)로 한번 더 추출한 뒤, 유기층을 모아서 Na2SO4로 건조한 후 여과하여 감압농축하여 노란색 고체 화합물 III (42.9 g, 100%)을 정량적으로 얻었다.
1H NMR (600 MHz, chloroform-d1) δ = 7.99 (dd, J 1 = 9.0 Hz, J 2 = 2.4 Hz, 1H), 7.86 (dd, J 1 = 11.4 Hz, J 2 = 2.4 Hz, 1H), 6.61 (t, J = 9.0 Hz, 1H), 5.93 (br s, 1H), 3.89 (q, J = 5.4 Hz, 2H), 2.99 (br s, 2H), 2.72 (t, J = 5.4 Hz, 2H), 2.58 (s, 3H)
LCMS: C9H13-FN4O2 에 대하여 229 (M+H+)
화합물 IV 의 제조
화합물 III (42.9 g, 188 mmol)을 AcOH (200 mL) 와 트리메틸오소포메이트 (206 mL, 1.88 mol)에 넣고 15시간 동안 환류교반 시켰다. 용매를 감압농축시키고 에틸아세테이트 (700 mL)로 묽힌 뒤, 증류수 (500 mL)를 넣고 Na2CO3를 넣어 용액의 pH 가 8~9 정도가 되게 한 후 분액깔대기로 유기층을 분리하였다. 물층을 다시 에틸아세테이트 (300 mL)로 추출하고 유기층을 모아서 Na2SO4로 건조한 후, 실리카를 5 cm 정도 채운 관으로 여과하여 감압농축하여 붉은색 고체 화합물 IV (34.5 g, 77%)을 얻었다.
1H NMR (400 MHz, chloroform-d1) δ = 8.07-7.99 (m, 2H), 7.13 (m, 2H), 3.93 (m, 2H), 3.08 (m, 2H), 2.83 (s, 3H)
LCMS: C10H11-FN4O2 에 대하여 239 (M+H+)
화합물 V 의 제조
화합물 IV (34.5 g, 145 mmol)을 MeOH (400 mL)에 넣고 10% Pd/C (10 g)을 첨가한 후, 수소풍선을 플라스크에 장착시키고 실온에서 4시간동안 교반시켰다. 셀라이트를 이용하여 감압여과로 Pd/C를 제거하고 여액을 감압농축하여 주황빛 고체 화합물 V (29.3 g, 97%)를 얻었다.
1H NMR (600 MHz, chloroform-d1) δ = 6.92 (t, J = 9.0 Hz, 1H), 6.77 (s, 1H), 6.44-6.39 (m, 2H), 3.78 (br s, 2H), 3.73 (t, J = 4.8 Hz, 2H), 2.94 (t, J = 4.8 Hz, 2H), 2.77 (s, 3H)
LCMS: C10H13-FN4 에 대하여 209 (M+H+)
화합물 VI (R'= -CH 2 CH 3 )의 제조
카보닐다이이미다졸 (46 g, 282 mmol)을 다이클로로메탄 (400 mL)에 넣고 교반하면서 화합물 V (29.3 g, 141 mmol)을 천천히 첨가하였다. 이 용액을 3시간동안 상온에서 교반시키고 용액이 200 mL 정도 남을때까지 감압농축하고 EtOH (200 mL)을 넣고 다시 감압농축하였다. 이 용액에 다시 EtOH (400 mL)을 넣고 50 ℃에서 4시간 동안 가열하였다. 상온으로 냉각시킨 뒤, 감압농축후 에틸아세테이트 (400 mL)로 묽히고 6N HCl 을 pH 6 정도가 될 때까지 첨가하였다. 유기층을 분리 한 후, 물층을 다이클로로메탄 (300 mL X 6)으로 다시 추출하였다. 유기층을 모아서 Na2SO4로 건조 후 여과하여 감압 농축하여 흰색고체 화합물 VI (30.5 g, 77%)을 얻었다.
1H NMR (600 MHz, chloroform-d1) δ = 7.40 (br d, J = 12.6 Hz, 1H), 7.03 (t, J = 9.0 Hz, 1H), 7.00 (br dd, J 1 = 9.0 Hz, J 2 = 1.8 Hz, 1H), 6.88 (s, 1H), 6.76 (s, 1H), 4.23 (q, J = 7.2 Hz, 2H), 3.80 (t, J = 4.8 Hz, 2H), 2.97 (t, J = 4.8 Hz, 2H), 2.78 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H)
LCMS: C13H17-FN4O2 에 대하여 281 (M+H+)
화합물 1a 의 제조
화합물 VI (30.5 g, 109 mmol)을 THF (300 mL) 와 DMF(150 mL) 혼합용액에 넣고 교반하면서 0 ℃에서 MeOH (8.8 mL, 218 mmol)과 tBuOLi (26.1 g, 327 mmol)을 10분간에 걸처 서서히 넣은 뒤, 20분간 교반시켰다. 이 용액에 (R)-글리시딜 부티레이트 (31.4 mL, 218 mmol)을 넣고 상온에서 10시간 동안 교반시켰다. 이 용액에 sat. NH4Cl (100 mL)를 넣고 1N HCl 로 중화시키고 감압농축한 뒤, 에틸아세테이트로 (400mL)로 묽히고 증류수 (300mL)로 세척하였다. 수층은 다시 다이클로로메탄 (300 mL X 4) 추출하였다. 유기층을 모아서 Na2SO4로 건조 후 여과하여 감압 농축 하고, 헥산으로 고체화 (trituration) 한 뒤 에틸이서로 세척하였다. 이 고체를 다시 아이소프로판올에서 가열 후 냉각시키면서 생기는 고체를 여과하여 흰색 고체 화합물 1a (22.5 g, 67%)을 얻었다.
1H NMR (600MHz, DMSO-d6) d = 7.59 (dd, J 1 = 13.8 Hz, J 2 = 2.4 Hz, 1H), 7.33-7.30 (m, 2H), 6.84 (s, 1H), 5.23 (t, J = 5.4 Hz, 1H), 4.70 (m, 1H), 4.07 (t, J = 9.0 Hz, 1H), 3.82 (m, 1H), 3.71 (t, J = 4.8 Hz, 2H), 3.69-3.54 (m, 2H), 2.87 (t, J = 4.8 Hz, 2H), 2.61 (s, 3H)
LCMS: C14H17-FN4O3 에 대하여 309 (M+H+)
[실시예 2] 화학식 II-2의 화합물을 중간체로 이용한 제조방법
Figure PCTKR2011001579-appb-I000008
화합물 I (24.2 kg, 121 mol)을 THF (130 kg)에 녹인 뒤 트리페닐포스핀 (41 kg, 156 mol) 과 TEA (24.5 kg, 242 mol)을 10~15 ℃에서 넣고, 여기에 다시 CCl4 (37.3 kg)를 넣고 1시간에 걸쳐 서서히 상온으로 올린 뒤, 하루동안 교반시켰다. 반응이 종료된 것을 확인한 후, 바로 다음단계로 진행하였다.
위의 반응액에 메틸하이드라진 (44.5 kg, 966 mol)을 10 ~ 15 ℃에서 넣고 5시간동안 교반 한 뒤, 상온에서 24 시간동안 교반하고 35 ~ 40 ℃에서 10시간동안 교반하였다. 반응의 종료를 확인 한 후, 상온으로 냉각시키고 증류수 (100 kg)을 교반하면서 넣은 후 층분리가 될 수 있게 방치하였다. THF 층을 분리하여 증류수 (50 kg)으로 세척한 후, Na2SO4 (20 kg)으로 5시간동안 건조시키고 여과하여 화합물 III (11.5 kg, 50 mol)을 두 단계 수율41%로 얻었다.
[실시예 3] 화학식 1의 화합물 1c의 제조
Figure PCTKR2011001579-appb-I000009
화합물 1a (7g, 22.7 mmol)과 트리페닐포스핀 (7.7 g, 29.5 mmol)을 테트라하드로퓨란 (100 mL)에 넣고 교반하면서 DIAD (5.8 mL, 29.5 mmol) 와 다이페닐포스포닐아자이드(DPPA, 5.1mL, 29.5 mmol)을 0 ℃에서 순차적으로 서서히 넣고 상온에서 1.5시간 교반하였다. 이 용액에 증류수 50 mL를 넣은 후 5분간 교반하고 용액이 절반정도 남을때까지 감압농축 한 뒤, 에틸아세테이트로 묽히고 sat. NaHCO3로 세척하였다. 유기층을 Na2SO4로 건조 후 여과하여 감압 농축하고 실리카 필터하여 흰색고체의 아지도 화합물 (6.1 g, 81%)을 얻었다.
이렇게 얻은 아지도 화합물 (6.1 g, 18.3 mmol)을 Pd/C (0.9 g)과 함께 메탄올 (250 mL)에 넣고 수소풍선 하에서 1.5 시간동안 교반하였다. 이 용액을 셀라이트 필터하고 농축하여 아민 화합물을 정량적으로 얻었다.
이렇게 얻은 아민화합물을 다이클로로메탄 (100 mL)에 녹인 후, CDI (8.9 g, 54.9 mmol)를 다이클로로메탄 (150 mL)에 녹인 용액에 적가한 후 30분간 상온에서 교반하였다. 이 용액에 메탄올 (150 mL)을 넣고 감압농축하고 다시 400 mL 의 메탄올을 넣고 200 mL 정도의 메탄올만 남을때까지 감압농축하여 다이클로로메탄을 제거 한 후, 1M NaOMe (18.3 mL)을 넣고 상온에서 1시간동안 교반하였다. 이 용액을 감압농축한 뒤 에틸아세테이트 (100 mL) 에 녹인 후 증류수 100 mL 넣고 4N HCl로 중화시켰다. 물층은 다시 다이클로로메탄 (300 mL X 3)으로 추출하였다. 유기층을 모아서 Na2SO4로 건조 후 여과하여 감압 농축 하고 실리카 필터하여 흰색고체의 화합물 1c (3 g, 45%)을 얻었다.
1H NMR (400MHz, CDCl3) d = 7.49 (dd, J 1 = 9.0 Hz, J 2 = 1.4 Hz, 1H), 7.14 (dd, J 1 = 6.0 Hz, J 2 = 1.4 Hz, 1H), 7.08 (t, J = 6.0 Hz, 1H), 6.87 (s, 1H), 5.08 (br t, 1H), 4.76 (m, 1H), 4.01 (t, J = 6.0 Hz, 1H), 3.80-3.76 (m, 3H), 3.66 (s, 3H), 3.64-3.51 (m, 2H), 2.96 (t, J = 3.2 Hz, 2H), 2.76 (s, 3H)
LCMS: C16H20FN5O4 에 대하여 366 (M+H+)
본 발명은 MRSA, VRE를 비롯한 내성균에 대한 항생제로 작용하는 옥사졸리디논 유도체의 제조 방법에 관한 것이다. 또한 본 발명의 화합물들은 사이클릭 아미드라존 기를 포함하고 있어 염의 형태를 만들 수 있으므로 기존에 알려진 화합물보다 물에 대한 용해도가 높아 경구용 혹은 주사제로의 개발이 용이하다.
본 발명에 따른 사이클릭 아미드라존 기를 가지는 옥사졸리디논 유도체 또는 이들의 약제학적으로 허용되는 염의 제조방법은 전체수율을 높이며, 분리 및 정제 방법에 있어서도 산업 규모의 합성에 적합한 결정화 방법이나 추출 방법 등을 사용하여 선행 기술과 비교하여 경제적이며 높은 순도로 (R)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1H)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체를 산업적 규모로 합성할 수 있다.

Claims (7)

1) 화학식 IV 의 사이클릭 아미드라존 화합물의 니트로 기를 환원시켜 화학식 V 의 아민 화합물을 제조하는 단계;
2) 화학식 V 의 아민 화합물을 카보닐다이이미다졸과 R'-OH [R'= (C1-C6)알킬 또는 (C6-C12)아르(C1-C6)알킬]로 순차적으로 반응시켜 화학식 V 의 아민 기를 카바메이트로 전환시켜 화학식 VI 의 화합물을 제조하는 단계;
3) 화학식 VI 의 화합물을 고리화시켜 화학식 1 의 옥사졸리디논 화합물을 제조하는 단계
를 포함하는 화학식 1의 사이클릭 아미드라존 기를 가지는 옥사졸리디논 유도체 또는 이들의 약제학적으로 허용되는 염의 제조방법.
[화학식 1]
Figure PCTKR2011001579-appb-I000010
[화학식 IV]
Figure PCTKR2011001579-appb-I000011
[화학식 V]
Figure PCTKR2011001579-appb-I000012
[화학식 VI]
Figure PCTKR2011001579-appb-I000013
[R은 -OH 또는 -NHC(=O)R1 이며; R1은 (C1-C6)알킬 또는 (C1-C6)알콕시이고; R'는 (C1-C6)알킬 또는 (C6-C12)아르(C1-C6)알킬이다.]
제 1항에 있어서,
하기 화학식 IV의 사이클릭 아미드라존 화합물은
1) 3,4-다이플루오로니트로벤젠과 에탄올아민을 반응시켜 화학식 I 의 화합물을 제조하는 단계;
2) 화학식 I 의 화합물을 이탈기 X를 함유하는 시약(agent)와 반응시켜 화학식 I 의 화합물의 알코올 기를 이탈기 X로 로 전환시켜 화학식 II-1 의 화합물을 제조하는 단계;
3) 화학식 II-1 의 화합물을 메틸하이드라진과 반응시켜 화학식 III의 화합물을 제조하는 단계;
4) 화학식 III 의 화합물을 트리메틸오르소포메이트와 반응시켜 화학식 IV 의 사이클릭 아미드라존 화합물을 제조하는 단계로 제조되는 것을 특징으로 하는 제조방법.
[화학식 I]
Figure PCTKR2011001579-appb-I000014
[화학식 II-1]
Figure PCTKR2011001579-appb-I000015
[화학식 III]
Figure PCTKR2011001579-appb-I000016
[화학식 IV]
Figure PCTKR2011001579-appb-I000017
[X 는 할로겐, 치환 또는 비치환된 (C1-C6)알칸술포닐옥시 또는 치환 또는 비치환된 (C6-C12)아릴술포닐옥시이다.]
제 1항에 있어서,
하기 화학식 IV의 사이클릭 아미드라존 화합물은
1) 3,4-다이플루오로니트로벤젠과 에탄올아민을 반응시켜 화학식 I 의 화합물을 제조하는 단계;
2) 화학식 I 의 화합물을 염기 존재 하에서 반응시켜 화학식 II-2 의 아지리딘 화합물을 제조하는 단계;
3) 화학식 II-2 의 화합물을 메틸하이드라진과 반응시켜 화학식 III 의 화합물을 제조하는 단계;
4) 화학식 III 의 화합물을 트리메틸오르소포메이트와 반응시켜 화학식 IV 의 사이클릭 아미드라존 화합물을 제조하는 단계로 제조되는 것을 특징으로 하는 제조방법.
[화학식 I]
Figure PCTKR2011001579-appb-I000018
[화학식 II-2]
Figure PCTKR2011001579-appb-I000019
[화학식 III]
Figure PCTKR2011001579-appb-I000020
[화학식 IV]
Figure PCTKR2011001579-appb-I000021
제 1항에 있어서,
하기 화학식 1a의 화합물을 트리페닐포스핀, 다이아이소프로필아조다이카복실레이트(DIAD) 및 다이페닐포스포닐아자이드(DPPA) 존재하에서 반응시킨 후 수소화반응시켜 얻어진 아민 화합물을 무수아세트산과 반응시켜 화학식 1b의 화합물을 제조하는 단계를 포함하는 제조방법.
[화학식 1a]
Figure PCTKR2011001579-appb-I000022
[화학식 1b]
Figure PCTKR2011001579-appb-I000023
제 1항에 있어서,
하기 화학식 1a의 화합물을 트리페닐포스핀, 다이아이소프로필아조다이카복실레이트(DIAD) 및 다이페닐포스포닐아자이드(DPPA) 존재하에서 반응시킨 후 수소화반응시켜 얻어진 아민 화합물을 카보닐다이이미다졸과 (C1-C6)알콕사이드로 순차적으로 반응시켜 화학식 1c의 화합물을 제조하는 단계를 포함하는 제조방법.
[화학식 1a]
Figure PCTKR2011001579-appb-I000024
[화학식 1c]
Figure PCTKR2011001579-appb-I000025
하기 화학식 IV로 표시되는 사이클릭 아미드라존 화합물.
[화학식 IV]
Figure PCTKR2011001579-appb-I000026
하기 화학식 VI로 표시되는 사이클릭 아미드라존 화합물.
[화학식 VI]
Figure PCTKR2011001579-appb-I000027
[R'는 (C1-C6)알킬 또는 (C6-C12)아르(C1-C6)알킬이다.]
PCT/KR2011/001579 2010-03-08 2011-03-08 (r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법 WO2011111971A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/583,492 US8703939B2 (en) 2010-03-08 2011-03-08 Method for preparing (R)-3-(3-fluoro-4-(1-methyl-5,6-dihydro-1,2,4-triazin-4(1H)-yl)phenyl)-5-(substituted methyl)oxazolidin-2-one derivatives
CN201180013805.4A CN102803256B (zh) 2010-03-08 2011-03-08 (r)-3-(3-氟-4-(1-甲基-5,6-二氢-1,2,4-三嗪-4(1h)-基)苯基)-5-(取代甲基)恶唑烷-2-酮衍生物的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100020525A KR101128029B1 (ko) 2010-03-08 2010-03-08 (r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법
KR10-2010-0020525 2010-03-08

Publications (2)

Publication Number Publication Date
WO2011111971A2 true WO2011111971A2 (ko) 2011-09-15
WO2011111971A3 WO2011111971A3 (ko) 2012-01-12

Family

ID=44563981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001579 WO2011111971A2 (ko) 2010-03-08 2011-03-08 (r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법

Country Status (4)

Country Link
US (1) US8703939B2 (ko)
KR (1) KR101128029B1 (ko)
CN (1) CN102803256B (ko)
WO (1) WO2011111971A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115702900B (zh) * 2021-08-09 2024-02-09 上海纳为生物技术有限公司 一种rmx2001制剂组合物
KR102608785B1 (ko) 2021-12-27 2023-12-04 가톨릭대학교 산학협력단 옥사졸리딘-2-온 유도체 및 이의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035648A1 (en) * 2001-10-25 2003-05-01 Astrazeneca Ab Aryl substituted oxazolidinones with antibacterial activity
WO2004048350A2 (en) * 2002-11-28 2004-06-10 Astrazeneca Ab Oxazolidinones as antibacterial agents
WO2004056819A1 (en) * 2002-12-19 2004-07-08 Astrazeneca Ab Oxazolidinone derivatives as antibacterial agents
EP2072514A1 (en) * 2007-12-17 2009-06-24 Ferrer Internacional, S.A. 1(2)H-tetrazol-5-yl-phenyl-oxazolidinones as antibacterial agents
EP2072513A1 (en) * 2007-12-17 2009-06-24 Ferrer Internacional, S.A. A cyano piperidinyl-phenil-oxazolidinone and use thereof
WO2010036000A2 (en) * 2008-09-24 2010-04-01 Legochem Bioscience Ltd. Novel oxazolidinone derivatives with cyclic amidoxime or cyclic amidrazone and pharmaceutical compositions thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0227704D0 (en) * 2002-11-28 2003-01-08 Astrazeneca Ab Chemical compounds
EP2141162A1 (en) 2008-07-01 2010-01-06 Ferrer Internacional, S.A. 3-(n-heterocyclyl)-pyrrolidinyl-phenyl-oxazolidinones as antibacterial agents
EP2141161A1 (en) 2008-07-01 2010-01-06 Ferrer Internacional, S.A. 3-cyanopyrrolidinyl-phenyl-oxazolidinones as antibacterial agents

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035648A1 (en) * 2001-10-25 2003-05-01 Astrazeneca Ab Aryl substituted oxazolidinones with antibacterial activity
WO2004048350A2 (en) * 2002-11-28 2004-06-10 Astrazeneca Ab Oxazolidinones as antibacterial agents
WO2004056819A1 (en) * 2002-12-19 2004-07-08 Astrazeneca Ab Oxazolidinone derivatives as antibacterial agents
EP2072514A1 (en) * 2007-12-17 2009-06-24 Ferrer Internacional, S.A. 1(2)H-tetrazol-5-yl-phenyl-oxazolidinones as antibacterial agents
EP2072513A1 (en) * 2007-12-17 2009-06-24 Ferrer Internacional, S.A. A cyano piperidinyl-phenil-oxazolidinone and use thereof
WO2010036000A2 (en) * 2008-09-24 2010-04-01 Legochem Bioscience Ltd. Novel oxazolidinone derivatives with cyclic amidoxime or cyclic amidrazone and pharmaceutical compositions thereof

Also Published As

Publication number Publication date
WO2011111971A3 (ko) 2012-01-12
CN102803256A (zh) 2012-11-28
US20130005967A1 (en) 2013-01-03
KR20110101499A (ko) 2011-09-16
US8703939B2 (en) 2014-04-22
CN102803256B (zh) 2015-03-18
KR101128029B1 (ko) 2012-03-29

Similar Documents

Publication Publication Date Title
US20120283434A1 (en) Process for the preparation of rivaroxaban and intermediates thereof
PL183512B1 (pl) Przeciwbakteryjne fenylooksazolidynony
AU2018308038B2 (en) Improved process for preparing aminopyrimidine derivatives
AU2018308164B2 (en) Intermediates useful for the synthesis of a selective inhibitor against protein kinase and processes for preparing the same
WO2017023123A1 (ko) 크로마논 유도체의 신규한 제조방법
WO2019117550A1 (en) Intermediates for optically active piperidine derivatives and preparation methods thereof
FI120259B (fi) Menetelmä epoksidin valmistamiseksi
WO2011111971A2 (ko) (r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법
US20060069270A1 (en) Process for the preparation of 1,3,5-trisubstituted pyrazoles via [3+2] cycloaddition
WO2018084625A1 (en) Method for preparation of (s)-n1-(2-aminoethyl)-3-(4-alkoxyphenyl)propane-1,2-diamine trihydrochloride
WO2021230691A1 (ko) 친환경 용매를 이용한 아질사탄의 제조방법 및 이에 관한 핵심 중간체 화합물
WO2022080812A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조 방법
WO2011096697A2 (en) Process for preparing voriconazole by using new intermediates
AU2019268945B2 (en) Novel processes for preparing a diaminopyrimidine derivative or acid addition salt thereof
WO2014175563A1 (en) Novel method of preparing 4-(4-aminophenyl)-3-morpholinone
WO2023013974A1 (ko) Parp 저해제인 루카파립과 그 중간체의 신규한 제조방법
WO2023013973A1 (ko) 신규한 루카파립의 제조방법
WO2017090991A1 (ko) 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법
WO2013180403A1 (en) Process for preparing gefitinib and an intermediate used for preparing thereof
WO2024058311A1 (ko) 엑토인의 제조방법
WO2023167475A1 (ko) 루카파립의 개선된 제조방법
WO2020085616A1 (ko) 아픽사반의 제조방법
WO2022005175A1 (ko) Pi3k 저해제로서의 화합물의 제조방법 및 이의 제조를 위한 중간체 화합물
EP3356372A1 (en) Novel process for preparing thienopyrimidine compound and intermediates used therein
WO2018147555A1 (ko) 4, 5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013805.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753576

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2091/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13583492

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11753576

Country of ref document: EP

Kind code of ref document: A2