WO2023167475A1 - 루카파립의 개선된 제조방법 - Google Patents

루카파립의 개선된 제조방법 Download PDF

Info

Publication number
WO2023167475A1
WO2023167475A1 PCT/KR2023/002732 KR2023002732W WO2023167475A1 WO 2023167475 A1 WO2023167475 A1 WO 2023167475A1 KR 2023002732 W KR2023002732 W KR 2023002732W WO 2023167475 A1 WO2023167475 A1 WO 2023167475A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
rucaparib
preparing
group
Prior art date
Application number
PCT/KR2023/002732
Other languages
English (en)
French (fr)
Inventor
천철홍
박진재
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220026717A external-priority patent/KR102677962B1/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023167475A1 publication Critical patent/WO2023167475A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • the present invention relates to an improved method for preparing rucaparib capable of achieving excellent synthesis yield and reproducibility. More specifically, the present invention uses 4-cyanobenzaldehyde in the step of synthesizing an indole skeleton in which a substituent is introduced at position 2,3,4,6, and then simultaneously reduces the cyano group to obtain both lactam and amine groups. It relates to an improved manufacturing method for synthesizing rucaparib having the advantage of being able to be introduced and a novel intermediate that can be used for its preparation.
  • Rucaparib brand name: rubraca
  • PRP poly(ADP-ribose) polymerase
  • rucaparib was approved for prostate cancer in 2020, as well as ovarian cancer, and is in broad preclinical trials for many other types of cancer, including breast cancer.
  • the present inventors preferentially synthesized an indole skeleton in which substituents were introduced at positions 2,3,4,6, unlike the previous synthesis route, and then at positions 3 and 4.
  • a novel total synthesis pathway for synthesizing rucaparib was discovered through a heptagonal lactam ring formation reaction between substituents introduced at positions 2,3,4,6, and in particular, an indole skeleton with substituents introduced at position 2,3,4,6
  • 4-cyanobenzaldehyde in the synthesis step and then simultaneously reducing the cyano group to introduce both lactam and amine groups
  • An object of the present invention is to provide an improved method for preparing rucaparib capable of achieving excellent synthesis yield and reproducibility.
  • Another object of the present invention is to provide a novel intermediate that can be used for the preparation of rucaparib.
  • R 1 is straight-chain or branched C 1 -C 5 alkyl.
  • C 1 -C 5 alkyl means a hydrocarbon having 1 to 5 carbon atoms, and "straight-chain or branched” means that the hydrocarbon is normal, secondary, or tricyclic. means containing a primary carbon atom.
  • suitable “C 1 -C 5 alkyl” include methyl, ethyl, 1-propyl (n-propyl), 2-propyl, 1-butyl, 2-methyl-1-propyl and 3-pentyl, and the like. However, it is not limited to these.
  • the conversion to the compound of formula (3) is preferably performed in the presence of a dehydrating agent.
  • a dehydrating agent can promote the overall reaction by removing water molecules generated during imine intermediate formation.
  • preferred examples of the dehydrating agent include, but are not limited to, one or more compounds selected from the group consisting of TiCl 4 , MgSO 4 and Na 2 SO 4 .
  • the conversion to the compound of formula (3) may be performed with molecular sieves or azeotropic distillation.
  • the catalyst used in the step of converting the compound of formula (3) is MCN or N-heterocyclic carbene, where M is an alkali metal or NR 4 + , R is H or straight or branched C 1 -C 5 alkyl.
  • the catalyst serves to promote a reaction in which an indole backbone is formed through cyclization of imine intermediates generated in the middle of the reaction.
  • examples of preferred N-heterocyclic carbene include compounds selected from the group consisting of imidazolium, triazolium, and thiazolium, but , but is not limited to these.
  • R 1 is straight-chain or branched C 1 -C 5 alkyl
  • P 1 and P 2 are amine protecting groups and are each independently methoxycarbonyl, ethoxycarbonyl, diisopropylmethoxycarbonyl, t-butyloxycarbonyl (Boc), carbobenzyloxy (Cbz), 9-flu Orenylmethyloxycarbonyl (Fmoc), acetyl (Ac), benzoyl (Bz), benzyl (Bn), p-methoxybenzyl (PMB), 3,4-dimethoxybenzyl (DMPM), p-methoxy Selected from the group consisting of phenyl (PMP), tosyl (Ts), 2,2,2-trichloroethoxycarbonyl (Troc), 2-trimethylsilylethoxycarbonyl (Teoc) and aryloxycarbonyl (Alloc) do.
  • PMP phenyl
  • Ts tosyl
  • Troc 2,2,2-trichloroethoxycarbonyl
  • protecting group refers to a moiety of a compound that masks or alters the properties of a functional group or the properties of the compound as a whole.
  • the chemical substructures of protecting groups are very diverse. One function of a protecting group is to act as an intermediate in the synthesis of the parent drug substance.
  • Chemical protecting groups and strategies for protection/deprotection are well known in the art. In this regard, “Protective Groups in Organic Chemistry”, Theodora W. Greene (John Wiley & Sons, Inc., New York, 1991), and Protective Groups in Organic Chemistry, Peter GM Wuts and Theodora W See Greene, 4th Ed., 2006.
  • Protecting groups are often used to mask the reactivity of certain functional groups to aid in the efficiency of the desired chemical reaction. Protection of a functional group of a compound alters physical properties other than the reactivity of the protected functional group, such as polarity, hydrophobicity, hydrophilicity, and other properties that can be measured by conventional analytical tools. Chemically protected intermediates may themselves be biologically and chemically active or inactive. "Amine protecting group” refers to a protecting group useful for protecting an amine group (-NH 2 ).
  • amine protecting group in a preferred embodiment of the present invention, methoxycarbonyl, ethoxycarbonyl, diisopropylmethoxycarbonyl, t-butyloxycarbonyl (Boc), carbobenzyloxy (Cbz ), 9-fluorenylmethyloxycarbonyl (Fmoc), acetyl (Ac), benzoyl (Bz), benzyl (Bn), p-methoxybenzyl (PMB), 3,4-dimethoxybenzyl (DMPM) , p-methoxyphenyl (PMP), tosyl (Ts), 2,2,2-trichloroethoxycarbonyl (Troc), 2-trimethylsilylethoxycarbonyl (Teoc) and aryloxycarbonyl (Alloc) Examples of are limited, but are not limited thereto, and protecting groups capable of chemically equivalent roles to the protecting groups are included in the scope of the present invention.
  • step (b) the reduction reaction of step (b) is preferably performed in the presence of nickel boride.
  • the reduction reaction of step (b) is preferably a hydrogenation reaction performed in the presence of a metal catalyst selected from the group consisting of Ni, Pd, and Pt.
  • the reduction reaction of step (b) is carried out in the presence of a metal catalyst and a silane compound selected from the group consisting of Ni, Zn, Fe and Co, or DIBAL-H, L- It is preferably carried out in the presence of a metal hydride selected from the group consisting of L-selectride, NaBH 4 and borane.
  • examples of the silane compound used in the present invention include PhSiH 3 , Ph 2 SiH 2 , Ph 3 SiH, (EtO) 3 SiH, Et 3 SiH, Me 2 SiHSiHMe 2 , PMHS (poly methylhydrosiloxane), TMDS (1,1,3,3-tetramethyldisiloxane), and the like, but are not limited thereto.
  • the deprotection in step (c) is performed under acidic conditions, and TFA or HCl is preferably used as the acid.
  • the lactam ring formation reaction of step (c) is performed under basic conditions.
  • a base for providing basic conditions various inorganic and organic bases can be used, and inorganic bases are preferably used.
  • the inorganic base used in the present invention are sodium acetate, sodium carbonate, sodium bicarbonate, sodium phosphate, sodium hydroxide, lithium acetate, lithium carbonate, lithium hydrogen carbonate, lithium phosphate, lithium hydroxide, potassium acetate, potassium carbonate, potassium hydrogen carbonate , inorganic bases such as potassium phosphate, potassium hydroxide, calcium carbonate, calcium hydrogen carbonate, calcium hydroxide, barium carbonate, barium hydroxide and the like, but are not limited thereto.
  • the inorganic base used in the lactam ring formation reaction in step (c) is preferably an alkaline metal hydroxide such as lithium, sodium or potassium hydroxide.
  • the most preferred alkaline metal hydroxide is sodium hydroxide.
  • the monomethylation reaction of step (d) may be carried out in the presence of various methyl precursors, catalysts, and solvents for selective monomethylation of common primary amines.
  • a method of monomethylation in one step by reacting Me-X (where X is halogen or a leaving group corresponding thereto) to the primary amine group of the compound of formula (5).
  • Me-X where X is halogen or a leaving group corresponding thereto
  • examples of the Me-X compound used in the present invention include, but are not limited to, iodomethane and the like.
  • the monomethylation reaction in step (d) is CHXYZ (where X is halogen or a leaving group corresponding thereto) to the primary amine group of the compound of formula (5), Y and Z is a substituent that can be substituted with hydrogen) to introduce one carbon and then substitute Y and Z with hydrogen or CH 2 XY to the primary amine group of the above formula (5) (wherein X is halogen or It is a corresponding leaving group, and Y is a substituent capable of being replaced by hydrogen, such as TMS, etc.) by reacting to introduce a CH 2 Y group, and then replacing Y with hydrogen.
  • examples of the CH 2 XY compound used in the present invention include, but are not limited to, (iodomethyl)trimethylsilane and the like.
  • R 1 is straight-chain or branched C 1 -C 5 alkyl.
  • Any suitable solvent may be used in the method of the present invention.
  • Representative solvents are pentane, pentanes, hexane, hexanes, heptanes, heptanes, petroleum ether, cyclopentane, cyclohexane, benzene, toluene, xylene, dichloromethane, trifluoromethylbenzene, halobenzenes such as chlorobenzene, fluoro Benzene, dichlorobenzene and difluorobenzene, methylene chloride, chloroform, acetone, ethyl acetate, diethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran, dibutyl ether, diisopropyl ether, methyl tert- but is not limited to butyl ether, dimethoxyethane, dioxane (1.4 dioxane), N-methyl pyrrol
  • the reaction mixture of each stage of the present invention may be at any suitable pressure.
  • the reaction mixture may be at atmospheric pressure.
  • the reaction mixture may also be exposed to any suitable environment, such as atmospheric gas, or an inert gas such as nitrogen or argon.
  • the reaction of each step of the present invention can be carried out at any suitable temperature.
  • the temperature of the mixture during the reaction is -78 °C to 100 °C, or -50 °C to 150 °C, or -25 °C to 100 °C, or 0 °C to 100 °C, or room temperature to 100 °C, or 50 °C to 50 °C It may be 100°C.
  • the advantages are: first, it is relatively cheap and easy to purchase. And, second, it is easy to separate the product through recrystallization due to the high crystallinity of the resulting compound.
  • the manufacturing method of rucaparib according to the present invention has superior advantages in economic efficiency and yield compared to existing manufacturing methods.
  • Tetramethylsilane ( ⁇ TMS : 0.0 ppm) and residual NMR solvent (CDCl 3 ( ⁇ H : 7.26 ppm, ⁇ C : 77.16 ppm) or (CD 3 ) 2 SO ( ⁇ H : 2.50 ppm, ⁇ C : 39.52 ppm) was used as an internal standard for 1 H NMR and 13 C NMR spectra, respectively.
  • the proton spectrum was expressed as ⁇ (proton position, multiplicity, coupling constant J, number of protons).
  • Multiplicity was s (singlet), d (doublet ), t (triplet), q (quartet), p (quintet), m (multiplet) and br (broad)
  • ESI electrospray ionization
  • HRMS High-resolution mass spectra
  • the main reagents used include TiCl 4 , NaBH 4 , methanol (MeOH: For analysis, ACS grade, Carlo Erba Reagents), and the like.
  • Synthesis Example 4-1 Manufacturing method of rucaparib (Compound 1)
  • Synthesis Example 4-2 Manufacturing method of rucaparib (Compound 1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 우수한 합성 수율 및 재현성을 달성할 수 있는 루카파립의 개선된 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 2,3,4,6-번 위치에 치환체가 도입된 인돌 골격을 합성하는 단계에서 4-시아노벤즈알데하이드를 사용하고, 이후 시아노기를 동시에 환원시켜 락탐과 아민기를 모두 도입할 수 있다는 장점을 갖는 루카파립을 합성하는 개선된 제조 방법 및 이의 제조에 사용할 수 있는 신규한 중간체에 관한 것이다.

Description

루카파립의 개선된 제조방법
본 발명은 우수한 합성 수율 및 재현성을 달성할 수 있는 루카파립의 개선된 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 2,3,4,6-번 위치에 치환체가 도입된 인돌 골격을 합성하는 단계에서 4-시아노벤즈알데하이드를 사용하고, 이후 시아노기를 동시에 환원시켜 락탐과 아민기를 모두 도입할 수 있다는 장점을 갖는 루카파립을 합성하는 개선된 제조 방법 및 이의 제조에 사용할 수 있는 신규한 중간체에 관한 것이다.
루카파립(rucaparib, 상품명: rubraca)은 2016년 말 poly(ADP-ribose) polymerase (PARP) 저해를 통한 난소암 치료제로 미국 FDA 승인을 받은 항암제이다. 2016년 미국 FDA의 승인 이후, 2017년 유럽에서도 사용 승인을 받았고, 2018년부터 미국과 유럽의 5개국(영국, 독일, 프랑스, 이탈리아, 스페인)에서 PARP 저해를 통한 난소암 치료제로 사용되고 있다. 또한 루카파립은 난소암 뿐만 아니라, 2020년 전립선암에 대해서도 승인을 받았으며, 유방암 등의 다수의 다른 종류의 암에 대해서도 폭넓은 전임상 단계에 있다.
Figure PCTKR2023002732-appb-img-000001
현재 루카파립은 2012년 화이자 사에서 개발된 합성 경로(Scheme 1)를 통해서 양산되고 있지만, 이 합성 경로는 선형 경로(linear sequence)를 통해서 진행되고, 몇몇 단계의 경우 합성 수율이 다소 낮고, 재현성의 문제가 발생한다는 문제점이 있었다. 특히, 루카파립의 난소암 치료제로써의 시장성과 비슷한 항암 기작을 이용한 다른 종류에 암에 대해서도 표적 항암제로써의 가능성이 조사되고 있다는 점을 고려할 때 루카파립 화합물의 신규 합성법의 개발이 필요한 실정이다.
Figure PCTKR2023002732-appb-img-000002
Scheme 1. 화이자 사에서 개발된 합성 경로
이와 같은 신규 합성법 개발을 필요성을 인지하여, 2016년 FDA 승인 이후에 이 항암제의 신규 합성법에 관한 다수의 특허 및 논문이 발표되었지만, 대부분의 경우 기존 합성법의 핵심 중간체인 인돌로아제핀 화합물의 합성에 집중되었고, 합성 경로를 크게 개선한 합성법은 개발된 적이 없다.
이에 본 발명자들은 상기와 같은 문제를 해결하기 위해, 이전의 합성 경로와는 달리 2,3,4,6-번 위치에 치환체가 도입된 인돌 골격을 우선적으로 합성한 후, 3번 위치 및 4번 위치에 도입된 치환체 사이의 7각형의 락탐 고리 형성 반응을 통해서 루카파립을 합성하는 신규한 전합성 경로를 발견하였고, 특히, 2,3,4,6-번 위치에 치환체가 도입된 인돌 골격을 합성하는 단계에서 4-시아노벤즈알데하이드를 사용하고, 이후 시아노기를 동시에 환원시켜 락탐과 아민기를 모두 도입하는 경우, 제조 단계의 경제성 및 수율에서 우수한 장점을 갖는다는 점을 발견하여 본 발명을 완성하였다.
본 발명의 목적은 우수한 합성 수율 및 재현성을 달성할 수 있는 루카파립의 개선된 제조방법을 제공하기 위한 것이다.
본 발명의 다른 목적은 루카파립의 제조에 사용할 수 있는 신규한 중간체를 제공하기 위한 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 구체예에서는, 하기 화학식 (1)의 화합물과 화학식 (2)의 화합물을 반응시키고, 촉매의 존재 하에 화학식 (3)의 화합물로 변환시키는 단계를 포함하는 화학식 (3)의 화합물의 제조방법을 제공한다:
화학식 (1)
Figure PCTKR2023002732-appb-img-000003
화학식 (2)
Figure PCTKR2023002732-appb-img-000004
화학식 (3)
Figure PCTKR2023002732-appb-img-000005
여기서,
R1은 직쇄형 또는 분지형의 C1-C5 알킬이다.
본 발명에서 사용되는 용어, "C1-C5 알킬"은 1 내지 5개의 탄소 원자를 가지는 탄화수소를 의미하며, "직쇄형 또는 분지형"은 상기 탄화 수소가 노멀(normal), 2급 또는 3급 탄소 원자를 함유하는 것을 의미한다. 구체적으로, 적합한 "C1-C5 알킬"의 예로는 메틸, 에틸, 1-프로필(n-프로필), 2-프로필, 1-부틸, 2-메틸-1-프로필 및 3-펜틸 등을 포함하나, 이들로 제한되는 것은 아니다.
본 발명의 일 구체예에서, 상기 화학식 (3)의 화합물로 변환시키는 단계는 탈수제의 존재 하에 수행되는 것이 바람직하다. 이러한 탈수제의 사용은 이민 중간체 형성시 생성되는 물 분자를 제거함으로써 전체 반응을 촉진할 수 있다.
본 발명의 일 구체예에서, 탈수제의 바람직한 예로는, TiCl4, MgSO4 및 Na2SO4로 이루어진 군으로부터 선택되는 1종 이상의 화합물 등을 포함하나, 이들로 제한되는 것은 아니다. 또한, 본 발명의 일 구체예에서, 상기 화학식 (3)의 화합물로 변환시키는 단계는 분자체(molecular sieves)와 함께 반응시키거나, 공비 증류법(azeotropic distillation)을 사용할 수 있다.
본 발명의 바람직한 일 구체예에서, 상기 화학식 (3)의 화합물로 변환시키는 단계에서 사용되는 촉매는 MCN 또는 N-헤테로사이클릭 카르벤 (N-heterocyclic carbene)이며, 여기서, M은 알칼리 금속 또는 NR4 +이고, R은 H 또는 직쇄형 또는 분지형의 C1-C5 알킬이다. 상기 촉매는 반응 중간에 생성되는 이민 중간체가 고리화를 통해 인돌 골격을 형성하는 반응을 촉진하는 역할을 수행한다.
본 발명의 바람직한 일 구체예에서, 바람직한 N-헤테로사이클릭 카르벤의 예는, 이미다졸리움(imidazolium), 트리아졸리움(triazolium), 및 티아졸리움(thiazolium)으로 이루어진 군으로부터 선택되는 화합물을 포함하지만, 이들로 제한되는 것은 아니다.
또한, 본 발명의 일 구체예에서는, 하기 화합물 1인 루카파립(rucaparib)의 제조방법으로서,
(a) 하기 화학식 (1)의 화합물과 화학식 (2)의 화합물을 반응시키고, 촉매의 존재 하에 화학식 (3)의 화합물로 변환시키는 단계;
(b) 하기 화학식 (3)의 화합물을 환원 반응시키고, 생성된 1차 아민을 P1 및 P2로 보호화시켜 하기 화학식 (4)의 화합물로 변환시키는 단계;
(c) 상기 화학식 (4)의 화합물을 탈보호화 반응시킨 후, 상기 탈보호화 반응 이후 또는 동시에 락탐 고리 형성 반응시켜 하기 화학식 (5)의 화합물을 얻는 단계; 및
(d) 상기 화학식 (5)의 화합물의 1차 아민기를 모노메틸화 반응시켜 화합물 1을 제조하는 단계를 포함하는 루카파립의 제조방법을 제공한다:
화학식 (1)
Figure PCTKR2023002732-appb-img-000006
화학식 (2)
Figure PCTKR2023002732-appb-img-000007
화학식 (3)
Figure PCTKR2023002732-appb-img-000008
화학식 (4)
Figure PCTKR2023002732-appb-img-000009
화학식 (5)
Figure PCTKR2023002732-appb-img-000010
화합물 1
Figure PCTKR2023002732-appb-img-000011
여기서,
R1은 직쇄형 또는 분지형의 C1-C5 알킬이고;
P1 및 P2는 아민 보호기로서 각각 독립적으로 메톡시카보닐, 에톡시카보닐, 디아이소프로필메톡시카보닐, t-부틸옥시카보닐(Boc), 카보벤질옥시(Cbz), 9-플루오레닐메틸옥시카보닐(Fmoc), 아세틸(Ac), 벤조일(Bz), 벤질(Bn), p-메톡시벤질(PMB), 3,4-다이메톡시벤질(DMPM), p-메톡시페닐(PMP), 토실(Ts), 2,2,2-트리클로로에톡시카보닐(Troc), 2-트리메틸실릴에톡시카보닐(Teoc) 및 아릴옥시카보닐(Alloc)로 이루어지는 군으로부터 선택된다.
본 발명에서 사용되는 용어, "보호기"는 관능기의 특성 또는 화합물의 특성을 전체적으로 차폐하거나 또는 변경시키는 화합물의 모이어티를 지칭한다. 보호기의 화학적 하위구조는 매우 다양하다. 보호기의 1종의 기능은 모 약물 물질의 합성에서 중간체로서 작용하는 것이다. 화학적 보호기 및 보호/탈보호를 위한 전략은 관련 기술분야에 널리 공지되어 있다. 이와 관련하여, 아래 문헌 ["Protective Groups in Organic Chemistry", Theodora W. Greene (John Wiley & Sons, Inc., New York, 1991)], 및 문헌 [Protective Groups in Organic Chemistry, Peter G. M. Wuts and Theodora W. Greene, 4th Ed., 2006]을 참조한다. 보호기는 종종 특정 관능기의 반응성을 차폐하기 위해 이용되어 목적 화학 반응의 효율을 보조한다. 화합물의 관능기의 보호는 보호된 관능기의 반응성 이외의 다른 물리적 특성, 예컨대 극성, 소수성, 친수성, 및 통상적인 분석 도구에 의해 측정될 수 있는 다른 특성을 변경시킨다. 화학적으로 보호된 중간체는 그 자체로 생물학적, 화학적으로 활성 또는 불활성일 수 있다. "아민 보호기"는 아민기(-NH2)를 보호하기에 유용한 보호기를 지칭한다.
본 발명의 바람직한 일 구체예에서 “아민 보호기”의 바람직한 예로서, 메톡시카보닐, 에톡시카보닐, 디아이소프로필메톡시카보닐, t-부틸옥시카보닐(Boc), 카보벤질옥시(Cbz), 9-플루오레닐메틸옥시카보닐(Fmoc), 아세틸(Ac), 벤조일(Bz), 벤질(Bn), p-메톡시벤질(PMB), 3,4-다이메톡시벤질(DMPM), p-메톡시페닐(PMP), 토실(Ts), 2,2,2-트리클로로에톡시카보닐(Troc), 2-트리메틸실릴에톡시카보닐(Teoc) 및 아릴옥시카보닐(Alloc)의 예를 한정하고 있으나, 이들로 제한되는 것은 아니며 상기 보호기와 화학적으로 동등한 역할을 할 수 있는 보호기는 본 발명의 범주에 포함된다.
본 발명의 일 구체예에서, 상기 (b) 단계의 환원 반응은 붕소화 니켈의 존재 하에 수행되는 것이 바람직하다.
본 발명의 일 구체예에서, 상기 (b) 단계의 환원 반응은 Ni, Pd 및 Pt로 이루어진 군으로부터 선택되는 금속 촉매의 존재 하에 수행되는 수소화 반응인 것이 바람직하다.
본 발명의 일 구체예에서, 상기 (b) 단계의 환원 반응은 Ni, Zn, Fe 및 Co로 이루어진 군으로부터 선택되는 금속 촉매 및 실란(silane) 화합물의 존재 하에 수행되거나, DIBAL-H, L-셀렉트라이드(L-selectride), NaBH4 및 보레인(borane)으로 이루어진 군으로부터 선택되는 금속수소화물의 존재 하에 수행되는 것이 바람직하다.
본 발명의 바람직한 일 구체예에서, 본 발명에 사용되는 실란 화합물의 예는, PhSiH3, Ph2SiH2, Ph3SiH, (EtO)3SiH, Et3SiH, Me2SiHSiHMe2, PMHS(폴리메틸하이드로실록산), TMDS (1,1,3,3-테트라메틸디실록산) 등을 포함하지만, 이들로 제한되는 것은 아니다.
본 발명의 일 구체예에서, 상기 (c) 단계의 탈보호화는 산성 조건 하에 수행되며, 사용되는 산으로는 TFA 또는 HCl이 바람직하다.
본 발명의 일 구체예에서, 상기 (c) 단계의 락탐 고리 형성 반응은 염기성 조건 하에 수행된다. 염기성 조건을 제공하기 위한 염기로는 각종 무기 및 유기 염기를 사용할 수 있으며, 바람직하게는 무기 염기를 사용한다. 본 발명에 사용되는 무기 염기의 예는 초산나트륨, 탄산나트륨, 중탄산수소나트륨, 인산나트륨, 수산화나트륨, 초산리튬, 탄산리튬, 탄산수소리튬, 인산리튬, 수산화리튬, 초산칼륨, 탄산칼륨, 탄산수소칼륨, 인산칼륨, 수산화칼륨, 탄산칼슘, 탄산수소칼슘, 수산화칼슘, 탄산바륨, 수산화바륨 등의 무기염기를 포함하지만, 이들로 제한되는 것은 아니다.
본 발명의 일 구체예에서, 상기 (c) 단계의 락탐 고리 형성 반응에 사용되는 무기 염기는 리튬, 나트륨 또는 수산화칼륨과 같은 알카리성 금속 수산화물이 바람직하다. 가장 바람직한 알카리성 금속 수산화물은 수산화 나트륨이다.
본 발명의 일 구체예에서, 상기 (d) 단계의 모노메틸화 반응은 일반적인 1차 아민의 선택적인 모노메틸화 반응을 위한 다양한 메틸 전구체, 촉매 및 용매의 존재 하에 수행될 수 있다. 구체적으로는 화학식(5)의 화합물의 1차 아민기에 Me-X(여기서, X는 할로젠 또는 이에 상응하는 이탈기)를 반응시켜 한 단계로 모노메틸화 하는 방법이 있다. 본 발명의 바람직한 일 구체예에서, 본 발명에 사용되는 Me-X 화합물의 예는, 아이오도메탄 등을 포함하지만, 이들로 제한되는 것은 아니다.
또한, 본 발명의 일 구체예에서, 상기 (d) 단계의 모노메틸화 반응은 상기 화학식(5) 화합물의 1차 아민기에 CHXYZ(여기서, X는 할로젠 또는 이에 상응하는 이탈기이고, Y 및 Z는 수소로 치환 가능한 치환기)를 반응시켜 하나의 탄소를 도입한 후, Y 및 Z를 수소로 치환시키는 방법 또는 상기 화학식(5)의 1차 아민기에 CH2XY(여기서, X는 할로젠 또는 이에 상응하는 이탈기이고, Y는 수소로 치환 가능한 치환기, 예컨대, TMS 등이다)를 반응시켜 CH2Y기를 도입한 후 Y를 수소로 치환시키는 다단계의 방법을 통해 수행될 수 있다. 본 발명의 바람직한 일 구체예에서, 본 발명에 사용되는 CH2XY 화합물의 예는, (아이오도메틸)트리메틸실란 등을 포함하지만, 이들로 제한되는 것은 아니다.
또한, 본 발명의 일 구체예에서는 본 발명의 루카파립의 제조에 사용될 수 있는 신규한 중간체로서, 하기 화학식 (3)의 화합물을 제공한다:
화학식 (3)
Figure PCTKR2023002732-appb-img-000012
여기서,
R1은 직쇄형 또는 분지형의 C1-C5 알킬이다.
임의의 적합한 용매가 본 발명의 방법에 사용될 수 있다. 대표적인 용매는 펜탄, 펜탄류, 헥산, 헥산류, 헵탄, 헵탄류, 석유 에테르, 시클로펜탄, 시클로헥산, 벤젠, 톨루엔, 크실렌, 디클로로메탄, 트리플루오로메틸벤젠, 할로벤젠 예컨대 클로로벤젠, 플루오로벤젠, 디클로로벤젠 및 디플루오로벤젠, 메틸렌 클로라이드, 클로로포름, 아세톤, 에틸 아세테이트, 디에틸 에테르, 테트라히드로푸란 (THF), 2-메틸테트라히드로푸란, 디부틸 에테르, 디이소프로필 에테르, 메틸 tert-부틸 에테르, 디메톡시에탄, 디옥산 (1.4 디옥산), N-메틸 피롤리디논 (NMP), DMF, 알코올 예컨대, 메탄올, 에탄올, 프로판올, 부탄올 또는 이들의 혼합물을 포함하나, 이들로 제한되는 것은 아니다.
본 발명의 각 단계의 반응 혼합물은 임의의 적합한 압력에 있을 수 있다. 예를 들어, 반응 혼합물은 대기압에 있을 수 있다. 반응 혼합물은 또한 임의의 적합한 환경, 예컨대 대기 가스, 또는 불활성 기체 예컨대 질소 또는 아르곤에 노출될 수 있다.
본 발명의 각 단계의 반응은 임의의 적합한 온도에서 수행될 수 있다. 예를 들어, 반응시 혼합물의 온도는 -78℃ 내지 100℃, 또는 -50℃ 내지 150℃, 또는 -25℃ 내지 100℃, 또는 0℃ 내지 100℃, 또는 실온 내지 100℃, 또는 50℃ 내지 100℃일 수 있다.
본 발명에 따라, 2,3,4,6-번 위치에 치환체가 도입된 인돌 골격을 합성하는 단계에서 4-시아노벤즈알데하이드를 사용하는 경우의 장점은 첫째, 상대적으로 값싼 가격에 구입이 용이하고, 둘째, 생성되는 화합물의 높은 결정성으로 인해 재결정을 통한 생성물의 분리가 용이하다는 점이다. 이를 통해 본 발명에 따른 루카파립 제조 방법은 기존 제조 방법에 비해 경제성 및 수율에서 우수한 장점을 갖는다.
도 1은 2-(4-시아노페닐)-6-플루오로-4-메톡시카보닐-인돌-3-아세토나이트릴(화합물 3)의 NMR 스펙트럼이다.
도 2는 N-데스메틸 루카파립(화합물 2)의 NMR 스펙트럼이다.
도 3은 루카파립(화합물 1)의 NMR 스펙트럼이다.
이하 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로서, 본 발명의 범위가 하기 실시예에 한정되지는 않는다.
일반적인 절차
달리 언급되지 않는 한, 모든 반응은 아르곤 분위기 하에서 오븐-건조된 글라스웨어에서 수행하였다. 달리 나타내지 않는 한, 모든 반응은 자기 교반하였고 F254 지시약을 이용하여 사전 코팅된 실리카 겔 유리 플레이트(0.25 mm)를 사용하는 분석 박막 크로마토그래피(TLC)로 모니터링 하였으며, UV 광 (254 nm)으로 시각화하였다. 나타낸 용리액으로 실리카겔 60 (230 - 400 메시)을 사용하여 플래쉬 컬럼 크로마토그래피를 수행하였다. 상용 등급 시약을 추가 정제없이 사용하였다. 달리 언급되지 않는 한, 수율은 크로마토그래피 및 분광학적으로 순수한 화합물을 지칭한다. 1H NMR 및 13C NMR 스펙트럼을 각각 500 MHz 및 125 MHz 분광계에서 기록하였다. 테트라메틸실란(δTMS: 0.0ppm) 및 잔류 NMR 용매 (CDCl3H: 7.26ppm, δC: 77.16ppm) 또는 (CD3)2SO (δH: 2.50ppm, δC: 39.52ppm)를 각각 1H NMR 및 13C NMR 스펙트럼의 내부 표준으로 사용하였다. 양성자 스펙트럼은 δ(양성자 위치, 다중도, 결합 상수 J, 양성자 수)로 나타내었다. 다중도는 s(singlet), d(doublet), t(triplet), q(quartet), p(quintet), m(multiplet) 및 br(broad)로 나타내었다. 이온화 방법으로서 전자 분무 이온화(ESI)를 사용하여 4중 극자 비행 시간 질량 분석기(QTOF-MS)에서 고해상도 질량 스펙트럼(HRMS)을 기록하였다.
사용된 주요 시약으로는 TiCl4, NaBH4, 메탄올(MeOH: For analysis, ACS grade, Carlo Erba Reagents) 등이 있다.
합성예 1: 2-(4-시아노페닐)-6-플루오로-4-메톡시카보닐-인돌-3-아세토나이트릴(화합물 3)
Figure PCTKR2023002732-appb-img-000013
2-아미노신나밀 나이트릴(화합물 4) (2.2 g, 10 mmol)과 알데하이드 화합물 5 (1.3 g, 10 mmol), 및 트리에틸아민 (4.2 mL, 30 mmol)의 다이클로로메테인 (100 mL) 용액에 사염화 티타늄 (1.0 M 다이클로로메테인 용액, 7.0 mL, 7.0 mmol)을 첨가한 후 20 ℃에서 교반시키면서 반응의 진행 정도를 TLC와 1H NMR 분석으로 관찰하였다. 화합물 4와 화합물 5가 완전히 소모된 후, 반응 혼합물에 증류수 (100 mL)를 적가한 후 얻어진 혼합물을 다이클로로메테인 (100 mL)을 이용하여 3회 추출하였다. 얻어진 유기층을 MgSO4로 건조시킨 후 농축하여 이민 화합물 S1의 혼합물을 수득하였고 헥세인을 이용하여 세척한 후 다음 반응에 사용하였다.
이민 화합물 S1의 혼합물을 디메틸포름아마이드 (100 mL)에 용해시킨 후, 이 혼합 용액에 4 Å 분자체(molecular sieves) (4.0 g)와 사이안화 나트륨 (98 mg, 2.0 mmol)을 첨가한 후 20 ℃에서 교반시키면서 반응의 진행 정도를 TLC로 관찰하였다. 화합물 S1이 완전히 소모된 후 녹지 않는 고체를 여과하여 제거한 후 아세트산에틸로 세척한다. 얻어진 여액을 농축한 후, 반응 혼합물에 다이클로로메테인을 적가하여 흰색 침전물이 생기게 하고, 얻어진 침전물을 여과하여 흰색 고체인 화합물 3(2.7 g, 8.0 mmol, 2단계 수율 80%)을 수득하였다.
1H NMR (500 MHz, DMSO-d 6) δ 8.07 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.52 (dd, J = 8.9, 2.4 Hz, 1H), 7.48 (dd, J = 10.1, 2.4 Hz, 1H), 4.10 (s, 2H), 3.95 (s, 3H); 13C{1H} NMR (125 MHz, DMSO-d 6) δ 166.6 (d, J = 2.7 Hz), 157.8 (d, J = 237.9 Hz), 138.1 (d, J = 3.6 Hz), 137.6 (d, J = 12.7 Hz), 135.3, 132.9, 129.5, 124.0 (d, J = 9.1 Hz), 121.3, 119.5, 118.6, 111.3 (d, J = 26.3 Hz), 111.2, 102.5 (d, J = 25.4 Hz), 102.4, 52.5, 15.8; 19F NMR (471 MHz, DMSO-d 6) δ -119.9; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C19H12FN3NaO2 356.0811; found: 356.0825.
합성예 2: N -( tert -부톡시카보닐)-2-(4-( N - tert -부톡시카보닐아미노메틸)페닐)-6-플루오로-4-(메톡시카보닐)트립타민(화합물 6)
Figure PCTKR2023002732-appb-img-000014
화합물 3 (2.67 g, 8.0 mmol), 디-터트-부틸 디카보네이트 (Boc2O; 10.5 g, 48 mmol)와 염화니켈 6수화물 (NiCl2·6H2O; 3.8 g, 16 mmol)의 메탄올 (80 mL) 용액에 수소화붕소나트륨 (4.2 g, 112 mmol)을 0 ℃에서 첨가한 후 20 ℃에서 교반시키면서 반응의 진행 정도를 TLC로 관찰하였다. 화합물 3이 완전히 소모된 후 반응 혼합물에 다이에틸렌트리아민 (17 mL, 160 mmol)을 적가하고 반응 혼합물을 30분간 교반한 후 농축하였다. 혼합물에 NaHCO3 포화 수용액 (80 mL)를 적가한 후 얻어진 혼합물을 아세트산에틸 (80 mL)을 이용하여 3회 추출하였다. 얻어진 유기층을 MgSO4로 건조시킨 후 농축한 후, 반응 혼합물에 다이클로로메테인을 적가하여 흰색 침전물이 생기게 하고, 얻어진 침전물을 여과하여 흰색 고체인 화합물 6(3.47 g, 6.4 mmol, 80%)을 수득하였다.
1H NMR (500 MHz, DMSO-d 6) δ 11.70 (s, 1H), 7.59 (d, J = 7.8 Hz, 2H), 7.49 (t, J = 6.2 Hz, 1H), 7.34 (m, 3H), 7.25 - 7.20 (m, 1H), 6.90 (br, 1H), 4.21 (d, J = 5.8 Hz, 2H), 3.93 (s, 3H), 3.00 (br, 4H), 1.42 (s, 9H), 1.36 (s, 9H); 13C{1H} NMR (125 MHz, DMSO-d 6) δ 167.4 (d, J = 2.7 Hz), 157.1 (d, J = 235.2 Hz), 155.9, 155.5, 140.1, 138.4, 137.2 (d, J = 12.7 Hz), 130.5, 128.6, 127.1, 124.6 (d, J = 9.1 Hz), 121.7, 109.1 (d, J = 25.4 Hz), 109.0, 100.8 (d, J = 24.5 Hz), 77.8, 77.3, 52.4, 43.1, 41.2, 28.3, 25.8; 19F NMR (471 MHz, DMSO-d 6) δ -122.3; HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C29H36FN3NaO6 564.2486; found: 564.2484.
합성예 3: N -데스메틸 루카파립 (화합물 2)
Figure PCTKR2023002732-appb-img-000015
화합물 6 (1.35 g, 2.5 mmol)의 테트라하이드로퓨란 (25 mL) 용액에 4 N 염화수소 수용액 (12.5 mL, 50 mmol)을 첨가한 후 60 ℃에서 교반시키면서 반응의 진행 정도를 TLC로 관찰하였다. 화합물 6이 완전히 소모된 후 얻어진 화합물 S2의 혼합물을 20 ℃로 식힌 후 4 N 수산화나트륨 수용액 (12.5 mL, 50 mmol)을 첨가하고, 동일한 온도에서 교반시키면서 반응의 진행 정도를 TLC로 관찰하였다. 화합물 S2가 완전히 소모된 후 반응 혼합물을 농축하여 테트라하이드로퓨란을 제거한 후 남아있는 물층에 생성된 침전물을 여과하여 상아색 고체인 화합물 2 (773 mg, 2.5 mmol, 2단계 수율 100%)를 수득하였다.
1H NMR (500 MHz, DMSO-d 6) δ 11.69 (br, 1H), 8.28 (t, J = 5.7 Hz, 1H), 7.57 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.2 Hz, 2H), 7.44 (dd, J = 11.0, 2.3 Hz, 1H), 7.33 (dd, J = 9.0, 2.4 Hz, 1H), 3.77 (s, 2H), 3.39 (br, 2H), 3.09 - 3.00 (m, 2H), 1.84 (br, 2H); 13C{1H} NMR (125 MHz, DMSO-d 6) δ 168.5 (d, J = 1.8 Hz), 158.3 (d, J = 234.3 Hz), 144.0, 136.7 (d, J = 12.7 Hz), 135.5 (d, J = 3.6 Hz), 129.6, 127.6, 127.4, 125.7 (d, J = 9.1 Hz), 123.3, 111.4, 109.5 (d, J = 25.4 Hz), 100.6 (d, J = 25.4 Hz), 45.4, 41.9, 28.8; 19F NMR (471 MHz, DMSO-d 6) δ -121.4; HRMS (ESI-TOF) m/z: [M + H]+ calcd for C18H17FN3O 310.1356; found: 310.1353.
합성예 4-1: 루카파립 (화합물 1)의 제조방법
Figure PCTKR2023002732-appb-img-000016
화합물 2 (310 mg, 1.0 mmol)의 2,2,2-트리플루오로에탄올 (10 mL) 용액에 아이오딘화 메틸 (0.062 mL, 1.0 mmol)을 첨가한 후 20 ℃에서 교반시키면서 반응의 진행 정도를 TLC로 관찰하였다. 반응 10시간 후 반응 혼합물을 농축시킨 후, 다이클로로메테인, 메탄올 그리고 트리에틸아민 혼합 용액 (90:10:1)을 전개액으로 한 실리카 기반 컬럼 크로마토그래피로 분리 정제하여 흰색 고체인 루카파립 1 (110 mg, 0.34 mmol, 34%)을 수득하였다.
1H NMR (500 MHz, CD3OD) δ 7.57 (d, J = 8.2 Hz, 2H), 7.51 (dd, J = 10.8, 2.3 Hz, 1H), 7.46 (d, J = 8.2 Hz, 2H), 7.30 (dd, J = 9.0, 2.4 Hz, 1H), 3.75 (s, 2H), 3.53 (br, 2H), 3.15 - 3.10 (m, 2H), 2.40 (s, 3H); 13C{1H} NMR (125 MHz, CD3OD) δ 172.6, 160.6 (d, J = 235.2 Hz), 140.2, 138.6 (d, J = 11.8 Hz), 137.3 (d, J = 3.6 Hz), 132.3, 130.0, 129.2, 125.8 (d, J = 9.1 Hz), 125.0, 112.9, 111.2 (d, J = 26.3 Hz), 102.2 (d, J = 26.3 Hz), 56.0, 43.8, 35.6, 30.0; 19F NMR (471 MHz, CD3OD) δ -123.4; HRMS (ESI-TOF) m/z: [M + H]+ calcd for C19H19FN3O 324.1507; found: 324.1510.
합성예 4-2: 루카파립 (화합물 1)의 제조방법
Figure PCTKR2023002732-appb-img-000017
화합물 2 (310 mg, 1.0 mmol)와 탄산나트륨 (210 mg, 2.0 mmol)의 프로피오나이트릴(10 mL) 용액에 (아이오도메틸)트리메틸실란 (0.15 mL, 1.0 mmol)을 첨가한 후 100 ℃에서 교반시키면서 반응의 진행 정도를 TLC로 관찰하였다. 화합물 2가 완전히 소모된 후 녹지 않는 고체를 여과하여 제거한 후 테트라하이드로퓨란으로 세척하고, 얻어진 여액을 농축하여 화합물 S3의 혼합물을 수득하였고 추가적인 분리 과정없이 다음 반응에 사용하였다.
화합물 S3의 혼합물을 메탄올 (10 mL)에 녹인 후, 이 혼합 용액에 플루오린화 칼륨 (87 mg, 1.5 mmol)을 첨가한 후 60 ℃에서 교반시키면서 반응의 진행 정도를 TLC로 관찰하였다. 화합물 S3가 완전히 소모된 후 반응 혼합물을 농축시킨 후, 다이클로로메테인, 메탄올 그리고 트리에틸아민 혼합 용액 (90:10:1)을 전개액으로 한 실리카 기반 컬럼 크로마토그래피로 분리 정제하여 흰색 고체인 루카파립 1 (184 mg, 0.57 mmol, 2단계 수율 57%)을 수득하였다.
1H NMR (500 MHz, CD3OD) δ 7.57 (d, J = 8.2 Hz, 2H), 7.51 (dd, J = 10.8, 2.3 Hz, 1H), 7.46 (d, J = 8.2 Hz, 2H), 7.30 (dd, J = 9.0, 2.4 Hz, 1H), 3.75 (s, 2H), 3.53 (br, 2H), 3.15 - 3.10 (m, 2H), 2.40 (s, 3H); 13C{1H} NMR (125 MHz, CD3OD) δ 172.6, 160.6 (d, J = 235.2 Hz), 140.2, 138.6 (d, J = 11.8 Hz), 137.3 (d, J = 3.6 Hz), 132.3, 130.0, 129.2, 125.8 (d, J = 9.1 Hz), 125.0, 112.9, 111.2 (d, J = 26.3 Hz), 102.2 (d, J = 26.3 Hz), 56.0, 43.8, 35.6, 30.0; 19F NMR (471 MHz, CD3OD) δ -123.4; HRMS (ESI-TOF) m/z: [M + H]+ calcd for C19H19FN3O 324.1507; found: 324.1510.

Claims (23)

  1. 하기 화학식 (1)의 화합물과 화학식 (2)의 화합물을 반응시키고, 촉매의 존재 하에 화학식 (3)의 화합물로 변환시키는 단계를 포함하는 화학식 (3)의 화합물의 제조방법:
    화학식 (1)
    Figure PCTKR2023002732-appb-img-000018
    화학식 (2)
    Figure PCTKR2023002732-appb-img-000019
    화학식 (3)
    Figure PCTKR2023002732-appb-img-000020
    여기서,
    R1은 직쇄형 또는 분지형의 C1-C5 알킬이다.
  2. 제1항에 있어서, 상기 화학식 (3)의 화합물로 변환시키는 단계가 탈수제의 존재 하에 수행되는 것인 제조방법.
  3. 제2항에 있어서, 상기 탈수제는 TiCl4, MgSO4 및 Na2SO4로 이루어진 군으로부터 선택되는 1종 이상의 화합물이거나, 분자체(molecular sieve)인 제조방법.
  4. 제1항에 있어서, 상기 화학식 (3)의 화합물로 변환시키는 단계가 공비 증류법(azeotropic distillation)을 사용하여 수행되는 제조방법.
  5. 제1항에 있어서, 상기 촉매가 MCN 또는 N-헤테로사이클릭 카르벤 (N-heterocyclic carbene)인 제조방법:
    여기서, M은 알칼리 금속 또는 NR4 +이며;
    R은 H 또는 직쇄형 또는 분지형의 C1-C5 알킬이다.
  6. 제5항에 있어서, 상기 N-헤테로사이클릭 카르벤은 이미다졸리움(imidazolium), 트리아졸리움(triazolium), 및 티아졸리움(thiazolium)으로 이루어진 군으로부터 선택되는 것인 제조방법.
  7. 하기 화합물 1인 루카파립(rucaparib)의 제조방법으로서,
    (a) 하기 화학식 (1)의 화합물과 화학식 (2)의 화합물을 반응시키고, 촉매의 존재 하에 화학식 (3)의 화합물로 변환시키는 단계;
    (b) 하기 화학식 (3)의 화합물을 환원 반응시키고, 생성된 1차 아민을 P1 및 P2로 보호화시켜 하기 화학식 (4)의 화합물로 변환시키는 단계;
    (c) 상기 화학식 (4)의 화합물을 탈보호화 반응시킨 후, 상기 탈보호화 반응 이후 또는 동시에 락탐 고리 형성 반응시켜 하기 화학식 (5)의 화합물을 얻는 단계; 및
    (d) 상기 화학식 (5)의 화합물의 1차 아민기를 모노메틸화 반응시켜 화합물 1을 제조하는 단계를 포함하는 루카파립의 제조방법:
    화학식 (1)
    Figure PCTKR2023002732-appb-img-000021
    화학식 (2)
    Figure PCTKR2023002732-appb-img-000022
    화학식 (3)
    Figure PCTKR2023002732-appb-img-000023
    화학식 (4)
    Figure PCTKR2023002732-appb-img-000024
    화학식 (5)
    Figure PCTKR2023002732-appb-img-000025
    화합물 1
    Figure PCTKR2023002732-appb-img-000026
    여기서,
    R1은 직쇄형 또는 분지형의 C1-C5 알킬이고;
    P1 및 P2는 아민 보호기로서 각각 독립적으로 메톡시카보닐, 에톡시카보닐, 디아이소프로필메톡시카보닐, t-부틸옥시카보닐(Boc), 카보벤질옥시(Cbz), 9-플루오레닐메틸옥시카보닐(Fmoc), 아세틸(Ac), 벤조일(Bz), 벤질(Bn), p-메톡시벤질(PMB), 3,4-다이메톡시벤질(DMPM), p-메톡시페닐(PMP), 토실(Ts), 2,2,2-트리클로로에톡시카보닐(Troc), 2-트리메틸실릴에톡시카보닐(Teoc) 및 아릴옥시카보닐(Alloc)로 이루어지는 군으로부터 선택된다.
  8. 제7항에 있어서, 상기 (a) 단계가 탈수제의 존재 하에 수행되는 것인 루카파립의 제조방법.
  9. 제8항에 있어서, 상기 탈수제는 TiCl4, MgSO4 및 Na2SO4로 이루어진 군으로부터 선택되는 1종 이상의 화합물이거나, 분자체(molecular sieve)인 제조방법.
  10. 제7항에 있어서, 상기 (a) 단계가 공비 증류법(azeotropic distillation)을 사용하여 수행되는 제조방법.
  11. 제7항에 있어서, 상기 (a) 단계에 사용되는 촉매가 MCN 또는 N-헤테로사이클릭 카르벤 (N-heterocyclic carbene)인 루카파립의 제조방법:
    여기서, M은 알칼리 금속 또는 NR4 +이며;
    R은 H 또는 직쇄형 또는 분지형의 C1-C5 알킬이다.
  12. 제7항에 있어서, 상기 (b) 단계의 환원 반응이 붕소화 니켈의 존재 하에 수행되는 루카파립의 제조방법.
  13. 제7항에 있어서, 상기 (b) 단계의 환원 반응은 Ni, Pd 및 Pt로 이루어진 군으로부터 선택되는 금속 촉매의 존재 하에 수행되는 수소화 반응인 루카파립의 제조방법.
  14. 제7항에 있어서, 상기 (b) 단계의 환원 반응이 Ni, Zn, Fe 및 Co로 이루어진 군으로부터 선택되는 금속 촉매 및 실란(silane) 화합물의 존재 하에 수행되는 루카파립의 제조방법.
  15. 제7항에 있어서, 상기 (b) 단계의 환원 반응이 DIBAL-H, L-셀렉트라이드(L-selectride), NaBH4 및 보레인(borane)으로 이루어진 군으로부터 선택되는 금속수소화물의 존재 하에 수행되는 루카파립의 제조방법.
  16. 제7항에 있어서, 상기 (c) 단계의 탈보호화 반응이 산성 조건 하에 수행되는 루카파립의 제조방법.
  17. 제7항에 있어서, 상기 (c) 단계의 락탐 고리 형성 반응이 염기성 조건 하에 수행되는 루카파립의 제조방법.
  18. 제7항에 있어서, 상기 (d) 단계의 모노메틸화 반응이 화학식 (5) 화합물의 1차 아민에 Me-X를 사용하여 한 단계로 수행되는 것인 루카파립의 제조방법:
    여기서, X는 할로젠 또는 이탈기이다.
  19. 제18항에 있어서, 상기 Me-X가 아이오도메탄인 루카파립의 제조방법.
  20. 제7항에 있어서, 상기 (d) 단계의 모노메틸화 반응이 상기 화학식(5) 화합물의 1차 아민기에 CHXYZ를 반응시켜 하나의 탄소를 도입한 후, Y 및 Z를 수소로 치환시키는 다단계를 거쳐 수행되는 것인 루카파립의 제조방법:
    여기서, X는 할로젠 또는 이에 상응하는 이탈기이고, Y 및 Z는 수소로 치환 가능한 치환기이다.
  21. 제7항에 있어서, 상기 (d) 단계의 모노메틸화 반응이 화학식 (5) 화합물의 1차 아민에 CH2XY를 반응시켜 CH2Y기를 도입한 후 Y를 수소로 치환시키는 다단계를 거쳐 수행되는 것인 루카파립의 제조방법:
    여기서, X는 할로젠 또는 이탈기이고, Y는 수소로 치환 가능한 치환기이다.
  22. 제21항에 있어서, 상기 CH2XY가 (아이오도메틸)트리메틸실란인 루카파립의 제조방법.
  23. 루카파립의 제조에 사용되는 하기 화학식 (3)의 화합물:
    화학식 (3)
    Figure PCTKR2023002732-appb-img-000027
    여기서,
    R1은 직쇄형 또는 분지형의 C1-C5 알킬이다.
PCT/KR2023/002732 2022-03-02 2023-02-27 루카파립의 개선된 제조방법 WO2023167475A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220026717A KR102677962B1 (ko) 2022-03-02 루카파립의 개선된 제조방법
KR10-2022-0026717 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023167475A1 true WO2023167475A1 (ko) 2023-09-07

Family

ID=87883937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002732 WO2023167475A1 (ko) 2022-03-02 2023-02-27 루카파립의 개선된 제조방법

Country Status (1)

Country Link
WO (1) WO2023167475A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323562B2 (en) * 2004-09-22 2008-01-29 Agouron Pharmaceuticals, Inc. Method of preparing poly(ADP-ribose) polymerases inhibitors
CN109824677A (zh) * 2019-04-03 2019-05-31 江苏开元药业有限公司 治疗卵巢癌药物瑞卡帕布的制备方法
WO2019115000A1 (en) * 2017-12-15 2019-06-20 Advitech Advisory And Technologies Sa Process for the preparation of rucaparib and novel synthesis intermediates
CN110229162A (zh) * 2018-03-05 2019-09-13 新发药业有限公司 一种瑞卡帕布的简便制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323562B2 (en) * 2004-09-22 2008-01-29 Agouron Pharmaceuticals, Inc. Method of preparing poly(ADP-ribose) polymerases inhibitors
WO2019115000A1 (en) * 2017-12-15 2019-06-20 Advitech Advisory And Technologies Sa Process for the preparation of rucaparib and novel synthesis intermediates
CN110229162A (zh) * 2018-03-05 2019-09-13 新发药业有限公司 一种瑞卡帕布的简便制备方法
CN109824677A (zh) * 2019-04-03 2019-05-31 江苏开元药业有限公司 治疗卵巢癌药物瑞卡帕布的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HARISH BATTU, SUBBIREDDY MANYAM, SURESH SURISETTI: "N-Heterocyclic carbene (NHC)-catalysed atom economical construction of 2,3-disubstituted indoles", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 53, no. 23, 1 January 2017 (2017-01-01), UK , pages 3338 - 3341, XP093088171, ISSN: 1359-7345, DOI: 10.1039/C6CC10292A *

Also Published As

Publication number Publication date
KR20230129747A (ko) 2023-09-11

Similar Documents

Publication Publication Date Title
AU2018385820B2 (en) Intermediates for optically active piperidine derivatives and preparation methods thereof
CN113248508A (zh) N-保护的杂环类化合物、其制备方法及其用于制备c-核苷衍生物的方法
WO2017023123A1 (ko) 크로마논 유도체의 신규한 제조방법
IE62663B1 (en) Benzodiazepines, process and intermediates for the preparation thereof and their applications in therapy
WO2013141523A1 (ko) 알킬암모늄아세테이트염을 이용한 새로운 5-아세트옥시메틸푸르푸랄의 제조방법
AU2018308164B2 (en) Intermediates useful for the synthesis of a selective inhibitor against protein kinase and processes for preparing the same
CN113292569A (zh) 一种jak抑制剂的制备方法
FI120259B (fi) Menetelmä epoksidin valmistamiseksi
WO2023167475A1 (ko) 루카파립의 개선된 제조방법
WO2011101864A1 (en) Novel process for the synthesis of phenoxyethyl derivatives
WO2023013974A1 (ko) Parp 저해제인 루카파립과 그 중간체의 신규한 제조방법
KR102677962B1 (ko) 루카파립의 개선된 제조방법
CN110922409A (zh) 制备btk抑制剂泽布替尼的方法
KR102638023B1 (ko) 신규한 루카파립의 제조방법
WO2022092774A1 (ko) 포말리도마이드로부터 3,6'-디티오포말리도마이드를 선택적으로 합성하는 방법
WO2013141437A1 (ko) 고순도 에스 메토프롤롤의 제조방법
EP3535237A1 (en) Method for preparation of (s)-n1-(2-aminoethyl)-3-(4-alkoxyphenyl)propane-1,2-diamine trihydrochloride
HU191682B (en) Process for preparing 1-benzyl-azetidin-3-ol derivatives
RU2163235C1 (ru) Способ получения соединений пирролидинилгидроксамовой кислоты
AU2019268945B2 (en) Novel processes for preparing a diaminopyrimidine derivative or acid addition salt thereof
CN111606924A (zh) 手性噻喃并吲哚并苯并噻吩砜类衍生物及其制备方法
WO2011111971A2 (ko) (r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법
WO2020085616A1 (ko) 아픽사반의 제조방법
US11958818B2 (en) (R)-(2-methyloxiran-2-yl)methyl 4-bromobenzenesulfonate
WO2020204647A1 (en) Processes for preparing (3r,4r)-1-benzyl-n,4-dimethylpiperidin-3-amine or a salt thereof and processes for preparing tofacitinib using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763674

Country of ref document: EP

Kind code of ref document: A1