WO2018147555A1 - 4, 5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물 - Google Patents

4, 5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물 Download PDF

Info

Publication number
WO2018147555A1
WO2018147555A1 PCT/KR2018/000141 KR2018000141W WO2018147555A1 WO 2018147555 A1 WO2018147555 A1 WO 2018147555A1 KR 2018000141 W KR2018000141 W KR 2018000141W WO 2018147555 A1 WO2018147555 A1 WO 2018147555A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
reaction
solvent
preparing
Prior art date
Application number
PCT/KR2018/000141
Other languages
English (en)
French (fr)
Inventor
안세창
최증순
장영호
채상은
조영락
오영수
김용주
Original Assignee
주식회사 레고켐 바이오사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레고켐 바이오사이언스 filed Critical 주식회사 레고켐 바이오사이언스
Publication of WO2018147555A1 publication Critical patent/WO2018147555A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/48Two nitrogen atoms

Definitions

  • the present invention relates to a method for preparing a 4,5-diamino substituted pyrimidine derivative and a novel compound for producing the same.
  • a cephalosporin derivative having a siderophore group developed as a gram negative bacterium therapeutic agent It relates to a method for preparing a 4,5-diamino substituted pyrimidine derivative which is a key intermediate for the preparation of an enol-ether compound for preparing the same.
  • PCT publication WO 2012/134184 discloses a cephalosporin derivative having a siderophore group as a gram-negative bacterium therapeutic agent.
  • the compound represented by the following general formula (1) is represented by the general formula (3) in the structure of the cephalosporin derivative for treating Gram-negative bacteria represented by the general formula (2) patented in the PCT publication WO 2012/134184 It serves as a key linking ring connecting the cephalosporin moiety and the siderophore moiety represented by formula (4) and is used as one of the key intermediates in the preparation of the compound represented by formula (2).
  • n is an integer of 1-5.
  • X is carbon substituted with CR, N, or Cl (C-Cl), wherein R is hydrogen or C 1 -C 3 alkyl;
  • Y is C 1 -C 2 alkyl, CH (CH 3 ) CO 2 H, or C (CH 3 ) 2 CO 2 H;
  • B is any one siderophore selected from compounds represented by the following formula (4);
  • n is an integer of 1-5.
  • the compound represented by the formula (1) is subjected to a reductive amination reaction between the compound represented by the formula (5) and the compound represented by the formula (6). It is disclosed that it can be produced by a continuous deprotecting group reaction.
  • R 1 and R 2 are independently of each other hydrogen or t-butoxycarbonyl
  • n is an integer of 1-5.
  • the compound represented by the formula (5) is a very expensive compound, which is not economical to apply to production, and the compound represented by the formula (6) should be used immediately after preparation because the stability is not secured. Since the solvent is not completely removed, it is difficult to obtain a material of high purity.
  • the compound represented by the formula (1) is formed between the amino group at position 5 of the compound represented by the formula (5) and the carboxylic acid group of the compound represented by the formula (7).
  • R 1 and R 2 are independently of each other hydrogen or t-butoxycarbonyl
  • n is an integer of 1-5.
  • R is C 1 -C 6 alkyl
  • n the integer of 1-5.
  • X is bromine or iodine
  • R 1 and R 2 are independently of each other hydrogen or t-butoxycarbonyl
  • n is an integer of 1-5.
  • reaction of reaction formula (3) using the ⁇ -aminoalkyl compound of formula (12) proceeds without problem until the synthesis of the compound represented by formula (11), but is cyclized by reaction with an adjacent chlorine group during the deprotection group reaction. There is also a problem that the by-product compound of formula (13) is generated.
  • n is an integer of 1-2.
  • the first object of the present invention is to provide a novel method for preparing 4,5-diamino substituted pyrimidine derivatives represented by the formula (1), which is a key intermediate for the preparation of gram negative bacteria therapeutic compounds.
  • a second object of the present invention is to provide a novel compound represented by the formula (15) and a method for producing the same for preparing the 4,5-diamino substituted pyrimidine derivative represented by the formula (1).
  • the present invention is a method for preparing a 4,5-diamino substituted pyrimidine derivative represented by the following formula (1) which is an intermediate for the preparation of the cephalosporin derivative,
  • It provides a manufacturing method comprising a.
  • R 3 and R 4 are, independently from each other, hydrogen; t-butoxycarbonyl; Or benzyl unsubstituted or substituted with at least one of positions 1 to 5 by a substituent selected from C 1 -C 2 alkyl, C 1 -C 2 alkoxy, C 1 -C 2 halo alkyl, nitro, chlorine and fluorine; ,
  • A is hydrochloric acid or acetic acid
  • n is an integer of 1-5.
  • the process of reacting the compound represented by the formula (15) and the compound represented by the formula (17) of the process (ii) with a solvent and a base is not particularly limited as long as the substances and the base are reacted under a solvent.
  • the compound represented by the formula (17) under a solvent specifically, the formamidine salt is first reacted with a base to filter the formamidine in the solid state, and then sequentially with the compound represented by the formula (15).
  • a compound represented by the formula (17), a compound represented by the formula (15), and a base are all added together with a solvent into the reactor at once, and then reacted directly.
  • the reaction is not limited to the above method, it may be carried out by heating in a closed reactor, the reaction temperature may be carried out at 25 degrees Celsius to 100 degrees, in detail, 60 degrees to 80 degrees Celsius. .
  • the reaction may not occur smoothly when performed at too low a temperature, the compound represented by the formula (15) and represented by the formula (17) when performed at too high a temperature exceeding 100 degrees Celsius It is not desirable that the bonds in the compound to be broken result in a new form of reaction.
  • the compound represented by the formula (17) is 1 to 20 equivalents ratio, based on the equivalent of the compound represented by the formula (15), details Preferably 5 to 10 equivalents.
  • the base for the reaction with the compound represented by the formula (17) is not limited in kind, for example, sodium t-butoxide, potassium t-butoxide, sodium hexamethyldisilazine Strong bases such as potassium hexamethyldisilazine, lithium hexamethyldisilazine, and the like, and sodium t-butoxide or potassium t-butoxide may be used in detail.
  • the base may also be added in a ratio of 5 to 10 equivalents based on the equivalent of the compound represented by the formula (15), in the same manner as the addition amount of the compound represented by the formula (17).
  • the reaction solvent in which the reaction takes place is not limited as long as it is a conventional solvent that does not participate in the reaction itself.
  • ether solvents such as tetrahydrofuran and methyl t-butyl ether, aromatic hydrocarbons such as toluene and xylene, aceto Solvents of alcohols such as nitrile, ethanol, isopropanol and t-butanol may be used alone or in combination.
  • the deprotection group reaction of the above process (iii) after the synthesis of the compound represented by the formula (18) is carried out to all of the protecting groups remaining in the compound represented by the formula (18), for example, t-butoxycarbo of C5-amino group. It is a reaction for removing the nil or substituted, unsubstituted benzyl and the like, may be made through a hydrogen reaction in an acidic condition or an acidic condition after the hydrogen reaction.
  • the present invention also provides a novel compound represented by the formula (15) and a method for producing the same as a compound used to prepare the compound represented by the formula (1).
  • step (b) introducing a methyl group in a continuous reaction after step (a);
  • R 3 , R 4 and n are as defined in Formula 15 above.
  • R 3 , R 4 and n are as defined in Formula 15,
  • R may be methyl or ethyl.
  • the compound represented by the formula (16) can be prepared from a commercially available N- (t-butoxycarbonyl) -1,2-diaminoethane by a simple alkylation reaction and a protecting group introduction reaction.
  • methyl formate or ethyl formate may be used as described above, and the amount thereof is used in excess of the compound represented by the formula (16). It is preferable to, in detail, based on the equivalent of the compound represented by the formula (16), may be added in a ratio of 1 to 5 equivalents.
  • the process (a) is not particularly limited as long as the material and the base is reacted in a solvent, in detail, after first stirring the base and the solvent, the compound represented by the formula (16) and alkyl form
  • the mate may be dissolved in one solvent and added dropwise to the solvent in which the base is dissolved, or the alkyl formate and base may be added dropwise to the turbidity of the compound and the solvent represented by the formula (16) in this order.
  • the alkyl formate and the base when the alkyl formate and the base are added dropwise, the alkyl formate may be added dropwise directly or dissolved in a solvent, and the base may be added several times directly in a solid state or added dropwise in a solvent. can do.
  • the reaction temperature at the time of dropping is not limited to any one of the above method, it can be carried out at 0 to 15 degrees Celsius, in detail, 0 to 5 degrees Celsius, the reaction temperature after the dropping is completed, in detail May be performed at 0 to 50 degrees Celsius, and more specifically at 0 to 25 degrees Celsius.
  • Base which is another element participating in the reaction, may be the same as those described in the method for preparing a compound represented by Formula (1), wherein the amount of the base is neutralized according to the reaction of alkyl formate. To this, it may be added in a ratio of 1 to 2 equivalents based on alkyl formate equivalents.
  • the solvent used for the reaction is, of course, similar to those described in the method for producing the compound represented by the above formula (1), and ether solvents such as ethyl ether, tetrahydrofuran, methyl t-butyl ether, aromatic hydrocarbons such as toluene and xylene Single solvents or mixed solvents of nitriles such as acetonitrile and propionitrile can be used.
  • ether solvents such as ethyl ether, tetrahydrofuran, methyl t-butyl ether, aromatic hydrocarbons such as toluene and xylene
  • aromatic hydrocarbons such as toluene and xylene
  • Single solvents or mixed solvents of nitriles such as acetonitrile and propionitrile can be used.
  • the introduction of the methyl group of the process (b) may be made by continuously adding dimethyl sulfate after the process (a) after the formylation reaction.
  • the dimethyl sulfate is preferably used in an excessive amount, and in detail, the dimethyl sulfate may be added in an amount of 1 to 2 equivalents based on the equivalent of the compound represented by Formula (16). Outside of this range, when too little dimethylsulfate is included, the reaction is not completed and when too much is included, it is not preferable because the residual amount affects the next reaction.
  • the methyl group introduction reaction of the process (b) may be carried out at 0 to 30 degrees Celsius, in detail, may be carried out at 0 to 25 degrees Celsius.
  • the compound represented by Chemical Formula (15) which is the novel compound of the present invention, can be easily synthesized by the same method as described above, and is represented by Chemical Formula (1) using this, cephalosporin
  • the synthesis can be obtained from a simpler, reproducible process without using expensive raw materials, and can be obtained at higher or equivalent yields than conventional methods. There is.
  • the synthesis of the compound represented by the formula (16) to synthesize the compound represented by the formula (15) is shown in the preparation examples below.
  • the compound represented by the formula (16) may be prepared from a commercially available N- (t-butoxycarbonyl) -1,2-diaminoethane by a simple alkylation reaction and a protecting group introduction reaction.
  • N- (t-butoxycarbonyl) -1,2-diaminoethane (10.0 g, 62.4 mmol) and sodium hydroxide (6.2 g, 156 mmol) are mixed with toluene (40 mL) and water (20 mL) Stir at 90 degrees Celsius. After confirming that the reaction was completed, the temperature was lowered to room temperature, the reaction solution was separated and the organic layer was washed with 10% aqueous ammonium chloride solution. 6N aqueous hydrochloric acid solution (10 equivalents) was added to the organic layer without further purification, and the mixture was stirred at room temperature.
  • Example 4a The intermediate compound (35 mg, 0.1 mmol) obtained in Example 4a) was dissolved in 4 mol of dioxane solution and stirred at room temperature for 2 hours, and then the solvent was distilled off to obtain the title compound as a brown solid (21 mg, yield). 95%).
  • the intermediate compound (50 mg, 0.1 mmol) and palladium / carbon catalyst (20 mg) obtained in Example 5a) were diluted with methanol (3 mL), followed by hydrogen reaction (3 atm). When the reaction was completed, the catalyst was filtered off, trifluoroacetic acid was added and stirred at room temperature for 4 hours. The solvent was distilled off to give the title compound as a brown solid (34 mg, yield 88%).
  • Example 6a The intermediate compound (43 mg, 0.1 mmol) obtained in Example 6a) was dissolved in 4 mol of dioxane solution, stirred at room temperature for 2 hours, and then the solvent was replaced with ethanol to give Pd (OH) 2 / C (20% w). / w) hydrogen reaction (4 atm) was carried out together with the catalyst. Upon completion of the reaction the catalyst was filtered off and the solvent was distilled off to give the title compound as a brown solid (20 mg, 90% yield).
  • a compound represented by the formula (1) which is an intermediate for producing a gram negative bacteria therapeutic derivative, can be prepared in an equivalent level of yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 세파로스포린 유도체의 제조를 위한 중간체인 청구항 1에 정의된 화학식(1)로 표시되는 4,5-디아미노 치환 피리미딘 유도체를 제조하는 방법으로서, (i) 청구항 1에 정의된 화학식(15)로 표시되는 화합물과 청구항 1에 정의된 화학식(17)로 표시되는 화합물을 준비하는 과정; (ii) 상기 화학식(15)로 표시되는 화합물과 화학식(17)로 표시되는 화합물을 용매 및 염기와 함께 반응시켜, 청구항 1에 정의된 화학식(18)로 표시되는 화합물을 합성하는 과정; 및 (iii) 청구항 1에 정의된 화학식(18)로 표시되는 화합물의 탈보호기 반응을 진행하여 화학식(1)로 표시되는 4,5-디아미노 치환 피리미딘 유도체를 제조하는 과정; 을 포함하는 것을 특징으로 하는 제조 방법과, 화학식(15)로 표시되는 화합물 및 이의 제조방법에 관한 것이다.

Description

4, 5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물
본 발명은 4,5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물에 관한 것으로, 상세하게는, 그람 음성균 치료제로 개발된 사이드로포어(siderophore) 기를 가지는 세파로스포린 유도체의 제조를 위한 핵심 중간체인 4,5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 엔올-에테르 화합물에 관한 것이다.
그람 음성균의 치료제는 1960년대부터 1980년대에 이르기까지 소위 항생제의 황금시기를 거치며 많은 개발이 이루어져 오다가, 1990년대 이후부터 MRSA (Methicillin-resistant Staphylococcus aureus)에 의한 감염이 점차 사회적인 문제로 떠오르면서 그람 양성균에 대한 관심이 증폭되어 한동안 연구가 많이 이루어지지 않게 되었다. 그러나, 2000년대 후반부터 다제내성 그람 음성균의 치료제 부재에 의한 경고의 목소리가 높아지면서 최근 다시 많은 관심을 받고 있다.
이에, PCT 공개 공보 WO 2012/134184는 이러한 그람 음성균 치료제로서, 사이드로포어기를 가지는 세파로스포린 유도체를 개시하고 있다.
여기서, 하기 화학식(1)로 표시되는 화합물은, 상기 PCT 공개 공보 WO 2012/134184에 특허 출원된 화학식(2)로 표시되는 그람 음성균 치료용 세파로스포린 유도체의 구조 중에서 화학식(3)로 표시되는 세파로스포린 부분과 화학식(4)로 표시되는 사이드로포어 부분을 연결하는 핵심 연결 고리로 작용하며, 화학식(2)로 표시되는 화합물의 제조에 있어서 핵심 중간체 중 하나로 사용된다.
Figure PCTKR2018000141-appb-I000001
(1)
상기 식에서,
n은 1 내지 5의 정수이다.
Figure PCTKR2018000141-appb-I000002
(2)
상기 식에서,
X는 CR, N, 또는 Cl이 치환된 탄소 (C-Cl)이고, 여기서 R은 수소 또는 C1-C3 알킬이며;
Y는 C1-C2 알킬, CH(CH3)CO2H, 또는 C(CH3)2CO2H 이고;
L은 CH2 또는 CH=CHCH2 이며;
B는 하기 화학식(4)로 표시되는 화합물들 중에서 선택되는 어느 하나의 사이드로포어이고;
n은 1 내지 5의 정수이다.
Figure PCTKR2018000141-appb-I000003
(3)
상기 식에서,
X, Y 및 L은 전술한 바와 같다.
Figure PCTKR2018000141-appb-I000004
(4)
이때, PCT 공개 공보 WO 2012/134184에 따르면, 화학식(1)로 표시되는 화합물은, 화학식(5)로 표시되는 화합물과 화학식(6)으로 표시되는 화합물 사이의 환원적 아미노화 (reductive amination) 반응과, 연속적인 탈보호기 반응에 의해 제조할 수 있음이 개시되어 있다.
위 반응을 도식화하여 나타내면 하기 반응식(1)과 같다.
[반응식 1]
Figure PCTKR2018000141-appb-I000005
상기 식에서,
R1 및 R2는 서로 독립적으로 수소 또는 t-부톡시카보닐이고;
n은 1 내지 5의 정수이다.
그러나, 상기 화학식(5)로 표시되는 화합물은 매우 고가의 화합물로서 생산에 적용하기에는 비경제적일 뿐 아니라, 화학식(6)로 표시되는 화합물은 안정성이 확보되지 않아 제조하는 즉시 사용해야 하는데, 제조 후 반응 용매를 완전히 제거하지 못하므로 고순도 상태의 물질을 얻기 어려운 단점이 있다.
또한, PCT 공개 공보 WO 2012/134184에 따르면, 화학식(1)로 표시되는 화합물은, 화학식(5)로 표시되는 화합물의 5번 위치의 아미노기와 화학식(7)로 표시되는 화합물의 카르복실산기 사이의 선택적인 아마이드 결합 반응에 의해 화학식(8)로 표시되는 화합물을 얻은 후, 화학식(8)로 표시되는 화합물의 아마이드기를 리튬 알루미늄 하이드라이드 (LiAlH4)를 사용한 환원 반응을 통해 아민기로 변환시킴으로써 제조할 수도 있음이 개시되어 있다.
위 반응을 도식화하여 나타내면 하기 반응식(2)와 같다.
[반응식 2]
Figure PCTKR2018000141-appb-I000006
상기 식에서,
R1 및 R2는 서로 독립적으로 수소 또는 t-부톡시카보닐이고;
n은 1 내지 5의 정수이다.
그러나, 상기 과정도 반응식(1)에서와 마찬가지로 고가의 화학식(5)로 표시되는 화합물을 사용해야 하기 때문에 상용적으로 적용하기에는 어려움이 있다.
한편, 고가의 화학식(5)로 표시되는 화합물을 사용하지 않는 방법으로서, 화학식(9)로 표시되는 화합물로부터 직접 알킬화 반응을 수행하여 화학식(10)로 표시되는 화합물을 얻은 후, 이로부터 2번 위치의 염소기를 아미노기로 치환함에 따라 화학식(11)로 표시되는 화합물을 얻는 반응이 보고되어 있다 (Journal of Combinatorial Chemistry, 2006, 8(3), 410). 이때, 화학식(9)로 표시되는 화합물의 알킬화 반응에 사용한 단순한 R-X 대신 하기 화학식(12)로 표시되는 화합물을 사용하면, 화학식(11)로 표시되는 화합물로부터 탈염소화 반응과 함께, 연속적인 탈보호기 반응을 통해 화학식(1)의 목적 화합물로 변환시킬 수 있을 것으로 기대할 수 있다.
위 반응을 도식화하여 나타내면 학 반응식(3)와 같다.
[반응식 3]
Figure PCTKR2018000141-appb-I000007
상기 식에서,
R는 C1-C6 알킬이고;
n은 1 내지 5의 정수를 나타낸다.
Figure PCTKR2018000141-appb-I000008
(12)
상기 식에서,
X는 브롬 또는 요오드이고;
R1 및 R2는 서로 독립적으로 수소 또는 t-부톡시카보닐이며;
n은 1 내지 5의 정수이다.
여기서, 화학식(12)의 ω-아미노알킬 화합물을 사용한 반응식(3)의 반응은 화학식(11)로 표시되는 화합물의 합성까지는 문제 없이 진행되나, 탈보호기 반응 중에 인접한 염소기와의 반응에 의해 고리화 부산물인 화학식(13)의 화합물이 발생되는 문제가 발생하기도 한다.
Figure PCTKR2018000141-appb-I000009
(13)
상기 식에서,
m은 1 내지 2의 정수이다.
또는, 화학식(14)로 표시되는 엔아민 유도체로부터 4-아미노 피리미딘 유도체의 피리미딘 고리를 직접 합성하는 예가 몇 차례 보고되어 있으나, 이는 수율이 모두 18%~33%로 저조하다 (PCT/WO2000/006569; PCT/WO2012/003405; ChemMedChem, 2009, 4(5), 853). 더구나, 화학식 (1)로 표시되는 화합물처럼 2번 위치에 치환기가 없고, 5번 위치가 ω-아미노 알킬기로 치환된 아미노기를 갖는 피리미딘 고리를 직접 합성하는 예는 알려지지 않았다.
Figure PCTKR2018000141-appb-I000010
(14)
따라서, 고가의 화합물을 사용하지 않아 생산성이 우수하면서도 수율이 높은 4,5-디아미노 치환 피리미딘 고리를 직접 합성하는 방법에 대한 요구가 절실한 상황이다.
이에, 본 출원의 발명자들은 위와 같은 문제점을 고려하여, 그람 음성균 치료제로서, 상기 화학식(2)로 표시되는 화합물의 제조에 있어 핵심 중간체인 화학식(1)로 표시되는 화합물의 보다 생산성 있는 제조 방법을 찾기 위해 집중적인 연구를 수행하였으며, 이후 설명하는 바와 같이, 신규한 화합물인 화학식(15)로 표시되는 화합물을 사용하여, 4,5-디아미노 치환 피리미딘 유도체를 직접 합성하는 생산성 있는 제조 방법을 개발함으로써 본 발명을 완성하게 되었다.
구체적으로, 본 발명의 첫 번째 목적은 그람 음성균 치료제용 화합물 제조의 핵심 중간체인 화학식(1)로 표시되는 4,5-디아미노 치환 피리미딘 유도체의 신규한 제조 방법을 제공하는 것이다.
본 발명의 두 번째 목적은 상기 화학식(1)로 표시되는 4,5-디아미노 치환 피리미딘 유도체를 제조하기 위한 화학식(15)로 표시되는 신규한 화합물 및 이의 제조 방법을 제공하는 것이다.
본 발명은 세파로스포린 유도체의 제조를 위한 중간체인 하기 화학식(1)로 표시되는 4,5-디아미노 치환 피리미딘 유도체를 제조하는 방법으로서,
(i) 하기 화학식(15)로 표시되는 화합물과 화학식(17)로 표시되는 화합물을 준비하는 과정;
(ii) 상기 화학식(15)로 표시되는 화합물과 화학식(17)로 표시되는 화합물을 용매 및 염기와 함께 반응시켜, 하기 화학식(18)로 표시되는 화합물을 합성하는 과정; 및
(iii) 상기 화학식(18)로 표시되는 화합물의 탈보호기 반응을 진행하여 화학식(1)로 표시되는 4,5-디아미노 치환 피리미딘 유도체를 제조하는 과정;
을 포함하는 것을 특징으로 하는 제조 방법을 제공한다.
Figure PCTKR2018000141-appb-I000011
(15)
Figure PCTKR2018000141-appb-I000012
(17)
Figure PCTKR2018000141-appb-I000013
(18)
Figure PCTKR2018000141-appb-I000014
(1)
상기 식에서,
R3 및 R4는 서로 독립적으로, 수소; t-부톡시카보닐; 또는 C1-C2 알킬, C1-C2 알콕시, C1-C2 할로 알킬, 니트로, 염소 및 불소로부터 선택된 치환체에 의해 1 내지 5 위치 중의 적어도 하나가 치환되거나 또는 비치환된 벤질;이고,
A는 염산 또는 아세트산이며,
n은 1 내지 5의 정수이다.
이러한 상기 반응을 도식화하여 나타내며 하기 반응식(4)와 같다.
[반응식 4]
Figure PCTKR2018000141-appb-I000015
상기 과정(ii)의 상기 화학식(15)로 표시되는 화합물과 화학식(17)로 표시되는 화합물을 용매 및 염기와 함께 반응시키는 과정은, 용매 하에서 상기 물질들과 염기가 반응하는 과정이라면 크게 한정되지 아니하나, 먼저, 용매 하에서 화학식(17)로 표시되는 화합물, 구체적으로 포름아미딘 염을 염기와 먼저 반응시켜 고체 상태의 포름아미딘을 여과한 후, 화학식(15)로 표시되는 화합물과 순차적으로 반응시키거나, 또는 화학식(17)로 표시되는 화합물, 화학식(15)로 표시되는 화합물, 및 염기를 용매와 함께 한 번에 모두 반응기 내로 투입하여 직접 반응시켜 수행할 수 있다.
이때, 상기 반응은 상기 방법에 한정되지 아니하고, 밀폐된 반응기 내에서 가열에 의해 수행될 수 있고, 반응 온도는 섭씨 25도 내지 100도, 상세하게는, 섭씨 60도 내지 80도에서 수행될 수 있다.
상기 범위를 벗어나, 너무 낮은 온도에서 수행되는 경우, 반응이 원활히 일어나지 않을 수 있고, 섭씨 100도를 초과하는 너무 높은 온도에서 수행되는 경우에는 화학식(15)로 표시되는 화합물과 화학식(17)로 표시되는 화합물 내에서의 결합이 끊어져 새로운 형태의 반응이 일어날 수 있는 바, 바람직하지 않다.
한편, 상기 반응을 통한 화학식(1)로 표시되는 화합물의 수율을 고려할 때, 상기 화학식(17)로 표시되는 화합물은 상기 화학식(15)로 표시되는 화합물의 당량을 기준으로 1 내지 20 당량비, 상세하게는 5 내지 10 당량비로 첨가될 수 있다.
또한, 상기 화학식(17)로 표시되는 화합물과의 반응을 위한 염기는, 그 종류에 있어 한정되지 아니하나, 예를 들어, 나트륨 t-부톡사이드, 포타슘 t-부톡사이드, 나트륨 헥사메틸다이실라진, 포타슘 헥사메틸다이실라진, 리튬 헥사메틸다이실라진 등의 강염기를 사용할 수 있고, 상세하게는 나트륨 t-부톡사이드, 또는 포타슘 t-부톡사이드를 사용할 수 있다.
이때, 상기 염기 역시, 화학식(17)로 표시되는 화합물의 첨가량과 동일하게, 화학식(15)로 표시되는 화합물의 당량을 기준으로 5 내지 10 당량비로 투입될 수 있다.
상기 반응이 이루어지는 반응 용매는 스스로 반응에 참여하지 않는 통상의 용매라면 한정되지 아니하나, 예를 들어, 테트라하이드로퓨란, 메틸 t-부틸 에테르 등의 에테르류 용매나 톨루엔, 크실렌 등 방향족 탄화수소류, 아세토나이트릴, 에탄올, 이소프로판올, t-부탄올 등 알코올류의 용매가 단독 또는 혼합으로 사용될 수 있다.
화학식(18)로 표시되는 화합물의 합성 이후의 상기 과정(iii)의 탈보호기 반응은, 상기 화학식(18)로 표시되는 화합물에 남아있는 모든 보호기, 예를 들어 C5-아미노기의 t-부톡시카보닐 또는 치환, 비치환된 벤질 등을 제거하기 위한 반응으로, 수소 반응 후 산성 조건, 또는 산성 조건에서의 수소 반응을 통해 이루어질 수 있다.
한편, 본 발명은 또한, 상기 화학식(1)로 표시되는 화합물을 제조하기 위해 사용되는 화합물로서, 상기 화학식(15)로 표시되는 신규 화합물 및 이를 제조하는 방법 또한 제공한다.
이러한 상기 화학식(15)로 표시되는 화합물은,
(a) 하기 화학식(16)으로 표시되는 화합물을 염기와 용매 존재 하에 알킬 포메이트와 포밀화 반응시키는 과정; 및
(b) 상기 과정(a) 이후에 연속적인 반응으로 메틸기를 도입하는 과정;
을 포함하는 방법으로 제조된다.
Figure PCTKR2018000141-appb-I000016
(16)
상기 식에서,
R3, R4 및 n은 상기 화학식 15에서 정의한 바와 같다.
이러한 반응을 도식화하여 나타내면 하기 반응식(5)와 같다.
[반응식 5]
Figure PCTKR2018000141-appb-I000017
상기 식에서,
R3, R4 및 n은 상기 화학식 15에서 정의한 바와 같으며,
R은 메틸 또는 에틸일 수 있다.
상기 화학식(16)으로 표시되는 화합물은, 상업적으로 구매 가능한 N-(t-부톡시카보닐)-1,2-디아미노에탄으로부터 간단한 알킬화 반응과 보호기 도입 반응으로 제조될 수 있다.
상기 화학식(16)으로 표시되는 화합물과 반응하기 위한 알킬 포메이트는 상기에서 설명한 바와 같이 메틸 포메이트 또는 에틸 포메이트가 사용될 수 있으며, 이들의 첨가량은 화학식(16)으로 표시되는 화합물 대비 과량을 사용하는 것이 바람직하고, 상세하게는 상기 화학식(16)으로 표시되는 화합물의 당량을 기준으로, 1 내지 5 당량비로 투입될 수 있다.
상기 범위를 벗어나, 알킬 포메이트가 너무 적게 포함되는 경우에는, 반응이 완료되지 않으며, 너무 많게 포함되는 경우에는 부반응의 우려가 있어 바람직하지 않다.
구체적으로, 상기 과정(a)는 용매 하에서 상기 물질들과 염기가 반응하는 과정이라면 크게 한정되지 아니하나, 상세하게는 먼저 염기와 용매를 교반한 후, 화학식(16)으로 표시되는 화합물과 알킬 포메이트를 모두 한 용매에 녹여 상기 염기가 녹아있는 용매에 적가하거나, 화학식(16)으로 표시되는 화합물과 용매의 혼탁액에 알킬 포메이트와 염기를 순서대로 적가하여 수행될 수 있다.
여기서, 알킬 포메이트와 염기를 순서대로 적가하는 경우, 상기 알킬 포메이트는 직접 또는 용매에 녹인 상태로 적가할 수 있고, 염기는 고체 상태로 직접 수회에 걸쳐 나누어 투입하거나, 용매에 녹인 상태로 적가할 수 있다.
이때, 상기 적가 시 반응 온도는, 상기 어느 방법에 한정되지 아니하고, 섭씨 0도 내지 15도, 상세하게는, 섭씨 0도 내지 5도에서 수행될 수 있으며, 적가가 완료된 후의 반응 온도는, 상세하게는 섭씨 0도 내지 50도, 더욱 상세하게는 섭씨 0도 내지 25도에서 수행될 수 있다.
상기 범위를 벗어나, 적가 시 온도 및 반응 온도가 너무 낮은 경우에는, 반응속도가 너무 저하되고, 너무 높은 경우에는 발열반응의 조절이 어려워 안전에 문제가 있을 수 있는 바, 바람직하지 않다.
상기 반응에 참여하는 또 하나의 요소인 염기는 화학식(1)로 표시되는 화합물의 제조 방법에서 설명한 것과 같은 예들을 사용할 수 있고, 이때, 상기 염기의 투입량은, 알킬 포메이트의 반응에 따른 중화를 위해, 알킬 포메이트 당량을 기준으로 1 내지 2 당량비로 첨가될 수 있다.
반응에 사용되는 용매는, 물론 상기 화학식(1)로 표시되는 화합물의 제조 방법에서 설명한 것과 유사하게, 에틸 에테르, 테트라하이드로퓨란, 메틸 t-부틸 에테르 등의 에테르류 용매나 톨루엔, 크실렌 등 방향족 탄화수소류, 아세토나이트릴, 프로피오나이트릴 등의 나이트릴류의 단독 용매나 혼합 용매를 사용할 수 있다.
한편, 과정(b)의 메틸기의 도입은, 포밀화 반응이 끝난 과정(a) 이후에 디메틸설페이트를 연속적으로 첨가하여 이루어질 수 있다.
상기 디메틸설페이트는 과량으로 사용하는 것이 바람직하며, 상세하게는 상기 화학식(16)로 표시되는 화합물의 당량을 기준으로 1 내지 2 당량비로 투입될 수 있다. 상기 범위를 벗어나, 디메틸설페이트가 너무 적게 포함되는 경우에는, 반응이 완료되지 않으며 너무 많게 포함되는 경우에는 잔류량이 다음 반응에 영향을 주어 바람직하지 않다.
이때, 상기 과정(b)의 메틸기 도입 반응은 섭씨 0도 내지 30도에서 수행될 수 있으며, 상세하게는 섭씨 0도 내지 25도에서 수행될 수 있다.
상기 범위를 벗어나, 반응 온도가 높은 경우에는 부반응이 발생하는 문제가 있고, 섭씨 0도 미만인 경우에는 반응속도가 저해되는 문제가 있는 바, 바람직하지 않다.
이상에서 살펴본 바와 같이, 본 발명의 상기 신규한 화합물인 화학식(15)로 표시되는 화합물은 상기와 같은 방법으로 용이하게 합성할 수 있는 바, 이를 사용하여 화학식(1)로 표시되는, 세파로스포린 유도체의 제조를 위한 중간체를 제조하는 경우, 고가의 원료를 사용하지 않고도 보다 단순하고, 재현성 있는 공정 과정으로부터 합성이 가능할 뿐 아니라, 종래의 방법에 비해 높거나 동등한 수준의 수율로 수득할 수 있는 효과가 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 제조예, 실시예 및 실험예를 제시한다. 그러나 하기의 실시예 및 실험예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
먼저 화학식(15)로 표시되는 화합물을 합성하기 위해 화학식(16)으로 표시되는 화합물의 합성을 아래 제조예에 나타내었다. 구체적으로, 상기 화학식(16)으로 표시되는 화합물은, 상업적으로 구매 가능한 N-(t-부톡시카보닐)-1,2-디아미노에탄으로부터 간단한 알킬화 반응과 보호기 도입 반응으로 제조될 수 있다.
< 제조예 1> N-( 시아노메틸 )-N, N' -(t- 부톡시카보닐 )-1,2- 디아미노에탄 의 합성
Figure PCTKR2018000141-appb-I000018
a) N-(시아노메틸)-N'-(t-부톡시카보닐)-1,2-디아미노에탄의 합성:
N-(t-부톡시카보닐)-1,2-디아미노에탄 (33.4 g, 0.21 mol), 탄산 칼륨 (57.6 g, 0.42 mol), 아세토나이트릴 (300 mL)의 혼합물에 브로모아세토나이트릴 (25.19 g, 0.21 mol)을 섭씨 0도에서 적가하였다. 동일온도에서 6 시간 교반 후, 고체를 여과해내고 여액은 감압 증류하여 에틸 아세트산 (100 mL)으로 묽혔다. 혼합물을 1 N 염산 수용액 (100 mL)으로 두 번 추출해내고 모아진 산성의 수층에 고체 탄산 칼륨을 투입하여 pH를 8로 맞추었다. 수층은 다시 에틸 아세트산 (100 mL)으로 두 번 추출해내고 모아진 유기층은 감압 증류하여 표제화합물을 옅은 갈색의 오일 형태로 얻었다 (33.0 g, 수율 79%).
1H NMR (CDCl3) δ 4.80 (br, 1H), 3.61 (s, 2H), 3.27 (m, 2H), 2.86 (m, 2H), 1.40 (s, 9H)
b) N-(시아노메틸)-N,N'-디(t-부톡시카보닐)-1,2-디아미노에탄의 합성:
제조예 1의 a)에서 얻은 화합물을 정제 없이 그대로 디클로메탄 (100 mL)에 용해시킨 후 이 용액에 무수 t-부톡시카보닐 (36 g, 0.16 mol)을 디클로메탄 (65 mL)에 묽힌 용액을 섭씨 0도에서 적가하였다. 상온에서 12 시간 교반한 후 반응액을 1 N 염산 수용액 (150 mL)으로 두 번 씻어내고 다시 포화 탄산 수소나트륨 용액 (150 mL)으로 씻어냈다. 유기층을 교반하면서 헥산 (300 mL)를 적가하여 표제화합물을 백색 고체 형태의 침전물로 얻어냈다 (43 g, 수율 87%).
1H NMR (CDCl3) δ 4.71~4.78 (br, 1H), 4.13~4.23 (m, 2H), 3.46 (m, 2H), 3.30 (m, 2H), 1.50 (s, 9H), 1.48 (s, 9H)
< 제조예 2> N-( 시아노메틸 )-N-(t- 부톡시카보닐 )- N',N' -디(4-메톡시벤질)-1,2-디아미노에탄의 합성
Figure PCTKR2018000141-appb-I000019
a) N-(t-부톡시카보닐)-N',N'-디(4-메톡시벤질)-1,2-디아미노에탄의 합성:
N-(t-부톡시카보닐)-1,2-디아미노에탄 (3 g, 18.73 mmol), 탄산칼륨 (7.77 g, 56.2 mmol) 의 아세토나이트릴 용액 (30 mL)에 4-메톡시벤질 브로마이드 (5.6 mL, 38.85 mmol )을 투입한 후 환류 교반하였다. 반응이 완료되었음을 확인한 후 상온으로 온도를 내리고 반응액을 물에 투입하여 혼합물을 층분리하였다. 수층을 에틸 아세트산으로 두 번에 걸쳐 추출해내고 유기층은 황산 마그네슘으로 건조 후 감압 증류하여 컬럼 크로마토그래피 (실리카 겔, 에틸 아세트산/헥산 = 1/8)로 정제하여 표제의 화합물을 옅은 노란색의 액체로 얻었다 (6.37 g, 수율 85%).
1H NMR (CDCl3) δ 7.21 (m, 4H), 6.85 (m, 4H), 3.79 (s, 6H), 3.49 (br, 4H), 3.16 (m, 2H), 2.50 (m, 2H), 1.42 (s, 9H)
b) N,N-디(4-메톡시벤질)-1,2-디아미노에탄의 합성:
제조예 2의 a)에서 얻은 화합물 (2.6 g, 6.49 mmol)을 4 몰 염산 다이옥산 용액 (5 mL)으로 묽힌 후 2 시간 동안 상온에서 교반하였다. 반응이 완료되었음을 확인한 후 감압증류 하고, 남는 고체는 에틸 아세트산으로 씻어낸 후 물에 용해시켜 포화 탄산 수소나트륨 용액으로 중화시켰다. 수용액을 에틸 아세트산으로 두 번 추출해낸 후, 유기층은 황산 마그네슘으로 건조 후 감압 증류하여 표제의 화합물을 진한 노란색의 오일 형태로 얻었고 이를 추가 정제 없이 다음 단계로 그대로 사용하였다.
c) N-(시아노메틸)-N',N'-디(4-메톡시벤질)-1,2-디아미노에탄의 합성:
제조예 2의 b)에서 얻은 화합물 (1.62 g, 5.37 mmol), 탄산 칼륨 (1.1 g, 8.09 mmol), 아세토나이트릴 (15 mL)의 혼합물에 브로모아세토나이트릴 (0.45 mL, 6.47 mmol)을 상온에서 적가하였다. 동일 온도에서 6 시간 교반 후 반응액을 물에 투입하고, 수층을 에틸 아세트산으로 두 번에 걸쳐 추출해냈다. 모아진 유기층은 황산 마그네슘으로 건조 후 감압 증류하여 컬럼 크로마토그래피 (실리카 겔, 에틸 아세트산/헥산 = 1/4)로 정제하여 표제의 화합물을 백색의 고체로 얻었다 (1.29 g, 수율 71%).
1H NMR (CDCl3) δ 7.22 (m, 4H), 6.86 (m, 4H), 3.80 (s, 6H), 3.50 (br, 4H), 3.41 (s, 2H), 2.73 (m, 2H), 2.58 (m, 2H)
d) N-(시아노메틸)-N-(t-부톡시카보닐)-N',N'-디(4-메톡시벤질)-1,2-디아미노에탄의 합성:
제조예 2의 c)에서 얻은 화합물 (1.04 g, 3.06 mmol)을 디클로로메탄에 용해시킨 후, 무수 t-부톡시카보닐 (0.84 mL, 3.68 mmol)을 섭씨 0도에서 적가하였다. 반응액을 상온에서 8 시간 교반하여 반응이 완료되었음을 확인한 후, 반응액을 감압증류하여 그대로 컬럼 크로마토그래피 (실리카 겔, 에틸 아세트산/헥산 = 1/4)로 정제하여 표제의 화합물을 옅은 노란색의 오일로 얻었다 (1.26 g, 수율 94%).
1H NMR (CDCl3) δ 7.22 (m, 4H), 6.84 (m, 4H), 4.07 (br, 1H), 3.86 (br, 1H), 3.80 (s, 6H), 3.50 (br, 4H), 3.34 (m, 2H), 2.57 (m, 2H), 1.38~1.48 (m, 9H)
< 제조예 3> N-( 시아노메틸 )-N-(t- 부톡시카보닐 )- N',N' - 디벤질 -1,2-디아미노에탄의 제조
Figure PCTKR2018000141-appb-I000020
N-(t-부톡시카보닐)-1,2-디아미노에탄 (10.0 g, 62.4 mmol), 수산화나트륨 (6.2 g, 156 mmol)을 톨루엔 (40 mL)와 물 (20 mL)에 섞은 후 섭씨 90도에서 교반하였다. 반응이 완료되었음을 확인한 후 상온으로 온도를 내리고 반응액을 층분리하고, 유기층을 10% 암모늄 클로라이드 수용액으로 씻어주었다. 추가 정제 없이 유기층에 6 N 염산 수용액 (10 당량)을 투입하여 상온에서 교반하였다. 반응이 완료됨을 확인한 후, 반응액에 10% 수산화나트륨 용액을 넣어 pH를 10으로 조절하여 유기층을 분리해내고, 유기층은 다시 10% 암모늄 클로라이드 수용액과 물로 차례로 씻어주었다. 추가 정제 없이 유기층에 브로모 아세토나이트릴 (7.0 g, 58.3 mmol)과 디이소프로필에틸아민 (15.1 g, 116.8 mmol)을 투입하여 상온에서 6 시간 교반하였다. 반응이 완료되었음을 확인한 후, 물 (50 mL)을 투입하여 씻어주고, 추가 정제 없이 유기층에 무수 t-부톡시카보닐 (12.7 g, 58.3 mmol)을 투입하여 상온에서 교반하였다. 반응이 완결되었음을 확인한 후, 유기층을 물 (50 mL)로 씻어내고 감압증류하여 표제의 화합물을 옅은 노란색의 오일로 얻었다. 오일 상태의 표제화합물을 저온에서 헥산 용액으로 처리하여 백색 고체의 결정을 확보하였다 (16.6 g, 수율 70%).
1H NMR (CDCl3) δ 7.31~7.15 (m, 10H), 4.03 (br, 1H), 3.79 (br, 1H), 3.58 (br, 4H), 3.87 (m, 2H), 2.58 (m, 2H), 1.48~1.32 (br, 9H)
하기에서는, 상기 제조예들의 화학식(16)로 표시되는 화합물들을 기반으로 한 화학식(15)으로 표시되는 화합물의 합성예들, 화학식(15)로 표시되는 화합물들을 기반으로 한 화학식(1)로 표시되는 화합물들의 합성예들을 나타내었다.
< 실시예 1> t-부틸 N-2-{[(t- 부톡시 ) 카보닐 ][1- 시아노 -2- 메톡시에텐 -1-일]아미노}에틸카바메이트의 제조
Figure PCTKR2018000141-appb-I000021
포타슘 t-부톡사이드 (7.50 g, 66.81 mmol)과 메틸 t-부틸에테르 (50 mL)의 혼합물을 섭씨 0도로 냉각한 후, 여기에 제조예 1의 b)에서 얻은 화합물 (10 g, 33.4 mmol)과 에틸 포메이트 (10.8 mL, 0.13 mol)을 용해한 메틸 t-부틸에테르 (50 mL) 용액을 적가하였다. 상온에서 2 시간 교반 후, 섭씨 0도로 다시 냉각하여 디메틸설페이트 (6.3 mL, 66.8 mmol)을 첨가하고 상온에서 4 시간 교반하였다. 반응액에 물 (100 mL)을 투입하고 유기층을 포화 탄산수소나트륨 수용액으로 세척해냈다. 유기층은 무수 황산 마그네슘으로 건조하고 감압 증류한 후 컬럼 크로마토그래피 (실리카 겔, 에틸 아세트산/헥산 = 1/2)로 정제하여 표제의 화합물을 옅은 미색의 오일로 얻었다 (5.76 g, 수율 51%).
1H NMR (CDCl3) δ 6.56 (br, 1H), 4.90 (br, 1H), 3.91 (s, 3H), 3.47 (m, 2H), 3.29 (m, 2H), 1.48 (br, 9H), 1.43 (br, 9H)
< 실시예 2> t-부틸 N-(2-{ 비스[(4-메톡시페닐)메틸]아미노 }에틸)-N-[1- 시아노 -2-메톡시에텐-1-일]카바메이트의 제조
Figure PCTKR2018000141-appb-I000022
포타슘 t-부톡사이드 (0.79 g, 7 mmol)와 톨루엔 (20 mL)/테트라하이드로퓨란 (7 mL)의 혼합물을 섭씨 0도로 냉각한 후, 여기에 제조예 2의 d)에서 얻은 화합물 (1.54 g, 3.5 mmol)과 에틸 포메이트 (1.13 mL, 14.01 mmol)을 용해한 톨루엔 (5 mL) 용액을 적가하였다. 상온에서 2 시간 교반 후, 섭씨 0도로 다시 냉각하여 디메틸설페이트 (6.3 mL, 7 mmol)을 첨가하고 상온에서 4 시간 교반하였다. 반응액에 물 (25 mL)을 투입하고 에틸 아세트산으로 두 번 추출해냈다. 모아진 유기층은 무수 황산 마그네슘으로 건조하고 감압 증류하여 표제 화합물을 노란색 오일 형태로 얻었다 (1.67 g, 수율 99%).
1H NMR (CDCl3) δ 7.26 (m, 4H), 6.85 (m, 4H), 6.33 (br, 1H), 3.79 (s, 6H), 3.73 & 3.65 (br, 3H, E/Z OMe), 3.50 (br, 4H), 3.46 (m, 2H), 2.56 (dt, J=26 Hz & 6.8 Hz, 2H), 1.35 (br, 9H)
< 실시예 3> t-부틸 N-(2-{ 비스 ( 벤질아미노 )}에틸)-N-[1- 시아노 -2- 메톡시에텐 -1-일]카바메이트의 제조
Figure PCTKR2018000141-appb-I000023
제조예 3에서 얻은 화합물 (1.0 g, 2.63 mmol)을 테트라하이드로퓨란 (8 mL)에 용해시키고, 에틸 포메이트 (0.32 mL, 3.95 mmol) 를 섭씨 0도에서 투입하였다. 반응온도를 섭씨 0도로 유지하면서 포타슘 t-부톡사이드 (591 mg, 5.27 mmol)을 4 차례에 나누어 투입한 후 상온에서 18 시간 교반하였다. 반응액에 디메틸설페이트 (0.25 mL, 2.63 mmol)를 투입하고 4 시간 동안 상온에서 추가로 교반하였다. 반응이 완결됨을 확인한 후 반응액에 물 (25 mL)을 투입하고 에틸 아세트산으로 두 번 추출해냈다. 모아진 유기층은 감압 증류하여 표제 화합물을 노란색 오일 형태로 얻었다 (1.10 g, 수율 99%).
1H NMR (CDCl3) δ 7.38~7.23 (m, 10H), 6.35 (br, 1H), 3.70 & 3.63 (br, 3H, E/Z), 3.61 & 3.59 (s, 4H, E/Z), 3.49 (m, 2H), 2.63 & 2.58 (t, 2H, E/Z), 1.45 (br, 9H)
< 실시예 4> 5-N-(2- 아미노에틸 )피리미딘-4,5- 디아민 염산염의 제조
a) t-부틸 N-(2-{[(t-부톡시)카보닐](피리미딘-5-일)아미노}에틸)카바메이트의 제조
Figure PCTKR2018000141-appb-I000024
포름아미딘 염산염 (369 mg, 4.58 mmol)의 에탄올 (4 mL) 용액에 포타슘 t-부톡사이드 (514 mg, 4.58 mmol)을 투입하고 상온에서 30 분간 교반하였다. 고체는 여과하여 제거하고 여액은 실시예 1에서 얻은 출발물질 (0.52 g, 1.52 mmol)과 함께 밀폐된 용기 안에 넣고 섭씨 60도에서 16 시간 교반하였다. 반응액을 상온에 이르게 한 후 감압증류하여 에탄올을 제거하고 에틸 아세트산 (10 mL)을 대신 투입하였다. 유기층을 1 N 염산 수용액 (8 mL)으로 두 차례 역추출해 내고 모아진 수층은 다시 탄산칼륨을 사용하여 pH를 10으로 조정하였다. 수층을 에틸 아세트산 (10 mL)으로 두 차례 다시 추출한 후 모아진 유기층은 무수 황산 마그네슘으로 건조시키고 감압 증류하여 표제 화합물을 미색 고체로 얻었다 (370 mg, 수율 69%).
1H NMR (CDCl3) δ 8.47 (s, 1H), 8.08 (br, 1H), 5.51 (br, 2H), 4.94 (br, 1H), 3.24~3.87 (m, 4H), 1.42 (br, 9H), 1.39 (br, 9H)
b) 5-N-(2-아미노에틸)피리미딘-4,5-디아민 염산염의 제조
Figure PCTKR2018000141-appb-I000025
실시예 4의 a)에서 얻은 중간체 화합물 (35 mg, 0.1 mmol)을 4 몰 염산 다이옥산 용액에 용해시키고 2 시간 상온에서 교반 후, 용매를 증류하여 갈색 고체의 표제의 화합물을 얻었다 (21 mg, 수율 95%).
1H NMR (CDCl3) δ 8.93 (br, 1H), 8.61 (br, 1H), 8.31 (s, 1H), 8.25 (br, 2H), 7.57 (s, 1H), 6.76 (br, 1H), 3.37 (m, 2H), 3.08 (m, 2H)
< 실시예 5> 5-N-(2- 아미노에틸 )피리미딘-4,5- 디아민 트리플루오로아세트산염의 제조
a) t-부틸 N-(아미노피리미딘-5-일)-N-[2-{비스[(4-메톡시페닐)메틸]아미노}에틸]카바메이트의 합성:
Figure PCTKR2018000141-appb-I000026
포름아미딘 염산염 (420 mg, 5.19 mmol)의 에탄올 (7 mL) 용액에 포타슘 t-부톡사이드 (580 mg, 5.19 mmol)을 투입하고 상온에서 30 분간 교반하였다. 고체는 여과하여 제거하고 나머지는 실시예 2에서 얻은 출발물질 (0.5 g, 1.01 mmol)과 함께 밀폐된 용기 안에 넣고 섭씨 50도에서 12 시간 교반하였다. 반응액을 상온에 이르게 한 후 물 (10 mL)에 투입하고 에틸 아세트산 (10 mL)으로 두 차례 추출해냈다. 모아진 유기층은 무수 황산 마그네슘으로 건조시킨 후 감압 증류하여 컬럼 크로마토그라피로 정제함으로써 표제 화합물을 백색 고체로 얻었다 (260 mg, 수율 51%).
1H NMR (CDCl3) δ 8.43 (s, 1H), 7.96 (br, 1H), 7.13 (m, 4H), 6.83 (m, 4H), 5.75 (br, 2H), 3.80 (s, 6H), 3.63~3.48 (br, 1H+4H), 3.24 (br, 1H), 2.62 (m, 2H), 1.28 (br, 9H)
b) 5-N-(2-아미노에틸)피리미딘-4,5-디아민 트리플루오로아세트산염의 합성:
Figure PCTKR2018000141-appb-I000027
실시예 5의 a)에서 얻은 중간체 화합물 (50 mg, 0.1 mmol)과 팔라듐/카본 촉매 (20 mg)을 메탄올 (3 mL)로 묽힌 후, 수소 반응 (3 기압)을 진행하였다. 반응이 완료되면 촉매를 여과하여 제거하고 트리플로우로아세트산을 첨가하여 상온에서 4 시간 교반하였다. 용매를 증류하여 갈색 고체의 표제의 화합물을 얻었다 (34 mg, 수율 88%).
1H NMR (CDCl3) δ 8.36 (br, 1H), 7.63 (br, 1H), 3.59 (m, 2H), 3.38 (m, 2H)
< 실시예 6> 5-N-(2- 아미노에틸 )피리미딘-4,5- 디아민 염산염의 제조
a) t-부틸 N-(아미노피리미딘-5-일)-N-[2-{비스[(4-메톡시페닐)메틸]아미노}에틸]카바메이트의 합성:
Figure PCTKR2018000141-appb-I000028
포름아미딘 염산염 (1.74 g, 21.6 mmol)의 에탄올 (18 mL) 용액에 포타슘 t-부톡사이드 (2.42 g, 21.6 mmol)을 투입하고 상온에서 30 분간 교반하였다. 이 반응액에 실시예 3에서 얻은 출발물질 (0.5 g, 1.18 mmol)을 투입하여 밀폐된 용기 안에서 섭씨 60도에서 24 시간 교반하였다. 반응액을 상온에 이르게 한 후 고체를 여과하여 제거해내고 여액은 감압 증류 후, 1 N 염산염으로 묽혔다. 수층을 에틸 아세트산(15 mL)으로 두 차례 씻어내고, 1 N 수산화나트륨 수용액으로 처리하여 pH를 10으로 조정하였다. 생성된 고체를 여과하여 건조시켜 미색 고체 형태의 표제의 화합물을 얻었다 (340 mg, 수율 66%).
1H NMR (CDCl3) δ 8.43 (br, 1H), 7.91 (br, 1H), 7.30 (m, 10H), 5.49 (br, 2H), 4.14 (br, 1H) 3.73 & 3.54 (br, 4H), 3.35 (br, 1H), 2.66 (m, 2H), 1.34 (s, 9H)
b) 5-N-(2-아미노에틸)피리미딘-4,5-디아민 염산염의 합성:
Figure PCTKR2018000141-appb-I000029
실시예 6의 a)에서 얻은 중간체 화합물 (43 mg, 0.1 mmol)을 4 몰 염산 다이옥산 용액에 용해시키고 2 시간 상온에서 교반 후, 용매를 에탄올로 교체하여 Pd(OH)2/C (20% w/w) 촉매와 함께 수소반응 (4 기압)을 진행하였다. 반응이 완료되면 촉매를 여과하여 제거하고 용매를 증류하여 갈색 고체의 표제의 화합물을 얻었다 (20 mg, 수율 90%).
1H NMR (CDCl3) δ 8.93 (br, 1H), 8.61 (br, 1H), 8.31 (s, 1H), 8.25 (br, 2H), 7.57 (s, 1H), 6.76 (br, 1H), 3.37 (m, 2H), 3.08 (m, 2H)
이상에서 살펴본 바와 같이, 본 발명에 따른 신규 화합물인 화학식(15)로 표시되는 화합물을 이용하는 방법에 의하면, 고가의 원료를 사용하지 않고 보다 훨씬 단순하고 재현성 있는 공정 과정을 통해 종래의 방법보다 높거나 동등 수준의 수율로 그람 음성균 치료제 유도체의 제조 중간체인 화학식(1)로 표시되는 화합물을 제조할 수 있다.
이상 본 발명의 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (9)

  1. 세파로스포린 유도체의 제조를 위한 중간체인 하기 화학식(1)로 표시되는 4,5-디아미노 치환 피리미딘 유도체를 제조하는 방법으로서,
    (i) 하기 화학식(15)로 표시되는 화합물과 화학식(17)로 표시되는 화합물을 준비하는 과정;
    (ii) 상기 화학식(15)로 표시되는 화합물과 화학식(17)로 표시되는 화합물을 용매 및 염기와 함께 반응시켜, 하기 화학식(18)로 표시되는 화합물을 합성하는 과정; 및
    (iii) 상기 화학식(18)로 표시되는 화합물의 탈보호기 반응을 진행하여 화학식(1)로 표시되는 4,5-디아미노 치환 피리미딘 유도체를 제조하는 과정;
    을 포함하는 것을 특징으로 하는 제조 방법:
    Figure PCTKR2018000141-appb-I000030
    (15)
    Figure PCTKR2018000141-appb-I000031
    (17)
    Figure PCTKR2018000141-appb-I000032
    (18)
    Figure PCTKR2018000141-appb-I000033
    (1)
    상기 식에서,
    R3 및 R4는 서로 독립적으로, 수소; t-부톡시카보닐; 또는 C1-C2 알킬, C1-C2 알콕시, C1-C2 할로 알킬, 니트로, 염소 및 불소로부터 선택된 치환체에 의해 1 내지 5 위치 중의 적어도 하나가 치환되거나 또는 비치환된 벤질;이고,
    A는 염산 또는 아세트산이며,
    n은 1 내지 5의 정수이다.
  2. 제 1 항에 있어서, 상기 화학식(17)로 표시되는 화합물은 상기 화학식(15)로 표시되는 화합물의 당량을 기준으로 1 내지 20 당량비로 첨가되고, 과정(ii)에서 염기는 상기 화학식(15)로 표시되는 화합물의 당량을 기준으로 5 내지 10 당량비로 투입되는 것을 특징으로 하는 제조 방법.
  3. 제 1 항에 있어서, 상기 과정(ii)의 반응 온도는 밀폐된 반응기에서 가열함으로써 수행되는 것을 특징으로 하는 제조 방법
  4. 제 1 항에 있어서, 상기 과정(iii)의 탈보호기 반응은 수소 반응 후 산성 조건, 또는 산성 조건에서의 수소 반응을 통해 이루어지는 것을 특징으로 하는 제조 방법.
  5. 하기 화학식(15)로 표시되는 것을 특징으로 하는 화합물:
    Figure PCTKR2018000141-appb-I000034
    (15)
    상기 식에서,
    R3 및 R4는 서로 독립적으로, 수소; t-부톡시카보닐; 또는 C1-C2 알킬, C1-C2 알콕시, C1-C2 할로 알킬, 니트로, 염소, 불소로부터 선택된 치환체에 의해 1 내지 5 위치 중의 적어도 하나가 치환되거나 또는 비치환된 벤질;이고,
    n은 1 내지 5의 정수이다.
  6. 제 5 항에 정의되어 있는 화학식(15)로 표시되는 화합물을 제조하는 방법으로서,
    (a) 하기 화학식(16)으로 표시되는 화합물을 염기와 용매 존재 하에 알킬 포메이트와 포밀화 반응시키는 과정; 및
    (b) 상기 과정(a) 이후에 연속적인 반응으로 메틸기를 도입하는 과정;
    을 포함하는 것을 특징으로 하는 제조 방법:
    Figure PCTKR2018000141-appb-I000035
    (16)
    상기 식에서,
    R3, R4 및 n은 화학식(15)에서 정의한 바와 같다.
  7. 제 6 항에 있어서, 상기 과정(a)는 먼저 염기와 용매를 교반한 후, 화학식(16)으로 표시되는 화합물과 알킬 포메이트를 모두 한 용매에 녹여 상기 염기가 녹아있는 용매에 적가하거나, 화학식(16)으로 표시되는 화합물과 용매의 혼탁액에 알킬 포메이트와 염기를 순서대로 적가하여 수행되는 것을 특징으로 하는 제조 방법.
  8. 제 6 항에 있어서, 상기 알킬 포메이트는 상기 화학식(16)으로 표시되는 화합물의 당량을 기준으로 1 내지 5 당량비로 투입되고, 상기 염기는 알킬 포메이트 당량을 기준으로 1 내지 2 당량비로 첨가되는 것을 특징으로 하는 제조 방법.
  9. 제 6 항에 있어서, 상기 메틸기의 도입은 과정(a) 이후에 디메틸설페이트를 연속적으로 첨가하여 이루어지는 것을 특징으로 하는 제조 방법.
PCT/KR2018/000141 2017-02-13 2018-01-03 4, 5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물 WO2018147555A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0019203 2017-02-13
KR1020170019203A KR20180093307A (ko) 2017-02-13 2017-02-13 4, 5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물

Publications (1)

Publication Number Publication Date
WO2018147555A1 true WO2018147555A1 (ko) 2018-08-16

Family

ID=63107215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000141 WO2018147555A1 (ko) 2017-02-13 2018-01-03 4, 5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물

Country Status (2)

Country Link
KR (1) KR20180093307A (ko)
WO (1) WO2018147555A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470983A (en) * 1980-02-23 1984-09-11 Hoechst Aktiengesellschaft Cephalosporin derivatives
KR910002872B1 (ko) * 1984-07-17 1991-05-06 가와사끼세이데쓰 가부시끼가이샤 디이프 드로잉용 냉연 강판 및 그 제조방법
WO1996002548A1 (en) * 1994-07-20 1996-02-01 Merck & Co., Inc. 3-thioheteroaryl cephalosporin compounds, compositions and methods of use
WO1999058535A1 (en) * 1998-05-13 1999-11-18 Lg Chemical Ltd. Novel cephalosporin compounds, processes for preparation thereof and antimicrobial compositions containing the same
WO2012134184A2 (ko) * 2011-03-30 2012-10-04 주식회사 레고켐 바이오사이언스 신규한 세파로스포린 유도체 및 이를 함유하는 의약 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470983A (en) * 1980-02-23 1984-09-11 Hoechst Aktiengesellschaft Cephalosporin derivatives
KR910002872B1 (ko) * 1984-07-17 1991-05-06 가와사끼세이데쓰 가부시끼가이샤 디이프 드로잉용 냉연 강판 및 그 제조방법
WO1996002548A1 (en) * 1994-07-20 1996-02-01 Merck & Co., Inc. 3-thioheteroaryl cephalosporin compounds, compositions and methods of use
WO1999058535A1 (en) * 1998-05-13 1999-11-18 Lg Chemical Ltd. Novel cephalosporin compounds, processes for preparation thereof and antimicrobial compositions containing the same
WO2012134184A2 (ko) * 2011-03-30 2012-10-04 주식회사 레고켐 바이오사이언스 신규한 세파로스포린 유도체 및 이를 함유하는 의약 조성물

Also Published As

Publication number Publication date
KR20180093307A (ko) 2018-08-22

Similar Documents

Publication Publication Date Title
ES2260503T3 (es) Procedimiento par apreparar derivados de 1-(carboximetil)- y 1-(aminocarbonil)- pirimidin-4-ona.
WO2011071314A2 (en) Processes for preparing crystalline forms a and b of ilaprazole and process for converting the crystalline forms
WO2013081400A2 (ko) 신규한 벤즈아마이드 유도체 및 그 용도
WO2021194319A1 (en) Vanillin derivative compounds inducing selective degradation of plk1
AU2018308164B2 (en) Intermediates useful for the synthesis of a selective inhibitor against protein kinase and processes for preparing the same
AU2018308038B2 (en) Improved process for preparing aminopyrimidine derivatives
EP2611776A2 (en) Production method of intermediate compound for synthesizing medicament
WO2019054766A1 (en) COMPOUND DERIVED FROM PYRAZOLE AND USE THEREOF
WO2017126847A1 (ko) 3-((2s,5s)-4-메틸렌-5-(3-옥소프로필)테트라히드로퓨란-2-일)프로판올 유도체의 제조방법 및 이를 위한 중간체
WO2017119666A1 (ko) 극성 비양자성 용매를 이용한 n-[4-(1-아미노에틸)-페닐]-술폰아미드 유도체의 카이랄 분할 방법
WO2019066467A1 (ko) (2r)-2-(2-메톡시페닐)-2-(옥산-4-일옥시)에탄-1-올 화합물의 신규 제조방법 및 이에 사용되는 중간체
WO2010114292A2 (ko) 디펩티딜 펩티다아제-ⅳ 저해제 및 중간체의 개량된 제조방법
WO2014010990A1 (en) Novel pyridine derivatives and method for preparation of intermediate compound for producing sulfonylurea herbicides using the same
WO2018147555A1 (ko) 4, 5-디아미노 치환 피리미딘 유도체의 제조방법 및 이를 제조하기 위한 신규한 화합물
WO2019107943A1 (ko) Jak 저해제 화합물, 및 이의 제조방법
WO2020022787A1 (ko) Jnk 저해 활성을 갖는 신규한 이미다졸 유도체 및 이를 포함하는 약학적 조성물
WO2012148246A2 (en) A preparation method of sitagliptin
AU2020360000B2 (en) N-(1H-imidazol-2-yl)benzamide compound and pharmaceutical composition comprising the same as active ingredient
WO2017090991A1 (ko) 벤조피란 유도체의 정제방법, 이의 결정형 및 상기 결정형의 제조방법
WO2014112688A1 (ko) 질소에 치환기가 없는 이민의 촉매적 제조 방법 및 생성된 이민의 이용
WO2021080380A1 (en) Method for preparing aryl 2-tetrazol-2-yl ketone with improved selectivity
WO2011111971A2 (ko) (r)-3-(3-플루오로-4-(1-메틸-5,6-다이하이드로-1,2,4-트리아진-4(1h)-일)페닐)-5-(치환된 메틸)옥사졸리딘-2-온 유도체의 제조방법
RU2760719C2 (ru) Способ синтеза замещенных соединений мочевины
WO2014098410A1 (ko) 보센탄 일수화물의 제조방법, 이에 사용되는 신규 중간체 및 이의 제조방법
WO2020256429A1 (ko) 인돌 또는 인다졸 화합물의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751090

Country of ref document: EP

Kind code of ref document: A1