WO2017090616A1 - 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法 - Google Patents

伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法 Download PDF

Info

Publication number
WO2017090616A1
WO2017090616A1 PCT/JP2016/084618 JP2016084618W WO2017090616A1 WO 2017090616 A1 WO2017090616 A1 WO 2017090616A1 JP 2016084618 W JP2016084618 W JP 2016084618W WO 2017090616 A1 WO2017090616 A1 WO 2017090616A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmission quality
core
optical signal
mcf
Prior art date
Application number
PCT/JP2016/084618
Other languages
English (en)
French (fr)
Inventor
拓哉 小田
乾 哲郎
平野 章
今宿 亙
小林 正啓
貴章 田中
宮本 裕
高良 秀彦
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN201680068647.5A priority Critical patent/CN108352893B/zh
Priority to EP16868559.2A priority patent/EP3367591B1/en
Priority to JP2017552667A priority patent/JP6491762B2/ja
Priority to US15/777,098 priority patent/US10686520B2/en
Publication of WO2017090616A1 publication Critical patent/WO2017090616A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0216Bidirectional architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures

Abstract

伝送品質推定システムは、3つ以上のノードと、伝送品質を推定する伝送品質推定装置とを有する。ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている。ノードは、マルチコアファイバが有する複数のコアそれぞれに対して個別に、コアにより伝送される光の分岐、挿入、又は、中継を行うコア接続部を備える。伝送品質推定装置は、コア接続部により分岐された伝送品質測定用の光に基づき、ノード間の伝送品質を推定する推定部、を備える。

Description

伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法
 本発明は、伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法に関する。
 本願は、2015年11月26日に、日本に出願された特願2015-230876号に基づき優先権を主張し、その内容をここに援用する。
 大都市間を接続するコアネットワークや、地域内の拠点を接続するメトロネットワークなどでは光ファイバを用いた通信網が構築されている。このようなネットワークでは、複数の光ファイバが束ねて用いられている。また、1本の光ファイバそれぞれに波長が異なる複数の光信号を多重化する波長分割多重(Wavelength Division Multiplexing:WDM)伝送を行うことで、大容量の信号伝送が行われている(例えば、非特許文献1)。更なる伝送容量の増加に向けて、1つのコアを持つ光ファイバ(Single Core Fiber:SCF)に代えて、複数のコアを持つ光ファイバであるマルチコアファイバ(Multi Core Fiber:MCF)の利用が検討されている(例えば、非特許文献2、3)。
松岡伸治、「経済的なコア・メトロネットワークを実現する超高速大容量光トランスポートネットワーク技術」、NTT技術ジャーナル、2011年3月、p.8-12 宮本裕、竹ノ内弘和、「毎秒ペタビット級伝送の実現を目指した高密度空間多重光通信技術」、NTT技術ジャーナル、2014年8月、p.52-56 白木和之、「光ファイバ・ケーブル技術における研究開発の動向」、NTT技術ジャーナル、2015年1月、p.59-63
 マルチコアファイバでは、1本のファイバ中に複数のコアが存在する。そのため、各コアは、同じファイバ中の周辺の他のコアからクロストークの影響を受ける。クロストークは信号伝送の品質に影響を及ぼすため、伝送品質を監視する必要がある。
 上記事情に鑑み、本発明は、マルチコアファイバを用いた通信の伝送品質を推定することができる伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法を提供することを目的としている。
 本発明の第1の実施態様における伝送品質推定システムは、3つ以上のノードと、伝送品質を推定する伝送品質推定装置とを有し、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている伝送品質推定システムであって、前記ノードは、前記マルチコアファイバが有する複数のコアそれぞれに対して個別に、前記コアにより伝送される光の分岐、挿入、又は、中継を行うコア接続部を備え、前記伝送品質推定装置は、前記コア接続部により分岐された伝送品質測定用の光に基づき、前記ノード間の伝送品質を推定する推定部、を備える。
 また、本発明の第2の実施態様によれば、上述した第1の実施態様の伝送品質推定システムであって、前記マルチコアファイバは、通信用の光信号を伝送する前記コアと、伝送品質測定用の光を伝送する前記コアとを有する。
 また、本発明の第3の実施態様によれば、上述した第2の実施態様の伝送品質推定システムであって、前記通信用の光信号は、伝送に用いられる前記コアを識別可能に変調される。
 また、本発明の第4の実施態様によれば、上述した第3の実施態様の伝送品質推定システムであって、前記通信用の光信号は、前記通信用の光信号で伝送する信号を生成する際の変調周期より長い変調周期の強度変調により、伝送に用いられる前記コアを識別可能に変調される。
 また、本発明の第5の実施態様によれば、上述した第4の実施態様の伝送品質推定システムであって、前記強度変調は、前記通信用の光信号の生成に用いられる電気信号に対して施される。
 また、本発明の第6の実施態様によれば、上述した第4の実施態様の伝送品質推定システムであって、前記強度変調は、前記通信用の光信号が電気信号に基づいて生成された後に施される。
 また、本発明の第7の実施態様によれば、上述した第2から第6の実施態様のいずれかの伝送品質推定システムであって、前記推定部は、伝送品質の推定に通信波長帯を利用する。
 また、本発明の第8の実施態様によれば、上述した第1の実施態様の伝送品質推定システムであって、前記マルチコアファイバは、通信用の光信号及び通信波長帯以外の帯域の光を伝送する前記コアと、伝送品質測定用の光を伝送する前記コアとを有する。
 また、本発明の第9の実施態様によれば、上述した第1の実施態様の伝送品質推定システムであって、前記マルチコアファイバは、通信用の光信号と伝送品質測定用の光とを同一の前記コアにより伝送する。
 また、本発明の第10の実施態様によれば、上述した第8又は第9の実施態様の伝送品質推定システムであって、前記推定部は、伝送品質の推定に通信波長帯以外の帯域を利用する。
 また、本発明の第11の実施態様における伝送品質推定装置は、3つ以上のノードと、伝送品質を推定する伝送品質推定装置とを有し、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている伝送品質推定システムにおける前記伝送品質推定装置であって、前記マルチコアファイバが有する複数のコアのうち一部のコアから分岐された伝送品質測定用の光を受信する受信部と、前記伝送品質測定用の光に基づき、前記ノード間の伝送品質を推定する推定部と、を備える。
 また、本発明の第12の実施態様における伝送品質推定方法は、3つ以上のノードと、伝送品質を推定する伝送品質推定装置とを有し、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている伝送品質推定システムが実行する伝送品質推定方法であって、前記ノードのコア接続部が、マルチコアファイバが有する複数のコアそれぞれに対して個別に、前記コアにより伝送される光の分岐、挿入、又は、中継を行うコア接続ステップと、前記伝送品質推定装置が、前記コア接続部により分岐された伝送品質測定用の光に基づき、前記ノード間の伝送品質を推定する推定ステップと、を有する。
 本発明により、マルチコアファイバを用いた通信の伝送品質を推定することが可能となる。
本発明の実施形態を適用可能な通信システムの第1の構成例を示す図である。 通信システムに用いられるコネクタの第1の構成例を示す図である。 通信システムに用いられるコネクタの第1の構成例を示す図である。 通信システムに用いられるコネクタの第2の構成例を示す図である。 通信システムに用いられるコネクタの第2の構成例を示す図である。 通信システムに用いられるコネクタの第3の構成例を示す図である。 通信システムに用いられるコネクタの第3の構成例を示す図である。 通信システムでWDM伝送を行う場合における、Add/Dropノードの第1の構成例を示す図である。 本発明の実施形態を適用可能な通信システムの第2の構成例を示す図である。 本発明の実施形態を適用可能な通信システムの第3の構成例を示す図である。 通信システムでWDM伝送を行う場合における、Add/Dropノードの第2の構成例を示す図である。 本発明の実施形態を適用可能な通信システムの第4の構成例を示す図である。 図1に示した通信システムにおいて、Add/Dropノード間の接続の一部に複数のSCFを用いる第1の構成例を示す図である。 図1に示した通信システムにおいて、Add/Dropノード間の接続に複数のSCFを用いる第2の構成例を示す図である。 本発明の第1の実施形態による伝送品質推定システムの構成例を示す図である。 第1の実施形態によるマルチコアファイバの断面図である。 第1の実施形態による伝送品質推定装置の構成を示すブロック図である。 本発明の第2の実施形態による伝送品質推定システムの構成例を示す図である。 第2の実施形態による伝送品質推定装置の構成を示すブロック図である。 本発明の第3の実施形態による伝送品質推定システムの構成例を示す図である。 第3の実施形態による伝送品質推定装置の構成を示すブロック図である。 本発明の第4の実施形態による伝送品質推定システムの構成例を示す図である。 第4の実施形態による伝送品質推定装置の構成を示すブロック図である。
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下の実施形態では、同一の符号を付した構成要素は同様の動作を行うものとして、重複する説明を適宜省略する。
 まず、本発明の実施形態を適用可能な通信システムについて説明する。
 図1は、本発明の実施形態を適用可能な通信システム100の構成例を示す図である。通信システム100は、送受信ノード110と、n台(nは1以上の整数)のAdd/Dropノード120と、を備える。図1には、n=3の場合における通信システム100の構成例が示されている。以下の説明では、n台のAdd/Dropノード120をそれぞれ、Add/Dropノード120-1~120-nと記載する。また、送受信ノード110とAdd/Dropノード120とを総称して「ノード」と記載する。以下の説明では、光信号を用いて通信を行う送信装置や受信装置、送受信装置などと、ノードとを個別の構成として記載する。しかし、送信装置や受信装置、送受信装置などをノードが含む構成であってもよい。
 ノード間は、MCF(マルチコアファイバ)200-1~200-4で接続されている。通信システム100は、MCF200-1~200-4でノード間を接続した片系片方向のリング構成の物理トポロジを有している。送受信ノード110とAdd/Dropノード120-1とは、MCF200-1で接続されている。Add/Dropノード120-1とAdd/Dropノード120-2とは、MCF200-2で接続されている。Add/Dropノード120-2とAdd/Dropノード120-3とは、MCF200-3で接続されている。Add/Dropノード120-3と送受信ノード110とは、MCF200-4で接続されている。通信システム100におけるMCF200-1~200-4は、3つのコア201、202、203を備えている。
 通信システム100の構成についての説明を一般化すると、Add/Dropノード120-i(1≦i≦n-1)は、Add/Dropノード120-(i+1)とMCF200-(i+1)を介して接続されている。MCF200-1は、送受信ノード110とAdd/Dropノード120-1とを接続する。MCF200-(n+1)は、Add/Dropノード120-nと送受信ノード110とを接続する。
 通信システム100の各ノードは、ノード間での通信を行う送信装置(Tx)及び受信装置(Rx)を備える。送受信ノード110に対して、送信装置111-1~111-3と受信装置112-1~112-3とが備えられている。Add/Dropノード120-1に対して、送信装置121-1と受信装置122-1とが備えられている。Add/Dropノード120-2に対して、送信装置121-2と受信装置122-2とが備えられている。Add/Dropノード120-3に対して、送信装置121-3と受信装置122-3とが備えられている。送信装置111-1~111-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。受信装置112-1~112-3は、Add/Dropノード120-1~120-3から送信される光信号を受信し、光信号に含まれる情報を取得する。送信装置121-1~121-3は、それぞれ送受信ノード110へ送信する光信号を生成する。受信装置122-1~122-3は、送受信ノード110から送信される光信号を受信し、光信号に含まれる情報を取得する。
 送信装置111-1~111-3は、それぞれAdd/Dropノード120-1~120-3への光信号を生成する。送信装置111-1~111-3により生成された3つの光信号は、それぞれMCF200-1のコア201-1~203-1に挿入される。受信装置112-1~112-3は、それぞれAdd/Dropノード120-1、120-2、120-3から自受信装置が備えられたノードに送信された光信号を受信する。受信装置112-1~112-3は、それぞれMCF200-4のコア201-4~203-4を介してAdd/Dropノード120-1~120-3からの光信号を受信する。送受信ノード110における、MCF200への光信号の挿入とMCF200からの光信号の分岐とには、ファンイン・デバイス又はファンアウト・デバイスが用いられる。
 なお、ファンイン・デバイスは、マルチコアファイバ中のコアそれぞれに対して接続され、コアごとに光信号を挿入するデバイスである。ファンアウト・デバイスは、マルチコアファイバ中の各コアそれぞれに対して接続され、各コア内を伝搬する光それぞれを分岐するデバイスである。両者のデバイスの違いは、光の伝搬方向が異なるだけであることから、ファンイン・デバイス又はファンアウト・デバイスのどちらか1つのデバイスを用いてマルチコアファイバとの光の入出力を実施してもよい。また、1つのデバイスでマルチコアファイバへの光の挿入及びマルチコアファイバからの光の分岐を同時に行ってもよい。
 各Add/Dropノード120-1~120-3には、それぞれコネクタ150-1~150-3が備えられている。Add/Dropノード120-i(i=1,2,3)におけるコネクタ150-iは、MCF200-iとMCF200-(i+1)とに接続される。コネクタ150-iは、送受信ノード110で挿入された光信号のうち自ノードへの光信号をMCF200-iから分岐する。また、コネクタ150-iは、送受信ノード110への光信号をMCF200-(i+1)のコアへ挿入する。
 Add/Dropノード120-1において、コネクタ150-1は、MCF200-1のコア201-1から自ノードへの光信号を分岐する。コネクタ150-1は、分岐した光信号を受信装置122-1へ接続する。また、コネクタ150-1は、送信装置121-1により生成された光信号を、MCF200-2のコア201-2へ挿入する。コア201-2へ挿入される光信号は、Add/Dropノード120-1から送受信ノード110へ伝送される光信号である。
 コネクタ150-1は、MCF200-1のコアのうちコア202-1、203-1と、MCF200-2のコアのうちコア202-2、203-2とをそれぞれ接続する。コネクタ150-1は、MCF200-1とMCF200-2との間において光信号を中継する。コネクタ150-1は、光信号をAdd/Dropするコア201-1、201-2以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-2において、コネクタ150-2は、MCF200-2のコア202-2から自ノードへの光信号を分岐する。コネクタ150-2は、分岐した光信号を受信装置122-2へ接続する。また、コネクタ150-2は、送信装置121-2により生成された光信号を、MCF200-3のコア202-3へ挿入する。コア202-3へ挿入される光信号は、Add/Dropノード120-2から送受信ノード110へ伝送される光信号である。
 コネクタ150-2は、MCF200-2のコアのうちコア201-2、203-2と、MCF200-3のコアのうちコア201-3、203-3とをそれぞれ接続する。コネクタ150-2は、MCF200-2とMCF200-3との間において光信号を中継する。コネクタ150-2は、光信号をAdd/Dropするコア201-2、201-3以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-3において、コネクタ150-3は、MCF200-3のコア203-3から自ノードへの光信号を分岐する。コネクタ150-3は、分岐した光信号を受信装置122-3へ接続する。また、コネクタ150-3は、送信装置121-3により生成された光信号をMCF200-4のコア203-4へ挿入する。コア203-4へ挿入される光信号は、Add/Dropノード120-3から送受信ノード110へ伝送される光信号である。
 コネクタ150-3は、MCF200-3のコアのうちコア201-3、202-3と、MCF200-4のコアのうちコア201-4、202-4とをそれぞれ接続する。コネクタ150-3は、MCF200-3とMCF200-4との間において光信号を中継する。コネクタ150-3は、光信号をAdd/Dropするコア203-3、203-4以外のコアで伝送される光信号を中継する。
 図2A及び図2Bは、通信システム100に用いられるコネクタ150の第1の構成例を示す図である。コネクタ150は、複数の細径シングルモードファイバ(SMF)と複数のSMFとを含むファンイン・ファンアウト部を備える。図2Aに示すように、コネクタ150は、接続対象のMCF200のコアそれぞれに対して細径SMFを備える。複数の細径SMFそれぞれの一端は、MCF200のコアに対向する位置に設けられている。また、複数の細径SMFの他端がSMFの一端に対向する位置に設けられている。細径SMFそれぞれは、MCF200のコアとSMFとを接続している。コネクタ150は、MCF200の各コアで伝送される光信号を、細径SMFとSMFとを介して分岐することができる。また、SMFへ光信号を入力することで、MCF200の各コアへ光信号を入力することができる。
 図2Bに示されるコネクタ150-iは、MCF200-iとMCF200-(i+1)とを接続する。Add/Dropの対象となる光信号を伝送するコアに対応するSMFの他端が、コネクタ150-iの側面に引き出されている。コネクタ150-iの側面に引き出されているSMFの他端において、光信号の挿入と分岐(Add/Drop)を行うことができる。
 MCF200-iのコアのうちAdd/Dropの対象でない光信号を伝送するコアに対するSMFの他端と、MCF200-(i+1)のコアのうちAdd/Dropの対象でない光信号を伝送するコアに対するSMFの他端とは、対向する位置に設けられている。コネクタ150-iにおいて、Add/Dropの対象でない光信号は、細径SMF及びSMFを介して、MCF200-iからMCF200-(i+1)へと中継される。
 図3A及び図3Bは、通信システム100に用いられるコネクタ150の第2の構成例を示す図である。図3A及び図3Bには、図2A及び図2Bに示したコネクタ150の構成例と異なる構成例が示されている。図3A及び図3Bに示されるコネクタ150は、ガラス基板上に形成された複数の導波路コアを含む光導波路をファンイン・ファンアウト部として備える。図3Aに示されるように、コネクタ150では、複数の導波路コアが、接続対象のMCF200のコアそれぞれに対向する位置に設けられている。MCF200の各コアで伝送される光信号は、導波路コアを介して分離される。また、導波路コアへ光信号を挿入することにより、MCF200の各コアへ光信号を入力することができる。
 図3Bに示されるコネクタ150-iでは、コネクタ150-iにより接続されるMCF200-i及びMCF200-(i+1)のコアのうちAdd/Dropの対象となる光信号を伝送するコアに対応する導波路コアの一端は、MCFのコアに対向する位置に設けられている。導波路コアの他端は、コネクタ150-iの側面に設けられている。コネクタ150-iの側面に位置する導波路コアの他端において、光信号の挿入と分岐を行うことができる。
 MCF200-iのコアのうちAdd/Dropの対象でない光信号を伝送するコアに対する導波路コアの一端はMCFのコアに対向する位置に設けられる。導波路コアの他端は、MCF200-(i+1)のコアのうちAdd/Dropの対象でない光信号を伝送するコアに対向する位置に設けられる。MCF200-i及びMCF200-(i+1)においてAdd/Dropの対象でない光信号を伝送するコアは、導波路コアを介して、一対一に接続される。コネクタ150-iにおいて、Add/Dropの対象でない光信号は、導波路コアを介して、MCF200-iのコアからMCF200-(i+1)のコアへと中継される。
 なお、導波路コアは、基板平面の二次元空間に形成されるだけでなく、参考文献1に記載されているように三次元空間に形成されてもよい。
[参考文献1]R. R. Thomson, et al, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications", Optics Express, OSA Publishing, 2007, Vol.15, Issue 18, p.11691-11697
 図4A及び図4Bは、通信システム100に用いられるコネクタ150の第3の構成例を示す図である。図4A及び図4Bには、図2A、図2B、図3A及び図3Bに示したコネクタ150の構成例と異なる構成例が示されている。図4A及び図4Bに示されるコネクタ150は、MCF200の各コアで伝送される光信号を一旦自由空間に出力させ、自由空間において各コアの光信号を光学系で分離する。例えば図4Aに示されるように、コネクタ150は2つのレンズで構成されるファンイン・ファンアウト部を備える。MCF200の各コアで伝送される光信号は、自由空間へ出力され、2つのレンズで屈折されることで分離される。光信号のAdd/Dropは、光学系を用いて行われる。自由空間を介した2つのMCF200の接続は、例えば参考文献2に記載されている。
[参考文献2]W. Klaus, et al, "Free-Space Coupling Optics for Multicore Fibers", Photonics Technology Letters, IEEE, 2012 September, Volume 24, Issue 21, p.1902-1905
 図4Bは、コネクタ150-iの構成例を示す図である。図4Bに示されるコネクタ150-iでは、2つのレンズを組み合わせた光学系(コリメーター)によりMCF200-iの各コアから出射される光信号をコリメートしている。また、コリメートされた光信号それぞれは、MCF200-(i+1)の各コアに入力される。Add/Dropの対象となる光信号の光線経路には、光線経路をコネクタ150-iの側面方向に変更する鏡が配置されている。光学系により平行光線にされた光信号のうち分離対象の光信号を鏡で反射させてコネクタ150-iの外部へ分岐させることにより、分離対象の光信号を得ることができる。また、コネクタ150-iの外部から入力される光信号を鏡に当てることにより、鏡で反射される光信号がコリメートされた光信号と共に2つのレンズを組み合わせた光学系に入射する。光学系に入射した光信号がMCF200-(i+1)のコアに接続されることで、Add対象の光信号をコアへ挿入することができる。
 Add/Dropの対象でない光信号は、光学系で分離された後に、Addされた光信号と共に束ねられてMCF200-(i+1)のコアそれぞれに入力される。コネクタ150-iにおいて、Add/Dropの対象でない光信号は、自由空間を介して、MCF200-iからMCF200-(i+1)へと中継される。なお、図面ではファイバ出射光のコリメートにレンズ2枚を使い、自由空間中における光の伝搬方向変更に鏡を使っているが、同様の機能を持つ光学機器を用いてもよい。
 図2A、図2B、図3A、図3B、図4A及び図4Bにおいてコネクタ150の構成例を示したが、コネクタ150は、説明した媒質及び方法以外のものを用いて実現してもよい。例えば、シリコン上に光導波路を持たせた平面光回路(Planar Lightwave Circuit:PLC)をコネクタとして用いてもよい。
 通信システム100では、送受信ノード110の送信装置111-1で生成された光信号は、MCF200-1のコア201-1と、コネクタ150-1とを介してAdd/Dropノード120-1の受信装置122-1で受信される。送信装置111-2で生成された光信号は、MCF200-1のコア202-1と、コネクタ150-1と、MCF200-2のコア202-2と、コネクタ150-2とを介してAdd/Dropノード120-2の受信装置122-2で受信される。送信装置111-3で生成された光信号は、MCF200-1のコア203-1と、コネクタ150-1と、MCF200-2のコア203-2と、コネクタ150-2と、MCF200-3のコア203-3と、コネクタ150-3とを介してAdd/Dropノード120-3の受信装置122-3で受信される。
 また、Add/Dropノード120-1の送信装置121-1で生成された光信号は、コネクタ150-1と、MCF200-2のコア201-2と、コネクタ150-2と、MCF200-3のコア201-3と、コネクタ150-3と、MCF200-4のコア201-4とを介して送受信ノード110の受信装置112-1で受信される。Add/Dropノード120-2の送信装置121-2で生成された光信号は、コネクタ150-2と、MCF200-3のコア202-3と、コネクタ150-3と、MCF200-4のコア202-4とを介して送受信ノード110の受信装置112-2で受信される。Add/Dropノード120-3の送信装置121-3で生成された光信号は、コネクタ150-3と、MCF200-4のコア203-4を介して送受信ノード110の受信装置112-3で受信される。
 通信システム100において、送受信ノード110は、Add/Dropノード120-1~120-3それぞれとの送受信の通信経路を有している。通信システム100は、送受信ノード110を中心としたスター型の論理トポロジを有する。
 例えば図2A、図2B、図3A、図3B、図4A及び図4Bに示したいずれかのコネクタ150を用いて、各ノードでMCF200を接続することにより、MCF200に含まれる複数のコアのうち所定のコアに対して光信号のAdd/Dropを行うことができる。通信システム100において、MCF200-iとMCF200-(i+1)とをコネクタ150-iを介して接続することにより、Add/Dropノード120-i宛の光信号の分岐と、送受信ノード110宛の光信号の挿入とを容易に行うことができる。光信号のAdd/Dropにおいては、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノード120における装置の設置や保守の手間を削減できる。
 なお、MCF200が3つのコアを備える場合について説明したが、MCF200が4つ以上のコアを備えてもよい。MCF200が4つ以上のコアを備える場合、Add/Dropノード120において2つ以上のコアに対して光信号をAdd/Dropしてもよい。
 また、MCF200の各コアにおいてWDM伝送を行ってもよい。WDM伝送を行う場合、Add/Dropノード120において、各波長の光信号の分波と合波とが必要になる。図5は、通信システム100でWDM伝送を行う場合における、Add/Dropノード120-1の構成例を示す図である。Add/Dropノード120-1は、コネクタ150-1と、分波器124-1と、合波器123-1と、複数の受信装置122-1と、複数の送信装置121-1とを備える。
 コネクタ150-1においてMCF200-1のコア201-1から分岐された光信号は、分波器124-1に入力される。分波器124-1は、入力された光信号を波長ごとに分波する。分波して得られた各光信号は、それぞれ受信装置122-1で受信される。複数の送信装置121-1で生成されたそれぞれ波長の異なる光信号は、合波器123-1に入力される。合波器123-1は、入力された各光信号を合波し、合波して得られた光信号をコネクタ150-1へ出力する。コネクタ150-1は、合波器123-1から入力された光信号を、MCF200-2のコア201-2へ接続することで、送受信ノード110への光信号をMCF200-2へ挿入する。
 なお、WDM伝送を行う場合においても、Add/Dropの対象でないMCF200-1のコア202-1、203-1の光信号は、MCF200-2のコア202-2、203-2へ中継される。そのため、中継される光信号に対しては、各Add/Dropノードにて波長単位の合分波を行わなくてもよい。WDM伝送を行う場合には他のAdd/Dropノード120においても、Add/Dropノード120-1と同様の構成を備える。
 図6は、本発明の実施形態を適用可能な通信システム100Aの構成例を示す図である。通信システム100Aは、送受信ノード110a、110bと、n台のAdd/Dropノード120と、を備える。図6には、n=3の場合における通信システム100Aの構成例が示されている。通信システム100Aは、両系片方向のリング構成の物理トポロジを有している点が、図1に示す通信システム100と異なる。
 ノード間は、MCF210-1~210-4で接続されている。送受信ノード110aとAdd/Dropノード120-1とは、MCF210-1で接続されている。Add/Dropノード120-1とAdd/Dropノード120-2とは、MCF210-2で接続されている。Add/Dropノード120-2とAdd/Dropノード120-3とは、MCF210-3で接続されている。Add/Dropノード120-3と送受信ノード110bとは、MCF210-4で接続されている。通信システム100AにおけるMCF210-1~210-4は、6つのコア211~216を備えている。
 通信システム100Aの構成についての説明を一般化すると、Add/Dropノード120-i(1≦i≦n-1)は、Add/Dropノード120-(i+1)とMCF210-(i+1)を介して接続されている。MCF210-1は、送受信ノード110aとAdd/Dropノード120-1とを接続する。MCF210-(n+1)は、Add/Dropノード120-nと送受信ノード110bとを接続する。
 通信システム100Aの各ノードは、ノード間での通信を行う送信装置(Tx)及び受信装置(Rx)と、送受信装置(Tx/Rx)とのいずれかを備える。送受信ノード110aに対して、送信装置111-1~111-3と受信装置112-1~112-3とが備えられている。Add/Dropノード120-1に対して、送受信装置125-1、126-1が備えられている。Add/Dropノード120-2に対して、送受信装置125-2、126-2が備えられている。Add/Dropノード120-3に対して、送受信装置125-3、126-3が備えられている。送受信ノード110bに対して、送信装置111-4~111-6と受信装置112-4~112-6とが備えられている。なお、図6に示す通信システム100Aの構成例では、送受信ノード110a、110bに送信装置111及び受信装置112が備えられ、Add/Dropノード120-1~120-3に送受信装置125、126が備えられた構成を説明する。しかし、送受信装置125、126は、その内部に送信装置と受信装置との両者の機能を内包したものであり、送信装置と受信装置とを組み合わせたものと送受信装置とには大きな差分はない。送受信ノード110a、110bとAdd/Dropノード120-1~120-3とにおいて、送信装置及び受信装置と、送受信装置とのいずれが備えられていてもよい。
 送信装置111-1~111-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送信装置111-1~111-3により生成された光信号は、それぞれMCF210-1のコア211-1、213-1、215-1に挿入される。受信装置112-1~112-3は、それぞれAdd/Dropノード120-1~120-3から送受信ノード110a宛に送信された光信号を受信する。受信装置112-1~112-3は、それぞれMCF210-1のコア212-1、214-1、216-1から光信号を受信する。
 送信装置111-4~111-6は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送信装置111-4~111-6により生成された光信号は、それぞれMCF210-4のコア211-4、213-4、215-4に挿入される。受信装置112-4~112-6は、それぞれAdd/Dropノード120-1~120-3から送受信ノード110b宛に送信された光信号を受信する。受信装置112-4~112-6は、それぞれMCF210-4のコア212-4、214-4、216-4から光信号を受信する。送受信ノード110a、110bにおける、MCF200への光信号の挿入とMCF200からの光信号の分岐とには、ファンイン・デバイス又はファンアウト・デバイスが用いられる。
 各Add/Dropノード120-i(i=1,2,3)には、それぞれコネクタ160-iが備えられている。コネクタ160-iは、MCF210-iとMCF210-(i+1)とに接続される。コネクタ160-iは、送受信ノード110a、110bで挿入された光信号のうち自ノードへの光信号をMCF210-i及びMCF210-(i+1)から分岐する。コネクタ160-iは、送受信ノード110a宛の光信号をMCF210-iのコアへ挿入する。コネクタ160-iは、送受信ノード110b宛の光信号をMCF210-(i+1)のコアへ挿入する。
 Add/Dropノード120-1において、コネクタ160-1は、MCF210-1のコア211-1から自ノードへの光信号を分岐する。コネクタ160-1は、分岐した光信号を送受信装置125-1へ接続する。また、コネクタ160-1は、送受信装置125-1により生成された光信号をMCF210-1のコア212-1へ挿入する。コア212-1へ挿入される光信号は、自ノードから送受信ノード110aへ伝送される光信号である。
 更に、コネクタ160-1は、MCF210-2のコア211-2から自ノードへの光信号を分岐する。コネクタ160-1は、分岐した光信号を送受信装置126-1へ接続する。また、コネクタ160-1は、送受信装置126-1により生成された光信号をMCF210-2のコア212-2へ挿入する。コア212-2へ挿入される光信号は、自ノードから送受信ノード110bへ伝送される光信号である。
 コネクタ160-1は、MCF210-1のコアのうちコア213-1~216-1と、MCF210-2のコアのうち213-2~216-2とをそれぞれ接続する。コネクタ160-1は、MCF210-1とMCF210-2との間において光信号を中継する。コネクタ160-1は、光信号をAdd/Dropするコア211-1、212-1、211-2、212-2以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-2において、コネクタ160-2は、MCF210-2のコア213-2から自ノードへの光信号を分岐する。コネクタ160-2は、分岐した光信号を送受信装置125-2へ接続する。また、コネクタ160-2は、送受信装置125-2により生成された光信号をMCF210-2のコア214-2へ挿入する。コア214-2へ挿入される光信号は、自ノードから送受信ノード110aへ伝送される光信号である。
 更に、コネクタ160-2は、MCF210-3のコア213-3から自ノードへの光信号を分岐する。コネクタ160-2は、分岐した光信号を送受信装置126-2へ接続する。また、コネクタ160-2は、送受信装置126-2により生成された光信号をMCF210-3のコア214-3へ挿入する。コア214-3へ挿入される光信号は、自ノードから送受信ノード110bへ伝送される光信号である。
 コネクタ160-2は、MCF210-2のコアのうちコア211-2、212-2、215-2、216-2と、MCF210-3のコアのうちコア211-3、212-3、215-3、216-3とをそれぞれ接続する。コネクタ160-2は、MCF210-2とMCF210-3との間において光信号を中継する。コネクタ160-2は、光信号をAdd/Dropするコア213-2、214-2、213-3、214-3以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-3において、コネクタ160-3は、MCF210-3のコア215-3から自ノードへの光信号を分岐する。コネクタ160-3は、分岐した光信号を送受信装置126-3へ接続する。また、コネクタ160-3は、送受信装置126-3により生成された光信号をMCF210-3のコア216-3へ挿入する。コア216-3へ挿入される光信号は、自ノードから送受信ノード110aへ伝送される光信号である。
 更に、コネクタ160-3は、MCF210-4のコア215-4から自ノードへの光信号を分岐する。コネクタ160-4は、分岐した光信号を送受信装置125-3へ接続する。また、コネクタ160-3は、送受信装置125-3により生成された光信号をMCF210-4のコア216-3へ挿入する。コア216-4へ挿入される光信号は、自ノードから送受信ノード110bへ伝送される光信号である。
 コネクタ160-3は、MCF210-3のコアのうちコア211-3~214-3と、MCF210-4のコアのうちコア211-4~214-4とをそれぞれ接続する。コネクタ160-3は、MCF210-3とMCF210-4との間において光信号を中継する。コネクタ160-3は、光信号をAdd/Dropするコア215-3、216-3、215-4、216-4以外のコアで伝送される光信号を中継する。
 通信システム100Aに用いられるコネクタ160-1~160-3は、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることにより、通信システム100におけるコネクタ150-1~150-3と同様に構成することができる。
 通信システム100Aでは、送受信ノード110a、110bとAdd/Dropノード120-1~120-3それぞれとの間に送信用の通信経路と受信用の通信経路が形成される。送受信ノード110a、110bは、Add/Dropノード120-1~120-3と個別に通信することができる。このように、通信システム100Aは、送受信ノード110a、110bそれぞれをルートノードとするツリー型の論理トポロジを有している。
 Add/Dropノード120-1~120-3は、2つの送受信ノード110a、110bとの通信経路のうちいずれか一方を現用系(0系)として利用し、他方を予備系(1系)として利用してもよい。また、Add/Dropノード120-1~120-3は、伝送距離の短い通信経路を0系として利用し、伝送距離の長い通信経路を1系として利用してもよい。Add/Dropノード120-1~120-3では、光信号のAdd/Dropにおいて、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるので装置の設置や保守の手間を削減できる。
 なお、各MCF210が6つのコア211~216を備える場合について説明したが、MCF210が7つ以上のコアを備えてもよい。MCF210が7つ以上のコアを備える場合、Add/Dropノード120において2つ以上のコアに対して光信号をAdd/Dropしてもよい。
 また、MCF210の各コアにおいてWDM伝送を行ってもよい。WDM伝送を行う場合、図5に示したように、各Add/Dropノード120にはAdd/Dropする光信号に対する分波器又は合波器が備えられる。
 また、送受信ノード110aと送受信ノード110bとの間を、MCF210又は7つ以上のコアを備えるMCFを用いて接続してもよい。通信システム100Aにおいて、送受信ノード110a、110bとAdd/Dropノード120-1~120-3との役割が変わった場合に、送受信ノード110a、110bにコネクタを取り付け、各Add/Dropノード120-1~120-3のコネクタ150を他のコネクタ付け替えることで、論理トポロジを容易に変更することができる。これにより、ネットワーク構成の変更に対し柔軟に対応することができる。
 図7は、本発明の実施形態を適用可能な通信システム100Cの構成例を示す図である。通信システム100Cは、送受信ノード110と、n台のAdd/Dropノード120と、を備える。図7には、n=3の場合における通信システム100Cの構成例が示されている。通信システム100Cにおいて、ノード間におけるMCF200-1~200-4の接続は、通信システム100における接続と同様である。通信システム100Cでは、送受信ノード110から各Add/Dropノード120への通信と、各Add/Dropノード120から送受信ノード110への通信とが同一のコアを用いて行われる。伝送方向が異なる光信号を同一のコアで伝送する際には、伝送方向が異なる光信号が互いに及ぼす影響を抑えるために光信号の強度を一定以下にしてもよいし、光信号の波長を伝送方向ごとに異なる波長にしてもよい。通信システム100Cは、片系双方向のリング構成の物理トポロジを有している点が、図1に示す通信システム100と異なる。
 通信システム100Cの各ノードは、ノード間での通信を行う送受信装置(Tx/Rx)を備える。送受信ノード110には、送受信装置113-1~113-3が備えられている。Add/Dropノード120-1~120-3には、送受信装置125-1~125-3がそれぞれ備えられている。送受信装置113-1~113-3は、それぞれAdd/Dropノード120-1~120-3へと送信する光信号を生成する。また、送受信装置113-1~113-3は、Add/Dropノード120-1~120-3から送信された光信号を受信し、光信号に含まれる情報を取得する。送受信装置125-1~125-3は、それぞれ送受信ノード110へと送信する光信号を生成する。また、送受信装置125-1~125-3は、それぞれ送受信ノード110から送信された光信号を受信し、光信号に含まれる情報を取得する。
 送受信装置113-1~113-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置113-1~113-3により生成された3つの光信号は、それぞれMCF200-1のコア201-1~203-1に挿入される。また、送受信装置113-1~113-3は、それぞれMCF200-1のコア201-1~203-1を介してAdd/Dropノード120-1~120-3からの光信号を受信する。MCF200-1への光信号の挿入とMCF200-1からの光信号の分岐とには、ファンイン/ファンアウト・デバイスが用いられる。
 各Add/Dropノード120-i(i=1,2,3)には、それぞれコネクタ180-iが備えられている。コネクタ180-iは、MCF200-iとMCF200-(i+1)とに接続される。コネクタ180-iは、MCF200-iのコア20i-iから光信号を分岐し、分岐した光信号を送受信装置125-iへ接続する。また、コネクタ180-iは、送受信装置125-iにより生成された光信号をMCF200-iのコア20i-iへ挿入する。送受信装置125-iにより生成された光信号は、Add/Dropノード120-iから送受信ノード110へ伝送される光信号である。コネクタ180-iは、MCF200-iのコアとMCF200-(i+1)のコアとのうち、Add/Dropの対象となるコア以外のコア20i-iとコア20i-(i+1)とを接続して光信号を中継する。
 送受信ノード110とAdd/Dropノード120-1とは、コア201-1により形成される通信経路を用いた双方向の通信を行う。送受信ノード110とAdd/Dropノード120-2とは、コア202-1、202-2により形成される通信経路を用いた双方向の通信を行う。送受信ノード110とAdd/Dropノード120-3とは、コア203-1、203-2、203-3により形成される通信経路を用いた双方向の通信を行う。MCF200-2のコア201-2、MCF200-3のコア201-3及びコア202-3、MCF200-4のコア201-4~203-4は、通信に使用されないコアである。
 なお、通信システム100Cにおいて、Add/Dropノード120-3はMCF200-4のコア201-4を用いた通信を送受信ノード110と行うことで、通信経路の短縮を図ってもよい。その場合には、送受信ノード110においてMCF200-4との接続部にファイン/ファンアウト・デバイスが必要となる。
 また、通信システム100Cにおいて、送受信ノード110と各Add/Dropノード120-1~120-3との間でWDM伝送を行ってもよい。WDM伝送を行う場合、図5に示したように、各Add/Dropノード120-1~120-3においてコアから分岐した光信号を各波長の光信号に分ける分波と、各波長の光信号を1つの光信号にまとめる合波とを行う必要がある。図8は、通信システム100CでWDM伝送を行う場合における、Add/Dropノード120-1の構成例を示す図である。Add/Dropノード120-1には、コネクタ180-1と、光サーキュレータ127-1と、分波器124-1と、合波器123-1と、送受信装置125-1としての複数の受信装置122-1及び複数の送信装置121-1と、が備えられる。
 コネクタ180-1においてMCF200-1のコア201-1から分岐された光信号は、光サーキュレータ127-1に接続される。コネクタ180-1から光サーキュレータ127-1へ接続された光信号は、分波器124-1へ出力される。分波器124-1は、入力された光信号を波長ごとに分波し、分波して得られた光信号それぞれを受信装置122-1へ出力する。複数の送信装置121-1で生成された波長の異なる光信号は、合波器123-1に入力される。合波器123-1は、入力された各光信号を合波し、合波して得られた光信号を光サーキュレータ127-1へ出力する。合波器123-1から光サーキュレータ127-1へ入力された光信号は、コネクタ180-1へ出力される。コネクタ180-1は、光サーキュレータ127-1からの光信号を、MCF200-1のコア201-1へ挿入することで、送受信ノード110への光信号がMCF200-1に挿入される。
 なお、WDM伝送を行う場合においても、Add/Dropの対象でないMCF200-1のコア202-1、203-1の光信号は、MCF200-2のコア202-2、203-2へ中継される。他のAdd/Dropノード120も、Add/Dropノード120-1と同様の構成を備える。
 また、通信システム100Cでは、各Add/Dropノード120においてAdd/Dropの対象となるコアが1つの場合について説明したが、各Add/Dropノード120において複数のコアから光信号を分岐したり、複数のコアヘ光信号を挿入したりしてもよい。
 図9は、本発明の実施形態を適用可能な通信システム100Dの構成例を示す図である。通信システム100Dは、送受信ノード110a、110bと、n台のAdd/Dropノード120と、を備える。図9には、n=3の場合における通信システム100Dの構成例が示されている。通信システム100Dにおいて、ノード間におけるMCF200-1~200-4の接続は、通信システム100AにおけるMCF210-1~210-4の接続と同様である。通信システム100Dでは、送受信ノード110a、110bから各Add/Dropノード120への通信と、各Add/Dropノード120から送受信ノード110a、110bへの通信とが同一のコアを用いて行われる。通信システム100Dは、両系双方向のリング構成の物理トポロジを有する。
 通信システム100Dの各ノードは、ノード間での通信を行う送受信装置(Tx/Rx)を備える。送受信ノード110aには、送受信装置113-1~113-3が備えられている。送受信ノード110bには、送受信装置113-4~113-6が備えられている。Add/Dropノード120-1~120-3には、送受信装置125-1~125-3、126-1~126-3がそれぞれ備えられている。送受信装置113-1~113-6は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置125-1~125-3は、送受信ノード110aへ送信する光信号を生成する。送受信装置126-1~126-3は、送受信ノード110bへ送信する光信号を生成する。また、送受信装置113-1~113-6は、Add/Dropノード120-1~120-3それぞれから送信される光信号を受信し、光信号に含まれる情報を取得する。送受信装置125-1~125-3は、送受信ノード110aから送信されられる光信号を受信し、光信号に含まれる情報を取得する。送受信装置126-1~126-3は、送受信ノード110bから送信される光信号を受信し、光信号に含まれる情報を取得する。
 送受信ノード110aにおいて、送受信装置113-1~113-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置113-1~113-3により生成された3つの光信号は、それぞれMCF200-1のコア201-1~203-1に挿入される。また、送受信装置113-1~113-3は、それぞれMCF200-1のコア201-1~203-1を介してAdd/Dropノード120-1~120-3からの光信号を受信する。MCF200-1への光信号の挿入とMCF200-1からの光信号の分岐とには、ファンイン/ファンアウト・デバイスが用いられる。
 送受信ノード110bにおいて、送受信装置113-4~113-6は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置113-4~113-6により生成された3つの光信号は、それぞれMCF200-4のコア201-4~203-4に挿入される。また、送受信装置113-4~113-6は、それぞれMCF200-4のコア201-4~203-4を介してAdd/Dropノード120-1~120-3からの光信号を受信する。MCF200-4への光信号の挿入とMCF200-4からの光信号の分岐とには、送受信ノード110aと同様に、ファンイン/ファンアウト・デバイスが用いられる。
 Add/Dropノード120-i(i=1,2,3)それぞれには、コネクタ185-iが備えられている。コネクタ185-iは、MCF200-iとMCF200-(i+1)とに接続される。コネクタ185-iは、MCF200-iのコア20i-iから光信号を分岐し、分岐した光信号を送受信装置125-iへ接続する。コネクタ185-iは、送受信装置125-iにより生成された光信号をMCF200-iのコア20i-iへ挿入する。送受信装置125-iにより生成された光信号は、Add/Dropノード120-iから送受信ノード110aへ伝送される光信号である。
 また、コネクタ185-iは、MCF200-(i+1)のコア20i-(i+1)から光信号を分岐し、分岐した光信号を送受信装置126-iへ接続する。コネクタ185-iは、送受信装置126-iにより生成された光信号をMCF200-(i+1)のコア20i-(i+1)へ挿入する。送受信装置126-iにより生成された光信号は、Add/Dropノード120-iから送受信ノード110bへ伝送される光信号である。
 また、コネクタ185-iは、MCF200-iのコアとMCF200-(i+1)のコアとのうち、Add/Dropの対象となるコア以外のコア20i-iとコア20i-(i+1)とを接続して光信号を中継する。
 送受信ノード110aとAdd/Dropノード120-1とは、コア201-1により形成される通信経路を用いた双方向の通信を行う。送受信ノード110aとAdd/Dropノード120-2とは、コア202-1、202-2により形成される通信経路を用いた双方向の通信を行う。送受信ノード110aとAdd/Dropノード120-3とは、コア203-1、203-2、203-3により形成される通信経路を用いた双方向の通信を行う。
 送受信ノード110bとAdd/Dropノード120-1とは、コア201-4、201-3、201-2により形成される通信経路を用いた双方向通信を行う。送受信ノード110bとAdd/Dropノード120-2とは、コア202-4、202-3により形成される通信経路を用いた双方向通信を行う。送受信ノード110bとAdd/Dropノード120-3とは、コア203-4により形成される通信経路を用いた双方向通信を行う。
 このように、通信システム100Dは、送受信ノード110a、110bそれぞれをルートノードとしてAdd/Dropノード120-1~120-3それぞれと通信可能なツリー型の論理トポロジを有する。通信システム100Dでは、Add/Dropノード120-1~120-3は、それぞれ送受信ノード110a、110bと通信を行うことができる。Add/Dropノード120-1~120-3は、2つの送受信ノード110a、110bとの通信経路のうちいずれか一方を現用系(0系)として利用し、他方を予備系(1系)として利用してもよい。また、Add/Dropノード120-1~120-3は、伝送距離の短い通信経路を0系として利用し、伝送距離の長い通信経路を1系として利用してもよい。
 なお、通信システム100Dにおいて、送受信ノード110aと送受信ノード110bとの間をMCF200や、4つ以上のコアを備えるMCFを用いて接続してもよい。通信システム100Dにおいて、送受信ノード110a、110bとAdd/Dropノード120-1~120-3との役割が変わった場合に、送受信ノード110a、110bにコネクタを取り付け、各Add/Dropノード120-1~120-3のコネクタ185を他のコネクタ付け替えることで、論理トポロジを容易に変更することができる。これにより、ネットワーク構成の変更に対し柔軟に対応することができる。
 本発明の実施形態を適用可能な通信システムとして、4つの通信システム100、100A、100C、100Dを説明した。各通信システムでは、ノード間の接続にMCFを用いる構成を説明した。しかし、ノード間の接続の一つ又は複数にSCF(Single Core Fiber)が用いられた通信システムに対して、各実施形態において説明する伝送品質推定装置及び伝送品質推定方法を適用してもよい。ノード間の接続にSCFが用いられる場合、MCFと複数のSCFとを接続する変換コネクタ、又はコネクタと複数のSCFとを接続する変換コネクタが用いられる。
 図10は、図1に示した通信システム100において、Add/Dropノード120-1とAdd/Dropノード120-2との接続の一部に複数のSCF451、452、453を用いる第1の構成例を示すブロック図である。コネクタ150-1に接続されたMCF200-21と、コネクタ150-2に接続されたMCF200-22との間にSCF451、452、453が用いられている。
 MCF200-21とSCF451~453との接続には変換コネクタ400-1が用いられている。変換コネクタ400-1は、MCF200-21のコア201-21、202-21、203-21と、SCF451、452、453とをそれぞれ接続する。MCF200-22とSCF451~453との接続には変換コネクタ400-2が用いられている。変換コネクタ400-2は、MCF200-22のコア201-22、202-22、203-22と、SCF451、452、453とをそれぞれ接続する。
 変換コネクタ400-1、400-2は、ファンイン・デバイス又はファンアウト・デバイスと同じ構成を有している。変換コネクタ400-1、400-2を用いることにより、ノード間の接続における一部区間にSCFを用いることができる。
 図11は、図1に示した通信システム100において、Add/Dropノード120-1とAdd/Dropノード120-2との接続に複数のSCF451、452、453を用いる第2の構成例を示すブロック図である。コネクタ150-1とコネクタ150-2との接続にSCF451、452、453が用いられている。図11に示す構成例は、Add/Dropノード120-1、120-2間の接続にMCFが用いられていない構成が図10に示した構成例と異なる。
 Add/Dropノード120-1は、更に変換コネクタ410-1を備える。コネクタ150-1のAdd/Dropノード120-2側に変換コネクタ410-1が取り付けられる。Add/Dropノード120-2は、更に変換コネクタ410-2を備える。コネクタ150-2のAdd/Dropノード120-1側に変換コネクタ410-2が取り付けられる。MCF200が有するコア数と同数のSCF451~453が、変換コネクタ410-1、410-2間の接続に用いられる。
 変換コネクタ410-1は、SCF451、452、453とコネクタ150-1とを接続する。コネクタ150-1は、MCF200-2に代えて、変換コネクタ410-1と光信号の入出力を行う。コネクタ150-1は、変換コネクタ410-1を介して、MCF200-1のコア202-1、203-1とSCF452、453とをそれぞれ接続する。変換コネクタ410-1は、コネクタ150-1を介して、送信装置121-1が生成した光信号をSCF451へ挿入する。
 変換コネクタ410-2は、SCF451、452、453とコネクタ150-2とを接続する。コネクタ150-2は、MCF200-2に代えて、変換コネクタ410-2と光信号の入出力を行う。コネクタ150-2は、変換コネクタ410-2を介して、SCF451、453とMCF200-3のコア201-3、203-3とをそれぞれ接続する。コネクタ150-2は、変換コネクタ410-2を介して、SCF453から分岐した光信号を受信装置122-2へ接続する。
 変換コネクタ410-1、410-2は、ファンイン・デバイス又はファンアウト・デバイスと同じ構成を有している。変換コネクタ410-1、410-2を用いることにより、ノード間の接続にSCFを用いることができる。
 図10及び図11では、3つコアを有するMCF200に代えてSCFを用いてノード間を接続する構成例を示した。2つ又は4つ以上のコアを有するMCFに代えてSCFをノード間の接続に用いてもよい。この場合においても、同様に、変換コネクタが用いられる。
 図10及び図11では、図1に示した通信システム100におけるAdd/Dropノード120-1、120-2間の接続にSCFを用いる例を示した。他のノード間の接続にもSCFを用いてもよい。この場合、一つのノード間の接続に変換コネクタ400を用い、他のノード間の接続に変換コネクタ410を用いてもよい。また、一つのノード間の接続に、MCFとSCFとを接続する変換コネクタ400と、コネクタ150に接続する変換コネクタ410とを組み合わせて用いてもよい。例えば、Add/Dropノード120-1において変換コネクタ400が用いられ、Add/Dropノード120-2において変換コネクタ410が用いられてもよい。
 一つのノード間の接続において、MCFとSCFとの変換が複数回行われてもよい。例えば、Add/Dropノード120-1、120-2との間の接続において、MCF、SCF、MCF、SCF、MCFの順でMCFとSCFとが用いられてもよい。この場合、MCFとSCFとの間それぞれに変換コネクタが用いられる。
 また、図11において説明した、コネクタ150-1と変換コネクタ410-1とが1つのコネクタとして構成されてもよい。同様に、コネクタ150-2と変換コネクタ410-2とが1つのコネクタとして構成されてもよい。すなわち、MCFと複数のSCFとに接続されるコネクタが、MCF又はSCFに対して光信号のADD/Dropを行うとともに、MCFとSCFとの間における光信号の中継を行ってもよい。
 以上説明したように、図1に示した通信システム100及び他の通信システムにおけるノード間の接続のうち一つ又は複数に、SCFが用いられてもよい。
 以下に本発明の各実施形態を説明する。
[第1の実施形態]
 第1の実施形態では、MCF(マルチコアファイバ)中の複数のコアのうち、特定のコアの光信号を全てのAdd/Dropノードで監視することにより、隣接ノードとの間の伝送品質を推定する。
 図12は、第1の実施形態の伝送品質推定システム500の構成例を示す図である。伝送品質推定システム500は、送受信ノード510と、n台(nは1以上の整数)のAdd/Dropノード520と、n+1台の伝送品質推定装置700と、を備える。同図では、n=3の例を示している。以下では、送受信ノード510及びAdd/Dropノード520を総称して「ノード」と記載し、n台のAdd/Dropノード520をそれぞれ、Add/Dropノード520-1~520-nと記載する。また、送受信ノード510と接続される伝送品質推定装置700を伝送品質推定装置700aと記載し、Add/Dropノード520-i(iは1以上n以下の整数)と接続される伝送品質推定装置700を伝送品質推定装置700b-iと記載し、伝送品質推定装置700b-1~700b-nを総称して伝送品質推定装置700bと記載する。伝送品質推定装置700は、各ノードの内部に備えられてもよい。
 各ノード間は、MCF600により接続される。第1の実施形態では、送受信ノード510、Add/Dropノード520、及び、MCF600が、上述した図1に示す片系片方向のリング構成の通信システム100を構成する場合を例に説明するが、他のトポロジの通信システムを構成してもよい。送受信ノード510は図1の送受信ノード110に相当する。Add/Dropノード520-1~520-nはそれぞれ、図1のAdd/Dropノード120~120-nに相当する。ただし、MCF600は、通信用の光信号を伝送するコアに加え、伝送品質測定用の光を伝送するコアを有する。伝送品質測定用の光は、通信用の光信号を伝送するコアから漏れ出した光である。
 以下では、送受信ノード510とAdd/Dropノード520-1との間を接続するMCF600をMCF600-1と記載する。Add/Dropノード520-i(i=2,…,n)とAdd/Dropノード520-(i-1)との間を接続するMCF600をMCF600-iと記載する。Add/Dropノード520-nと送受信ノード510との間を接続するMCF600をMCF600-(n+1)と記載する。なお、隣接するノードのうち、光信号が伝送される方向と逆の方向に隣接するノードを1つ前のノードと記載する。
 送受信ノード510は、変調器560を備える。Add/Dropノード520は、コネクタ(コア接続部)550及び変調器560を備える。変調器560は、MCF600のコアに挿入される通信用の光信号に、その光信号を伝搬する各コアを一意に識別可能な変調を施す。例えば、変調器560は、通信用の光信号を個別に識別可能な変調を施してもよい。送受信ノード510が備えるn個の変調器560を変調器560a-1~560a-nと記載し、変調器560a-1~560a-nを総称して変調器560aと記載する。また、Add/Dropノード520-iが備える変調器560を変調器560b-iと記載し、変調器560b-1~560b-nを総称して変調器560bと記載する。変調器560は、各ノードの外部に備えられてもよい。なお、光信号を個別に識別可能な変調は、送信機Txで生成された光信号に対して直接施すだけでなく、光信号生成時に用いられる電気信号に対して施してもよい。すなわち、伝送すべき情報を示す電気信号から光信号を生成する前、又は電気信号から光信号を生成した後のいずれかにおいて、光信号を個別に識別可能する変調が行われればよい。電気信号に対して光信号を個別に識別可能な変調を行う場合には、外部の変調器560が不要となる。コネクタ550は、MCF600の特定のコアに対して光信号の挿入及び分岐を行い、他のコアの光信号を中継する。Add/Dropノード520-iが備えるコネクタ550をコネクタ550-iと記載する。
 図13は、第1の実施形態によるMCF600の断面図である。同図に示すように、MCF600は、m本のコア601(mはn+1以上の整数)を備える。m本のコア601のうち、一部のコア601が伝送品質測定用の光信号を伝送する。他のコア601が通信用の光信号を伝送する。以下では、m本のコア601をそれぞれ、コア601-1~601-mと記載する。また、簡単のため、Add/Dropノード520-i(iは1以上n以下の整数)により挿入又は分岐される通信用の光信号をコア601-iが伝送し、伝送品質測定用の光信号をコア601-mが伝送する場合を例に説明する。コア601-mは、通信用の光信号を伝送する他のコア601-1~601-nそれぞれと等距離にあることが望ましいが、等距離でなくてもよい。
 MCF600の各コア601で伝送される光信号は、他のコア601から漏れ出した光による影響(クロストーク)を受ける。そこで、送受信ノード510及び各Add/Dropノード520は、MCF600のコア601-mに他のコア601-1~601-nから漏れ出した光を伝送品質測定用の光として分岐する。伝送品質推定装置700は、分岐された伝送品質測定用の光を測定し、その測定結果から伝送品質を推定する。
 図14は、伝送品質推定装置700の構成を示すブロック図である。伝送品質推定装置700は、受信部703、測定部704、及び、推定部705を備える。受信部703は、ノードが分岐した伝送品質測定用の光を受信する。測定部704は、受信部703が受信した光を測定する。推定部705は、測定部704による測定結果に基づき、コア601-1~601-nそれぞれの伝送品質を推定する。伝送品質の推定には、任意の従来技術を用いることができる。伝送品質の推定には、通信用の光信号に用いられる帯域である通信波長帯を用いる。
 次に、伝送品質推定システム500の動作を説明する。
 伝送品質推定システム500は、MCF600のコア601-1~601-nにより、各Add/Dropノード520宛ての通信用の光信号を伝送している。具体的には、送受信ノード510は、Add/Dropノード520-i(iは1以上n以下の整数)宛ての通信用の光信号を変調器560a-iが低周波変調し、低周波変調により得られた光信号をMCF600-1のコア601-iに挿入する。例えば、光信号がオンであるときの通常のパワーを1としたとき、変調器560aは、パワーが1.1、1.0、0.9となるようにゆるやかに、低周波の強度変調を行う。このように、変調器560aは、信号の品質に影響がない程度に強度の絶対値を変化させて低周波変調する。変調器560a-1~560a-nは、コア601-1~601-nに応じて変調する低周波の周波数を変える。変調器560aによる強度変調の変調周期は、光信号により伝送される情報を生成する際の変調周期より充分に長い周期である。強度変調の変調周期が光信号ごとに異なる周期であれば、光信号の個々の識別が可能になる。ここで、強度変調の変調周期は、光信号で伝送される通信用の情報の復調に対する影響が一定以下となる周期であって、ノイズや光信号の劣化の影響が存在しても復調可能な周期である。
 また、各Add/Dropノード520-iの変調器560b-iは、送受信ノード510宛ての通信用の光信号に、変調器560aと同様に、コア601-iに対応した周波数の低周波変調を行う。コネクタ550-iは、変調器560b-iにより低周波変調された送受信ノード510宛ての通信用の光信号を、MCF600-(i+1)のコア601-iに挿入する。
 各Add/Dropノード520-iのコネクタ550-iは、MCF600-iのコア601-iから自ノード宛ての通信用の光信号を分岐する。また、コネクタ550-iは、MCF600-iのコア601-j(j≠i、jは1以上n以下の整数)により伝送される通信用の光信号を、MCF600-(i+1)のコア601-jに中継する。
 伝送品質推定システム500は、MCF600のコア601-mに光を挿入しない。しかし、コア601-mには、他のコア601-iから漏れ出した光が伝送される。各Add/Dropノード520-iのコネクタ550-iは、伝送品質測定用の光をMCF600-iのコア601-mから分岐し、伝送品質測定用の光を伝送品質推定装置700b-iに入力する。また、送受信ノード510は、伝送品質測定用の光をMCF600-(n+1)のコア601-mから分岐し、伝送品質測定用の光を伝送品質推定装置700aに入力する。
 各伝送品質推定装置700の受信部703は、コネクタ550又は送受信ノード510が分岐した光を受信する。測定部704は、受信部703が受信した光を測定する。推定部705は、測定部704による測定結果に基づいてコア601-1~601-nそれぞれの伝送品質を推定する。
 例えば、測定部704は、伝送品質測定用の光に含まれる、コア601-1~601-nに個別の低周波変調の周波数成分の光強度を測定する。推定部705は、伝送品質測定用の光に含まれていた各低周波成分の光強度に基づいて、コア601-1~601-nのいずれからの光漏れが多いかを識別する。つまり、推定部705は、伝送品質測定用の光に含まれていた各低周波成分の光強度から、その低周波により変調された通信用の光信号を伝送したコア601-1~601-nの伝送品質を推定する。伝送品質測定用の光に通信用の光信号の低周波成分が含まれているということは、通信用の光信号を伝送するコア601から光が漏れていることを表す。コア601から光が漏れていることは、そのコア601にて伝送される光信号のパワーが減衰していることを表す。この光の漏れは、例えば、MCF600が急峻に曲がっている場合などに特に発生しやすい。伝送品質推定装置700は、伝送品質測定用の光信号から測定された低周波変調の周波数成分の大きさから曲げ損失などの信号の劣化や、雑音を推定可能である。
 なお、測定したいMCF600や測定したいコア601に応じて、送受信ノード510及びAdd/Dropノード520のそれぞれが備える変調器560のうち、一部の変調器560が動作してもよい。
 また、各ノードの伝送品質推定装置700の一部の機能を共通化してもよい。例えば、伝送品質推定装置700a、700b-1~700b-nのうち一部が推定部705を備えるように構成してもよい。推定部705を備えていない伝送品質推定装置700は、推定部705を備える伝送品質推定装置700に測定部704による測定結果を送信する。測定結果を受信した伝送品質推定装置700の推定部705は、受信した測定結果に基づき伝送品質を測定する。
 上記では、片系片方向のリング構成について説明したが、送受信ノード510、Add/Dropノード520、及び、MCF600が、両系片方向のリング構成を構成する場合、伝送品質推定システム500は、上述と逆向きの通信用の光信号をさらに送信して、上記と同様に、伝送品質推定の処理を行えばよい。
 両系片方向のリング構成の場合、伝送品質推定システム500は、図6の送受信ノード110a、110bに相当する2台の送受信ノード510を備える。MCF600-1と接続される送受信ノード510を送受信ノード510aとし、MCF600-(n+1)と接続される送受信ノード510を送受信ノード510bとする。また、Add/Dropノード520-1~520-nはそれぞれ、図6のAdd/Dropノード120-1~120-nに相当する。MCF600は、m本のコア601(mは2n+1以上の整数)を備える。コア601-mは、伝送品質測定用の光を伝送する。コア601-(2i-1)(iは1以上n以下の整数)は、Add/Dropノード520-iが宛先の通信用の光信号を伝送する。コア601-2iは、Add/Dropノード520-iから送受信ノード510a、510b宛の光信号を伝送する。変調器560は、通信用の光信号を、その光信号を挿入するコア601-1~601-2nのそれぞれを識別可能な周波数により低周波変調を行う。
 送受信ノード510aは、Add/Dropノード520-i宛ての通信用の光信号を変調器560aにより低周波変調し、低周波変調により得られる光信号をMCF600-1のコア601-(2i-1)に挿入する。また、送受信ノード510bは、Add/Dropノード520-i宛ての通信用の光信号を変調器560aにより低周波変調し、低周波変調により得られる光信号をMCF600-(n+1)のコア601-(2i-1)に挿入する。また、各Add/Dropノード520-iのコネクタ550-iは、変調器560b-iにより低周波変調された送受信ノード510a宛ての通信用の光信号をMCF600-iのコア601-2iに挿入する。コネクタ550-iは、変調器560b-iにより低周波変調された送受信ノード510b宛ての通信用の光信号をMCF600-(i+1)のコア601-2iに挿入する。
 各Add/Dropノード520-iのコネクタ550-iは、MCF600-iのコア601-(2i-1)、及び、MCF600-(i+1)のコア601-(2i-1)から自ノード宛ての通信用の光信号を分岐し、MCF600-iのコア601-mから伝送品質測定用の光を分岐する。さらに、コネクタ550-iは、MCF600-iのコア601-(2j-1)(j≠i、jは1以上n以下の整数)により伝送される通信用の光信号をMCF600-(i+1)のコア601-(2j-1)に中継し、MCF600-(i+1)のコア601-2jにより伝送される通信用の光信号をMCF600-iのコア601-2jに中継する。
 送受信ノード510aは、MCF600-1のコア601-2iから通信用の光信号を分岐し、コア601-mから伝送品質測定用の光を分岐する。同様に、送受信ノード510bは、MCF600-(n+1)のコア601-2iから通信用の光信号を分岐し、コア601-mから伝送品質測定用の光を分岐する。
 各ノードにおいて分岐された伝送品質測定用の光に対する伝送品質推定装置700の動作は、上述した片系のリング構成の場合と同様の動作である。
 また、送受信ノード510、Add/Dropノード520、及び、MCF600が、図7の通信システム100Cのように片系双方向のリング構成である場合又は図9の通信システム100Dのように両系双方向のリング構成である場合、各ノードは、コア601に、双方向の通信用の光信号を送信し、上記と同様の処理を行えばよい。なお、各ノードは、送信装置(Tx)及び受信装置(Rx)に代えて送受信装置(Tx/Rx)と接続される。
 第1の実施形態によれば、伝送品質測定用の光に含まれる周波数成分の光強度に基づいて、MCF600ごとに、通信用の光信号を伝送する各コア601の伝送品質を推定することができる。この推定により、ファイバ曲げなどの故障には至っていないが、品質に影響を及ぼしている事象の検知が容易となる。
[第2の実施形態]
 第2の実施形態では、第1の実施形態と同様に、MCF中の複数のコアのうち、特定のコアの光信号を全てのAdd/Dropノードで監視することにより、隣接ノードとの間の伝送品質が推定される。第1の実施形態では、通信用の光信号を変調してコアに挿入しているが、第2の実施形態では、通信用の光信号を伝送するコアに、通信用の光信号で用いる波長帯とは異なる帯域の光が挿入される。
 図15は、第2の実施形態の伝送品質推定システム502の構成例を示す図である。同図において、図12に示す第1の実施形態の伝送品質推定システム500と同一の部分には同一の符号を付し、その説明を省略する。伝送品質推定システム502は、送受信ノード512と、n台(nは1以上の整数)のAdd/Dropノード522と、n+1台の伝送品質推定装置720と、を備える。同図では、n=3の例を示している。以下では、送受信ノード512及びAdd/Dropノード522を総称して「ノード」と記載し、n台のAdd/Dropノード522をそれぞれ、Add/Dropノード522-1~522-nと記載する。また、送受信ノード512と接続される伝送品質推定装置720を伝送品質推定装置720aと記載する。Add/Dropノード522-i(iは1以上n以下の整数)と接続される伝送品質推定装置720を伝送品質推定装置720b-iと記載する。伝送品質推定装置720b-1~720b-nを総称して伝送品質推定装置720bと記載する。伝送品質推定装置720は、各ノードの内部に備えられてもよい。
 各ノード間は、MCF600により接続される。第2の実施形態では、送受信ノード512、Add/Dropノード522、及び、MCF600が、上述した図1に示す片系片方向のリング構成の通信システム100を構成する場合を例に説明するが、他のトポロジの通信システムを構成してもよい。送受信ノード512は図1の送受信ノード110に相当する。Add/Dropノード522-1~522-nはそれぞれ、図1のAdd/Dropノード120~120-nに相当する。
 以下では、Add/Dropノード522-iと1つ前のノードとの間のMCF600をMCF600-iと記載する。Add/Dropノード522-nと送受信ノード512との間のMCF600をMCF600-(n+1)と記載する。
 Add/Dropノード522は、コネクタ550を備える。Add/Dropノード522-iが備えるコネクタ550を、コネクタ550-iと記載する。
 合波器820は、送信装置(Tx)から出力された通信用の光信号と伝送品質推定装置720から出力された光を合波し、合波により得られた光信号を送受信ノード512又はAdd/Dropノード522に出力する。以下では、送受信ノード512と接続される合波器820を合波器820aと記載する。MCF600のi番目のコア601-iに挿入する光を合成する合波器820aを合波器820a-iと記載する。また、Add/Dropノード522-iと接続される合波器820を合波器820b-iと記載する。合波器820b-1~合波器820b-nを総称して合波器820bと記載する。なお、コネクタ550が、合波器820を内蔵してもよい。
 図16は、伝送品質推定装置720の構成を示すブロック図である。伝送品質推定装置720は、信号生成部721、送信部722、受信部723、測定部724、及び、推定部725を備える。信号生成部721は、通信用の光信号で用いる波長帯とは異なる帯域の光を生成する。また、信号生成部721は、光が挿入されるコアごとに異なる波長の光を生成する。送信部722は、信号生成部721が生成した光を合波器820に出力する。受信部723は、ノードが分岐した伝送品質測定用の光を受信する。測定部724は、受信部723が受信した光を測定する。推定部725は、測定部724による測定結果に基づき、コア601-1~601-nそれぞれの伝送品質を推定する。伝送品質の推定には、任意の従来技術を用いることができる。
 次に、伝送品質推定システム502の動作を説明する。
 合波器820a-iは、Add/Dropノード522-i宛ての通信用の光信号と、伝送品質推定装置720aから出力された光とを合波する。送受信ノード512は、合波器820a-iにより合波された光を、MCF600-1のコア601-iに挿入する。また、合波器820b-iは、送受信ノード512宛ての通信用の光信号と、伝送品質推定装置720b-iから出力された光とを合波する。各Add/Dropノード522-iのコネクタ552-iは、合波器820b-iにより合波された光を、MCF600-(i+1)のコア601-iに挿入する。伝送品質推定装置720から出力される光は、通信用の光信号で用いる波長帯とは異なる波長の光ある。その光の波長は、その光が入力されるコア601ごとに個別の波長である。なお、コア601ごとに光の波長を変えない場合は、第1の実施形態と同様に、コアごとの伝送品質測定用の光に低周波の変調を実施してもよい。
 各Add/Dropノード522-iのコネクタ550-iは、MCF600-iのコア601-iから自ノード宛ての通信用の光信号を分岐する。また、コネクタ550-iは、MCF600-iのコア601-j(j≠i、jは1以上n以下の整数)により伝送される通信用の光信号を、MCF600-(i+1)のコア601-jに中継する。
 伝送品質推定システム502は、MCF600のコア601-mに光を挿入しない。しかし、コア601-mには、他のコア601-iから漏れ出した光が伝送される。各Add/Dropノード522-iのコネクタ550-iは、伝送品質測定用の光をMCF600-iのコア601-mから分岐し、伝送品質測定用の光を伝送品質推定装置720b-iに入力する。また、送受信ノード512は、伝送品質測定用の光をMCF600-(n+1)のコア601-mから分岐し、伝送品質測定用の光を伝送品質推定装置720aに入力する。
 各伝送品質推定装置720の受信部723は、コネクタ550又は送受信ノード512が分岐した光を受信する。測定部724は、受信部723が受信した光を測定する。推定部725は、測定部724による測定結果に基づいてコア601-1~601-nそれぞれの伝送品質を推定する。
 例えば、測定部724は、伝送品質測定用の光に含まれる、コア601-1~601-nに個別の通信用の光信号で用いる波長帯以外の波長の光強度を測定する。推定部725は、伝送品質測定用の光に含まれていた各波長の光強度に基づいて、コア601-1~601-nのいずれからの光漏れが多いかを識別する。つまり、推定部725は、伝送品質測定用の光に含まれていた各波長の光強度から、その波長の光を伝送したコア601-1~601-nの伝送品質を推定する。
 なお、測定したい光ファイバ伝送路の区間に応じて、一部の伝送品質推定装置720のみが、コア601より分岐された光を受信するようにしてもよい。
 また、各ノードの伝送品質推定装置720の一部の機能を共通化してもよい。例えば、伝送品質推定装置720a、720b-1~720b-nのうち一部のみが推定部725を備えるように構成してもよい。推定部725を備えていない伝送品質推定装置720は、推定部725を備える伝送品質推定装置720に測定部724による測定結果を送信する。測定結果を受信した伝送品質推定装置720の推定部725は、受信した測定結果に基づき伝送品質を測定する。
 上記では、片系片方向のリング構成について説明したが、送受信ノード512、Add/Dropノード522、及び、MCF600が、両系片方向のリング構成を構成する場合、伝送品質推定システム502は、上述と逆向きの通信用の光信号をさらに送信して、上記と同様に、伝送品質推定の処理を行えばよい。
 両系片方向のリング構成の場合、伝送品質推定システム502は、図6の送受信ノード110a、110bに相当する2台の送受信ノード512を備える。MCF600-1と接続される送受信ノード512を送受信ノード512aとし、MCF600-(n+1)と接続される送受信ノード512を送受信ノード512bとする。また、Add/Dropノード522-1~522-nはそれぞれ、図6のAdd/Dropノード120-1~120-nに相当する。MCF600は、m本のコア601(mは2n+1以上の整数)を備える。コア601-mは、伝送品質測定用の光を伝送する。コア601-(2i-1)(iは1以上n以下の整数)は、Add/Dropノード522-iが宛先の通信用の光信号を伝送する。コア601-2iは、Add/Dropノード522-iから送受信ノード512a、512b宛の光信号を伝送する。
 送受信ノード512aは、Add/Dropノード522-i宛ての通信用の光信号と伝送品質推定装置720aが出力した光とを合波器820a-iが合波した光信号を、MCF600-1のコア601-(2i-1)に挿入する。また、送受信ノード512bは、Add/Dropノード522-i宛ての通信用の光信号と伝送品質推定装置720aが出力した光とを合波器820a-iが合波した光信号を、MCF600-(n+1)のコア601-(2i-1)に挿入する。また、各Add/Dropノード522-iのコネクタ550-iは、送受信ノード512a宛ての通信用の光信号と伝送品質推定装置720bが出力した光とを合波器820b-iが合波した光信号を、MCF600-(i+1)のコア601-2iに挿入する。さらに、各Add/Dropノード522-iのコネクタ550-iは、送受信ノード512b宛ての通信用の光信号と伝送品質推定装置720bが出力した光とを合波器820b-iが合波した光信号を、MCF600-(i+1)のコア601-2iに挿入する。
 各Add/Dropノード522-iのコネクタ550-iは、MCF600-iのコア601-(2i-1)、及び、MCF600-(i+1)のコア601-(2i-1)から自ノード宛ての通信用の光信号を分岐し、MCF600-iのコア601-mから伝送品質測定用の光を分岐する。さらに、コネクタ550-iは、MCF600-iのコア601-(2j-1)(j≠i、jは1以上n以下の整数)により伝送される通信用の光信号をMCF600-(i+1)のコア601-(2j-1)に中継し、MCF600-(i+1)のコア601-2jにより伝送される通信用の光信号をMCF600-iのコア601-2jに中継する。
 送受信ノード512aは、MCF600-1のコア601-2iから通信用の光信号を分岐し、コア601-mから伝送品質測定用の光を分岐する。同様に、送受信ノード512bは、MCF600-(n+1)のコア601-2iから通信用の光信号を分岐し、コア601-mから伝送品質測定用の光を分岐する。
 各ノードにおいて分岐された伝送品質測定用の光に対する伝送品質推定装置720の動作は、上述した片系のリング構成の場合と同様の動作である。
 また、送受信ノード512、Add/Dropノード522、及び、MCF600が、図7の通信システム100Cのように片系双方向のリング構成である場合又は図9の通信システム100Dのように両系双方向のリング構成である場合、各ノードは、コア601に、双方向の通信用の光信号を送信し、上記と同様の処理を行えばよい。なお、各ノードは、送信装置(Tx)及び受信装置(Rx)に代えて送受信装置(Tx/Rx)と接続される。
 第2の実施形態によれば、伝送品質測定用の光に含まれる通信用の光信号で用いる波長帯とは異なる波長帯の光強度に基づいて、MCF600ごとに、通信用の光信号を伝送する各コア601の伝送品質を推定することができる。この推定により、ファイバ曲げなどの故障には至っていないが、品質に影響を及ぼしている事象の検知が容易となる。
[第3の実施形態]
 第3の実施形態では、第1の実施形態と同様に、MCF中の複数のコアのうち、特定のコアの伝送品質測定用の光を全てのAdd/Dropノードで監視することにより、隣接ノードとの間の伝送品質が推定される。第1の実施形態では、伝送品質測定用の光を伝送するコアには光を挿入していないが、第2の実施形態では、伝送品質測定用の光を伝送するコアに光を挿入する。
 図17は、第3の実施形態の伝送品質推定システム504の構成例を示す図である。同図において、図12に示す第1の実施形態の伝送品質推定システム500と同一の部分には同一の符号を付し、その説明を省略する。伝送品質推定システム504は、送受信ノード514と、n台(nは1以上の整数)のAdd/Dropノード524と、n+1台の伝送品質推定装置740と、を備える。同図では、n=3の例を示している。以下では、送受信ノード514及びAdd/Dropノード524を総称して「ノード」と記載し、n台のAdd/Dropノード524をそれぞれ、Add/Dropノード524-1~524-nと記載する。また、送受信ノード514と接続される伝送品質推定装置740を伝送品質推定装置740aと記載する。Add/Dropノード524-i(iは1以上n以下の整数)と接続される伝送品質推定装置740を伝送品質推定装置740b-iと記載する。伝送品質推定装置740b-1~740b-nを総称して伝送品質推定装置740bと記載する。伝送品質推定装置740は、各ノードの内部に備えられてもよい。各ノード間は、MCF600により接続される。第3の実施形態では、送受信ノード514、Add/Dropノード524、及び、MCF600が、上述した図1に示す片系片方向のリング構成の通信システム100を構成する場合を例に説明するが、他のトポロジの通信システムを構成してもよい。送受信ノード514は図1の送受信ノード110に相当する。Add/Dropノード524-1~524-nはそれぞれ、図1のAdd/Dropノード120~120-nに相当する。
 以下では、Add/Dropノード524-iと1つ前のノードとの間のMCF600をMCF600-iと記載する。Add/Dropノード524-nと送受信ノード514との間のMCF600をMCF600-(n+1)と記載する。
 送受信ノード514は、変調器560を備える。Add/Dropノード524は、コネクタ554(コア接続部)及び変調器560を備える。送受信ノード514が備えるn個の変調器560を変調器560a-1~560a-nと記載する。変調器560a-1~560a-nを総称して変調器560aと記載する。また、Add/Dropノード524-iが備える変調器560を変調器560b-iと記載する。変調器560b-1~560b-nを総称して変調器560bと記載する。変調器560は、各ノードの外部に備えられてもよい。コネクタ554は、MCF600の特定のコアに対して光信号の挿入及び分岐を行い、他のコアの光信号を中継する。Add/Dropノード524-iが備えるコネクタ554をコネクタ554-iと記載する。
 送受信ノード514及び各Add/Dropノード524は、MCF600のコア601-mから光信号を伝送品質測定用の光信号として分岐する。コア601-mから分岐した光信号は、他のコア601-1~601-nから漏れ出した光信号と、他のノードの伝送品質推定装置740からの光信号とを含む。伝送品質推定装置740は、分岐された伝送品質測定用の光信号を測定し、その測定結果から伝送品質を推定する。なお、第3の実施形態において伝送品質測定用の光信号には、間接測定用の光信号と、直接測定用の光信号の二種類の光信号が含まれる。間接測定用の光信号は、MCF600のコア601-mに他のコア601-1~601-nから漏れ出した通信用の光信号である。直接測定用の光信号は、伝送品質推定装置740にて生成された光信号である。
 図18は、伝送品質推定装置740の構成を示すブロック図である。伝送品質推定装置740は、信号生成部741、送信部742、受信部743、測定部744、及び、推定部745を備える。信号生成部741は、通信用の光信号で用いる波長帯以外の波長帯の伝送品質測定用の光信号を生成する。送信部742は、信号生成部741が生成した光をノードに送信する。受信部743は、ノードが分岐した伝送品質測定用の光信号を受信する。測定部744は、受信部743が受信した光を測定する。推定部745は、測定部744による測定結果に基づき、コア601-1~601-nそれぞれの伝送品質を推定する。伝送品質の推定には、任意の従来技術を用いることができる。
 次に、伝送品質推定システム504の動作を説明する。
 伝送品質推定システム504は、MCF600のコア601-1~601-nにより、各Add/Dropノード524宛ての通信用の光信号を伝送している。具体的には、送受信ノード514は、第1の実施形態と同様に、Add/Dropノード524-i(iは1以上n以下の整数)宛ての通信用の光信号を変調器560a-iにより低周波変調し、低周波変調により得られた光信号をMCF600-1のコア601-iに挿入する。変調器560a-1~560a-nは、コア601-1~601-nに応じて低周波変調の周波数を変える。
 また、各Add/Dropノード524-iの変調器560b-iは、送受信ノード514宛ての通信用の光信号に、変調器560aと同様に、コア601-iに対応した周波数の低周波変調を行う。コネクタ554-iは、変調器560b-iにより低周波変調された送受信ノード514宛ての通信用の光信号を、MCF600-(i+1)のコア601-iに挿入する。
 各Add/Dropノード524-iのコネクタ554-iは、MCF600-iのコア601-iから自ノード宛ての通信用の光信号を分岐する。また、コネクタ554-iは、MCF600-iのコア601-j(j≠i、jは1以上n以下の整数)により伝送される通信用の光信号を、MCF600-(i+1)のコア601-jに中継する。
 伝送品質推定システム504は、MCF600のコア601-1~601-nにより通信用の光信号を伝送する共に、MCF600のコア601-mにより、通信用の光信号で用いる波長帯に含まれない波長の伝送品質測定用の光信号を伝送する。具体的には、送受信ノード514は、伝送品質推定装置740aの信号生成部741により生成され、送信部742から出力された伝送品質測定用の光信号を、MCF600-1のコア601-mに入力する。同様に、Add/Dropノード524-iのコネクタ554-iは、伝送品質推定装置740b-iの信号生成部741により生成され、送信部742から出力された伝送品質測定用の光信号を、MCF600-(i+1)のコア601-mに入力する。
 各Add/Dropノード524-iのコネクタ554-iは、伝送品質測定用の光信号をMCF600-iのコア601-mから分岐し、伝送品質測定用の光信号を伝送品質推定装置740b-iに入力する。また、送受信ノード514は、Add/Dropノード524-nが送信した伝送品質測定用の光信号をMCF600-(n+1)のコア601-mから分岐し、伝送品質測定用の光信号を伝送品質推定装置740aに入力する。
 各伝送品質推定装置740の受信部743は、コネクタ554又は送受信ノード514が分岐した光信号を受信する。測定部744は、受信部743が受信した光を測定する。推定部745は、測定部744による測定結果に基づいてコア601-1~601-nそれぞれの伝送品質を推定する。
 例えば、測定部744は、伝送品質測定用の光信号における間接測定用の光信号に含まれる、コア601-1~601-nに個別の周波数成分の光強度を測定する。推定部745は、間接測定用の光信号に含まれていた各低周波成分の光強度に基づいて、コア601-1~601-nのいずれからの光漏れが多いかを識別する。つまり、推定部745は、間接測定用の光信号に含まれていた各低周波成分の光強度から、その低周波により変調された通信用の光信号を伝送したコア601-1~601-nの伝送品質を間接的に推定する。間接測定用の光信号として計測された低周波変調の周波数成分の大きさから曲げ損失などの信号の劣化や、雑音を推定可能である。
 さらに、測定部744は、伝送品質測定用の光信号における直接測定用の光信号の劣化状態を測定する。測定する劣化状態のパラメータ例としては、受信光強度や偏波回転角、光波長分散量、非線形歪み量などがある。測定部744は、これらの測定を行うことで、MCF600-iのコア601-mにおける伝送品質を直接的に推定する。MCF600のコア601-1~601-nからの漏れ光が少なく、品質推定するには十分な光強度がない場合、測定部744がこの直接測定用の光信号による伝送品質推定を行うことで、MCF600の僅かな劣化状態も計測できる可能性がある。
 なお、測定したいMCF600や測定したいコア601に応じて、送受信ノード514及びAdd/Dropノード524のそれぞれが備える変調器560のうち、一部の変調器560が動作してもよい。
 また、各ノードの伝送品質推定装置740の一部の機能を共通化してもよい。例えば、伝送品質推定装置740a、740b-1~740b-nのうち一部が推定部745を備えるように構成してもよい。推定部745を備えていない伝送品質推定装置740は、推定部745を備える伝送品質推定装置740に測定部744による測定結果を送信する。測定結果を受信した伝送品質推定装置740の推定部745は、受信した測定結果に基づき伝送品質を測定する。
 また、MCF600中の各コア601における伝送品質の差があまりない場合や各コア601からの漏れ光が極端に少ない場合には、推定部745は、伝送品質測定用の光信号における直接測定用の光信号のみを用いた品質推定を行ってもよい。その場合には、各ノードに備えられた変調器560は不要となり、よりシンプルな構成で伝送品質の推定が可能となる。
 また、伝送品質測定用の光信号における直接測定用の光信号には、通信用の光信号に用いる波長帯を用いてもよい。通信用の光信号の波長帯を測定に用いることで、通信用の光信号が実際に受ける影響を直接的に計測することが可能となることから、より精度の高い品質推定が可能となる。
 上記では、片系片方向のリング構成について説明したが、送受信ノード514、Add/Dropノード524、及び、MCF600が、両系片方向のリング構成を構成する場合、伝送品質推定システム504は、上述と逆向きの通信用の光信号をさらに送信して、上記と同様に、伝送品質推定の処理を行えばよい。
 両系片方向のリング構成の場合、伝送品質推定システム504は、図6の送受信ノード110a、110bに相当する2台の送受信ノード514を備える。MCF600-1と接続される送受信ノード514を送受信ノード514aとし、MCF600-(n+1)と接続される送受信ノード514を送受信ノード514bとする。また、Add/Dropノード524-1~524-nはそれぞれ、図6のAdd/Dropノード120-1~120-nに相当する。MCF600は、m本のコア601(mは2n+1以上の整数)を備えるコア601-mは、伝送品質測定用の光信号を伝送する。コア601-(2i-1)(iは1以上n以下の整数)は、Add/Dropノード524-iが宛先の通信用の光信号を伝送する。コア601-2iは、Add/Dropノード524-iから送受信ノード514a、514b宛の光信号を伝送する。変調器560は、通信用の光信号を、その光信号を挿入するコア601-1~601-2nのそれぞれに応じた周波数により低周波変調する。
 送受信ノード514aは、Add/Dropノード524-i宛ての通信用の光信号を変調器560aにより低周波変調し、低周波変調により得られる光信号をMCF600-1のコア601-(2i-1)に挿入する。さらに、送受信ノード514aは、伝送品質推定装置740aから出力された伝送品質測定用の光信号を、MCF600-1のコア601-mに入力する。また、送受信ノード514bは、Add/Dropノード524-i宛ての通信用の光信号を変調器560aにより低周波変調し、低周波変調により得られる光信号をMCF600-(n+1)のコア601-(2i-1)に挿入する。各Add/Dropノード524-iのコネクタ554-iは、変調器560b-iにより低周波変調された送受信ノード514a宛ての通信用の光信号をMCF600-iのコア601-2iに挿入する。コネクタ554-iは、変調器560b-iにより低周波変調された送受信ノード514b宛ての通信用の光信号をMCF600-(i+1)のコア601-2iに挿入する。コネクタ554-iは、伝送品質推定装置740b-iから出力された伝送品質測定用の光信号を、MCF600-(i+1)のコア601-mに入力する。
 各Add/Dropノード524-iのコネクタ554-iは、MCF600-iのコア601-(2i-1)、及び、MCF600-(i+1)のコア601-(2i-1)から自ノード宛ての通信用の光信号を分岐し、MCF600-iのコア601-mから伝送品質測定用の光信号を分岐する。さらに、コネクタ554-iは、MCF600-iのコア601-(2j-1)(j≠i、jは1以上n以下の整数)により伝送される通信用の光信号をMCF600-(i+1)のコア601-(2j-1)に中継し、MCF600-(i+1)のコア601-2jにより伝送される通信用の光信号をMCF600-iのコア601-2jに中継する。送受信ノード514bは、MCF600-(n+1)のコア601-2iから通信用の光信号を分岐し、コア601-mから伝送品質測定用の光信号を分岐する。
 各ノードにおいて分岐された伝送品質測定用の光信号に対する伝送品質推定装置740の動作は、上述した片系のリング構成の場合と同様の動作である。
 また、送受信ノード514、Add/Dropノード524、及び、MCF600が、図7の通信システム100Cのように片系双方向のリング構成である場合又は図9の通信システム100Dのように両系双方向のリング構成である場合、各ノードは、コア601に、双方向の通信用の光信号を送信し、上記と同様の処理を行えばよい。なお、各ノードは、送信装置(Tx)及び受信装置(Rx)に代えて送受信装置(Tx/Rx)と接続される。
 第3の実施形態によれば、伝送品質測定用の光信号における間接測定用の光信号に含まれる低周波成分の光強度に基づいて、MCF600ごとに、通信用の光信号を伝送する各コア601の伝送品質を推定することができる。また、伝送品質測定用の光信号における直接測定用の光信号に含まれる信号の劣化状態に基づいて、MCF600の伝送品質を推定することができる。これらの推定により、ファイバ曲げなどの故障には至っていないが、品質に影響を及ぼしている事象の検知が容易となる。
[第4の実施形態]
 第4の実施形態では、通信用の光信号を送信するMCFのコアに、伝送品質測定用の光信号として、通信用に用いる光信号の波長帯よりも短波長の光信号を伝送する。このように、通信用に光信号を伝送するコアに短波長の光信号を挿入することで、多モードの光伝送が可能となる。多モード伝送する光は通信用に用いる光信号で使われるシングルモード伝送の光と比較して伝送速度が遅く、振動や温度変化の影響をより受けやすい。そこで、コアから分岐した光信号から短波長の光信号を分離して測定することにより、エンド・ツー・エンドのノード間の伝送品質を推定することができる。
 図19は、第4の実施形態の伝送品質推定システム506の構成例を示す図である。伝送品質推定システム506は、送受信ノード516と、n台(nは1以上の整数)のAdd/Dropノード526と、n+1台の伝送品質推定装置760を備える。同図では、n=3の例を示している。以下では、送受信ノード516及びAdd/Dropノード526を総称して「ノード」と記載する。n台のAdd/Dropノード526をそれぞれ、Add/Dropノード526-1~526-nと記載する。また、送受信ノード516と接続される伝送品質推定装置760を伝送品質推定装置760aと記載する。Add/Dropノード526-i(iは1以上n以下の整数)と接続される伝送品質推定装置760を伝送品質推定装置760b-iと記載する。伝送品質推定装置760b-1~706b-nを総称して伝送品質推定装置760bと記載する。伝送品質推定装置760は、各ノードの内部に備えられてもよい。
 各ノード間は、MCF660により接続される。第4の実施形態では、送受信ノード516、Add/Dropノード526、及び、MCF660が、上述した図1に示す片系片方向のリング構成の通信システム100を構成する場合を例に説明するが、他のトポロジの通信システムを構成してもよい。送受信ノード516は図1の送受信ノード110に相当する。Add/Dropノード526-1~526-nはそれぞれ、図1のAdd/Dropノード120-1~120-nに相当する。
 以下では、Add/Dropノード526-iと1つ前のノードとの間のMCF660をMCF660-iと記載する。Add/Dropノード526-nと送受信ノード516との間のMCF660をMCF660-(n+1)と記載する。
 Add/Dropノード526は、コネクタ556を備える。コネクタ556は、MCF660の特定のコアに対して光信号の挿入及び分岐を行う。Add/Dropノード526-iが備えるコネクタ556を、コネクタ556-iと記載する。
 合波器826は、送信装置(Tx)から出力された通信用の光信号と伝送品質推定装置760から出力された伝送品質測定用の光信号を合波し、合波により得られた光信号を送受信ノード516又はAdd/Dropノード526に出力する。伝送品質測定用の光信号の波長は、通信用の光信号の波長より短い。以下では、送受信ノード516と接続される合波器826を合波器826aと記載する。MCF660のi番目のコアに挿入する光信号を出力する合波器826aを合波器826a-iと記載する。また、Add/Dropノード526-iと接続される合波器826を合波器826b-iと記載する。合波器826b-1~合波器826b-nを総称して合波器826bと記載する。
 分波器846は、MCF660から分岐された光信号を、長波長の通信用の光信号と短波長の伝送品質測定用の光信号とに分波する。分波器846は、伝送品質測定用の光信号を伝送品質推定装置760に出力し、通信用の光信号を受信装置(Rx)へ出力する。以下では、送受信ノード516と接続される分波器846を分波器846aと記載し、MCF660のi番目のコアから分岐された光信号を分波する分波器846aを分波器846a-iと記載する。また、Add/Dropノード526-iと接続される分波器846を分波器846b-iと記載する。分波器846b-1~分波器846b-nを総称して分波器846bと記載する。
 なお、コネクタ556が、合波器826と分波器846の一方又は両方を内蔵してもよい。
 図20は、伝送品質推定装置760の構成を示すブロック図である。同図では、伝送品質推定装置760と接続されるノードが波長分割多重通信を行うAdd/Dropノード526である場合の伝送品質推定装置760とノードとの間の接続構成についても示している。
 MCF660は、n本以上のコア661を備える。以下では、簡単のため、Add/Dropノード526-i(iは1以上n以下の整数)の通信用の光信号を伝送するコア661をコア661-iとする。
 合波器810は、複数の送信装置(Tx)から出力された異なる周波数の通信用の光信号を合波し、合波により得られた光信号を合波器826に向けて出力する。合波器826は、伝送品質推定装置760が生成した伝送品質測定用の光信号と、合波器810が出力した長波長の通信用の光信号とを合波する。送受信ノード516、又は、Add/Dropノード526のコネクタ556は、合波器810より出力された光信号を、自ノードに割り当てられた光信号伝送用のコア661に挿入する。
 送受信ノード516、又は、Add/Dropノード526のコネクタ556は、自ノード宛ての光信号伝送用のコア661から光信号を分岐する。分波器846は、コア661から分岐された光信号を、短波長の伝送品質測定用の光信号と長波長の通信用の光信号とに分離する。通信用の光信号は、さらに、分波器850により波長ごとに分離される。各波長に対応した受信装置(Rx)は、分離された波長ごとの通信用の光信号を各々受信する。分波器846により分離された伝送品質測定用の光信号は、伝送品質推定装置760に入力される。
 伝送品質推定装置760は、信号生成部761、送信部762、受信部763、測定部764、及び、推定部765を備える。信号生成部761は、伝送品質測定用の光信号を生成する。送信部762は、信号生成部761が生成した光信号を合波器826に出力する。受信部763は、分波器846により分離された伝送品質測定用の光信号を受信する。測定部764は、受信部763が受信した光信号を測定する。推定部765は、測定部764による測定結果に基づき、伝送品質測定用の光信号を送信したノードとの間の伝送品質を推定する。
 なお、伝送品質推定装置760aの場合、信号生成部761は、コア661-1~661-nのそれぞれに挿入する伝送品質測定用の光信号を生成する。送信部762は、コア661-iに挿入する光信号を合波器826a-iに出力する。また、受信部763は、コア661-1~661-nにより伝送された伝送品質測定用の光信号を、分波器846a-1~846a-nから受信する。
 次に、伝送品質推定システム506の動作を説明する。
 合波器826a-iは、Add/Dropノード526-i宛ての通信用の光信号と、伝送品質推定装置760aから出力された伝送品質測定用の光信号とを合波する。送受信ノード516は、合波器826a-iにより合波された光信号を、MCF660-1のコア661-iに挿入する。また、合波器826b-iは、送受信ノード516宛ての通信用の光信号と、伝送品質推定装置760b-iから出力された伝送品質測定用の光信号とを合波する。各Add/Dropノード526-iのコネクタ556-iは、合波器826b-iにより合波された光信号を、MCF660-(i+1)のコア661-iに挿入する。
 各Add/Dropノード526-iのコネクタ556-iは、MCF660-iのコア661-iから自ノード宛ての光信号を分岐する。また、コネクタ556-iは、MCF660-iのコア661-j(j≠i、jは1以上n以下の整数)により伝送される通信用の光信号を、MCF660-(i+1)のコア661-jに中継する。分波器846b-iは、コネクタ556-iから出力された光信号を分波し、伝送品質測定用の光信号を伝送品質推定装置760b-iに出力する。
 伝送品質推定装置760b-iの受信部763は、分波器846b-iが分波した伝送品質測定用の光信号を受信する。測定部764は、受信部763が受信した光信号を測定する。推定部765は、測定部764による光信号の測定結果に基づいて、任意の既存技術により、送受信ノード516との間の光ファイバ伝送路の伝送品質を推定する。
 送受信ノード516は、MCF660-(n+1)のコア661-1~661-nから自ノード宛ての光信号を分岐する。分波器846a-iは、コア661-iから分岐された光信号を分波し、伝送品質測定用の光信号を伝送品質推定装置760aに出力する。分波器846a-iから分波された光信号の送信元は、Add/Dropノード526-iである。
 伝送品質推定装置760aの受信部763は、分波器846a-iからAdd/Dropノード526-iが送信元の伝送品質測定用の光信号を受信する。測定部764は、受信部763が受信した光信号を測定する。例えば、測定部764は、光の位相や強度状態の変化や、波形の歪み、エラーレートなどを測定する。推定部765は、Add/Dropノード526-iが送信元の光信号を測定した結果に基づいて、任意の既存技術により、Add/Dropノード526-iとの間の光ファイバ伝送路の伝送品質を推定する。
 なお、測定したいエンド・ツー・エンドの光ファイバ伝送路に応じて、一部の伝送品質推定装置760が、伝送品質測定用の光信号をコア661に挿入するようにしてもよい。
 また、伝送品質推定装置760の一部の機能が共通化されてもよい。例えば、伝送品質推定装置760a、760b-1~760-nのうち一部が推定部765を備えるように構成してもよい。推定部765を備えていない伝送品質推定装置760は、推定部765を備える伝送品質推定装置760に測定部764による測定結果を送信する。測定結果を受信した伝送品質推定装置760の推定部765は、受信した測定結果に基づき伝送品質を測定する。
 上記では、片系片方向のリング構成について説明したが、送受信ノード516、Add/Dropノード526、及び、MCF660が、両系片方向のリング構成を構成する場合、伝送品質推定システム506は、上述と逆向きの通信用の光信号をさらに送信して、上記と同様に、伝送品質推定の処理を行えばよい。
 両系片方向のリング構成の場合、伝送品質推定システム506は、図6の送受信ノード110a、110bに相当する2台の送受信ノード516を備える。MCF660-1と接続される送受信ノード516を送受信ノード516aとし、MCF660-(n+1)と接続される送受信ノード516を送受信ノード516bとする。また、Add/Dropノード526-1~526-nはそれぞれ、図6のAdd/Dropノード120-1~120-nに相当する。MCF660は、2n本以上のコア661を備える。コア661-(2i-1)(iは1以上n以下の整数)は、Add/Dropノード526-iが宛先の通信用の光信号を伝送する。コア661-2iは、Add/Dropノード526-iから送受信ノード516a、516b宛の光信号を伝送する。
 送受信ノード516aは、Add/Dropノード526-i宛ての通信用の光信号と伝送品質測定用の光信号とを合波器826a-iが合波した光信号を、MCF660-1のコア661-(2i-1)に挿入する。また、送受信ノード516bは、Add/Dropノード526-i宛ての通信用の光信号と伝送品質測定用の光信号とを合波器826a-iが合波した光信号を、MCF660-(n+1)のコア661-(2i-1)に挿入する。また、各Add/Dropノード526-iのコネクタ556-iは、送受信ノード516a宛ての通信用の光信号と伝送品質測定用の光信号とを合波器826b-iが合波した光信号を、MCF660-iのコア661-2iに挿入する。また、コネクタ556-iは、送受信ノード516b宛ての通信用の光信号と伝送品質測定用の光信号とを合波器826b-iが合波した光信号を、MCF660-(i+1)のコア661-2iに挿入する。
 各Add/Dropノード526-iのコネクタ556-iは、MCF660-iのコア661-(2i-1)、及び、MCF660-(i+1)のコア661-(2i-1)から光信号を分岐する。さらに、コネクタ556-iは、MCF660-iのコア661-(2j-1)(j≠i、jは1以上n以下の整数)により伝送される光信号をMCF660-(i+1)のコア661-(2j-1)に中継し、MCF660-(i+1)のコア661-2jにより伝送される通信用の光信号を、MCF660-iのコア661-2jに中継する。
 また、送受信ノード516aは、MCF660-1のコア661-2iから光信号を分岐し、送受信ノード516bは、MCF660-(n+1)のコア661-2iから光信号を分岐する。各ノードにおいて分岐された光信号から分波器846が分離した伝送品質測定用の光信号に対する伝送品質推定装置760の動作は、上述した片系のリング構成の場合と同様の動作である。
 また、送受信ノード516、Add/Dropノード526、及び、MCF660が、図7の通信システム100Cのように片系双方向のリング構成である場合又は図9の通信システム100Dのように両系双方向のリング構成である場合、各ノードは、コア661に、双方向の通信用の光信号を送信し、上記と同様の処理を行えばよい。なお、送受信ノード516及びAdd/Dropノード526は、送受信ノード516又はコネクタ556から出力された光信号を分波器846に出力し、合波器826から出力された光信号を送受信ノード516又はコネクタ556に出力する光サーキュレータを備える。
 第4の実施形態によれば、エンド・ツー・エンドの光ファイバ伝送路の伝送品質を推定することができる。この推定により、ファイバ曲げなどの故障には至っていないが、品質に影響を及ぼしている事象の検知が容易となる。
 上述した各実施形態では、ノード間の接続にMCFが用いられた構成について説明した。実施形態で説明した構成に限らず、図10及び図11に示したようにノード間の接続にSCFが用いられてもよい。ノード間の接続にSCFが用いられる場合、SCFで接続される区間では、クロストークに基づいた伝送品質の推定が行えない。しかし、ノード間の接続において一部の区間がMCFで接続されている場合には、その区間におけるクロストークに基づいた伝送品質の推定は可能である。また、伝送品質推定装置から出力された光信号を伝送する場合には、SCFで接続される区間が存在しても、伝送品質測定は可能である。すなわち、SCFにより接続される区間の有無によらず、各実施形態において説明した伝送品質測定は有用である。
 上述した実施形態における伝送品質推定装置700、720、740、760の一部の機能をコンピュータで実現するようにしてもよい。その場合、この伝送品質推定装置700、720、740、760の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 マルチコアファイバによりノード間の信号を伝送する通信システムに利用可能である。
100、100A、100C、100D 通信システム
110、110a、110b 送受信ノード
111-1~111-6 送信装置
112-1~112-6 受信装置
113-1~113-6 送受信装置
120、120-1~120-3 Add/Dropノード
121-1~121-3 送信装置
122-1~122-3 受信装置
125-1~125-3 送受信装置
126-1~126-3 送受信装置
127 光サーキュレータ
150、150-1~150-3 コネクタ
160-1~160-4 コネクタ
180-1~180-3 コネクタ
185-1~185-3 コネクタ
200-1~200-4 MCF(マルチコアファイバ)
201、201-1~201-4、201-21、201-22 コア
202、202-1~202-4、202-21、202-22 コア
203、203-1~203-4、203-21、203-22 コア
200-1~200-4 MCF(マルチコアファイバ)
211、211-1~211-4 コア
212、212-1~212-4 コア
213、213-1~213-4 コア
214、214-1~214-4 コア
215、215-1~215-4 コア
216、216-1~216-4 コア
400-1、400-2、410-1、410-2 変換コネクタ
451、452、453 SCF(シングルコアファイバ)
500、502、504、506 伝送品質推定システム
510、512、514、516 送受信ノード
520、520-1~520-3、522、522-1~522-3、524、524-1~524-3、526、526-1~526-3…Add/Dropノード
550、556 コネクタ
560、560a-1~560a-3、560b-1~560b-3 変調器
600、600-1~600-4、660、660-1~660-4 MCF(マルチコアファイバ)
601、601-1~601-3、601-m、661 コア
700、700a、700b-1~700b-3、720、720a、720b-1~720b-3、740、740a、740b-1~740b-3、760、760a、760b-1~760b-3 伝送品質推定装置
721、741、761 信号生成部
722、742、762 送信部
703、723、743、763 受信部
704、724、744、764 測定部
705、725、745、765 推定部
810、820、820a-1~820a-3、820b-1~820b-3、826、826a-1~826a-3、826b-1~826b-3 合波器
846、846a-1~846a-3、846b-1~846b-3、850 分波器

Claims (12)

  1.  3つ以上のノードと、伝送品質を推定する伝送品質推定装置とを有し、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている伝送品質推定システムであって、
     前記ノードは、
     前記マルチコアファイバが有する複数のコアそれぞれに対して個別に、前記コアにより伝送される光の分岐、挿入、又は、中継を行うコア接続部を備え、
     前記伝送品質推定装置は、
     前記コア接続部により分岐された伝送品質測定用の光に基づき、前記ノード間の伝送品質を推定する推定部、
     を備える、
     伝送品質推定システム。
  2.  前記マルチコアファイバは、通信用の光信号を伝送する前記コアと、伝送品質測定用の光を伝送する前記コアとを有する、
     請求項1に記載の伝送品質推定システム。
  3.  前記通信用の光信号は、伝送に用いられる前記コアを識別可能に変調される、
     請求項2に記載の伝送品質推定システム。
  4.  前記通信用の光信号は、前記通信用の光信号で伝送する信号を生成する際の変調周期より長い変調周期の強度変調により、伝送に用いられる前記コアを識別可能に変調される、
     請求項3に記載の伝送品質推定システム。
  5.  前記強度変調は、前記通信用の光信号の生成に用いられる電気信号に対して施される、
     請求項4に記載の伝送品質推定システム。
  6.  前記強度変調は、前記通信用の光信号が電気信号に基づいて生成された後に施される、
     請求項4に記載の伝送品質推定システム。
  7.  前記推定部は、伝送品質の推定に通信波長帯を利用する、
     請求項2から請求項6のいずれか一項に記載の伝送品質推定システム。
  8.  前記マルチコアファイバは、通信用の光信号及び通信波長帯以外の帯域の光を伝送する前記コアと、伝送品質測定用の光を伝送する前記コアとを有する、
     請求項1に記載の伝送品質推定システム。
  9.  前記マルチコアファイバは、通信用の光信号と伝送品質測定用の光とを同一の前記コアにより伝送する、
     請求項1に記載の伝送品質推定システム。
  10.  前記推定部は、伝送品質の推定に通信波長帯以外の帯域を利用する、
     請求項8又は請求項9に記載の伝送品質推定システム。
  11.  3つ以上のノードと、伝送品質を推定する伝送品質推定装置とを有し、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている伝送品質推定システムにおける前記伝送品質推定装置であって、
     前記マルチコアファイバが有する複数のコアのうち一部のコアから分岐された伝送品質測定用の光を受信する受信部と、
     前記伝送品質測定用の光に基づき、前記ノード間の伝送品質を推定する推定部と、
     を備える伝送品質推定装置。
  12.  3つ以上のノードと、伝送品質を推定する伝送品質推定装置とを有し、前記ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている伝送品質推定システムが実行する伝送品質推定方法であって、
     前記ノードのコア接続部が、マルチコアファイバが有する複数のコアそれぞれに対して個別に、前記コアにより伝送される光の分岐、挿入、又は、中継を行うコア接続ステップと、
     前記伝送品質推定装置が、前記コア接続部により分岐された伝送品質測定用の光に基づき、前記ノード間の伝送品質を推定する推定ステップと、
     を有する伝送品質推定方法。
PCT/JP2016/084618 2015-11-26 2016-11-22 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法 WO2017090616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680068647.5A CN108352893B (zh) 2015-11-26 2016-11-22 传输质量估计系统、传输质量估计装置、以及传输质量估计方法
EP16868559.2A EP3367591B1 (en) 2015-11-26 2016-11-22 Transmission quality estimation system, transmission quality estimation device, and transmission quality estimation method
JP2017552667A JP6491762B2 (ja) 2015-11-26 2016-11-22 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法
US15/777,098 US10686520B2 (en) 2015-11-26 2016-11-22 Transmission quality estimation system, transmission quality estimation device, and transmission quality estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015230876 2015-11-26
JP2015-230876 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090616A1 true WO2017090616A1 (ja) 2017-06-01

Family

ID=58763184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084618 WO2017090616A1 (ja) 2015-11-26 2016-11-22 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法

Country Status (5)

Country Link
US (1) US10686520B2 (ja)
EP (1) EP3367591B1 (ja)
JP (1) JP6491762B2 (ja)
CN (1) CN108352893B (ja)
WO (1) WO2017090616A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159938A1 (ja) * 2018-02-13 2019-08-22 日本電信電話株式会社 状態推定装置及び通信システム
JP2019140666A (ja) * 2018-02-13 2019-08-22 日本電信電話株式会社 状態推定装置及び通信システム
WO2020040032A1 (ja) * 2018-08-21 2020-02-27 日本電信電話株式会社 クロストーク推定システム
JPWO2021172069A1 (ja) * 2020-02-27 2021-09-02
JPWO2021172068A1 (ja) * 2020-02-27 2021-09-02
CN116527144A (zh) * 2023-06-27 2023-08-01 北京易桓科技有限公司 一种基于外接接口的光纤信号转换方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3364568B1 (en) * 2015-11-26 2020-04-15 Nippon Telegraph and Telephone Corporation Communication system and connector
JP7314684B2 (ja) * 2019-07-23 2023-07-26 住友電気工業株式会社 マルチコアファイバの光接続構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157245A1 (ja) * 2012-04-20 2013-10-24 日本電気株式会社 多重光伝送路、光伝送システムおよび光伝送方法
WO2013179604A1 (ja) * 2012-05-29 2013-12-05 日本電気株式会社 光伝送装置、光伝送システムおよび光伝送方法
WO2014141533A1 (ja) * 2013-03-11 2014-09-18 株式会社日立製作所 切替装置および伝送システム

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867289A (en) 1996-12-24 1999-02-02 International Business Machines Corporation Fault detection for all-optical add-drop multiplexer
FR2782799B1 (fr) * 1998-08-27 2000-11-17 France Telecom Appareil de mesure de paradiaphotie lineique des fibres multicoeurs
US20020131115A1 (en) * 2000-08-28 2002-09-19 The Furukawa Electric Co. Ltd. Wavelength multiplex transmission method and system
US6735395B1 (en) * 2000-09-29 2004-05-11 Futurewei Technologies, Inc. WDM communication system utilizing WDM optical sources with stabilized wavelengths and light intensity and method for stabilization thereof
US6904237B2 (en) * 2001-05-21 2005-06-07 Siemens Aktiengesellschaft Circuit for measurement of the signal quality in digital optical fiber transmission networks by interpreting the signal histogram
DE10132584B4 (de) * 2001-07-05 2004-02-05 Siemens Ag Verfahren und Anordnung zur Ermittlung und Trennung von Einzelkanaleffekten bei der optischen Übertragung eines Wellenlängen-Multiplex(-WDM)-Signals
WO2003032547A2 (en) * 2001-10-09 2003-04-17 Infinera Corporation Transmitter photonic integrated circuit
JP2004172783A (ja) * 2002-11-19 2004-06-17 Fujitsu Ltd 波長分割多重光伝送ネットワークシステムにおける経路の伝送可否検証システム
US20040218919A1 (en) * 2003-04-30 2004-11-04 Lucent Technologies Inc. Method and apparatus for Q-factor monitoring using forward error correction coding
US7711266B1 (en) * 2004-12-07 2010-05-04 Sprint Communications Company L.P. PMD measurements for an in-service fiber span
US7474830B2 (en) * 2007-03-23 2009-01-06 Verizon Services Organization, Inc. System and method for determining fiber characteristics
WO2008121844A1 (en) * 2007-03-30 2008-10-09 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
JP5170909B2 (ja) * 2008-02-27 2013-03-27 古河電気工業株式会社 光伝送システムおよびマルチコア光ファイバ
JP5338400B2 (ja) 2009-03-13 2013-11-13 日本電気株式会社 光伝送システム
CN101630972B (zh) * 2009-08-19 2012-06-13 烽火通信科技股份有限公司 用于wdm网络的光纤线路智能检测系统及检测方法
US8725001B2 (en) * 2010-03-10 2014-05-13 Ofs Fitel, Llc Multicore fiber transmission systems and methods
JP5691255B2 (ja) * 2010-06-22 2015-04-01 富士通株式会社 Osnr測定装置および光通信システム
US20120177065A1 (en) * 2011-01-09 2012-07-12 Winzer Peter J Secure Data Transmission Using Spatial Multiplexing
US8977121B2 (en) * 2011-02-15 2015-03-10 Nec Laboratories America, Inc. Spatial domain based multi dimensional coded modulation for multi Tb per second serial optical transport networks
US8842268B2 (en) * 2011-02-25 2014-09-23 Sumitomo Electric Industries, Ltd. Measuring method for crosstalk between cores in multi-core optical fiber
JP5910087B2 (ja) * 2011-02-25 2016-04-27 住友電気工業株式会社 マルチコア光ファイバから出力される光の受光方法、及び、分離装置
CN103620460A (zh) * 2011-06-16 2014-03-05 古河电气工业株式会社 光耦合构造以及光纤放大器
JP2013020074A (ja) * 2011-07-11 2013-01-31 Hitachi Cable Ltd マルチコアファイバ
JP5960265B2 (ja) * 2011-09-02 2016-08-02 アルカテル−ルーセント 空間分割多重システムのための方法および装置
WO2013035347A1 (ja) * 2011-09-07 2013-03-14 古河電気工業株式会社 マルチコア光ファイバおよび光伝送方法
US8824501B2 (en) * 2011-09-16 2014-09-02 Alcatel Lucent Performance enhancement through optical variants
US9031419B2 (en) * 2011-09-28 2015-05-12 At&T Intellectual Property I, L.P. Optical networks using multi-spatial mode media
JP5416314B2 (ja) * 2011-10-04 2014-02-12 古河電気工業株式会社 マルチコア増幅光ファイバおよびマルチコア光ファイバ増幅器
CN104220846A (zh) * 2012-03-23 2014-12-17 住友电气工业株式会社 干涉测量装置
EP2665212B1 (en) 2012-05-16 2016-11-30 Alcatel Lucent Optical data transmission system
JP5557399B2 (ja) 2012-08-30 2014-07-23 独立行政法人情報通信研究機構 マルチコアファイバを含む空間分割多重装置及び自己ホモダイン検波方法
WO2014038095A1 (en) * 2012-09-06 2014-03-13 Nec Corporation System and method for transmitting optical signal over multiple channels
WO2014042130A1 (ja) * 2012-09-11 2014-03-20 オリンパス株式会社 散乱光計測装置
US9197356B2 (en) * 2012-11-16 2015-11-24 At&T Intellectual Property I, L.P. Distributed spatial mode processing for spatial-mode multiplexed communication systems
JP6043652B2 (ja) 2013-02-22 2016-12-14 株式会社日立製作所 大容量ファイバ光切替装置および光伝送システム
JP6194961B2 (ja) * 2013-04-09 2017-09-13 日本電気株式会社 光空間分割多重送信システム及び送信方法
JP6489815B2 (ja) 2014-12-04 2019-03-27 株式会社日立製作所 光経路切替装置及びマルチコアファイバネットワークシステム
CN104660338A (zh) 2015-02-09 2015-05-27 杭州电子科技大学 一种基于多模光纤的模分复用传输系统
JP6386419B2 (ja) 2015-06-02 2018-09-05 日本電信電話株式会社 光伝送システム及びクロストーク測定方法
CN108292955A (zh) * 2015-11-26 2018-07-17 日本电信电话株式会社 通信系统以及连接器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157245A1 (ja) * 2012-04-20 2013-10-24 日本電気株式会社 多重光伝送路、光伝送システムおよび光伝送方法
WO2013179604A1 (ja) * 2012-05-29 2013-12-05 日本電気株式会社 光伝送装置、光伝送システムおよび光伝送方法
WO2014141533A1 (ja) * 2013-03-11 2014-09-18 株式会社日立製作所 切替装置および伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367591A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001920B2 (ja) 2018-02-13 2022-01-20 日本電信電話株式会社 状態推定装置及び通信システム
JP2019140666A (ja) * 2018-02-13 2019-08-22 日本電信電話株式会社 状態推定装置及び通信システム
US11342990B2 (en) 2018-02-13 2022-05-24 Nippon Telegraph And Telephone Corporation State estimating device and communication system
WO2019159938A1 (ja) * 2018-02-13 2019-08-22 日本電信電話株式会社 状態推定装置及び通信システム
JP2020031304A (ja) * 2018-08-21 2020-02-27 日本電信電話株式会社 クロストーク推定システム
WO2020040032A1 (ja) * 2018-08-21 2020-02-27 日本電信電話株式会社 クロストーク推定システム
JPWO2021172068A1 (ja) * 2020-02-27 2021-09-02
WO2021172069A1 (ja) * 2020-02-27 2021-09-02 日本電気株式会社 モニタ装置、モニタ方法、及び光伝送システム
WO2021172068A1 (ja) * 2020-02-27 2021-09-02 日本電気株式会社 モニタ装置、モニタ方法、光増幅器、及び光伝送システム
JPWO2021172069A1 (ja) * 2020-02-27 2021-09-02
JP7294518B2 (ja) 2020-02-27 2023-06-20 日本電気株式会社 モニタ装置、モニタ方法、光増幅器、及び光伝送システム
JP7294519B2 (ja) 2020-02-27 2023-06-20 日本電気株式会社 モニタ装置、モニタ方法、及び光伝送システム
CN116527144A (zh) * 2023-06-27 2023-08-01 北京易桓科技有限公司 一种基于外接接口的光纤信号转换方法及系统
CN116527144B (zh) * 2023-06-27 2023-09-01 北京易桓科技有限公司 一种基于外接接口的光纤信号转换方法及系统

Also Published As

Publication number Publication date
CN108352893A (zh) 2018-07-31
JP6491762B2 (ja) 2019-03-27
EP3367591A4 (en) 2019-07-17
EP3367591A1 (en) 2018-08-29
EP3367591B1 (en) 2021-05-12
JPWO2017090616A1 (ja) 2018-04-05
CN108352893B (zh) 2020-12-22
US10686520B2 (en) 2020-06-16
US20180337726A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP6491762B2 (ja) 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法
WO2017090608A1 (ja) ノード及び光給電システム
JP6480601B2 (ja) 通信システム及び故障検出方法
JP6588567B2 (ja) 通信システム及び故障箇所特定方法
EP3364569B1 (en) Optical amplification system and optical amplification method
WO2017090600A1 (ja) 通信システム及びコネクタ
JP6368438B2 (ja) 通信システム及びコネクタ
RU2013150135A (ru) Центральный узел системы связи, беспроводная система связи, устройство оптического мультиплексора/демультиплексора и способ передачи данных одной или нескольким группам узлов
US20130223796A1 (en) Arrayed wavelength grating router (awgr) for wavelength multiplexing and demultiplexing
US10985841B1 (en) Wavelength division multiplexing wavelength translator
Carpenter et al. 2× 56-Gb/s mode-division multiplexed transmission over 2km of OM2 multimode fibre without MIMO equalization
US20230361876A1 (en) Installation method of optical communication device and optical communication system
JP2015121626A (ja) モード変換装置、モード多重装置、モード分離装置、光合波装置および分波装置
JP2012023436A (ja) 多チャンネルosnrモニタ
JP2006325027A (ja) 計算機ノード結合ネットワークシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552667

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15777098

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2016868559

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE