WO2017090608A1 - ノード及び光給電システム - Google Patents

ノード及び光給電システム Download PDF

Info

Publication number
WO2017090608A1
WO2017090608A1 PCT/JP2016/084594 JP2016084594W WO2017090608A1 WO 2017090608 A1 WO2017090608 A1 WO 2017090608A1 JP 2016084594 W JP2016084594 W JP 2016084594W WO 2017090608 A1 WO2017090608 A1 WO 2017090608A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcf
power supply
node
connector
core
Prior art date
Application number
PCT/JP2016/084594
Other languages
English (en)
French (fr)
Inventor
拓哉 小田
乾 哲郎
平野 章
今宿 亙
小林 正啓
貴章 田中
宮本 裕
高良 秀彦
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN201680068723.2A priority Critical patent/CN108292959B/zh
Priority to US15/778,972 priority patent/US20180343067A1/en
Priority to EP16868551.9A priority patent/EP3364570B1/en
Priority to JP2017552661A priority patent/JP6527593B2/ja
Publication of WO2017090608A1 publication Critical patent/WO2017090608A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/44Arrangements for feeding power to a repeater along the transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/05Spatial multiplexing systems
    • H04J14/052Spatial multiplexing systems using multicore fibre

Definitions

  • the present invention relates to a node and an optical power feeding system.
  • This application claims priority based on Japanese Patent Application No. 2015-230874 for which it applied to Japan on November 26, 2015, and uses the content here.
  • an object of the present invention is to provide a node and an optical power feeding system in which a part of a plurality of nodes communicating using a multi-core fiber can be installed in a place without an external power source.
  • the node according to the first embodiment of the present invention is a node in an optical power feeding system that includes three or more nodes and uses a multi-core fiber having a plurality of cores in at least a part of a connection between the nodes.
  • a feeding light branching unit that branches part or all of the feeding light from the core of the multi-core fiber, and photoelectric conversion that converts the feeding light branched by the feeding light branching unit into electricity
  • a power supply target facility that operates by electricity converted by the photoelectric conversion unit.
  • the node according to the second embodiment of the present invention is a node in an optical power feeding system that includes three or more nodes and uses a multi-core fiber having a plurality of cores in at least a part of a connection between the nodes.
  • a power supply optical connection unit that connects power supply light to at least some of the cores of the multi-core fiber.
  • the multi-core fiber includes the core that transmits communication light and power supply light.
  • the multi-core fiber transmits the communication light and the power supply light. Said core for transmission.
  • the core of the fourth embodiment described above, which transmits the power supply light, is capable of high power transmission.
  • the wavelength of the power supply light is included in the wavelength band used by the communication light.
  • the wavelength of the power supply light is not included in the wavelength band used by the communication light. .
  • An optical power feeding system is an optical power feeding system that includes three or more nodes, and uses a multi-core fiber having a plurality of cores in at least a part of a connection between the nodes.
  • the power supply source node includes a power supply optical connection unit that connects power supply light to at least some of the cores of the multicore fiber, and the power supply destination node includes the multicore fiber.
  • a feeding light branching unit for branching the feeding light transmitted by the core, a photoelectric conversion unit for converting the feeding light branched by the feeding light branching unit, and the photoelectric conversion unit And a power supply target facility that operates by electricity converted by.
  • FIG. 1 shows the 1st structural example of the communication system which can apply embodiment of this invention. It is a figure which shows the 1st structural example of the connector used for a communication system. It is a figure which shows the 1st structural example of the connector used for a communication system. It is a figure which shows the 2nd structural example of the connector used for a communication system. It is a figure which shows the 2nd structural example of the connector used for a communication system. It is a figure which shows the 3rd structural example of the connector used for a communication system. It is a figure which shows the 3rd structural example of the connector used for a communication system. It is a figure which shows the 2nd structural example of the communication system which can apply embodiment of this invention.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system 100 to which an embodiment of the present invention can be applied.
  • the communication system 100 includes a transmission / reception node 110 and n (n is an integer of 1 or more) Add / Drop nodes 120.
  • the n Add / Drop nodes 120 are referred to as Add / Drop nodes 120-1 to 120-n, respectively.
  • the transmission / reception node 110 and the Add / Drop node 120 are collectively referred to as “node”.
  • a transmission device, a reception device, a transmission / reception device, and the like that perform communication using an optical signal and a node are described as separate configurations.
  • the node may include a transmission device, a reception device, and a transmission / reception device.
  • the nodes are connected by MCF (multi-core fiber) 200-1 to 200-4.
  • the communication system 100 has a physical topology of a one-system one-way ring configuration in which nodes are connected by MCFs 200-1 to 200-4.
  • the transmission / reception node 110 and the Add / Drop node 120-1 are connected by the MCF 200-1.
  • Add / Drop node 120-1 and Add / Drop node 120-2 are connected by MCF 200-2.
  • Add / Drop node 120-2 and Add / Drop node 120-3 are connected by MCF 200-3.
  • the Add / Drop node 120-3 and the transmission / reception node 110 are connected by the MCF 200-4.
  • the MCFs 200-1 to 200-4 in the communication system 100 include three cores 201, 202, and 203.
  • the Add / Drop node 120-i (1 ⁇ i ⁇ n ⁇ 1) is connected to the Add / Drop node 120- (i + 1) via the MCF 200- (i + 1).
  • the MCF 200-1 connects the transmission / reception node 110 and the Add / Drop node 120-1.
  • the MCF 200- (n + 1) connects the Add / Drop node 120-n and the transmission / reception node 110.
  • Each node of the communication system 100 includes a transmission device (Tx) and a reception device (Rx) that perform communication between nodes.
  • Tx transmission device
  • Rx reception device
  • transmission devices 111-1 to 111-3 and reception devices 112-1 to 112-3 are provided.
  • Add / Drop node 120-1 a transmission device 121-1 and a reception device 122-1 are provided.
  • Add / Drop node 120-2 a transmitting device 121-2 and a receiving device 122-2 are provided.
  • a transmission device 121-3 and a reception device 122-3 are provided for the Add / Drop node 120-3. Transmitting apparatuses 111-1 to 111-3 generate optical signals to be transmitted to Add / Drop nodes 120-1 to 120-3, respectively.
  • Receiving devices 112-1 to 112-3 receive the optical signals transmitted from Add / Drop nodes 120-1 to 120-3, and acquire information included in the optical signals.
  • the transmission devices 121-1 to 121-3 each generate an optical signal to be transmitted to the transmission / reception node 110.
  • the receiving devices 122-1 to 122-3 receive the optical signal transmitted from the transmission / reception node 110, and acquire information included in the optical signal.
  • the transmission devices 111-1 to 111-3 generate optical signals to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the three optical signals generated by the transmitters 111-1 to 111-3 are inserted into the cores 201-1 to 203-1 of the MCF 200-1, respectively.
  • Receiving devices 112-1 to 112-3 receive optical signals transmitted from Add / Drop nodes 120-1, 120-2, and 120-3 to the node provided with the receiving device, respectively.
  • Receiving devices 112-1 to 112-3 receive optical signals from Add / Drop nodes 120-1 to 120-3 via cores 201-4 to 203-4 of MCF 200-4, respectively.
  • a fan-in device or a fan-out device is used for insertion of an optical signal into the MCF 200 and branching of the optical signal from the MCF 200 in the transmission / reception node 110.
  • a fan-in device is a device that is connected to each core in a multi-core fiber and inserts an optical signal for each core.
  • the fan-out device is a device that is connected to each of the cores in the multi-core fiber and branches each of the light propagating in each core. Since the difference between the two devices is only the direction of light propagation, even if one of the fan-in device and the fan-out device is used to input and output light to and from the multi-core fiber. Good.
  • One device may insert light into the multi-core fiber and branch light from the multi-core fiber.
  • the Add / Drop nodes 120-1 to 120-3 are provided with connectors 150-1 to 150-3, respectively.
  • the connector 150-i branches from the MCF 200-i the optical signal to the own node among the optical signals inserted by the transmission / reception node 110.
  • the connector 150-i inserts an optical signal to the transmission / reception node 110 into the core of the MCF 200- (i + 1).
  • the connector 150-1 branches an optical signal from the core 201-1 of the MCF 200-1 to the own node.
  • the connector 150-1 connects the branched optical signal to the receiving device 122-1. Further, the connector 150-1 inserts the optical signal generated by the transmission device 121-1 into the core 201-2 of the MCF 200-2.
  • the optical signal inserted into the core 201-2 is an optical signal transmitted from the Add / Drop node 120-1 to the transmission / reception node 110.
  • the connector 150-1 connects the cores 202-1 and 203-1 among the cores of the MCF 200-1 and the cores 202-2 and 203-2 among the cores of the MCF 200-2, respectively.
  • the connector 150-1 relays an optical signal between the MCF 200-1 and the MCF 200-2.
  • the connector 150-1 relays an optical signal transmitted by a core other than the cores 201-1 and 201-2 that add / drop an optical signal.
  • the connector 150-2 branches an optical signal from the core 202-2 of the MCF 200-2 to the own node.
  • the connector 150-2 connects the branched optical signal to the receiving device 122-2. Further, the connector 150-2 inserts the optical signal generated by the transmission device 121-2 into the core 202-3 of the MCF 200-3.
  • the optical signal inserted into the core 202-3 is an optical signal transmitted from the Add / Drop node 120-2 to the transmission / reception node 110.
  • the connector 150-2 connects the cores 201-2 and 203-2 among the cores of the MCF 200-2 and the cores 201-3 and 203-3 among the cores of the MCF 200-3, respectively.
  • the connector 150-2 relays an optical signal between the MCF 200-2 and the MCF 200-3.
  • the connector 150-2 relays an optical signal transmitted by a core other than the cores 201-2 and 201-3 that add / drop an optical signal.
  • the connector 150-3 branches an optical signal from the core 203-3 of the MCF 200-3 to the own node.
  • the connector 150-3 connects the branched optical signal to the receiving device 122-3.
  • the connector 150-3 inserts the optical signal generated by the transmission device 121-3 into the core 203-4 of the MCF 200-4.
  • the optical signal inserted into the core 203-4 is an optical signal transmitted from the Add / Drop node 120-3 to the transmission / reception node 110.
  • Connector 150-3 connects cores 201-3 and 202-3 of the core of MCF 200-3 and cores 201-4 and 202-4 of the core of MCF 200-4, respectively.
  • the connector 150-3 relays an optical signal between the MCF 200-3 and the MCF 200-4.
  • the connector 150-3 relays an optical signal transmitted by a core other than the cores 203-3 and 203-4 that add / drop the optical signal.
  • FIG. 2A and 2B are diagrams illustrating a first configuration example of the connector 150 used in the communication system 100.
  • the connector 150 includes a fan-in / fan-out portion including a plurality of small single mode fibers (SMF) and a plurality of SMFs.
  • the connector 150 includes a small-diameter SMF for each core of the MCF 200 to be connected.
  • One end of each of the plurality of small-diameter SMFs is provided at a position facing the core of the MCF 200.
  • the other ends of the plurality of small diameter SMFs are provided at positions facing one end of the SMF.
  • Each small-diameter SMF connects the core of the MCF 200 and the SMF.
  • the connector 150 can branch an optical signal transmitted through each core of the MCF 200 via the small diameter SMF and the SMF.
  • an optical signal can be input to each core of the MCF 200 by inputting the optical signal to the SMF.
  • the connector 150-i shown in FIG. 2B connects the MCF 200-i and the MCF 200- (i + 1).
  • the other end of the SMF corresponding to the core that transmits the optical signal to be added / dropped is drawn out to the side surface of the connector 150-i.
  • Optical signal insertion and branching can be performed at the other end of the SMF drawn out to the side surface of the connector 150-i.
  • an optical signal not subject to Add / Drop is relayed from the MCF 200-i to the MCF 200- (i + 1) through the small-diameter SMF and SMF.
  • FIGS. 3A and 3B are diagrams illustrating a second configuration example of the connector 150 used in the communication system 100.
  • FIG. 3A and 3B show a configuration example different from the configuration example of the connector 150 shown in FIGS. 2A and 2B.
  • the connector 150 shown in FIGS. 3A and 3B includes an optical waveguide including a plurality of waveguide cores formed on a glass substrate as a fan-in / fan-out portion.
  • a plurality of waveguide cores are provided at positions facing the respective cores of the MCF 200 to be connected.
  • Optical signals transmitted through each core of the MCF 200 are separated via the waveguide core.
  • an optical signal can be input to each core of the MCF 200 by inserting the optical signal into the waveguide core.
  • One end of the core is provided at a position facing the core of the MCF.
  • the other end of the waveguide core is provided on the side surface of the connector 150-i.
  • the optical signal can be inserted and branched at the other end of the waveguide core located on the side surface of the connector 150-i.
  • One end of the waveguide core with respect to the core that transmits an optical signal not subject to Add / Drop among the cores of the MCF 200-i is provided at a position facing the core of the MCF.
  • the other end of the waveguide core is provided at a position facing the core that transmits an optical signal that is not the target of Add / Drop among the cores of MCF200- (i + 1).
  • the cores that transmit optical signals that are not subject to Add / Drop are connected one-to-one via the waveguide core.
  • an optical signal that is not subject to Add / Drop is relayed from the core of the MCF 200-i to the core of the MCF 200- (i + 1) via the waveguide core.
  • the waveguide core is not only formed in a two-dimensional space on the substrate plane, but may be formed in a three-dimensional space as described in Reference Document 1.
  • Reference Document 1 RR Thomson, et al, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications", Optics Express, OSA Publishing, 2007, Vol.15, Issue 18, p.11691- 11697
  • FIGS. 4A and 4B are diagrams illustrating a third configuration example of the connector 150 used in the communication system 100.
  • FIG. 4A and 4B show a configuration example different from the configuration example of the connector 150 shown in FIGS. 2A, 2B, 3A, and 3B.
  • the connector 150 shown in FIGS. 4A and 4B once outputs an optical signal transmitted by each core of the MCF 200 to free space, and separates the optical signal of each core by the optical system in the free space.
  • the connector 150 includes a fan-in / fan-out portion composed of two lenses.
  • Optical signals transmitted through each core of the MCF 200 are output to free space and separated by being refracted by two lenses. Add / Drop of an optical signal is performed using an optical system.
  • FIG. 4B is a diagram illustrating a configuration example of the connector 150-i.
  • an optical signal emitted from each core of the MCF 200-i is collimated by an optical system (collimator) in which two lenses are combined.
  • Each collimated optical signal is input to each core of MCF 200- (i + 1).
  • a mirror that changes the light path in the direction of the side surface of the connector 150-i is disposed in the light path of the optical signal to be added / dropped.
  • the optical signal to be separated is reflected by a mirror and branched to the outside of the connector 150-i, whereby the optical signal to be separated can be obtained.
  • the optical signal reflected by the mirror enters the optical system in which the two lenses are combined together with the collimated optical signal.
  • the optical signal incident on the optical system is connected to the core of MCF200- (i + 1), so that the optical signal to be added can be inserted into the core.
  • Optical signals that are not subject to Add / Drop are separated by the optical system, then bundled together with the added optical signal, and input to each core of the MCF 200- (i + 1).
  • an optical signal not subject to Add / Drop is relayed from the MCF 200-i to the MCF 200- (i + 1) through free space.
  • two lenses are used for collimating the light emitted from the fiber, and a mirror is used for changing the propagation direction of light in free space.
  • an optical device having a similar function may be used.
  • FIG. 2A, FIG. 2B, FIG. 3A, FIG. 3B, FIG. 4A, and FIG. 4B show examples of the configuration of the connector 150.
  • the connector 150 may be realized using a medium other than the medium and method described above.
  • a planar optical circuit (Planar Lightwave Circuit: PLC) having an optical waveguide on silicon may be used as the connector.
  • an optical signal generated by the transmission device 111-1 of the transmission / reception node 110 is received by the reception device of the Add / Drop node 120-1 via the core 201-1 of the MCF 200-1 and the connector 150-1. Received at 122-1.
  • the optical signal generated by the transmitter 111-2 is added / dropped via the core 202-1 of the MCF 200-1, the connector 150-1, the core 202-2 of the MCF 200-2, and the connector 150-2.
  • the data is received by the receiving device 122-2 of the node 120-2.
  • the optical signal generated by the transmission device 111-3 includes the core 203-1 of the MCF 200-1, the connector 150-1, the core 203-2 of the MCF 200-2, the connector 150-2, and the core of the MCF 200-3.
  • the data is received by the receiving device 122-3 of the Add / Drop node 120-3 via 203-3 and the connector 150-3.
  • the optical signal generated by the transmission device 121-1 of the Add / Drop node 120-1 is the connector 150-1, the core 201-2 of the MCF 200-2, the connector 150-2, and the core of the MCF 200-3.
  • the data is received by the receiving device 112-1 of the transmission / reception node 110 via the 201-3, the connector 150-3, and the core 201-4 of the MCF 200-4.
  • the optical signals generated by the transmission device 121-2 of the Add / Drop node 120-2 are the connector 150-2, the core 202-3 of the MCF 200-3, the connector 150-3, and the core 202- of the MCF 200-4. 4 is received by the receiving device 112-2 of the transmission / reception node 110.
  • the optical signal generated by the transmission device 121-3 of the Add / Drop node 120-3 is received by the reception device 112-3 of the transmission / reception node 110 via the connector 150-3 and the core 203-4 of the MCF 200-4.
  • the transmission / reception node 110 has a transmission / reception communication path with each of the Add / Drop nodes 120-1 to 120-3.
  • the communication system 100 has a star-type logical topology centered on the transmission / reception node 110.
  • Add / Drop of an optical signal can be performed on the core of In the communication system 100, the MCF 200-i and the MCF 200- (i + 1) are connected via the connector 150-i, thereby branching the optical signal addressed to the Add / Drop node 120-i and the optical signal addressed to the transmission / reception node 110. Can be easily inserted.
  • the Add / Drop of the optical signal the process of dividing the multiplexed optical signals having different wavelengths for each wavelength becomes unnecessary, so that it is possible to reduce the installation and maintenance time of the devices in each Add / Drop node 120.
  • the MCF 200 may include four or more cores.
  • the add / drop node 120 may add / drop optical signals to two or more cores.
  • FIG. 5 is a diagram illustrating a configuration example of a communication system 100A to which the embodiment of the present invention can be applied.
  • the communication system 100A includes transmission / reception nodes 110a and 110b and n Add / Drop nodes 120.
  • the communication system 100A is different from the communication system 100 shown in FIG. 1 in that it has a physical topology of a ring configuration in both systems unidirectional.
  • the nodes are connected by MCFs 210-1 to 210-4.
  • the transmission / reception node 110a and the Add / Drop node 120-1 are connected by the MCF 210-1.
  • Add / Drop node 120-1 and Add / Drop node 120-2 are connected by MCF 210-2.
  • Add / Drop node 120-2 and Add / Drop node 120-3 are connected by MCF 210-3.
  • Add / Drop node 120-3 and transmission / reception node 110b are connected by MCF 210-4.
  • the MCFs 210-1 to 210-4 in the communication system 100A include six cores 211 to 216.
  • the Add / Drop node 120-i (1 ⁇ i ⁇ n ⁇ 1) is connected to the Add / Drop node 120- (i + 1) via the MCF 210- (i + 1).
  • the MCF 210-1 connects the transmission / reception node 110a and the Add / Drop node 120-1.
  • the MCF 210- (n + 1) connects the Add / Drop node 120-n and the transmission / reception node 110b.
  • Each node of the communication system 100A includes any one of a transmission device (Tx) and a reception device (Rx) that perform communication between the nodes, and a transmission / reception device (Tx / Rx).
  • Tx transmission device
  • Rx reception device
  • Tx / Rx transmission / reception device
  • transmission devices 111-1 to 111-3 and reception devices 112-1 to 112-3 are provided.
  • transmission / reception devices 125-1 and 126-1 are provided.
  • Transmission / reception devices 125-2 and 126-2 are provided for the Add / Drop node 120-2.
  • transmission / reception devices 125-3 and 126-3 are provided for the transmission / reception node 110b.
  • the transmission / reception nodes 110a and 110b are provided with the transmission device 111 and the reception device 112, and the Add / Drop nodes 120-1 to 120-3 are provided with the transmission / reception devices 125 and 126.
  • the described configuration will be described.
  • the transmission / reception devices 125 and 126 include the functions of both the transmission device and the reception device, and there is no significant difference between the combination of the transmission device and the reception device and the transmission / reception device.
  • any of the transmission device, the reception device, and the transmission / reception device may be provided.
  • the transmission devices 111-1 to 111-3 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the optical signals generated by the transmitters 111-1 to 111-3 are inserted into the cores 211-1, 213-1, and 215-1 of the MCF 210-1, respectively.
  • Receiving devices 112-1 to 112-3 receive optical signals transmitted from Add / Drop nodes 120-1 to 120-3 to transmission / reception node 110a, respectively.
  • Receiving devices 112-1 to 112-3 receive optical signals from cores 212-1, 214-1 and 216-1 of MCF 210-1, respectively.
  • the transmission devices 111-4 to 111-6 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the optical signals generated by the transmitters 111-4 to 111-6 are inserted into the cores 211-4, 213-4, and 215-4 of the MCF 210-4, respectively.
  • Receiving devices 112-4 to 112-6 receive optical signals transmitted from Add / Drop nodes 120-1 to 120-3 to transmission / reception node 110b, respectively.
  • Receiving devices 112-4 to 112-6 receive optical signals from cores 212-4, 214-4, and 216-4 of MCF 210-4, respectively.
  • a fan-in device or a fan-out device is used for insertion of an optical signal into the MCF 200 and branching of the optical signal from the MCF 200 in the transmission / reception nodes 110a and 110b.
  • the connector 160-i is connected to the MCF 210-i and the MCF 210- (i + 1).
  • the connector 160-i branches an optical signal to the own node from the MCF 210-i and MCF 210- (i + 1) among the optical signals inserted by the transmission / reception nodes 110a and 110b.
  • the connector 160-i inserts an optical signal addressed to the transmission / reception node 110a into the core of the MCF 210-i.
  • the connector 160-i inserts an optical signal addressed to the transmission / reception node 110b into the core of the MCF 210- (i + 1).
  • the connector 160-1 branches an optical signal from the core 211-1 of the MCF 210-1 to the own node.
  • the connector 160-1 connects the branched optical signal to the transmission / reception device 125-1.
  • the connector 160-1 inserts the optical signal generated by the transmission / reception device 125-1 into the core 212-1 of the MCF 210-1.
  • the optical signal inserted into the core 212-1 is an optical signal transmitted from the own node to the transmission / reception node 110a.
  • the connector 160-1 branches an optical signal from the core 211-2 of the MCF 210-2 to the own node.
  • the connector 160-1 connects the branched optical signal to the transmission / reception device 126-1.
  • the connector 160-1 inserts the optical signal generated by the transmission / reception device 126-1 into the core 212-2 of the MCF 210-2.
  • the optical signal inserted into the core 212-2 is an optical signal transmitted from the own node to the transmission / reception node 110b.
  • Connector 160-1 connects cores 213-1 to 216-1 among the cores of MCF 210-1 and 213-2 to 216-2 among the cores of MCF 210-2.
  • the connector 160-1 relays an optical signal between the MCF 210-1 and the MCF 210-2.
  • the connector 160-1 relays an optical signal transmitted by a core other than the cores 211-1, 212-1, 211-2, and 212-2 that Add / Drop an optical signal.
  • the connector 160-2 branches an optical signal from the core 213-2 of the MCF 210-2 to the own node.
  • the connector 160-2 connects the branched optical signal to the transmission / reception device 125-2.
  • the connector 160-2 inserts the optical signal generated by the transmission / reception device 125-2 into the core 214-2 of the MCF 210-2.
  • the optical signal inserted into the core 214-2 is an optical signal transmitted from the own node to the transmission / reception node 110a.
  • the connector 160-2 branches an optical signal from the core 213-3 of the MCF 210-3 to the own node.
  • the connector 160-2 connects the branched optical signal to the transmission / reception device 126-2.
  • the connector 160-2 inserts the optical signal generated by the transmission / reception device 126-2 into the core 214-3 of the MCF 210-3.
  • the optical signal inserted into the core 214-3 is an optical signal transmitted from the own node to the transmission / reception node 110b.
  • the connector 160-2 includes cores 211-2, 212-2, 215-2, and 216-2 among the cores of the MCF 210-2 and cores 211-3, 212-3, and 215-3 among the cores of the MCF 210-3. 216-3, respectively.
  • the connector 160-2 relays an optical signal between the MCF 210-2 and the MCF 210-3.
  • the connector 160-2 relays an optical signal transmitted by a core other than the cores 213-2, 214-2, 213-3, and 214-3 that adds / drops an optical signal.
  • the connector 160-3 branches an optical signal from the core 215-3 of the MCF 210-3 to the own node.
  • the connector 160-3 connects the branched optical signal to the transmission / reception device 126-3.
  • the connector 160-3 inserts the optical signal generated by the transmission / reception device 126-3 into the core 216-3 of the MCF 210-3.
  • the optical signal inserted into the core 216-3 is an optical signal transmitted from the own node to the transmission / reception node 110a.
  • the connector 160-3 branches an optical signal from the core 215-4 of the MCF 210-4 to the own node.
  • the connector 160-4 connects the branched optical signal to the transmission / reception device 125-3.
  • the connector 160-3 inserts the optical signal generated by the transmission / reception device 125-3 into the core 216-3 of the MCF 210-4.
  • the optical signal inserted into the core 216-4 is an optical signal transmitted from the own node to the transmission / reception node 110b.
  • Connector 160-3 connects cores 211-3 to 214-3 among the cores of MCF 210-3 and cores 211-4 to 214-4 among the cores of MCF 210-4.
  • the connector 160-3 relays an optical signal between the MCF 210-3 and the MCF 210-4.
  • the connector 160-3 relays an optical signal transmitted by a core other than the cores 215-3, 216-3, 215-4, and 216-4 that Add / Drop the optical signal.
  • the connectors 160-1 to 160-3 used in the communication system 100A use a thin fiber, an optical waveguide, an optical system, etc. as shown in FIGS. 2A, 2B, 3A, 3B, 4A, and 4B. Thus, the same configuration as the connectors 150-1 to 150-3 in the communication system 100 can be achieved.
  • a transmission communication path and a reception communication path are formed between the transmission / reception nodes 110a and 110b and the Add / Drop nodes 120-1 to 120-3.
  • the transmission / reception nodes 110a and 110b can individually communicate with the Add / Drop nodes 120-1 to 120-3.
  • the communication system 100A has a tree-type logical topology with the transmission / reception nodes 110a and 110b as root nodes.
  • the Add / Drop nodes 120-1 to 120-3 use one of the communication paths with the two transmission / reception nodes 110a and 110b as an active system (system 0) and the other as a standby system (system 1). May be.
  • the Add / Drop nodes 120-1 to 120-3 may use a communication path with a short transmission distance as the 0 system and a communication path with a long transmission distance as the 1 system.
  • each MCF 210 includes six cores 211 to 216 has been described, the MCF 210 may include seven or more cores.
  • the add / drop node 120 may add / drop optical signals to two or more cores.
  • the transmission / reception node 110a and the transmission / reception node 110b may be connected using the MCF 210 or an MCF including seven or more cores.
  • the communication system 100A when the roles of the transmission / reception nodes 110a and 110b and the Add / Drop nodes 120-1 to 120-3 are changed, connectors are attached to the transmission / reception nodes 110a and 110b, and the Add / Drop nodes 120-1 to 120-
  • the logical topology can be easily changed by replacing the connector 150 of 120-3 with another connector. Thereby, it is possible to flexibly cope with a change in the network configuration.
  • FIG. 6 is a diagram illustrating a configuration example of a communication system 100C to which the embodiment of the present invention can be applied.
  • the communication system 100C includes a transmission / reception node 110 and n Add / Drop nodes 120.
  • the connections of the MCFs 200-1 to 200-4 between the nodes are the same as the connections in the communication system 100.
  • communication from the transmission / reception node 110 to each Add / Drop node 120 and communication from each Add / Drop node 120 to the transmission / reception node 110 are performed using the same core.
  • the communication system 100C is different from the communication system 100 shown in FIG. 1 in that it has a physical topology with a single-system bidirectional ring configuration.
  • Each node of the communication system 100C includes a transmission / reception device (Tx / Rx) that performs communication between the nodes.
  • the transmission / reception node 110 is provided with transmission / reception apparatuses 113-1 to 113-3.
  • the Add / Drop nodes 120-1 to 120-3 are provided with transmission / reception devices 125-1 to 125-3, respectively.
  • the transmission / reception devices 113-1 to 113-3 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively. Further, the transmission / reception devices 113-1 to 113-3 receive the optical signals transmitted from the Add / Drop nodes 120-1 to 120-3, and acquire information included in the optical signals.
  • the transmission / reception devices 125-1 to 125-3 each generate an optical signal to be transmitted to the transmission / reception node 110.
  • the transmission / reception devices 125-1 to 125-3 each receive the optical signal transmitted from the transmission / reception node 110 and acquire information included in the optical signal.
  • the transmission / reception devices 113-1 to 113-3 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the three optical signals generated by the transmission / reception devices 113-1 to 113-3 are inserted into the cores 201-1 to 203-1 of the MCF 200-1, respectively.
  • the transmission / reception devices 113-1 to 113-3 receive optical signals from the Add / Drop nodes 120-1 to 120-3 via the cores 201-1 to 203-1 of the MCF 200-1, respectively.
  • a fan-in / fan-out device is used to insert an optical signal into the MCF 200-1 and branch an optical signal from the MCF 200-1.
  • the connector 180-i is connected to the MCF 200-i and the MCF 200- (i + 1).
  • the connector 180-i branches an optical signal from the core 20i-i of the MCF 200-i and connects the branched optical signal to the transmission / reception device 125-i.
  • the connector 180-i inserts the optical signal generated by the transmission / reception device 125-i into the core 20i-i of the MCF 200-i.
  • the optical signal generated by the transmission / reception device 125-i is an optical signal transmitted from the Add / Drop node 120-i to the transmission / reception node 110.
  • the connector 180-i connects the core 20i-i and the core 20i- (i + 1) other than the core to be added / dropped out of the core of the MCF 200-i and the core of the MCF 200- (i + 1). Relay the signal.
  • the transmission / reception node 110 and the Add / Drop node 120-1 perform bidirectional communication using a communication path formed by the core 201-1.
  • the transmission / reception node 110 and the Add / Drop node 120-2 perform bidirectional communication using a communication path formed by the cores 202-1 and 202-2.
  • the transmission / reception node 110 and the Add / Drop node 120-3 perform bidirectional communication using a communication path formed by the cores 203-1, 203-2, and 203-3.
  • the core 201-2 of the MCF 200-2, the core 201-3 and the core 202-3 of the MCF 200-3, and the cores 201-4 to 203-4 of the MCF 200-4 are cores that are not used for communication.
  • the Add / Drop node 120-3 may shorten the communication path by performing communication using the core 201-4 of the MCF 200-4 with the transmission / reception node 110. In that case, the transmission / reception node 110 needs a fine / fan-out device at the connection with the MCF 200-4.
  • FIG. 7 is a diagram illustrating a configuration example of a communication system 100D to which the embodiment of the present invention can be applied.
  • the communication system 100D includes transmission / reception nodes 110a and 110b and n Add / Drop nodes 120.
  • the connections of the MCFs 200-1 to 200-4 between the nodes are the same as the connections of the MCFs 210-1 to 210-4 in the communication system 100A.
  • communication from the transmission / reception nodes 110a and 110b to each Add / Drop node 120 and communication from each Add / Drop node 120 to the transmission / reception nodes 110a and 110b are performed using the same core.
  • the communication system 100D has a physical topology with a bi-directional bidirectional ring configuration.
  • Each node of the communication system 100D includes a transmission / reception device (Tx / Rx) that performs communication between the nodes.
  • the transmission / reception node 110a includes transmission / reception devices 113-1 to 113-3.
  • the transmission / reception node 110b is provided with transmission / reception devices 113-4 to 113-6.
  • the Add / Drop nodes 120-1 to 120-3 are provided with transmission / reception devices 125-1 to 125-3 and 126-1 to 126-3, respectively.
  • the transmission / reception devices 113-1 to 113-6 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the transmission / reception devices 125-1 to 125-3 generate optical signals to be transmitted to the transmission / reception node 110a.
  • the transmission / reception devices 126-1 to 126-3 generate optical signals to be transmitted to the transmission / reception node 110b. Further, the transmission / reception devices 113-1 to 113-6 receive the optical signals transmitted from the Add / Drop nodes 120-1 to 120-3, and acquire information included in the optical signals. The transmission / reception devices 125-1 to 125-3 receive the optical signal transmitted from the transmission / reception node 110a and acquire information included in the optical signal. The transmission / reception devices 126-1 to 126-3 receive the optical signal transmitted from the transmission / reception node 110b, and acquire information included in the optical signal.
  • the transmission / reception devices 113-1 to 113-3 In the transmission / reception node 110a, the transmission / reception devices 113-1 to 113-3 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the three optical signals generated by the transmission / reception devices 113-1 to 113-3 are inserted into the cores 201-1 to 203-1 of the MCF 200-1, respectively.
  • the transmission / reception devices 113-1 to 113-3 receive optical signals from the Add / Drop nodes 120-1 to 120-3 via the cores 201-1 to 203-1 of the MCF 200-1, respectively.
  • a fan-in / fan-out device is used to insert an optical signal into the MCF 200-1 and branch an optical signal from the MCF 200-1.
  • the transmission / reception devices 113-4 to 113-6 generate optical signals to be transmitted to the Add / Drop nodes 120-1 to 120-3, respectively.
  • the three optical signals generated by the transmission / reception devices 113-4 to 113-6 are inserted into the cores 201-4 to 203-4 of the MCF 200-4, respectively.
  • the transmission / reception devices 113-4 to 113-6 receive the optical signals from the Add / Drop nodes 120-1 to 120-3 via the cores 201-4 to 203-4 of the MCF 200-4, respectively.
  • a fan-in / fan-out device is used for the insertion of the optical signal into the MCF 200-4 and the branching of the optical signal from the MCF 200-4, similarly to the transmission / reception node 110a.
  • the connector 185-i is connected to the MCF 200-i and the MCF 200- (i + 1).
  • the connector 185-i branches an optical signal from the core 20i-i of the MCF 200-i and connects the branched optical signal to the transmission / reception device 125-i.
  • the connector 185-i inserts the optical signal generated by the transmission / reception device 125-i into the core 20i-i of the MCF 200-i.
  • the optical signal generated by the transmission / reception device 125-i is an optical signal transmitted from the Add / Drop node 120-i to the transmission / reception node 110a.
  • the connector 185-i branches an optical signal from the core 20i- (i + 1) of the MCF 200- (i + 1), and connects the branched optical signal to the transmission / reception device 126-i.
  • the connector 185-i inserts the optical signal generated by the transmission / reception device 126-i into the core 20i- (i + 1) of the MCF 200- (i + 1).
  • the optical signal generated by the transmission / reception device 126-i is an optical signal transmitted from the Add / Drop node 120-i to the transmission / reception node 110b.
  • the connector 185-i connects the core 20i-i and the core 20i- (i + 1) other than the core to be added / dropped out of the core of the MCF 200-i and the core of the MCF 200- (i + 1). Relay the optical signal.
  • the transmission / reception node 110a and the Add / Drop node 120-1 perform bidirectional communication using a communication path formed by the core 201-1.
  • the transmission / reception node 110a and the Add / Drop node 120-2 perform bidirectional communication using a communication path formed by the cores 202-1 and 202-2.
  • the transmission / reception node 110a and the Add / Drop node 120-3 perform bidirectional communication using a communication path formed by the cores 203-1, 203-2, and 203-3.
  • the transmission / reception node 110b and the Add / Drop node 120-1 perform bidirectional communication using a communication path formed by the cores 201-4, 201-3, and 201-2.
  • the transmission / reception node 110b and the Add / Drop node 120-2 perform bidirectional communication using a communication path formed by the cores 202-4 and 202-3.
  • the transmission / reception node 110b and the Add / Drop node 120-3 perform bidirectional communication using a communication path formed by the core 203-4.
  • the communication system 100D has a tree-type logical topology capable of communicating with each of the Add / Drop nodes 120-1 to 120-3 using the transmission / reception nodes 110a and 110b as root nodes.
  • the Add / Drop nodes 120-1 to 120-3 can communicate with the transmission / reception nodes 110a and 110b, respectively.
  • the Add / Drop nodes 120-1 to 120-3 use one of the communication paths with the two transmission / reception nodes 110a and 110b as an active system (system 0) and the other as a standby system (system 1). May be.
  • the Add / Drop nodes 120-1 to 120-3 may use a communication path with a short transmission distance as the 0 system and a communication path with a long transmission distance as the 1 system.
  • the transmission / reception node 110a and the transmission / reception node 110b may be connected using the MCF 200 or an MCF including four or more cores.
  • the communication system 100D when the roles of the transmission / reception nodes 110a and 110b and the Add / Drop nodes 120-1 to 120-3 are changed, connectors are attached to the transmission / reception nodes 110a and 110b, and the Add / Drop nodes 120-1 to 120-
  • the logical topology can be easily changed by replacing the connector 185 of 120-3 with another connector. Thereby, it is possible to flexibly cope with a change in the network configuration.
  • the four communication systems 100, 100A, 100C, and 100D have been described as communication systems to which the embodiment of the present invention can be applied.
  • each communication system the configuration using MCF for connection between nodes has been described.
  • the optical power feeding method described in each embodiment may be applied to a communication system in which SCF (Single Core Fiber) is used for one or a plurality of connections between nodes.
  • SCF Single Core Fiber
  • a conversion connector that connects the MCF and the plurality of SCFs, or a conversion connector that connects the connector and the plurality of SCFs is used.
  • FIG. 8 shows a first configuration example in which a plurality of SCFs 451, 452, and 453 are used as part of the connection between the Add / Drop node 120-1 and the Add / Drop node 120-2 in the communication system 100 shown in FIG. FIG. SCFs 451, 452, and 453 are used between the MCF 200-21 connected to the connector 150-1 and the MCF 200-22 connected to the connector 150-2.
  • Conversion connector 400-1 is used for connection between MCF200-21 and SCF451-453.
  • the conversion connector 400-1 connects the cores 201-21, 202-21, and 203-21 of the MCF 200-21 and the SCFs 451, 452, and 453, respectively.
  • a conversion connector 400-2 is used to connect the MCF 200-22 and the SCFs 451 to 453.
  • the conversion connector 400-2 connects the cores 201-22, 202-22, and 203-22 of the MCF 200-22 to the SCFs 451, 452, and 453, respectively.
  • the conversion connectors 400-1 and 400-2 have the same configuration as the fan-in device or fan-out device. By using the conversion connectors 400-1 and 400-2, the SCF can be used in a part of the connection between the nodes.
  • FIG. 9 is a block diagram showing a second configuration example in which a plurality of SCFs 451, 452, and 453 are used to connect the Add / Drop node 120-1 and the Add / Drop node 120-2 in the communication system 100 shown in FIG. FIG. SCFs 451, 452, and 453 are used to connect the connector 150-1 and the connector 150-2.
  • the configuration example shown in FIG. 9 is different from the configuration example shown in FIG. 8 in that the MCF is not used for the connection between the Add / Drop nodes 120-1 and 120-2.
  • the Add / Drop node 120-1 further includes a conversion connector 410-1. Conversion connector 410-1 is attached to Add / Drop node 120-2 side of connector 150-1.
  • the Add / Drop node 120-2 further includes a conversion connector 410-2. Conversion connector 410-2 is attached to Add / Drop node 120-1 side of connector 150-2.
  • the same number of SCFs 451 to 453 as the number of cores included in the MCF 200 are used for connection between the conversion connectors 410-1 and 410-2.
  • the conversion connector 410-1 connects the SCFs 451, 452, and 453 to the connector 150-1.
  • the connector 150-1 performs optical signal input / output with the conversion connector 410-1 instead of the MCF 200-2.
  • the connector 150-1 connects the cores 202-1 and 203-1 of the MCF 200-1 and the SCFs 452 and 453 via the conversion connector 410-1.
  • the conversion connector 410-1 inserts the optical signal generated by the transmission device 121-1 into the SCF 451 via the connector 150-1.
  • the conversion connector 410-2 connects the SCFs 451, 452, and 453 to the connector 150-2.
  • the connector 150-2 performs optical signal input / output with the conversion connector 410-2 instead of the MCF 200-2.
  • the connector 150-2 connects the SCFs 451 and 453 and the cores 201-3 and 203-3 of the MCF 200-3 via the conversion connector 410-2, respectively.
  • the connector 150-2 connects the optical signal branched from the SCF 453 to the receiving device 122-2 via the conversion connector 410-2.
  • the conversion connectors 410-1 and 410-2 have the same configuration as the fan-in device or fan-out device. By using conversion connectors 410-1 and 410-2, SCF can be used for connection between nodes.
  • SCF may be used for connection between nodes instead of MCF having two or more cores. Also in this case, a conversion connector is used similarly.
  • SCF may also be used for connections between other nodes.
  • the conversion connector 400 may be used for connection between one node, and the conversion connector 410 may be used for connection between other nodes.
  • the conversion connector 400 that connects the MCF and the SCF and the conversion connector 410 that connects to the connector 150 may be used in combination for connection between one node.
  • the conversion connector 400 may be used in the Add / Drop node 120-1 and the conversion connector 410 may be used in the Add / Drop node 120-2.
  • conversion between MCF and SCF may be performed a plurality of times.
  • MCF and SCF may be used in the order of MCF, SCF, MCF, SCF, and MCF.
  • a conversion connector is used between the MCF and the SCF.
  • the connector 150-1 and the conversion connector 410-1 described in FIG. 9 may be configured as one connector.
  • the connector 150-2 and the conversion connector 410-2 may be configured as one connector. That is, a connector connected to the MCF and the plurality of SCFs may perform optical signal ADD / Drop to the MCF or SCF, and may relay the optical signal between the MCF and the SCF.
  • the SCF may be used for one or a plurality of connections between nodes in the communication system 100 shown in FIG. 1 and other communication systems.
  • the first embodiment is a core occupation type optical power feeding system that uses a plurality of cores of an MCF (multi-core fiber) separately for communication and power feeding.
  • MCF multi-core fiber
  • FIG. 10 is a diagram illustrating a configuration example of the core occupation type optical power feeding system 500 according to the first embodiment.
  • the optical power supply system 500 includes a node 510a and a node 510b connected by the MCF 600.
  • the node 510a is, for example, a transmission / reception node or an Add / Drop node of a communication system to which this embodiment can be applied, or a relay node installed between nodes of a communication system to which this embodiment can be applied.
  • the node 510b is, for example, an Add / Drop node of a communication system to which this embodiment can be applied, or a relay node installed between nodes of a communication system to which this embodiment can be applied. It may be a node. In the figure, the case where the nodes 510a and 510b are Add / Drop nodes is shown. Note that the nodes 510a and 510b may be nodes constituting a communication system having a topology different from that of the communication system described above.
  • the figure shows a case where the node 510a is connected to another node adjacent in a different direction from the node 510b by the MCF 600, it may not be connected to another node.
  • the figure shows a case where the node 510b is connected to another node adjacent in a direction different from the node 510a by the MCF 600, it may not be connected to another node.
  • the MCF 600 that connects another node adjacent to the node 510b in a direction different from the node 510b and the node 510a is described as 600-xa.
  • the MCF 600 that connects the node 510a and the node 510b is referred to as MCF 600-ab.
  • An MCF 600 that connects another node adjacent to the node 510a in a different direction from the node 510b and the node 510b is described as 600-bx.
  • the MCF between the first nodes adjacent in the first direction is referred to as “MCF on the first direction side”.
  • the MCF between the second nodes adjacent in the second direction is described as “MCF on the second direction side”.
  • the second direction is a direction different from the first direction.
  • the “first direction side” and the “second direction side” indicate which MCF is the MCF when the MCF is connected to both sides of the node, and do not indicate the signal transmission direction. Absent.
  • the MCF 600 includes a plurality of signal transmission cores 601 and one optical power feeding core 602.
  • the signal transmission core 601 transmits an optical signal which is light for communication signal transmission.
  • the optical power feeding core 602 transmits power feeding laser light that is power feeding light.
  • the wavelength of the optical signal and the power supply laser beam may be the same or different.
  • the node 510a includes an MCF connector 710 (core connection unit), a power supply laser 720, and a transmission side power supply connector 730 (power supply optical connection unit).
  • the MCF connector 710 included in the node 510a is referred to as an MCF connector 710a.
  • the MCF connector 710a branches the optical signal transmitted from the MCF 600-xa or the transmission power supply connector 730 by the signal transmission core 601 assigned to the own node. Further, the MCF connector 710a inserts the optical signal transmitted by the signal transmission core 601 assigned to the destination node into the MCF 600-xa or the transmission power feeding connector 730. The MCF connector 710a relays the optical signal transmitted by the signal transmission core 601 that does not perform Add / Drop at its own node between the MCF 600-xa and the transmission-side power supply connector 730. Further, the MCF connector 710a relays the power supply laser beam inserted by the transmission-side power supply connector 730 to the optical power supply core 602 of the MCF 600-xa. When the node 510a is a relay node, the MCF connector 710a relays all the optical signals transmitted by the signal transmission core 601.
  • the power feeding laser 720 inputs the power feeding laser light to the transmission power feeding connector 730.
  • the transmission-side power supply connector 730 connects the power supply laser beam output from the power supply laser 720 to the optical power supply core 602 of the MCF 600-ab.
  • the wavelength of the power supply laser beam may or may not be included in the wavelength band of the optical signal.
  • the transmission-side power supply connector 730 may further connect a power supply laser beam transmitted by the optical power supply core 602 of the MCF 600-xa to the MCF connector 710a.
  • the node 510a may include a plurality of power supply lasers 720.
  • the transmission power supply connector 730 relays an optical signal between the MCF connector 710a and the signal transmission core 601 of the MCF 600-ab.
  • the node 510b includes an MCF connector 710, a receiving-side power feeding connector 740 (power feeding light branching unit), a photoelectric conversion unit 750, and a power feeding target facility 760.
  • the MCF connector 710 included in the node 510b is referred to as an MCF connector 710b.
  • the MCF connector 710b branches the optical signal transmitted from the MCF 600-bx or the receiving-side power feeding connector 740 by the signal transmission core 601 assigned to the own node. Further, the MCF connector 710b inserts an optical signal transmitted by the signal transmission core 601 assigned for transmission from the own node to the destination node into the MCF 600-bx or the receiving-side power feeding connector 740. The MCF connector 710b relays the optical signal transmitted by the signal transmission core 601 that does not perform Add / Drop at its own node between the reception-side power supply connector 740 and the MCF 600-bx.
  • the MCF connector 710 b relays the power supply laser light from the optical power supply core 602 of the MCF 600 -bx to the reception-side power supply connector 740.
  • the node 510b is a relay node
  • the MCF connector 710b relays all the optical signals transmitted by the signal transmission core 601.
  • the reception-side power supply connector 740 branches the power supply laser beam transmitted by the optical power supply core 602 of the MCF 600-ab and connects the power supply laser beam to the photoelectric conversion unit 750. Further, the reception-side power supply connector 740 branches the power supply laser light transmitted from the optical power supply core 602 of the MCF 600-bx from the MCF connector 710b and connects the power supply laser light to the photoelectric conversion unit 750. Good.
  • the node 510b may include a plurality of photoelectric conversion units 750.
  • the reception-side power supply connector 740 relays an optical signal between the MCF connector 710b and the signal transmission core 601 of the MCF 600-ab.
  • the photoelectric conversion unit 750 converts the input power supply laser beam into electricity, and supplies the electricity obtained by the conversion to the power supply target facility 760.
  • the power supply target facility 760 operates with the power supplied from the photoelectric conversion unit 750.
  • the power supply target facility 760 is, for example, a sensor or a transmission device, but is not limited thereto.
  • an optical signal including output data indicating a detection result obtained by the sensor is input to the MCF connector 710b, and the output data is transmitted to the destination node.
  • this transmission device includes an MCF connector 710b, a receiving-side power supply connector 740, a device for transmitting / receiving an optical signal to / from the MCF connector 710b, and the like. Some or all of the transmission devices may be used.
  • the MCF connector 710a and the transmission-side power supply connector 730 may be an integrated connector that satisfies both functions.
  • the MCF connector 710b and the receiving-side power supply connector 740 may be an integrated connector that satisfies both functions.
  • the transmission-side power supply connector 730 may have a configuration in which a power supply laser 720 is incorporated. In that case, electricity for driving the power supply laser is input to the transmission power supply connector 730 instead of the optical input of the power supply laser light.
  • a power supply laser 720 incorporated in the transmission-side power supply connector 730 converts input electricity into power supply laser light.
  • the receiving-side power feeding connector 740 may have a configuration in which the photoelectric conversion unit 750 is incorporated. In that case, the receiving-side power supply connector 740 outputs the electricity converted from the power supply laser beam by the photoelectric conversion unit 750.
  • FIG. 11 is a cross-sectional view of MCF600.
  • the cross section of MCF600 is circular.
  • the cross-sectional shape of the MCF 600 may be other than circular.
  • a plurality of cores are arranged at equal intervals on a concentric circle, but the arrangement of the cores may be arbitrary.
  • n (n is an integer of 1 or more) are signal transmission cores 601 and one is an optical power feeding core 602.
  • the signal transmission core 601 and the optical power supply core 602 are arranged vertically as shown in the right diagram of FIG. 11 in the arrangement order of the signal transmission core 601 and the optical power supply core 602 in the MCF 600. It does not represent.
  • description of a part of the signal transmission cores 601 that are not used is omitted, and the signal transmission cores 601 that are used are extracted and described.
  • the optical power feeding core 602 may be the same core as the signal transmission core 601 or may be a core specialized in optical power feeding, such as a core capable of high power transmission.
  • a core specialized in optical power feeding is a core configured to transmit light of higher power with low loss, for example, by increasing the core diameter.
  • the effective area of the optical power feeding core 602 may be larger than the effective area of the signal transmission core 601. In order to increase the effective area, a known technique such as increasing the core diameter of the optical power feeding core 602 or having a trench-type refractive index distribution may be applied.
  • FIG. 12 is a diagram illustrating a configuration example of the transmission-side power feeding connector 730.
  • the transmission-side power supply connector 730 shown in the figure supplies power supply laser light to both the MCF 600 connected to the first direction side and the MCF 600 connected to the second direction side.
  • the transmission-side power supply connector 730 includes n signal transmission lines 731 and two power supply transmission lines 732.
  • As the signal transmission line 731 and the power supply transmission line 732 as shown in FIGS. 2A, 2B, 3A, 3B, 4A, and 4B, a thin fiber, an optical waveguide, an optical system, or the like is used. it can.
  • the transmission-side power supply connector 730 is connected between the signal transmission core 601 of the MCF 600 connected to the first direction side and the signal transmission core 601 of the MCF 600 connected to the second direction side by the signal transmission path 731. Relay optical signals between them.
  • the signal transmission path 731 is connected to the signal transmission core 601 directly or via the MCF connector 710a.
  • the transmission-side power supply connector 730 is connected to the optical power supply core 602 of the MCF 600 connected to the first direction side or the optical power supply core 602 of the MCF 600 connected to the second direction side by the power transmission line 732.
  • the power supply laser beam output from the power supply laser 720 is connected.
  • the power feeding transmission line 732 is connected to the optical power feeding core 602 directly or via the MCF connector 710a.
  • the transmission-side power supply connector 730 may connect the power supply laser beam only to the first direction side or only to the second direction side. In that case, the transmission-side power supply connector 730 may have a configuration in which the power supply transmission line 732 is provided only on the first direction side or only on the second direction side.
  • FIG. 13 is a diagram illustrating a configuration example of the receiving-side power feeding connector 740.
  • the receiving-side power supply connector 740 shown in the figure branches the power supply laser light from both the MCF 600 connected to the first direction side and the MCF 600 connected to the second direction side.
  • the reception-side power supply connector 740 includes n signal transmission lines 741 and two power supply transmission lines 742.
  • As the signal transmission line 741 and the power supply transmission line 742 as shown in FIGS. 2A, 2B, 3A, 3B, 4A, and 4B, a thin fiber, an optical waveguide, an optical system, or the like is used. it can.
  • the receiving-side power supply connector 740 is connected between the signal transmission core 601 of the MCF 600 connected to the first direction side and the signal transmission core 601 of the MCF 600 connected to the second direction side by the signal transmission path 741. Relay optical signals between them.
  • the signal transmission path 741 is connected to the signal transmission core 601 of the MCF 600 directly or via the MCF connector 710b.
  • the reception-side power supply connector 740 receives the power supply laser light transmitted by the optical power supply core 602 of the MCF 600 connected to the first direction side or the optical power supply core 602 of the MCF 600 connected to the second direction side. Branch.
  • the receiving-side power feeding connector 740 connects the power feeding laser beam to the photoelectric conversion unit 750 through the power feeding transmission path 742.
  • the power feeding transmission line 742 is connected to the optical power feeding core 602 directly or via the MCF connector 710b.
  • the receiving-side power supply connector 740 may branch the power supply laser light from only the optical power supply core 602 on the first direction side or only from the optical power supply core 602 on the second direction side.
  • the receiving-side power feeding connector 740 may have a configuration in which the power feeding transmission line 742 is provided only on the first direction side or only on the second direction side.
  • the transmission-side power supply connector 730 of the node 510a connects the power supply laser beam output from the power supply laser 720 to the optical power supply core 602 of the MCF 600-ab.
  • the reception-side power supply connector 740 of the node 510b branches the power supply laser light from the optical power supply core 602 of the MCF 600-ab and connects the power supply laser light to the photoelectric conversion unit 750.
  • the photoelectric conversion unit 750 converts the power supply laser beam into electricity and supplies the electricity to the power supply target facility 760.
  • the signal transmission core 601 of the MCF 600 transmits an optical signal independently of the transmission of the power supply laser beam.
  • the MCF connectors 710a and 710b branch the optical signal transmitted by the signal transmission core 601 assigned to the own node.
  • the MCF connectors 710a and 710b insert the optical signal assigned to the destination node into the signal transmission core 601.
  • the MCF connectors 710a and 710b relay the optical signal transmitted by the other signal transmission core 601.
  • FIG. 14 is a diagram illustrating a configuration example of the optical power feeding system 501 in which the node 510c is installed between the node 510a and the node 510b.
  • the node 510a and the node 510c and the node 510c and the node 510b are connected by the MCF 600, respectively.
  • the MCF 600 that connects the node 510a and the node 510c will be referred to as MCF 600-ac.
  • the MCF 600 that connects the node 510c and the node 510b is referred to as MCF 600-cb.
  • the node 510c is, for example, a transmission / reception node or an Add / Drop node of the communication system described above, or a relay node installed between the nodes of the communication system described above. In the figure, a case where the node 510c is a relay node is shown as an example.
  • the node 510c includes an MCF connector 710c.
  • the MCF connector 710c branches the optical signal transmitted by the signal transmission core 601 assigned to the own node.
  • the MCF connector 710c inserts an optical signal into the signal transmission core 601 assigned for transmission from its own node to the destination node.
  • the connector 710c relays the optical signal of the other signal transmission core 601. Further, the MCF connector 710c relays the power supply laser beam from the optical power supply core 602 of the MCF600-ac to the optical power supply core 602 of the MCF600-cb.
  • the MCF connector 710c only relays an optical signal and a power supply laser beam.
  • the operations of the nodes 510a and 510b are the same as the operations of the nodes 510a and 510b of the optical power feeding system 500.
  • FIG. 15 is a diagram illustrating a configuration example of the optical power feeding system 502 in which the node 510d is installed between the node 510a and the node 510b.
  • the same parts as those in the optical power feeding system 500 shown in FIG. The node 510a and the node 510d and the node 510b and the node 510d are connected by the MCF 600, respectively.
  • the MCF 600 that connects the node 510a and the node 510d is referred to as MCF 600-ad.
  • the MCF 600 between the node 510d and the node 510b is referred to as MCF600-db.
  • the node 510d is, for example, a transmission / reception node or an Add / Drop node of the communication system described above, or a relay node installed between nodes of the communication system described above. In the figure, a case where the node 510d is a relay node is shown as an example.
  • the node 510d includes an MCF connector 710d.
  • the MCF connector 710d performs the same processing as the MCF connector 710c.
  • the position of the signal transmission core 601 and the position of the optical power feeding core 602 corresponding to each node are different between the MCF 600-ad and the MCF 600-db. Therefore, in the MCF connector 710d, between the MCF 600-ad and the MCF 600-db, the signal transmission cores 601 assigned to the same destination node and destination node are connected to each other, and the optical power feeding cores 602 are connected to each other. To relay.
  • FIG. 16 is a diagram illustrating a configuration example of an optical power feeding system 503 using a plurality of optical power feeding cores.
  • the optical power feeding system 503 includes a node 510a and a node 510b connected by the MCF 610.
  • the MCF 610 includes one or more signal transmission cores 601 and a plurality of optical power feeding cores 602.
  • the MCF 610 connecting the node 510a with another node adjacent in a direction different from the node 510b is described as 610-xa.
  • the MCF 610 that connects the node 510a and the node 510b is referred to as MCF 610-ab.
  • An MCF 610 that connects another node adjacent to the node 510a in a direction different from the node 510a and the node 510b is described as 610-bx.
  • the optical power that can be transmitted by the optical power feeding core 602 has an upper limit.
  • the optical power feeding core may be physically destroyed by a phenomenon called a fiber fuse.
  • a fiber fuse For this reason, when supplying a laser beam for power supply having an optical power exceeding the upper limit of one core, it is necessary to use a plurality of cores for optical power supply. It is known that the optical power that can be transmitted safely when using a general SMF (single mode fiber) is about 1 W.
  • the node 510a includes a transmission-side power supply connector 830 instead of the transmission-side power supply connector 730 shown in FIG.
  • the transmission power supply connector 830 connects the power supply laser beam output from the power supply laser 720 to the optical power supply core 602 of the MCF 610-ab or the MCF connector 710a.
  • the transmission-side power supply connector 830 connects the power supply laser beam to the two optical power supply cores 602 of the MCF 610-ab, and supplies power transmitted by the single optical power supply core 602 of the MCF 610-xa.
  • the laser beam for use is connected to the MCF connector 710a.
  • the node 510a may include a plurality of power supply lasers 720.
  • the transmission-side power supply connector 830 may connect the power supply laser beam only to the plurality of optical power supply cores 602 of the MCF 610-ab. Further, the transmission power supply connector 830 relays an optical signal between the MCF connector 710a and the signal transmission core 601 of the MCF 610-ab.
  • the node 510b includes a reception-side power supply connector 840 instead of the reception-side power supply connector 740 shown in FIG.
  • the reception-side power supply connector 840 branches the power supply laser light transmitted by the plurality of optical power supply cores 602 of the MCF 610-ab and connects the power supply laser light to the photoelectric conversion unit 750.
  • the receiving-side power supply connector 840 further branches the power supply laser light transmitted from the optical power supply core 602 of the MCF 610-bx from the MCF connector 710b and connects the power supply laser light to the photoelectric conversion unit 750.
  • the node 510b may include a plurality of photoelectric conversion units 750.
  • the reception-side power supply connector 840 relays an optical signal between the signal transmission core 601 of the MCF 610-ab and the MCF connector 710b.
  • the MCF connector 710a and the transmission-side power supply connector 830 may be an integrated connector that satisfies both functions.
  • the MCF connector 710b and the receiving-side power supply connector 840 may be an integrated connector that satisfies both functions.
  • the transmission-side power supply connector 830 may have a configuration in which a power supply laser 720 is incorporated. In that case, electrical input is performed to the transmission-side power supply connector 830 instead of optical input of power supply laser light.
  • the power supply laser 720 incorporated in the transmission-side power supply connector 830 converts input electricity into power supply laser light.
  • the receiving-side power supply connector 840 may include a photoelectric conversion unit 750. In that case, the reception-side power supply connector 840 outputs the electricity converted by the photoelectric conversion unit 750 from the power supply laser beam.
  • the number of optical power supply cores 602 does not need to match the number of power supply lasers 720 or the number of photoelectric conversion units 750.
  • the power supply laser 720 and the photoelectric conversion unit 750 can be prepared for each optical power supply core 602, the apparatus cost can be reduced or the occupied space can be reduced by integrating them.
  • FIG. 17 is a cross-sectional view of an MCF 610 including a plurality of optical power feeding cores 602. As shown in the left figure of FIG. 17, the cross section of MCF610 is circular. A plurality of cores are arranged concentrically inside the MCF 610. Among the plurality of cores, n (n is an integer of 1 or more) are signal transmission cores 601, and m (m is an integer of 2 or more) are optical power feeding cores 602. The arrangement of the signal transmission core 601 and the optical power feeding core 602 may be arbitrary. The arrangement order when the signal transmission core 601 and the optical power supply core 602 are vertically arranged as shown in the right diagram of FIG. 17 does not necessarily indicate the arrangement of the signal transmission core 601 and the optical power supply core 602 in the MCF 610. It is not a thing.
  • FIG. 18 is a diagram illustrating a configuration example of the transmission-side power supply connector 830.
  • the transmission-side power supply connector 830 shown in the figure supplies power supply laser light to both the MCF 600 connected to the first direction side and the MCF 600 connected to the second direction side.
  • the transmission-side power supply connector 830 includes n signal transmission lines 831 and 2m power supply transmission lines 832.
  • As the signal transmission line 831 and the power supply transmission line 832 as shown in FIGS. 2A, 2B, 3A, 3B, 4A, and 4B, a thin fiber, an optical waveguide, an optical system, or the like is used. it can.
  • the transmission-side power supply connector 830 is connected between the signal transmission core 601 of the MCF 600 connected to the first direction side and the signal transmission core 601 of the MCF 600 connected to the second direction side by the signal transmission path 831. Relay optical signals between them.
  • the signal transmission path 831 is connected to the signal transmission core 601 directly or via the MCF connector 710a.
  • the transmission-side power supply connector 830 is connected to the optical power supply core 602 of the MCF 600 connected to the first direction side or the optical power supply core 602 of the MCF 600 connected to the second direction side by the power transmission line 832.
  • the power supply laser beam output from the power supply laser 720 is connected.
  • the power feeding transmission line 832 is connected to the optical power feeding core 602 directly or via the MCF connector 710a.
  • the transmission-side power supply connector 830 may connect the power supply laser beam only to the first direction side or only to the second direction side. Further, the number of the optical power feeding cores 602 on the first direction side may be different from the number of the optical power feeding cores 602 on the second direction side. Further, the transmission-side power supply connector 830 optically inputs the power supply laser beams output from the plurality of power supply lasers 720 by the number of cores of the optical power supply core 602 (the number of power supply transmission lines 832). Good. In this case, the transmission-side power supply connector 830 may input the power supply laser beams after being combined, and may demultiplex them inside the transmission-side power supply connector 830.
  • FIG. 19 is a diagram illustrating a configuration example of the receiving-side power feeding connector 840.
  • the reception-side power supply connector 840 shown in FIG. 2 branches the power supply laser light from both the MCF 600 connected to the first direction side and the MCF 600 connected to the second direction side.
  • the reception-side power supply connector 840 includes n signal transmission lines 841 and 2m power supply transmission lines 842.
  • As the signal transmission line 841 and the power supply transmission line 842 as shown in FIGS. 2A, 2B, 3A, 3B, 4A, and 4B, a thin fiber, an optical waveguide, an optical system, or the like is used. it can.
  • the reception-side power supply connector 840 is connected between the signal transmission core 601 of the MCF 600 connected to the first direction side and the signal transmission core 601 of the MCF 600 connected to the second direction side by the signal transmission path 841. Relay optical signals between them.
  • Each of the signal transmission paths 841 is connected to the signal transmission core 601 of the MCF 610 directly or via the MCF connector 710b.
  • the receiving-side power supply connector 840 receives the power supply laser light transmitted from the optical power supply core 602 of the MCF 600 connected to the first direction side or the optical power supply core 602 of the MCF 600 connected to the second direction side. Branch.
  • the reception-side power supply connector 840 connects the power supply laser beam to the photoelectric conversion unit 750 through the power transmission path 842.
  • the power feeding transmission line 842 is connected to the optical power feeding core 602 directly or via the MCF connector 710b.
  • the reception-side power supply connector 840 may branch the power supply laser light from only the optical power supply core 602 on the first direction side or only from the optical power supply core 602 on the second direction side. . Further, the number of the optical power feeding cores 602 on the first direction side may be different from the number of the optical power feeding cores 602 on the second direction side. Further, the reception-side power supply connector 840 may optically output the power supply laser beams branched from the plurality of optical power supply cores 602 by the number of optical power supply cores 602. When the receiving-side power supply connector 840 optically outputs power supply laser beams for the number of cores, the reception-side power supply connector 840 combines the power supply laser beams for the number of cores and combines them. Light may be output.
  • the transmission-side power supply connector 830 of the node 510a connects the power supply laser beam output from the power supply laser 720 to the plurality of optical power supply cores 602 and the MCF connector 710a of the MCF 610-ab.
  • the receiving-side power supply connector 840 of the node 510b branches the power supply laser light from the plurality of optical power supply cores 602 of the MCF 610-ab, and connects the power supply laser light to the photoelectric conversion unit 750.
  • the photoelectric conversion unit 750 converts the power supply laser beam into electricity and supplies the electricity to the power supply target facility 760.
  • the MCF connector 710a of the node 510a relays the power supply laser beam inserted from the transmission-side power supply connector 830 to the optical power supply core 602 of the MCF 610-xa. Independent of the transmission of the power supply laser beam, the signal transmission core 601 of the MCF 610 transmits an optical signal.
  • the MCF connectors 710a and 710b branch the optical signal transmitted by the signal transmission core 601 assigned to the own node.
  • the MCF connectors 710a and 710b insert the optical signal assigned to the destination node into the signal transmission core 601.
  • the MCF connectors 710a and 710b relay the optical signal of the other signal transmission core 601.
  • the power supply source node for the power supply destination node of one node may be one node or a plurality of nodes. It is also possible to perform optical power supply from one optical power supply source node to one or a plurality of power supply destination nodes where the optical power supply target facility 760 is located.
  • the receiving-side power supply connector 740 of each node 510b branches only a part of the power supply laser light transmitted by the optical power supply core 602. Then, the remaining power supply laser light may be relayed to the next node 510b side. As a result, it is possible to supply power to a plurality of nodes with the power supply laser beam supplied from one node.
  • FIG. 20 is a diagram illustrating a configuration example of an optical power feeding system 504 in which power supply destination nodes are arranged in series.
  • a node 510a and a plurality of nodes 510b are arranged in series.
  • a case where the node 510a and two nodes 510b are arranged in series is shown as an example, but three or more nodes 510b may be arranged.
  • Each node is connected by the MCF 600.
  • the node 510b includes a reception-side power supply connector 850 shown in FIG. 21 instead of the reception-side power supply connector 740 shown in FIG.
  • FIG. 21 is a diagram illustrating a configuration example of the receiving-side power feeding connector 850.
  • the reception-side power supply connector 850 includes a plurality of signal transmission paths 851 and one power transmission path 852.
  • the receiving-side power supply connector 850 is connected between the signal transmission core 601 of the MCF 600 connected to the first direction side and the signal transmission core 601 of the MCF 600 connected to the second direction side by the signal transmission path 851. Relay optical signals between them.
  • the signal transmission path 851 is connected to the signal transmission core 601 of the MCF 600 directly or via the MCF connector 710b.
  • the reception-side power supply connector 850 branches a part of the power supply laser beam transmitted from the optical power supply core 602 of the MCF 600 connected to the first direction side by the power supply transmission line 852 and branches the power supply for branching. Laser light is connected to the photoelectric conversion unit 750.
  • the receiving-side power supply connector 850 connects the remaining power supply laser light to the optical power supply core 602 of the MCF 600 connected in the second direction.
  • the power feeding transmission line 852 is connected to the optical power feeding core 602 of the MCF 600 directly or via the MCF connector 710b.
  • the operation of the node 510a of the optical power supply system 504 is the same as the operation of the node 510a of the optical power supply system 501.
  • the receiving-side power supply connector 850 provided in the node 510b adjacent to the node 510a branches a part of the power supply laser light from the MCF 600 between the node 510a and the node 510b, and photoelectrically converts a part of the power supply laser light. Connect to the converter 750.
  • the receiving power supply connector 850 relays the remaining power supply laser light to the MCF connector 710b.
  • the MCF connector 710b connects the power supply laser beam input from the reception-side power supply connector 850 to the optical power supply core 602 of the MCF 600 that connects the nodes 510b and 510b, and relays the power supply laser beam.
  • the other nodes 510b operate similarly.
  • the operation related to the optical signal is the same as that of the optical power feeding system 501.
  • the case where one optical power feeding core is used has been described.
  • each optical power feeding core is assigned to each node for optical power feeding. May be implemented.
  • the receiving-side power supply connector 850 connects the power supply laser beam transmitted by the optical power supply core assigned to the own node to the photoelectric conversion unit 750 of the own node.
  • the receiving-side power supply connector 850 relays the power supply laser beam transmitted by the optical power supply core assigned to other than the own node to the MCF connector 710b.
  • the present embodiment is a shared-core optical power supply system that transmits a communication optical signal and power supply light in the same core of the MCF.
  • FIG. 22 is a diagram illustrating a configuration example of the core sharing type optical power feeding system 520 according to the present embodiment.
  • the optical power feeding system 520 includes a node 530a and a node 530b connected by the MCF 620.
  • the node 530a is, for example, a transmission / reception node or an Add / Drop node of a communication system to which this embodiment can be applied, or a relay node installed between nodes of a communication system to which this embodiment can be applied.
  • the node 530b is, for example, an Add / Drop node of a communication system to which this embodiment can be applied, or a relay node installed between nodes of a communication system to which this embodiment can be applied. It may be a node. In the figure, a case where the node 530a and the node 530b are Add / Drop nodes is shown.
  • the node 530a and the node 530b may be nodes constituting a communication system having a topology different from the communication system described above.
  • the figure shows a case where the node 530a is connected to another node adjacent in a different direction from the node 530b by the MCF 620, it may not be connected to another node.
  • the node 530b is connected to another node adjacent in a direction different from that of the node 530a by the MCF 620 in the figure, it may not be connected to another node.
  • the MCF 620 that connects the node 530a with another node adjacent in a direction different from the node 530b is referred to as 620-xa.
  • the MCF 620 that connects the node 530a and the node 530b is referred to as MCF 620-ab.
  • An MCF 620 that connects another node adjacent to the node 530a in a different direction and the node 530b is referred to as 620-bx.
  • the MCF 620 includes j signal transmission cores 601 and k shared cores 603 (j + k ⁇ 1, j is an integer of 0 or more, and k is an integer of 1 or more).
  • the shared core 603 can be used as the signal transmission core 601. Therefore, the signal transmission core 601 may be realized by the shared core 603, and the MCF 620 may have only the shared core 603.
  • the shared core 603 transmits an optical signal for communication and a laser beam for power supply. The wavelength of the power supply laser beam is different from the wavelength of the optical signal.
  • the node 530a includes an MCF connector 910 (core connection unit), a power supply laser 720, and a transmission-side power supply connector 930.
  • the MCF connector 910 included in the node 530a is referred to as an MCF connector 910a.
  • the MCF connector 910a branches the optical signal transmitted from the MCF 620-xa or the transmission power supply connector 930 by the signal transmission core 601 or the shared core 603 assigned to the own node. Further, the MCF connector 910a inserts the optical signal transmitted by the signal transmission core 601 or the shared core 603 assigned to the destination node into the MCF 620-xa or the transmission side power supply connector 930. The MCF connector 910a relays the optical signal transmitted by the signal transmission core 601 or the shared core 603 that does not perform Add / Drop in the own node between the MCF 620-xa and the transmission-side power supply connector 930.
  • the MCF connector 910a relays the power supply laser beam input from the transmission-side power supply connector 930 to the shared core 603 of the MCF 620-xa.
  • the node 530a is a relay node
  • the MCF connector 910a relays all optical signals and power supply laser light.
  • the transmission-side power supply connector 930 connects the power supply laser beam output from the power supply laser 720 to the shared core 603 of the MCF 620-ab.
  • the transmission-side power supply connector 930 may connect the power supply laser beam transmitted by the shared core 603 of the MCF 620-xa to the MCF connector 910a.
  • the node 530a may include a plurality of power supply lasers 720.
  • the transmission power supply connector 930 relays an optical signal between the MCF connector 910a and the signal transmission core 601 and the shared core 603 of the MCF 620-ab.
  • the node 530b includes an MCF connector 910, a receiving-side power feeding connector 940, a photoelectric conversion unit 750, and a power supply target facility 760.
  • the MCF connector 910 included in the node 530b is referred to as an MCF connector 910b.
  • the MCF connector 910b branches the optical signal transmitted from the MCF 620-bx or the receiving power supply connector 940 by the signal transmission core 601 or the shared core 603 assigned to the own node. Further, the MCF connector 910b inserts an optical signal transmitted by the signal transmission core 601 or the shared core 603 assigned to the destination node into the MCF 620-bx or the reception-side power supply connector 940. The MCF connector 910b relays the optical signal transmitted by the signal transmission core 601 or the shared core 603 that does not perform Add / Drop in its own node between the reception-side power supply connector 940 and the MCF 620-bx.
  • the MCF connector 910b connects the power supply laser beam input from the shared core 603 of the MCF 620-bx to the reception-side power supply connector 940 and relays the power supply laser beam.
  • the node 530b is a relay node
  • the MCF connector 910b relays all the optical signals transmitted by the signal transmission core 601 or the shared core 603.
  • the reception-side power supply connector 940 branches the power supply laser beam transmitted by the shared core 603 of the MCF 620-ab by wavelength separation and connects it to the photoelectric conversion unit 750.
  • the receiving-side power supply connector 940 may further branch the power supply laser beam transmitted by the shared core 603 of the MCF 620-bx from the MCF connector 910b by wavelength separation and connect it to the photoelectric conversion unit 750.
  • the node 530b may include a plurality of photoelectric conversion units 750.
  • the receiving-side power supply connector 940 relays an optical signal between the MCF connector 910b and the signal transmission core 601 and the shared core 603 of the MCF 620-ab.
  • the MCF connector 910a and the transmission-side power supply connector 930 may be an integrated connector that satisfies both functions.
  • the MCF connector 910b and the receiving-side power supply connector 940 may be an integrated connector that satisfies both functions.
  • the transmission-side power supply connector 930 may have a configuration in which a power supply laser 720 is incorporated. In that case, electrical input is performed to the transmission-side power supply connector 930 instead of optical input of power supply laser light.
  • the power supply laser 720 incorporated in the transmission-side power supply connector 930 converts the input electricity into power supply laser light.
  • the receiving-side power supply connector 940 may have a configuration in which the photoelectric conversion unit 750 is incorporated. In that case, the receiving-side power supply connector 940 outputs the electricity converted by the photoelectric conversion unit 750 from the power supply laser beam.
  • FIG. 23 is a cross-sectional view of the MCF 620.
  • the cross section of the MCF 620 is circular. Note that the cross-sectional shape of the MCF 620 may be other than a circle.
  • a plurality of cores are arranged at equal intervals on a concentric circle, but the arrangement of the cores may be arbitrary.
  • n is an integer of 0 or more
  • m is an integer of 1 or more
  • the arrangement order when the signal transmission core 601 and the shared core 603 are arranged vertically as shown in the right diagram of FIG. 23 does not necessarily represent the arrangement of the signal transmission core 601 and the shared core 603 in the MCF 620. Also, of the n signal transmission cores 601, description of a part of the signal transmission cores 601 that are not used is omitted, and the signal transmission cores 601 that are used are extracted and described.
  • FIG. 24 is a diagram illustrating a configuration example of the transmission-side power feeding connector 930.
  • the transmission-side power supply connector 930 shown in FIG. 3 supplies power supply laser light to both the MCF 600 connected to the first direction side and the MCF 600 connected to the second direction side.
  • the transmission-side power feeding connector 930 includes n signal transmission lines 931, m shared transmission lines 932, and 2m optical coupling units 933.
  • As the signal transmission line 931 and the shared transmission line 932 as shown in FIGS. 2A, 2B, 3A, 3B, 4A, and 4B, a thin fiber, an optical waveguide, an optical system, or the like can be used. .
  • the transmission-side power supply connector 930 is connected between the signal transmission core 601 of the MCF 600 connected to the first direction side and the signal transmission core 601 of the MCF 600 connected to the second direction side by the signal transmission path 931. Relay optical signals between them.
  • the signal transmission path 931 is connected to the signal transmission core 601 directly or via the MCF connector 910a.
  • the transmission-side power feeding connector 930 transmits an optical signal between the shared core 603 of the MCF 600 connected to the first direction side and the shared core 603 of the MCF 600 connected to the second direction side by the shared transmission path 932.
  • One optical coupling unit 933 is arranged on each of the first direction side and the second direction side of each shared transmission path 932.
  • the optical coupling unit 933 installed on the first direction side couples the power supply laser beam output from the power supply laser 720 to the optical signal in the first direction relayed by the shared transmission path 932.
  • the optical coupling unit 933 installed on the second direction side couples the power supply laser beam output from the power supply laser 720 to the optical signal in the second direction relayed by the shared transmission path 932.
  • the optical coupling unit 933 combines the power supply laser beam only with the optical signal transmitted by the shared core 603 on the first direction side or only on the optical signal transmitted by the shared core 603 on the second direction side. May be. In this case, only one optical coupling unit 933 may be disposed on the shared transmission line 932.
  • a waveguide coupling or a circulator is used for the optical coupling unit 933 disposed in each of the first direction and the second direction may be an integrated optical coupling unit having both functions.
  • FIG. 25 is a diagram illustrating a configuration example of the receiving-side power feeding connector 940.
  • the receiving-side power supply connector 940 shown in the figure branches the power supply laser light from both the MCF 600 connected to the first direction side and the MCF 600 connected to the second direction side.
  • the reception-side power supply connector 940 includes n signal transmission lines 941, m shared transmission lines 942, and 2m wavelength extraction function units 943. As the signal transmission line 941 and the shared transmission line 942, as shown in FIG. 2A, FIG. 2B, FIG. 3A, FIG. 3B, FIG. .
  • the receiving-side power supply connector 940 is connected between the signal transmission core 601 of the MCF 600 connected to the first direction side and the signal transmission core 601 of the MCF 600 connected to the second direction side by the signal transmission path 941. Relay optical signals between them.
  • Each of the signal transmission paths 941 is connected to the signal transmission core 601 of the MCF 620 directly or via the MCF connector 910b.
  • the receiving-side power feeding connector 940 transmits an optical signal between the shared core 603 of the MCF 600 connected to the first direction side and the shared core 603 of the MCF 600 connected to the second direction side by the shared transmission line 942.
  • One wavelength extraction function unit 943 is arranged on each of the first direction side and the second direction side of each shared transmission line 932.
  • the wavelength extraction function unit 943 installed on the first direction side extracts power supply laser light by wavelength separation from the optical signal and power supply laser light transmitted in the second direction on the shared transmission line 942.
  • the wavelength extraction function unit 943 connects the extracted power supply laser beam to the photoelectric conversion unit 750 and relays the optical signal in the second direction as it is.
  • the wavelength extraction function unit 943 installed on the second direction side extracts power supply laser light by wavelength separation from the optical signal and power supply laser light transmitted in the first direction on the shared transmission line 942.
  • the wavelength extraction function unit 943 connects the extracted power supply laser beam to the photoelectric conversion unit 750 and relays the optical signal as it is in the first direction.
  • wavelength extraction function unit 943 for example, an AWG (arrayed waveguide grating), a circulator, and an FBG (fiber Bragg grating) are used. Note that the wavelength extraction function unit 943 arranged on each of the first direction side and the second direction side may be an integrated wavelength extraction function unit having both functions.
  • the MCF connector 910a of the node 530a relays the optical signal received from the signal transmission core 601 of the MCF 620-xa to the signal transmission path 931 of the transmission power feeding connector 930.
  • the MCF connector 910a relays the optical signal from the signal transmission path 931 of the transmission power supply connector 930 to the signal transmission core 601 of the MCF 620-xa.
  • the MCF connector 910 a inserts the optical signal destined for the node 530 b into the shared transmission path 932 of the transmission-side power feeding connector 930.
  • the MCF connector 910a transmits the optical signal transmitted by the shared core 603 of the MCF 620-xa to the transmission power feeding connector 930. Relay to shared transmission line 932.
  • the transmission-side power supply connector 930 relays the optical signal connected to the signal transmission path 931 by the MCF connector 910a to the signal transmission core 601 of the MCF 620-ab.
  • the transmission-side power supply connector 930 relays the optical signal connected from the signal transmission core 601 of the MCF 620-ab to the MCF connector 910a.
  • the transmission power supply connector 930 couples the power supply laser beam output from the power supply laser 720 to the optical signal inserted into the shared transmission path 932 by the MCF connector 910a.
  • the transmission-side power supply connector 930 inserts an optical signal combined with the power supply laser light into the shared core 603 of the MCF 620-ab.
  • the reception-side power supply connector 940 of the node 530b relays the optical signal connected from the signal transmission core 601 of the MCF 620-ab to the MCF connector 910b.
  • the receiving-side power supply connector 940 relays the optical signal inserted into the signal transmission path 941 by the MCF connector 910b to the signal transmission core 601 of the MCF 620-ab.
  • the reception-side power supply connector 940 connects the optical signal and the power supply laser beam transmitted by the shared core 603 of the MCF 620 -ab to the shared transmission path 932.
  • the wavelength extraction function unit 943 demultiplexes the power supply laser light among the optical signal and power supply laser light connected to the shared transmission path 932 by wavelength separation.
  • the wavelength extraction function unit 943 connects the feeding laser beam to the photoelectric conversion unit 750 and relays the optical signal to the MCF connector 910b.
  • the photoelectric conversion unit 750 converts the power supply laser beam into electricity and supplies the electricity to the power supply target facility 760.
  • the MCF connector 910b of the node 530b relays the optical signal transmitted through the signal transmission path 931 of the reception-side power supply connector 940 to the signal transmission core 601 of the MCF 620-bx.
  • the MCF connector 910b branches the optical signal addressed to the own node transmitted through the shared transmission path 932 of the receiving-side power feeding connector 940.
  • the MCF connector 910b inserts an optical signal into the signal transmission core 601 assigned to the destination node. If the optical signal transmitted by the shared core 603 is not an optical signal to be branched at the node 530b, the MCF connector 910b transmits the optical signal transmitted by the shared transmission path 932 of the receiving-side power feeding connector 940 to the MCF 620 ⁇ . Relay to bx shared core 603.
  • another node between the node 530a and the node 530b may relay the optical transmission.
  • the transmission-side power supply connector 930, the reception-side power supply connector 940, and the MCF 620 are compatible, the same as the optical power supply core 602 of the optical power supply system 502 of the first embodiment shown in FIG.
  • the shared core 603 may become a core at another position in the MCF 620 on the way. In the present embodiment, the description has been given of the case where the optical signal and the power supply light are exchanged between the node 530a and the node 530b.
  • the optical signal exchange period and the power supply light exchange period are as follows. It may be independent. In that case, the MCF connector 910a and the MCF connector 910b need a functional unit that relays power supply light. Also, a plurality of nodes 530b may be arranged in series via the MCF 620, like the node 510b of the optical power feeding system 504 of the first embodiment shown in FIG.
  • the reception-side power supply connector 940 of each node 530 b branches a part of the power supply laser beam transmitted by the shared core 603.
  • the reception-side power supply connector 940 relays the optical signal and the remaining power supply laser light to the shared core 603 of the MCF 620 with the next node 530b.
  • the wavelength of the power supply laser light used for power supply is changed by each node 510b, and the wavelength extraction function unit 943 of the reception-side power supply connector 940 separates the power supply laser light having the wavelength assigned to the own node.
  • a laser beam for feeding with a wavelength of may be relayed together with an optical signal.
  • each shared core 603 is assigned to each node to perform optical power feeding. May be.
  • the receiving-side power supply connector 940 connects the power supply laser beam transmitted by the shared core 603 assigned to the own node to the photoelectric conversion unit 750 of the own node.
  • the receiving-side power supply connector 940 relays the light transmitted by the shared core 603 assigned to other than its own node to the MCF connector 910b.
  • a mode in which the power supply laser beam of one shared core 603 is shared between nodes may be combined with a mode in which the power supply laser beam of the shared core 603 is assigned to each node.
  • the transmission power feeding connector 930 of the core sharing type optical power feeding system 520 is added to the core occupation type optical power feeding systems 500, 501, 502, 503, and 504 of the first embodiment.
  • a receiving power feeding connector 940 may be used.
  • the number of shared cores 603 and the number of power supply lasers 720 or the number of photoelectric conversion units 750 do not need to match. For example, a configuration in which five power supply lasers 720, three shared cores 603, and one photoelectric conversion unit 750 are possible is also possible.
  • the connector 930 may not combine the optical signal and the power supply laser beam. In this case, the optical signal and the power supply laser beam may be combined before being input to the MCF connector 910a.
  • the connector 940 may not demultiplex the optical signal and the power supply laser beam. In this case, the optical signal and the power feeding laser beam may be demultiplexed at the time of connection to the MCF connector 910b or after connection.
  • At least a part of the cores in the MCF can be used for signal transmission and optical power feeding to supply electricity to the receiving node side.
  • optical power feeding to a device installed in a node becomes possible. Therefore, power transmission to a place where there is no power supply facility and connection wiring to the apparatus can be simplified. Further, the power supplied by the power supply laser beam may be stored in a secondary battery or a capacitor.
  • the power supply target facility may operate with power supplied from the photoelectric conversion unit 750 or may operate with power stored in a secondary battery or a capacitor.
  • the SCF may be used for connection between nodes as shown in FIGS. 9 and 10 without being limited to the configuration described in the embodiment. Even when the SCF is used for the connection between the nodes, the power supply laser light is transmitted from the power supply source node to the power supply destination node, so that the MCF is used for the connection between the nodes. Optical power feeding is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

3つ以上のノードを備え、ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている光給電システムにおけるノードは、マルチコアファイバが有するコアから給電用の光の一部又は全てを分岐する給電光分岐部と、給電光分岐部が分岐した給電用の光を電気に変換する光電気変換部と、光電気変換部により変換された電気により動作する給電対象設備と、を備える。

Description

ノード及び光給電システム
 本発明は、ノード及び光給電システムに関する。
 本願は、2015年11月26日に、日本に出願された特願2015-230874号に基づき優先権を主張し、その内容をここに援用する。
 大都市間を接続するコアネットワークや、地域内の拠点を接続するメトロネットワークなどでは光ファイバを用いた通信網が構築されている。このようなネットワークでは、複数の光ファイバが束ねて用いられている。また、1本の光ファイバそれぞれに波長が異なる複数の光信号を多重化する波長分割多重(Wavelength Division Multiplexing:WDM)伝送を行うことで、大容量の信号伝送が行われている(例えば、非特許文献1)。更なる伝送容量の増加に向けて、1つのコアを持つ光ファイバ(Single Core Fiber:SCF)に代えて、複数のコアを持つ光ファイバであるマルチコアファイバ(Multi Core Fiber:MCF)の利用が検討されている(例えば、非特許文献2、3)。
 一方、シングルモードの光ファイバを用いて機器に電源を供給するシステムがある(例えば、非特許文献4、5参照)。
松岡伸治、「経済的なコア・メトロネットワークを実現する超高速大容量光トランスポートネットワーク技術」、NTT技術ジャーナル、2011年3月、p.8-12 宮本裕、竹ノ内弘和、「毎秒ペタビット級伝送の実現を目指した高密度空間多重光通信技術」、NTT技術ジャーナル、2014年8月、p.52-56 白木和之、「光ファイバ・ケーブル技術における研究開発の動向」、NTT技術ジャーナル、2015年1月、p.59-63 古河電工、"FITEL 光ファイバ センシングシステム"、[online]、[2015年7月10日検索]、インターネット〈URL:https://www.furukawa.co.jp/fitel/system/products/unit.htm〉 business network.jp、"企業ネットワーク最前線 光ファイバで電力を送る「光給電システム」とは?"、[online]、2014年11月11日、[2015年7月10日検索]、インターネット〈URL:http://businessnetwork.jp/Detail/tabid/65/artid/3674/Default.aspx〉
 マルチコアファイバを用いて通信するシステムを構成する各ノードにおいて機器を動作させるには、電源の供給が必要である。そのため、ノードが設置されている場所に、電気の配線を行っている。しかし、電気の配線が困難な場所にノード装置を設置したい場合がある。
 上記事情に鑑み、本発明は、マルチコアファイバを用いて通信する複数のノードの一部を外部電源がない場所に設置可能なノード及び光給電システムを提供することを目的としている。
 本発明の第1の実施態様におけるノードは、3つ以上のノードを備え、ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている光給電システムにおけるノードであって、前記マルチコアファイバが有する前記コアから給電用の光の一部又は全てを分岐する給電光分岐部と、前記給電光分岐部が分岐した前記給電用の光を電気に変換する光電気変換部と、前記光電気変換部により変換された電気により動作する給電対象設備と、を備える。
 本発明の第2の実施態様におけるノードは、3つ以上のノードを備え、ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている光給電システムにおけるノードであって、前記マルチコアファイバが有する前記コアのうち少なくとも一部のコアに給電用の光を接続する給電光接続部、を備える。
 本発明の第3の実施態様によれば、上述の第1又は第2の実施態様のノードであって、前記マルチコアファイバは、通信用の光及び前記給電用の光を伝送する前記コアを有する。
 本発明の第4の実施態様によれば、上述の第1又は第2の実施態様のノードであって、前記マルチコアファイバは、通信用の光を伝送する前記コアと、前記給電用の光を伝送する前記コアとを有する。
 本発明の第5の実施態様によれば、上述の第4の実施態様のノードであって、前記給電用の光を伝送する前記コアは、ハイパワー伝送可能である。
 本発明の第6の実施態様によれば、上述の第1又は第2の実施態様のノードであって、前記給電用の光の波長は、通信用の光が使用する波長帯に含まれる。
 本発明の第7の実施態様によれば、上述の第1又は第2の実施態様のノードであって、前記給電用の光の波長は、通信用の光が使用する波長帯に含まれない。
 本発明の第8の実施態様における光給電システムは、3つ以上のノードを備え、ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている光給電システムであって、給電元の前記ノードは、前記マルチコアファイバが有する前記コアのうち少なくとも一部のコアに給電用の光を接続する給電光接続部を備え、給電先の前記ノードは、前記マルチコアファイバが有する前記コアにより伝送された前記給電用の光を分岐する給電光分岐部と、前記給電光分岐部が分岐した前記給電用の光を電気に変換する光電気変換部と、前記光電気変換部により変換された電気により動作する給電対象設備と、を備える。
 本発明により、通信を行う複数のノードの一部を外部電源がない場所に設置することが可能となる。
本発明の実施形態を適用可能な通信システムの第1の構成例を示す図である。 通信システムに用いられるコネクタの第1の構成例を示す図である。 通信システムに用いられるコネクタの第1の構成例を示す図である。 通信システムに用いられるコネクタの第2の構成例を示す図である。 通信システムに用いられるコネクタの第2の構成例を示す図である。 通信システムに用いられるコネクタの第3の構成例を示す図である。 通信システムに用いられるコネクタの第3の構成例を示す図である。 本発明の実施形態を適用可能な通信システムの第2の構成例を示す図である。 本発明の実施形態を適用可能な通信システムの第3の構成例を示す図である。 本発明の実施形態を適用可能な通信システムの第4の構成例を示す図である。 図1に示した通信システムにおいて、Add/Dropノード間の接続の一部に複数のSCFを用いる第1の構成例を示す図である。 図1に示した通信システムにおいて、Add/Dropノード間の接続に複数のSCFを用いる第2の構成例を示す図である。 本発明の第1の実施形態による光給電システムの構成例を示す図である。 第1の実施形態によるMCFの断面図である。 第1の実施形態による送信側給電用コネクタの構成例を示す図である。 第1の実施形態による受信側給電用コネクタの構成例を示す図である。 第1の実施形態による光給電システムの構成例を示す図である。 第1の実施形態による光給電システムの構成例を示す図である。 第1の実施形態による光給電システムの構成例を示す図である。 第1の実施形態によるMCFの断面図である。 第1の実施形態による送信側給電用コネクタの構成例を示す図である。 第1の実施形態による受信側給電用コネクタの構成例を示す図である。 第1の実施形態による光給電システムの構成例を示す図である。 第1の実施形態による受信側給電用コネクタの構成例を示す図である。 第2の実施形態による光給電システムの構成例を示す図である。 第2の実施形態によるMCFの断面図である。 第2の実施形態による送信側給電用コネクタの構成例を示す図である。 第2の実施形態による受信側給電用コネクタの構成例を示す図である。
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下の実施形態では、同一の符号を付した構成要素は同様の動作を行うものとして、重複する説明を適宜省略する。
 まず、本発明の実施形態を適用可能な通信システムについて説明する。
 図1は、本発明の実施形態を適用可能な通信システム100の構成例を示す図である。通信システム100は、送受信ノード110と、n台(nは1以上の整数)のAdd/Dropノード120と、を備える。図1には、n=3の場合における通信システム100の構成例が示されている。以下の説明では、n台のAdd/Dropノード120をそれぞれ、Add/Dropノード120-1~120-nと記載する。また、送受信ノード110とAdd/Dropノード120とを総称して「ノード」と記載する。以下の説明では、光信号を用いて通信を行う送信装置や受信装置、送受信装置などと、ノードとを個別の構成として記載する。しかし、送信装置や受信装置、送受信装置などをノードが含む構成であってもよい。
 ノード間は、MCF(マルチコアファイバ)200-1~200-4で接続されている。通信システム100は、MCF200-1~200-4でノード間を接続した片系片方向のリング構成の物理トポロジを有している。送受信ノード110とAdd/Dropノード120-1とは、MCF200-1で接続されている。Add/Dropノード120-1とAdd/Dropノード120-2とは、MCF200-2で接続されている。Add/Dropノード120-2とAdd/Dropノード120-3とは、MCF200-3で接続されている。Add/Dropノード120-3と送受信ノード110とは、MCF200-4で接続されている。通信システム100におけるMCF200-1~200-4は、3つのコア201、202、203を備えている。
 通信システム100の構成についての説明を一般化すると、Add/Dropノード120-i(1≦i≦n-1)は、Add/Dropノード120-(i+1)とMCF200-(i+1)を介して接続されている。MCF200-1は、送受信ノード110とAdd/Dropノード120-1とを接続する。MCF200-(n+1)は、Add/Dropノード120-nと送受信ノード110とを接続する。
 通信システム100の各ノードは、ノード間での通信を行う送信装置(Tx)及び受信装置(Rx)を備える。送受信ノード110に対して、送信装置111-1~111-3と受信装置112-1~112-3とが備えられている。Add/Dropノード120-1に対して、送信装置121-1と受信装置122-1とが備えられている。Add/Dropノード120-2に対して、送信装置121-2と受信装置122-2とが備えられている。Add/Dropノード120-3に対して、送信装置121-3と受信装置122-3とが備えられている。送信装置111-1~111-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。受信装置112-1~112-3は、Add/Dropノード120-1~120-3から送信される光信号を受信し、光信号に含まれる情報を取得する。送信装置121-1~121-3は、それぞれ送受信ノード110へ送信する光信号を生成する。受信装置122-1~122-3は、送受信ノード110から送信される光信号を受信し、光信号に含まれる情報を取得する。
 送信装置111-1~111-3は、それぞれAdd/Dropノード120-1~120-3への光信号を生成する。送信装置111-1~111-3により生成された3つの光信号は、それぞれMCF200-1のコア201-1~203-1に挿入される。受信装置112-1~112-3は、それぞれAdd/Dropノード120-1、120-2、120-3から受信装置が備えられたノードに送信された光信号を受信する。受信装置112-1~112-3は、それぞれMCF200-4のコア201-4~203-4を介してAdd/Dropノード120-1~120-3からの光信号を受信する。送受信ノード110における、MCF200への光信号の挿入とMCF200からの光信号の分岐とには、ファンイン・デバイス又はファンアウト・デバイスが用いられる。
 なお、ファンイン・デバイスは、マルチコアファイバ中のコアそれぞれに対して接続され、コアごとに光信号を挿入するデバイスである。ファンアウト・デバイスは、マルチコアファイバ中の各コアそれぞれに対して接続され、各コア内を伝搬する光それぞれを分岐するデバイスである。両者のデバイスの違いは、光の伝搬方向が異なるだけであることから、ファンイン・デバイス又はファンアウト・デバイスのどちらか1つのデバイスを用いてマルチコアファイバとの光の入出力を実施してもよい。また、1つのデバイスでマルチコアファイバへの光の挿入及びマルチコアファイバからの光の分岐を行ってもよい。
 各Add/Dropノード120-1~120-3には、それぞれコネクタ150-1~150-3が備えられている。Add/Dropノード120-i(i=1,2,3)におけるコネクタ150-iは、MCF200-iとMCF200-(i+1)とに接続される。コネクタ150-iは、送受信ノード110で挿入された光信号のうち自ノードへの光信号をMCF200-iから分岐する。また、コネクタ150-iは、送受信ノード110への光信号をMCF200-(i+1)のコアへ挿入する。
 Add/Dropノード120-1において、コネクタ150-1は、MCF200-1のコア201-1から自ノードへの光信号を分岐する。コネクタ150-1は、分岐した光信号を受信装置122-1へ接続する。また、コネクタ150-1は、送信装置121-1により生成された光信号を、MCF200-2のコア201-2へ挿入する。コア201-2へ挿入される光信号は、Add/Dropノード120-1から送受信ノード110へ伝送される光信号である。
 コネクタ150-1は、MCF200-1のコアのうちコア202-1、203-1と、MCF200-2のコアのうちコア202-2、203-2とをそれぞれ接続する。コネクタ150-1は、MCF200-1とMCF200-2との間において光信号を中継する。コネクタ150-1は、光信号をAdd/Dropするコア201-1、201-2以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-2において、コネクタ150-2は、MCF200-2のコア202-2から自ノードへの光信号を分岐する。コネクタ150-2は、分岐した光信号を受信装置122-2へ接続する。また、コネクタ150-2は、送信装置121-2により生成された光信号を、MCF200-3のコア202-3へ挿入する。コア202-3へ挿入される光信号は、Add/Dropノード120-2から送受信ノード110へ伝送される光信号である。
 コネクタ150-2は、MCF200-2のコアのうちコア201-2、203-2と、MCF200-3のコアのうちコア201-3、203-3とをそれぞれ接続する。コネクタ150-2は、MCF200-2とMCF200-3との間において光信号を中継する。コネクタ150-2は、光信号をAdd/Dropするコア201-2、201-3以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-3において、コネクタ150-3は、MCF200-3のコア203-3から自ノードへの光信号を分岐する。コネクタ150-3は、分岐した光信号を受信装置122-3へ接続する。また、コネクタ150-3は、送信装置121-3により生成された光信号をMCF200-4のコア203-4へ挿入する。コア203-4へ挿入される光信号は、Add/Dropノード120-3から送受信ノード110へ伝送される光信号である。
 コネクタ150-3は、MCF200-3のコアのうちコア201-3、202-3と、MCF200-4のコアのうちコア201-4、202-4とをそれぞれ接続する。コネクタ150-3は、MCF200-3とMCF200-4との間において光信号を中継する。コネクタ150-3は、光信号をAdd/Dropするコア203-3、203-4以外のコアで伝送される光信号を中継する。
 図2A及び図2Bは、通信システム100に用いられるコネクタ150の第1の構成例を示す図である。コネクタ150は、複数の細径シングルモードファイバ(SMF)と複数のSMFとを含むファンイン・ファンアウト部を備える。図2(a)に示すように、コネクタ150は、接続対象のMCF200のコアそれぞれに対して細径SMFを備える。複数の細径SMFそれぞれの一端は、MCF200のコアに対向する位置に設けられている。また、複数の細径SMFの他端がSMFの一端に対向する位置に設けられている。細径SMFそれぞれは、MCF200のコアとSMFとを接続している。コネクタ150は、MCF200の各コアで伝送される光信号を、細径SMFとSMFとを介して分岐することができる。また、SMFへ光信号を入力することで、MCF200の各コアへ光信号を入力することができる。
 図2Bに示されるコネクタ150-iは、MCF200-iとMCF200-(i+1)とを接続する。Add/Dropの対象となる光信号を伝送するコアに対応するSMFの他端が、コネクタ150-iの側面に引き出されている。コネクタ150-iの側面に引き出されているSMFの他端において、光信号の挿入と分岐(Add/Drop)を行うことができる。
 MCF200-iのコアのうちAdd/Dropの対象でない光信号を伝送するコアに対するSMFの他端と、MCF200-(i+1)のコアのうちAdd/Dropの対象でない光信号を伝送するコアに対するSMFの他端とは、対向する位置に設けられている。コネクタ150-iにおいて、Add/Dropの対象でない光信号は、細径SMF及びSMFを介して、MCF200-iからMCF200-(i+1)へと中継される。
 図3A及び図3Bは、通信システム100に用いられるコネクタ150の第2の構成例を示す図である。図3A及び図3Bには、図2A及び図2Bに示したコネクタ150の構成例と異なる構成例が示されている。図3A及び図3Bに示されるコネクタ150は、ガラス基板上に形成された複数の導波路コアを含む光導波路をファンイン・ファンアウト部として備える。図3Aに示されるように、コネクタ150では、複数の導波路コアが、接続対象のMCF200のコアそれぞれに対向する位置に設けられている。MCF200の各コアで伝送される光信号は、導波路コアを介して分離される。また、導波路コアへ光信号を挿入することにより、MCF200の各コアへ光信号を入力することができる。
 図3Bに示されるコネクタ150-iでは、コネクタ150-iにより接続されるMCF200-i及びMCF200-(i+1)のコアのうちAdd/Dropの対象となる光信号を伝送するコアに対応する導波路コアの一端は、MCFのコアに対向する位置に設けられている。導波路コアの他端は、コネクタ150-iの側面に設けられている。コネクタ150-iの側面に位置する導波路コアの他端において、光信号の挿入と分岐を行うことができる。
 MCF200-iのコアのうちAdd/Dropの対象でない光信号を伝送するコアに対する導波路コアの一端はMCFのコアに対向する位置に設けられる。導波路コアの他端は、MCF200-(i+1)のコアのうちAdd/Dropの対象でない光信号を伝送するコアに対向する位置に設けられる。MCF200-i及びMCF200-(i+1)においてAdd/Dropの対象でない光信号を伝送するコアは、導波路コアを介して、一対一に接続される。コネクタ150-iにおいて、Add/Dropの対象でない光信号は、導波路コアを介して、MCF200-iのコアからMCF200-(i+1)のコアへと中継される。
 なお、導波路コアは、基板平面の二次元空間に形成されるだけでなく、参考文献1に記載されているように三次元空間に形成されてもよい。
[参考文献1]R. R. Thomson, et al, "Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications", Optics Express, OSA Publishing, 2007, Vol.15, Issue 18, p.11691-11697
 図4A及び図4Bは、通信システム100に用いられるコネクタ150の第3の構成例を示す図である。図4A及び図4Bには、図2A、図2B、図3A及び図3Bに示したコネクタ150の構成例と異なる構成例が示されている。図4A及び図4Bに示されるコネクタ150は、MCF200の各コアで伝送される光信号を一旦自由空間に出力させ、自由空間において各コアの光信号を光学系で分離する。例えば図4Aに示されるように、コネクタ150は2つのレンズで構成されるファンイン・ファンアウト部を備える。MCF200の各コアで伝送される光信号は、自由空間へ出力され、2つのレンズで屈折されることで分離される。光信号のAdd/Dropは、光学系を用いて行われる。自由空間を介した2つのMCF200の接続は、例えば参考文献2に記載されている。
[参考文献2]W. Klaus, et al, "Free-Space Coupling Optics for Multicore Fibers", Photonics Technology Letters, IEEE, 2012 September, Volume 24, Issue 21, p.1902-1905
 図4Bは、コネクタ150-iの構成例を示す図である。図4Bに示されるコネクタ150-iでは、2つのレンズを組み合わせた光学系(コリメーター)によりMCF200-iの各コアから出射される光信号をコリメートしている。また、コリメートされた光信号それぞれは、MCF200-(i+1)の各コアに入力される。Add/Dropの対象となる光信号の光線経路には、光線経路をコネクタ150-iの側面方向に変更する鏡が配置されている。光学系により平行光線にされた光信号のうち分離対象の光信号を鏡で反射させてコネクタ150-iの外部へ分岐させることにより、分離対象の光信号を得ることができる。また、コネクタ150-iの外部から入力される光信号を鏡に当てることにより、鏡で反射される光信号がコリメートされた光信号と共に2つのレンズを組み合わせた光学系に入射する。光学系に入射した光信号がMCF200-(i+1)のコアに接続されることで、Add対象の光信号をコアへ挿入することができる。
 Add/Dropの対象でない光信号は、光学系で分離された後に、Addされた光信号と共に束ねられてMCF200-(i+1)のコアそれぞれに入力される。コネクタ150-iにおいて、Add/Dropの対象でない光信号は、自由空間を介して、MCF200-iからMCF200-(i+1)へと中継される。なお、図面ではファイバ出射光のコリメートにレンズ2枚を使い、自由空間中における光の伝搬方向変更に鏡を使っているが、同様の機能を持つ光学機器を用いてもよい。
 図2A、図2B、図3A、図3B、図4A及び図4Bにおいてコネクタ150の構成例を示したが、コネクタ150は、説明した媒質及び方法以外のものを用いて実現してもよい。例えば、シリコン上に光導波路を持たせた平面光回路(Planar Lightwave Circuit:PLC)をコネクタとして用いてもよい。
 通信システム100では、送受信ノード110の送信装置111-1で生成された光信号は、MCF200-1のコア201-1と、コネクタ150-1とを介してAdd/Dropノード120-1の受信装置122-1で受信される。送信装置111-2で生成された光信号は、MCF200-1のコア202-1と、コネクタ150-1と、MCF200-2のコア202-2と、コネクタ150-2とを介してAdd/Dropノード120-2の受信装置122-2で受信される。送信装置111-3で生成された光信号は、MCF200-1のコア203-1と、コネクタ150-1と、MCF200-2のコア203-2と、コネクタ150-2と、MCF200-3のコア203-3と、コネクタ150-3とを介してAdd/Dropノード120-3の受信装置122-3で受信される。
 また、Add/Dropノード120-1の送信装置121-1で生成された光信号は、コネクタ150-1と、MCF200-2のコア201-2と、コネクタ150-2と、MCF200-3のコア201-3と、コネクタ150-3と、MCF200-4のコア201-4とを介して送受信ノード110の受信装置112-1で受信される。Add/Dropノード120-2の送信装置121-2で生成された光信号は、コネクタ150-2と、MCF200-3のコア202-3と、コネクタ150-3と、MCF200-4のコア202-4とを介して送受信ノード110の受信装置112-2で受信される。Add/Dropノード120-3の送信装置121-3で生成された光信号は、コネクタ150-3と、MCF200-4のコア203-4を介して送受信ノード110の受信装置112-3で受信される。
 通信システム100において、送受信ノード110は、Add/Dropノード120-1~120-3それぞれとの送受信の通信経路を有している。通信システム100は、送受信ノード110を中心としたスター型の論理トポロジを有する。
 例えば図2A、図2B、図3A、図3B、図4A及び図4Bに示したいずれかのコネクタ150を用いて、各ノードでMCF200を接続することにより、MCF200に含まれる複数のコアのうち所定のコアに対して光信号のAdd/Dropを行うことができる。通信システム100において、MCF200-iとMCF200-(i+1)とをコネクタ150-iを介して接続することにより、Add/Dropノード120-i宛の光信号の分岐と、送受信ノード110宛の光信号の挿入とを容易に行うことができる。光信号のAdd/Dropにおいては、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるため、各Add/Dropノード120における装置の設置や保守の手間を削減できる。
 なお、MCF200が3つのコアを備える場合について説明したが、MCF200が4つ以上のコアを備えてもよい。MCF200が4つ以上のコアを備える場合、Add/Dropノード120において2つ以上のコアに対して光信号をAdd/Dropしてもよい。
 図5は、本発明の実施形態を適用可能な通信システム100Aの構成例を示す図である。通信システム100Aは、送受信ノード110a、110bと、n台のAdd/Dropノード120と、を備える。図5には、n=3の場合における通信システム100Aの構成例が示されている。通信システム100Aは、両系片方向のリング構成の物理トポロジを有している点が、図1に示す通信システム100と異なる。
 ノード間は、MCF210-1~210-4で接続されている。送受信ノード110aとAdd/Dropノード120-1とは、MCF210-1で接続されている。Add/Dropノード120-1とAdd/Dropノード120-2とは、MCF210-2で接続されている。Add/Dropノード120-2とAdd/Dropノード120-3とは、MCF210-3で接続されている。Add/Dropノード120-3と送受信ノード110bとは、MCF210-4で接続されている。通信システム100AにおけるMCF210-1~210-4は、6つのコア211~216を備えている。
 通信システム100Aの構成についての説明を一般化すると、Add/Dropノード120-i(1≦i≦n-1)は、Add/Dropノード120-(i+1)とMCF210-(i+1)を介して接続されている。MCF210-1は、送受信ノード110aとAdd/Dropノード120-1とを接続する。MCF210-(n+1)は、Add/Dropノード120-nと送受信ノード110bとを接続する。
 通信システム100Aの各ノードは、ノード間での通信を行う送信装置(Tx)及び受信装置(Rx)と、送受信装置(Tx/Rx)とのいずれかを備える。送受信ノード110aに対して、送信装置111-1~111-3と受信装置112-1~112-3とが備えられている。Add/Dropノード120-1に対して、送受信装置125-1、126-1が備えられている。Add/Dropノード120-2に対して、送受信装置125-2、126-2が備えられている。Add/Dropノード120-3に対して、送受信装置125-3、126-3が備えられている。送受信ノード110bに対して、送信装置111-4~111-6と受信装置112-4~112-6とが備えられている。なお、図5に示す通信システム100Aの構成例では、送受信ノード110a、110bに送信装置111及び受信装置112が備えられ、Add/Dropノード120-1~120-3に送受信装置125、126が備えられた構成を説明する。しかし、送受信装置125、126は、その内部に送信装置と受信装置との両者の機能を内包したものであり、送信装置と受信装置とを組み合わせたものと送受信装置とには大きな差分はない。送受信ノード110a、110bとAdd/Dropノード120-1~120-3とにおいて、送信装置及び受信装置と、送受信装置とのいずれが備えられていてもよい。
 送信装置111-1~111-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送信装置111-1~111-3により生成された光信号は、それぞれMCF210-1のコア211-1、213-1、215-1に挿入される。受信装置112-1~112-3は、それぞれAdd/Dropノード120-1~120-3から送受信ノード110a宛に送信された光信号を受信する。受信装置112-1~112-3は、それぞれMCF210-1のコア212-1、214-1、216-1から光信号を受信する。
 送信装置111-4~111-6は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送信装置111-4~111-6により生成された光信号は、それぞれMCF210-4のコア211-4、213-4、215-4に挿入される。受信装置112-4~112-6は、それぞれAdd/Dropノード120-1~120-3から送受信ノード110b宛に送信された光信号を受信する。受信装置112-4~112-6は、それぞれMCF210-4のコア212-4、214-4、216-4から光信号を受信する。送受信ノード110a、110bにおける、MCF200への光信号の挿入とMCF200からの光信号の分岐とには、ファンイン・デバイス又はファンアウト・デバイスが用いられる。
 各Add/Dropノード120-i(i=1,2,3)には、それぞれコネクタ160-iが備えられている。コネクタ160-iは、MCF210-iとMCF210-(i+1)とに接続される。コネクタ160-iは、送受信ノード110a、110bで挿入された光信号のうち自ノードへの光信号をMCF210-i及びMCF210-(i+1)から分岐する。コネクタ160-iは、送受信ノード110a宛の光信号をMCF210-iのコアへ挿入する。コネクタ160-iは、送受信ノード110b宛の光信号をMCF210-(i+1)のコアへ挿入する。
 Add/Dropノード120-1において、コネクタ160-1は、MCF210-1のコア211-1から自ノードへの光信号を分岐する。コネクタ160-1は、分岐した光信号を送受信装置125-1へ接続する。また、コネクタ160-1は、送受信装置125-1により生成された光信号をMCF210-1のコア212-1へ挿入する。コア212-1へ挿入される光信号は、自ノードから送受信ノード110aへ伝送される光信号である。
 更に、コネクタ160-1は、MCF210-2のコア211-2から自ノードへの光信号を分岐する。コネクタ160-1は、分岐した光信号を送受信装置126-1へ接続する。また、コネクタ160-1は、送受信装置126-1により生成された光信号をMCF210-2のコア212-2へ挿入する。コア212-2へ挿入される光信号は、自ノードから送受信ノード110bへ伝送される光信号である。
 コネクタ160-1は、MCF210-1のコアのうちコア213-1~216-1と、MCF210-2のコアのうち213-2~216-2とをそれぞれ接続する。コネクタ160-1は、MCF210-1とMCF210-2との間において光信号を中継する。コネクタ160-1は、光信号をAdd/Dropするコア211-1、212-1、211-2、212-2以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-2において、コネクタ160-2は、MCF210-2のコア213-2から自ノードへの光信号を分岐する。コネクタ160-2は、分岐した光信号を送受信装置125-2へ接続する。また、コネクタ160-2は、送受信装置125-2により生成された光信号をMCF210-2のコア214-2へ挿入する。コア214-2へ挿入される光信号は、自ノードから送受信ノード110aへ伝送される光信号である。
 更に、コネクタ160-2は、MCF210-3のコア213-3から自ノードへの光信号を分岐する。コネクタ160-2は、分岐した光信号を送受信装置126-2へ接続する。また、コネクタ160-2は、送受信装置126-2により生成された光信号をMCF210-3のコア214-3へ挿入する。コア214-3へ挿入される光信号は、自ノードから送受信ノード110bへ伝送される光信号である。
 コネクタ160-2は、MCF210-2のコアのうちコア211-2、212-2、215-2、216-2と、MCF210-3のコアのうちコア211-3、212-3、215-3、216-3とをそれぞれ接続する。コネクタ160-2は、MCF210-2とMCF210-3との間において光信号を中継する。コネクタ160-2は、光信号をAdd/Dropするコア213-2、214-2、213-3、214-3以外のコアで伝送される光信号を中継する。
 Add/Dropノード120-3において、コネクタ160-3は、MCF210-3のコア215-3から自ノードへの光信号を分岐する。コネクタ160-3は、分岐した光信号を送受信装置126-3へ接続する。また、コネクタ160-3は、送受信装置126-3により生成された光信号をMCF210-3のコア216-3へ挿入する。コア216-3へ挿入される光信号は、自ノードから送受信ノード110aへ伝送される光信号である。
 更に、コネクタ160-3は、MCF210-4のコア215-4から自ノードへの光信号を分岐する。コネクタ160-4は、分岐した光信号を送受信装置125-3へ接続する。また、コネクタ160-3は、送受信装置125-3により生成された光信号をMCF210-4のコア216-3へ挿入する。コア216-4へ挿入される光信号は、自ノードから送受信ノード110bへ伝送される光信号である。
 コネクタ160-3は、MCF210-3のコアのうちコア211-3~214-3と、MCF210-4のコアのうちコア211-4~214-4とをそれぞれ接続する。コネクタ160-3は、MCF210-3とMCF210-4との間において光信号を中継する。コネクタ160-3は、光信号をAdd/Dropするコア215-3、216-3、215-4、216-4以外のコアで伝送される光信号を中継する。
 通信システム100Aに用いられるコネクタ160-1~160-3は、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることにより、通信システム100におけるコネクタ150-1~150-3と同様に構成することができる。
 通信システム100Aでは、送受信ノード110a、110bとAdd/Dropノード120-1~120-3それぞれとの間に送信用の通信経路と受信用の通信経路が形成される。送受信ノード110a、110bは、Add/Dropノード120-1~120-3と個別に通信することができる。このように、通信システム100Aは、送受信ノード110a、110bそれぞれをルートノードとするツリー型の論理トポロジを有している。
 Add/Dropノード120-1~120-3は、2つの送受信ノード110a、110bとの通信経路のうちいずれか一方を現用系(0系)として利用し、他方を予備系(1系)として利用してもよい。また、Add/Dropノード120-1~120-3は、伝送距離の短い通信経路を0系として利用し、伝送距離の長い通信経路を1系として利用してもよい。Add/Dropノード120-1~120-3では、光信号のAdd/Dropにおいて、多重化された波長の異なる光信号を波長ごとに分ける処理などが不要となるので装置の設置や保守の手間を削減できる。
 なお、各MCF210が6つのコア211~216を備える場合について説明したが、MCF210が7つ以上のコアを備えてもよい。MCF210が7つ以上のコアを備える場合、Add/Dropノード120において2つ以上のコアに対して光信号をAdd/Dropしてもよい。
 また、送受信ノード110aと送受信ノード110bとの間を、MCF210又は7つ以上のコアを備えるMCFを用いて接続してもよい。通信システム100Aにおいて、送受信ノード110a、110bとAdd/Dropノード120-1~120-3との役割が変わった場合に、送受信ノード110a、110bにコネクタを取り付け、各Add/Dropノード120-1~120-3のコネクタ150を他のコネクタ付け替えることで、論理トポロジを容易に変更することができる。これにより、ネットワーク構成の変更に対し柔軟に対応することができる。
 図6は、本発明の実施形態を適用可能な通信システム100Cの構成例を示す図である。通信システム100Cは、送受信ノード110と、n台のAdd/Dropノード120と、を備える。図6には、n=3の場合における通信システム100Cの構成例が示されている。通信システム100Cにおいて、ノード間におけるMCF200-1~200-4の接続は、通信システム100における接続と同様である。通信システム100Cでは、送受信ノード110から各Add/Dropノード120への通信と、各Add/Dropノード120から送受信ノード110への通信とが同一のコアを用いて行われる。伝送方向が異なる光信号を同一のコアで伝送する際には、伝送方向が異なる光信号が互いに及ぼす影響を抑えるために光信号の強度を一定以下にしてもよいし、光信号の波長を伝送方向ごとに異なる波長にしてもよい。通信システム100Cは、片系双方向のリング構成の物理トポロジを有している点が、図1に示す通信システム100と異なる。
 通信システム100Cの各ノードは、ノード間での通信を行う送受信装置(Tx/Rx)を備える。送受信ノード110には、送受信装置113-1~113-3が備えられている。Add/Dropノード120-1~120-3には、送受信装置125-1~125-3がそれぞれ備えられている。送受信装置113-1~113-3は、それぞれAdd/Dropノード120-1~120-3へと送信する光信号を生成する。また、送受信装置113-1~113-3は、Add/Dropノード120-1~120-3から送信された光信号を受信し、光信号に含まれる情報を取得する。送受信装置125-1~125-3は、それぞれ送受信ノード110へと送信する光信号を生成する。また、送受信装置125-1~125-3は、それぞれ送受信ノード110から送信された光信号を受信し、光信号に含まれる情報を取得する。
 送受信装置113-1~113-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置113-1~113-3により生成された3つの光信号は、それぞれMCF200-1のコア201-1~203-1に挿入される。また、送受信装置113-1~113-3は、それぞれMCF200-1のコア201-1~203-1を介してAdd/Dropノード120-1~120-3からの光信号を受信する。MCF200-1への光信号の挿入とMCF200-1からの光信号の分岐とには、ファンイン/ファンアウト・デバイスが用いられる。
 各Add/Dropノード120-i(i=1,2,3)には、それぞれコネクタ180-iが備えられている。コネクタ180-iは、MCF200-iとMCF200-(i+1)とに接続される。コネクタ180-iは、MCF200-iのコア20i-iから光信号を分岐し、分岐した光信号を送受信装置125-iへ接続する。また、コネクタ180-iは、送受信装置125-iにより生成された光信号をMCF200-iのコア20i-iへ挿入する。送受信装置125-iにより生成された光信号は、Add/Dropノード120-iから送受信ノード110へ伝送される光信号である。コネクタ180-iは、MCF200-iのコアとMCF200-(i+1)のコアとのうち、Add/Dropの対象となるコア以外のコア20i-iとコア20i-(i+1)とを接続して光信号を中継する。
 送受信ノード110とAdd/Dropノード120-1とは、コア201-1により形成される通信経路を用いた双方向の通信を行う。送受信ノード110とAdd/Dropノード120-2とは、コア202-1、202-2により形成される通信経路を用いた双方向の通信を行う。送受信ノード110とAdd/Dropノード120-3とは、コア203-1、203-2、203-3により形成される通信経路を用いた双方向の通信を行う。MCF200-2のコア201-2、MCF200-3のコア201-3及びコア202-3、MCF200-4のコア201-4~203-4は、通信に使用されないコアである。
 なお、通信システム100Cにおいて、Add/Dropノード120-3はMCF200-4のコア201-4を用いた通信を送受信ノード110と行うことで、通信経路の短縮を図ってもよい。その場合には、送受信ノード110においてMCF200-4との接続部にファイン/ファンアウト・デバイスが必要となる。
 図7は、本発明の実施形態を適用可能な通信システム100Dの構成例を示す図である。通信システム100Dは、送受信ノード110a、110bと、n台のAdd/Dropノード120と、を備える。図7には、n=3の場合における通信システム100Dの構成例が示されている。通信システム100Dにおいて、ノード間におけるMCF200-1~200-4の接続は、通信システム100AにおけるMCF210-1~210-4の接続と同様である。通信システム100Dでは、送受信ノード110a、110bから各Add/Dropノード120への通信と、各Add/Dropノード120から送受信ノード110a、110bへの通信とが同一のコアを用いて行われる。通信システム100Dは、両系双方向のリング構成の物理トポロジを有する。
 通信システム100Dの各ノードは、ノード間での通信を行う送受信装置(Tx/Rx)を備える。送受信ノード110aには、送受信装置113-1~113-3が備えられている。送受信ノード110bには、送受信装置113-4~113-6が備えられている。Add/Dropノード120-1~120-3には、送受信装置125-1~125-3、126-1~126-3がそれぞれ備えられている。送受信装置113-1~113-6は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置125-1~125-3は、送受信ノード110aへ送信する光信号を生成する。送受信装置126-1~126-3は、送受信ノード110bへ送信する光信号を生成する。また、送受信装置113-1~113-6は、Add/Dropノード120-1~120-3それぞれから送信される光信号を受信し、光信号に含まれる情報を取得する。送受信装置125-1~125-3は、送受信ノード110aから送信されられる光信号を受信し、光信号に含まれる情報を取得する。送受信装置126-1~126-3は、送受信ノード110bから送信される光信号を受信し、光信号に含まれる情報を取得する。
 送受信ノード110aにおいて、送受信装置113-1~113-3は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置113-1~113-3により生成された3つの光信号は、それぞれMCF200-1のコア201-1~203-1に挿入される。また、送受信装置113-1~113-3は、それぞれMCF200-1のコア201-1~203-1を介してAdd/Dropノード120-1~120-3からの光信号を受信する。MCF200-1への光信号の挿入とMCF200-1からの光信号の分岐とには、ファンイン/ファンアウト・デバイスが用いられる。
 送受信ノード110bにおいて、送受信装置113-4~113-6は、それぞれAdd/Dropノード120-1~120-3へ送信する光信号を生成する。送受信装置113-4~113-6により生成された3つの光信号は、それぞれMCF200-4のコア201-4~203-4に挿入される。また、送受信装置113-4~113-6は、それぞれMCF200-4のコア201-4~203-4を介してAdd/Dropノード120-1~120-3からの光信号を受信する。MCF200-4への光信号の挿入とMCF200-4からの光信号の分岐とには、送受信ノード110aと同様に、ファンイン/ファンアウト・デバイスが用いられる。
 Add/Dropノード120-i(i=1,2,3)それぞれには、コネクタ185-iが備えられている。コネクタ185-iは、MCF200-iとMCF200-(i+1)とに接続される。コネクタ185-iは、MCF200-iのコア20i-iから光信号を分岐し、分岐した光信号を送受信装置125-iへ接続する。コネクタ185-iは、送受信装置125-iにより生成された光信号をMCF200-iのコア20i-iへ挿入する。送受信装置125-iにより生成された光信号は、Add/Dropノード120-iから送受信ノード110aへ伝送される光信号である。
 また、コネクタ185-iは、MCF200-(i+1)のコア20i-(i+1)から光信号を分岐し、分岐した光信号を送受信装置126-iへ接続する。コネクタ185-iは、送受信装置126-iにより生成された光信号をMCF200-(i+1)のコア20i-(i+1)へ挿入する。送受信装置126-iにより生成された光信号は、Add/Dropノード120-iから送受信ノード110bへ伝送される光信号である。
 また、コネクタ185-iは、MCF200-iのコアとMCF200-(i+1)のコアとのうち、Add/Dropの対象となるコア以外のコア20i-iとコア20i-(i+1)とを接続して光信号を中継する。
 送受信ノード110aとAdd/Dropノード120-1とは、コア201-1により形成される通信経路を用いた双方向の通信を行う。送受信ノード110aとAdd/Dropノード120-2とは、コア202-1、202-2により形成される通信経路を用いた双方向の通信を行う。送受信ノード110aとAdd/Dropノード120-3とは、コア203-1、203-2、203-3により形成される通信経路を用いた双方向の通信を行う。
 送受信ノード110bとAdd/Dropノード120-1とは、コア201-4、201-3、201-2により形成される通信経路を用いた双方向通信を行う。送受信ノード110bとAdd/Dropノード120-2とは、コア202-4、202-3により形成される通信経路を用いた双方向通信を行う。送受信ノード110bとAdd/Dropノード120-3とは、コア203-4により形成される通信経路を用いた双方向通信を行う。
 このように、通信システム100Dは、送受信ノード110a、110bそれぞれをルートノードとしてAdd/Dropノード120-1~120-3それぞれと通信可能なツリー型の論理トポロジを有する。通信システム100Dでは、Add/Dropノード120-1~120-3は、それぞれ送受信ノード110a、110bと通信を行うことができる。Add/Dropノード120-1~120-3は、2つの送受信ノード110a、110bとの通信経路のうちいずれか一方を現用系(0系)として利用し、他方を予備系(1系)として利用してもよい。また、Add/Dropノード120-1~120-3は、伝送距離の短い通信経路を0系として利用し、伝送距離の長い通信経路を1系として利用してもよい。
 なお、通信システム100Dにおいて、送受信ノード110aと送受信ノード110bとの間をMCF200や、4つ以上のコアを備えるMCFを用いて接続してもよい。通信システム100Dにおいて、送受信ノード110a、110bとAdd/Dropノード120-1~120-3との役割が変わった場合に、送受信ノード110a、110bにコネクタを取り付け、各Add/Dropノード120-1~120-3のコネクタ185を他のコネクタ付け替えることで、論理トポロジを容易に変更することができる。これにより、ネットワーク構成の変更に対し柔軟に対応することができる。
 本発明の実施形態を適用可能な通信システムとして、4つの通信システム100、100A、100C、100Dを説明した。各通信システムでは、ノード間の接続にMCFを用いる構成を説明した。しかし、ノード間の接続の一つ又は複数にSCF(Single Core Fiber)が用いられた通信システムに対して、各実施形態において説明する光給電方法を適用してもよい。ノード間の接続にSCFが用いられる場合、MCFと複数のSCFとを接続する変換コネクタ、又はコネクタと複数のSCFとを接続する変換コネクタが用いられる。
 図8は、図1に示した通信システム100において、Add/Dropノード120-1とAdd/Dropノード120-2との接続の一部に複数のSCF451、452、453を用いる第1の構成例を示すブロック図である。コネクタ150-1に接続されたMCF200-21と、コネクタ150-2に接続されたMCF200-22との間にSCF451、452、453が用いられている。
 MCF200-21とSCF451~453との接続には変換コネクタ400-1が用いられている。変換コネクタ400-1は、MCF200-21のコア201-21、202-21、203-21と、SCF451、452、453とをそれぞれ接続する。MCF200-22とSCF451~453との接続には変換コネクタ400-2が用いられている。変換コネクタ400-2は、MCF200-22のコア201-22、202-22、203-22と、SCF451、452、453とをそれぞれ接続する。
 変換コネクタ400-1、400-2は、ファンイン・デバイス又はファンアウト・デバイスと同じ構成を有している。変換コネクタ400-1、400-2を用いることにより、ノード間の接続における一部区間にSCFを用いることができる。
 図9は、図1に示した通信システム100において、Add/Dropノード120-1とAdd/Dropノード120-2との接続に複数のSCF451、452、453を用いる第2の構成例を示すブロック図である。コネクタ150-1とコネクタ150-2との接続にSCF451、452、453が用いられている。図9に示す構成例は、Add/Dropノード120-1、120-2間の接続にMCFが用いられていない構成が図8に示した構成例と異なる。
 Add/Dropノード120-1は、更に変換コネクタ410-1を備える。コネクタ150-1のAdd/Dropノード120-2側に変換コネクタ410-1が取り付けられる。Add/Dropノード120-2は、更に変換コネクタ410-2を備える。コネクタ150-2のAdd/Dropノード120-1側に変換コネクタ410-2が取り付けられる。MCF200が有するコア数と同数のSCF451~453が、変換コネクタ410-1、410-2間の接続に用いられる。
 変換コネクタ410-1は、SCF451、452、453とコネクタ150-1とを接続する。コネクタ150-1は、MCF200-2に代えて、変換コネクタ410-1と光信号の入出力を行う。コネクタ150-1は、変換コネクタ410-1を介して、MCF200-1のコア202-1、203-1とSCF452、453とをそれぞれ接続する。変換コネクタ410-1は、コネクタ150-1を介して、送信装置121-1が生成した光信号をSCF451へ挿入する。
 変換コネクタ410-2は、SCF451、452、453とコネクタ150-2とを接続する。コネクタ150-2は、MCF200-2に代えて、変換コネクタ410-2と光信号の入出力を行う。コネクタ150-2は、変換コネクタ410-2を介して、SCF451、453とMCF200-3のコア201-3、203-3とをそれぞれ接続する。コネクタ150-2は、変換コネクタ410-2を介して、SCF453から分岐した光信号を受信装置122-2へ接続する。
 変換コネクタ410-1、410-2は、ファンイン・デバイス又はファンアウト・デバイスと同じ構成を有している。変換コネクタ410-1、410-2を用いることにより、ノード間の接続にSCFを用いることができる。
 図8及び図9では、3つコアを有するMCF200に代えてSCFを用いてノード間を接続する構成例を示した。2つ又は4つ以上のコアを有するMCFに代えてSCFをノード間の接続に用いてもよい。この場合においても、同様に、変換コネクタが用いられる。
 図8及び図9では、図1に示した通信システム100におけるAdd/Dropノード120-1、120-2間の接続にSCFを用いる例を示した。他のノード間の接続にもSCFを用いてもよい。この場合、一つのノード間の接続に変換コネクタ400を用い、他のノード間の接続に変換コネクタ410を用いてもよい。また、一つのノード間の接続に、MCFとSCFとを接続する変換コネクタ400と、コネクタ150に接続する変換コネクタ410とを組み合わせて用いてもよい。例えば、Add/Dropノード120-1において変換コネクタ400が用いられ、Add/Dropノード120-2において変換コネクタ410が用いられてもよい。
 一つのノード間の接続において、MCFとSCFとの変換が複数回行われてもよい。例えば、Add/Dropノード120-1、120-2との間の接続において、MCF、SCF、MCF、SCF、MCFの順でMCFとSCFとが用いられてもよい。この場合、MCFとSCFとの間それぞれに変換コネクタが用いられる。
 また、図9において説明した、コネクタ150-1と変換コネクタ410-1とが1つのコネクタとして構成されてもよい。同様に、コネクタ150-2と変換コネクタ410-2とが1つのコネクタとして構成されてもよい。すなわち、MCFと複数のSCFとに接続されるコネクタが、MCF又はSCFに対して光信号のADD/Dropを行うとともに、MCFとSCFとの間における光信号の中継を行ってもよい。
 以上説明したように、図1に示した通信システム100及び他の通信システムにおけるノード間の接続のうち一つ又は複数に、SCFが用いられてもよい。
 以下に本発明の各実施形態を説明する。
[第1の実施形態]
 第1の実施形態は、MCF(マルチコアファイバ)が有する複数のコアを通信用と給電用に分けて使用するコア占有型の光給電システムである。
 図10は、第1の実施形態によるコア占有型の光給電システム500の構成例を示す図である。光給電システム500は、MCF600により接続されるノード510aとノード510bとを備えて構成される。
 ノード510aは、例えば、上述した本実施形態を適用可能な通信システムの送受信ノード又はAdd/Dropノード、あるいは、上述した本実施形態を適用可能な通信システムのノード間に設置される中継ノードである。ノード510bは、例えば、上述した本実施形態を適用可能な通信システムのAdd/Dropノード、又は、上述した本実施形態を適用可能な通信システムのノード間に設置される中継ノードであるが、送受信ノードであってもよい。同図では、ノード510a及びノード510bがAdd/Dropノードである場合を示している。なお、ノード510a及びノード510bが、上述した通信システムとは異なるトポロジの通信システムを構成するノードであってもよい。また、同図では、ノード510aが、ノード510bとは異なる方向に隣接する他のノードともMCF600により接続されている場合を示しているが、他のノードと接続されていなくてもよい。また、同図では、ノード510bが、ノード510aとは異なる方向に隣接する他のノードともMCF600により接続されている場合を示しているが、他のノードと接続されていなくてもよい。
 以下では、ノード510bとは異なる方向に隣接する他のノードとノード510aとを接続するMCF600を600-xaと記載する。ノード510aとノード510bとを接続するMCF600をMCF600-abと記載する。ノード510aとは異なる方向に隣接する他のノードとノード510bとを接続するMCF600を600-bxと記載する。
 また、以下では、第1の方向に隣接する第1のノードとの間のMCFを、「第1の方向側のMCF」と記載する。第2の方向に隣接する第2のノードとの間のMCFを、「第2の方向側のMCF」と記載する。第2の方向は、第1の方向とは異なる方向である。「第1の方向側」、「第2の方向側」は、ノードの両側にMCFが接続されている場合に、いずれのMCFであるかを示すものであり、信号の伝送方向を表すものではない。
 MCF600は、複数本の信号伝送用コア601と1本の光給電用コア602とを有する。信号伝送用コア601は通信信号伝送用の光である光信号を伝送する。光給電用コア602は給電用の光である給電用レーザー光を伝送する。光信号と給電用レーザー光とは波長が同じでもよく、異なっていてもよい。
 ノード510aは、MCFコネクタ710(コア接続部)、給電用レーザー720、及び、送信側給電用コネクタ730(給電光接続部)を備える。ノード510aが備えるMCFコネクタ710を、MCFコネクタ710aと記載する。
 MCFコネクタ710aは、MCF600-xa又は送信側給電用コネクタ730から自ノードに割り当てられた信号伝送用コア601により伝送された光信号を分岐する。また、MCFコネクタ710aは、宛先のノードに割り当てられた信号伝送用コア601により伝送される光信号をMCF600-xa又は送信側給電用コネクタ730に挿入する。MCFコネクタ710aは、MCF600-xaと送信側給電用コネクタ730との間で、自ノードにてAdd/Dropを行わない信号伝送用コア601により伝送された光信号を中継する。さらに、MCFコネクタ710aは、送信側給電用コネクタ730により挿入された給電用レーザー光をMCF600-xaの光給電用コア602に中継する。ノード510aが中継ノードである場合、MCFコネクタ710aは、信号伝送用コア601により伝送された全ての光信号を中継する。
 給電用レーザー720は、給電用レーザー光を送信側給電用コネクタ730に入力する。送信側給電用コネクタ730は、給電用レーザー720が出力した給電用レーザー光を、MCF600-abの光給電用コア602に接続する。給電用レーザー光の波長は、光信号の波長帯に含まれてもよく、含まれなくてもよい。送信側給電用コネクタ730は、さらに、MCF600-xaの光給電用コア602により伝送される給電用レーザー光をMCFコネクタ710aに接続してもよい。この場合、ノード510aは、給電用レーザー720を複数備えてもよい。また、送信側給電用コネクタ730は、MCFコネクタ710aとMCF600-abの信号伝送用コア601との間で光信号を中継する。
 ノード510bは、MCFコネクタ710、受信側給電用コネクタ740(給電光分岐部)、光電気変換部750、及び、給電対象設備760を備える。ノード510bが備えるMCFコネクタ710を、MCFコネクタ710bと記載する。
 MCFコネクタ710bは、MCF600-bx又は受信側給電用コネクタ740から、自ノードに割り当てられた信号伝送用コア601により伝送された光信号を分岐する。また、MCFコネクタ710bは、自ノードから宛先のノードへの伝送に割り当てられた信号伝送用コア601により伝送する光信号をMCF600-bx又は受信側給電用コネクタ740に挿入する。MCFコネクタ710bは、受信側給電用コネクタ740とMCF600-bxとの間で、自ノードにてAdd/Dropを行わない信号伝送用コア601により伝送された光信号を中継する。さらに、MCFコネクタ710bは、MCF600-bxの光給電用コア602からの給電用レーザー光を受信側給電用コネクタ740に中継する。ノード510bが中継ノードである場合、MCFコネクタ710bは、信号伝送用コア601により伝送された全ての光信号を中継する。
 受信側給電用コネクタ740は、MCF600-abの光給電用コア602により伝送された給電用レーザー光を分岐し、給電用レーザー光を光電気変換部750に接続する。受信側給電用コネクタ740は、さらに、MCF600-bxの光給電用コア602により伝送された給電用レーザー光をMCFコネクタ710bから分岐し、給電用レーザー光を光電気変換部750に接続してもよい。この場合、ノード510bは、光電気変換部750を複数備えてもよい。また、受信側給電用コネクタ740は、MCFコネクタ710bとMCF600-abの信号伝送用コア601との間で光信号を中継する。
 光電気変換部750は、入力された給電用レーザー光を電気に変換し、変換により得られた電気を給電対象設備760に供給する。給電対象設備760は、光電気変換部750から供給された電力により動作する。給電対象設備760は、例えば、センサや伝送装置であるが、これらに限定されない。例えば、給電対象設備760がセンサなどである場合、センサにより得られた検出結果を示す出力データを含む光信号がMCFコネクタ710bに入力され、出力データが宛先のノードに送信される。また、給電対象設備760が伝送装置である場合、この伝送装置は、MCFコネクタ710bや受信側給電用コネクタ740、MCFコネクタ710bとの間で光信号を送受信するための装置などを含むノード510bの一部又は全ての伝送装置であってもよい。
 なお、MCFコネクタ710aと送信側給電用コネクタ730とが、両者の機能を満たす一体のコネクタであってもよい。同様に、MCFコネクタ710bと受信側給電用コネクタ740とが、両者の機能を満たす一体のコネクタであってもよい。
 また、送信側給電用コネクタ730は、給電用レーザー720を内蔵した構成でもよい。その場合、給電用レーザー光の光入力の代わりに、給電用レーザーを駆動するための電気が送信側給電用コネクタ730に入力される。送信側給電用コネクタ730に内蔵される給電用レーザー720は、入力された電気を給電用レーザー光に変換する。
 また、受信側給電用コネクタ740が、光電気変換部750を内蔵した構成でもよい。その場合、受信側給電用コネクタ740は、光電気変換部750が給電用レーザー光から変換した電気を出力する。
 図11は、MCF600の断面図である。図11の左図に示すように、MCF600の断面は円形である。なお、MCF600の断面形状は円形以外でもよい。MCF600の内部には、同心円上に等間隔で複数のコアが配置されているが、コアの配置は任意とすることができる。複数のコアのうち、n本(nは1以上の整数)が信号伝送用コア601であり、1本が光給電用コア602である。なお、信号伝送用コア601と光給電用コア602とを図11の右図のように縦に並べて図示する際の並び順は、必ずしもMCF600における信号伝送用コア601及び光給電用コア602の配置を表すものではない。また、n本の信号伝送用コア601のうち、使用されない一部の信号伝送用コア601の記載を省略し、使用される信号伝送用コア601を抜き出して記載する。
 光給電用コア602は、信号伝送用コア601と同じコアでもよく、ハイパワー伝送可能なコアなど、光給電に特化したコアとしてもよい。光給電に特化したコアとは、例えば、コア径を広くするなど、より高いパワーの光を低損失で伝送可能な構成のコアである。また、光給電用コア602の有効断面積を、信号伝送用コア601の有効断面積より拡大してもよい。有効断面積を拡大するために、光給電用コア602のコア径を大きくしたり、トレンチ型の屈折率分布を有するようにするなどの公知の技術を適用してもよい。
 図12は、送信側給電用コネクタ730の構成例を示す図である。同図に示す送信側給電用コネクタ730は、第1の方向側に接続されるMCF600と第2の方向側に接続されるMCF600との両方に給電用レーザー光を供給する。
 送信側給電用コネクタ730は、n本の信号用伝送路731及び2本の給電用伝送路732を有する。信号用伝送路731及び給電用伝送路732には、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることができる。
 送信側給電用コネクタ730は、信号用伝送路731により、第1の方向側に接続されるMCF600の信号伝送用コア601と第2の方向側に接続されるMCF600の信号伝送用コア601との間で光信号を中継する。信号用伝送路731は、直接、あるいは、MCFコネクタ710aを介して、信号伝送用コア601と接続される。
 送信側給電用コネクタ730は、給電用伝送路732により、第1の方向側に接続されるMCF600の光給電用コア602又は第2の方向側に接続されるMCF600の光給電用コア602に、給電用レーザー720から出力される給電用レーザー光を接続する。給電用伝送路732は、直接、あるいは、MCFコネクタ710aを介して、光給電用コア602と接続される。なお、送信側給電用コネクタ730は、第1の方向側のみに、あるいは、第2の方向側のみに、給電用レーザー光を接続してもよい。その場合、送信側給電用コネクタ730は、給電用伝送路732を第1の方向側のみに、あるいは、第2の方向側のみに持つ構成でもよい。
 図13は、受信側給電用コネクタ740の構成例を示す図である。同図に示す受信側給電用コネクタ740は、第1の方向側に接続されるMCF600と第2の方向側に接続されるMCF600との両方から、給電用レーザー光を分岐する。
 受信側給電用コネクタ740は、n本の信号用伝送路741及び2本の給電用伝送路742を有する。信号用伝送路741及び給電用伝送路742には、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることができる。
 受信側給電用コネクタ740は、信号用伝送路741により、第1の方向側に接続されるMCF600の信号伝送用コア601と第2の方向側に接続されるMCF600の信号伝送用コア601との間で光信号を中継する。信号用伝送路741は、直接、あるいは、MCFコネクタ710bを介して、MCF600の信号伝送用コア601と接続される。
 受信側給電用コネクタ740は、第1の方向側に接続されるMCF600の光給電用コア602又は第2の方向側に接続されるMCF600の光給電用コア602により伝送された給電用レーザー光を分岐する。受信側給電用コネクタ740は、給電用レーザー光を給電用伝送路742により光電気変換部750に接続する。給電用伝送路742は、直接、あるいは、MCFコネクタ710bを介して、光給電用コア602と接続される。なお、受信側給電用コネクタ740は、第1の方向側の光給電用コア602のみから、あるいは、第2の方向側の光給電用コア602のみから、給電用レーザー光を分岐してもよい。その場合、受信側給電用コネクタ740は、給電用伝送路742を第1の方向側のみに、あるいは、第2の方向側のみに持つ構成でもよい。
 上記構成により、光給電システム500において、ノード510aの送信側給電用コネクタ730は、給電用レーザー720が出力する給電用レーザー光をMCF600-abの光給電用コア602に接続する。ノード510bの受信側給電用コネクタ740は、MCF600-abの光給電用コア602から給電用レーザー光を分岐し、給電用レーザー光を光電気変換部750に接続する。光電気変換部750は、給電用レーザー光を電気に変換し、電気を給電対象設備760に供給する。給電用レーザー光の伝送と独立に、MCF600の信号伝送用コア601は、光信号を伝送する。MCFコネクタ710a、710bは、自ノードに割り当てられた信号伝送用コア601により伝送された光信号を分岐する。MCFコネクタ710a、710bは、宛先のノードに割り当てられた光信号を信号伝送用コア601に挿入する。MCFコネクタ710a、710bは、他の信号伝送用コア601により伝送された光信号を中継する。
 なお、給電用レーザー光の伝送中に他のノードを経由してもよい。
 図14は、ノード510aとノード510bとの間に、ノード510cが設置された光給電システム501の構成例を示す図である。同図において、図10に示す光給電システム500と同一の部分には同一の符号を付し、その説明を省略する。ノード510aとノード510cとの間、及び、ノード510cとノード510bとの間は、MCF600によりそれぞれ接続される。ノード510aとノード510cとの間を接続するMCF600をMCF600-acと記載する。ノード510cとノード510bとの間を接続するMCF600をMCF600-cbと記載する。
 ノード510cは、例えば、上述した通信システムの送受信ノード又はAdd/Dropノード、あるいは、上述した通信システムのノード間に設置される中継ノードである。同図では、ノード510cが中継ノードである場合を例に示している。
 ノード510cは、MCFコネクタ710cを備える。MCFコネクタ710cは、自ノードに割り当てられた信号伝送用コア601により伝送された光信号を分岐する。MCFコネクタ710cは、自ノードから宛先のノードへの伝送に割り当てられた信号伝送用コア601に光信号を挿入する。コネクタ710cは、他の信号伝送用コア601の光信号を中継する。さらに、MCFコネクタ710cは、MCF600-acの光給電用コア602からMCF600-cbの光給電用コア602に給電用レーザー光を中継する。ノード510cが中継ノードである場合、MCFコネクタ710cは、光信号の中継と給電用レーザー光の中継のみを行う。
 ノード510a及びノード510bの動作は、光給電システム500のノード510a及びノード510bの動作と同様である。
 また、送信側給電用コネクタ730、受信側給電用コネクタ740、及び、MCFが対応していれば、途中で光給電用コア602がMCF600中の別のコアになってもよい。
 図15は、ノード510aとノード510bとの間に、ノード510dが設置された光給電システム502の構成例を示す図である。同図において、図10に示す光給電システム500と同一の部分には同一の符号を付し、その説明を省略する。ノード510aとノード510dとの間、及び、ノード510bとノード510dとの間はMCF600によりそれぞれ接続される。ノード510aとノード510dとの間を接続するMCF600をMCF600-adと記載する。ノード510dとノード510bとの間のMCF600をMCF600-dbと記載する。
 ノード510dは、例えば、上述した通信システムの送受信ノード又はAdd/Dropノード、あるいは、上述した通信システムのノード間に設置される中継ノードである。同図では、ノード510dが中継ノードである場合を例に示している。
 ノード510dは、MCFコネクタ710dを備える。MCFコネクタ710dは、MCFコネクタ710cと同様の処理を行う。ただし、MCF600-adとMCF600-dbとでは、各ノードに対応する信号伝送用コア601の位置及び光給電用コア602の位置が異なる。そこで、MCFコネクタ710dは、MCF600-adとMCF600-dbとの間で、同一の送信先ノード及び宛先ノードに割り当てられた信号伝送用コア601同士が接続され、光給電用コア602同士が接続されるように中継を行う。
 また、MCF中に光給電用コアが複数あってもよい。
 図16は、複数の光給電用コアを用いる光給電システム503の構成例を示す図である。同図において、図10に示す光給電システム500と同一の部分には同一の符号を付し、その説明を省略する。光給電システム503は、MCF610により接続されるノード510aとノード510bとを備えて構成される。MCF610は、1本以上の信号伝送用コア601と複数本の光給電用コア602とを有する。以下では、ノード510bとは異なる方向に隣接する他のノードとノード510aとを接続するMCF610を610-xaと記載する。ノード510aとノード510bとを接続するMCF610をMCF610-abと記載する。ノード510aとは異なる方向に隣接する他のノードとノード510bとを接続するMCF610を610-bxと記載する。
 光給電用コア602が伝送可能な光パワーには上限がある。例えば、上限を超える光パワーをMCF中に入射した場合、ファイバヒューズと呼ばれる現象で物理的に光給電用コアが破壊される恐れがある。そのため、1コアの上限を超える光パワーの給電用レーザー光を送る場合には、複数の光給電用コアを用いる必要がある。なお、一般的なSMF(シングルモードファイバ)を用いた場合に安全に伝送可能な光パワーは1W程度であることが知られている。
 ノード510aは、図10に示す送信側給電用コネクタ730に代えて、送信側給電用コネクタ830を備える。
 送信側給電用コネクタ830は、給電用レーザー720が出力した給電用レーザー光を、MCF610-abの光給電用コア602又はMCFコネクタ710aに接続する。同図では、送信側給電用コネクタ830は、MCF610-abの2本の光給電用コア602に給電用レーザー光を接続し、MCF610-xaの1本の光給電用コア602により伝送される給電用レーザー光をMCFコネクタ710aに接続している。この場合、ノード510aは、給電用レーザー720を複数備えてもよい。なお、送信側給電用コネクタ830は、MCF610-abの複数の光給電用コア602のみに給電用レーザー光を接続してもよい。さらに、送信側給電用コネクタ830は、MCFコネクタ710aとMCF610-abの信号伝送用コア601との間で光信号を中継する。
 ノード510bは、図10に示す受信側給電用コネクタ740に代えて、受信側給電用コネクタ840を備える。
 受信側給電用コネクタ840は、MCF610-abの複数の光給電用コア602により伝送された給電用レーザー光を分岐し、給電用レーザー光を光電気変換部750に接続する。受信側給電用コネクタ840は、さらに、MCF610-bxの光給電用コア602により伝送された給電用レーザー光をMCFコネクタ710bから分岐し、給電用レーザー光を光電気変換部750に接続してもよい。この場合、ノード510bは、光電気変換部750を複数備えてもよい。また、受信側給電用コネクタ840は、MCF610-abの信号伝送用コア601とMCFコネクタ710bとの間で光信号を中継する。
 なお、MCFコネクタ710aと送信側給電用コネクタ830とが、両者の機能を満たす一体のコネクタであってもよい。同様に、MCFコネクタ710bと受信側給電用コネクタ840とが、両者の機能を満たす一体のコネクタであってもよい。
 また、送信側給電用コネクタ830は、給電用レーザー720を内蔵した構成でもよい。その場合、送信側給電用コネクタ830には給電用レーザー光の光入力の代わりに、電気入力が行われる。送信側給電用コネクタ830に内蔵される給電用レーザー720は、入力された電気を給電用レーザー光に変換する。同様に、受信側給電用コネクタ840が、光電気変換部750を内蔵した構成でもよい。その場合、受信側給電用コネクタ840は、光電気変換部750が給電用レーザー光から変換した電気を出力する。
 なお、光給電用コア602の数と給電用レーザー720の数又は光電気変換部750の数とが一致する必要はない。例えば、給電用レーザー720が5個、光給電用コア602が3コア、光電気変換部750が1つなどの構成も可能である。
 例えば、光給電用コア602ごとに給電用レーザー720及び光電気変換部750を用意することもできるが、集約することで装置コストの削減あるいは占有スペースの縮小が可能となる。
 図17は、複数の光給電用コア602を備えるMCF610の断面図である。図17の左図に示すように、MCF610の断面は円形である。MCF610の内部には、同心円上に複数のコアが配置されている。複数のコアのうち、n本(nは1以上の整数)が信号伝送用コア601であり、m本(mは2以上の整数)が光給電用コア602である。信号伝送用コア601と光給電用コア602との配置は任意とすることができる。信号伝送用コア601と光給電用コア602とを図17の右図のように縦に並べて図示する際の並び順は、必ずしもMCF610における信号伝送用コア601及び光給電用コア602の配置を表すものではない。
 図18は、送信側給電用コネクタ830の構成例を示す図である。同図に示す送信側給電用コネクタ830は、第1の方向側に接続されるMCF600と第2の方向側に接続されるMCF600との両方に給電用レーザー光を供給する。
 送信側給電用コネクタ830は、n本の信号用伝送路831及び2m本の給電用伝送路832を有する。信号用伝送路831及び給電用伝送路832には、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることができる。
 送信側給電用コネクタ830は、信号用伝送路831により、第1の方向側に接続されるMCF600の信号伝送用コア601と第2の方向側に接続されるMCF600の信号伝送用コア601との間で光信号を中継する。信号用伝送路831は、直接、あるいは、MCFコネクタ710aを介して信号伝送用コア601と接続される。
 送信側給電用コネクタ830は、給電用伝送路832により、第1の方向側に接続されるMCF600の光給電用コア602又は第2の方向側に接続されるMCF600の光給電用コア602に、給電用レーザー720から出力される給電用レーザー光を接続する。給電用伝送路832は、直接、あるいは、MCFコネクタ710aを介して、光給電用コア602と接続される。なお、送信側給電用コネクタ830は、第1の方向側のみに、あるいは、第2の方向側のみに、給電用レーザー光を接続してもよい。また、第1の方向側の光給電用コア602の数と、第2の方向側の光給電用コア602の数が異なっていてもよい。また、送信側給電用コネクタ830は、複数の給電用レーザー720から出力される給電用レーザー光を、光給電用コア602のコア数分(給電用伝送路832の数)だけ光入力してもよい。この場合、送信側給電用コネクタ830は、それらの給電用レーザー光を合波してから入力し、送信側給電用コネクタ830の内部で分波してもよい。
 図19は、受信側給電用コネクタ840の構成例を示す図である。同図に示す受信側給電用コネクタ840は、第1の方向側に接続されるMCF600と第2の方向側に接続されるMCF600との両方から、給電用レーザー光を分岐する。
 受信側給電用コネクタ840は、n本の信号用伝送路841及び2m本の給電用伝送路842を有する。信号用伝送路841及び給電用伝送路842には、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることができる。
 受信側給電用コネクタ840は、信号用伝送路841により、第1の方向側に接続されるMCF600の信号伝送用コア601と第2の方向側に接続されるMCF600の信号伝送用コア601との間で光信号を中継する。信号用伝送路841はそれぞれ、直接、あるいは、MCFコネクタ710bを介して、MCF610の信号伝送用コア601と接続される。
 受信側給電用コネクタ840は、第1の方向側に接続されるMCF600の光給電用コア602又は第2の方向側に接続されるMCF600の光給電用コア602により伝送された給電用レーザー光を分岐する。受信側給電用コネクタ840は、給電用レーザー光を給電用伝送路842により光電気変換部750に接続する。給電用伝送路842は、直接、あるいは、MCFコネクタ710bを介して、光給電用コア602と接続される。なお、受信側給電用コネクタ840は、第1の方向側の光給電用コア602のみから、あるいは、第2の方向側の光給電用コア602のみから、給電用レーザー光を分岐してもよい。また、第1の方向側の光給電用コア602のコアの数と、第2の方向側の光給電用コア602の数が異なっていてもよい。また、受信側給電用コネクタ840は、複数の光給電用コア602から分岐した給電用レーザー光を、光給電用コア602のコア数分だけ光出力してもよい。受信側給電用コネクタ840は、コア数分の給電用レーザー光を光出力する場合、受信側給電用コネクタ840は、コア数分の給電用レーザー光を合波し、合波された給電用レーザー光を出力してもよい。
 上記構成により、光給電システム503において、ノード510aの送信側給電用コネクタ830は、給電用レーザー720が出力する給電用レーザー光をMCF610-abの複数の光給電用コア602及びMCFコネクタ710aに接続する。ノード510bの受信側給電用コネクタ840は、MCF610-abの複数の光給電用コア602から給電用レーザー光を分岐し、給電用レーザー光を光電気変換部750に接続する。光電気変換部750は、給電用レーザー光を電気に変換し、電気を給電対象設備760に供給する。また、ノード510aのMCFコネクタ710aは、送信側給電用コネクタ830から挿入された給電用レーザー光を、MCF610-xaの光給電用コア602に中継する。給電用レーザー光の伝送と独立に、MCF610の信号伝送用コア601は、光信号を伝送する。MCFコネクタ710a、710bは、自ノードに割り当てられた信号伝送用コア601により伝送された光信号を分岐する。MCFコネクタ710a、710bは、宛先のノードに割り当てられた光信号を信号伝送用コア601に挿入する。MCFコネクタ710a、710bは、他の信号伝送用コア601の光信号を中継する。
 このように、MCF610の複数の光給電用コア602を用いて、給電対象設備760がある1又は複数のノードに、光給電を行うことが可能である。1ノードの給電先のノードに対する給電元のノードは1ノードでもよく、複数ノードでもよい。また、1つの光給電元のノードから光給電対象設備760がある1又は複数の給電先のノードに対して光給電を行うことも可能である。
 なお、複数のノード510bが、MCF600を介して直列に接続される場合、各ノード510bの受信側給電用コネクタ740は、光給電用コア602により伝送された給電用レーザー光の一部のみを分岐し、残りの給電用レーザー光を次のノード510b側に中継するようにしてもよい。これにより、1つのノードから供給された給電用レーザー光により、複数のノードに給電することが可能となる。
 図20は、給電先のノードを直列に配置した光給電システム504の構成例を示す図である。同図において、図10に示す光給電システム500と同一の部分には同一の符号を付し、その説明を省略する。
 光給電システム504では、ノード510aと複数のノード510bとを直列に配置されている。同図では、ノード510aと2台のノード510bが直列に配置されている場合を例に示しているが、3台以上のノード510bが配置されてもよい。各ノード間は、MCF600により接続される。ノード510bは、図13に示す受信側給電用コネクタ740に代えて、図21に示す受信側給電用コネクタ850を備える。
 図21は、受信側給電用コネクタ850の構成例を示す図である。受信側給電用コネクタ850は、複数本の信号用伝送路851と1本の給電用伝送路852とを有する。信号用伝送路851及び給電用伝送路852には、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることができる。
 受信側給電用コネクタ850は、信号用伝送路851により、第1の方向側に接続されるMCF600の信号伝送用コア601と第2の方向側に接続されるMCF600の信号伝送用コア601との間で光信号を中継する。信号用伝送路851は、直接、あるいは、MCFコネクタ710bを介して、MCF600の信号伝送用コア601と接続される。
 受信側給電用コネクタ850は、給電用伝送路852により、第1の方向側に接続されるMCF600の光給電用コア602から伝送された給電用レーザー光の一部を分岐し、分岐した給電用レーザー光を光電気変換部750に接続する。受信側給電用コネクタ850は、残りの給電用レーザー光を第2の方向に接続されるMCF600の光給電用コア602に接続する。給電用伝送路852は、直接、あるいは、MCFコネクタ710bを介して、MCF600の光給電用コア602と接続される。
 光給電システム504のノード510aの動作は、光給電システム501のノード510aの動作と同様である。ノード510aと隣接するノード510bに備えられる受信側給電用コネクタ850は、ノード510aとノード510bとの間のMCF600から給電用レーザー光の一部を分岐し、一部の給電用レーザー光を光電気変換部750に接続する。受信側給電用コネクタ850は、残りの給電用レーザー光をMCFコネクタ710bに中継する。MCFコネクタ710bは、受信側給電用コネクタ850から入力された給電用レーザー光を、ノード510b、510bの間を接続するMCF600の光給電用コア602に接続し、給電用レーザー光を中継する。他のノード510bも同様に動作する。なお、光信号に関する動作は、光給電システム501と同様である。
 なお、ここでは、1つの光給電用コアを使う場合について説明を行ったが、MCF内の複数コアを光給電用コアとして用いる場合には、各光給電用コアをノードごとに割り当てて光給電を実施してもよい。その場合は、受信側給電用コネクタ850は、自ノードに割り当てられた光給電用コアで伝送された給電用レーザー光を自ノードの光電気変換部750に接続する。受信側給電用コネクタ850は、自ノード以外に割り当てられた光給電用コアで伝送された給電用レーザー光を、MCFコネクタ710bへ中継する。
 また、1つの光給電用コアをノード間で共有する形態と、ノードごとに光給電用コアを割り当てる形態を組み合わせてもよい。
 本実施形態によれば、MCF中の給電専用のコアに給電用の光を流し、受信ノード側で光-電気変換により電気を得ることができる。
[第2の実施形態]
 本実施形態は、MCFの同一のコアにおいて通信用の光信号と給電用の光とを伝送するコア共有型の光給電システムである。
 図22は、本実施形態によるコア共有型の光給電システム520の構成例を示す図である。光給電システム520は、MCF620により接続されるノード530aとノード530bとを備えて構成される。
 ノード530aは、例えば、上述した本実施形態を適用可能な通信システムの送受信ノード又はAdd/Dropノード、あるいは、上述した本実施形態を適用可能な通信システムのノード間に設置される中継ノードである。ノード530bは、例えば、上述した本実施形態を適用可能な通信システムのAdd/Dropノード、又は、上述した本実施形態を適用可能な通信システムのノード間に設置される中継ノードであるが、送受信ノードであってもよい。同図では、ノード530a及びノード530bがAdd/Dropノードである場合を示している。なお、ノード530a及びノード530bが、上述した通信システムとは異なるトポロジの通信システムを構成するノードであってもよい。また、同図では、ノード530aが、ノード530bとは異なる方向に隣接する他のノードともMCF620により接続されている場合を示しているが、他のノードと接続されていなくてもよい。また、同図では、ノード530bが、ノード530aとは異なる方向に隣接する他のノードともMCF620により接続されている場合を示しているが、他のノードとは接続されていなくてもよい。
 以下では、ノード530bとは異なる方向に隣接する他のノードとノード530aとを接続するMCF620を620-xaと記載する。ノード530aとノード530bとを接続するMCF620をMCF620-abと記載する。ノード530aと異なる方向に隣接する他のノードとノード530bとを接続するMCF620を620-bxと記載する。
 MCF620は、j本の信号伝送用コア601とk本の共有コア603とを有する(j+k≧1、jは0以上の整数、kは1以上の整数)。共有コア603は、信号伝送用コア601として用いることが可能である。よって、信号伝送用コア601は共有コア603により実現されてもよく、MCF620は共有コア603のみを有してもよい。共有コア603は、通信用の光信号と、給電用レーザー光とを伝送する。給電用レーザー光の波長は、光信号の波長と異なる。
 ノード530aは、MCFコネクタ910(コア接続部)、給電用レーザー720、及び、送信側給電用コネクタ930を備える。ノード530aが備えるMCFコネクタ910を、MCFコネクタ910aと記載する。
 MCFコネクタ910aは、MCF620-xa又は送信側給電用コネクタ930から自ノードに割り当てられた信号伝送用コア601又は共有コア603により伝送された光信号を分岐する。また、MCFコネクタ910aは、宛先のノードに割り当てられた信号伝送用コア601又は共有コア603により伝送される光信号を、MCF620-xa又は送信側給電用コネクタ930に挿入する。MCFコネクタ910aは、MCF620-xaと送信側給電用コネクタ930との間で、自ノードにてAdd/Dropを行わない信号伝送用コア601又は共有コア603により伝送された光信号を中継する。さらに、MCFコネクタ910aは、送信側給電用コネクタ930から入力された給電用レーザー光をMCF620-xaの共有コア603に中継する。ノード530aが中継ノードである場合、MCFコネクタ910aは、全ての光信号及び給電用レーザー光を中継する。
 送信側給電用コネクタ930は、給電用レーザー720が出力した給電用レーザー光を、MCF620-abの共有コア603に接続する。送信側給電用コネクタ930は、MCF620-xaの共有コア603により伝送する給電用レーザー光をMCFコネクタ910aに接続してもよい。この場合、ノード530aは、給電用レーザー720を複数備えてもよい。さらに、送信側給電用コネクタ930は、MCFコネクタ910aとMCF620-abの信号伝送用コア601及び共有コア603との間で光信号を中継する。
 ノード530bは、MCFコネクタ910、受信側給電用コネクタ940、光電気変換部750、及び、給電対象設備760を備える。ノード530bが備えるMCFコネクタ910を、MCFコネクタ910bと記載する。
 MCFコネクタ910bは、MCF620-bx又は受信側給電用コネクタ940から、自ノードに割り当てられた信号伝送用コア601又は共有コア603により伝送された光信号を分岐する。また、MCFコネクタ910bは、宛先のノードに割り当てられた信号伝送用コア601又は共有コア603により伝送する光信号を、MCF620-bx又は受信側給電用コネクタ940に挿入する。MCFコネクタ910bは、受信側給電用コネクタ940とMCF620-bxとの間で、自ノードにてAdd/Dropを行わない信号伝送用コア601又は共有コア603により伝送された光信号を中継する。さらに、MCFコネクタ910bは、MCF620-bxの共有コア603から入力された給電用レーザー光を受信側給電用コネクタ940に接続し、給電用レーザー光を中継する。ノード530bが中継ノードである場合、MCFコネクタ910bは、信号伝送用コア601又は共有コア603により伝送された全ての光信号を中継する。
 受信側給電用コネクタ940は、MCF620-abの共有コア603により伝送された給電用レーザー光を波長分離により分岐して光電気変換部750に接続する。受信側給電用コネクタ940は、さらに、MCF620-bxの共有コア603により伝送された給電用レーザー光を波長分離によりMCFコネクタ910bから分岐して光電気変換部750に接続してもよい。この場合、ノード530bは、光電気変換部750を複数備えてもよい。また、受信側給電用コネクタ940は、MCFコネクタ910bとMCF620-abの信号伝送用コア601及び共有コア603との間で光信号を中継する。
 なお、MCFコネクタ910aと送信側給電用コネクタ930とが、両者の機能を満たす一体のコネクタであってもよい。同様に、MCFコネクタ910bと受信側給電用コネクタ940とが、両者の機能を満たす一体のコネクタであってもよい。
 また、送信側給電用コネクタ930は、給電用レーザー720を内蔵した構成でもよい。その場合、送信側給電用コネクタ930には給電用レーザー光の光入力の代わりに、電気入力が行われる。送信側給電用コネクタ930に内蔵される給電用レーザー720は、入力された電気を給電用レーザー光に変換する。
 また、受信側給電用コネクタ940が、光電気変換部750を内蔵した構成でもよい。その場合、受信側給電用コネクタ940は、光電気変換部750が給電用レーザー光から変換した電気を出力する。
 図23は、MCF620の断面図である。図23の左図に示すように、MCF620の断面は円形である。なお、MCF620の断面形状は円形以外でもよい。MCF620の内部には、同心円上に等間隔で複数のコアが配置されているが、コアの配置は任意とすることができる。複数のコアのうち、n本(nは0以上の整数)が信号伝送用コア601であり、m本(mは1以上の整数)が共有コア603である。同図では、n=5、m=1の場合を示している。信号伝送用コア601と共有コア603とを図23の右図のように縦に並べて図示する際の並び順は、必ずしもMCF620における信号伝送用コア601及び共有コア603の配置を表すものではない。また、n本の信号伝送用コア601のうち、使用されない一部の信号伝送用コア601の記載を省略し、使用される信号伝送用コア601を抜き出して記載する。
 図24は、送信側給電用コネクタ930の構成例を示す図である。同図に示す送信側給電用コネクタ930は、第1の方向側に接続されるMCF600と第2の方向側に接続されるMCF600との両方に給電用レーザー光を供給する。
 送信側給電用コネクタ930は、n本の信号用伝送路931、m本の共有伝送路932、及び、2m個の光結合部933を有する。信号用伝送路931及び共有伝送路932には、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることができる。
 送信側給電用コネクタ930は、信号用伝送路931により、第1の方向側に接続されるMCF600の信号伝送用コア601と第2の方向側に接続されるMCF600の信号伝送用コア601との間で光信号を中継する。信号用伝送路931は、直接、あるいは、MCFコネクタ910aを介して、信号伝送用コア601と接続される。
 送信側給電用コネクタ930は、共有伝送路932により、第1の方向側に接続されるMCF600の共有コア603と第2の方向側に接続されるMCF600の共有コア603との間で、光信号を中継する。
 光結合部933は、各共有伝送路932の第1の方向側及び第2の方向側のそれぞれに1台ずつ配置される。第1の方向側に設置された光結合部933は、共有伝送路932により中継される第1の方向の光信号に、給電用レーザー720から出力される給電用レーザー光を結合する。第2の方向側に設置された光結合部933は、共有伝送路932により中継される第2の方向の光信号に、給電用レーザー720から出力される給電用レーザー光を結合する。
 なお、光結合部933は、第1の方向側の共有コア603により伝送する光信号のみに、あるいは、第2の方向側の共有コア603により伝送する光信号のみに、給電用レーザー光を結合してもよい。この場合、共有伝送路932に光結合部933が1つのみ配置されてもよい。光結合部933には、例えば、導波路結合やサーキュレータなどが用いられる。なお、第1の方向及び第2の方向それぞれに配置された光結合部933は、両者の機能を兼ね備えた一体の光結合部であってもよい。
 図25は、受信側給電用コネクタ940の構成例を示す図である。同図に示す受信側給電用コネクタ940は、第1の方向側に接続されるMCF600と第2の方向側に接続されるMCF600との両方から、給電用レーザー光を分岐する。
 受信側給電用コネクタ940は、n本の信号用伝送路941、m本の共有伝送路942、及び、2m個の波長抽出機能部943を有する。信号用伝送路941及び共有伝送路942には、図2A、図2B、図3A、図3B、図4A及び図4Bにおいて示したように細径ファイバや光導波路、光学系などを用いることができる。
 受信側給電用コネクタ940は、信号用伝送路941により、第1の方向側に接続されるMCF600の信号伝送用コア601と第2の方向側に接続されるMCF600の信号伝送用コア601との間で光信号を中継する。信号用伝送路941はそれぞれ、直接、あるいは、MCFコネクタ910bを介して、MCF620の信号伝送用コア601と接続される。
 受信側給電用コネクタ940は、共有伝送路942により、第1の方向側に接続されるMCF600の共有コア603と第2の方向側に接続されるMCF600の共有コア603との間で光信号を中継する。
 波長抽出機能部943は、各共有伝送路932の第1の方向側及び第2の方向側のそれぞれに1台ずつ配置される。第1の方向側に設置された波長抽出機能部943は、共有伝送路942において第2の方向に伝送される光信号及び給電用レーザー光から、波長分離により給電用レーザー光を抽出する。波長抽出機能部943は、抽出した給電用レーザー光を光電気変換部750に接続し、光信号をそのまま第2の方向に中継する。第2の方向側に設置された波長抽出機能部943は、共有伝送路942において第1の方向に伝送される光信号及び給電用レーザー光から、波長分離により給電用レーザー光を抽出する。波長抽出機能部943は、抽出した給電用レーザー光を光電気変換部750に接続し、光信号をそのまま第1の方向に中継する。波長抽出機能部943には、例えば、AWG(アレイ導波路:arrayed waveguide grating)やサーキュレータとFBG(ファイバーブラッググレーティング)などが用いられる。なお、第1の方向側及び第2の方向側それぞれに配置された波長抽出機能部943は、両者の機能を兼ね備えた一体の波長抽出機能部であってもよい。
 上記構成により、光給電システム520において、ノード530aのMCFコネクタ910aは、MCF620-xaの信号伝送用コア601から受信した光信号を送信側給電用コネクタ930の信号用伝送路931に中継する。また、MCFコネクタ910aは、送信側給電用コネクタ930の信号用伝送路931からの光信号を、MCF620-xaの信号伝送用コア601に中継する。さらに、MCFコネクタ910aは、ノード530bが宛先の光信号を送信側給電用コネクタ930の共有伝送路932に挿入する。
 なお、共有コア603により伝送される光信号がノード530aにおいて分岐すべき光信号ではない場合、MCFコネクタ910aは、MCF620-xaの共有コア603により伝送された光信号を送信側給電用コネクタ930の共有伝送路932に中継する。
 送信側給電用コネクタ930は、MCFコネクタ910aが信号用伝送路931に接続した光信号を、MCF620-abの信号伝送用コア601に中継する。送信側給電用コネクタ930は、MCF620-abの信号伝送用コア601から接続した光信号をMCFコネクタ910aに中継する。さらに、送信側給電用コネクタ930は、MCFコネクタ910aが共有伝送路932に挿入した光信号に、給電用レーザー720が出力する給電用レーザー光を結合する。送信側給電用コネクタ930は、給電用レーザー光を結合させた光信号をMCF620-abの共有コア603に挿入する。
 ノード530bの受信側給電用コネクタ940は、MCF620-abの信号伝送用コア601から接続した光信号をMCFコネクタ910bに中継する。受信側給電用コネクタ940は、MCFコネクタ910bが信号用伝送路941に挿入した光信号を、MCF620-abの信号伝送用コア601に中継する。さらに、受信側給電用コネクタ940は、MCF620-abの共有コア603により伝送された光信号及び給電用レーザー光を、共有伝送路932に接続する。波長抽出機能部943は、共有伝送路932に接続された光信号及び給電用レーザー光のうち、給電用レーザー光を波長分離により分波する。波長抽出機能部943は、給電用レーザー光を光電気変換部750に接続し、光信号をMCFコネクタ910bに中継する。光電気変換部750は、給電用レーザー光を電気に変換し、電気を給電対象設備760に供給する。
 ノード530bのMCFコネクタ910bは、受信側給電用コネクタ940の信号用伝送路931により伝送された光信号を、MCF620-bxの信号伝送用コア601に中継する。また、MCFコネクタ910bは、受信側給電用コネクタ940の共有伝送路932により伝送された自ノード宛ての光信号を分岐する。さらに、MCFコネクタ910bは、宛先のノードに割り当てられた信号伝送用コア601に光信号を挿入する。
 なお、共有コア603により伝送される光信号がノード530bにおいて分岐すべき光信号ではない場合、MCFコネクタ910bは、受信側給電用コネクタ940の共有伝送路932により伝送された光信号を、MCF620-bxの共有コア603に中継する。
 なお、図14に示す第1の実施形態の光給電システム501のノード510cと同様に、ノード530aとノード530bとの間の他のノードが光伝送を中継してもよい。
 また、送信側給電用コネクタ930、受信側給電用コネクタ940、及び、MCF620が対応しているのであれば、図15に示す第1の実施形態の光給電システム502の光給電用コア602と同様に、途中で共有コア603がMCF620中の別の位置のコアになってもよい。
 また、本実施形態では、光信号と給電用の光とがノード530aとノード530bとの間で授受される説明を行ったが、光信号の授受の区間と給電用の光の授受の区間は独立でもよい。その場合、MCFコネクタ910a及びMCFコネクタ910bには、給電用の光を中継させる機能部が必要となる。
 また、図20に示す第1の実施形態の光給電システム504のノード510bと同様に、複数のノード530bを、MCF620を介して直列に配置してもよい。各ノード530bの受信側給電用コネクタ940は、共有コア603により伝送された給電用レーザー光の一部を分岐する。受信側給電用コネクタ940は、光信号及び残りの給電用レーザー光を次のノード530bとの間のMCF620の共有コア603に中継する。この場合、各ノード510bによって給電に用いる給電用レーザー光の波長を変え、受信側給電用コネクタ940の波長抽出機能部943は、自ノードに割り当てられた波長の給電用レーザー光を分離し、他の波長の給電用レーザー光を光信号と共に中継してもよい。
 なお、上述した実施形態では、1本の共有コア603を使う場合について説明を行ったが、複数の共有コア603を用いる場合には、各共有コア603をノードごとに割り当てて光給電を実施してもよい。その場合は、受信側給電用コネクタ940は、自ノードに割り当てられた共有コア603で伝送された給電用レーザー光を自ノードの光電気変換部750に接続する。受信側給電用コネクタ940は、自ノード以外に割り当てられた共有コア603で伝送された光を、MCFコネクタ910bへ中継する。
 また、1つの共有コア603の給電用レーザー光をノード間で共有する形態と、ノードごとに共有コア603の給電用レーザー光を割り当てる形態を組み合わせてもよい。
 また、MCFが対応していれば、第1の実施形態のコア占有型の光給電システム500、501、502、503、504に、コア共有型の光給電システム520の送信側給電用コネクタ930、受信側給電用コネクタ940を用いてもよい。
 また、共有コア603の数と給電用レーザー720の数又は光電気変換部750の数が一致する必要はない。例えば、給電用レーザー720が5個、共有コア603が3コア、光電気変換部750が1つなどの構成も可能である。
 光信号の信号伝送先と給電用レーザー光の光給電先とが同一であり、同一の共有コア603を用いてそれらの光信号と給電用レーザー光とを伝送する場合には、送信側給電用コネクタ930が光信号と給電用レーザー光とを合波しなくてもよい。この場合、MCFコネクタ910aへ入力する前に光信号と給電用レーザー光とが合波されてもよい。同様に、光信号の信号伝送先と給電用レーザー光の光給電先とが同一であり、同一の共有コア603を用いて光信号と給電用レーザー光とを伝送する場合には、受信側給電用コネクタ940が光信号と給電用レーザー光とを分波しなくてもよい。この場合、MCFコネクタ910bへの接続時あるいは接続後に光信号と給電用レーザー光とが分波されてもよい。
 本実施形態によれば、MCF中の少なくとも一部のコアを信号伝送と光給電に併用し、受信ノード側に電気を供給することができる。
 以上説明した本発明の実施形態によれば、ノードに設置される装置への光給電が可能となる。よって、電源設備のない場所への送電や、装置への接続配線の簡略化が可能となる。また、給電用レーザー光により給電される電力が、二次電池又はキャパシタなどに蓄えられてもよい。給電対象設備は、光電気変換部750から供給される電力で動作してもよいし、二次電池又はキャパシタなどに蓄えられた電力で動作してもよい。
 上述した各実施形態では、ノード間の接続にMCFが用いられた構成について説明した。実施形態で説明した構成に限らず、図9及び図10に示したようにノード間の接続にSCFが用いられてもよい。ノード間の接続にSCFが用いられている場合においても、給電用レーザー光は給電元のノードから給電先のノードへ伝送されるので、ノード間の接続にMCFが用いられている場合と同様に、光給電が可能である。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 マルチコアファイバによりノード間の信号を伝送するシステムに利用可能である。
100、100A、100C、100D 通信システム
110、110a、110b 送受信ノード
111-1~111-6 送信装置
112-1~112-6 受信装置
113-1~113-6 送受信装置
120、120-1~120-3 Add/Dropノード
121-1~121-3 送信装置
122-1~122-3 受信装置
125-1~125-3 送受信装置
126-1~126-3 送受信装置
150、150-1~150-3 コネクタ
160-1~160-4 コネクタ
180-1~180-3 コネクタ
185-1~185-3 コネクタ
200-1~200-4、200-21、200-22 MCF(マルチコアファイバ)
201、201-1~201-4、201-21、202-21、203-21、201-22、202-22、203-22 コア
202、202-1~202-4 コア
203、203-1~203-4 コア
210-1~210-4 MCF(マルチコアファイバ)
211、211-1~211-4 コア
212、212-1~212-4 コア
213、213-1~213-4 コア
214、214-1~214-4 コア
215、215-1~215-4 コア
216、216-1~216-4 コア
400-1、400-2 変換コネクタ
410-1、410-2 変換コネクタ
451、452、453 SCF(シングルコアファイバ)
500、501、502、504、504、520 光給電システム
510a、510b、510c、510d、530a、530b ノード
601 信号伝送用コア
602 光給電用コア
603 共有コア
710、710a、710b、710c、710d コネクタ
720 給電用レーザー
730 送信側給電用コネクタ
731 信号用伝送路
732 給電用伝送路
740 受信側給電用コネクタ
741 信号用伝送路
742 給電用伝送路
750 光電気変換部
830 送信側給電用コネクタ
831 信号用伝送路
832 給電用伝送路
840 受信側給電用コネクタ
841 信号用伝送路
842 給電用伝送路
843 波長抽出機能部
850 受信側給電用コネクタ
851 信号用伝送路
852 給電用伝送路
910、910a、910b コネクタ
930 送信側給電用コネクタ
931 信号用伝送路
932 共有伝送路
933 光結合部
940 受信側給電用コネクタ
941 信号用伝送路
942 共有伝送路
943 波長抽出機能部

Claims (8)

  1.  3つ以上のノードを備え、ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている光給電システムにおけるノードであって、
     前記マルチコアファイバが有する前記コアから給電用の光の一部又は全てを分岐する給電光分岐部と、
     前記給電光分岐部が分岐した前記給電用の光を電気に変換する光電気変換部と、
     前記光電気変換部により変換された電気により動作する給電対象設備と、
     を備えるノード。
  2.  3つ以上のノードを備え、ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている光給電システムにおけるノードであって、
     前記マルチコアファイバが有する前記コアのうち少なくとも一部のコアに給電用の光を接続する給電光接続部、
     を備えるノード。
  3.  前記マルチコアファイバは、通信用の光及び前記給電用の光を伝送する前記コアを有する、
     請求項1又は請求項2に記載のノード。
  4.  前記マルチコアファイバは、通信用の光を伝送する前記コアと、前記給電用の光を伝送する前記コアとを有する、
     請求項1又は請求項2に記載のノード。
  5.  前記給電用の光を伝送する前記コアは、ハイパワー伝送可能である、
     請求項4に記載のノード。
  6.  前記給電用の光の波長は、通信用の光が使用する波長帯に含まれる、
     請求項1又は請求項2に記載のノード。
  7.  前記給電用の光の波長は、通信用の光が使用する波長帯に含まれない、
     請求項1又は請求項2に記載のノード。
  8.  3つ以上のノードを備え、ノード間の接続のうち少なくとも一部の区間に複数のコアを有するマルチコアファイバが用いられている光給電システムであって、
     給電元の前記ノードは、
     前記マルチコアファイバが有する前記コアのうち少なくとも一部のコアに給電用の光を接続する給電光接続部を備え、
     給電先の前記ノードは、
     前記マルチコアファイバが有する前記コアにより伝送された前記給電用の光を分岐する給電光分岐部と、
     前記給電光分岐部が分岐した前記給電用の光を電気に変換する光電気変換部と、
     前記光電気変換部により変換された電気により動作する給電対象設備と、
     を備える、
     光給電システム。
PCT/JP2016/084594 2015-11-26 2016-11-22 ノード及び光給電システム WO2017090608A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680068723.2A CN108292959B (zh) 2015-11-26 2016-11-22 节点以及光供电系统
US15/778,972 US20180343067A1 (en) 2015-11-26 2016-11-22 Node and optical power supply system
EP16868551.9A EP3364570B1 (en) 2015-11-26 2016-11-22 Node and optical power supply system
JP2017552661A JP6527593B2 (ja) 2015-11-26 2016-11-22 ノード及び光給電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-230874 2015-11-26
JP2015230874 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090608A1 true WO2017090608A1 (ja) 2017-06-01

Family

ID=58764225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084594 WO2017090608A1 (ja) 2015-11-26 2016-11-22 ノード及び光給電システム

Country Status (5)

Country Link
US (1) US20180343067A1 (ja)
EP (1) EP3364570B1 (ja)
JP (1) JP6527593B2 (ja)
CN (1) CN108292959B (ja)
WO (1) WO2017090608A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010205A (ja) * 2018-07-10 2020-01-16 大井電気株式会社 受光中継装置、受光反射装置および光送受信装置
JP2020095128A (ja) * 2018-12-12 2020-06-18 古河電気工業株式会社 光ファイバおよび光システム
CN112054846A (zh) * 2019-06-06 2020-12-08 京瓷株式会社 光电适配器以及能够输入输出电力的光传输电缆
CN112311474A (zh) * 2019-08-02 2021-02-02 京瓷株式会社 光纤供电系统以及光纤供电系统的供电侧数据通信装置
WO2022024270A1 (ja) * 2020-07-29 2022-02-03 日本電信電話株式会社 光給電システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090622A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 通信システム及びコネクタ
WO2020257656A1 (en) * 2019-06-21 2020-12-24 Commscope Technologies Llc Concentric-core fibers and system using same
JP6814258B1 (ja) * 2019-08-02 2021-01-13 京セラ株式会社 光ファイバー給電システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7359647B1 (en) * 2004-04-06 2008-04-15 Nortel Networks, Ltd. Method and apparatus for transmitting and receiving power over optical fiber
WO2013128929A1 (ja) * 2012-03-02 2013-09-06 日本電気株式会社 光伝送システムおよび光伝送方法
JP2014013311A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 光ファイバ及び光通信システム
JP2014042166A (ja) * 2012-08-22 2014-03-06 Sumitomo Electric Ind Ltd 光学装置および給電システム
JP2015114548A (ja) * 2013-12-12 2015-06-22 日本電信電話株式会社 光合分波器および光通信システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844154B2 (en) * 2007-05-07 2010-11-30 Corning Incorporated Optical fiber for optical power transmission
CN201336663Y (zh) * 2009-01-07 2009-10-28 武汉烽火富华电气有限责任公司 一种带有备用激光器的激光供能系统
WO2011030306A1 (en) * 2009-09-09 2011-03-17 Thinkeco Power Inc. Method and system of aggregating and delivering electrical power using fiber optic cables
US8660435B2 (en) * 2010-05-11 2014-02-25 The Invention Science Fund I, Llc Optical power distribution system
CN104579501B (zh) * 2014-12-30 2017-08-29 中冶京诚工程技术有限公司 一种基于激光供电的光通讯系统及方法
CN104991105A (zh) * 2015-07-14 2015-10-21 国家电网公司 基于光纤的远程供能的高压线电流传感检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7359647B1 (en) * 2004-04-06 2008-04-15 Nortel Networks, Ltd. Method and apparatus for transmitting and receiving power over optical fiber
WO2013128929A1 (ja) * 2012-03-02 2013-09-06 日本電気株式会社 光伝送システムおよび光伝送方法
JP2014013311A (ja) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd 光ファイバ及び光通信システム
JP2014042166A (ja) * 2012-08-22 2014-03-06 Sumitomo Electric Ind Ltd 光学装置および給電システム
JP2015114548A (ja) * 2013-12-12 2015-06-22 日本電信電話株式会社 光合分波器および光通信システム

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Business Network Frontiers, What is ''Optical power supply system", DELIVERS ELECTRIC POWER VIA OPTICAL FIBER?, 11 November 2014 (2014-11-11), Retrieved from the Internet <URL:http://businessnetwork.jp/Detail/tabid/65/artid/3674/Default.aspx>
"Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications", OPTICS EXPRESS, vol. 15, no. 18, - 2007, pages 11691 - 11697
FURUKAWA ELECTRIC CO., LTD.: "FITEL optical fiber sensing system", Retrieved from the Internet <URL:https ://www. furukawa. co .jp/fitel/system/products/unit.htm>> [retrieved on 20150710]
KAZUYUKI SHIRAKI: "R&D Trends in Optical Fiber and Cable Technology", NTT TECHNICAL JOURNAL, January 2015 (2015-01-01), pages 59 - 63
PERHIRIN,S. ET AL.: "A power -over-fiber system and its low consumption remote equipment for submarine applications", OCEANS, 10 June 2013 (2013-06-10), Bergen, XP032487976 *
SHINJI MATSUOKA: "Ultrahigh-speed Ultrahigh-capacity Transport Network Technology for Cost-effective Core and Metro Networks", NTT TECHNICAL JOURNAL, March 2011 (2011-03-01), pages 8 - 12
W. KLAUS, ET AL.: "Free-Space Coupling Optics for Multicore Fibers", PHOTONICS TECHNOLOGY LETTERS, IEEE, vol. 24, no. 21, - September 2012 (2012-09-01), pages 1902 - 1905, XP011488477, DOI: doi:10.1109/LPT.2012.2217490
YUTAKA MIYAMOTO; HIROKAZU TAKENOUCHI: "Dense Space-division-multiplexing Optical Communications Technology for Petabit-per-second Class Transmission", NTT TECHNICAL JOURNAL, August 2014 (2014-08-01), pages 52 - 56

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020010205A (ja) * 2018-07-10 2020-01-16 大井電気株式会社 受光中継装置、受光反射装置および光送受信装置
JP7019551B2 (ja) 2018-12-12 2022-02-15 古河電気工業株式会社 光ファイバおよび光システム
JP2020095128A (ja) * 2018-12-12 2020-06-18 古河電気工業株式会社 光ファイバおよび光システム
JP7399630B2 (ja) 2019-06-06 2023-12-18 京セラ株式会社 光電アダプタ
JP2020202424A (ja) * 2019-06-06 2020-12-17 京セラ株式会社 光電アダプタ及び電気入出力可能な光伝送ケーブル
US11592630B2 (en) 2019-06-06 2023-02-28 Kyocera Corporation Photoelectric adapters and optical transmission cable capable of receiving and outputting electricity
CN112054846A (zh) * 2019-06-06 2020-12-08 京瓷株式会社 光电适配器以及能够输入输出电力的光传输电缆
CN112054846B (zh) * 2019-06-06 2024-06-28 京瓷株式会社 光电适配器
CN112311474A (zh) * 2019-08-02 2021-02-02 京瓷株式会社 光纤供电系统以及光纤供电系统的供电侧数据通信装置
CN112311474B (zh) * 2019-08-02 2024-01-09 京瓷株式会社 光纤供电系统以及光纤供电系统的供电侧数据通信装置
WO2022024270A1 (ja) * 2020-07-29 2022-02-03 日本電信電話株式会社 光給電システム
JPWO2022024270A1 (ja) * 2020-07-29 2022-02-03
JP7417167B2 (ja) 2020-07-29 2024-01-18 日本電信電話株式会社 光給電システム

Also Published As

Publication number Publication date
US20180343067A1 (en) 2018-11-29
EP3364570A4 (en) 2019-05-01
EP3364570B1 (en) 2020-04-15
CN108292959A (zh) 2018-07-17
JP6527593B2 (ja) 2019-06-05
CN108292959B (zh) 2021-02-19
EP3364570A1 (en) 2018-08-22
JPWO2017090608A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
WO2017090608A1 (ja) ノード及び光給電システム
JP6480601B2 (ja) 通信システム及び故障検出方法
JP6491762B2 (ja) 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法
US9766405B2 (en) System and method for photonic detection and excitation of multiple fibre modes
EP3364569B1 (en) Optical amplification system and optical amplification method
JP6368438B2 (ja) 通信システム及びコネクタ
JP6588567B2 (ja) 通信システム及び故障箇所特定方法
WO2017090600A1 (ja) 通信システム及びコネクタ
Papapavlou et al. Progress and demonstrations on space division multiplexing
WO2023104198A1 (zh) 合分波装置、光电合封交换机系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552661

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016868551

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15778972

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE