WO2014141533A1 - 切替装置および伝送システム - Google Patents

切替装置および伝送システム Download PDF

Info

Publication number
WO2014141533A1
WO2014141533A1 PCT/JP2013/080431 JP2013080431W WO2014141533A1 WO 2014141533 A1 WO2014141533 A1 WO 2014141533A1 JP 2013080431 W JP2013080431 W JP 2013080431W WO 2014141533 A1 WO2014141533 A1 WO 2014141533A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
switching device
signal line
optical switch
monitor
Prior art date
Application number
PCT/JP2013/080431
Other languages
English (en)
French (fr)
Inventor
田中 健一
俊樹 菅原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2014141533A1 publication Critical patent/WO2014141533A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13349Network management

Definitions

  • the present invention relates to a switching device and a transmission system in which signals are transmitted and received, and when an active signal line loses the role of signal transmission, a signal line that can be reliably used is selected as a switching destination from among spare signal lines.
  • the present invention relates to a switching device and a transmission system in which a switching action is performed.
  • each node is connected by a standby signal line in addition to the active signal line for transmitting the main signal, and when the active signal line cannot transmit signals, the switching operation to the standby signal line is ensured.
  • a method of ensuring a safe and secure transmission path with a simple configuration that can be completed quickly is being studied.
  • the network is required to solve the following three problems. First, it is necessary to extract a spare signal line that can be used reliably from a plurality of spare signal lines, and to use the spare signal line as a switching destination (first requirement). Secondly, extraction of usable spare signal lines by monitoring the spare signal lines is performed in as short a time as possible, and the switching operation needs to be completed (second requirement). Thirdly, from the viewpoint of ease of equipment maintenance and renewal, it is necessary to specify the fault location in the transmission path of the switching destination including the spare signal line so that the parts can be replaced only by the fault location (third requirement) ).
  • Patent Literature 1 As a method for reliably extracting a usable signal line from a plurality of spare signal lines, a method is known in which a monitor signal is sent to the spare signal line and the status of the signal path is confirmed by a monitoring device (patent) Literature 1, Patent Literature 2).
  • a monitoring device Patent Literature 1
  • Patent Literature 2 a signal branched from a main signal is used as a monitor signal to monitor a spare signal line. Furthermore, since this monitoring is performed by the monitoring device built in the switching device and the state of the spare signal line can be grasped, it is possible to satisfy the first requirement.
  • Patent Document 2 a light source is newly provided as a monitor signal, transmitted to a spare signal line, and the spare signal line is monitored. Furthermore, since this monitoring is performed by the monitoring device built in the switching device and the state of the spare signal line can be grasped, it is possible to satisfy the first requirement. Further, in the switching device disclosed in Patent Document 2, detour paths including spare signal lines are monitored at two locations. Therefore, since it is possible to determine which of the spare signal line constituting the detour path and the optical switch that performs path switching has failed, the third requirement can be satisfied.
  • Patent Document 3 discloses an optical communication system presumed to have a function of extracting a monitor signal with a bidirectional tap PD.
  • Patent Document 1 does not satisfy the second requirement. Also, in monitoring, it is difficult to specify a fault location on a detour route. Specifically, it is difficult to determine which of the spare signal line that constitutes the detour path or the optical switch that performs path switching has failed, and parts cannot be replaced during maintenance inspections. . Therefore, Patent Document 1 does not satisfy the third requirement. For this reason, in the technique of Patent Document 1, all parts including normal parts are forced to be replaced during maintenance inspection. For this reason, the effective maintenance cost becomes high.
  • the switching device disclosed in Patent Document 2 it is possible to specify which of the backup signal line constituting the detour path and the optical switch that performs path switching is faulty.
  • the standby signal lines constituting the detour path are monitored in the apparatus built in the own switching apparatus, it is difficult to monitor the detour path in a short time. Specifically, when a detour route forms a complicated network transmission network, it takes a certain amount of time to ensure a detour route that can be used reliably. Further, there is a possibility that a transmission path that can be finally used as a switching destination is not found and an accurate switching action is not performed. Therefore, the technique of Patent Document 2 does not satisfy the second requirement.
  • the object of the present invention is to solve the above-mentioned problems, find a failure in a short time, and quickly and reliably secure a usable transmission path as a switching destination from the spare signal line, and perform switching action. It is to provide an apparatus and a transmission system.
  • the switching device including the optical switch is connected by a working signal line, a spare signal line, and a control signal line, which include waveguides or fibers through which an optical signal propagates, and includes these devices.
  • the spare signal line transmits a plurality of monitor signals to monitor the state of the signal line in advance, and each switching device controls
  • This is a switching device that determines a backup signal line suitable for a switching destination from an inactive signal line after a monitoring result is shared by a control signal that transmits the signal line.
  • it is a switching device that quickly identifies a fault location by transmitting a monitor signal that travels forward or backward in the transmission direction of the main signal line to a spare signal line.
  • the above-described object includes an optical switch unit, a signal detection unit, and an optical switch control unit that controls the optical switch based on the detection result of the signal detection unit.
  • the optical switch unit includes an active signal line and a standby signal line.
  • the signal detection unit detects a failure in the active signal line, or when the optical switch control unit is notified of a failure in the active signal line from the opposing device, the first signal is sent to the backup signal line via the optical switch.
  • the signal detection unit receives the first monitor signal and the second monitor signal received from the opposite device, and the optical switch control unit receives the first monitor signal of the signal detection unit. This can be achieved by the switching device that determines switching of the active signal line that has detected the failure to the backup signal line based on the reception result and the reception result of the second monitor signal.
  • the first switching device includes an optical switch unit, a signal detection unit, and an optical switch based on the detection result of the signal detection unit.
  • An optical switch control unit that controls the optical switch unit, and the optical switch unit is connected to the active signal line and the backup signal line, and when the signal detection unit detects a failure in the active signal line, or the optical switch control unit
  • the first monitor signal is transmitted to the standby signal line via the optical switch, and the signal detection unit transmits the first monitor signal and the second switching device.
  • the optical switch control unit detects the failure based on the reception result of the first monitor signal and the reception result of the second monitor signal of the signal detection unit. Determines switching of signal line to spare signal line
  • the transmission system that can be achieved.
  • the plurality of switching devices connected by the working signal line / the standby signal line / the control signal line are arranged before the switching operation when the working signal line for transmitting the main signal becomes unusable. Since the state of the spare signal line is monitored in advance by the monitor signal of the form and the switching operation from the active signal line to the spare signal line is performed, there are a plurality of spare signal lines to be switched to and whether or not the spare signal lines can be used is determined. There is provided a switching device that can reliably select a usable spare signal line from a plurality of spare signal lines and can quickly reserve a spare signal line as a switching destination even if it is unknown.
  • a transmission system 500 includes a switching device 100A and a switching device 100B.
  • the switching device 100A is a transmission side device.
  • the switching device 100B is a receiving side device.
  • the switching device 100 is described.
  • the switching device 100A and the switching device 100B are connected by working signal lines a, b, and c, spare signal lines d, e, and f, and a control signal line 200.
  • the switching device 100 includes an optical switch 110, an optical switch control / signal monitoring unit 120, and a signal detection unit 130.
  • the switching device 100 is connected to a monitor signal source (not shown).
  • the monitor signal source may be included in the switching device 100.
  • the switching device 100 forms a detour using a redundant path (transmission path) including a backup signal line when a failure occurs in any of a plurality of operation paths (transmission paths) including a currently used signal line. To do.
  • a redundancy switching function is provided for three operational paths a to c, and d to f are provided as redundant paths.
  • the switching device 100A branches a part of the optical signal transmitted to the working signal line and the backup signal line and transmits the branched signal to the signal detection unit 130.
  • the switching device 100B branches a part of the optical signal transmitted from the active signal line and the backup signal line and transmits the branched optical signal to the signal detection unit 130.
  • the signal detection unit 130 includes a switch (not shown).
  • the transmission side signal detection unit 130 monitors the optical signal transmitted to the working signal line or the backup signal line while switching the switch.
  • the reception-side signal detection unit 130 monitors the optical signal transmitted from the active signal line or the backup signal line while switching the switch.
  • the signal detection unit 130 may include a photodiode array. In this case, switching of the switch is not necessary.
  • the monitor signal is connected to a redundant path (transmission path) composed of spare signal lines forming a detour.
  • the optical signal which is a monitor signal is transmitted to the spare signal line through the optical switch of the switching device, and is transmitted to the optical switch of the switching device arranged at the opposite position.
  • the monitor signal from the switching device 100A is modulated at a high frequency and transmitted to the backup signal line in the same direction as the main signal.
  • the monitor signal from the switching device 100B is modulated at a low frequency and transmitted to the backup signal line in the opposite direction to the main signal.
  • the optical switch control / signal monitoring unit 120 of the transmission side switching device 100A and the optical switch control / signal monitoring unit 120 of the reception side switching device 100B are connected by a control signal line 200. As a result, the monitoring result of the monitor signal is shared between both switching devices 100.
  • the transmission-side optical switch unit 110 connects the monitor signal provided in the transmission-side switching device 100A to a backup signal line that is a redundant path when a failure occurs in any of the operation paths, and the reception optical switch unit 110 Transmit to. That is, the main signal and the monitor signal are connected to the input port of the transmission side optical switch unit 110, and the working signal line and the spare signal line are connected to the output port. Further, the optical switch unit 110 may have an empty port.
  • the reception-side optical switch unit 110 connects the monitor signal provided in the reception-side switching device 100B to a backup signal line that is a redundant path, and the transmission-side optical switch unit 110 Transmit to. That is, the main signal and the monitor signal are connected to the output port of the reception side optical switch unit 110, and the working signal line and the spare signal line are connected to the input port. Further, the reception side optical switch unit 110 may have an empty port.
  • the reception side signal detection unit 130 measures the optical signal transmitted from the transmission side optical switch unit 110.
  • the reception side optical switch control / signal monitoring unit 120 controls the connection switching operation of each optical switch of the reception side optical switch unit 110.
  • the reception-side optical switch control / signal monitoring unit 120 also monitors the measured value of the optical signal measured by the signal detection unit 130.
  • the transmission side signal detection unit 130 measures the optical signal transmitted from the reception side optical switch unit 110.
  • the transmission side optical switch control / signal monitoring unit 120 controls the connection switching operation of each optical switch of the transmission side optical switch unit 110.
  • the transmission-side optical switch control / signal monitoring unit 120 also monitors the measured value of the optical signal measured by the signal detection unit 130.
  • the switching device 100 normally operates on the working signal line when the device is operated (S21).
  • the signal detection unit 120 and the signal monitoring unit 130 determine the normality / non-normality of the line (S22).
  • the switching apparatus 100 transitions to step 21.
  • the switching device 100 transmits a monitor signal to the spare signal line and monitors the state of the spare signal line (S23).
  • the switching device 100 determines the normality / non-normality of the line by the signal detection unit 120 and the signal monitoring unit 130 (S24).
  • the switching device 100 selects a standby signal line suitable as a switching destination from the active signal line (S25).
  • the switching device 100 switches the connection from the working signal line having the non-normality to the standby signal line having the normality by using the optical switch 110 (S26).
  • the switching device 100 starts operation using the spare signal line (S27).
  • the switching device 100 confirms the normality / non-normality of the line with the signal detection unit 120 and the signal monitoring unit 130 (S28), and ends.
  • the switching device 100 sets that it is not used as a switching destination (S29), and transitions to step 23.
  • the monitor signal may be always transmitted to the standby signal line during operation regardless of the determination result of normality / non-normality of the line in step 22.
  • the subsequent steps are the same as described above.
  • the monitor signal input port is provided in the optical switch input port of the switching device optical switch unit, and the monitor signal is sent to the spare signal line so that the status can be monitored. Double failure in which a failure occurs in the path, the normality of the redundant path can be confirmed before switching is performed, and the protection signal line that is the protection does not operate normally when a failure occurs in the active path Can be prevented.
  • Example 2 With reference to FIG. 3, the structure of the signal detection part in the switching apparatus based on Example 2 is demonstrated. In FIG. 3, only one path including one signal line is shown in the switching device 100A. The same can be said even when there are a plurality of signal lines. The components of the optical switch and the optical switch control / signal monitoring unit are omitted for simplicity.
  • the switching device 100 ⁇ / b> A branches the optical signal in the middle of the optical transmission path and transmits it to the signal detection unit 130.
  • the signal detection unit 130 is called a tap monitor or a tap photodiode, and is installed on the optical transmission line and can detect a signal on the transmission line with an arbitrary branching ratio.
  • the signal detection unit 130 detects a signal with respect to a signal transmitted from both directions as indicated by a solid line and a dotted line in FIG.
  • Example 3 With reference to FIG. 4, the structure of the switching apparatus of Example 3 is demonstrated.
  • the monitor signal 1 and the monitor signal 2 are signals having different forms.
  • the monitor signal 1 passes through the optical switch 110-A and is detected by the signal detection unit 130-A of the transmission side switching device 100A and subsequently the signal detection unit 130-B of the reception side switching device 100B.
  • the The signal detection unit 130-A of the transmission side switching device 100A and the signal detection unit 130-B of the reception side switching device 100B also detect the monitor signal 2. However, since the monitor signal 1 and the monitor signal 2 have different signal forms, the signal detection unit 130 can identify and detect them.
  • the signal detection unit 130-A detects the non-normality of the monitor signal 1, it can be seen that the optical switch 110-A (A in the figure) has failed.
  • the signal detector 130-A detects the normality of the monitor signal 1 and the signal detector 130-B detects the non-normality of the monitor signal 1, it can be seen that the wiring (C in the figure) is broken.
  • the monitor signal 2 passes through the optical switch 110-B and is detected by the signal detection unit 130-B of the reception side switching device 100B and subsequently the signal detection unit 130-A of the transmission side switching device 100A.
  • the signal detection unit 130-A of the transmission side switching device 100A and the signal detection unit 130-B of the reception side switching device 100B also detect the monitor signal 1.
  • the signal detection unit 130 can identify and detect both. At this time, if the signal detection unit 130-B detects the non-normality of the monitor signal 2, it can be seen that the optical switch 130-B (B in the figure) is out of order.
  • Example 4 With reference to FIG. 5, the structure of the switching apparatus of Example 4 is demonstrated.
  • the monitor signal 1 and the monitor signal 2 are different types of signals.
  • the monitor signal 1 passes through the optical switch 110-A, and is detected by the signal detection unit 130-A of the transmission-side switching device 100A and subsequently the signal detection unit 130B of the reception-side switching device 100B.
  • the monitor signal 2 passes through the optical switch 110-B, and is detected by the signal detection unit 130-B of the reception side switching device 100B and subsequently the signal detection unit 130A of the transmission side switching device 100A.
  • Signal detector 130A and signal detector 130B detect both monitor signal 1 and monitor signal 2. However, since the monitor signal 1 and the monitor signal 2 have different signal forms, the signal detection unit 130 can identify and detect them. Therefore, the detection result of the monitor signal 2 in the signal detection unit A and the detection result of the monitor signal 1 in the signal detection unit B are analyzed by both the switching devices 100 through the optical switch control / signal monitoring unit 120, and The normality of the connection can be confirmed.
  • Example 5 With reference to FIG. 6, the structure of the switching apparatus of Example 5 is demonstrated.
  • the monitor signal 1 and the monitor signal 2 are different types of signals.
  • the monitor signal 1 passes through the optical switch 110-A and is detected by the signal detection unit 130-A of the transmission side switching apparatus 100A.
  • the monitor signal 2 passes through the optical switch 110-B and is detected by the signal detection unit 130-B of the reception side switching device 100B.
  • the signal detection unit 130-A and the signal detection unit 130-B detect both the monitor signal 1 and the monitor signal 2.
  • the signal detection unit 130 can identify and detect them.
  • the switching device 100A switches the optical switch 110-A so as to transmit the monitor signal 1 to the spare signal line d among the plurality of spare signal lines.
  • the monitor signal 1 is detected by the signal detection unit 130A of the transmission side switching apparatus 100A.
  • the switching device 100A switches the optical switch 110-A, and the monitor signal 1 is detected by the signal detection unit 130-A of the transmission side switching device 100A. Is done.
  • the switching operation of the optical switch 110-A can be confirmed. By performing these operations in order, it is possible to diagnose the operation of the optical switch 110-A for the connection port with the spare signal line.
  • switching from the working signal line to the standby signal line can be performed to diagnose the operation of the optical switch A for the connection port with the working signal line.
  • the working signal line a is switched to the spare signal line d and the working signal line b is switched to the spare signal line e to save the main signal.
  • the optical switch 110-A is switched to transmit the monitor signal 1 to the working signal line a.
  • the monitor signal 1 is detected by the signal detection unit 130-A of the transmission side switching apparatus 100A. As a result, the switching operation of the optical switch 110-A can be confirmed.
  • the switching device 100A switches the optical switch 110-A, and the monitor signal 1 is detected by the signal detection unit 130A of the transmission side switching device 100A. .
  • the switching operation of the optical switch 110-A can be confirmed.
  • the operation of the optical switch 110-A for the connection port with the active signal line is diagnosed.
  • the operation of the optical switch B can be diagnosed.
  • Example 6 With reference to FIG. 7, the structure of the switching apparatus of Example 6 is demonstrated. In FIG. 7, three switching devices 100C are connected. However, the basic configuration is the same as in FIG. 1, and only the differences will be described.
  • the transmission system 600 includes a switching device 100C, main signal paths a to c, detour paths d to f, and a control signal line 200.
  • monitor signals 1 to 6 are different types of signals. Therefore, even when the monitor signal is input from both directions in the signal detection unit 130, the signal detection unit 130 identifies the monitor signal from both directions. As shown in FIG. 7, the monitor signal 1 passes through the optical switch 110-A and is detected by the signal detection unit 130-A of the switching device 100C-A and subsequently the signal detection unit B of the switching device 100C-B. At this time, if the signal detection unit 130-A detects an abnormal state of the monitor signal 1, the optical switch unit 110-A is out of order. When the signal detection unit 130-A detects the normality of the monitor signal 1 and the signal detection unit 130-B detects the non-normality of the monitor signal 1, the wiring (E in the figure) is broken.
  • the monitor signal 2 passes through the optical switch 110-A and is detected by the signal detection unit 130A of the switching device 100C-A. At this time, if the signal detection unit A detects the non-normality of the monitor signal 1, it can be seen that the optical switch unit 110-A has failed.
  • the signal detection unit 130-A detects the normality of the monitor signal 2 and the signal detection unit 130 of the switching device 100C (not shown) adjacent to the switching device 100C-A detects the non-normality of the monitor signal 2, wiring (see FIG. Middle D) is out of order.
  • the monitor signal 3 passes through the optical switch 110-B, and is detected by the signal detection unit 130-B of the switching device 100C-B and subsequently the signal detection unit 130-C of the switching device 100C-C. At this time, if the signal detection unit 130-B detects the non-normality of the monitor signal 3, the optical switch unit 110-B has failed. When the signal detection unit 130-B detects the normality of the monitor signal 3 and the signal detection unit 130-C detects the non-normality of the monitor signal 1, the wiring (F in the figure) is broken.
  • the monitor signal 4 passes through the optical switch 110-B and is detected by the signal detection unit 130-B of the switching device 100C-B. At this time, if the signal detection unit 130-B detects the non-normality of the monitor signal 1, it can be seen that the optical switch unit 110-B has failed. Further, the monitor signal 5 passes through the optical switch 110-C and is detected by the signal detection unit 130-C of the switching device 100C-C. At this time, if the signal detection unit 130-C detects the abnormal state of the monitor signal 5, the optical switch unit 110-C is out of order.
  • the monitor signal 6 passes through the optical switch 110-C and is detected by the signal detection unit 130-C of the switching device 100C-C. At this time, if the signal detection unit 130-C detects the non-normality of the monitor signal 6, it can be seen that the optical switch unit 110-C has failed.
  • Example 7 With reference to FIG. 8, the structure of the switching apparatus of Example 7 is demonstrated.
  • the basic configuration is the same as in FIG. 1, and only differences will be described.
  • the transmission system 500A includes a switching device 100F, a switching device 100G, active signal lines a to c connecting the devices, spare signal lines d to f, and a control signal line 200.
  • the optical switch unit 110 of the switching device 100F and the switching device 100G has an input / output port for ADD or DROP.
  • signal data is input / output at a specific node.
  • signal data input / output ports are assigned to the optical switch input ports, and “ADD” and “DROP” of the signal data transmitted through the transmission line of the network can be performed.
  • a signal data input / output port may be assigned to the output port of the optical switch 110.
  • the transmission system 500 ⁇ / b> B includes a switching device 100 ⁇ / b> D, a switching device 100 ⁇ / b> E, a working signal line that connects between the switching devices 100, a backup signal line, and a control signal line 200.
  • the number of input / output ports of the switching device is three or four in a mesh or multi-ring network configuration.
  • switching devices 100D and 100E having four ports as input / output ports are shown.
  • the switching devices 100D and 100E are switching devices corresponding to four operation paths made up of working signal lines. Further, here, there are also four detour paths including spare signal lines in order to correspond to the four operation paths.
  • Example 9 With reference to FIG. 10, the structure of the switching apparatus of Example 9 is demonstrated. 10, the basic configuration is the same as that in FIG. 1, and only differences will be described.
  • the transmission system 500C includes a switching device 100A, a switching device 100B, a multicore fiber 300, and a control signal line 200.
  • the active signal line and the spare signal line connecting the switching devices 100A and 100B use the multi-core fiber 300.
  • the multi-core fiber 300 has 7 cores, and shows a configuration in which 3 cores are assigned to active signal lines and 3 cores are assigned to backup signal lines. The remaining one core may be allocated to the control signal line 200 connecting the optical switch control / signal monitoring unit.
  • the active signal line and the standby signal line connecting the switching devices 100 can use the multi-core fiber 300.
  • Example 10 A network configuration of the optical transmission system according to the tenth embodiment will be described with reference to FIG. In FIG. 11, the transmission system 700 installs the switching device 100 in each node 400 of a network topology such as linear, ring, mesh, multi-ring, and cross-connect. In this way, the switching device 100 can be installed in each node 400 of any network topology.
  • a network topology such as linear, ring, mesh, multi-ring, and cross-connect.
  • the present invention is not limited to this configuration, and a plurality of switching devices installed in each node of a network network, Alternatively, the present invention can be applied to any device such as a switching device for signal transmission and reception in a transmission network other than between devices.
  • the switching device selects a detour route that can be reliably used in a short time as a switching destination, and a transmission network is secured without interruption of signals, so that a large capacity signal can be transmitted and received in a safe and secure transmission network. Can do. Therefore, from a star-shaped network that simply connects a station such as FTTH (Fiber to the home) and a home, a long distance system (specifically, trunk, metro, area, etc.), a short distance system (specifically, Application to a ring / mesh network such as a data center or a complicated network in which they are mixed is useful.
  • FTTH Fiber to the home
  • a long distance system specifically, trunk, metro, area, etc.
  • a short distance system specifically, Application to a ring / mesh network such as a data center or a complicated network in which they are mixed is useful.
  • DESCRIPTION OF SYMBOLS 100 ... Switching apparatus, 110 ... Optical switch part, 120 ... Optical switch control and signal monitoring part, 130 ... Signal detection part, 200 ... Control signal line, 300 ... Multi-core fiber, 400 ... Node, 500 ... Transmission system, 600 ... Transmission System 700 ... Transmission system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

現用信号線が伝送線路として使用不可となった場合に、現用信号線からの切替先として、確実に使用可能な予備信号線への切替を実現する切替装置およびそれを用いた伝送システムを提供する。 主信号が伝送する現用信号線の少なくとも1つが伝送線路として使用不可となった場合、複数の予備信号線には複数の形態のモニタ信号を、主信号の伝送方向に対して同進のみならず逆進の方向にも伝送させることにより、その予備信号線の状態を予め監視し、制御信号線を通じて各装置で監視結果を共有する。これにより、複数の予備信号線の中から確実に使用可能な予備信号線のみを切替先として選択することができ、障害発生時においても伝送線路の確実な確保に繋がるため、伝送システムの信頼性を向上させることができる。

Description

切替装置および伝送システム
 本発明は、信号の送受が行われる切替装置および伝送システムに係り、現用信号線が信号伝送の役割を失ったときに、切替先として予備信号線の中から確実に使用可能な信号線を選択し、切替行為が行われる切替装置および伝送システムに関する。
 光ネットワーク伝送網において、各ノード間は主信号が伝送する現用信号線の他に予備信号線にて結ばれ、現用信号線が信号伝送不可であるときに、予備信号線への切替動作を確実に完了することのできる単純な構成で安心安全な伝送経路を確保できる方法が検討されつつある。ネットワークでは、具体的には、以下の3つの課題の解決が求められる。第1に、複数の予備信号線の中から確実に使用可能な予備信号線を抽出し、その予備信号線を切替先とする必要がある(第1の要件)。第2に予備信号線の監視による使用可能な予備信号線の抽出は可能な限り短時間に行われ、切り替え動作を完了させる必要がある(第2の要件)。第3に、装置保守、更改の容易性の観点から、部品交換は故障箇所のみで対応すべく、予備信号線を含む切り替え先の伝送路における故障箇所を特定する必要がある(第3の要件)。
 複数の予備信号線の中から確実に使用可能な信号線を抽出する手法としては、モニタ信号を予備信号線に送り、監視装置にて信号路の状況を確認する方法が知られている(特許文献1、特許文献2)。特許文献1では、主信号から分岐した信号が、モニタ信号として利用され予備信号線を監視している。さらに、この監視は、切替装置に内蔵されている監視装置で行われ予備信号線の状態を把握することができるため、第1の要件を満たすことは可能である。
 また、特許文献2では、モニタ信号として新たに光源を設け、予備信号線に送信し、予備信号線の監視が行われる。さらに、この監視は、切替装置に内蔵されている監視装置で行われ予備信号線の状態を把握することができるため、第1の要件を満たすことは可能である。また、特許文献2に開示された切替装置では、2箇所で予備信号線を含んだ迂回経路の監視が行われる。したがって、迂回経路を構成する予備信号線と経路切替を行う光スイッチのどちらに故障が発生しているのかを判断することが可能であるため、第3の要件を満たすことは可能である。
 特許文献3は、モニタ信号を双方向タップPDで抽出する機能を有すると推定される光通信システムを開示する。
特開2011-147077号公報 特開平11-027208号公報 特開2004-254399号公報
 しかし、特許文献1に開示された切替装置では、1箇所で予備信号線を含んだ迂回経路の監視が行われているため、迂回経路を短時間で監視することが難しい。したがって、特許文献1の技術では、第2の要件を満たさない。また、監視では迂回経路において故障箇所の特定が難しい。具体的には、迂回経路を構成する予備信号線と経路切替を行う光スイッチのどちらに故障が発生しているのかを判断することが難しく、保守点検の際に部品の取替えを行うことができない。したがって、特許文献1では第3の要件を満たさない。このため、特許文献1の技術では、保守点検時に正常な部品を含むすべての部品の交換を余儀なくされる。このため、実効的な保守コストが高い物になってしまう。
 一方、上記特許文献2に開示された切替装置では、迂回経路を構成する予備信号線と経路切替を行う光スイッチのどちらが故障しているかの特定は可能である。しかし、自らの切替装置に内蔵されている装置において、迂回経路を構成する予備信号線の監視が行われるため、迂回経路を短時間で監視することが難しい。具体的には、迂回経路が複雑なネットワーク伝送網を構成している場合、確実に使用可能な迂回経路を確保するまでにある程度の時間を要する。また、最終的に切替先として使用可能な伝送路がみつからず、的確な切替行為が行われない可能性がある。したがって、特許文献2の技術では第2の要件を満たさない。
 以上、説明したように従来の技術では、第1の要件から第3の要件のすべての要件を満たすことができないために、現用信号線が故障した際に、安全な伝送路が確保できる切替装置を提供できない。
 本発明の目的は、上述した課題を解決し、短時間に故障を見つけ、予備信号線の中から、使用可能な切替先である伝送路を迅速且つ確実に確保し、切替行為が行われる切替装置および伝送システムを提供することにある。
 上述した目的を解決するため、光スイッチが内蔵された切替装置間は、光信号が伝播する導波路またはファイバからなる、現用信号線と予備信号線と制御信号線により結ばれ、それら装置を含む伝送システムにおいて、現用信号線が伝送線路として使用不可となった場合に、予備信号線は複数の形態のモニタ信号を伝送させることにより、その信号線の状態を予め監視し、各切替装置は制御信号線を伝送する制御信号で監視結果が共有された上で、使用不可となった現用信号線からの切替先に適した予備信号線を決定する切替装置である。さらに、主信号線の伝送方向と同進、あるいは逆進するモニタ信号を予備信号線に伝送させることにより、故障箇所を迅速に特定する切替装置である。
 上述した目的は、光スイッチ部と、信号検出部と、信号検出部の検出結果に基づいて光スイッチを制御する光スイッチ制御部とを含み、光スイッチ部は、現用信号線と、予備信号線とに接続され、信号検出部が現用信号線に障害を検出したとき、または光スイッチ制御部が対向装置から現用信号線の障害を通知されたとき、光スイッチを介して予備信号線に第1のモニタ信号を送信し、信号検出部は、第1のモニタ信号と、対向装置から受信した第2のモニタ信号とを受信し、光スイッチ制御部は、信号検出部の第1のモニタ信号の受信結果と第2のモニタ信号の受信結果とに基づいて、障害を検出した現用信号線の予備信号線への切り替えを判定する切替装置により、達成できる。
 また、第1の切替装置と、第2の切替装置とを含む伝送システムにおいて、第1の切替装置は、光スイッチ部と、信号検出部と、信号検出部の検出結果に基づいて光スイッチを制御する光スイッチ制御部とを含み、光スイッチ部は、現用信号線と、予備信号線とに接続され、信号検出部が現用信号線に障害を検出したとき、または光スイッチ制御部が第2の切替装置から現用信号線の障害を通知されたとき、光スイッチを介して予備信号線に第1のモニタ信号を送信し、信号検出部は、第1のモニタ信号と、第2の切替装置から受信した第2のモニタ信号とを受信し、光スイッチ制御部は、信号検出部の第1のモニタ信号の受信結果と第2のモニタ信号の受信結果とに基づいて、障害を検出した現用信号線の予備信号線への切り替えを判定する伝送システムにより、達成できる。
 本発明によれば、現用信号線/予備信号線/制御信号線により結線された複数の切替装置は、主信号が伝送する現用信号線が使用不可となった場合、切替動作を行う前に複数の形態のモニタ信号により予め予備信号線の状態を監視し、現用信号線から予備信号線への切替動作が行うため、切替先となる予備信号線が複数あり且つそれら予備信号線の使用可否が不明であっても、複数の予備信号線の中から使用可能な予備信号線を確実に選択し、迅速に切替先として予備信号線が確保することのできる切替装置が提供される。
伝送システムの構成を説明するブロック図である。 切替装置の動作を説明するフローチャートである。 信号検出部の動作を説明するブロック図である。 伝送システムの構成を説明するブロック図である。 伝送システムの構成を説明するブロック図である。 伝送システムの構成を説明するブロック図である。 伝送システムの構成を説明するブロック図である。 伝送システムの構成を説明するブロック図である。 伝送システムの構成を説明するブロック図である。 伝送システムの構成を説明するブロック図である。 光伝送システムのブロック図である。
 以下、本発明の実施の形態について、実施例を用い図面を参照しながら詳細に説明する。なお、実質同一部位には同じ参照番号を振り説明は繰り返さない。なお、図面では、光伝送媒体として光ファイバを用いるが、これに限定されない。
(実施例1)
 図1を参照して、伝送システムの構成を説明する。図1において、伝送システム500は、切替装置100Aと切替装置100Bとで構成されている。切替装置100Aは、送信側装置である。一方、切替装置100Bは、受信側装置である。なお、切替装置を区別する必要がないとき、切替装置100と記載する。
 切替装置100Aと切替装置100Bとは、現用信号線a、b、cと、予備信号線d、e、fと、制御信号線200とで接続されている。切替装置100は、光スイッチ110と、光スイッチ制御・信号監視部120と、信号検出部130とを含む。また、切替装置100は、図示しないモニタ信号源と接続されている。なお、モニタ信号源は、切替装置100に含まれていてもよい。
 切替装置100は、通常運用する現用信号線からなる複数の運用パス(伝送路)のいずれかに障害が発生した場合、予備信号線からなる冗長パス(伝送路)を用いて、迂回路を形成する。なお、図1では3本の運用パスa~cに対して冗長切替機能を設け、冗長パスとしてd~fを具備している。
 切替装置100Aは、現用信号線および予備信号線に伝送する光信号の一部を分岐して、信号検出部130に送信する。切替装置100Bは、現用信号線および予備信号線から伝送されてきた光信号の一部を分岐して、信号検出部130に送信する。信号検出部130は、図示しないスイッチを備える。送信側信号検出部130は、スイッチを切り替えながら、現用信号線または予備信号線へ伝送する光信号をモニタする。受信側信号検出部130は、スイッチを切り替えながら、現用信号線または予備信号線から伝送されてきた光信号をモニタする。なお、信号検出部130は、フォトダイオード・アレイを備えてもよい。この場合スイッチの切り替えは、不要である。
 モニタ信号は、迂回路を形成する予備信号線からなる冗長パス(伝送路)に接続されている。このとき、モニタ信号である光信号は、切替装置の光スイッチを通じて、予備信号線に伝送され、対向する位置に配置された切替装置の光スイッチに伝送される。切替装置100Aからのモニタ信号は、高周波数で変調され、主信号と同じ方向で、予備信号線に送信される。一方、切替装置100Bからのモニタ信号は、低周波数で変調され、主信号と逆方向で、予備信号線に送信される。
 送信側切替装置100Aの光スイッチ制御・信号監視部120と受信側切替装置100Bの光スイッチ制御・信号監視部120とは、制御信号線200で連結されている。この結果、モニタ信号の監視結果は、双方の切替装置100間で共有されている。
 送信側光スイッチ部110は、運用パスのいずれかに障害が生じた場合に、送信側切替装置100Aに具備されたモニタ信号を、冗長パスである予備信号線と接続し、受信光スイッチ部110に伝送する。すなわち、送信側光スイッチ部110の入力ポートには主信号およびモニタ信号が接続され、出力ポートには現用信号線と予備信号線が接続されている。また、光スイッチ部110は、空きポートを有していてもよい。
 受信側光スイッチ部110は、運用パスのいずれかに障害が生じた場合、受信側切替装置100Bに具備されたモニタ信号を、冗長パスである予備信号線と接続し、送信側光スイッチ部110に伝送する。すなわち、受信側光スイッチ部110の出力ポートには主信号およびモニタ信号が接続され、入力ポートには現用信号線と予備信号線が接続されている。また、受信側光スイッチ部110は、空きポートを有していてもよい。
 受信側信号検出部130は、送信側光スイッチ部110から伝送された光信号を測定する。受信側光スイッチ制御・信号監視部120は、受信側光スイッチ部110の各光スイッチの接続切替動作を制御する。受信側光スイッチ制御・信号監視部120は、また、信号検出部130により測定された光信号の測定値を監視する。
 送信側信号検出部130は、受信側光スイッチ部110から伝送された光信号を測定する。送信側光スイッチ制御・信号監視部120は、送信側光スイッチ部110の各光スイッチの接続切替動作を制御する。送信側光スイッチ制御・信号監視部120は、また信号検出部130により測定された光信号の測定値を監視する。
  なお、以下の説明では、現用信号線から予備信号線への切り替えを説明する。しかし、予備信号線から現用信号線への切り戻しも同様である。
 図2を参照して、切替装置の動作について説明する。図2において、切替装置100は、装置を稼働すると現用信号線で通常運用する(S21)。切替装置100は、信号検出部120と、信号監視部130で線路の正常性/非正常性を判定する(S22)。正常のとき、切替装置100は、ステップ21に遷移する。ステップ22で非正常のとき、切替装置100は、モニタ信号を予備信号線に送信し、予備信号線の状態を監視する(S23)。切替装置100は、信号検出部120と信号監視部130で線路の正常性/非正常性を判定する(S24)。正常のとき、切替装置100は、現用信号線からの切替先として適した予備信号線を選択する(S25)。切替装置100は、光スイッチ110により、非正常性を有する現用信号線から正常性を有する予備信号線へ接続切替を実施する(S26)。切替装置100は、予備信号線による運用を開始する(S27)。切替装置100は、信号検出部120と信号監視部130で線路の正常性/非正常性を確認して(S28)、終了する。ステップ24で非正常のとき、切替装置100は、切替先として使用しないことを設定して(S29)、ステップ23に遷移する。モニタ信号は、ステップ22で線路の正常性/非正常性を判定結果にかかわらず、運用時、常に予備信号線に送信していてもよい。この後のステップは、上記と同様である。
 以上のように、実施例1によれば、切替装置光スイッチ部の光スイッチ入力ポートにモニタ信号入力ポートを設け、モニタ信号を予備信号線に送り、状態監視を行えるように構成したので、運用パスに障害が発生し、切替行為を実行する前に冗長パスの正常性を確認することができ、運用パスに障害が発生した際にプロテクションである予備信号線が正常に作動しないという二重障害を防ぐことができる。
(実施例2)
 図3を参照して、実施例2に係る切替装置における信号検出部の構成について説明する。図3において、切替装置100Aには、1つの信号線からなる1つの経路のみを示している。信号線が複数の場合であっても同様のことがいえる。また、光スイッチ、光スイッチ制御・信号監視部の構成部品は簡単のため省略した。
 図3において、切替装置100Aは、光伝送路の途中で光信号を分岐させ、信号検出部130に送信する。信号検出部130は、タップモニタまたはタップフォトダイオードと呼ばれ、光伝送路上に設置・任意の分岐比で伝送路の信号を検出できる。信号検出部130は、図3において実線と点線で示す通り、双方向から伝送される信号に対して、信号を検出する。
 したがって、双方向から伝送される信号が、連続光、短パルス光、長パルス光、高速変調光、低速変調光、バースト信号光等信号形態が異なる場合、双方向から入力する信号は、信号検出部130において識別できる。
(実施例3)
 図4を参照して、実施例3の切替装置の構成について説明する。図4において、モニタ信号1とモニタ信号2は異なる形態の信号とする。図4に示す通り、モニタ信号1は、光スイッチ110-Aを通過し、送信側切替装置100Aの信号検出部130-A、続けて受信側切替装置100Bの信号検出部130-Bで検出される。送信側切替装置100Aの信号検出部130-Aと、受信側切替装置100Bの信号検出部130-Bは、モニタ信号2も検出する。しかし、モニタ信号1とモニタ信号2は信号形態が異なるため、信号検出部130は、識別して検出できる。
 このとき、信号検出部130-Aでモニタ信号1の非正常性を検知した場合、光スイッチ110-A(図中A)が故障していることが分かる。信号検出部130-Aでモニタ信号1の正常性を検知、信号検出部130-Bでモニタ信号1の非正常性を検知した場合、配線(図中C)が故障していることが分かる。
 モニタ信号2は光スイッチ110-Bを通過し、受信側切替装置100Bの信号検出部130-B、続けて送信側切替装置100Aの信号検出部130-Aで検出される。送信側切替装置100Aの信号検出部130-Aと受信側切替装置100Bの信号検出部130-Bは、モニタ信号1も検出する。しかし、モニタ信号1とモニタ信号2は信号形態が異なるため、信号検出部130は、両者を識別して検出できる。このとき、信号検出部130-Bでモニタ信号2の非正常性を検知した場合、光スイッチ130-B(図中B)が故障していることが分かる。
 このように、切替装置100に具備しているモニタ信号を用いることにより、運用パスと迂回経路からなる光伝送路中の故障箇所を特定することができる。
(実施例4)
 図5を参照して、実施例4の切替装置の構成について説明する。図5において、モニタ信号1とモニタ信号2は異なる形態の信号とする。図5に示す通り、モニタ信号1は、光スイッチ110-Aを通過し、送信側切替装置100Aの信号検出部130-A、続けて受信側切替装置100Bの信号検出部130Bで検出される。同様に、モニタ信号2は、光スイッチ110-Bを通過し、受信側切替装置100Bの信号検出部130-B、続けて送信側切替装置100Aの信号検出部130Aで検出される。信号検出部130Aおよび信号検出部130Bでは、モニタ信号1とモニタ信号2の双方を検出する。しかし、モニタ信号1とモニタ信号2は信号形態が異なるため、信号検出部130は、識別して検出できる。そこで、信号検出部Aにおけるモニタ信号2の検出結果と信号検出部Bにおけるモニタ信号1の検出結果を、光スイッチ制御・信号監視部120を通じて双方の切替装置100で解析を行い、切替装置100間の結線の正常性が確認できる。
 このようにして、運用パスと迂回経路からなる光伝送路の結線の正常性は、切替装置100に具備されているモニタ信号を用いることにより、確認することができる。
(実施例5)
 図6を参照して、実施例5の切替装置の構成について説明する。図6において、モニタ信号1とモニタ信号2は、異なる形態の信号である。図6に示す通り、モニタ信号1は、光スイッチ110-Aを通過し、送信側切替装置100Aの信号検出部130-Aで検出される。同様に、モニタ信号2は、光スイッチ110-Bを通過し、受信側切替装置100Bの信号検出部130-Bで検出される。信号検出部130-Aおよび信号検出部130-Bでは、モニタ信号1とモニタ信号2の双方を検出する。しかし、モニタ信号1とモニタ信号2は信号形態が異なるため、信号検出部130は、識別して検出できる。
 通常運用時、複数ある予備信号線のうち、予備信号線dにモニタ信号1を送信すべく、切替装置100Aは、光スイッチ110-Aの切替を行う。モニタ信号1は、送信側切替装置100Aの信号検出部130Aで検出される。この結果、光スイッチ110-Aの切替動作の確認ができる。次に、予備信号線eにモニタ信号1を送信すべく、切替装置100Aは、光スイッチ110-Aの切替を行い、モニタ信号1は、送信側切替装置100Aの信号検出部130-Aで検出される。この結果、光スイッチ110-Aの切替動作の確認ができる。この動作を順番に行うことにより、予備信号線との接続ポートに対する光スイッチ110-Aの動作の診断を行うことができる。
 通常運用時、現用信号線から予備信号線への切替を行い、現用信号線との接続ポートに対する光スイッチAの動作の診断が実施できる。具体的には、現用信号線aは予備信号線dへ、現用信号線bは予備信号線eへ切り替え、主信号を退避させる。その後、現用信号線aにモニタ信号1を送信すべく光スイッチ110-Aの切替を行う。モニタ信号1は、送信側切替装置100Aの信号検出部130-Aで検出される。この結果、光スイッチ110-Aの切替動作の確認ができる。次に、現用信号線bにモニタ信号1を送信すべく、切替装置100Aは、光スイッチ110-Aの切替を行い、モニタ信号1は、送信側切替装置100Aの信号検出部130Aで検出される。この結果、光スイッチ110-Aの切替動作の確認ができる。この動作を順番に行うことにより、現用信号線との接続ポートに対する光スイッチ110-Aの動作の診断を行う。
  同様にして、光スイッチBの動作の診断を行うことができる。
 このようにして、光スイッチ110の動作の正常性は、切替装置100に具備されているモニタ信号を用いることにより、定期的に診断することができる。
(実施例6)
 図7を参照して、実施例6の切替装置の構成について説明する。図7において、切替装置100Cは、3台接続されている。しかし、基本的な構成は、図1と同様で有り、差異がある箇所のみを説明する。図7において、伝送システム600は、切替装置100Cと、主信号経路a~cと、迂回経路d~fと、制御信号線200とから構成されている。
 図7において、モニタ信号1から6は、異なる形態の信号である。したがって、信号検出部130において、双方向からモニタ信号が入力された場合でも、信号検出部130は、双方向からのモニタ信号を識別する。図7に示す通り、モニタ信号1は、光スイッチ110-Aを通過し、切替装置100C-Aの信号検出部130-A、続けて切替装置100C-Bの信号検出部Bで検出される。このとき、信号検出部130-Aでモニタ信号1の非正常性を検知した場合、光スイッチ部110-Aが故障していることとなる。信号検出部130-Aでモニタ信号1の正常性を検知、信号検出部130-Bでモニタ信号1の非正常性を検知した場合、配線(図中E)が故障していることとなる。
 モニタ信号2は、光スイッチ110-Aを通過し、切替装置100C-Aの信号検出部130Aで検出される。このとき、信号検出部Aでモニタ信号1の非正常性を検知した場合、光スイッチ部110-Aが故障していることがわかる。信号検出部130-Aでモニタ信号2の正常性を検知、切替装置100C-Aと隣接する図示しない切替装置100Cの信号検出部130でモニタ信号2の非正常性を検知した場合、配線(図中D)が故障していることとなる。
 モニタ信号3は、光スイッチ110-Bを通過し、切替装置100C-Bの信号検出部130-B、続けて切替装置100C-Cの信号検出部130-Cで検出される。このとき、信号検出部130-Bでモニタ信号3の非正常性を検知した場合、光スイッチ部110-Bが故障していることとなる。信号検出部130-Bでモニタ信号3の正常性を検知、信号検出部130-Cでモニタ信号1の非正常性を検知した場合、配線(図中F)が故障していることとなる。
 モニタ信号4は、光スイッチ110-Bを通過し、切替装置100C-Bの信号検出部130-Bで検出される。このとき、信号検出部130-Bでモニタ信号1の非正常性を検知した場合、光スイッチ部110-Bが故障していることがわかる。さらに、モニタ信号5は、光スイッチ110-Cを通過し、切替装置100C-Cの信号検出部130-Cで検出される。このとき、信号検出部130-Cでモニタ信号5の非正常性を検知した場合、光スイッチ部110-Cが故障していることとなる。信号検出部130-Cでモニタ信号5の正常性を検知、切替装置110C-Cと隣接する図示しない切替装置110Cの信号検出部130でモニタ信号5の非正常性を検知した場合、配線(図中G)が故障していることとなる。
 モニタ信号6は、光スイッチ110-Cを通過し、切替装置100C-Cの信号検出部130-Cで検出される。このとき、信号検出部130-Cでモニタ信号6の非正常性を検知した場合、光スイッチ部110-Cが故障していることがわかる。
 このようにして、複数台の切替装置を連結したネットワークにおいても、切替装置に具備されている複数の形態のモニタ信号を用いることにより、運用パスと迂回経路からなる光伝送路中の故障箇所を特定することが可能となる。
(実施例7)
 図8を参照して、実施例7の切替装置の構成について説明する。図8において、基本的な構成は図1と同様で有り、差異がある箇所のみを説明する。図8において、伝送システム500Aは、切替装置100Fと、切替装置100Gと、装置間を接続する現用信号線a~cと、予備信号線d~fと、制御信号線200とから構成されている。切替装置100Fと切替装置100Gとの光スイッチ部110は、ADDまたはDROP用の入出力ポートを有する。
 ネットワーク網の各ノードに切替装置を設置する場合、特定のノードでは信号データの入出力が行われる。図8において、光スイッチ入力ポートには、信号データ入出力ポートを割り当て、ネットワーク網の伝送路を伝送している信号データの「ADD」と「DROP」が可能となる。光スイッチ110の出力ポートに、信号データ入出力ポートを割り当ててもよい。
 このようにして、運用パスと迂回経路からなる光伝送路の信号データは、光スイッチの入出力ポートから「ADD」と「DROP」が可能となる。
(実施例8)
 図9を参照して、実施例8の切替装置の構成について説明する。図9において、基本的な構成は図1と同様で有り、差異がある箇所のみを説明する。伝送システム500Bは、切替装置100Dと、切替装置100Eと、切替送置100間を接続する現用信号線と、予備信号線と、制御信号線200とから構成されている。
 ネットワーク網の各ノードに切替装置を設置する場合、メッシュ状またはマルチリング状のネットワーク構成では、切替装置の入出力口が3ヶあるいは4ヶとなる。図9において、入出力口として4ヶのポートを有する切替装置100D、100Eを示している。切替装置100D、100Eは、現用信号線からなる4本の運用パスに対応した切替装置となっている。さらにここでは、4本の運用パスに対応すべく、予備信号線からなる迂回経路も4本となっている。
 このようにして、現用信号線からなる運用パスと予備信号線からなる迂回経路をそれぞれ4本ずつ設けることにより、メッシュ状およびマルチリング状のネットワーク構成に対応した切替装置とすることができる。
(実施例9)
 図10を参照して、実施例9の切替装置の構成について説明する。図10において、基本的な構成は図1と同様で有り、差異がある箇所のみを説明する。伝送システム500Cは、切替装置100Aと、切替装置100Bと、マルチコアファイバ300と、制御信号線200とから構成されている。
 図10において、切替装置100A、100B間を結んでいる現用信号線と予備信号線は、マルチコアファイバ300を利用する。マルチコアファイバ300は、7コアであり、3コアを現用信号線、3コアを予備信号線に割り当てた構成を示している。残る1コアは、光スイッチ制御・信号監視部を連結している制御信号線200に割り当ててもよい。
 このようにして、切替装置100間を結んでいる現用信号線と予備信号線は、マルチコアファイバ300を利用することができる。
(実施例10)
 図11を参照して、実施例10の光伝送システムのネットワーク構成について説明する。図11において、伝送システム700は、リニア、リング、メッシュ、マルチリング、クロスコネクトなどのネットワークトポロジーの各ノード400に、切替装置100を設置する。このようにして、あらゆるネットワークトポロジーの各ノード400に、切替装置100を設置することができる。
 以上では、装置と装置との間で行われる信号送受からなる構成で説明したが、本発明は、この形態に限定されることはなく、ネットワーク網の各ノードに設置された複数の切替装置、または装置間以外の伝送網における信号送受のための切替装置などあらゆるものに適用可能である。
 本発明に係る切替装置は、切替先として短時間で確実に使用可能な迂回経路を選択し、信号の途絶なく伝送網が確保されるため、安心安全な伝送網において大容量信号を送受信することができる。そのため、FTTH(Fiber to the home)など局と家庭を単純に結んだスター状のネットワーク網から、長距離系(具体的には、基幹、メトロ、エリアなど)、短距離系(具体的には、データセンタなど)のリング状/メッシュ状ネットワーク、あるいはそれらが混在した複雑なネットワークへの応用が有用である。
 100…切替装置、110…光スイッチ部、120…光スイッチ制御・信号監視部、130…信号検出部、200…制御信号線、300…マルチコアファイバ、400…ノード、500…伝送システム、600…伝送システム、700…伝送システム。 

Claims (10)

  1.  光スイッチ部と、モニタ信号を検出する信号検出部と、前記信号検出部の検出結果に基づいて前記光スイッチを制御する光スイッチ制御部とを含み、
     前記光スイッチ部は、現用信号線と、予備信号線とに接続され、
     前記信号検出部が前記現用信号線に障害を検出したとき、または前記光スイッチ制御部が前記現用信号線および前記予備信号線に接続された他の切替装置から前記現用信号線の障害を通知されたとき、前記光スイッチを介して前記予備信号線に第1のモニタ信号を送信し、
     前記信号検出部は、前記第1のモニタ信号と、前記他の切替装置から受信した第2のモニタ信号とを受信し、
     前記光スイッチ制御部は、前記信号検出部の前記第1のモニタ信号の受信結果と前記第2のモニタ信号の受信結果とに基づいて、障害を検出した現用信号線の前記予備信号線への切り替えを判定することを特徴とする切替装置。
  2.  請求項1に記載の切替装置であって、
     前記光スイッチ制御部は、前記他の切替装置と制御信号線で接続され、前記検出結果を前記制御信号線で前記他の切替装置と送受信し、
     前記他の切替装置と連動して、前記障害を検出した現用信号線を前記予備信号線に切り替えることを特徴とする切替装置。
  3.  請求項1または請求項2に記載の切替装置であって、
     前記第1のモニタ信号と前記第2のモニタ信号とは、互いに逆方向に前記予備信号線を伝送されることを特徴とする切替装置。
  4.  請求項1ないし請求項3のいずれか一つに記載の切替装置であって、
     前記第1のモニタ信号と前記第2のモニタ信号とは、連続光、短パルス光、長パルス光、高速変調光、低速変調光、バースト信号光のうち互いに異なることを特徴とする切替装置。
  5.  請求項1ないし請求項4のいずれか一つに記載の切替装置であって、
     前記信号検出部は、受信した複数のモニタ信号を識別することを特徴とする切替装置。
  6.  請求項5に記載の切替装置であって、
     前記信号検出部は、前記信号検出部の識別結果に基づいて、障害発生個所を特定することを特徴とする切替装置。
  7.  請求項5に記載の切替装置であって、
     前記信号検出部は、前記対向装置と協調して前記現用信号線および前記予備信号線に複数のモニタ信号を双方向から伝送し、前記現用信号線および前記予備信号線の正常性を確認することを特徴とする切替装置。
  8.  請求項5に記載の切替装置であって、
     前記現用信号線は、複数であり、
     前記信号検出部は、前記現用信号線のそれぞれを前記予備信号線に退避させながら前記対向装置と協調して退避させた現用信号線に複数のモニタ信号を双方向から伝送し、前記光スイッチ部の正常性を確認することを特徴とする切替装置。
  9.  請求項1ないし請求項5のいずれか一つに記載の切替装置であって、
     前記現用信号線または前記予備信号線は、マルチコアファイバに敷設されていることを特徴とする切替装置。
  10.  第1の切替装置と、第2の切替装置とを含む伝送システムにおいて、
     前記第1の切替装置は、光スイッチ部と、信号検出部と、前記信号検出部の検出結果に基づいて前記光スイッチを制御する光スイッチ制御部とを含み、
     前記光スイッチ部は、現用信号線と、予備信号線とに接続され、
     前記信号検出部が前記現用信号線に障害を検出したとき、または前記光スイッチ制御部が前記第2の切替装置から前記現用信号線の障害を通知されたとき、前記光スイッチを介して前記予備信号線に第1のモニタ信号を送信し、
     前記信号検出部は、前記第1のモニタ信号と、前記第2の切替装置から受信した第2のモニタ信号とを受信し、
     前記光スイッチ制御部は、前記信号検出部の前記第1のモニタ信号の受信結果と前記第2のモニタ信号の受信結果とに基づいて、障害を検出した現用信号線の前記予備信号線への切り替えを判定することを特徴とする伝送システム。 
PCT/JP2013/080431 2013-03-11 2013-11-11 切替装置および伝送システム WO2014141533A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-047981 2013-03-11
JP2013047981A JP6104652B2 (ja) 2013-03-11 2013-03-11 切替装置および伝送システム

Publications (1)

Publication Number Publication Date
WO2014141533A1 true WO2014141533A1 (ja) 2014-09-18

Family

ID=51536220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080431 WO2014141533A1 (ja) 2013-03-11 2013-11-11 切替装置および伝送システム

Country Status (2)

Country Link
JP (1) JP6104652B2 (ja)
WO (1) WO2014141533A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111480A (ja) * 2014-12-04 2016-06-20 株式会社日立製作所 光経路切替装置及びマルチコアファイバネットワークシステム
WO2017090611A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 通信システム及び故障検出方法
WO2017090603A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 通信システム及び故障箇所特定方法
WO2017090622A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 通信システム及びコネクタ
WO2017090616A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法
WO2022054779A1 (ja) * 2020-09-14 2022-03-17 日本電気株式会社 障害検出装置、ケーブル分岐装置、及び伝送路監視方法
US11671196B2 (en) 2021-03-22 2023-06-06 Nec Corporation Optical network management device, optical network system, optical network management method, and optical network management program
WO2023238445A1 (ja) * 2022-06-08 2023-12-14 株式会社フジクラ 光通信ネットワーク及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607966B2 (ja) * 2015-06-12 2019-11-20 華為技術有限公司 オンチップ光学相互接続構造およびネットワーク
CN108781115B (zh) * 2016-03-29 2021-07-27 日本电气株式会社 光波长复用传送系统、光波长复用装置和备用系统检查方法
JP6625946B2 (ja) * 2016-08-12 2019-12-25 日本電信電話株式会社 光伝送システム、光ノード装置及び光伝送方法
JP6654595B2 (ja) * 2017-03-24 2020-02-26 Kddi株式会社 マルチコア光ファイバを使用する光ファイバ通信システム及びコア識別方法
JP6925520B2 (ja) * 2018-05-18 2021-08-25 三菱電機株式会社 管理装置、通信システム、制御方法、及び制御プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127208A (ja) * 1997-07-03 1999-01-29 Hitachi Ltd 光クロスコネクト装置及び光伝送システム
JP2005012421A (ja) * 2003-06-18 2005-01-13 Nec Corp 信号中継器および切替装置とこれらの間の接続関係検出方法および通信システム
JP2006311248A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 光クロスコネクト装置および光パスの正常性確認方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1127208A (ja) * 1997-07-03 1999-01-29 Hitachi Ltd 光クロスコネクト装置及び光伝送システム
JP2005012421A (ja) * 2003-06-18 2005-01-13 Nec Corp 信号中継器および切替装置とこれらの間の接続関係検出方法および通信システム
JP2006311248A (ja) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp 光クロスコネクト装置および光パスの正常性確認方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111480A (ja) * 2014-12-04 2016-06-20 株式会社日立製作所 光経路切替装置及びマルチコアファイバネットワークシステム
WO2017090611A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 通信システム及び故障検出方法
WO2017090603A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 通信システム及び故障箇所特定方法
WO2017090622A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 通信システム及びコネクタ
WO2017090616A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法
JPWO2017090616A1 (ja) * 2015-11-26 2018-04-05 日本電信電話株式会社 伝送品質推定システム、伝送品質推定装置、及び、伝送品質推定方法
JPWO2017090611A1 (ja) * 2015-11-26 2018-04-12 日本電信電話株式会社 通信システム及び故障検出方法
JPWO2017090603A1 (ja) * 2015-11-26 2018-04-26 日本電信電話株式会社 通信システム及び故障箇所特定方法
JPWO2017090622A1 (ja) * 2015-11-26 2018-06-07 日本電信電話株式会社 通信システム及びコネクタ
CN108292952A (zh) * 2015-11-26 2018-07-17 日本电信电话株式会社 通信系统以及故障检测方法
EP3367590A4 (en) * 2015-11-26 2019-07-17 Nippon Telegraph and Telephone Corporation COMMUNICATION SYSTEM AND ERROR DETECTION PROCEDURES
US10511381B2 (en) 2015-11-26 2019-12-17 Nippon Telegraph And Telephone Corporation Communication system and fault location specifying method
US10527781B2 (en) 2015-11-26 2020-01-07 Nippon Telegraph And Telephone Corporation Communication system and connector
US10615868B2 (en) 2015-11-26 2020-04-07 Nippon Telegraph And Telephone Corporation Communication system and fault detection method
US10686520B2 (en) 2015-11-26 2020-06-16 Nippon Telegraph And Telephone Corporation Transmission quality estimation system, transmission quality estimation device, and transmission quality estimation method
CN108292952B (zh) * 2015-11-26 2021-07-06 日本电信电话株式会社 通信系统以及故障检测方法
WO2022054779A1 (ja) * 2020-09-14 2022-03-17 日本電気株式会社 障害検出装置、ケーブル分岐装置、及び伝送路監視方法
US11671196B2 (en) 2021-03-22 2023-06-06 Nec Corporation Optical network management device, optical network system, optical network management method, and optical network management program
WO2023238445A1 (ja) * 2022-06-08 2023-12-14 株式会社フジクラ 光通信ネットワーク及びその製造方法

Also Published As

Publication number Publication date
JP6104652B2 (ja) 2017-03-29
JP2014175917A (ja) 2014-09-22

Similar Documents

Publication Publication Date Title
JP6104652B2 (ja) 切替装置および伝送システム
US20190158940A1 (en) Procedures, apparatuses, systems, and computer programs for providing optical network channel protection
US8433190B2 (en) Hot-swapping in-line optical amplifiers in an optical network
US7643751B2 (en) Network managing apparatus, optical add/drop multiplexer, and network managing method
US8023819B2 (en) Method and apparatus for network fault detection and protection switching using optical switches with integrated power detectors
JP6043652B2 (ja) 大容量ファイバ光切替装置および光伝送システム
EP2434662B1 (en) Protection system, method and apparatus for optical network
CN108781115B (zh) 光波长复用传送系统、光波长复用装置和备用系统检查方法
JP6024391B2 (ja) 伝送装置、伝送システム、及び障害検出方法
JP5206211B2 (ja) Wdmネットワークとノード装置
JP5011257B2 (ja) パストレース方法及びノード装置
US20060115266A1 (en) All-optical protection signaling systems and methods in optical communication networks
JP4422441B2 (ja) 信号切替装置
JP6465627B2 (ja) 光伝送システム、管理装置、光伝送ノード及び光伝送方法
JP2011217293A (ja) 光伝送システム、光伝送方法
US20010038473A1 (en) Devices and methods for controlling protection switching in an optical channel shared protection ring
JP4704261B2 (ja) 光通信装置
JP3854372B2 (ja) 光クロスコネクト装置
JP4755674B2 (ja) 信号切替装置および伝送システム
CN214675520U (zh) 光线路保护装置和光线路网络传送设备
JP2002033703A (ja) 光受信障害診断方法並びにこの機能を具備した光伝送システム
JP2601193B2 (ja) 光伝送方式
WO2014010151A1 (ja) 波長分割多重通信装置及び光ネットワークシステム
JP2006186538A (ja) 光伝送装置及び光伝送路切換方法
CN113541795B (zh) 一种波分系统osc通道单纤双向实现方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13878080

Country of ref document: EP

Kind code of ref document: A1