WO2022054779A1 - 障害検出装置、ケーブル分岐装置、及び伝送路監視方法 - Google Patents
障害検出装置、ケーブル分岐装置、及び伝送路監視方法 Download PDFInfo
- Publication number
- WO2022054779A1 WO2022054779A1 PCT/JP2021/032774 JP2021032774W WO2022054779A1 WO 2022054779 A1 WO2022054779 A1 WO 2022054779A1 JP 2021032774 W JP2021032774 W JP 2021032774W WO 2022054779 A1 WO2022054779 A1 WO 2022054779A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission line
- monitoring signal
- switch
- monitoring
- submarine
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 411
- 238000001514 detection method Methods 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title description 10
- 230000003287 optical effect Effects 0.000 claims abstract description 230
- 238000012360 testing method Methods 0.000 claims abstract description 127
- 238000012544 monitoring process Methods 0.000 claims description 241
- 238000012806 monitoring device Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/03—Arrangements for fault recovery
- H04B10/032—Arrangements for fault recovery using working and protection systems
Definitions
- the present invention relates to a technique for detecting a failure in a submarine optical cable system (Optical Submarine Cable System).
- Patent Document 1 discloses an example of a technique for detecting a failure in an undersea optical cable system.
- a main line cable and a backup line cable are laid on land in different routes.
- the land terminal station includes a break detection means for detecting a break in the main line cable and a route switching means for switching the transmission path of the land portion to a backup line cable.
- the rupture detecting means is based on the light receiving level of the main signal sent from the cable in the sea, or based on the light receiving level of the monitoring signal that outputs the monitoring signal from the rupture detecting means and is reflected by the beach manhole and returned. , Detects cable breaks.
- the beach manhole includes an optical coupler that joins and branches the main signal between the main line cable and the backup line cable, and small passive components such as fiber gratings and optical couplers for returning the monitoring signal to the breakage detecting means.
- Patent Document 2 discloses another example of a technique for detecting a failure in an undersea optical cable system.
- the optical transmitter of the transmitting side end station device receives a modulated signal from the line monitoring device, superimposes it on the optical signal as a line monitoring device, and outputs it to the relay line.
- the line monitoring signal folded back through the folded line of each optical repeater inserted in the relay line is branched by an optical coupler and input to the line monitoring device.
- the optical selector selects the feedback signal from each fiber pair.
- the array waveguide grating filter divides the wavelength division multiplexing optical signal of the selected fiber pair into wavelengths ⁇ 1 to ⁇ n, and the selector selects the signal of the wavelength one by one.
- the light receiving unit performs optical-electric conversion, and the demodulator unit demodulates the returned line monitoring signal.
- the correlation unit checks whether or not the line monitoring signal is abnormal, and monitors whether or not a failure has occurred in the relay line. When the line monitoring of one fiber pair is completed, the process moves to the line monitoring of the next fiber pair.
- a failure in a transmission line such as a submarine optical cable or a repeater.
- a failure is detected not only in the current transmission line that transmits the main signal but also in the backup transmission line that substitutes the current transmission line in the event of a failure. It is important (to monitor normality).
- Patent Documents 1 and 2 have a problem that the redundant configuration of the submarine optical cable is not considered in the detection of the failure in the submarine optical cable.
- the present invention has been made in view of the above problems, and an object thereof is to detect a failure of an active transmission line and a backup transmission line in a submarine optical cable system in which a submarine optical cable has a redundant configuration.
- the fault detection device is a test in which a first optical coupler that branches and outputs a monitoring signal to an active transmission line and a backup transmission line, and one of the active transmission line and the backup transmission line are designated. It includes a second switch function unit that outputs a monitoring signal output from the transmission line, and a transmission line monitoring unit that detects a failure of the test transmission line based on the monitoring signal received from the second switch function unit.
- the cable branching device is branched and output to the working transmission line and the backup transmission line, and the monitoring signal output from the test transmission line which is one of the designated transmission lines and the spare transmission line.
- a second switch function unit that outputs.
- the fault detection method is a monitoring signal that is branched and output to an active transmission line and a backup transmission line, and is output from a test transmission line that is one of the designated transmission lines and the backup transmission line. Detects a failure in the test transmission line based on.
- the first embodiment of the present invention which is the basis of the second embodiment (described later) and the third embodiment (described later) of the present invention and is based on the first embodiment (described later) of the present invention, will be described.
- the first submarine station device controls the execution of the transmission line test.
- FIG. 1 is a block diagram showing an example of the configuration according to the first embodiment of the present invention.
- the fault detection device 105 in the present embodiment includes a first submarine end station device 205, a first cable branching device 305, a second cable branching device 306, and a second submarine end station device 202. including.
- the first submarine station device 205 (SLTE: Submarine Line Terminal Equipment; hereinafter also referred to as “station a”) is a data and optical wavelength division multiplexing (WDM) between an external device (not shown) and a transmission line. Division Multiplexing) Converts the signal.
- WDM wavelength division multiplexing
- the first cable branching device 305 (BU: Branching Unit) is connected to the first seafloor end station device 205 and the second cable branching device 306.
- the second cable branching device 306 is connected to the second seafloor end station device 202 and the first cable branching device 305.
- the first cable branching device 305 and the second cable branching device 306 are connected to each other by the first submarine optical cable 610 (hereinafter, also referred to as "route A") and the second submarine optical cable 620 (hereinafter, also referred to as "route B"). Be connected.
- the first submarine optical cable 610 and the second submarine optical cable 620 form a redundant configuration with each other, one of which is an active transmission line and the other of which is a backup transmission line.
- the first cable branching device 305 and the second cable branching device 306 each switch between the working transmission line and the backup transmission line when a failure in the working transmission line is detected.
- the first cable branching device 305 and the second cable branching device 306 each hold information on the current transmission line.
- the first submarine terminal station device 205 that has detected a failure in the active transmission line issues a first active transmission line switching command for switching the active transmission line between the first submarine end station device 205 and the first cable branching device 305.
- Transmission is performed to the first switch function unit 395 via a third connection (not shown) in parallel with the first connection.
- the second submarine terminal station device 202 that has detected a failure in the working transmission line issues a second working transmission line switching command for switching the working transmission line to the second submarine end station device 202 and the second cable branching device 306. Transmission is performed to the second switch function unit 396 via a fourth connection (not shown) parallel to the connection.
- the first switch function unit 395 and the second switch function unit 396 respectively set the current transmission line according to the received first current transmission line switching command or the second current transmission line switching command (the description of the receiving mechanism is omitted).
- the first cable branching device 305 and the second cable branching device 306 update the information of the active transmission line, respectively. Since the switching mechanism between the working transmission line and the backup transmission line is generally known (see Patent Document 1), detailed description thereof will be omitted.
- the second submarine end station device 202 (hereinafter, also referred to as “station b”) converts data and WDM signals between an external device (not shown) and a transmission line.
- the second submarine end station device 202 is connected to the second cable branching device 306.
- the first submarine terminal station device 205 and the second submarine end station device 202 communicate using a WDM signal (hereinafter, also simply referred to as “signal”) via an active transmission line.
- the WDM signal is used to transmit both the main signal and the monitoring signal in one optical fiber.
- the signal includes a main signal and a monitoring signal.
- the main signal is a signal representing data to be exchanged between the station a and the station b.
- the monitoring signal is a signal for detecting a failure of routes A and B.
- the monitoring signal shall be identifiable by wavelength from the main signal.
- the setting regarding whether the active transmission line is route A or B (hereinafter referred to as “active transmission line setting”) is held by the first cable branching device 305 and the second cable branching device 306. I will do it. Further, whether the transmission line to be tested (hereinafter referred to as “test transmission line”) is route A or B (or the current transmission line or the backup transmission line) is determined for each test. ..
- the first cable branching device 305 includes a first optical coupler 311 and a first switch function unit 395.
- the first optical coupler 311 has an input from the station a and an output to routes A and B.
- the first optical coupler 311 branches the signal received from the station a to the active transmission line and the backup transmission line (routes A and B) and outputs the signal.
- the first switch function unit 395 has an input from routes A and B and an output to station a.
- the first switch function unit 395 transmits the main signal input from the active transmission line (either route A or B) and the monitoring signal input from the test transmission line to the station a.
- the second cable branching device 306 includes a second optical coupler 312 and a second switch function unit 396.
- the second optical coupler 312 has an input from station b and an output to routes A and B.
- the second optical coupler 312 branches and outputs the signal received from the second submarine terminal station device 202 to the active transmission line and the backup transmission line.
- the second switch function unit 396 has an input from routes A and B and an output to station b.
- the second switch function unit 396 transmits the main signal input from the active transmission line and the monitoring signal input from the test transmission line to the second submarine terminal station device 202.
- FIG. 2 is a flowchart showing the operation in the first embodiment of the present invention.
- the flowchart shown in FIG. 2 and its description are examples, and the processing order and the like may be changed, the processing may be returned, or the processing may be repeated as appropriate according to the desired processing.
- the first submarine end station device 205 transmits a monitoring signal to the first optical coupler 311 after designating a test transmission line (step S310).
- a management system (not shown) that manages the entire system including the failure detection device 105 (for example, a submarine cable system) is a first cable branching device 305 and a management system (not shown). It controls the setting of the test transmission line in the second cable branching device 306.
- station a tests the monitoring signal on the first switch function unit 395 and the second switch function unit 396 only for the time required for one test (or the time required from transmission to reception of the monitoring signal). You may instruct to receive from the transmission line.
- the test transmission line may be identifiable by the wavelength of the monitoring signal.
- (4) the test transmission line may be identifiable by the modulation state of the monitoring signal.
- the first submarine terminal station device 205 transmits a first test transmission line designation command for designating a test transmission line to the second submarine end station device 202 by a main signal.
- the first submarine terminal station device 205 issues a second test transmission line designation command for designating the test transmission line in parallel with the first connection between the first submarine end station device 205 and the first cable branching device 305.
- 3 Transmission is performed to the first switch function unit 395 via the connection (not shown).
- the second submarine terminal station device 202 Upon receiving the first test transmission line designation command, the second submarine terminal station device 202 issues a third test transmission line designation command for designating the test transmission line between the second submarine end station device 202 and the second cable branching device 306. It is transmitted to the second switch function unit 396 via the fourth connection (not shown) parallel to the second connection of. Then, the first switch function unit 395 and the second switch function unit 396 respectively follow the received second test transmission line designation command or third test transmission line designation command (the description of the reception mechanism is omitted), and only for a predetermined time. Specify the test transmission line.
- the first submarine terminal station device 205 transmits a monitoring signal modulated by the fourth test transmission line designation command for designating the test transmission line to the first submarine end station device 205. Then, the first switch function unit 395 and the second switch function unit 396 demodulate the received monitoring signal (description of the demodulation mechanism is omitted), and identify the test transmission line according to the demodulated fourth test transmission line designation command. do.
- the second switch function unit 396 transmits the monitoring signal received from the first optical coupler 311 via the test transmission line to the second submarine terminal station device 202 (step S320).
- the second submarine end station device 202 loops back the monitoring signal received from the second switch function unit 396 to the second optical coupler 312 (step S330).
- the first switch function unit 395 transmits the monitoring signal received from the second optical coupler 312 via the test transmission line to the first submarine terminal station device 205 (step S340).
- the first submarine end station device 205 detects a failure of the test transmission line (active transmission line or backup transmission line) based on the monitoring signal received from the first switch function unit 395 (step S350). Specifically, the first submarine station device 205 has, for example, the presence or absence of a failure and the type of failure based on the fluctuation of the level of the loopbacked monitoring signal, the time required from the transmission of the monitoring signal to the reception, and the like. , Identify the location of the failure, etc.
- the station a transmits a monitoring signal to both routes A and B via the first cable branching device 305.
- the second cable branching device 306 transmits the monitoring signal received from the test transmission line to the station b among the monitoring signals transmitted to both the routes A and B.
- the station b loops back the monitoring signal received from the second cable branching device 306 to both routes A and B via the second cable branching device 306.
- the first cable branching device 305 transmits the monitoring signal received from the test transmission line to the station a among the monitoring signals looped back to both the routes A and B.
- the station a detects the failure of the test transmission line based on the monitoring signal received from the first cable branching device 305.
- either route A or B active transmission line or backup transmission line
- the fault detection device 105 in the present embodiment has the effect of being able to detect faults in the working transmission line and the backup transmission line in the optical submarine cable system in which the submarine optical cable has a redundant configuration.
- the fault detection device 105 can detect faults in the working transmission line and the backup transmission line without depending on the working transmission line setting.
- the second submarine terminal station device 202 when the second submarine terminal station device 202 does not loop back the monitoring signal, at least one is connected to the second connection between the second submarine end station device 202 and the second cable branching device 306.
- a fourth repeater of the stand may be included (see second embodiment). Then, the fourth repeater passes the main signal and the monitoring signal, and loops back the monitoring signal in the second connection.
- loopback means that when a signal is received in a certain direction of a certain transmission line (for example, from station A to station B), the signal is received in the opposite direction of the transmission line (for example, from station B to station A). Will be sent. In this case, there is an effect that the failure of the active transmission line and the backup transmission line can be detected even when the second submarine end station device 202 does not loop back the monitoring signal.
- the first submarine optical cable 610 and the second submarine optical cable 620 may include at least one first repeater and a second repeater, respectively (see the second embodiment). Then, the first repeater and the second repeater loop back the passed monitoring signals in the first submarine optical cable 610 and the second submarine optical cable 620, respectively. In this case, there is an effect that the type of failure, the location of the failure, and the like can be specified in more detail.
- the fault detection device 105 may include at least one third repeater in the first connection between the first submarine terminal station device 205 and the first cable branching device 305 (see the second embodiment). Then, the third repeater loops back the passed monitoring signal at the first connection. In this case, there is an effect that the type of failure, the location of the failure, and the like can be specified in more detail.
- the fault detection device in the present embodiment inherits the configuration and operation in the first embodiment of the present invention. In this embodiment, filters, optical switches, and combiners are used for the selection of main and monitoring signals in the cable branching device.
- FIG. 3 is a block diagram showing an example of the configuration in the second embodiment of the present invention.
- the fault detection device 100 in the present embodiment includes at least two first submarine optical cables 610 and a second submarine optical cable 620, a first submarine end station device 201 (station a), and a second submarine. It includes a terminal station device 202 (station b), a first cable branching device 301, a second cable branching device 302, and a transmission line monitoring device 500.
- routes A and B include at least one first repeater 401 and a second repeater 402, respectively.
- the first connection between station a and the first cable branching device 301 includes at least one third repeater 403.
- the second connection between station b and the second cable branching device 302 includes at least one fourth repeater 404.
- Station a converts data and WDM signals between an external device (not shown) and a transmission line.
- the station a is connected to the transmission line monitoring device 500. Further, in the present embodiment, the station a does not have to loop back the monitoring signal.
- the first cable branching device 301 is connected to the station a and the second cable branching device 302.
- the second cable branching device 302 is connected to the station b and the first cable branching device 301.
- the first cable branching device 301 and the second cable branching device 302 are connected to each other by each of route A and route B.
- Station b converts data and WDM signals between an external device (not shown) and a transmission line.
- Station a and station b communicate with each other using a WDM signal via an active transmission line.
- the first cable branching device 301 includes a first optical coupler 311, a first filter 321 and a second filter 331, a first optical switch 341, a second optical switch 351 and a first combiner 361. ..
- the second cable branching device 302 includes a second optical coupler 312, a third filter 322, a fourth filter 332, a third optical switch 342, a fourth optical switch 352, and a second combiner 362. ..
- the first optical coupler 311 branches the signal received from the station a into route A and route B and transmits the signal.
- the first optical switch 341 has an input from the first filter 321 and an input from the second filter 331, and an output to the first combiner 361.
- the first optical switch 341 outputs the main signal received from the active transmission line among the main signals output by the first filter 321 or the second filter 331.
- the first filter 321 has an input from the route A, an output to the first optical switch 341, and an output to the second optical switch 351. Of the signals received from the second optical coupler 312 via the route A, the first filter 321 demultiplexes the monitoring signal to the second optical switch 351 and the main signal to the first optical switch 341 for output. do.
- the second filter 331 has an input from the route B, an output to the first optical switch 341, and an output to the second optical switch 351.
- the second filter 331 demultiplexes and outputs the monitoring signal to the second optical switch 351 and the main signal to the first optical switch 341 among the signals received from the second optical coupler 312 via the route B. do.
- the second optical switch 351 has an input from the first filter 321 and an input from the second filter 331, and an output to the first combiner 361.
- the second optical switch 351 outputs the monitoring signal received from the test transmission line among the monitoring signals output by the first filter 321 or the second filter 331.
- the first combiner 361 has an input from the first optical switch 341, an input from the second optical switch 351 and an output to the station a.
- the first combiner 361 combines the main signal output from the first optical switch 341 and the monitoring signal output from the second optical switch 351 and transmits them to the station a.
- the second optical coupler 312 branches the signal received from the station b into the route A and the route B and transmits the signal.
- the third optical switch 342 has an input from the third filter 322, an input from the fourth filter 332, and an output to the second combiner 362.
- the third optical switch 342 outputs the main signal received from the active transmission line among the main signals output by the third filter 322 or the fourth filter 332.
- the third filter 322 has an input from the route A, an output to the third optical switch 342, and an output to the fourth optical switch 352. Of the signals received from the first optical coupler 311 via the route A, the third filter 322 demultiplexes the monitoring signal to the fourth optical switch 352 and the main signal to the third optical switch 342 and outputs the signal. do.
- the fourth filter 332 has an input from the route B, an output to the third optical switch 342, and an output to the fourth optical switch 352. Of the signals received from the first optical coupler 311 via the route B, the fourth filter 332 demultiplexes the monitoring signal to the fourth optical switch 352 and the main signal to the third optical switch 342 and outputs the signal. do.
- the fourth optical switch 352 has an input from the third filter 322, an input from the fourth filter 332, and an output to the second combiner 362.
- the fourth optical switch 352 outputs the monitoring signal received from the test transmission line among the monitoring signals output by the third filter 322 or the fourth filter 332.
- the second combiner 362 has an input from the third optical switch 342, an input from the fourth optical switch 352, and an output to the station b.
- the second combiner 362 combines the main signal output from the third optical switch 342 and the monitoring signal output from the fourth optical switch 352, and transmits them to the station b.
- the first repeater 401, the second repeater 402, the third repeater 403, and the fourth repeater 404 are each in any one direction (for example, from station a to station b; forward direction) of a certain transmission line.
- the first input from (referred to as), the first output in the forward direction of the transmission line, and the reverse direction of the forward direction of the transmission line (for example, the direction from station b to station a; simply referred to as "reverse direction”. ), And a second output in the opposite direction of the transmission line.
- the first repeater 401, the second repeater 402, the third repeater 403, and the fourth repeater 404 each pass the first input to the first output, the second input to the second output, and the first.
- the monitoring signal from the input is looped back to the second output, and the monitoring signal from the second input is looped back to the first output. That is, the monitoring signals input from the first input and the second input of the transmission line are output (passed) to the first output and the second output of the transmission line, respectively, and at the same time, the second output and the second output of the transmission line. It is output (loopback) to the first output.
- the first repeater 401 passes the main signal and the monitoring signal on route A, and loops back the monitoring signal.
- the first repeater 401 is an optical seafloor repeater having, for example, a loopback function using a reflective optical filter and an amplification / relay function using an erbium-doped fiber.
- the second repeater 402 passes the main signal and the monitoring signal on route B, and loops back the monitoring signal.
- the second repeater 402 is, for example, an optical seafloor repeater having a loopback function using a reflective optical filter and an amplification / relay function using an erbium-doped fiber.
- the third repeater 403 passes the main signal and the monitoring signal in the first connection, and loops back the monitoring signal.
- the third repeater 403 is, for example, an optical fiber partial reflection reflector (in-line type).
- the fourth repeater 404 passes the main signal and the monitoring signal in the second connection, and loops back the monitoring signal.
- the fourth repeater 404 is, for example, an optical fiber partial reflection reflector (in-line type).
- the transmission line monitoring device 500 instructs the station a to transmit the monitoring signal, and detects the failure of the route A and the route B based on the loopbacked monitoring signal received from the station a.
- FIG. 4 is a sequence diagram showing an example of the operation in the second embodiment of the present invention.
- the main signal and the monitoring signal are passed and the monitoring signal is looped back (hereinafter, simply). , Also referred to as the watch signal being "looped back").
- the loopback of the monitoring signal in the fourth repeater 404 will be described as a typical example.
- the management system (not shown) sets a test transmission line (for example, route B) in the first cable branching device 301 and the second cable branching device 302. Then, the transmission line monitoring device 500 instructs the station a to transmit the monitoring signal while the test transmission line is designated.
- a test transmission line for example, route B
- the main signal and the monitoring signal transmitted from the station a are branched by the first optical coupler 311 via the third repeater 403 and pass through both routes A and B (first repeater 401 and). It reaches the second cable branching device 302 (via the second repeater 402) (step S110).
- the monitoring signal is looped back from the station b toward the station a.
- the main signal and the monitoring signal are demultiplexed by the third filter 322 and the fourth filter 332 (step S120).
- the main signal is received by the third optical switch 342 from the filter (for example, the third filter 322) on the working transmission line (for example, route A) side.
- the monitoring signal is received by the fourth optical switch 352 from the filter (for example, the fourth filter 332) on the test transmission line (for example, route B) side (step S130).
- the test transmission line can be independently selected regardless of whether the current transmission line is route A or B.
- the main signal received by the third optical switch 342 and the monitoring signal received by the fourth optical switch 352 are combined by the second combiner 362 and reach the fourth repeater 404 (step). S140).
- the monitoring signal that has reached the fourth repeater 404 is looped back to the second optical coupler 312 by the fourth repeater 404, passes through both routes A and B, and reaches the first cable branching device 301 (step). S150).
- the main signal and the monitoring signal combined by the second combiner 362 also reach the station b. Then, the station b transmits a main signal to the second optical coupler 312.
- the main signal and the loopbacked monitoring signal are demultiplexed by the first filter 321 and the second filter 331 (step S160).
- the main signal is received by the first optical switch 341 from the filter (for example, the first filter 321) on the working transmission line (for example, route A) side.
- the loopbacked monitoring signal is received by the second optical switch 351 from the filter (for example, the second filter 331) on the test transmission line (for example, route B) side (step S170).
- the test transmission line is the same as the test transmission line of the fourth optical switch 352 in step S130.
- step S180 the main signal received by the first optical switch 341 and the monitoring signal received by the second optical switch 351 are combined by the first combiner 361 and reach the station a.
- the first repeater 401, the second repeater 402, and the third repeater 403 are the same as those from the fourth repeater 404.
- the monitoring signal is looped back from station a to station a.
- the failure detection device 100 when a failure has occurred in any of the transmission lines, either of the monitoring signals is not looped back, or an abnormality occurs in the looped back monitoring signal.
- the transmission line monitoring device 500 detects the failure of the transmission line based on the loopbacked monitoring signal received from the station a via the test transmission line (for example, route B).
- the management system switches the setting of the test transmission line in the first cable branching device 301 and the second cable branching device 302 (for example, route A).
- the transmission line monitoring device 500 instructs the station a to transmit a monitoring signal in a state where the test transmission line is switched, and receives from the station a via the test transmission line (for example, route A), a loop.
- a transmission line failure is detected based on the backed up monitoring signal. That is, the monitoring signals looped back from each of the first repeater 401 and the second repeater 402 are identified by the designated test transmission line.
- the monitoring signals looped back from each of the third repeater 403, the first repeater 401, and the fourth repeater 404 are identified based on, for example, the time difference required from the transmission of the monitoring signal to the reception. Further, the monitoring signals looped back from each of the third repeater 403, the second repeater 402, and the fourth repeater 404 are identified based on, for example, the time difference required from the transmission of the monitoring signal to the reception.
- the first cable branching device 301 monitors both routes A and B via the first cable branching device 301 and the second cable branching device 302. Send a signal. Then, the monitoring signal transmitted to both routes A and B is looped back by the first repeater 401, the second repeater 402, the third repeater 403, or the fourth repeater 404. Then, the first cable branching device 301 and the second cable branching device 302 transmit the monitoring signal looped back from the test transmission line to the station a.
- the test transmission line does not depend on the current transmission line and can be selected independently. Then, the transmission line monitoring device 500 performs failure detection of the transmission line based on the loopbacked monitoring signal received from the station a.
- the fault detection device 100 in the present embodiment has an effect of being able to detect faults in the working transmission line and the backup transmission line in the submarine optical cable system in which the submarine optical cable has a redundant configuration.
- the fault detection device 100 can detect faults in the working transmission line and the backup transmission line without depending on the working transmission line setting.
- a third embodiment of the present invention based on the second embodiment of the present invention will be described.
- the fault detection device in the present embodiment inherits the configuration and operation in the second embodiment of the present invention.
- a wavelength selection switch WSS: Wavelength Selective Switch
- a combiner are used for selecting the main signal and the monitoring signal in the cable branching device.
- FIG. 5 is a block diagram showing an example of the configuration according to the third embodiment of the present invention.
- the fault detection device 103 in the present embodiment includes at least two first submarine optical cables 610 and a second submarine optical cable 620, a first submarine end station device 201 (station a), and a second submarine. It includes a terminal station device 202 (station b), a first cable branching device 303, a second cable branching device 304, and a transmission line monitoring device 500.
- the first cable branching device 303 is connected to the station a and the second cable branching device 304.
- the second cable branching device 304 is connected to the station b and the first cable branching device 303.
- the first cable branching device 303 and the second cable branching device 304 are connected to each other by each of route A and route B.
- the first cable branching device 303 includes a first optical coupler 311, a first wavelength selection switch 371, a second wavelength selection switch 381, and a first combiner 361.
- the second cable branching device 304 includes a second optical coupler 312, a third wavelength selection switch 372, a fourth wavelength selection switch 382, and a second combiner 362.
- the first wavelength selection switch 371 has an input from route A, a first output to the input for the main signal input of the first combiner 361, and an input for the monitoring signal input of the first combiner 361. It has a second output.
- the first wavelength selection switch 371 mainly receives the monitoring signal received from the test transmission line to the second output and from the current transmission line among the signals received from the second optical coupler 312 via the first submarine optical cable 610. The signal is switched to the first output and output.
- the first wavelength selection switch 371 controls to receive the monitoring signal from the test transmission line according to the method of designating the test transmission line described above in step S310 of the first embodiment.
- the second wavelength selection switch 381 has an input from route B, a first output to the input for the main signal input of the first combiner 361, and an input for the monitoring signal input of the first combiner 361. It has a second output.
- the second wavelength selection switch 381 mainly receives the monitoring signal received from the test transmission line to the second output and from the current transmission line among the signals received from the second optical coupler 312 via the second submarine optical cable 620. The signal is switched to the first output and output.
- the second wavelength selection switch 381 controls to receive the monitoring signal from the test transmission line according to the method of designating the test transmission line described above in step S310 of the first embodiment.
- the first combiner 361 has a first input for main signal input from the first wavelength selection switch 371 and the second wavelength selection switch 381, and a monitoring signal from the first wavelength selection switch 371 and the second wavelength selection switch 381. It has a second input for input and an output to the first submarine terminal station device 201.
- the first combiner 361 combines the monitoring signal output from the first wavelength selection switch 371 or the second wavelength selection switch 381 with the main signal output from the first wavelength selection switch 371 or the second wavelength selection switch 381.
- the waves are combined and transmitted to the first submarine end station device 201.
- the third wavelength selection switch 372 has an input from route A, a first output to the input for the main signal input of the second combiner 362, and an input for the monitoring signal input of the second combiner 362. It has a second output.
- the third wavelength selection switch 372 mainly receives the monitoring signal received from the test transmission line to the second output and from the current transmission line among the signals received from the first optical coupler 311 via the first submarine optical cable 610. The signal is switched to the first output and output.
- the third wavelength selection switch 372 controls to receive the monitoring signal from the test transmission line according to the method of designating the test transmission line described above in step S310 of the first embodiment.
- the fourth wavelength selection switch 382 has an input from route B, a first output to the input for the main signal input of the second combiner 362, and an input for the monitoring signal input of the second combiner 362. It has a second output.
- the fourth wavelength selection switch 382 mainly receives the monitoring signal received from the test transmission line to the second output and from the current transmission line among the signals received from the first optical coupler 311 via the second submarine optical cable 620. The signal is switched to the first output and output.
- the fourth wavelength selection switch 382 controls to receive the monitoring signal from the test transmission line according to the method of designating the test transmission line described above in step S310 of the first embodiment.
- the second combiner 362 includes a first input for inputting a main signal from the third wavelength selection switch 372 and the fourth wavelength selection switch 382, and a monitoring signal from the third wavelength selection switch 372 and the fourth wavelength selection switch 382. It has a second input for input and an output to the second submarine station apparatus 202.
- the second combiner 362 combines the monitoring signal output from the third wavelength selection switch 372 or the fourth wavelength selection switch 382 and the main signal output from the third wavelength selection switch 372 or the fourth wavelength selection switch 382.
- the other configurations in the present embodiment that combine and transmit to the second submarine end station device 202 are the same as the configurations in the second embodiment.
- FIG. 6 is a sequence diagram showing an example of the operation in the third embodiment of the present invention.
- the main signal and the monitoring signal are passed and the monitoring signal is looped back (hereinafter, simply). , Also referred to as the watch signal being "looped back").
- the loopback of the monitoring signal in the fourth repeater 404 will be described as a typical example.
- the management system (not shown) sets a test transmission line (for example, route B) in the first cable branching device 303 and the second cable branching device 304. Then, the transmission line monitoring device 500 instructs the station a to transmit the monitoring signal while the test transmission line is designated.
- a test transmission line for example, route B
- the main signal and the monitoring signal transmitted from the station a are branched by the first optical coupler 311 via the third repeater 403 and pass through both routes A and B (first repeater 401 and). It reaches the second cable branching device 304 (via the second repeater 402) (step S210).
- the monitoring signal is looped back from the station b toward the station a.
- the monitoring signal received from the test transmission line for example, if the test transmission line is the route B, monitoring is performed. (No signal) and the main signal received from the active transmission line (for example, route A) are switched and output (step S220).
- the monitoring signal received from the test transmission line (for example, when the test transmission line is the route B)
- the main signal received from the current transmission line (for example, if the current transmission line is route A, there is no main signal) is switched and output (step S230).
- the test transmission line can be independently selected regardless of whether the current transmission line is route A or B.
- the main signal output by the third wavelength selection switch 372 or the fourth wavelength selection switch 382 and the monitoring signal output by the third wavelength selection switch 372 or the fourth wavelength selection switch 382 are the second combined wave.
- the wave is combined by the device 362 and reaches the fourth repeater 404 (step S240).
- the monitoring signal that has reached the fourth repeater 404 is looped back to the second optical coupler 312 by the fourth repeater 404, passes through both routes A and B, and reaches the first cable branching device 303 (step). S250).
- the main signal and the monitoring signal combined by the second combiner 362 also reach the station b. Then, the station b transmits a main signal to the second optical coupler 312.
- the monitoring signal received from the test transmission line for example, if the test transmission line is the route B, monitoring is performed.
- the main signal received from the active transmission line for example, route A
- the monitoring signal received from the test transmission line (for example, when the test transmission line is the route B)
- the main signal received from the current transmission line (for example, if the current transmission line is route A, there is no main signal) is switched and output (step S270).
- the test transmission line is the same as the test transmission line of the fourth wavelength selection switch 382 in step S230.
- the main signal output by the first wavelength selection switch 371 or the second wavelength selection switch 381 and the monitoring signal output by the first wavelength selection switch 371 or the second wavelength selection switch 381 are the first combined wave.
- the wave is combined by the vessel 361 and reaches the station a (step S280).
- the first repeater 401, the second repeater 402, and the third repeater 403 are the same as those from the fourth repeater 404.
- the monitoring signal is looped back from station a to station a.
- the failure detection device 103 when a failure has occurred in any of the transmission lines, either of the monitoring signals is not looped back, or an abnormality occurs in the looped back monitoring signal.
- the transmission line monitoring device 500 detects the failure of the transmission line based on the loopbacked monitoring signal received from the station a via the test transmission line (for example, route B).
- the management system (not shown) switches the setting of the test transmission line in the first cable branching device 303 and the second cable branching device 304 (for example, route A).
- the transmission line monitoring device 500 instructs the station a to transmit a monitoring signal in a state where the test transmission line is switched, and receives from the station a via the test transmission line (for example, route A), a loop.
- a transmission line failure is detected based on the backed up monitoring signal.
- the first cable branching device 303 monitors both routes A and B via the first cable branching device 303 and the second cable branching device 304. Send a signal. Then, the monitoring signal transmitted to both routes A and B is looped back by the first repeater 401, the second repeater 402, the third repeater 403, or the fourth repeater 404. Then, the first cable branching device 303 and the second cable branching device 304 transmit the monitoring signal looped back from the test transmission line to the station a.
- the test transmission line does not depend on the current transmission line and can be selected independently. Then, the transmission line monitoring device 500 performs failure detection of the transmission line based on the loopbacked monitoring signal received from the station a.
- the fault detection device 103 in the present embodiment has an effect that the fault of the active transmission line and the backup transmission line can be detected in the optical submarine cable system in which the submarine optical cable has a redundant configuration.
- the fault detection device 103 can detect faults in the working transmission line and the backup transmission line without depending on the working transmission line setting.
- FIG. 7 is a block diagram showing an example of the configuration according to the fourth embodiment of the present invention.
- the fault detection device 107 in the present embodiment includes a first optical coupler 311, a second switch function unit 398, and a transmission line monitoring unit 507.
- the second switch function unit 398 is connected to the transmission line monitoring unit 507 and the first optical coupler 311.
- the first optical coupler 311 and the second switch function unit 398 are connected to each other by the first submarine optical cable 610 (hereinafter, also referred to as “route A”) and the second submarine optical cable 620 (hereinafter, also referred to as “route B”). Will be done.
- the first submarine optical cable 610 and the second submarine optical cable 620 form a redundant configuration with each other, one of which is an active transmission line and the other of which is a backup transmission line.
- the second switch function unit 398 switches between the active transmission line and the backup transmission line when a failure in the active transmission line is detected.
- the second switch function unit 398 holds information on the current transmission line.
- the transmission line monitoring unit 507 that has detected a failure in the current transmission line issues another current transmission line switching command for switching the current transmission line in parallel with the connection between the transmission line monitoring unit 507 and the second switch function unit 398.
- Transmission is performed to the second switch function unit 398 via a connection (not shown).
- the second switch function unit 398 switches the current transmission line according to the received current transmission line switching command (the description of the receiving mechanism is omitted).
- the second switch function unit 398 updates the information of the active transmission line. Since the switching mechanism between the working transmission line and the backup transmission line is generally known (see Patent Document 1), detailed description thereof will be omitted.
- the signals transmitted on routes A and B include monitoring signals.
- the monitoring signal is a signal for detecting a failure of routes A and B.
- test transmission line the transmission line to be tested (hereinafter referred to as “test transmission line”) is route A or B (or the current transmission line or the backup transmission line) is determined for each test. ..
- the first optical coupler 311 has an input from a signal source and an output to routes A and B.
- the first optical coupler 311 branches the signal received from the signal source to the active transmission line and the backup transmission line (routes A and B) and outputs the signal.
- the second switch function unit 398 has an input from routes A and B and an output to a signal transmission destination.
- the second switch function unit 398 transmits the monitoring signal input from the test transmission line to the signal transmission destination (transmission line monitoring unit 507).
- the signal source transmits the monitoring signal to the first optical coupler 311.
- the second switch function unit 398 transmits the monitoring signal received from the first optical coupler 311 via the test transmission line to the transmission line monitoring unit 507.
- the transmission line monitoring unit 507 designates a test transmission line for the second switch function unit 398.
- the transmission line monitoring unit 507 tells the second switch function unit 398 only the time required for one test (or the time required from transmission to reception of the monitoring signal).
- the monitoring signal may be instructed to be received from the test transmission line.
- the transmission line monitoring unit 507 issues a test transmission line designation command for designating a test transmission line to another connection (not shown) in parallel with the connection between the transmission line monitoring unit 507 and the second switch function unit 398.
- the second switch function unit 398 designates the test transmission line for a predetermined time according to the received test transmission line designation command (the description of the reception mechanism is omitted).
- the transmission line monitoring unit 507 detects a failure of the test transmission line (current transmission line or backup transmission line) based on the monitoring signal received from the second switch function unit 398. Specifically, the transmission line monitoring unit 507 specifies, for example, the presence or absence of a failure, the type of failure, the location of failure (route A or B), etc., based on the fluctuation of the level of the received monitoring signal, the test transmission line, and the like. do.
- the second switch function unit 398 is a monitoring signal transmitted from the signal source to both routes A and B via the first optical coupler 311.
- the monitoring signal received from the test transmission line is transmitted to the transmission line monitoring unit 507.
- the transmission line monitoring unit 507 detects a failure of the test transmission line based on the monitoring signal received from the second switch function unit 398.
- route A or B active transmission line or backup transmission line
- the fault detection device 107 in the present embodiment has the effect of being able to detect faults in the working transmission line and the backup transmission line in the optical submarine cable system in which the submarine optical cable has a redundant configuration.
- the fault detection device 107 can detect faults in the working transmission line and the backup transmission line without depending on the working transmission line setting.
- a monitoring signal and a main signal divided and multiplexed by optical wavelength division may be further input to the first optical coupler 311 (see the first embodiment).
- the second switch function unit 398 sends the main signal output from the active transmission line to an output destination different from the transmission line monitoring unit on the receiving side (for example, a seafloor end station device on the receiving side). It may be output (see the first embodiment).
- the fault detection device 107 may further include a transmission-side cable branching device including the first optical coupler and a receiving-side cable branching device including the second switch function unit (see the first embodiment).
- the monitoring signal transmitted from the transmission source may be looped back from the transmission destination to the transmission source in the transmission path leading to the transmission destination of the signal (see the first embodiment).
- the fault detection device 107 is a cable branching device on the transmitting side including the first optical coupler 311 and the switch function unit on the transmitting side, and the receiving side including the optical coupler on the receiving side and the second switch function unit 398. Further includes a cable branching device. Then, the device on the transmitting side can control the execution of the test of the transmission line.
- the transmission line monitoring unit 507 may be included in the cable branching device on the receiving side together with the second switch function unit 398. Alternatively, the transmission line monitoring unit 507 may be included in the cable branching device on the transmitting side together with the first optical coupler 311 (provided that the monitoring signal loopback described in the first embodiment is performed). Alternatively, the transmission line monitoring unit 507 may be included in the submarine end station device on the receiving side or may be included in the submarine end station device on the transmitting side (see the first embodiment). Alternatively, the transmission line monitoring unit 507 may be included in the transmission line monitoring device on the receiving side, or may be included in the transmission line monitoring device on the transmitting side (see the second embodiment and the third embodiment). ..
- (Appendix 1) The first optical coupler that branches and outputs the monitoring signal to the active transmission line and the backup transmission line, and A second switch function unit that outputs the monitoring signal output from the test transmission line, which is one of the designated transmission lines of the active transmission line and the backup transmission line, and the second switch function unit.
- a failure detection device including a transmission line monitoring unit that detects a failure of the test transmission line based on the monitoring signal received from the second switch function unit.
- (Appendix 2) The monitoring signal and the main signal divided and multiplexed by optical wavelength division are further input to the first optical coupler.
- the fault detection device wherein the second switch function unit outputs the main signal output from the active transmission line to an output destination different from that of the transmission line monitoring unit.
- the first optical coupler and the second switch functional unit can be either the active transmission line or the preliminary transmission line, and the first submarine optical cable and either the active transmission line or the spare transmission line.
- the second switch function unit is Of the signals received from the first optical coupler via the first submarine optical cable, the third filter that demultiplexes and outputs the monitoring signal and the main signal, and Of the signals received from the first optical coupler via the second submarine optical cable, the fourth filter that demultiplexes and outputs the monitoring signal and the main signal, and Of the main signals output by the third filter or the fourth filter, a third optical switch that outputs the main signal received from the active transmission line, and Of the monitoring signals output by the third filter or the fourth filter, the fourth optical switch that outputs the monitoring signal received from the test transmission line, and the fourth optical switch.
- the description in Appendix 2 including a second combiner that combines the main signal output from the third optical switch and the monitoring signal output from the fourth optical switch and transmits the monitoring signal to the transmission line monitoring unit.
- Fault detector. Appendix 4
- the first optical coupler and the second switch functional unit can be either the active transmission line or the preliminary transmission line, and the first submarine optical cable and either the active transmission line or the spare transmission line.
- Connected by a second submarine optical cable, which can also be the other of The second switch function unit is Of the signals received from the first optical coupler via the first submarine optical cable, the monitoring signal received from the test transmission line and the main signal received from the working transmission line are switched and output.
- the fault detection device according to Appendix 2 which includes a second combiner that transmits to the monitoring unit.
- the second switch function unit outputs the monitoring signal output from the test transmission line and the main signal output from the active transmission line to the second submarine terminal station device.
- the second submarine station device loops back the monitoring signal received from the second switch function unit.
- the failure detection device wherein the transmission line monitoring unit detects a failure of the test transmission line based on the loopbacked monitoring signal received from the first switch function unit.
- the first optical coupler and the second switch functional unit can be either the active transmission line or the preliminary transmission line, and the first submarine optical cable and either the active transmission line or the spare transmission line.
- Connected by a second submarine optical cable which can also be the other of The fault detection device according to Appendix 5, wherein the first submarine station device includes the transmission line monitoring unit.
- At least one fourth repeater is installed in the second connection between the second submarine station device and the second cable branching device. Including, The failure detection device according to Appendix 6, wherein the fourth repeater passes the main signal and the monitoring signal, and loops back the monitoring signal in the second connection.
- the first submarine optical cable includes at least one first repeater.
- the second submarine optical cable includes at least one second repeater.
- the first repeater passes the main signal and the monitoring signal, and loops back the monitoring signal in the first submarine optical cable.
- the fault detection device according to Appendix 6 or 7, wherein the second repeater passes the main signal and the monitoring signal, and loops back the monitoring signal in the second submarine optical cable.
- the present invention can be used in applications for detecting failures in optical transmission systems including submarine optical cable systems.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
海底光ケーブルが冗長構成を成す障害検出装置において、現用伝送路及び予備伝送路の障害を検出するために、障害検出装置は、監視信号を現用伝送路及び予備伝送路へ分岐して出力する第1光カプラと、現用伝送路及び予備伝送路のうち指定された一方である試験伝送路から出力された監視信号を出力する第2スイッチ機能部と、第2スイッチ機能部から受信した監視信号に基づいて、試験伝送路の障害を検出する伝送路監視部とを含む。
Description
本発明は、海底光ケーブルシステム(Optical Submarine Cable System)における障害を検出する技術に関する。
海底光ケーブルシステムにおける障害を検出する技術の一例が、特許文献1に開示されている。特許文献1の光海底伝送システムでは、陸上部に主回線ケーブルと予備回線ケーブルを異なる経路で敷設する。陸上端局は、主回線ケーブルの破断を検出する破断検出手段と、陸上部の伝送経路を予備回線ケーブルに切り替える経路切替手段とを含む。破断検出手段は、海中部のケーブルから送られてくる主信号の受光レベルに基づいて、又は破断検出手段から監視信号を出力しビーチマンホールで反射されて戻ってくる監視信号の受光レベルに基づいて、ケーブルの破断を検出する。ビーチマンホールは、主回線ケーブルと予備回線ケーブルとで主信号の合分岐を行う光カプラと、監視信号を破断検出手段へ戻すためのファイバグレーティングや光カプラ等の小型受動部品とを含む。上記構成の結果、特許文献1の光海底伝送システムでは、光海底伝送システムにおいて、ビーチマンホールと陸上端局の間の冗長構成を成す陸上部の回線における障害が検出される。
海底光ケーブルシステムにおける障害を検出する技術の別の一例が、特許文献2に開示されている。特許文献2の波長多重光海底ケーブルネットワークでは、送信側端局装置の光送信機は、線路監視装置からの変調信号を受け、線路監視信号として光信号と重畳して中継線路に出力する。該中継線路中に挿入された各光中継器の折返し線路を介して折り返されてきた線路監視信号は、光カプラにより分岐され、線路監視装置に入力する。光セレクタは各ファイバ対からの帰還信号を選択する。アレー導波路格子型フィルタは選択されたファイバ対の波長多重光信号を波長λ1乃至λnに分け、セレクタは該波長の信号を一つずつ選択する。受光部は光-電気変換を行い、復調部は帰還してきた線路監視信号を復調する。相関部は該線路監視信号に異常があるかどうかを調べ、中継線路に障害が発生していないかどうかを監視する。一つのファイバ対の線路監視が終わると、次のファイバ対の線路監視に移る。上記構成の結果、特許文献2の波長多重光海底ケーブルネットワークでは、波長多重光海底ケーブルネットワーク線路が監視される。
一般的に、海底光ケーブルシステムにおいて、海底光ケーブルや中継器等の伝送路における障害を検出することは、保守運用のために重要である。特に、海底光ケーブルが冗長構成(ルートダイバシティ)を成す海底光ケーブルシステムにおいて、主信号を伝送している現用伝送路だけでなく、現用伝送路を障害時に代替する予備伝送路についても、障害を検出する(正常性を監視する)ことが重要である。
しかしながら、特許文献1及び2に記載の技術では、海底光ケーブルにおける障害の検出において、海底光ケーブルの冗長構成が考慮されていないという問題点がある。
本発明は、上記の課題に鑑みてなされたもので、海底光ケーブルが冗長構成を成す海底光ケーブルシステムにおいて、現用伝送路及び予備伝送路の障害を検出することを主たる目的とする。
本発明の一態様において、障害検出装置は、監視信号を現用伝送路及び予備伝送路へ分岐して出力する第1光カプラと、現用伝送路及び予備伝送路のうち指定された一方である試験伝送路から出力された監視信号を出力する第2スイッチ機能部と、第2スイッチ機能部から受信した監視信号に基づいて、試験伝送路の障害を検出する伝送路監視部とを含む。
本発明の一態様において、ケーブル分岐装置は、現用伝送路及び予備伝送路へ分岐して出力され、現用伝送路及び予備伝送路のうち指定された一方である試験伝送路から出力された監視信号を出力する第2スイッチ機能部を含む。
本発明の一態様において、障害検出方法は、現用伝送路及び予備伝送路へ分岐して出力され、現用伝送路及び予備伝送路のうち指定された一方である試験伝送路から出力された監視信号に基づいて、試験伝送路の障害を検出する。
本発明によれば、海底光ケーブルが冗長構成を成す海底光ケーブルシステムにおいて、現用伝送路及び予備伝送路の障害を検出できるという効果がある。
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、すべての図面において、同等の構成要素には同じ符号を付し、適宜説明を省略する。
(第1実施形態)
本発明の第2実施形態(後述)及び第3実施形態(後述)の基本であり、本発明の第1実施形態(後述)を基本とする、本発明の第1実施形態について説明する。本実施形態では、第1海底端局装置が伝送路の試験の実行を制御する。
(第1実施形態)
本発明の第2実施形態(後述)及び第3実施形態(後述)の基本であり、本発明の第1実施形態(後述)を基本とする、本発明の第1実施形態について説明する。本実施形態では、第1海底端局装置が伝送路の試験の実行を制御する。
本実施形態における構成について説明する。
図1は、本発明の第1実施形態における構成の一例を示すブロック図である。
図1に示すように、本実施形態における障害検出装置105は、第1海底端局装置205と、第1ケーブル分岐装置305と、第2ケーブル分岐装置306と、第2海底端局装置202とを含む。
第1海底端局装置205(SLTE:Submarine Line Terminal Equipment;以下、「局a」とも称す)は、外部の装置(不図示)と伝送路の間で、データと光波長分割多重(WDM:Wavelength Division Multiplexing)信号の変換を行う。
第1ケーブル分岐装置305(BU:Branching Unit)は、第1海底端局装置205と、第2ケーブル分岐装置306とに接続される。
第2ケーブル分岐装置306は、第2海底端局装置202と、第1ケーブル分岐装置305とに接続される。
第1ケーブル分岐装置305と第2ケーブル分岐装置306は、第1海底光ケーブル610(以下、「ルートA」とも称す)及び第2海底光ケーブル620(以下、「ルートB」とも称す)のそれぞれによって互いに接続される。第1海底光ケーブル610及び第2海底光ケーブル620は互いに冗長構成を成し、一方が現用伝送路となり、他方が予備伝送路となる。例えば、第1ケーブル分岐装置305及び第2ケーブル分岐装置306はそれぞれ、現用伝送路における障害が検知された場合に、現用伝送路と予備伝送路を切替える。例えば、第1ケーブル分岐装置305及び第2ケーブル分岐装置306はそれぞれ、現用伝送路の情報を保持している。そして、現用伝送路における障害を検知した第1海底端局装置205は、現用伝送路を切替える第1現用伝送路切替命令を、第1海底端局装置205と第1ケーブル分岐装置305の間の第1接続と並列な第3接続(不図示)を経由して、第1スイッチ機能部395へ送信する。現用伝送路における障害を検知した第2海底端局装置202は、現用伝送路を切替える第2現用伝送路切替命令を、第2海底端局装置202と第2ケーブル分岐装置306の間の第2接続と並行な第4接続(不図示)を経由して、第2スイッチ機能部396へ送信する。そして、第1スイッチ機能部395及び第2スイッチ機能部396はそれぞれ、受信した第1現用伝送路切替命令又は第2現用伝送路切替命令に従って(受信機構については説明を省略)、現用伝送路を切替える。そして、第1ケーブル分岐装置305及び第2ケーブル分岐装置306はそれぞれ、現用伝送路の情報を更新する。現用伝送路と予備伝送路の切替機構は、一般的に知られているので(特許文献1を参照)、詳細な説明を省略する。
第2海底端局装置202(以下、「局b」とも称す)は、外部の装置(不図示)と伝送路の間で、データとWDM信号の変換を行う。第2海底端局装置202は、第2ケーブル分岐装置306に接続される。
第1海底端局装置205と第2海底端局装置202は、現用伝送路を介してWDM信号(以下、単に「信号」とも称す)を用いて通信する。WDM信号は、主信号と監視信号の両方を1本の光ファイバで伝送するために用いられる。信号は、主信号と監視信号とを含む。主信号とは、局aと局bの間で交換すべきデータを表す信号である。監視信号とは、ルートA及びBの障害を検出するための信号である。監視信号は、主信号から波長によって識別可能であることとする。ここで、現用伝送路がルートA又はBの何れであるかに関する設定(以下、「現用伝送路設定」と称す)は、第1ケーブル分岐装置305及び第2ケーブル分岐装置306によって保持されていることとする。又、試験対象である伝送路(以下、「試験伝送路」と称す)がルートA又はB(あるいは現用伝送路又は予備伝送路)の何れであるかは、試験毎に決定されることとする。
第1ケーブル分岐装置305は、第1光カプラ311と、第1スイッチ機能部395とを含む。
第1光カプラ311は、局aからの入力と、ルートA及びBへの出力を有する。第1光カプラ311は、局aから受信した信号を現用伝送路及び予備伝送路(ルートA及びB)へ分岐して出力する。
第1スイッチ機能部395は、ルートA及びBからの入力と、局aへの出力を有する。第1スイッチ機能部395は、現用伝送路(ルートA又はBの何れか一方)から入力した主信号及び試験伝送路から入力した監視信号を局aへ送信する。
第2ケーブル分岐装置306は、第2光カプラ312と、第2スイッチ機能部396とを含む。
第2光カプラ312は、局bからの入力と、ルートA及びBへの出力を有する。第2光カプラ312は、第2海底端局装置202から受信した信号を現用伝送路及び予備伝送路へ分岐して出力する。
第2スイッチ機能部396は、ルートA及びBからの入力と、局bへの出力を有する。第2スイッチ機能部396は、現用伝送路から入力した主信号及び試験伝送路から入力した監視信号を第2海底端局装置202へ送信する。
本実施形態における動作について説明する。
図2は、本発明の第1実施形態における動作を示すフローチャートである。図2に示すフローチャート及びその説明は一例であり、求める処理に応じて、適宜、処理順等を入れ替えたり、処理を戻したり、又は処理を繰り返したりしてもよい。
まず、第1海底端局装置205は、試験伝送路を指定した上で、監視信号を第1光カプラ311へ送信する(ステップS310)。尚、試験伝送路を指定するために、例えば、(1)障害検出装置105を含むシステム(例えば、海底ケーブルシステム)の全体を管理するマネージメントシステム(不図示)が、第1ケーブル分岐装置305及び第2ケーブル分岐装置306における試験伝送路の設定を制御する。又は、(2)局aが、第1スイッチ機能部395及び第2スイッチ機能部396に、1回の試験に要する時間(あるいは、監視信号の送信から受信に要する時間)だけ、監視信号を試験伝送路から受信するように指示してもよい。又は、(3)監視信号の波長によって試験伝送路を識別可能にしてもよい。又は、(4)監視信号の変調状態によって試験伝送路を識別可能にしてもよい。(2)の場合、例えば、第1海底端局装置205は、主信号によって、試験伝送路を指定する第1試験伝送路指定命令を第2海底端局装置202へ送信する。同時に、第1海底端局装置205は、試験伝送路を指定する第2試験伝送路指定命令を、第1海底端局装置205と第1ケーブル分岐装置305の間の第1接続と並列な第3接続(不図示)を経由して、第1スイッチ機能部395へ送信する。第1試験伝送路指定命令を受信した第2海底端局装置202は、試験伝送路を指定する第3試験伝送路指定命令を、第2海底端局装置202と第2ケーブル分岐装置306の間の第2接続と並行な第4接続(不図示)を経由して、第2スイッチ機能部396へ送信する。そして、第1スイッチ機能部395及び第2スイッチ機能部396はそれぞれ、受信した第2試験伝送路指定命令又は第3試験伝送路指定命令に従って(受信機構については説明を省略)、所定の時間だけ試験伝送路を指定する。(4)の場合、例えば、第1海底端局装置205は、試験伝送路を指定する第4試験伝送路指定命令で変調された監視信号を、第1海底端局装置205へ送信する。そして、第1スイッチ機能部395及び第2スイッチ機能部396は、受信した監視信号を復調して(復調機構については説明を省略)、復調した第4試験伝送路指定命令に従って試験伝送路を識別する。
次に、第2スイッチ機能部396は、第1光カプラ311から試験伝送路を経由して受信した監視信号を第2海底端局装置202へ送信する(ステップS320)。
続いて、第2海底端局装置202は、第2スイッチ機能部396から受信した監視信号を第2光カプラ312へループバックする(ステップS330)。
続いて、第1スイッチ機能部395は、第2光カプラ312から試験伝送路を経由して受信した監視信号を第1海底端局装置205へ送信する(ステップS340)。
続いて、第1海底端局装置205は、第1スイッチ機能部395から受信した監視信号に基づいて、試験伝送路(現用伝送路又は予備伝送路)の障害を検出する(ステップS350)。具体的には、第1海底端局装置205は、例えば、ループバックされた監視信号のレベルの変動や、監視信号の送信から受信に要した時間等に基づいて、障害の有無、障害の種類、障害箇所等を特定する。
以上説明したように、本実施形態における障害検出装置105では、局aが第1ケーブル分岐装置305を経由してルートA及びBの両方へ監視信号を送信する。そして、第2ケーブル分岐装置306は、ルートA及びBの両方へ送信された監視信号のうち、試験伝送路から受信した監視信号を局bへ送信する。局bは、第2ケーブル分岐装置306から受信した監視信号を、第2ケーブル分岐装置306を経由してルートA及びBの両方へループバックする。そして、第1ケーブル分岐装置305は、ルートA及びBの両方へループバックされた監視信号のうち、試験伝送路から受信した監視信号を局aへ送信する。そして、局aは、第1ケーブル分岐装置305から受信した監視信号に基づいて、試験伝送路の障害を検出する。ここで、試験伝送路には、ルートA又はB(現用伝送路又は予備伝送路)の何れも指定可能である。
従って、本実施形態における障害検出装置105には、海底光ケーブルが冗長構成を成す光海底ケーブルシステムにおいて、現用伝送路及び予備伝送路の障害を検出することができるという効果がある。ここで、障害検出装置105では、現用伝送路設定に依存せずに、現用伝送路及び予備伝送路の障害を検出することができる。
尚、障害検出装置105では、第2海底端局装置202が監視信号のループバックを行わない場合に、第2海底端局装置202と第2ケーブル分岐装置306の間の第2接続に少なくとも1台の第4中継器を含んでもよい(第2実施形態を参照)。そして、第4中継器は、主信号及び監視信号を通過させると共に、監視信号を第2接続においてループバックする。ここで、ループバックとは、ある伝送路のある方向(例えば、局Aから局B方向)において信号を受信した際に、その伝送路の反対方向(例えば、局Bから局A方向)において信号を送信することとする。この場合には、第2海底端局装置202が監視信号のループバックを行わない場合にも、現用伝送路及び予備伝送路の障害を検出することができるという効果がある。
又、障害検出装置105では、第1海底光ケーブル610及び第2海底光ケーブル620はそれぞれ、少なくとも1台の第1中継器及び第2中継器を含んでもよい(第2実施形態を参照)。そして、第1中継器及び第2中継器はそれぞれ、通過した監視信号を第1海底光ケーブル610及び第2海底光ケーブル620においてループバックする。この場合には、障害の種類や障害箇所等をより詳細に特定することができるという効果がある。
又、障害検出装置105では、第1海底端局装置205と第1ケーブル分岐装置305の間の第1接続に少なくとも1台の第3中継器を含んでもよい(第2実施形態を参照)。そして、第3中継器は、通過した監視信号を第1接続においてループバックする。この場合には、障害の種類や障害箇所等をより詳細に特定することができるという効果がある。
(第2実施形態)
次に、本発明の第1実施形態を基本とする、本発明の第2実施形態について説明する。本実施形態における障害検出装置は、特に明示しない限り、本発明の第1実施形態における構成及び動作を継承することとする。本実施形態では、ケーブル分岐装置における主信号及び監視信号の選択のために、フィルタ、光スイッチ、及び合波器が用いられる。
(第2実施形態)
次に、本発明の第1実施形態を基本とする、本発明の第2実施形態について説明する。本実施形態における障害検出装置は、特に明示しない限り、本発明の第1実施形態における構成及び動作を継承することとする。本実施形態では、ケーブル分岐装置における主信号及び監視信号の選択のために、フィルタ、光スイッチ、及び合波器が用いられる。
本実施形態における構成について説明する。
図3は、本発明の第2実施形態における構成の一例を示すブロック図である。
図3に示すように、本実施形態における障害検出装置100は、少なくとも2本の第1海底光ケーブル610及び第2海底光ケーブル620と、第1海底端局装置201(局a)と、第2海底端局装置202(局b)と、第1ケーブル分岐装置301と、第2ケーブル分岐装置302と、伝送路監視装置500とを含む。
本実施形態では、ルートA及びBはそれぞれ、少なくとも1台の第1中継器401及び第2中継器402を含む。又、局aと第1ケーブル分岐装置301の間の第1接続は、少なくとも1台の第3中継器403を含む。又、局bと第2ケーブル分岐装置302の間の第2接続は、少なくとも1台の第4中継器404を含む。
局aは、外部の装置(不図示)と伝送路の間で、データとWDM信号の変換を行う。尚、本実施形態では、局aは伝送路監視装置500に接続されている。又、本実施形態では、局aは監視信号のループバックを行わなくてもよい。
第1ケーブル分岐装置301は、局aと、第2ケーブル分岐装置302とに接続される。
第2ケーブル分岐装置302は、局bと、第1ケーブル分岐装置301とに接続される。
第1ケーブル分岐装置301と第2ケーブル分岐装置302は、ルートA及びルートBのそれぞれによって互いに接続される。
局bは、外部の装置(不図示)と伝送路の間で、データとWDM信号の変換を行う。
局aと局bは、現用伝送路を介してWDM信号を用いて通信する。
第1ケーブル分岐装置301は、第1光カプラ311と、第1フィルタ321と、第2フィルタ331と、第1光スイッチ341と、第2光スイッチ351と、第1合波器361とを含む。
第2ケーブル分岐装置302は、第2光カプラ312と、第3フィルタ322と、第4フィルタ332と、第3光スイッチ342と、第4光スイッチ352と、第2合波器362とを含む。
第1光カプラ311は、局aから受信した信号をルートA及びルートBに分岐して送信する。
第1光スイッチ341は、第1フィルタ321からの入力と、第2フィルタ331からの入力と、第1合波器361への出力を有する。第1光スイッチ341は、第1フィルタ321又は第2フィルタ331によって出力された主信号のうち、現用伝送路から受信した主信号を出力する。
第1フィルタ321は、ルートAからの入力と、第1光スイッチ341への出力と、第2光スイッチ351への出力を有する。第1フィルタ321は、第2光カプラ312からルートAを経由して受信した信号のうち、監視信号を第2光スイッチ351へ、主信号を第1光スイッチ341へ、それぞれ分波して出力する。
第2フィルタ331は、ルートBからの入力と、第1光スイッチ341への出力と、第2光スイッチ351への出力を有する。第2フィルタ331は、第2光カプラ312からルートBを経由して受信した信号のうち、監視信号を第2光スイッチ351へ、主信号を第1光スイッチ341へ、それぞれ分波して出力する。
第2光スイッチ351は、第1フィルタ321からの入力と、第2フィルタ331からの入力と、第1合波器361への出力を有する。第2光スイッチ351は、第1フィルタ321又は第2フィルタ331によって出力された監視信号のうち、試験伝送路から受信した監視信号を出力する。
第1合波器361は、第1光スイッチ341からの入力と、第2光スイッチ351からの入力と、局aへの出力を有する。第1合波器361は、第1光スイッチ341から出力された主信号及び第2光スイッチ351から出力された監視信号を合波して、局aへ送信する。
第2光カプラ312は、局bから受信した信号をルートA及びルートBに分岐して送信する。
第3光スイッチ342は、第3フィルタ322からの入力と、第4フィルタ332からの入力と、第2合波器362への出力を有する。第3光スイッチ342は、第3フィルタ322又は第4フィルタ332によって出力された主信号のうち、現用伝送路から受信した主信号を出力する。
第3フィルタ322は、ルートAからの入力と、第3光スイッチ342への出力と、第4光スイッチ352への出力を有する。第3フィルタ322は、第1光カプラ311からルートAを経由して受信した信号のうち、監視信号を第4光スイッチ352へ、主信号を第3光スイッチ342へ、それぞれ分波して出力する。
第4フィルタ332は、ルートBからの入力と、第3光スイッチ342への出力と、第4光スイッチ352への出力を有する。第4フィルタ332は、第1光カプラ311からルートBを経由して受信した信号のうち、監視信号を第4光スイッチ352へ、主信号を第3光スイッチ342へ、それぞれ分波して出力する。
第4光スイッチ352は、第3フィルタ322からの入力と、第4フィルタ332からの入力と、第2合波器362への出力を有する。第4光スイッチ352は、第3フィルタ322又は第4フィルタ332によって出力された監視信号のうち、試験伝送路から受信した監視信号を出力する。
第2合波器362は、第3光スイッチ342からの入力と、第4光スイッチ352からの入力と、局bへの出力を有する。第2合波器362は、第3光スイッチ342から出力された主信号及び第4光スイッチ352から出力された監視信号を合波して、局bへ送信する。
第1中継器401、第2中継器402、第3中継器403、及び第4中継器404はそれぞれ、ある伝送路の任意の一方向(例えば、局aから局bへの方向;順方向と称す)からの第1入力と、その伝送路の順方向への第1出力と、その伝送路の順方向の逆方向(例えば、局bから局aへの方向;単に「逆方向」と称す)からの第2入力と、その伝送路の逆方向への第2出力とを有する。第1中継器401、第2中継器402、第3中継器403、及び第4中継器404はそれぞれ、第1入力を第1出力へ、第2入力を第2出力へ通過させると共に、第1入力からの監視信号を第2出力へ、第2入力からの監視信号を第1出力へループバックする。即ち、伝送路の第1入力及び第2入力から入力された監視信号はそれぞれ、当該伝送路の第1出力及び第2出力へ出力(通過)されると同時に、当該伝送路の第2出力及び第1出力へ出力(ループバック)される。
第1中継器401は、ルートAにおいて、主信号及び監視信号を通過させると共に、監視信号をループバックする。第1中継器401は、例えば、反射型光フィルタを用いたループバック機能、及びエルビウムドープファイバを用いた増幅・中継機能を有する光海底中継器である。
第2中継器402は、ルートBにおいて、主信号及び監視信号を通過させると共に、監視信号をループバックする。第2中継器402は、例えば、反射型光フィルタを用いたループバック機能、及びエルビウムドープファイバを用いた増幅・中継機能を有する光海底中継器である。
第3中継器403は、第1接続において、主信号及び監視信号を通過させると共に、監視信号をループバックする。第3中継器403は、例えば、光ファイバ部分反射リフレクタ(インライン型)である。
第4中継器404は、第2接続において、主信号及び監視信号を通過させると共に、監視信号をループバックする。第4中継器404は、例えば、光ファイバ部分反射リフレクタ(インライン型)である。
伝送路監視装置500は、局aに監視信号の送信を指示すると共に、局aから受信した、ループバックされた監視信号に基づいて、ルートA及びルートBの障害検出を行う。
本実施形態におけるその他の構成は、第1実施形態における構成と同様である。
本実施形態における動作について説明する。
図4は、本発明の第2実施形態における動作の一例を示すシーケンス図である。
ここで、障害検出装置100には故障が発生していないこととする。この場合、第1中継器401、第2中継器402、第3中継器403、及び第4中継器404において、主信号及び監視信号が通過させられると共に監視信号がループバックされる(以下、単に、監視信号が「ループバックされる」とも称す)。但し、以下では、第4中継器404における監視信号のループバックを代表例として説明する。
まず、例えば、マネージメントシステム(不図示)が、第1ケーブル分岐装置301及び第2ケーブル分岐装置302において試験伝送路(例えば、ルートB)を設定していることとする。そして、伝送路監視装置500は、試験伝送路が指定された状態で、局aに監視信号の送信を指示することとする。
次に、局aから送信された主信号及び監視信号は、第3中継器403を経由して、第1光カプラ311で分岐され、ルートA及びBの両方を通り(第1中継器401及び第2中継器402を経由)、第2ケーブル分岐装置302に到達する(ステップS110)。ここで、第1中継器401、第2中継器402、及び第3中継器403において、監視信号が局bから局aの方向へループバックされる。
続いて、第2ケーブル分岐装置302において、第3フィルタ322及び第4フィルタ332によって、主信号と監視信号が分波される(ステップS120)。
続いて、主信号は、第3光スイッチ342によって現用伝送路(例えば、ルートA)側のフィルタ(例えば、第3フィルタ322)から受信される。一方、監視信号は、第4光スイッチ352によって試験伝送路(例えば、ルートB)側のフィルタ(例えば、第4フィルタ332)から受信される(ステップS130)。ここで、試験伝送路は、現用伝送路がルートA又はBのどちらであるかに依存せず、独立して選択可能である。
続いて、第3光スイッチ342によって受信された主信号、及び第4光スイッチ352によって受信された監視信号は、第2合波器362によって合波され、第4中継器404へ到達する(ステップS140)。
又、第4中継器404へ到達した監視信号は、第4中継器404によって第2光カプラ312へループバックされ、ルートA及びBの両方を通り、第1ケーブル分岐装置301へ到達する(ステップS150)。ここで、第2合波器362によって合波された主信号及び監視信号は、局bへも到達する。そして、局bは、第2光カプラ312へ主信号を送信する。
続いて、第1ケーブル分岐装置301において、第1フィルタ321及び第2フィルタ331によって、主信号とループバックされた監視信号が分波される(ステップS160)。
続いて、主信号は、第1光スイッチ341によって現用伝送路(例えば、ルートA)側のフィルタ(例えば、第1フィルタ321)から受信される。一方、ループバックされた監視信号は、第2光スイッチ351によって試験伝送路(例えば、ルートB)側のフィルタ(例えば、第2フィルタ331)から受信される(ステップS170)。ここで、試験伝送路は、ステップS130における第4光スイッチ352の試験伝送路と同一であることとする。
続いて、第1光スイッチ341によって受信された主信号、及び第2光スイッチ351によって受信された監視信号は、第1合波器361によって合波され、局aへ到達する(ステップS180)。
以上の動作の結果、障害検出装置100には故障が発生していない場合には、第4中継器404からと同様に、第1中継器401、第2中継器402、及び第3中継器403から局aに、監視信号がループバックされる。
一方、障害検出装置100において、何れかの伝送路に故障が発生している場合には、何れかの監視信号がループバックされないか、ループバックされた監視信号に異常が発生する。
そして、伝送路監視装置500は、局aから試験伝送路(例えば、ルートB)を経由して受信した、ループバックされた監視信号に基づいて、伝送路の障害検出を行う。
同様に、今度は、例えば、マネージメントシステム(不図示)が、第1ケーブル分岐装置301及び第2ケーブル分岐装置302における試験伝送路の設定を切替えることとする(例えば、ルートA)。そして、伝送路監視装置500は、試験伝送路が切替えられた状態で、局aに監視信号の送信を指示し、局aから試験伝送路(例えば、ルートA)を経由して受信した、ループバックされた監視信号に基づいて、伝送路の障害検出を行う。即ち、第1中継器401と第2中継器402のそれぞれからループバックされた監視信号は、指定された試験伝送路によって識別される。又、第3中継器403、第1中継器401、及び第4中継器404のそれぞれからループバックされた監視信号は、例えば、監視信号の送信から受信に要した時間差に基づいて識別される。又、第3中継器403、第2中継器402、及び第4中継器404のそれぞれからループバックされた監視信号は、例えば、監視信号の送信から受信に要した時間差に基づいて識別される。
本実施形態におけるその他の動作は、第1実施形態における動作と同様である。
以上説明したように、本実施形態における障害検出装置100では、第1ケーブル分岐装置301が、第1ケーブル分岐装置301及び第2ケーブル分岐装置302を経由して、ルートA及びBの両方へ監視信号を送信する。そして、ルートA及びBの両方へ送信された監視信号は、第1中継器401、第2中継器402、第3中継器403、又は第4中継器404によってループバックされる。そして、第1ケーブル分岐装置301及び第2ケーブル分岐装置302は、試験伝送路からループバックされた監視信号を局aへ送信する。ここで、試験伝送路は、現用伝送路に依存せず、独立して選択可能である。そして、伝送路監視装置500は、局aから受信した、ループバックされた監視信号に基づいて、伝送路の障害検出を行う。
従って、本実施形態における障害検出装置100には、海底光ケーブルが冗長構成を成す海底光ケーブルシステムにおいて、現用伝送路及び予備伝送路の障害を検出することができるという効果がある。ここで、障害検出装置100では、現用伝送路設定に依存せずに、現用伝送路及び予備伝送路の障害を検出することができる。
(第3実施形態)
次に、本発明の第2実施形態を基本とする、本発明の第3実施形態について説明する。本実施形態における障害検出装置は、特に明示しない限り、本発明の第2実施形態における構成及び動作を継承することとする。本実施形態では、ケーブル分岐装置における主信号及び監視信号の選択のために、波長選択スイッチ(WSS:Wavelength Selective Switch)及び合波器が用いられる。
(第3実施形態)
次に、本発明の第2実施形態を基本とする、本発明の第3実施形態について説明する。本実施形態における障害検出装置は、特に明示しない限り、本発明の第2実施形態における構成及び動作を継承することとする。本実施形態では、ケーブル分岐装置における主信号及び監視信号の選択のために、波長選択スイッチ(WSS:Wavelength Selective Switch)及び合波器が用いられる。
本実施形態における構成について説明する。
図5は、本発明の第3実施形態における構成の一例を示すブロック図である。
図5に示すように、本実施形態における障害検出装置103は、少なくとも2本の第1海底光ケーブル610及び第2海底光ケーブル620と、第1海底端局装置201(局a)と、第2海底端局装置202(局b)と、第1ケーブル分岐装置303と、第2ケーブル分岐装置304と、伝送路監視装置500とを含む。
第1ケーブル分岐装置303は、局aと、第2ケーブル分岐装置304とに接続される。
第2ケーブル分岐装置304は、局bと、第1ケーブル分岐装置303とに接続される。
第1ケーブル分岐装置303と第2ケーブル分岐装置304は、ルートA及びルートBのそれぞれによって互いに接続される。
第1ケーブル分岐装置303は、第1光カプラ311と、第1波長選択スイッチ371と、第2波長選択スイッチ381と、第1合波器361とを含む。
第2ケーブル分岐装置304は、第2光カプラ312と、第3波長選択スイッチ372と、第4波長選択スイッチ382と、第2合波器362とを含む。
第1波長選択スイッチ371は、ルートAからの入力と、第1合波器361の主信号入力用の入力への第1出力と、第1合波器361の監視信号入力用の入力への第2出力を有する。第1波長選択スイッチ371は、第2光カプラ312から第1海底光ケーブル610を経由して受信した信号のうち、試験伝送路から受信した監視信号を第2出力へ、現用伝送路から受信した主信号を第1出力へ、それぞれスイッチングして出力する。ここで、第1波長選択スイッチ371は、第1実施形態のステップS310において上述した試験伝送路の指定方法に応じて、監視信号を試験伝送路から受信する制御を行う。
第2波長選択スイッチ381は、ルートBからの入力と、第1合波器361の主信号入力用の入力への第1出力と、第1合波器361の監視信号入力用の入力への第2出力を有する。第2波長選択スイッチ381は、第2光カプラ312から第2海底光ケーブル620を経由して受信した信号のうち、試験伝送路から受信した監視信号を第2出力へ、現用伝送路から受信した主信号を第1出力へ、それぞれスイッチングして出力する。ここで、第2波長選択スイッチ381は、第1実施形態のステップS310において上述した試験伝送路の指定方法に応じて、監視信号を試験伝送路から受信する制御を行う。
第1合波器361は、第1波長選択スイッチ371及び第2波長選択スイッチ381からの主信号入力用の第1入力と、第1波長選択スイッチ371及び第2波長選択スイッチ381からの監視信号入力用の第2入力と、第1海底端局装置201への出力を有する。第1合波器361は、第1波長選択スイッチ371又は第2波長選択スイッチ381から出力された監視信号と、第1波長選択スイッチ371又は第2波長選択スイッチ381から出力された主信号とを合波して第1海底端局装置201へ送信する。
第3波長選択スイッチ372は、ルートAからの入力と、第2合波器362の主信号入力用の入力への第1出力と、第2合波器362の監視信号入力用の入力への第2出力を有する。第3波長選択スイッチ372は、第1光カプラ311から第1海底光ケーブル610を経由して受信した信号のうち、試験伝送路から受信した監視信号を第2出力へ、現用伝送路から受信した主信号を第1出力へ、それぞれスイッチングして出力する。ここで、第3波長選択スイッチ372は、第1実施形態のステップS310において上述した試験伝送路の指定方法に応じて、監視信号を試験伝送路から受信する制御を行う。
第4波長選択スイッチ382は、ルートBからの入力と、第2合波器362の主信号入力用の入力への第1出力と、第2合波器362の監視信号入力用の入力への第2出力を有する。第4波長選択スイッチ382は、第1光カプラ311から第2海底光ケーブル620を経由して受信した信号のうち、試験伝送路から受信した監視信号を第2出力へ、現用伝送路から受信した主信号を第1出力へ、それぞれスイッチングして出力する。ここで、第4波長選択スイッチ382は、第1実施形態のステップS310において上述した試験伝送路の指定方法に応じて、監視信号を試験伝送路から受信する制御を行う。
第2合波器362は、第3波長選択スイッチ372及び第4波長選択スイッチ382からの主信号入力用の第1入力と、第3波長選択スイッチ372及び第4波長選択スイッチ382からの監視信号入力用の第2入力と、第2海底端局装置202への出力を有する。第2合波器362は、第3波長選択スイッチ372又は第4波長選択スイッチ382から出力された監視信号と、第3波長選択スイッチ372又は第4波長選択スイッチ382から出力された主信号とを合波して第2海底端局装置202へ送信する
本実施形態におけるその他の構成は、第2実施形態における構成と同様である。
本実施形態におけるその他の構成は、第2実施形態における構成と同様である。
本実施形態における動作について説明する。
図6は、本発明の第3実施形態における動作の一例を示すシーケンス図である。
ここで、障害検出装置103には故障が発生していないこととする。この場合、第1中継器401、第2中継器402、第3中継器403、及び第4中継器404において、主信号及び監視信号が通過させられると共に監視信号がループバックされる(以下、単に、監視信号が「ループバックされる」とも称す)。但し、以下では、第4中継器404における監視信号のループバックを代表例として説明する。
まず、例えば、マネージメントシステム(不図示)が、第1ケーブル分岐装置303及び第2ケーブル分岐装置304において試験伝送路(例えば、ルートB)を設定していることとする。そして、伝送路監視装置500は、試験伝送路が指定された状態で、局aに監視信号の送信を指示することとする。
次に、局aから送信された主信号及び監視信号は、第3中継器403を経由して、第1光カプラ311で分岐され、ルートA及びBの両方を通り(第1中継器401及び第2中継器402を経由)、第2ケーブル分岐装置304に到達する(ステップS210)。ここで、第1中継器401、第2中継器402、及び第3中継器403において、監視信号が局bから局aの方向へループバックされる。
続いて、第3波長選択スイッチ372によって、第1光カプラ311からルートAを経由して受信した信号のうち、試験伝送路から受信した監視信号(例えば、試験伝送路がルートBであれば監視信号は無し)と、現用伝送路(例えば、ルートA)から受信した主信号とがスイッチングして出力される(ステップS220)。
一方、第4波長選択スイッチ382によって、第1光カプラ311からルートBを経由して受信した信号のうち、試験伝送路から受信した監視信号(例えば、試験伝送路がルートBである場合)と、現用伝送路から受信した主信号(例えば、現用伝送路がルートAであれば主信号は無し)とがスイッチングして出力される(ステップS230)。ここで、試験伝送路は、現用伝送路がルートA又はBのどちらであるかに依存せず、独立して選択可能である。
続いて、第3波長選択スイッチ372又は第4波長選択スイッチ382によって出力された主信号と、第3波長選択スイッチ372又は第4波長選択スイッチ382によって出力された監視信号とは、第2合波器362によって合波され、第4中継器404へ到達する(ステップS240)。
又、第4中継器404へ到達した監視信号は、第4中継器404によって第2光カプラ312へループバックされ、ルートA及びBの両方を通り、第1ケーブル分岐装置303へ到達する(ステップS250)。ここで、第2合波器362によって合波された主信号及び監視信号は、局bへも到達する。そして、局bは、第2光カプラ312へ主信号を送信する。
続いて、第1波長選択スイッチ371によって、第2光カプラ312からルートAを経由して受信した信号のうち、試験伝送路から受信した監視信号(例えば、試験伝送路がルートBであれば監視信号は無し)と、現用伝送路(例えば、ルートA)から受信した主信号とがスイッチングして出力される(ステップS260)。
一方、第2波長選択スイッチ381によって、第2光カプラ312からルートBを経由して受信した信号のうち、試験伝送路から受信した監視信号(例えば、試験伝送路がルートBである場合)と、現用伝送路から受信した主信号(例えば、現用伝送路がルートAであれば主信号は無し)とがスイッチングして出力される(ステップS270)。ここで、試験伝送路は、ステップS230における第4波長選択スイッチ382の試験伝送路と同一であることとする。
続いて、第1波長選択スイッチ371又は第2波長選択スイッチ381によって出力された主信号と、第1波長選択スイッチ371又は第2波長選択スイッチ381によって出力された監視信号とは、第1合波器361によって合波され、局aへ到達する(ステップS280)。
以上の動作の結果、障害検出装置103には故障が発生していない場合には、第4中継器404からと同様に、第1中継器401、第2中継器402、及び第3中継器403から局aに、監視信号がループバックされる。
一方、障害検出装置103において、何れかの伝送路に故障が発生している場合には、何れかの監視信号がループバックされないか、ループバックされた監視信号に異常が発生する。
そして、伝送路監視装置500は、局aから試験伝送路(例えば、ルートB)を経由して受信した、ループバックされた監視信号に基づいて、伝送路の障害検出を行う。
同様に、今度は、例えば、マネージメントシステム(不図示)が、第1ケーブル分岐装置303及び第2ケーブル分岐装置304における試験伝送路の設定を切替えることとする(例えば、ルートA)。そして、伝送路監視装置500は、試験伝送路を切替えられた状態で、局aに監視信号の送信を指示し、局aから試験伝送路(例えば、ルートA)を経由して受信した、ループバックされた監視信号に基づいて、伝送路の障害検出を行う。
本実施形態におけるその他の動作は、第2実施形態における動作と同様である。
以上説明したように、本実施形態における障害検出装置103では、第1ケーブル分岐装置303が、第1ケーブル分岐装置303及び第2ケーブル分岐装置304を経由して、ルートA及びBの両方へ監視信号を送信する。そして、ルートA及びBの両方へ送信された監視信号は、第1中継器401、第2中継器402、第3中継器403、又は第4中継器404によってループバックされる。そして、第1ケーブル分岐装置303及び第2ケーブル分岐装置304は、試験伝送路からループバックされた監視信号を局aへ送信する。ここで、試験伝送路は、現用伝送路に依存せず、独立して選択可能である。そして、伝送路監視装置500は、局aから受信した、ループバックされた監視信号に基づいて、伝送路の障害検出を行う。
従って、本実施形態における障害検出装置103には、海底光ケーブルが冗長構成を成す光海底ケーブルシステムにおいて、現用伝送路及び予備伝送路の障害を検出することができるという効果がある。ここで、障害検出装置103では、現用伝送路設定に依存せずに、現用伝送路及び予備伝送路の障害を検出することができる。
(第4実施形態)
本発明の各実施形態の基本である、本発明の第4実施形態について説明する。
(第4実施形態)
本発明の各実施形態の基本である、本発明の第4実施形態について説明する。
本実施形態における構成について説明する。
図7は、本発明の第4実施形態における構成の一例を示すブロック図である。
図7に示すように、本実施形態における障害検出装置107は、第1光カプラ311と、第2スイッチ機能部398と、伝送路監視部507とを含む。
第2スイッチ機能部398は、伝送路監視部507と、第1光カプラ311とに接続される。
第1光カプラ311と第2スイッチ機能部398は、第1海底光ケーブル610(以下、「ルートA」とも称す)及び第2海底光ケーブル620(以下、「ルートB」とも称す)のそれぞれによって互いに接続される。第1海底光ケーブル610及び第2海底光ケーブル620は互いに冗長構成を成し、一方が現用伝送路となり、他方が予備伝送路となる。例えば、第2スイッチ機能部398は、現用伝送路における障害が検知された場合に、現用伝送路と予備伝送路を切替える。例えば、第2スイッチ機能部398は、現用伝送路の情報を保持している。そして、現用伝送路における障害を検知した伝送路監視部507は、現用伝送路を切替える現用伝送路切替命令を、伝送路監視部507と第2スイッチ機能部398の間の接続と並行な別の接続(不図示)を経由して、第2スイッチ機能部398へ送信する。そして、第2スイッチ機能部398は、受信した現用伝送路切替命令に従って(受信機構については説明を省略)、現用伝送路を切替える。そして、第2スイッチ機能部398は、現用伝送路の情報を更新する。現用伝送路と予備伝送路の切替機構は、一般的に知られているので(特許文献1を参照)、詳細な説明を省略する。
ルートA及びBを伝送される信号は、監視信号を含む。監視信号とは、ルートA及びBの障害を検出するための信号である。
現用伝送路がルートA又はBの何れであるかに関する設定(以下、「現用伝送路設定」と称す)は、第2スイッチ機能部398によって保持されていることとする。又、試験対象である伝送路(以下、「試験伝送路」と称す)がルートA又はB(あるいは現用伝送路又は予備伝送路)の何れであるかは、試験毎に決定されることとする。
第1光カプラ311は、信号の送信元からの入力と、ルートA及びBへの出力を有する。第1光カプラ311は、信号の送信元から受信した信号を現用伝送路及び予備伝送路(ルートA及びB)へ分岐して出力する。
第2スイッチ機能部398は、ルートA及びBからの入力と、信号の送信先への出力を有する。第2スイッチ機能部398は、試験伝送路から入力した監視信号を信号の送信先(伝送路監視部507)へ送信する。
本実施形態における動作について説明する。
まず、信号の送信元は、監視信号を第1光カプラ311へ送信する。
次に、第2スイッチ機能部398は、第1光カプラ311から試験伝送路を経由して受信した監視信号を伝送路監視部507へ送信する。ここで、伝送路監視部507は、第2スイッチ機能部398に対して試験伝送路を指定していることとする。尚、試験伝送路を指定するために、例えば、伝送路監視部507が、第2スイッチ機能部398に、1回の試験に要する時間(あるいは、監視信号の送信から受信に要する時間)だけ、監視信号を試験伝送路から受信するように指示してもよい。この場合、例えば、伝送路監視部507は、試験伝送路を指定する試験伝送路指定命令を、伝送路監視部507と第2スイッチ機能部398の間の接続と並行な別の接続(不図示)を経由して、第2スイッチ機能部398へ送信する。そして、第2スイッチ機能部398は、受信した試験伝送路指定命令に従って(受信機構については説明を省略)、所定の時間だけ試験伝送路を指定する。
続いて、伝送路監視部507は、第2スイッチ機能部398から受信した監視信号に基づいて、試験伝送路(現用伝送路又は予備伝送路)の障害を検出する。具体的には、伝送路監視部507は、例えば、受信した監視信号のレベルの変動や試験伝送路等に基づいて、障害の有無、障害の種類、障害箇所(ルートA又はB)等を特定する。
以上説明したように、本実施形態における障害検出装置107では、第2スイッチ機能部398は、信号の送信元から第1光カプラ311を経由してルートA及びBの両方へ送信された監視信号のうち、試験伝送路から受信した監視信号を伝送路監視部507へ送信する。そして、伝送路監視部507は、第2スイッチ機能部398から受信した監視信号に基づいて、試験伝送路の障害を検出する。ここで、試験伝送路には、ルートA又はB(現用伝送路又は予備伝送路)の何れも指定可能である。
従って、本実施形態における障害検出装置107には、海底光ケーブルが冗長構成を成す光海底ケーブルシステムにおいて、現用伝送路及び予備伝送路の障害を検出することができるという効果がある。ここで、障害検出装置107では、現用伝送路設定に依存せずに、現用伝送路及び予備伝送路の障害を検出することができる。
尚、障害検出装置107では、第1光カプラ311には、監視信号と光波長分割多重された主信号が更に入力されてもよい(第1実施形態を参照)。
又、障害検出装置107では、第2スイッチ機能部398は、現用伝送路から出力された主信号を受信側の伝送路監視部とは異なる出力先(例えば、受信側の海底端局装置)へ出力してもよい(第1実施形態を参照)。
又、障害検出装置107では、第1光カプラを含む送信側のケーブル分岐装置と、第2スイッチ機能部を含む受信側のケーブル分岐装置とを更に含んでもよい(第1実施形態を参照)。
又、障害検出装置107では、送信元から送信された監視信号は、信号の送信先へ至る伝送路において、送信先から送信元の方向へループバックされてもよい(第1実施形態を参照)。この場合には、障害検出装置107は、第1光カプラ311及び送信側のスイッチ機能部を含む送信側のケーブル分岐装置と、受信側の光カプラ及び第2スイッチ機能部398を含む受信側のケーブル分岐装置とを更に含む。そして、送信側の装置が伝送路の試験の実行を制御することができる。
又、障害検出装置107において、伝送路監視部507は、第2スイッチ機能部398と共に受信側のケーブル分岐装置に含まれてもよい。あるいは、伝送路監視部507は、第1光カプラ311と共に送信側のケーブル分岐装置に含まれてもよい(但し、第1実施形態に記載した監視信号のループバックが行われる場合)。あるいは、伝送路監視部507は、受信側の海底端局装置に含まれてもよいし、送信側の海底端局装置に含まれてもよいし(第1実施形態を参照)。あるいは、伝送路監視部507は、受信側の伝送路監視装置に含まれてもよいし、送信側の伝送路監視装置(第2実施形態及び第3実施形態を参照)に含まれてもよい。
以上、本発明を、上述した各実施形態およびその変形例によって例示的に説明した。しかしながら、本発明の技術的範囲は、上述した各実施形態およびその変形例に記載した範囲に限定されない。当業者には、係る実施形態に対して多様な変更又は改良を加えることが可能であることは明らかである。そのような場合、係る変更又は改良を加えた新たな実施形態も、本発明の技術的範囲に含まれ得る。そしてこのことは、特許請求の範囲に記載した事項から明らかである。
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
監視信号を現用伝送路及び予備伝送路へ分岐して出力する第1光カプラと、
前記現用伝送路及び前記予備伝送路のうち指定された一方である試験伝送路から出力された前記監視信号を出力する第2スイッチ機能部と、
前記第2スイッチ機能部から受信した前記監視信号に基づいて、前記試験伝送路の障害を検出する伝送路監視部と
を備えた障害検出装置。
(付記2)
前記第1光カプラには、前記監視信号と光波長分割多重された主信号が更に入力され、
前記第2スイッチ機能部は、前記現用伝送路から出力された前記主信号を前記伝送路監視部とは異なる出力先へ出力する
付記1に記載の障害検出装置。
(付記3)
前記第1光カプラと前記第2スイッチ機能部は、前記現用伝送路又は前記予備伝送路の何れの一方にもなることが可能な第1海底光ケーブル及び前記現用伝送路又は前記予備伝送路の何れの他方にもなることが可能な第2海底光ケーブルによって接続され、
前記第2スイッチ機能部は、
前記第1光カプラから前記第1海底光ケーブルを経由して受信した信号のうち、前記監視信号と主信号とを分波して出力する第3フィルタと、
前記第1光カプラから前記第2海底光ケーブルを経由して受信した信号のうち、前記監視信号と主信号とを分波して出力する第4フィルタと、
前記第3フィルタ又は前記第4フィルタによって出力された主信号のうち、前記現用伝送路から受信した主信号を出力する第3光スイッチと、
前記第3フィルタ又は前記第4フィルタによって出力された前記監視信号のうち、前記試験伝送路から受信した前記監視信号を出力する第4光スイッチと、
前記第3光スイッチから出力された主信号及び前記第4光スイッチから出力された前記監視信号を合波して前記伝送路監視部へ送信する第2合波器と
を含む
付記2に記載の障害検出装置。
(付記4)
前記第1光カプラと前記第2スイッチ機能部は、前記現用伝送路又は前記予備伝送路の何れの一方にもなることが可能な第1海底光ケーブル及び前記現用伝送路又は前記予備伝送路の何れの他方にもなることが可能な第2海底光ケーブルによって接続され、
前記第2スイッチ機能部は、
前記第1光カプラから前記第1海底光ケーブルを経由して受信した信号のうち、前記試験伝送路から受信した前記監視信号と前記現用伝送路から受信した主信号とをスイッチングして出力する第3波長選択スイッチと、
前記第1光カプラから前記第2海底光ケーブルを経由して受信した信号のうち、前記試験伝送路から受信した前記監視信号と前記現用伝送路から受信した主信号とをスイッチングして出力する第4波長選択スイッチと、
前記第3波長選択スイッチ又は前記第4波長選択スイッチから出力された前記監視信号と、前記第3波長選択スイッチ又は前記第4波長選択スイッチから出力された主信号とを合波して前記伝送路監視部へ送信する第2合波器と
を含む
付記2に記載の障害検出装置。
(付記5)
第1海底端局装置と、
第2海底端局装置と、
主信号及びループバックされた前記監視信号を前記現用伝送路及び前記予備伝送路へ分岐して出力する第2光カプラと、
前記試験伝送路から出力されたループバックされた前記監視信号を前記伝送路監視部へ出力し、前記現用伝送路から出力された主信号を前記第1海底端局装置へ出力する第1スイッチ機能部と
を更に含み、
前記第2スイッチ機能部は、前記試験伝送路から出力された前記監視信号と前記現用伝送路から出力された主信号とを前記第2海底端局装置へ出力し、
前記第2海底端局装置は、前記第2スイッチ機能部から受信した前記監視信号をループバックし、
前記伝送路監視部は、前記第1スイッチ機能部から受信したループバックされた前記監視信号に基づいて、前記試験伝送路の障害を検出する
付記2に記載の障害検出装置。
(付記6)
前記第1光カプラ及び前記第1スイッチ機能部を含む第1ケーブル分岐装置と、
前記第2光カプラ及び前記第2スイッチ機能部を含む第2ケーブル分岐装置と
を更に含み、
前記第1光カプラと前記第2スイッチ機能部は、前記現用伝送路又は前記予備伝送路の何れの一方にもなることが可能な第1海底光ケーブル及び前記現用伝送路又は前記予備伝送路の何れの他方にもなることが可能な第2海底光ケーブルによって接続され、
前記第1海底端局装置は、前記伝送路監視部を含む
付記5に記載の障害検出装置。
(付記7)
前記第2海底端局装置が前記監視信号のループバックを行わない場合に、前記第2海底端局装置と前記第2ケーブル分岐装置の間の第2接続に少なくとも1台の第4中継器を含み、
前記第4中継器は、主信号及び前記監視信号を通過させると共に、前記監視信号を前記第2接続においてループバックする
付記6に記載の障害検出装置。
(付記8)
前記第1海底光ケーブルは、少なくとも1台の第1中継器を含み、
前記第2海底光ケーブルは、少なくとも1台の第2中継器を含み、
前記第1中継器は、主信号及び前記監視信号を通過させると共に、前記監視信号を前記第1海底光ケーブルにおいてループバックし、
前記第2中継器は、主信号及び前記監視信号を通過させると共に、前記監視信号を前記第2海底光ケーブルにおいてループバックする
付記6又は7に記載の障害検出装置。
(付記9)
現用伝送路及び予備伝送路へ分岐して出力され、前記現用伝送路及び前記予備伝送路のうち指定された一方である試験伝送路から出力された監視信号を出力する第2スイッチ機能部
を備えたケーブル分岐装置。
(付記10)
前記第2スイッチ機能部は、前記現用伝送路から出力された光波長分割多重された主信号を前記監視信号の出力先とは異なる出力先へ出力する
付記9に記載のケーブル分岐装置。
(付記11)
現用伝送路及び予備伝送路へ分岐して出力され、前記現用伝送路及び前記予備伝送路のうち指定された一方である試験伝送路から出力された監視信号に基づいて、前記試験伝送路の障害を検出する
障害検出方法。
この出願は、2020年9月14日に出願された日本出願特願2020-153411を基礎とする優先権を主張し、その開示の全てをここに取り込む。
(付記1)
監視信号を現用伝送路及び予備伝送路へ分岐して出力する第1光カプラと、
前記現用伝送路及び前記予備伝送路のうち指定された一方である試験伝送路から出力された前記監視信号を出力する第2スイッチ機能部と、
前記第2スイッチ機能部から受信した前記監視信号に基づいて、前記試験伝送路の障害を検出する伝送路監視部と
を備えた障害検出装置。
(付記2)
前記第1光カプラには、前記監視信号と光波長分割多重された主信号が更に入力され、
前記第2スイッチ機能部は、前記現用伝送路から出力された前記主信号を前記伝送路監視部とは異なる出力先へ出力する
付記1に記載の障害検出装置。
(付記3)
前記第1光カプラと前記第2スイッチ機能部は、前記現用伝送路又は前記予備伝送路の何れの一方にもなることが可能な第1海底光ケーブル及び前記現用伝送路又は前記予備伝送路の何れの他方にもなることが可能な第2海底光ケーブルによって接続され、
前記第2スイッチ機能部は、
前記第1光カプラから前記第1海底光ケーブルを経由して受信した信号のうち、前記監視信号と主信号とを分波して出力する第3フィルタと、
前記第1光カプラから前記第2海底光ケーブルを経由して受信した信号のうち、前記監視信号と主信号とを分波して出力する第4フィルタと、
前記第3フィルタ又は前記第4フィルタによって出力された主信号のうち、前記現用伝送路から受信した主信号を出力する第3光スイッチと、
前記第3フィルタ又は前記第4フィルタによって出力された前記監視信号のうち、前記試験伝送路から受信した前記監視信号を出力する第4光スイッチと、
前記第3光スイッチから出力された主信号及び前記第4光スイッチから出力された前記監視信号を合波して前記伝送路監視部へ送信する第2合波器と
を含む
付記2に記載の障害検出装置。
(付記4)
前記第1光カプラと前記第2スイッチ機能部は、前記現用伝送路又は前記予備伝送路の何れの一方にもなることが可能な第1海底光ケーブル及び前記現用伝送路又は前記予備伝送路の何れの他方にもなることが可能な第2海底光ケーブルによって接続され、
前記第2スイッチ機能部は、
前記第1光カプラから前記第1海底光ケーブルを経由して受信した信号のうち、前記試験伝送路から受信した前記監視信号と前記現用伝送路から受信した主信号とをスイッチングして出力する第3波長選択スイッチと、
前記第1光カプラから前記第2海底光ケーブルを経由して受信した信号のうち、前記試験伝送路から受信した前記監視信号と前記現用伝送路から受信した主信号とをスイッチングして出力する第4波長選択スイッチと、
前記第3波長選択スイッチ又は前記第4波長選択スイッチから出力された前記監視信号と、前記第3波長選択スイッチ又は前記第4波長選択スイッチから出力された主信号とを合波して前記伝送路監視部へ送信する第2合波器と
を含む
付記2に記載の障害検出装置。
(付記5)
第1海底端局装置と、
第2海底端局装置と、
主信号及びループバックされた前記監視信号を前記現用伝送路及び前記予備伝送路へ分岐して出力する第2光カプラと、
前記試験伝送路から出力されたループバックされた前記監視信号を前記伝送路監視部へ出力し、前記現用伝送路から出力された主信号を前記第1海底端局装置へ出力する第1スイッチ機能部と
を更に含み、
前記第2スイッチ機能部は、前記試験伝送路から出力された前記監視信号と前記現用伝送路から出力された主信号とを前記第2海底端局装置へ出力し、
前記第2海底端局装置は、前記第2スイッチ機能部から受信した前記監視信号をループバックし、
前記伝送路監視部は、前記第1スイッチ機能部から受信したループバックされた前記監視信号に基づいて、前記試験伝送路の障害を検出する
付記2に記載の障害検出装置。
(付記6)
前記第1光カプラ及び前記第1スイッチ機能部を含む第1ケーブル分岐装置と、
前記第2光カプラ及び前記第2スイッチ機能部を含む第2ケーブル分岐装置と
を更に含み、
前記第1光カプラと前記第2スイッチ機能部は、前記現用伝送路又は前記予備伝送路の何れの一方にもなることが可能な第1海底光ケーブル及び前記現用伝送路又は前記予備伝送路の何れの他方にもなることが可能な第2海底光ケーブルによって接続され、
前記第1海底端局装置は、前記伝送路監視部を含む
付記5に記載の障害検出装置。
(付記7)
前記第2海底端局装置が前記監視信号のループバックを行わない場合に、前記第2海底端局装置と前記第2ケーブル分岐装置の間の第2接続に少なくとも1台の第4中継器を含み、
前記第4中継器は、主信号及び前記監視信号を通過させると共に、前記監視信号を前記第2接続においてループバックする
付記6に記載の障害検出装置。
(付記8)
前記第1海底光ケーブルは、少なくとも1台の第1中継器を含み、
前記第2海底光ケーブルは、少なくとも1台の第2中継器を含み、
前記第1中継器は、主信号及び前記監視信号を通過させると共に、前記監視信号を前記第1海底光ケーブルにおいてループバックし、
前記第2中継器は、主信号及び前記監視信号を通過させると共に、前記監視信号を前記第2海底光ケーブルにおいてループバックする
付記6又は7に記載の障害検出装置。
(付記9)
現用伝送路及び予備伝送路へ分岐して出力され、前記現用伝送路及び前記予備伝送路のうち指定された一方である試験伝送路から出力された監視信号を出力する第2スイッチ機能部
を備えたケーブル分岐装置。
(付記10)
前記第2スイッチ機能部は、前記現用伝送路から出力された光波長分割多重された主信号を前記監視信号の出力先とは異なる出力先へ出力する
付記9に記載のケーブル分岐装置。
(付記11)
現用伝送路及び予備伝送路へ分岐して出力され、前記現用伝送路及び前記予備伝送路のうち指定された一方である試験伝送路から出力された監視信号に基づいて、前記試験伝送路の障害を検出する
障害検出方法。
この出願は、2020年9月14日に出願された日本出願特願2020-153411を基礎とする優先権を主張し、その開示の全てをここに取り込む。
本発明は、海底光ケーブルシステムを含む光伝送システムの障害を検出する用途において利用できる。
100、103、105、107 障害検出装置
201、205 第1海底端局装置
202 第2海底端局装置
500 伝送路監視装置
301、303、305 第1ケーブル分岐装置
302、304、306 第2ケーブル分岐装置
341 第1光スイッチ
351 第2光スイッチ
342 第3光スイッチ
352 第4光スイッチ
371 第1波長選択スイッチ
381 第2波長選択スイッチ
372 第3波長選択スイッチ
382 第4波長選択スイッチ
311 第1光カプラ
312 第2光カプラ
401 第1中継器
402 第2中継器
403 第3中継器
404 第4中継器
321 第1フィルタ
322 第3フィルタ
331 第2フィルタ
332 第4フィルタ
361 第1合波器
362 第2合波器
610 第1海底光ケーブル
620 第2海底光ケーブル
395 第1スイッチ機能部
396、398 第2スイッチ機能部
507 伝送路監視部
201、205 第1海底端局装置
202 第2海底端局装置
500 伝送路監視装置
301、303、305 第1ケーブル分岐装置
302、304、306 第2ケーブル分岐装置
341 第1光スイッチ
351 第2光スイッチ
342 第3光スイッチ
352 第4光スイッチ
371 第1波長選択スイッチ
381 第2波長選択スイッチ
372 第3波長選択スイッチ
382 第4波長選択スイッチ
311 第1光カプラ
312 第2光カプラ
401 第1中継器
402 第2中継器
403 第3中継器
404 第4中継器
321 第1フィルタ
322 第3フィルタ
331 第2フィルタ
332 第4フィルタ
361 第1合波器
362 第2合波器
610 第1海底光ケーブル
620 第2海底光ケーブル
395 第1スイッチ機能部
396、398 第2スイッチ機能部
507 伝送路監視部
Claims (10)
- 監視信号を現用伝送路及び予備伝送路へ分岐して出力する第1光カプラと、
前記現用伝送路及び前記予備伝送路のうち指定された一方である試験伝送路から出力された前記監視信号を出力する第2スイッチ機能部と、
前記第2スイッチ機能部から受信した前記監視信号に基づいて、前記試験伝送路の障害を検出する伝送路監視部と
を備えた障害検出装置。 - 前記第1光カプラには、前記監視信号と光波長分割多重された主信号が更に入力され、
前記第2スイッチ機能部は、前記現用伝送路から出力された前記主信号を前記伝送路監視部とは異なる出力先へ出力する
請求項1に記載の障害検出装置。 - 前記第1光カプラと前記第2スイッチ機能部は、前記現用伝送路又は前記予備伝送路の何れの一方にもなることが可能な第1海底光ケーブル及び前記現用伝送路又は前記予備伝送路の何れの他方にもなることが可能な第2海底光ケーブルによって接続され、
前記第2スイッチ機能部は、
前記第1光カプラから前記第1海底光ケーブルを経由して受信した信号のうち、前記監視信号と前記主信号とを分波して出力する第3フィルタと、
前記第1光カプラから前記第2海底光ケーブルを経由して受信した信号のうち、前記監視信号と前記主信号とを分波して出力する第4フィルタと、
前記第3フィルタ又は前記第4フィルタによって出力された前記主信号のうち、前記現用伝送路から受信した前記主信号を出力する第3光スイッチと、
前記第3フィルタ又は前記第4フィルタによって出力された前記監視信号のうち、前記試験伝送路から受信した前記監視信号を出力する第4光スイッチと、
前記第3光スイッチから出力された前記主信号及び前記第4光スイッチから出力された前記監視信号を合波して前記伝送路監視部へ送信する第2合波器と
を含む
請求項2に記載の障害検出装置。 - 前記第1光カプラと前記第2スイッチ機能部は、前記現用伝送路又は前記予備伝送路の何れの一方にもなることが可能な第1海底光ケーブル及び前記現用伝送路又は前記予備伝送路の何れの他方にもなることが可能な第2海底光ケーブルによって接続され、
前記第2スイッチ機能部は、
前記第1光カプラから前記第1海底光ケーブルを経由して受信した信号のうち、前記試験伝送路から受信した前記監視信号と前記現用伝送路から受信した前記主信号とをスイッチングして出力する第3波長選択スイッチと、
前記第1光カプラから前記第2海底光ケーブルを経由して受信した信号のうち、前記試験伝送路から受信した前記監視信号と前記現用伝送路から受信した前記主信号とをスイッチングして出力する第4波長選択スイッチと、
前記第3波長選択スイッチ又は前記第4波長選択スイッチから出力された前記監視信号と、前記第3波長選択スイッチ又は前記第4波長選択スイッチから出力された前記主信号とを合波して前記伝送路監視部へ送信する第2合波器と
を含む
請求項2に記載の障害検出装置。 - 第1海底端局装置と、
第2海底端局装置と、
前記主信号及びループバックされた前記監視信号を前記現用伝送路及び前記予備伝送路へ分岐して出力する第2光カプラと、
前記試験伝送路から出力されたループバックされた前記監視信号を前記伝送路監視部へ出力し、前記現用伝送路から出力された前記主信号を前記第1海底端局装置へ出力する第1スイッチ機能部と
を更に含み、
前記第2スイッチ機能部は、前記試験伝送路から出力された前記監視信号と前記現用伝送路から出力された前記主信号とを前記第2海底端局装置へ出力し、
前記第2海底端局装置は、前記第2スイッチ機能部から受信した前記監視信号をループバックし、
前記伝送路監視部は、前記第1スイッチ機能部から受信したループバックされた前記監視信号に基づいて、前記試験伝送路の障害を検出する
請求項2に記載の障害検出装置。 - 前記第1光カプラ及び前記第1スイッチ機能部を含む第1ケーブル分岐装置と、
前記第2光カプラ及び前記第2スイッチ機能部を含む第2ケーブル分岐装置と
を更に含み、
前記第1光カプラと前記第2スイッチ機能部は、前記現用伝送路又は前記予備伝送路の何れの一方にもなることが可能な第1海底光ケーブル及び前記現用伝送路又は前記予備伝送路の何れの他方にもなることが可能な第2海底光ケーブルによって接続され、
前記第1海底端局装置は、前記伝送路監視部を含む
請求項5に記載の障害検出装置。 - 前記第2海底端局装置が前記監視信号のループバックを行わない場合に、前記第2海底端局装置と前記第2ケーブル分岐装置の間の第2接続に少なくとも1台の第4中継器を含み、
前記第4中継器は、前記主信号及び前記監視信号を通過させると共に、前記監視信号を前記第2接続においてループバックする
請求項6に記載の障害検出装置。 - 現用伝送路及び予備伝送路へ分岐して出力され、前記現用伝送路及び前記予備伝送路のうち指定された一方である試験伝送路から出力された監視信号を出力する第2スイッチ機能部
を備えたケーブル分岐装置。 - 前記第2スイッチ機能部は、前記現用伝送路から出力された光波長分割多重された前記主信号を前記監視信号の出力先とは異なる出力先へ出力する
請求項8に記載のケーブル分岐装置。 - 現用伝送路及び予備伝送路へ分岐して出力され、前記現用伝送路及び前記予備伝送路のうち指定された一方である試験伝送路から出力された監視信号に基づいて、前記試験伝送路の障害を検出する
障害検出方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022547599A JPWO2022054779A5 (ja) | 2021-09-07 | 障害検出装置、ケーブル分岐装置、及び障害検出方法 | |
US18/024,852 US20230318702A1 (en) | 2020-09-14 | 2021-09-07 | Failure detection apparatus, cable branching device, and transmission path surveillance method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020153411 | 2020-09-14 | ||
JP2020-153411 | 2020-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022054779A1 true WO2022054779A1 (ja) | 2022-03-17 |
Family
ID=80632126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/032774 WO2022054779A1 (ja) | 2020-09-14 | 2021-09-07 | 障害検出装置、ケーブル分岐装置、及び伝送路監視方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230318702A1 (ja) |
WO (1) | WO2022054779A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114758629A (zh) * | 2022-06-16 | 2022-07-15 | 惠科股份有限公司 | 背光模组及其点亮方法 |
CN115833938A (zh) * | 2022-11-23 | 2023-03-21 | 高勘(广州)技术有限公司 | 同路由光缆的显示方法、装置、设备及存储介质 |
WO2023188233A1 (ja) * | 2022-03-31 | 2023-10-05 | 日本電気株式会社 | 海底光通信システム |
WO2024029033A1 (ja) * | 2022-08-04 | 2024-02-08 | 日本電信電話株式会社 | 通信システム及び正常性判定方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011147077A (ja) * | 2010-01-18 | 2011-07-28 | Mitsubishi Electric Corp | プロテクションスイッチ |
WO2014141533A1 (ja) * | 2013-03-11 | 2014-09-18 | 株式会社日立製作所 | 切替装置および伝送システム |
US20190260493A1 (en) * | 2018-02-22 | 2019-08-22 | Nokia Solutions And Networks Oy | Protection of channel connections in an optical network |
-
2021
- 2021-09-07 US US18/024,852 patent/US20230318702A1/en active Pending
- 2021-09-07 WO PCT/JP2021/032774 patent/WO2022054779A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011147077A (ja) * | 2010-01-18 | 2011-07-28 | Mitsubishi Electric Corp | プロテクションスイッチ |
WO2014141533A1 (ja) * | 2013-03-11 | 2014-09-18 | 株式会社日立製作所 | 切替装置および伝送システム |
US20190260493A1 (en) * | 2018-02-22 | 2019-08-22 | Nokia Solutions And Networks Oy | Protection of channel connections in an optical network |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023188233A1 (ja) * | 2022-03-31 | 2023-10-05 | 日本電気株式会社 | 海底光通信システム |
CN114758629A (zh) * | 2022-06-16 | 2022-07-15 | 惠科股份有限公司 | 背光模组及其点亮方法 |
US11915662B2 (en) | 2022-06-16 | 2024-02-27 | HKC Corporation Limited | Backlight module of display and lighting method thereof |
WO2024029033A1 (ja) * | 2022-08-04 | 2024-02-08 | 日本電信電話株式会社 | 通信システム及び正常性判定方法 |
CN115833938A (zh) * | 2022-11-23 | 2023-03-21 | 高勘(广州)技术有限公司 | 同路由光缆的显示方法、装置、设备及存储介质 |
CN115833938B (zh) * | 2022-11-23 | 2024-03-15 | 高勘(广州)技术有限公司 | 同路由光缆的显示方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022054779A1 (ja) | 2022-03-17 |
US20230318702A1 (en) | 2023-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022054779A1 (ja) | 障害検出装置、ケーブル分岐装置、及び伝送路監視方法 | |
JP6436237B2 (ja) | 経路切替装置、経路切替システムおよび経路切替方法 | |
US7326916B2 (en) | Optical submarine transmission system | |
US7415211B2 (en) | Interconnections and protection between optical communications networks | |
US5757526A (en) | Optical communication network and method for optically detecting a fault | |
JP4500136B2 (ja) | 波長多重光送信機 | |
US8218964B2 (en) | All optical 1+1 protection unit using sub-carrier modulation protocol | |
JP6683248B2 (ja) | 光波長多重伝送システム、光波長多重装置、及び予備系確認方法 | |
EP1450509A2 (en) | Protection switching architecture and method of use | |
JPH10173598A (ja) | 光合分波装置及びこれを用いた光伝送システム | |
US20050180316A1 (en) | Protection for bi-directional optical wavelength division multiplexed communications networks | |
JP6024391B2 (ja) | 伝送装置、伝送システム、及び障害検出方法 | |
CN113348640B (zh) | 光分支/耦合设备和光分支/耦合方法 | |
JP6962380B2 (ja) | 海底光通信システム及び海底分岐装置 | |
CN115967437A (zh) | 自我修复的海底链路 | |
JP2006186538A (ja) | 光伝送装置及び光伝送路切換方法 | |
JP7544134B2 (ja) | 光分岐結合装置、光伝送システム及び光分岐結合方法 | |
JPH09289494A (ja) | 波長多重光海底ケーブルネットワーク用線路監視装置 | |
WO2023162064A1 (ja) | 経路特定システム、経路特定方法、監視装置、監視装置の制御方法及び記録媒体 | |
US11916589B2 (en) | Submarine device, submarine device monitoring method, and optical communication system | |
JP2008199450A (ja) | 光アクセスシステム | |
JP2024033439A (ja) | 光信号監視装置、光信号監視システムおよび光信号監視方法 | |
KR100528968B1 (ko) | 광전송 시스템의 유지보수 장치 및 방법 | |
JPWO2022054779A5 (ja) | 障害検出装置、ケーブル分岐装置、及び障害検出方法 | |
JPH01183927A (ja) | 光通信システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21866738 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022547599 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21866738 Country of ref document: EP Kind code of ref document: A1 |