WO2017090332A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2017090332A1
WO2017090332A1 PCT/JP2016/080359 JP2016080359W WO2017090332A1 WO 2017090332 A1 WO2017090332 A1 WO 2017090332A1 JP 2016080359 W JP2016080359 W JP 2016080359W WO 2017090332 A1 WO2017090332 A1 WO 2017090332A1
Authority
WO
WIPO (PCT)
Prior art keywords
tread
rib
circumferential
pneumatic tire
communication
Prior art date
Application number
PCT/JP2016/080359
Other languages
English (en)
French (fr)
Inventor
洋志 大庭
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US15/776,510 priority Critical patent/US10850570B2/en
Priority to CN201680068896.4A priority patent/CN108290462B/zh
Priority to EP16868281.3A priority patent/EP3381718B1/en
Publication of WO2017090332A1 publication Critical patent/WO2017090332A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • B60C11/0323Patterns comprising isolated recesses tread comprising channels under the tread surface, e.g. for draining water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • B60C11/042Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • B60C11/1281Width of the sipe different within the same sipe, i.e. enlarged width portion at sipe bottom or along its length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C11/1315Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls having variable inclination angles, e.g. warped groove walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0344Circumferential grooves provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a pneumatic tire formed with a plurality of rib-like land portions separated by a plurality of circumferential grooves, and more particularly to a tread structure.
  • a pneumatic tire in which a plurality of circumferential grooves are provided in a tread and a rib pattern is formed is designed to ensure frictional force (wet grip performance) by promoting drainage by the circumferential grooves even on a wet road surface.
  • the tread portion if the rib-like land portion partitioned by the circumferential groove is grounded, and there is elastic deformation such as compression deformation or collapse of the rib-like land portion, the tread portion generates heat due to energy loss due to hysteresis loss generated by the deformation.
  • the rolling resistance tends to increase.
  • Japanese Patent Laid-Open No. 2004-133867 discloses that at the tread end in order to suppress buckling in which the tire contact area is reduced or the contact pressure is reduced due to the compressive stress in the tire radial direction caused by the external force from the side with respect to the tread during vehicle turning.
  • the projecting portion is partially projected in the adjacent circumferential groove to increase the rigidity against the compressive stress in the tire radial direction of the rib-like land portion at the tread end and to improve the cornering power. Therefore, in patent document 1, the protrusion part is provided only in the circumferential groove
  • the protrusions are arranged in the tread circumferential direction with a larger interval than the protrusions.
  • a pneumatic tire having a rib pattern on the tread is often used mainly for heavy-duty vehicles such as trucks and buses, and a heavy-duty pneumatic tire is partitioned by a circumferential groove.
  • the rib-shaped land portion is greatly compressed and collapsed due to the ground contact with the rib-shaped land portion, and as in Patent Document 1, a protrusion is provided only in the circumferential groove adjacent to the tread end, and the protrusion is the tread. Even if arranged at a large interval in the circumferential direction, it is difficult to maintain the rigidity of the rib-like land portion of the entire tread portion, the amount of heat generated in the tread portion due to elastic deformation is large, and the rolling resistance cannot be sufficiently suppressed.
  • the present invention has been made in view of the above points, and the object of the present invention is to increase the rigidity of the rib-like land portion of the entire tread at the tread contact while ensuring the drainability of the circumferential groove and to perform elastic deformation. It is in the point which provides the pneumatic tire which can suppress and can fully reduce rolling resistance.
  • the present invention provides a pneumatic tire in which a plurality of rib-like land portions separated by a circumferential groove extending in the tread circumferential direction is formed, with the circumferential groove interposed therebetween.
  • Projecting ridges projecting in the direction of each other from the adjacent rib-shaped land portions are formed in an annular shape extending in the tread circumferential direction, and the opposing ridges are front end surfaces of the ridges facing each other.
  • the circumferential direction grooves are provided in the radial direction by the opposed ridge portions.
  • An inner groove space on the inner peripheral side and an outer groove space on the outer peripheral side in the radial direction of the projecting ridge portion are formed, and the outer groove space and the inner groove space are communicated with each other at the distal end surface of the ridge portion.
  • the protruding ridges protruding in the direction from each other from the rib-like land portions adjacent to each other with the circumferential groove interposed therebetween are formed in an annular shape extending in the tread circumferential direction.
  • the communication concave portions are formed to face each other on both front end surfaces of the protruding ridge portions facing each other.
  • the rib-like land is grounded and opposed to the ridge.
  • both the communication concave portions at the positions facing each other of the front end surfaces facing the ridges can be combined to form a communication hole with a large passage cross-sectional area, so that the drainage is good,
  • the highly rigid protrusions firmly support each other and the elastic deformation of the rib-like land portion is suppressed, and the rolling resistance can be reduced.
  • the protruding portion protruding from the rib-shaped land portion may be formed to protrude from the tread surface of the rib-shaped land portion to the distal end surface in a conical surface extending inward in the radial direction.
  • the protrusion protruding from the rib-shaped land portion is formed to protrude from the tread surface of the annular rib-shaped land portion to the tip surface in a conical surface extending inward in the radial direction.
  • the outer groove space between the conical surfaces facing each other on the opposite ridges is gradually reduced in the tread width direction from the outer peripheral side to the inner peripheral side, so that the outer peripheral opening is blocked by grounding. It is easy to collect the water in the outer groove space and guide it to the communication recess, and allows the water to smoothly escape to the inner groove space via the communication recess, and through the outer groove space from the gap between the opposing ridges at the ungrounded location. Can be easily discharged to the outside, improving drainage and maintaining good wet grip performance.
  • the said structure WHEREIN You may make it the inclination of a cone surface be smaller than the protrusion in the circumferential groove
  • the inclination of the conical surface is the inclination of the generatrix (a straight line on the conical surface that passes through the apex of the cone) with respect to the central axis of the cone.
  • the angle (tilt angle) formed by the bus is small.
  • the inclination of the conical surface of the protrusion in the outermost circumferential groove in the tread width direction is smaller than the protrusion in the central groove in the tread width direction.
  • the outer rib-shaped land portion is more rigid against compressive stress at the time of ground contact, and the outermost rib-shaped land portion can be prevented from falling as much as possible when turning the vehicle. Since the slope of the conical surface of the strip is small and the outer groove space is not easily blocked by grounding, drainage can be performed very easily and the wet grip performance can be improved.
  • the communication recess may be formed linearly in the radial direction.
  • the communication recess since the communication recess is linearly formed in the radial direction, the communication recess communicates the inner groove space and the outer groove space with the shortest distance, shortens the drainage path, and improves drainage. Can be made.
  • the communication recess communicates with the inner opening facing the inner groove space and the outer opening facing the outer groove space at a position moved in the tire rotation direction when the vehicle moves forward from the inner opening. It may be formed linearly in a direction inclined with respect to the direction.
  • the communication recess communicates linearly between the inner opening facing the inner groove space and the outer opening facing the outer groove space at a position moved in the tire rotation direction when the vehicle advances from the inner opening. Therefore, especially during forward rotation, water in the outer groove space whose outer periphery opening is blocked by grounding is introduced into the communication recess so that the outer opening of the communication recess is pumped, and escapes from the inner opening to the inner groove space.
  • the wet grip performance can be effectively exhibited with better drainage at the time of forward movement of the vehicle in which the tire may rotate at a higher speed than at the time of backward movement of the vehicle.
  • the circumferential groove provided in the center side rather than the side in the tread width direction may have a larger number of the communication recesses formed in the protrusion.
  • the circumferential groove provided in the center side rather than the side in the tread width direction increases the number of communication recesses formed in the ridge portion, so that the rib-like land portion is at the time of tire contact. Drainage of the circumferential groove on the central side, which requires particularly smooth drainage due to larger compression deformation, can be efficiently performed with a large number of communication recesses with a small interval, and good wet grip performance can be secured. .
  • the protrusions projecting in the direction from the rib-shaped land portions adjacent to each other across the circumferential groove extend in the tread circumferential direction and are formed in an annular shape. Even when the rib-shaped land portion is in contact with the ground, the opposing ridge portions come into contact with each other and support each other to increase rigidity and to surely reduce rolling resistance, and the tip surface of the ridge portion
  • a plurality of communication recesses that communicate the inner groove space and the outer groove space are formed at intervals in the tread circumferential direction. Communication between the side groove space and the inner groove space is maintained, the drainage of the circumferential groove can be ensured, and the necessary wet grip performance can also be maintained.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9. It is the XI-XI sectional view taken on the line in FIG. It is sectional drawing of the tread of the pneumatic tire of Example 7. 10 is a partial plan view of a tread of the pneumatic tire of Example 8.
  • This pneumatic tire is provided with a plurality of circumferential grooves extending in the tread circumferential direction in parallel in the tread width direction, so that a plurality of belt-like or rib-like land portions are formed, and a rib pattern is formed on the tread.
  • a pneumatic tire is provided with a plurality of circumferential grooves extending in the tread circumferential direction in parallel in the tread width direction, so that a plurality of belt-like or rib-like land portions are formed, and a rib pattern is formed on the tread.
  • FIGS. 1 to 8 One embodiment 1 of such a pneumatic tire will be described with reference to FIGS. 1 to 8.
  • the tread 2 of the pneumatic tire 1 of the first embodiment has six belt-shaped, that is, rib-shaped land portions by five circumferential grooves 3 extending in the tread circumferential direction.
  • a rib pattern in which 4 is formed is formed (portion with a dotted pattern in FIG. 1) is formed.
  • the central circumferential groove 3a in the tread width direction is formed in a straight line, and the circumferential grooves 3b and 3b provided on both sides of the circumferential groove 3a are linear portions oriented in a direction inclined with respect to the circumferential direction. Is formed continuously in a plurality of zigzags, and the circumferential grooves 3c and 3c provided on both outer sides of the circumferential grooves 3b and 3b are slightly more in the circumferential direction than the circumferential grooves 3b and 3b. A linear portion directed in an inclined direction is continuously formed in a plurality of zigzags (see FIG. 1).
  • the five circumferential grooves 3 all have the same groove width W, for example, a groove width of 10 mm, and the circumferential grooves 3b and 3b on both sides of the central circumferential groove 3a and the circumferential direction.
  • the grooves 3c and 3c are provided in a symmetrical shape at symmetrical positions with respect to the central circumferential groove 3a.
  • An inner groove space 6 is formed in the circumferential groove 3 by the opposed ridges 5 and 5 and is formed in an annular shape on the radially inner peripheral side of the opposed annular ridges 5 and 5.
  • An outer groove space 7 is formed in an annular shape between the radially outer peripheral portions of the protrusions 5 and 5.
  • the protrusion 5 protruding from each rib-like land portion 4 forms a conical surface 5 c inclined inward in the radial direction from the tread surface 4 f of the annular land-like portion 4. And projecting to the front end surface 5s. Therefore, as shown in FIG. 4, the outer groove space 7 between the outer peripheral portions of the protruding ridge portions 5 and 5 has an isosceles trapezoidal shape in which the radial cross section has the conical surfaces 5c and 5c on both sides as the leg sides. Forming.
  • the inner groove space 6 on the inner peripheral side of the opposed protrusions 5 and 5 is formed in an annular shape with a circular cross section.
  • An annular gap 8 exists between the front end faces 5s, 5s of the protruding ridges 5, 5 facing each other.
  • the distance between the facing tip surfaces 5s, 5s (the width of the gap 8) d is such that the tip surfaces 5s, 5s of the protruding ridges 5, 5 are opposed to each other by elastic deformation of the rib-like land portions 4, 4 grounded at the time of tire contact. It is set to the interval of close contact.
  • tip surfaces 5s and 5s which face is 1.5 mm.
  • a plurality of radial communication recesses 9 communicating with the inner groove space 6 and the outer groove space 7 are formed at the front end surface 5s of each protrusion 5 at equal intervals D in the tread circumferential direction (see FIG. 1). ).
  • linear communication recesses 9 and 9 are formed opposite to each other on both front end surfaces 5s and 5s of the opposing protrusions 5 and 5 facing each other.
  • the communication recesses 9, 9 facing each other form a circular hole having a hole diameter R that is linearly directed in the radial direction when the tire is not in contact with the ground.
  • the hole diameter R of the circular hole formed by the communication recesses 9 and 9 facing each other is 5 mm (see FIG. 5), and the interval D disposed in the tread circumferential direction of the communication recesses 9 and 9 is 50 mm (see FIG. 1).
  • 7 and 8 show a state in which the grounded rib-like land portions 4 and 4 of the pneumatic tire 1 having the tread 2 formed with such a rib pattern are compressed and elastically deformed.
  • the ridges 5, 5 projecting from the adjacent rib-like land portions 4, 4 across the circumferential groove 3 in the direction of each other extend in the circumferential direction of the tread and are opposed to each other.
  • the ridges 5 and 5 are arranged with a distance d at which the front end surfaces 5s and 5s facing the ridges 5 and 5 are in contact with each other due to elastic deformation of the rib-like land portions 4 and 4 that are grounded at the time of tire contact. Therefore, even if it is the belt-like land portion 4 in any part of the entire tread, when the ground is touched, the portions of the annular ridge portions 5 and 5 facing each other come into contact with each other and firmly support each other to form a rib. Since the rigidity of the land portions 4 and 4 is increased and elastic deformation is suppressed, uneven wear can be suppressed and rolling resistance can be reliably reduced.
  • the communication recessed parts 9 and 9 are formed in the both front-end
  • FIG. Even if the amount of depression of the communication recess 9 is kept small and the rigidity of the protrusion 5 itself is increased, when the rib-like land parts 4 and 4 come into contact with the opposing protrusions 5 and 5, the protrusions
  • the protrusion 5 protruding from the rib-like land portion 4 is formed so as to protrude from the tread surface 4f of the annular rib-like land portion 4 to the tip surface 5s by forming a tapered conical surface 5c.
  • the outer groove space 7 between the conical surfaces 5c, 5c of the projecting ridges 5, 5 facing each other gradually decreases in width in the tread width direction from the outer peripheral side to the inner peripheral side. Therefore, it is easy to collect water in the outer groove space 7 whose outer peripheral opening is closed by the grounding and guide it to the communication recess 9, and smoothly escapes water to the inner groove space 6 through the communication recess 9, and is not grounded. It can be easily discharged to the outside through the outer groove space 7 from the gap 8 between the projecting ridge portions 5 and 5 facing each other, the drainage can be improved, and the wet grip performance can be maintained well. .
  • the communication concave portion 9 since the communication concave portion 9 is linearly formed in the radial direction, the communication concave portion 9 communicates the outer groove space 7 and the inner groove space 6 with the shortest distance, shortens the drainage path, and improves drainage. It is improving.
  • the shape of the communication recesses 9 and 9 facing each other is a circular hole having a hole diameter of 5 mm.
  • the communication recesses 9 and 9 are not circular holes but square holes.
  • the communication recesses 9 and 9 that form a square hole are, for example, 5 ⁇ 5 mm square holes, and the second embodiment has the same tread structure as that of the first embodiment.
  • the pneumatic tire of Example 1 has a tire size of 315 / 70R22.5, and, as described above, the rib-like land portion 4 adjacent to the tread with the circumferential groove 3 having a groove width W of 10 mm interposed therebetween. , 4 projecting in the direction of each other, annular ridges 5 and 5 are formed, and a distance d between the front end surfaces 5s and 5s facing each other is 1.5 mm.
  • the communication recessed parts 9 and 9 are formed in both front-end
  • the hole diameter R of the circular holes of the communication recesses 9 and 9 is 5 mm, and a plurality of holes are formed at intervals D of 50 mm in the tread circumferential direction.
  • the communication recessed part 9 formed in each protrusion 5 of the five circumferential grooves 3 is arranged in a line in the tread width direction.
  • the shape of the communication recessed parts 9 and 9 is a square hole of 5 * 5 mm in length and width.
  • the conventional example is a pneumatic tire having the same tire size as in Example 1 and the tread of the same rib pattern in which the same circumferential groove is formed. It is an example that does not have.
  • the comparative example is an example of the pneumatic tire of the above-described conventional example, and has an annular ridge in the circumferential groove, and no communication recess is formed.
  • [Table 1] shows the evaluation results of performance tests on rolling resistance performance and wet grip performance of the pneumatic tires of Examples 1 and 2 and the conventional example and the comparative example.
  • the rolling resistance is measured by a force method based on the international standard ISO 28580.
  • the evaluation results of the rolling resistance coefficient RRC shown in [Table 1] are shown as an index with the conventional example being 100, using the inverse of the rolling resistance coefficient RRC obtained by dividing the measured value of the measured rolling resistance by the load. Yes. It means that rolling resistance is so small that this index value is large.
  • the wet grip is measured by an actual vehicle method based on the international standard ISO 15222.
  • the evaluation results of the wet grip index shown in [Table 1] indicate the measured value of the wet grip as an index with the conventional example being 100. The larger the index value, the better the wet grip performance.
  • the comparative example having a protrusion but no communication recess has a rolling resistance coefficient RRC of 108 and rolling resistance performance. Although it is excellent, the wet grip index is 93 and the wet grip performance is considerably reduced. This is because the comparative example has protrusions without communication recesses in the circumferential groove, and the opposing protrusions come into contact with each other and firmly support each other to increase the rigidity of the rib-like land part, thereby reducing the rolling resistance.
  • the water in the outer groove space whose outer periphery opening is blocked by grounding cannot escape to the inner groove space and drain to the outside, so the drainage is inferior and the wet grip performance It is because it is reducing.
  • Example 1 has the communication recessed part 9 in the protrusion part 5, the shape of a communication hole (communication recessed part 9,9) is a circular hole, and the hole diameter R of the communication recessed parts 9,9 is about 5 mm. And the inclination ⁇ (angle with respect to the radial direction) of the communication hole is 0 °. And the space
  • the rolling resistance coefficient RRC is 106, and high rolling resistance performance is ensured even if it does not reach 108 of the comparative example.
  • the wet grip index of Example 1 is 97, which is an index value considerably higher than the wet grip index 93 of the comparative example, and this index value means that sufficient wet grip performance is maintained. This is because the protrusion 1 has the communication recess 9 in the first embodiment, so that the water in the outer groove space 7 whose outer periphery opening is blocked by grounding is connected via the communication holes (communication recesses 9, 9). It is because it can escape to the inner groove space 6 and drain to the outside, and the drainage property of the circumferential groove 3 is good.
  • Example 2 in which the shape of the communication hole is a square hole, the rolling resistance coefficient RRC is 106, the wet grip index is 97, and both the rolling resistance coefficient RRC and the wet grip index have the same index values as in Example 1. Show. That is, it is understood that the communication holes having substantially the same passage area do not affect the rolling resistance performance and the wet grip performance even if the shapes are different.
  • the pneumatic tire 1 of Example 3 is the same as that of Example 1 except that the communication hole (communication recess) formed in the ridge is a large circular hole with a hole diameter of 10 mm.
  • the communication hole communication recess
  • the support of the projecting ridges facing each other is slightly weaker than in Example 1, and the rigidity of the rib-like land part is also slightly reduced. Therefore, the rolling resistance coefficient RRC is 105, which is slightly smaller than that of Example 1, shows sufficient rolling resistance performance.
  • Example 3 the water in the outer groove space 7 whose outer peripheral opening is blocked by grounding is transferred to the inner groove space 6 through the communication holes (communication recesses 9 and 9) due to the large diameter of the communication hole. Almost escape and drain to the outside, the drainage of the circumferential groove 3 is very good, and the index value is the same as that of the conventional example having no protrusion with a wet grip index of 100. The same best wet grip performance is maintained.
  • the pneumatic tire 1 of Example 4 is the same as Example 1 except that the communication hole (communication recess) formed in the protrusion is a small circular hole with a hole diameter of 2 mm.
  • the communication hole communication recess
  • the communication hole since the diameter of the communication hole is small, the mutual support of the protruding ridge portions is stronger than in the first embodiment, the rigidity of the rib-like land portion is high, and the rolling resistance coefficient RRC is 108.
  • the index value is the same as that of the comparative example having no communication hole in the protrusion, and the best rolling resistance performance is shown.
  • the water in the outer groove space 7 whose outer peripheral opening is blocked by grounding is supplied to the inner groove space 6 through the communication holes (communication recesses 9 and 9) because the diameter of the communication hole is small. It is not easy to escape and the drainage is inferior. Therefore, the wet grip index is as small as 95, and the wet grip performance is not good as compared with Example 1.
  • the pneumatic tire 1 of the fifth embodiment is the same as the first embodiment except that the communication recesses 9 and 9, which are circular holes with a hole diameter of 5 mm, are arranged at a distance D of 10 mm in the tread circumferential direction.
  • the communication recesses 9 and 9 which are circular holes with a hole diameter of 5 mm, are arranged at a distance D of 10 mm in the tread circumferential direction.
  • the interval D arranged in the tread circumferential direction of the communication recesses 9 and 9 is as small as 10 mm, the number of the communication recesses 9 and 9 formed in the circumferential groove 3 is large. Therefore, the mutual support of the projecting ridges facing each other is slightly weaker than in the first embodiment, the rigidity of the rib-like land portion is also slightly lowered, and the rolling resistance coefficient RRC is 105, which is slightly smaller than that in the first embodiment. Shows sufficient rolling resistance performance.
  • the number of the communication recesses 9 and 9 formed in the circumferential groove 3 is large in the fifth embodiment, the water in the outer groove space 7 whose outer periphery opening is blocked by grounding is connected to the communication hole (communication recess). 9, 9) can be easily released into the inner groove space 6 and drained to the outside, the drainage of the circumferential groove 3 is very good, and does not have a protrusion with a wet grip index of 100 The same index value as the example is shown, and the same best wet grip performance as the conventional example is maintained.
  • the rolling resistance coefficient RRC and the wet grip index show the same index values as in Example 3 in which the hole diameter of the communication hole (communication recesses 9 and 9) is increased.
  • Example 6 the pneumatic tire 1 having the same tire size as that of Example 1 has almost the same tread structure. Therefore, the same reference numerals as those of Example 1 are used.
  • the tread of Example 6 has annular ridges 5 and 5 protruding in the direction from each other from the adjacent rib-like land portions 4 and 4 across the circumferential groove 3 having a groove width W of 10 mm.
  • the distance d between the facing front end surfaces 5s and 5s is 1.5 mm.
  • the communication recessed parts 9 and 9 are formed in the both front-end
  • a plurality of communication recesses 9, 9 are formed at intervals D of 50 mm in the tread circumferential direction.
  • the inclination ⁇ (angle with respect to the radial direction) of the communication recesses 9 and 9 is + 5 °.
  • the communication recesses 9, 9 are located at positions where the inner opening 9 i facing the inner groove space 6 and the inner opening 9 i move in the tire rotation direction (direction indicated by the arrow in FIG. 11) when the vehicle moves forward. It communicates with an outer opening 9o facing an outer groove space 7 and is linearly formed in a direction inclined by + 5 ° with respect to the radial direction in the tire rotation plane. And this inclination (theta) is an inclination which the radial direction outer side of the communication recessed parts 9 and 9 has advanced in the tire rotation direction from the radial direction inner side.
  • the communication recesses 9 and 9 are inclined by + 5 ° in the tire rotation surface with respect to the radial direction, so that the pneumatic tire 1 that has stepped on the wet road surface by the forward traveling has a grounded rib.
  • the projecting ridges facing each other by compressive deformation of the land portions 4 and 4 are in contact with each other, and communication holes (communication recesses 9 and 9) for communicating the outer groove space 7 and the inner groove space 6 are secured,
  • the communication holes (communication recesses 9 and 9) are inclined by + 5 ° with respect to the radial direction.
  • the water in the outer groove space 7 whose outer peripheral opening is blocked by grounding is drawn out by the outer openings 9o, 9o of the communication holes (communication recesses 9, 9). It can be urged to be introduced into the recesses 9, 9) to escape from the inner openings 9 i, 9 i to the inner groove space 6 (see the broken arrow in FIG. 11), and the tire may rotate at a higher speed than when the vehicle is moving backward.
  • the wet grip performance can be effectively exhibited with better drainage when the vehicle is moving forward.
  • Example 6 in the above [Table 2] The evaluation result of Example 6 in the above [Table 2] is that the rolling resistance coefficient RRC is 105, and the rolling resistance performance hardly changes at an index value slightly lower than that of Example 1, but the wet grip index is extremely high as 99. Indicating an index value, the wet grip performance is remarkably improved.
  • the seventh embodiment is opposed to the outermost circumferential groove 3c among the plurality of circumferential grooves 3 formed in the tread of the pneumatic tire 1 of the first embodiment (see FIG. 2).
  • the slopes of the conical surfaces 5cc and 5cc of the ridges 5 and 5 are reduced.
  • the rib-like land portion 4 has a small collapse of the conical surface 5cc of the ridge 5 in the outermost circumferential groove 3c in the tread width direction than the ridge 5 in the circumferential groove 3a, 3b on the center side in the tread width direction. Since the inclination is small, the rigidity of the outermost rib-like land portion 4 in the tread width direction with respect to the compressive stress at the time of contact is further increased, and the collapse of the outermost rib-like land portion 4 when turning the vehicle is suppressed as much as possible.
  • the cornering power can be improved and the conical surface 5cc of the ridge 5 has a small inclination and the outer groove space is not easily blocked by grounding, so drainage is very easy and the wet grip performance is good. It can be.
  • the number of the communication recesses 9 formed in the tip surface 5s of the protrusion 5 provided in the circumferential groove 3 in the tread circumferential direction is set to the number of the circumferential grooves 3 arranged in the tread width direction.
  • An example changed according to the position will be described with reference to FIG.
  • the same reference numerals as those in the first embodiment are used in FIG. 13 showing a partial plan view of the tread.
  • the number of the communication recesses 9 formed in the tip surface 5s of the protrusion 5 provided in the circumferential groove 3 in the tread circumferential direction is the number of the central circumferential groove 3a from the outer side in the tread width direction. Since there are many more and the space
  • the tread structure of the pneumatic tire according to the embodiment of the present invention has been described above, the aspect of the present invention is not limited to the above-described embodiment, and may be implemented in various aspects within the scope of the gist of the present invention. Is included.
  • the pneumatic tire according to the present invention has a rib pattern in which a rib-like land portion is formed by a circumferential groove on a tread, and the rib-like land portion has a sipe for wet grip performance, braking on ice, etc. Narrow grooves may be formed.
  • SYMBOLS 1 Pneumatic tire, 2 ... Tread, 3, 3a, 3b, 3c ... Circumferential groove

Abstract

空気入りタイヤのトレッドの周方向溝(3)を挟んで隣り合うリブ状陸部(4)から互いの方向に向けて環状の突条部(5, 5)が突出し、相対する突条部(5, 5)は、その互いに対面する先端面(5s、5s)が、タイヤ接地時におけるリブ状陸部(4,4)の弾性変形により互いに接する間隔を有して配設される。相対する突条部(5, 5)の内周側の内側溝空間(6)と外周側の外側溝空間(7)が形成され、突条部(5)の先端面(5s)には、外側溝空間(7)と内側溝空間(6)を連通する複数の連通凹部(9)が、トレッド周方向に間隔をおいて形成される。これにより、周方向溝による排水性を確保しながら、トレッドの接地時におけるトレッド全体のリブ状陸部の剛性を高めて弾性変形を抑制して転がり抵抗を低減することができる。

Description

空気入りタイヤ
 本発明は、複数本の周方向溝により分離された複数のリブ状陸部が形成された空気入りタイヤに関し、特にトレッド構造に関する。
 トレッドに複数本の周方向溝が設けられリブパターンが構成された空気入りタイヤは、濡れた路面でも周方向溝により排水を促して摩擦力(ウエットグリップ性能)を確保するようにしている。
 しかし、周方向溝により区画されたリブ状陸部が接地することにより、リブ状陸部の圧縮変形や倒れ込み等の弾性変形があると、変形で発生するヒステリシスロスによる損失エネルギによりトレッド部が発熱し、転がり抵抗が増加する傾向にある。
 そこで、周方向溝を挟んで隣り合うリブ状陸部から互いの方向に向けて突出部を突出させて、リブ状陸部が接地したときは、相対する突出部どうしが当接して相互に支え合い、リブ状陸部の剛性を維持して変形を抑制するようにした例が提案されている(例えば、特許文献1参照)。
特開2011-245996号公報
 特許文献1は、車両旋回時において、トレッドに対する横側からの外力に起因するタイヤ径方向の圧縮応力によりタイヤ接地面積が小さくなったり接地圧が低くなるバックリングを抑制するために、トレッド端に隣接する周方向溝に突出部を部分的に突出させ、トレッド端のリブ状陸部のタイヤ径方向の圧縮応力に対する剛性を高め、コーナリングパワーを向上させようとしたものである。
 したがって、特許文献1においては、トレッド端に隣接する周方向溝にのみ突出部が設けられている。
 また、突出部はトレッド周方向に突出部より大きい間隔をあけて配設されている。
 しかし、トレッドにリブパターンが構成された空気入りタイヤは、主にトラックやバス等のような重荷重車両に使用されることが多く、重荷重用空気入りタイヤであると、周方向溝により区画されたリブ状陸部が接地することによるリブ状陸部の圧縮変形や倒れ込みが大きく、特許文献1のように、トレッド端に隣接する周方向溝にのみ突出部が設けられ、同突出部がトレッド周方向に大きな間隔をおいて配設されても、トレッド部全体のリブ状陸部の剛性の維持が難しく、弾性変形によるトレッド部の発熱量が大きく、転がり抵抗を十分抑制することができない。
 本発明は、かかる点に鑑みなされたもので、その目的とする処は、周方向溝の排水性を確保しながら、トレッドの接地におけるトレッド全体のリブ状陸部の剛性を高めて弾性変形を抑制して転がり抵抗を十分低減することができる空気入りタイヤを供する点にある。
 上記目的を達成するために、本発明は、トレッド周方向に延設される周方向溝により分離された複数本のリブ状陸部が形成された空気入りタイヤにおいて、前記周方向溝を挟んで隣り合う前記リブ状陸部から互いの方向に向けて突出した突条部が、トレッド周方向に延びて環状に形成され、相対する前記突条部は、前記突条部の互いに対面する先端面が、タイヤ接地時におけるリブ状陸部の弾性変形により互いに接するように間隔を有して配設され、相対する前記突条部により前記周方向溝には、相対する前記突条部のラジアル方向内周側の内側溝空間と、相対する前記突条部のラジアル方向外周側の外側溝空間とが形成され、前記突条部の先端面には、前記外側溝空間と前記内側溝空間を連通する複数の連通凹部が、トレッド周方向に間隔をおいて形成されることを特徴とする空気入りタイヤを提供する。
 この構成によれば、周方向溝を挟んで隣り合うリブ状陸部から互いの方向に向けて突出した突条部が、トレッド周方向に延びて環状に形成され、相対する環状の突条部は、突条部の互いに対面する先端面が、タイヤ接地時におけるリブ状陸部の弾性変形により互いに接するように間隔を有して配設されるので、トレッド全周のいずれの箇所のリブ状陸部であっても、接地したときは、相対する環状の突条部の部分どうしが互いに接して確固として支え合ってリブ状陸部の剛性を高め弾性変形が抑制されるため、確実に転がり抵抗を低減することができる。
 また、突条部の先端面には、外側溝空間と内側溝空間を連通する連通凹部が、トレッド周方向に複数形成されるので、接地したリブ状陸部の環状の突条部が互いに接しても連通凹部により外側溝空間と内側溝空間との連通が確保され、接地により外周の開口が塞がれた外側溝空間内の水を連通凹部を介して内側溝空間に逃がし、接地していない箇所の突条部間の隙間から外側溝空間を介して外部に排出することができ、周方向溝の排水性を確保することができ、必要なウエットグリップ性能も保つことができる。
 前記構成において、相対する前記突条部の対面する双方の先端面に、前記連通凹部が互いに対向して形成されるようにするのが好ましい。
 この構成によれば、突条部の先端面に形成される連通凹部の凹み量を小さく抑えて突条部自体の剛性を高くしても、リブ状陸部が接地して相対する突条部が接したときは、突条部の対面する先端面の互いに対向した位置にある双方の連通凹部が合わさって通路断面積の大きい連通孔を形成することができるので、排水性を良好としながら、剛性の高い突条部が確固として互いに支えあってリブ状陸部の弾性変形が抑制され、転がり抵抗を低減することができる。
 前記構成において、前記リブ状陸部から突出する前記突条部は、前記リブ状陸部の踏面からラジアル方向内方へ延びる円錐面をなして前記先端面まで突出して形成されることができる。
 この構成によれば、リブ状陸部から突出する突条部は、円環状をなすリブ状陸部の踏面からラジアル方向内方へ延びる円錐面をなして前記先端面まで突出して形成されるので、相対する突条部の互いに対向する円錐面の間の外側溝空間はトレッド幅方向の幅が外周側から内周側に徐々に縮小しているため、接地により外周の開口が塞がれた外側溝空間内の水を集めて連通凹部に導き易く、連通凹部を介して水を内側溝空間に円滑に逃がし、接地していない箇所の相対する突条部間の隙間から外側溝空間を介して外部に容易に排出することができ、排水性を向上させて、ウエットグリップ性能を良好に維持することができる。
 前記構成において、トレッド幅方向で最外側の周方向溝における突条部は、トレッド幅方向で中央側の周方向溝における突条部よりも円錐面の傾斜が小さいようにしてもよい。
 ここに、円錐面の傾斜とは、該円錐の中心軸に対する母線(円錐の頂点を通る円錐面上の直線)の傾きのことであり、円錐面の傾斜が小さいとは、円錐の中心軸に対して母線のなす角度(傾斜角)が小さいことをいう。
 この構成によれば、トレッド幅方向で中央側の周方向溝における突条部よりもトレッド幅方向で最外側の周方向溝における突条部の円錐面の傾斜が小さいので、トレッド幅方向で最外側のリブ状陸部の接地時の圧縮応力に対する剛性をより高くして、車両旋回時の最外側のリブ状陸部の倒れ込みを極力抑制して、コーナリングパワーを向上させることができるとともに、突条部の円錐面の傾斜が小さく接地により外側溝空間が塞がれ難い構造であるため、排水が極めて容易になされてウエットグリップ性能を良好とすることができる。
 前記構成において、前記連通凹部は、ラジアル方向に指向して直線的に形成されるようにしてもよい。
 この構成によれば、連通凹部がラジアル方向に指向して直線的に形成されるので、連通凹部は内側溝空間と外側溝空間を最短距離で連通し、排水経路を短くして排水性を向上させることができる。
 前記構成において、前記連通凹部は、前記内側溝空間に臨む内側開口と同内側開口より車両前進時のタイヤ回転方向に移動した位置にある前記外側溝空間に臨む外側開口とを連通して、ラジアル方向に対して傾いた方向に指向して直線的に形成されるようにしてもよい。
 この構成によれば、連通凹部は、内側溝空間に臨む内側開口と同内側開口より車両前進時のタイヤ回転方向に移動した位置にある外側溝空間に臨む外側開口とを直線的に連通しているので、特に前進回転時に、接地により外周の開口が塞がれた外側溝空間内の水を、連通凹部の外側開口が汲み取るようにして連通凹部に導入して内側開口から内側溝空間に逃がすことを促すことができ、車両後退時よりもタイヤが高速で回転することがある車両前進時のときの排水性をより良好としてウエットグリップ性能を効果的に発揮することができる。
 前記構成において、トレッド幅方向で側方より中央側に設けられる前記周方向溝の方が、前記突条部に形成される前記連通凹部の数が多いようにしてもよい。
 この構成によれば、トレッド幅方向で側方より中央側に設けられる周方向溝の方が、突条部に形成される連通凹部の数を多くすることで、タイヤ接地時にリブ状陸部のより大きい圧縮変形により特に円滑な排水が要求される中央側の周方向溝の排水を、間隔が小さく数の多い連通凹部により効率良く行うことができ、良好なウエットグリップ性能を確保することができる。
 本発明は、周方向溝を挟んで隣り合うリブ状陸部から互いの方向に向けて突出した突条部が、トレッド周方向に延びて環状に形成されるので、トレッド部全体のいずれの場所のリブ状陸部であっても、接地したときは、相対する突条部が互いに接して互いに支え合って剛性を高め、確実に転がり抵抗を低減することができるとともに、突条部の先端面には、内側溝空間と外側溝空間を連通する連通凹部が、トレッド周方向に間隔を置いて複数形成されるので、接地したリブ状陸部の突条部が互いに接しても連通凹部により外側溝空間と内側溝空間との連通が保たれ、周方向溝の排水性を確保することができ、必要なウエットグリップ性能も保つことができる。
本発明に係る実施の形態の実施例1の空気入りタイヤのトレッドの周方向の部分平面図である。 図1におけるII-II線断面図である。 図1の部分拡大平面図である。 図3におけるIV-IV線断面図である。 図3におけるV-V線断面図である。 図3におけるVI-VI線断面図である。 トレッドの接地状態を示す部分平面図である。 図7におけるVIII-VIII線断面図である。 実施例6の空気入りタイヤのトレッドの部分拡大平面図である。 図9におけるX-X線断面図である。 図9におけるXI-XI線断面図である。 実施例7の空気入りタイヤのトレッドの断面図である。 実施例8の空気入りタイヤのトレッドの部分平面図である。
 以下、本発明の実施の形態に係る空気入りタイヤについて説明する。
 本空気入りタイヤは、トレッド周方向に延設される周方向溝がトレッド幅方向に複数本並列に設けられることで、帯状すなわちリブ状陸部が複数本形成されて、トレッドにリブパターンが構成されている。
 このような空気入りタイヤの1つの実施例1について、図1ないし図8に示し、説明する。
 図1および図2を参照して、実施例1の空気入りタイヤ1のトレッド2には、トレッド周方向に延設された5本の周方向溝3により6本の帯状、すなわちリブ状陸部(図1で散点模様が施された部分)4が形成されたリブパターンが構成されている。
 トレッド幅方向の中央の周方向溝3aは、直線状に形成され、その周方向溝3aの両側に設けられる周方向溝3b,3bは、周方向に対して傾いた方向に指向した直線状部分が複数ジグザグに連続して形成され、その周方向溝3b,3bのさらに両外側に設けられる周方向溝3c,3cは、周方向溝3b,3bに比し、周方向に対してより僅かに傾いた方向に指向した直線状部分が複数ジグザグに連続して形成されている(図1参照)。
 図3に示すように、5本の周方向溝3は、いずれも同じ溝幅W、例えば10mmの溝幅を有し、中央の周方向溝3aの両側の周方向溝3b,3bおよび周方向溝3c,3cが、中央の周方向溝3aに関して対称な位置に対称な形状をして設けられている。
 図3および図4を参照して、周方向溝3を挟んで隣り合うリブ状陸部4,4から互いの方向に向けて突出した突条部5,5が、トレッド周方向に延びて環状に形成されている。
 相対する突条部5,5により各周方向溝3には、相対する環状の突条部5,5のラジアル方向内周側に拡大した内側溝空間6が環状に形成されるとともに、相対する突条部5,5のラジアル方向外周部の間に外側溝空間7が環状に形成されている。
 図4を参照して、各リブ状陸部4から突出する突条部5は、円環状をなすリブ状陸部4の踏面4fから、ラジアル方向内方に向かって傾斜する円錐面5cをなして先端面5sまで突出して形成されている。
 したがって、相対する突条部5,5の外周部の間の外側溝空間7は、図4に示されるように、ラジアル方向断面が両側の円錐面5c,5cを脚辺とする等脚台形を形成している。
 相対する突条部5,5の内周側の内側溝空間6は、断面が円形の円環状に形成されている。
 相対する突条部5,5の互いに対面する先端面5s,5s間には、環状の隙間8が存在する。
 対面する先端面5s,5s間の間隔(隙間8の幅)dは、タイヤ接地時に接地したリブ状陸部4,4の弾性変形により相対する突条部5,5の先端面5s,5sが接近して接する間隔に設定されている。
 本実施例1では、対面する先端面5s,5s間の間隔(隙間8の幅)dは、1.5mmである。
 そして、各突条部5の先端面5sには、内側溝空間6と外側溝空間7を連通するラジアル方向連通凹部9が、トレッド周方向に等しい間隔Dで複数形成されている(図1参照)。
 本実施例1では、相対する突条部5,5の対面する双方の先端面5s,5sに、直線状の連通凹部9,9が互いに対向して形成されている。
 図5に示されるように、互いに対向する連通凹部9,9は、タイヤの非接地時に、ラジアル方向に直線的に指向した孔径Rの円孔を構成する。
 本実施例1では、互いに対向する連通凹部9,9が構成する円孔の孔径Rは、5mmであり(図5参照)、連通凹部9,9のトレッド周方向に配設される間隔Dは、50mmである(図1参照)。
 このようなリブパターンが形成されたトレッド2を有する空気入りタイヤ1の接地したリブ状陸部4,4が圧縮されて弾性変形した状態を、図7および図8に示す。
 図7および図8に示すように、リブ状陸部4,4が圧縮されて弾性変形すると、相対する突条部5,5が接近して対面する互いの先端面5s,5sが接して、隙間8が無くなる。
 しかし、相対する突条部5,5の対面する双方の先端面5s,5sの連通凹部9,9が互いに合わさって、内側溝空間6と外側溝空間7を連通する連通孔(連通凹部9,9)が確保される。
 このように、周方向溝3を挟んで隣り合うリブ状陸部4,4から互いの方向に向けて突出した突条部5,5が、トレッド周方向に延びて環状に形成され、相対する突条部5,5は、突条部5,5の対面する互いの先端面5s,5sがタイヤ接地時に接地したリブ状陸部4,4の弾性変形により互いに接する間隔dを有して配設されるので、トレッド全体のいずれの箇所の帯状陸部4であっても、接地したときは、相対する環状の突条部5,5の部分どうしが互いに接して確固として支え合ってリブ状陸部4,4の剛性を高め弾性変形が抑制されるため、偏摩耗を抑制し、確実に転がり抵抗を低減することができる。
 そして、突条部5の先端面には、内側溝空間6と外側溝空間7を連通する連通凹部9が、トレッド周方向に間隔をおいて複数形成されているので、接地したリブ状陸部4,4の突条部5,5が互いに接しても連通凹部9,9により外側溝空間7と内側溝空間6との連通が確保され、接地により外周の開口が塞がれた外側溝空間7内の水を連通凹部9を介して内側溝空間6に逃がし、内側溝空間6内から接地していない箇所の突条部5,5間の隙間8から外側溝空間7を介して外部に排出することができ、周方向溝3の排水性を確保することができ、必要なウエットグリップ性能も保つことができる。
 また、相対する突条部5,5の対面する双方の先端面5s,5sに、連通凹部9,9が互いに対向して形成されているので、突条部5の先端面5sに形成される連通凹部9の凹み量を小さく抑えて突条部5自体の剛性を高くしても、リブ状陸部4,4が接地して相対する突条部5,5が接したときは、突条部5,5の対面する先端面5s,5sの互いに対向した位置にある双方の連通凹部9,9が合わさって通路断面積の大きい連通孔(連通凹部9,9)を形成することができる。したがって、排水性を良好としながら、剛性の高い突条部5,5が確固として互いに支えあってリブ状陸部4の弾性変形が抑制され、転がり抵抗を低減することができる。
 さらに、リブ状陸部4から突出する突条部5は、円環状をなすリブ状陸部4の踏面4fから先細の円錐面5cを形成して先端面5sまで突出して形成されるので、相対する突条部5,5の互いに対向する円錐面5c,5cの間の外側溝空間7はトレッド幅方向の幅が外周側から内周側に徐々に縮小する。したがって、接地により外周の開口が塞がれた外側溝空間7内の水を集めて連通凹部9に導き易く、連通凹部9を介して水を内側溝空間6に円滑に逃がし、接地していない箇所の相対する突条部5,5間の隙間8から外側溝空間7を介して外部に容易に排出することができ、排水性を向上させて、ウエットグリップ性能を良好に維持することができる。
 またさらに、連通凹部9がラジアル方向に指向して直線的に形成されるので、連通凹部9は外側溝空間7と内側溝空間6を最短距離で連通し、排水経路を短くして排水性を向上させている。
 上記実施例1では、互いに対向する連通凹部9,9の形状が孔径5mmの円孔であるが、実施例2では、連通凹部9,9は、円孔ではなく方形の孔とされる。この場合、方形の孔を形成する連通凹部9,9は例えば縦横5×5mmの方形孔であり、実施例2はその他の点で実施例1と同じトレッド構造である。
 本発明の実施例のリブパターンのトレッド構造を有する空気入りタイヤ1について、転がり抵抗性能とウエットグリップ性能の試験結果を、従来例を基準として比較例とともに実施例1と実施例2を対比した評価結果として、[表1]に示す。
 [表1]には、各仕様も掲載する。
Figure JPOXMLDOC01-appb-I000001
 実施例1の空気入りタイヤは、タイヤサイズが、315/70R22.5であり、トレッドには、前記したように、溝幅Wが10mmの周方向溝3を挟んで隣り合うリブ状陸部4,4から互いの方向に向けて突出した環状の突条部5,5が形成されており、その対面する互いの先端面5s,5s間の間隔dは、1.5mmである。
 そして、相対する突条部5,5の対面する双方の先端面5s,5sに、連通凹部9,9が互いに対向して形成され、連通凹部9,9の傾きθ(ラジアル方向に対する角度)は0°で、連通凹部9,9の円孔の孔径Rは5mmであり、トレッド周方向に50mmの間隔Dで複数形成されている。
 実施例1では、5本の周方向溝3の各突条部5に形成される連通凹部9は、トレッド幅方向に一列に並んでいる。
 また、実施例2では、連通凹部9,9の形状は縦横5×5mmの方形の孔である。
 一方、従来例は、実施例1と同じタイヤサイズで、同じ周方向溝が形成された同じリブパターンのトレッドを有した空気入りタイヤであるが、周方向溝に突条部等の突出部を有していない例である。
 比較例は、上記従来例の空気入りタイヤで、周方向溝に環状の突条部を有する例であり、連通凹部は形成されていない。
 以上の実施例1、2および従来例と比較例の空気入りタイヤについて、転がり抵抗性能とウエットグリップ性能の性能試験を行った評価結果が、[表1]に示されている。
 転がり抵抗試験は、国際標準規格ISO28580に準拠したフォース法により転がり抵抗を測定している。
 [表1]に示す転がり抵抗係数RRCの評価結果は、測定された転がり抵抗の測定値を荷重で除した転がり抵抗係数RRCについて、その逆数を用いて、従来例を100とする指数で示している。
 この指数値が大きい程、転がり抵抗が小さいことを意味する。
 ウエットグリップ試験は、国際標準規格ISO15222に準拠した実車法によりウエットグリップを測定している。
 [表1]に示すウエットグリップ指数の評価結果は、測定されたウエットグリップの測定値について、従来例を100とする指数で示している。
 この指数値が大きい程、ウエットグリップ性能が優れていることを意味する。
 [表1]に示されるように、周方向溝に突条部のない従来例に比べて、突条部を有するが連通凹部のない比較例は、転がり抵抗係数RRCが108と転がり抵抗性能が優れているが、ウエットグリップ指数が93とウエットグリップ性能が相当低下している。
 これは、比較例が連通凹部のない突条部を周方向溝に有するので、相対する突条部が互いに接して確固として支え合ってリブ状陸部の剛性を高めるため、転がり抵抗を低減することができるが、連通凹部がないため、接地により外周の開口が塞がれた外側溝空間内の水を内側溝空間に逃がして外部に排水することができず排水性が劣り、ウエットグリップ性能を低下させているからである。
 これに対して、実施例1は、突条部5に連通凹部9を有し、連通孔(連通凹部9,9)の形状が円孔であり、連通凹部9,9の孔径Rが約5mmであり、連通孔の傾きθ(ラジアル方向に対する角度)は0°である。
 そして、実施例1のトレッド周方向に配設される連通孔の間隔Dは、50mmである。
 かかる実施例1の従来例を基準として比較例と対比した評価結果は、転がり抵抗係数RRCが106であり、比較例の108には及ばないまでも高い転がり抵抗性能が確保されている。
 実施例1のウエットグリップ指数は97であり、比較例のウエットグリップ指数93に比べ相当程度高い指数値を示しており、この指数値は十分なウエットグリップ性能が保たれていることを意味する。
 これは、実施例1が突条部5に連通凹部9を有することで、接地により外周の開口が塞がれた外側溝空間7内の水を連通孔(連通凹部9,9)を介して内側溝空間6に逃がして外部に排水することができ、周方向溝3の排水性を良好としているからである。
 連通孔の形状を方形孔とした実施例2は、転がり抵抗係数RRCが106であり、ウエットグリップ指数が97であって、転がり抵抗係数RRCとウエットグリップ指数がともに実施例1と同じ指数値を示している。
 すなわち、通路面積が略同じ連通孔は、形状が異なっても転がり抵抗性能とウエットグリップ性能に影響しないことが分かる。
 次に、別の実施例3,4,5,6に係る空気入りタイヤ1について、転がり抵抗性能とウエットグリップ性能の試験結果を、[表2]に示す。
 実施例3,4,5,6の連通孔の形状は、全て円孔である。
Figure JPOXMLDOC01-appb-I000002
 実施例3の空気入りタイヤ1は、突条部に形成される連通孔(連通凹部)が孔径10mmという大きな円孔であり、その他は実施例1と同じである。
 実施例3は、連通孔の孔径が大きい分、実施例1に比べ相対する突条部の互いの支え合いが若干弱くなり、リブ状陸部の剛性も若干低下するので、転がり抵抗係数RRCは、105となるが、実施例1より僅かに小さい程度で十分な転がり抵抗性能を示している。
 また、実施例3は、連通孔の孔径が大きい分、接地により外周の開口が塞がれた外側溝空間7内の水を連通孔(連通凹部9,9)を介して内側溝空間6に容易に逃がして外部に排水することができ、周方向溝3の排水性が極めて良好であり、ウエットグリップ指数が100という突条部を有しない従来例と同じ指数値を示しており、従来例と同じ最良のウエットグリップ性能が維持されている。
 実施例4の空気入りタイヤ1は、突条部に形成される連通孔(連通凹部)が孔径2mmという小さい円孔であり、その他は実施例1と同じである。
 実施例4は、連通孔の孔径が小さい分、実施例1に比べ相対する突条部の互いの支え合いが強固であり、リブ状陸部の剛性も高く、転がり抵抗係数RRCは、108となり、突条部に連通孔のない比較例と同じ指数値であり、最良の転がり抵抗性能を示している。
 しかし、実施例4は、連通孔の孔径が小さい分、接地により外周の開口が塞がれた外側溝空間7内の水を連通孔(連通凹部9,9)を介して内側溝空間6に逃がすことが容易でなく、排水性が劣り、よって、ウエットグリップ指数は95と小さく、実施例1に比べてウエットグリップ性能は良くない。
 実施例5の空気入りタイヤ1は、孔径5mmの円孔である連通凹部9,9がトレッド周方向に10mmの間隔Dで配設され、その他は実施例1と同じである。
 実施例5は、連通凹部9,9のトレッド周方向に配設される間隔Dが10mmと小さいので、その分周方向溝3に形成される連通凹部9,9の数が多い。
 よって、実施例1に比べ相対する突条部の互いの支え合いが若干弱くなり、リブ状陸部の剛性も若干低下し、転がり抵抗係数RRCは、105となり、実施例1より僅かに小さい程度で十分な転がり抵抗性能を示している。
 しかし、実施例5は、周方向溝3に形成される連通凹部9,9の数が多いことから、接地により外周の開口が塞がれた外側溝空間7内の水を連通孔(連通凹部9,9)を介して内側溝空間6に容易に逃がして外部に排水することができ、周方向溝3の排水性が極めて良好であり、ウエットグリップ指数が100という突条部を有しない従来例と同じ指数値を示しており、従来例と同じ最良のウエットグリップ性能が維持されている。
 なお、実施例5は、転がり抵抗係数RRCとウエットグリップ指数が連通孔(連通凹部9,9)の孔径を大きくした前記実施例3と同じ指数値を示している。
 次に、上記[表2]に示される別の実施例6について、図9ないし図11に基づいて説明する。
 実施例6は、前記実施例1と同じタイヤサイズの空気入りタイヤ1でトレッド構造がほぼ同じ構造しており、よって実施例1と同じ符号を用いることとする。
 すなわち、実施例6のトレッドには、溝幅Wが10mmの周方向溝3を挟んで隣り合うリブ状陸部4,4から互いの方向に向けて突出した環状の突条部5,5が形成されており、その対面する先端面5s,5s間の間隔dは、1.5mmである。
 そして、相対する突条部5,5の対面する双方の先端面5s,5sに、連通凹部9,9が互いに対向して形成され、連通凹部9,9の円孔の孔径Rは5mmであり、連通凹部9,9はトレッド周方向に50mmの間隔Dで複数形成されている。
 しかし、実施例6は、実施例1と違って、連通凹部9,9の傾きθ(ラジアル方向に対する角度)が、+5°である。
 図11を参照して、連通凹部9,9は、内側溝空間6に臨む内側開口9iと同内側開口9iより車両前進時のタイヤ回転方向(図11において矢印で示す方向)に移動した位置にある外側溝空間7に臨む外側開口9oとを連通して、タイヤ回転面内でラジアル方向に対して傾きθが+5°傾いた方向に指向して直線的に形成されている。そして、この傾きθは、連通凹部9,9のラジアル方向外側がラジアル方向内側よりタイヤ回転方向に進んでいる傾きである。
 このように、連通凹部9,9がラジアル方向に対してタイヤ回転面内での傾きθが+5°傾いていることで、前進走行で濡れた路面に踏み込んだ空気入りタイヤ1は、接地したリブ状陸部4,4の圧縮変形で相対する突条部が互いに接し、外側溝空間7と内側溝空間6とを連通する連通孔(連通凹部9,9)が確保された状態にあって、同連通孔(連通凹部9,9)はラジアル方向に対して傾きθが+5°傾いている。
 そのため、特に車両前進時に、接地により外周の開口が塞がれた外側溝空間7内の水を、連通孔(連通凹部9,9)の外側開口9o,9oが汲み取るようにして連通孔(連通凹部9,9)に導入して内側開口9i,9iから内側溝空間6に逃がす(図11の破線矢印参照)ことを促すことができ、車両後退時よりもタイヤが高速で回転することがある車両前進時のときの排水性をより良好としてウエットグリップ性能を効果的に発揮することができる。
 上記[表2]における実施例6の評価結果は、転がり抵抗係数RRCが105であり、実施例1より僅かに低い指数値で転がり抵抗性能は殆ど変りないが、ウエットグリップ指数は99と極めて高い指数値を示して、ウエットグリップ性能は格段に向上している。
 次に、別の実施例7についてトレッドの断面を示す図12に基づき説明する。
 実施例7においては、図12において実施例1と同じ符号を用いる。
 実施例7は、図12に示されるように、実施例1(図2参照)の空気入りタイヤ1のトレッドに形成された複数の周方向溝3のうち最外側の周方向溝3cの相対する突条部5,5の円錐面5cc,5ccの傾斜を小さくしたものである。
 リブ状陸部4の倒れ込みが小さいトレッド幅方向で中央側の周方向溝3a,3bにおける突条部5よりもトレッド幅方向で最外側の周方向溝3cにおける突条部5の円錐面5ccの傾斜が小さいので、トレッド幅方向で最外側のリブ状陸部4の接地時の圧縮応力に対する剛性をより高くして、車両旋回時の最外側のリブ状陸部4の倒れ込みを極力抑制して、コーナリングパワーを向上させることができるとともに、突条部5の円錐面5ccの傾斜が小さく接地により外側溝空間が塞がれ難い構造であるため、排水が極めて容易になされてウエットグリップ性能を良好とすることができる。
 次に、周方向溝3に設けられた突条部5の先端面5sに形成される連通凹部9のトレッド周方向に配設される数を、トレッド幅方向に配列される周方向溝3の位置によって変えた例を、実施例8として図13に示し説明する。
 実施例8においては、トレッドの部分平面図を示す図13において実施例1と同じ符号を用いる。
 図13に示されるように、周方向溝3に設けられた突条部5の先端面5sにトレッド周方向に等間隔に形成される連通凹部9の互いに隣り合う連通凹部9,9間の間隔は、トレッド幅方向の中央の周方向溝3aにおける連通凹部9,9間の間隔が最も小さく、次いで周方向溝3aの両側に設けられる周方向溝3b,3bにおける連通凹部9,9間の間隔がより大きく、周方向溝3b,3bのさらに両外側に設けられる周方向溝3c,3cにおける連通凹部9,9間の間隔が最も大きい。
 したがって、周方向溝3に設けられた突条部5の先端面5sに形成される連通凹部9のトレッド周方向に配設される数は、トレッド幅方向の外側より中央の周方向溝3aの方が多く、互いに隣り合う連通凹部9,9間の間隔は小さいので、タイヤ接地時にリブ状陸部4のより大きい圧縮変形により特に円滑な排水が要求される中央側の周方向溝の排水を、間隔が小さく数の多い連通凹部9により効率良く行うことができ、良好なウエットグリップ性能を確保することができる。
 以上、本発明に係る実施形態の空気入りタイヤのトレッド構造につき説明したが、本発明の態様は、上記実施形態に限定されず、本発明の要旨の範囲で、多様な態様で実施されるものを含むものである。
 なお、本発明に係る空気入りタイヤは、周方向溝によりリブ状陸部が形成されたリブパターンをトレッドに有するものであり、そのリブ状陸部にウエットグリップ性能や氷上制動等のためサイプ等の細溝が形成されていてもよい。
 1…空気入りタイヤ、2…トレッド、3,3a,3b,3c…周方向溝、4…リブ状陸部、5…突条部、5c…円錐面、5s…先端面、6…内側溝空間、7…外側溝空間、8…隙間、9…連通凹部。

Claims (7)

  1.  トレッド周方向に延設される周方向溝により分離された複数本のリブ状陸部が形成された空気入りタイヤにおいて、
     前記周方向溝を挟んで隣り合う前記リブ状陸部から互いの方向に向けて突出した突条部が、トレッド周方向に延びて環状に形成され、
     相対する前記突条部は、前記突条部の互いに対面する先端面が、タイヤ接地時におけるリブ状陸部の弾性変形により互いに接するように間隔を有して配設され、
     相対する前記突条部により前記周方向溝には、相対する前記突条部のラジアル方向内周側の内側溝空間と、相対する前記突条部のラジアル方向外周側の外側溝空間とが形成され、
     前記突条部の先端面には、前記外側溝空間と前記内側溝空間を連通する複数の連通凹部が、トレッド周方向に間隔をおいて形成されることを特徴とする空気入りタイヤ。
  2.  相対する前記突条部の対面する双方の先端面に、前記連通凹部が互いに対向して形成されることを特徴とする請求項1記載の空気入りタイヤ。
  3.  前記リブ状陸部から突出する前記突条部は、前記リブ状陸部の踏面からラジアル方向内方へ延びる円錐面をなして前記先端面まで突出して形成されることを特徴とする請求項1または請求項2記載の空気入りタイヤ。
  4.  トレッド幅方向で最外側の前記周方向溝における前記突条部は、トレッド幅方向で中央側の前記周方向溝における前記突条部よりも前記円錐面の傾斜が小さいことを特徴とする請求項3記載の空気入りタイヤ。
  5.  前記連通凹部は、ラジアル方向に指向して直線的に形成されることを特徴とする請求項1および請求項2のいずれか1項記載の空気入りタイヤ。
  6.  前記連通凹部は、前記内側溝空間に臨む内側開口と同内側開口より車両前進時のタイヤ回転方向に移動した位置にある前記外側溝空間に臨む外側開口とを連通して、ラジアル方向に対して傾いた方向に指向して直線的に形成されることを特徴とする請求項1および請求項2のいずれか1項記載の空気入りタイヤ。
  7.  トレッド幅方向で側方より中央側に設けられる前記周方向溝の方が、前記突条部に形成される前記連通凹部の数が多いことを特徴とする請求項1および請求項2のいずれか1項記載の空気入りタイヤ。
PCT/JP2016/080359 2015-11-24 2016-10-13 空気入りタイヤ WO2017090332A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/776,510 US10850570B2 (en) 2015-11-24 2016-10-13 Pneumatic tire
CN201680068896.4A CN108290462B (zh) 2015-11-24 2016-10-13 充气轮胎
EP16868281.3A EP3381718B1 (en) 2015-11-24 2016-10-13 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-228382 2015-11-24
JP2015228382A JP6621312B2 (ja) 2015-11-24 2015-11-24 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2017090332A1 true WO2017090332A1 (ja) 2017-06-01

Family

ID=58764227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080359 WO2017090332A1 (ja) 2015-11-24 2016-10-13 空気入りタイヤ

Country Status (5)

Country Link
US (1) US10850570B2 (ja)
EP (1) EP3381718B1 (ja)
JP (1) JP6621312B2 (ja)
CN (1) CN108290462B (ja)
WO (1) WO2017090332A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492283A1 (en) * 2017-12-01 2019-06-05 The Goodyear Tire & Rubber Company Tire tread comprising a stabilizer structure
EP3556575A1 (en) * 2018-04-18 2019-10-23 Sumitomo Rubber Industries, Ltd. Tyre
US20220048335A1 (en) * 2018-11-09 2022-02-17 Compagnie Generale Des Etablissements Michelin Truck tire having water flow orienting tread feature
JP7368214B2 (ja) 2019-12-12 2023-10-24 株式会社ブリヂストン タイヤ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015215455A1 (de) * 2015-08-13 2017-02-16 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
FR3090484A3 (fr) * 2018-12-21 2020-06-26 Michelin & Cie Bande de roulement de pneu pour poids lourd ayant des incisions améliorées.
JP7177008B2 (ja) * 2019-06-14 2022-11-22 株式会社ブリヂストン 空気入りタイヤ
JP7280155B2 (ja) 2019-09-19 2023-05-23 株式会社ブリヂストン 空気入りタイヤ
DE102020204226A1 (de) * 2020-04-01 2021-10-07 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen, insbesondere Nutzfahrzeugreifen
US11697312B2 (en) * 2020-09-22 2023-07-11 The Goodyear Tire & Rubber Company Stabilizer structure for a tread of a tire
US20220088967A1 (en) * 2020-09-22 2022-03-24 The Goodyear Tire & Rubber Company Tire tread
DE102020212560A1 (de) * 2020-10-05 2022-04-07 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen mit Umfangsrille

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122255B1 (ja) * 1967-04-21 1976-07-08
JP2000016026A (ja) * 1998-06-26 2000-01-18 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2002219909A (ja) * 2001-01-29 2002-08-06 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2007253875A (ja) * 2006-03-24 2007-10-04 Bridgestone Corp タイヤ
JP2009255765A (ja) * 2008-04-17 2009-11-05 Bridgestone Corp 空気入りタイヤ
JP2013519562A (ja) * 2010-02-12 2013-05-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン 周方向連続溝を備えたトレッドを有する二輪車用タイヤ
JP2013525194A (ja) * 2010-04-30 2013-06-20 コンパニー ゼネラール デ エタブリッスマン ミシュラン トレーラ型重車両用タイヤのトレッド
JP2013543815A (ja) * 2010-11-25 2013-12-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン トレーラ型重車両用タイヤ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2322505A (en) * 1943-06-22 Pneumatic tire
US2298033A (en) 1941-12-04 1942-10-06 Pennsylvania Rubber Company Nonmetallic tire
US2696863A (en) * 1951-06-20 1954-12-14 Us Rubber Co Tire tread
JPS5122255A (en) 1974-08-16 1976-02-21 Eko Kk Toketsuboshisochio naizo saseta suidojaguchi
DE10133430A1 (de) * 2001-07-10 2003-01-23 Continental Ag Lauflächenprofil für einen Fahrzeugreifen, Stift als Vorrichtung zur Herstellung eines solchen Laufflächenprofiles und Vulkanisationform mit einem solchen Stift
FR2829970B1 (fr) * 2001-09-27 2004-05-14 Michelin Soc Tech Bande de roulement pour pneumatique
JP4935507B2 (ja) * 2007-06-04 2012-05-23 横浜ゴム株式会社 空気入りタイヤ
JP5498245B2 (ja) * 2010-05-10 2014-05-21 株式会社ブリヂストン タイヤ
JP5528208B2 (ja) * 2010-05-20 2014-06-25 株式会社ブリヂストン 空気入りタイヤ
FR2962372B1 (fr) * 2010-07-06 2014-05-02 Michelin Soc Tech Dispositif de protection de bande de roulement
FR2971732B1 (fr) 2011-02-17 2013-02-01 Michelin Soc Tech Bande de roulement pour pneumatique poids lourd de type remorque et element moulant
FR2973284B1 (fr) 2011-04-01 2014-02-21 Michelin Soc Tech Bande de roulement amelioree pour pneu de vehicule poids lourd
CN103158443B (zh) * 2011-12-19 2016-03-02 青岛黄海橡胶有限公司 轿车子午线轮胎胎面花纹
FR3017075B1 (fr) 2014-02-03 2016-02-12 Michelin & Cie Bande de roulement pour pneu poids lourd
CN204749752U (zh) * 2015-06-08 2015-11-11 厦门正新橡胶工业有限公司 越野车用充气轮胎胎面花纹结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122255B1 (ja) * 1967-04-21 1976-07-08
JP2000016026A (ja) * 1998-06-26 2000-01-18 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2002219909A (ja) * 2001-01-29 2002-08-06 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JP2007253875A (ja) * 2006-03-24 2007-10-04 Bridgestone Corp タイヤ
JP2009255765A (ja) * 2008-04-17 2009-11-05 Bridgestone Corp 空気入りタイヤ
JP2013519562A (ja) * 2010-02-12 2013-05-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン 周方向連続溝を備えたトレッドを有する二輪車用タイヤ
JP2013525194A (ja) * 2010-04-30 2013-06-20 コンパニー ゼネラール デ エタブリッスマン ミシュラン トレーラ型重車両用タイヤのトレッド
JP2013543815A (ja) * 2010-11-25 2013-12-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン トレーラ型重車両用タイヤ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492283A1 (en) * 2017-12-01 2019-06-05 The Goodyear Tire & Rubber Company Tire tread comprising a stabilizer structure
EP3556575A1 (en) * 2018-04-18 2019-10-23 Sumitomo Rubber Industries, Ltd. Tyre
US20220048335A1 (en) * 2018-11-09 2022-02-17 Compagnie Generale Des Etablissements Michelin Truck tire having water flow orienting tread feature
JP7368214B2 (ja) 2019-12-12 2023-10-24 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
US10850570B2 (en) 2020-12-01
JP2017094891A (ja) 2017-06-01
CN108290462A (zh) 2018-07-17
JP6621312B2 (ja) 2019-12-18
US20180345733A1 (en) 2018-12-06
EP3381718A4 (en) 2018-12-26
CN108290462B (zh) 2020-03-06
EP3381718B1 (en) 2020-03-25
EP3381718A1 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
WO2017090332A1 (ja) 空気入りタイヤ
US9783005B2 (en) Pneumatic tire
US9623708B2 (en) Pneumatic tire
JP5275610B2 (ja) 空気入りタイヤ
US7597127B2 (en) Tire with tread including circumferential grooves having generally sinusoidal contour
JP2018529565A (ja) トラックタイヤトレッド及びトラックタイヤ
JP2017505261A (ja) 重量物運搬車両用タイヤのためのトレッド
WO2016047706A1 (ja) 空気入りタイヤ
WO2015182024A1 (ja) 空気入りタイヤ
US11370251B2 (en) Tire
JPH05330313A (ja) 空気入りタイヤ
EP3318421A1 (en) Tire
JP2010116112A (ja) 空気入りタイヤ
WO2016057149A1 (en) Tire traction element
US20170368885A1 (en) Tire
RU2750764C2 (ru) Шина для колес транспортных средств
JP6790098B2 (ja) 大型トラックタイヤトレッド及び大型トラックタイヤ
US20200376896A1 (en) Tire
JP2019026073A (ja) 空気入りタイヤ
JP2018076001A (ja) タイヤ
JP6796178B2 (ja) 空気入りタイヤ
JP6980515B2 (ja) 空気入りタイヤ
JP5109459B2 (ja) 空気入りタイヤ
CN110936770A (zh) 轮胎
JP6759787B2 (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE