WO2017090260A1 - 磁気ディスク用ガラス基板及び磁気ディスク - Google Patents

磁気ディスク用ガラス基板及び磁気ディスク Download PDF

Info

Publication number
WO2017090260A1
WO2017090260A1 PCT/JP2016/062834 JP2016062834W WO2017090260A1 WO 2017090260 A1 WO2017090260 A1 WO 2017090260A1 JP 2016062834 W JP2016062834 W JP 2016062834W WO 2017090260 A1 WO2017090260 A1 WO 2017090260A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
magnetic disk
average roughness
arithmetic average
angular direction
Prior art date
Application number
PCT/JP2016/062834
Other languages
English (en)
French (fr)
Inventor
正文 伊藤
茂喜 高野
香良 吉田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017090260A1 publication Critical patent/WO2017090260A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a glass substrate for a magnetic disk and a magnetic disk.
  • Magnetic disks are formed by depositing a magnetic layer on a metal substrate or glass substrate.
  • metal substrate or glass substrate Conventionally, aluminum alloy substrates have been widely used as substrates for magnetic disks.
  • glass substrates are made smaller, thinner, and higher in recording density, glass substrates having higher surface smoothness and superior strength in thin plates are often used compared to aluminum alloy substrates.
  • Patent Document 1 discloses a method for processing a glass substrate for a magnetic disk, which can efficiently finish the end surface of the glass substrate for a magnetic disk at a low cost in order to meet the quality requirements of the glass substrate for a magnetic disk. ing.
  • fluttering during high-speed rotation can be improved when a magnetic disk is formed by setting the roundness of a circular hole at the center of a glass substrate for a magnetic disk to a desired condition.
  • a glass substrate for a magnetic disk is disclosed.
  • Japanese Patent No. 5639215 Japanese Patent No. 5703430 Japanese Patent No. 5639215 Japanese Patent No. 5703430
  • the glass substrate for a magnetic disk disclosed in the cited references 1 and 2 also has cracks, chipping, chips, etc. Likely to happen.
  • the magnetic disk information is recorded in a magnetic film formed on the main surface of the substrate, and the magnetic film is formed by vacuum film formation such as sputtering.
  • a magnetic film is formed on a magnetic disk substrate, particles for forming the magnetic film wrap around and adhere not only to the main surface of the magnetic disk substrate but also to the end surface. .
  • the film formed on the end face of such a magnetic disk substrate may be peeled off. The peeled film becomes dust and adheres to the main surface. Then, the magnetic disk becomes defective.
  • an Fe—Pt-based, Co—Pt-based alloy thin film, or the like is used as a magnetic layer.
  • these magnetic layers are formed, and before and after the film formation, they are heated to a temperature of 500 ° C. to 700 ° C.
  • the protective layer is formed thereafter, the temperature is increased from 100 ° C. to about room temperature. To be cooled.
  • cracks and cracks may occur on the end surface of the glass substrate.
  • the magnetic film attached to the end surface of the glass substrate may be peeled off due to the difference in thermal expansion coefficient between the glass substrate and the magnetic film.
  • a glass substrate in which cracks or cracks have occurred on the end face and a magnetic disk having a magnetic layer peeled off from the end face and attached to the main surface are defective products, which leads to a decrease in yield.
  • the present invention relates to the following ⁇ 1> to ⁇ 11>.
  • ⁇ 1> A disk-shaped glass substrate for a magnetic disk having a main surface, a circular hole in a central portion, and an inner peripheral side surface portion on the central portion side, In the inner peripheral side surface, the arithmetic average roughness Ra measured by an atomic force microscope is 0.7 nm or less, Based on the result measured by an atomic force microscope, the predetermined region of the inner peripheral side surface portion is changed every 1 ° from 0 ° to 180 ° with respect to the direction parallel to the main surface.
  • An angular direction arithmetic average roughness Ra_deg in the angular direction is calculated, and among the calculated angular direction arithmetic average roughness Ra_deg, the largest value is the angular direction arithmetic average roughness Ra_deg_max, and the smallest value is the angular direction arithmetic roughness.
  • the average roughness minimum value Ra_deg_min A glass substrate for a magnetic disk having a value of (Ra_deg_max) ⁇ (Ra_deg_min) of 0.15 nm or more and 1.0 nm or less.
  • ⁇ 2> The glass substrate for a magnetic disk according to ⁇ 1>, wherein a value of (Ra_deg_max) ⁇ (Ra_deg_min) is 0.15 nm or more and 0.50 nm or less.
  • ⁇ 3> The glass substrate for a magnetic disk according to ⁇ 1> or ⁇ 2>, wherein the value of (Ra_deg_max) ⁇ (Ra_deg_min) is 0.15 nm or more and 0.40 nm or less.
  • ⁇ 4> Any one of the above items ⁇ 1> to ⁇ 3>, wherein an angle direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is ⁇ 10 ° or more and + 10 ° or less with respect to a direction perpendicular to the main surface 2.
  • ⁇ 5> A disk-shaped glass substrate for a magnetic disk having a main surface, a circular hole at the center, and an inner peripheral side surface at the center, Based on the result measured by an atomic force microscope, the predetermined region of the inner peripheral side surface portion is changed every 1 ° from 0 ° to 180 ° with respect to the direction parallel to the main surface.
  • An angular direction arithmetic average roughness Ra_deg in the angular direction is calculated, and among the calculated angular direction arithmetic average roughness Ra_deg, the largest value in the angular direction arithmetic average roughness Ra_deg_max is 0.30 nm or more.
  • the glass substrate for magnetic disks which is 1.4 nm or less.
  • a disk-shaped glass substrate for a magnetic disk having a main surface, a circular hole in the center, and an outer peripheral side surface, In the outer peripheral side surface, the arithmetic average roughness Ra measured by an atomic force microscope is 0.6 nm or less, Each angle of the predetermined region of the outer peripheral side surface is determined based on the result of measurement with an atomic force microscope while changing the angular direction from 0 ° to 180 ° with respect to the direction parallel to the main surface.
  • An angular direction arithmetic average roughness Ra_deg in the direction is calculated, and among the calculated angular direction arithmetic average roughness Ra_deg, the largest value is the angular direction arithmetic average roughness Ra_deg_max, and the smallest value is the angular direction arithmetic average
  • Ra_deg_min is set, A magnetic disk glass substrate having a value of (Ra_deg_max) ⁇ (Ra_deg_min) of 0.15 nm or more and 0.70 nm or less.
  • a disk-shaped magnetic disk glass substrate having a main surface, a circular hole in the center, and an outer peripheral side surface, Each angle of the predetermined region of the outer peripheral side surface is determined based on the result of measurement with an atomic force microscope while changing the angular direction from 0 ° to 180 ° with respect to the direction parallel to the main surface.
  • An angular direction arithmetic average roughness Ra_deg in the direction is calculated, and among the calculated angular direction arithmetic average roughness Ra_deg, the largest value of the angular direction arithmetic average roughness Ra_deg_max is 0.20 nm or more,
  • a magnetic disk glass substrate having a thickness of 1.0 nm or less.
  • the angular direction arithmetic average roughness Ra_deg in the inner peripheral side surface portion or the outer peripheral side surface portion is calculated based on a result obtained by applying a high-pass filter with a cutoff of 50 nm to a result measured by an atomic force microscope.
  • ⁇ 11> A magnetic disk in which a magnetic layer is formed on the main surface of the glass substrate for a magnetic disk according to any one of ⁇ 1> to ⁇ 10>.
  • the glass substrate for a magnetic disk of the present invention even when a magnetic film is formed, the occurrence of cracks and cracks is suppressed, and the peeling of the magnetic film from the end surface is suppressed, thereby improving the yield of the magnetic disk. be able to. Further, it is possible to provide a glass substrate for a magnetic disk that facilitates cleaning and has few adhered particles. Furthermore, it becomes possible to facilitate the insertion into the spindle when manufacturing the hard disk drive device.
  • FIG. 1 is a structural diagram schematically showing a perspective cross-sectional view of a magnetic disk glass substrate in the present embodiment.
  • FIG. 2 is a schematic perspective cross-sectional explanatory view illustrating brush polishing of the inner peripheral end surface of the glass substrate for magnetic disks.
  • FIG. 3 is a schematic perspective view for explaining brush polishing of the outer peripheral end surface of the magnetic disk glass substrate.
  • FIG. 4A is a side view of a glass substrate for magnetic disk used as an explanatory diagram (1) of the evaluation method of the end surface of the glass substrate for magnetic disk in the present embodiment, and FIG. It is an enlarged view of the area
  • FIG. 1 is a structural diagram schematically showing a perspective cross-sectional view of a magnetic disk glass substrate in the present embodiment.
  • FIG. 2 is a schematic perspective cross-sectional explanatory view illustrating brush polishing of the inner peripheral end surface of the glass substrate for magnetic disks.
  • FIG. 3 is a schematic
  • FIG. 5 is a graph showing the relationship between the angle ⁇ in the angular direction and the arithmetic average roughness Ra_deg used as an explanatory diagram (2) of the evaluation method of the end surface of the glass substrate for magnetic disks in the present embodiment.
  • FIG. 6 is a schematic structural diagram of the magnetic disk in the present embodiment.
  • FIG. 7 is an explanatory diagram of pad polishing of the inner peripheral end face and the outer peripheral end face of the magnetic disk glass substrate.
  • FIG. 8 is an explanatory diagram of tape polishing of the inner peripheral end face and the outer peripheral end face of the magnetic disk glass substrate.
  • a magnetic disk is manufactured by forming a magnetic layer such as an underlayer and a perpendicular magnetic layer, a protective layer, and the like on the main surface of a magnetic disk glass substrate.
  • the inventors have found that the occurrence of cracks at the end face of the glass substrate for magnetic disk generated when manufacturing such a magnetic disk, and the film peeling of the formed magnetic layer is caused by It was found that it depends greatly on the condition of the end surface. Specifically, even if the substrate is in a state in which polishing marks are not visible by visual observation under high brightness, in a high-resolution surface measurement such as AFM (Atomic Force Microscope), the direction is in a certain direction. There is a streak pattern having sex. It has been found that the streak pattern having such a directivity greatly affects the generation of cracks on the end face of the glass substrate for magnetic disks, the cracking, and the film peeling of the formed magnetic layer.
  • AFM Anamic Force Microscope
  • the present invention is based on the findings found above, and by defining the state of the streak pattern at the level observed by the AFM on the end face of the substrate, especially the side face, cracks on the end face, particularly the side face,
  • the present invention provides a glass substrate for a magnetic disk with less cracking and peeling of a magnetic layer. It is another object of the present invention to provide a glass substrate for a magnetic disk that facilitates cleaning and has few adhered particles. That is, when the streak pattern is conspicuous, adhering particles increase, and therefore, a glass substrate for a magnetic disk that prevents this is provided. Furthermore, the present invention provides a glass substrate for a magnetic disk that can be easily inserted into a spindle for an HDD.
  • the glass substrate 10 for a magnetic disk in the present embodiment is formed to have a donut shape, that is, a disc shape having a circular hole 11 at the center, It has a main surface 12.
  • the magnetic disk glass substrate 10 has an inner peripheral end face 20 on the inner side where the circular hole 11 on the center side is formed and an outer peripheral end face 30 on the outer side.
  • a magnetic disk is manufactured by forming a magnetic layer on the main surface 12 of the glass substrate 10 for magnetic disk in this Embodiment.
  • the inner peripheral end surface 20 has an inner peripheral side surface portion 21 and an inner peripheral chamfered portion 22, and the inner peripheral chamfered portion 22 is chamfered between the inner peripheral side surface portion 21 and the main surface 12. It is formed by.
  • the outer peripheral end surface 30 has an outer peripheral side surface portion 31 and an outer peripheral chamfered portion 32, and the outer peripheral chamfered portion 32 is formed by chamfering between the outer peripheral side surface portion 31 and the main surface 12.
  • the method for manufacturing a glass substrate for a magnetic disk includes a base plate processing step, a chamfered portion processing step, an end surface polishing step, a main surface polishing step, and the like. You may perform an etching process, a washing
  • the base plate processing step is a step of obtaining a disk-shaped glass substrate having a circular hole at the center by processing the glass base plate.
  • the glass base plate is formed by, for example, a float method, a fusion method, a press forming method, a down draw method, a redraw method, or the like.
  • the chamfered portion machining step forms the outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface of the glass substrate by grinding the end surfaces (the inner peripheral end surface and the outer peripheral end surface) of the glass substrate with a chamfering grindstone.
  • This is a step of forming an inner peripheral side surface portion and an inner peripheral chamfered portion on the peripheral end surface.
  • the outer peripheral chamfered portion and the inner peripheral chamfered portion are formed obliquely with respect to the main surface of the glass substrate, and the outer peripheral side surface portion and the inner peripheral side surface portion are formed substantially perpendicular to the main surface of the glass substrate. .
  • the outer peripheral chamfered portion and the inner peripheral chamfered portion do not have to be flat and may be rounded curved surfaces.
  • the end surface polishing step is performed by polishing the inner peripheral side surface portion and inner peripheral chamfered portion on the inner peripheral end surface of the glass substrate and the outer peripheral side surface portion and outer peripheral chamfered portion on the outer peripheral end surface with a rotating brush while supplying the polishing liquid.
  • a step of removing the layer A polishing liquid is supplied to the polishing portion by the rotating brush.
  • FIG. 2 and 3 show a state of brush polishing as an example of an end surface polishing step on the inner peripheral end surface 20 and the outer peripheral end surface 30 of the magnetic disk glass substrate 10.
  • the rotating brush 120 in which a plurality of bristles 121 are planted is inserted into the circular hole 11 of the laminated magnetic disk glass substrate 10, and the rotating brush 120 is rotated, The tip of the bristles 121 of the rotating brush 120 is brought into contact with the inner peripheral side surface portion 21 and the inner peripheral chamfered portion 22 of the inner peripheral end surface 20 of the magnetic disk glass substrate 10, thereby polishing the end surface of the inner peripheral end surface 20.
  • FIG. 2 and 3 show a state of brush polishing as an example of an end surface polishing step on the inner peripheral end surface 20 and the outer peripheral end surface 30 of the magnetic disk glass substrate 10.
  • the rotating brush 130 in which a plurality of bristles 131 are planted is brought closer to the outside of the laminated magnetic disk glass substrate 10, and the rotating brush 130 is rotated to rotate the rotating brush 130.
  • the end surface of the outer peripheral end surface 30 is polished by bringing the tip of the brush bristles 131 into contact with the outer peripheral side surface portion 31 and the outer peripheral chamfered portion 32 of the outer peripheral end surface 30 of the magnetic disk glass substrate 10.
  • end face polishing steps may be sequentially performed, and it is not necessary to remove the work-affected layer with only a rotating brush.
  • pad polishing, tape polishing, sponge polishing, viscous fluid polishing, magnetic fluid polishing, and the like may be performed.
  • a cleaning process and a drying process may be performed between the plurality of end face polishing processes.
  • a polishing liquid When carrying out the end surface polishing step, a polishing liquid can be used, and a dispersant can be added to the polishing liquid.
  • Dispersants that can be suitably added to the polishing liquid used in the end surface polishing step include sodium polyacrylate, polysulfonate, salt of acrylic acid-maleic acid copolymer, citrate or diphosphate Is mentioned.
  • a preferable type of dispersant is appropriately added to the polishing liquid.
  • a dispersant when the polishing liquid contains cerium oxide polyacrylate, polysulfonate, salt of acrylic acid-maleic acid copolymer, citrate, or diphosphate is preferable.
  • the dispersant to be added to the polishing liquid it is more preferable to use a polymer type dispersant so that the abrasive grains do not adhere to each other.
  • a dispersant having a surface active action is not preferable in that the polishing rate is lowered and bubbles are generated.
  • the polishing rate is lowered and the polishing time is extended, so that the polishing streaks increase.
  • the polishing streak tends to increase.
  • a surfactant is used, there is a problem that the polishing liquid is foamed.
  • the main surface polishing step polishes the main surface (front side main surface and back side main surface) of the glass substrate.
  • a double-side polishing machine that simultaneously polishes the front main surface and the back main surface of the glass substrate is preferably used.
  • a plurality of glass substrates can be simultaneously polished by a double-side polishing machine.
  • the main surface polishing step can be performed a plurality of times, and in this case, a plurality of main surface polishing steps can be sequentially performed.
  • the type of polishing pad and the particle size of the abrasive grains contained in the polishing liquid may be changed.
  • a cleaning process and a drying process may be inserted between the main surface polishing processes performed each time.
  • the order of each process is not particularly limited.
  • the end surface polishing step may be performed after the main surface polishing step.
  • processes other than the above-described processes may be performed.
  • lapping for example, loose abrasive wrap, fixed abrasive wrap, etc.
  • chemical strengthening may be performed after the end face polishing process or the main surface polishing process or during the main surface polishing process.
  • ions with a small ion radius for example, Li ions and Na ions
  • ions with a large ion radius for example, K ions
  • the glass substrate for magnetic disk is subjected to scrub cleaning using a detergent and the like, precision cleaning by applying ultrasonic waves in a state immersed in the detergent and pure water, and the like through a drying process using isopropyl alcohol or the like. It is used for the magnetic disk manufacturing process.
  • the end face of the magnetic disk glass substrate is measured using AFM.
  • the tilt correction is performed arithmetically based on the measurement result obtained by the AFM.
  • a high-pass filter low-cut filter
  • a high-pass filter with a cutoff wavelength of 50 nm is applied to the one subjected to the inclination correction in this way.
  • the angular direction arithmetic average roughness Ra_deg in the predetermined angular direction. Is calculated for each angle direction at each angle ⁇ .
  • 4A is a side view of the glass substrate for a magnetic disk
  • FIG. 4B is an enlarged view of a region surrounded by an alternate long and short dash line 4A in FIG. 4A.
  • FIGS. 4A and 4B are views of the side surface portion and the chamfered portion of the end surface of the magnetic disk glass substrate, and the horizontal direction in the figure is the direction parallel to the magnetic disk glass substrate ( The circumferential direction of the end face) and the vertical direction are the thickness direction of the magnetic disk glass substrate.
  • the angular direction arithmetic average roughness Ra_deg in the region of the length L in the longitudinal direction and the length L / 19 in the short direction is calculated.
  • the length L in the longitudinal direction is 8 ⁇ m.
  • the angle ⁇ that is changed from the reference when the angle is changed clockwise from the direction parallel to the main surface with the intersection of the diagonal lines of this region as the center of rotation. The direction.
  • the direction parallel to the main surface of the glass substrate for magnetic disks is set to 0 ° as the reference for the angle direction, and the angle direction is changed clockwise by 1 ° and the angle is increased to increase the angle direction arithmetic average roughness Ra_deg. calculate.
  • the angle direction ⁇ becomes 90 °.
  • the position of the rectangular region on the inner peripheral side surface and the outer peripheral side surface is not particularly limited as long as it is within the AFM measurement region. For example, the intersection of diagonal lines of the rectangular region is the inner peripheral side surface, outer periphery It is preferable that it is located in the center part of the thickness direction of a side part.
  • FIG. 5 shows an example of the relationship between the angle ⁇ in the angular direction and the arithmetic average roughness Ra_deg obtained in this way.
  • the maximum value is the angular direction arithmetic average roughness maximum value Ra_deg_max
  • the minimum value is the angular direction arithmetic average roughness minimum value Ra_deg_min.
  • the predetermined measurement area is 10 ⁇ m ⁇
  • the sampling points are 256 points ⁇ 256 points
  • the inner peripheral side surface portion on the inner peripheral end surface of the magnetic disk glass substrate was carried out at the central portion in the plate thickness direction and the central portion in the plate thickness direction of the outer peripheral side surface at the outer peripheral end face.
  • FIG. 5 shows only the Ra_deg result calculated from the AFM measurement result for the outer peripheral side surface portion, but the angular direction arithmetic average roughness Ra_deg_max and the angular direction arithmetic average roughness for the inner peripheral side surface portion are shown. The same applies to the method of obtaining the minimum value Ra_deg_min.
  • the arithmetic average roughness Ra obtained by AFM is 0.7 nm or less at the inner peripheral side surface portion 21 of the glass substrate for magnetic disk, and the result obtained by AFM.
  • the angular direction arithmetic average roughness Ra_deg in each angular direction is calculated while changing the angular direction in increments of 1 ° from 0 ° to 180 ° in a predetermined region of the inner peripheral side surface, and the calculated angular direction arithmetic average roughness Difference Ra of (Ra_deg_max) and (Ra_deg_min) when the largest value is Ra_deg_max and the smallest value is Ra_deg_min.
  • (Ra_deg_max) ⁇ (Ra_deg_min) is 0.15 nm or more. 1.0 nm or less, more preferably 0.15 nm or more and 0.60 nm or less, still more preferably 0.15 nm or more and 0.50 nm or less, and even more preferably 0. .15 nm or more and 0.40 nm or less, and more preferably 0.15 nm or more and 0.32 nm or less.
  • the magnetic disk glass substrate according to another embodiment of the present invention has an angle direction of 0 ° in a predetermined region of the inner peripheral side surface portion of the inner peripheral side surface portion 21 of the magnetic disk glass substrate from the result obtained by AFM.
  • the angular direction arithmetic average roughness Ra_deg in each angular direction is calculated while changing from 1 to 180 ° every 1 °, and the calculated angular direction arithmetic average roughness Ra_deg is the largest value among the calculated angular direction arithmetic average roughness Ra_deg.
  • the maximum value Ra_deg_max is 0.30 nm or more and 1.4 nm or less, more preferably 0.30 nm or more and 0.90 nm or less, still more preferably 0.30 nm or more, 0 .86 nm or less.
  • the magnetic disk glass substrate according to another embodiment of the present invention has an arithmetic average roughness Ra obtained by AFM of 0.6 nm or less at the outer peripheral side surface portion 31 of the magnetic disk glass substrate, and obtained by AFM. From the obtained results, the angular direction arithmetic average roughness Ra_deg in each angular direction is calculated while changing the angular direction in increments of 1 ° from 0 ° to 180 ° in a predetermined region of the outer peripheral side surface portion, and the calculated angular direction arithmetic The difference between (Ra_deg_max) and (Ra_deg_min) when the largest value among the average roughness Ra_deg is the angular direction arithmetic average roughness maximum value Ra_deg_max and the smallest value is the minimum angular direction arithmetic average roughness value Ra_deg_min.
  • ⁇ Ra that is, (Ra_deg_max) ⁇ (Ra_deg_min) is 0.1 nm or more and 0.70 nm or less, more preferably 0.15 nm or more and 0.40 nm or less, still more preferably 0.15 nm or more and 0.35 nm or less, and more More preferably, it is 0.15 nm or more and 0.30 nm or less.
  • the magnetic disk glass substrate according to another embodiment of the present invention has an angular direction of 1 ° from 0 ° to 180 ° in a predetermined region from the result obtained by AFM on the outer peripheral side surface portion 31 of the glass substrate for magnetic disk.
  • the angular direction arithmetic average roughness Ra_deg in each angular direction is calculated while changing each time, and the largest value of the angular direction arithmetic average roughness Ra_deg_max among the calculated angular direction arithmetic average roughness Ra_deg Is 0.20 nm or more and 1.0 nm or less, more preferably 0.20 nm or more and 0.65 nm or less, and further preferably 0.20 nm or more and 0.60 nm or less. It is.
  • the abrasive used in the polishing enters the streak pattern, and the abrasive that has entered the streak pattern drifts to the cleaning tank during the subsequent cleaning in the cleaning tank, and has an adverse effect.
  • the magnetic layer is likely to be peeled off.
  • the heat transfer from the metal jig in contact with the outer peripheral end face is too fast when the temperature changes suddenly in the magnetic disk manufacturing process as compared with the case where ⁇ Ra is relatively large.
  • the stress due to the local temperature distribution in the glass substrate for magnetic disks is increased, and cracking is likely to occur.
  • ⁇ Ra preferably satisfies at least one of the above ranges for at least one of the inner peripheral side surface portion 21 and the outer peripheral side surface portion 31.
  • the unevenness is large, and thus during the manufacturing process of the magnetic disk glass substrate.
  • chipping and cracking are likely to occur due to contact with a jig or the like, and when a sudden temperature change occurs in the magnetic disk glass substrate in the magnetic disk manufacturing process, the crack extends and cracking occurs. It becomes easy.
  • the abrasive used in the polishing enters the streak pattern, and the abrasive that has entered the streak pattern drifts to the cleaning tank during the subsequent cleaning in the cleaning tank, and has an adverse effect.
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is in the above range for at least one of the inner peripheral side surface portion 21 and the outer peripheral side surface portion 31. It is preferable.
  • the angular direction arithmetic in each angular direction is performed while changing the angular direction from 0 ° to 180 ° by 1 ° in a predetermined region from the result obtained by AFM.
  • the average roughness Ra_deg is calculated.
  • the angular direction that is the largest value of the angular direction arithmetic average roughness Ra_deg_max is preferably the main direction of the glass substrate for a magnetic disk. It is formed so as to be in the range of ⁇ 10 ° or more and + 10 ° or less with respect to the direction perpendicular to the surface.
  • the angle direction is calculated with reference to the direction perpendicular to the main surface of the magnetic disk glass substrate. The angle is out of phase with that in FIG.
  • the angular direction that is the largest angular direction arithmetic average roughness Ra_deg_max among the calculated angular direction arithmetic average roughness Ra_deg is preferably It is formed so as to be in the range of ⁇ 10 ° to + 10 ° with respect to the main surface of the glass substrate for magnetic disk. More preferably, it is formed in a range of ⁇ 5 ° or more and + 5 ° or less.
  • the angular direction arithmetic average roughness Ra_deg is not disturbed by noise during measurement or the undulation of the glass substrate for the magnetic disk itself, and the period of the streak pattern can be accurately grasped. It is preferable to use a high-pass filter having a wavelength about twice as long as the above.
  • the magnetic disk in the present embodiment has a magnetic layer such as a perpendicular magnetic layer that becomes the perpendicular magnetization film 50 on the main surface 12 of the glass substrate 10 for magnetic disk in the present embodiment described above. It is produced by forming a layer by sputtering or the like. That is, the magnetic disk in the present embodiment can have a structure in which a magnetic layer is disposed on the main surface of the magnetic disk glass substrate in the present embodiment.
  • the magnetic material forming the perpendicular magnetic layer include a CoCrPt alloy and an FePt alloy.
  • the magnetic layer may be formed on at least one main surface of the magnetic disk glass substrate, and is preferably formed on both main surfaces.
  • a magnetic disk is manufactured by forming a perpendicular magnetic layer or the like on the glass substrate 10 for magnetic disk in the present embodiment by the following method.
  • the magnetic disk to be produced at least a perpendicular magnetic layer, a protective layer, and a lubricating film are formed on the main surface of the magnetic disk glass substrate.
  • a material corresponding to the perpendicular magnetic recording system is used for the perpendicular magnetic layer.
  • an energy assisted magnetic recording method for example, a heat assisted magnetic recording method, a microwave assisted magnetic recording method, etc.
  • the perpendicular magnetic layer has an energy assisted magnetic recording method.
  • a material corresponding to the recording method is used.
  • a soft magnetic underlayer made of a soft magnetic material that plays a role of circulating a recording magnetic field from a magnetic head.
  • a soft magnetic material containing Co, Fe, Ni or the like is used for the soft magnetic underlayer.
  • FeCo alloy, FeNi alloy, FeAl alloy, FeCr alloy, FeTa alloy, FeMg alloy, FeZr alloy, FeC alloy, FeN alloy, FeSi alloy, FeP alloy, FeNb Alloys, FeHf alloys, FeB alloys and the like are used.
  • the magnetic disk An adhesion layer may be provided between the glass substrate 10 for use and the soft magnetic underlayer.
  • the material for forming the adhesion layer include Cr, Cr alloy, Ti, Ti alloy and the like, and a thickness of about 2 nm to 40 nm is preferable.
  • the adhesion layer can be formed by film formation by sputtering, for example.
  • the orientation control layer can be made of a material containing Ru, Ru alloy, Pt, Au and Ag, and a material such as CoCr alloy, Ti or Ti alloy, and the film thickness is preferably about 2 to 20 nm.
  • This orientation control layer has a function of facilitating the epitaxial growth of the perpendicular magnetic layer and a function of breaking the magnetic exchange coupling between the soft magnetic underlayer and the perpendicular magnetic layer.
  • a seed layer for controlling the crystal grain size of the orientation control layer may be provided between the soft magnetic underlayer and the orientation control layer.
  • the perpendicular magnetic layer is a magnetic film having an easy axis of magnetization that is perpendicular to the main surface of the glass substrate for magnetic disks, and is formed of a material containing Co, Cr, Pt, or the like.
  • the perpendicular magnetic layer preferably has a well-isolated fine particle structure, that is, a granular structure, in order to reduce intergranular exchange coupling that causes high intrinsic medium noise.
  • a well-isolated fine particle structure that is, a granular structure, in order to reduce intergranular exchange coupling that causes high intrinsic medium noise.
  • an oxide SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 5 , TiO 2, etc.
  • Cr, B, Ta, Zr, or the like may be added to a CoCrPt alloy or the like. preferable.
  • the perpendicular magnetic layer may have a structure in which magnetic layers and nonmagnetic layers are alternately stacked.
  • the magnetic layer can be AFC-coupled (antiferromagnetic exchange coupled) by using, for example, a Ru or Ru alloy material and a thickness of 0.6 to 1.2 nm.
  • a protective layer is formed on the perpendicular magnetic layer.
  • the protective layer is formed of a material containing C, ZrO 2 , SiO 2 or the like, and can be formed by film formation by sputtering, CVD (chemical vapor deposition), or the like.
  • a lubricating film is formed on the surface of the protective layer to reduce friction between the magnetic head and the recording medium.
  • the lubricating film for example, perfluoropolyether, fluorinated alcohol, fluorinated carboxylic acid, or the like can be used. These lubricating films can be formed by dipping, spraying, or the like.
  • a method for manufacturing a magnetic disk glass substrate having an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.64 mm will be described as the magnetic disk glass substrate in Examples 1 to 15 in the present embodiment.
  • Examples 1 to 10 are examples, and Examples 11 to 15 are comparative examples.
  • a glass base plate mainly composed of SiO 2 formed by a float process is applied to a donut-shaped circular glass substrate (a disk-shaped glass substrate having a circular hole in the center, hereinafter may be simply referred to as a glass substrate). Circular (doughnut shape) processing was performed.
  • the thermal expansion coefficient of the glass forming the glass substrate is 70 ⁇ 10 -7 / °C.
  • this glass substrate was chamfered so as to obtain a glass substrate for a magnetic disk having a chamfering width of 0.15 mm and a chamfering angle of 45 °.
  • the main surfaces on the upper and lower sides of the glass substrate were lapped using alumina abrasive grains, and the abrasive grains were washed and removed.
  • the main surfaces of the upper and lower surfaces of the glass substrate were primarily ground by a 16B double-side polishing apparatus.
  • the outer peripheral side surface portion and the outer peripheral chamfered portion which are the outer peripheral end surfaces of the glass substrate, were polished, scratches on the outer peripheral side surface portion and the outer peripheral chamfered portion were removed, and the outer peripheral end surface was polished. Thereafter, the glass substrate after the peripheral end face polishing was washed.
  • the inner peripheral side surface portion and the inner peripheral chamfered portion that become the inner peripheral end surface of the glass substrate were polished, scratches on the inner peripheral side surface portion and the inner peripheral chamfered portion were removed, and the inner peripheral end surface was polished. Thereafter, the glass substrate after polishing the inner peripheral end face was washed.
  • the outer peripheral end face and the inner peripheral end face are polished under the polishing processing conditions described later.
  • the upper and lower main surfaces are secondarily ground (fixed) by a 16B type double-side polishing apparatus using a grinding tool containing a fixed abrasive tool (containing diamond particles having an average particle diameter of 4 ⁇ m) and a surfactant as an abrasive tool.
  • a grinding tool containing a fixed abrasive tool (containing diamond particles having an average particle diameter of 4 ⁇ m) and a surfactant as an abrasive tool.
  • the glass substrate after the secondary grinding was washed, and the grinding fluid and other dirt were removed.
  • both main surfaces of the glass substrate were polished to prepare magnetic disk glass substrates as examples and comparative examples having an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.64 mm.
  • a polishing pad (suede-based polishing pad) made of a soft urethane as a polishing tool and a polishing liquid containing cerium oxide abrasive grains (average particle diameter (hereinafter abbreviated as average particle diameter) about 1.0 ⁇ m of cerium oxide)
  • the upper and lower main surfaces of the glass substrate were subjected to primary polishing using a 16B type double-side polishing apparatus.
  • the primary polishing the main polishing pressure is 120 g / cm 2
  • under plate rotation is 30 rpm
  • the upper platen rotation speed 10rpm under platen opposite direction the polishing carrier revolution number 10rpm, at rotation number of 3 rpm, upper and lower
  • the main surface was polished in the plate thickness direction for a total of 30 ⁇ m, and cerium oxide was washed and removed from the polished glass substrate.
  • secondary polishing finishing polishing
  • a 16B double-side polishing apparatus is used to polish the glass substrate after the primary polishing.
  • the upper and lower main surfaces were secondarily polished.
  • the main polishing pressure is 10 kPa
  • the lower platen rotation speed is 10 rpm
  • the upper platen rotation speed is 5 rpm in the opposite direction to the lower platen
  • the polishing carrier revolution number is 4.9 rpm
  • the rotation speed is 1.7 rpm.
  • the upper and lower main surfaces were polished in total in the thickness direction by 1 ⁇ m.
  • polishing liquid was washed and removed from the polished glass substrate.
  • the AFM apparatus used was XE-HDM manufactured by PARK Systems.
  • the predetermined measurement area was 10 ⁇ m ⁇ , and the sampling points were 256 ⁇ 256 points.
  • the AFM measurement was performed at the central portion in the plate thickness direction of the inner peripheral side surface portion on the inner peripheral end surface of the glass substrate for magnetic disk and the central portion in the plate thickness direction of the outer peripheral side surface portion on the outer peripheral end surface.
  • the inclination correction was performed on the measurement data. After applying the high-pass filter having a cutoff of 50 nm to the measurement data subjected to the inclination correction, the arithmetic average roughness Ra_deg in the angular direction was calculated.
  • Magnetic disk manufacturing method A magnetic disk manufacturing method using the magnetic disk glass substrate in Examples 1 to 15 will be described.
  • an adhesion layer was formed with a film thickness of 10 nm as a Cr target by an in-line type sputtering apparatus.
  • a soft magnetic underlayer was formed with a thickness of 30 nm using a Co—Fe—Zr—Ta alloy as a target.
  • the seed layer was formed with a thickness of 10 nm using NiW alloy as a target.
  • an alignment control layer was formed with a thickness of 10 nm using Ru as a target.
  • a granular structure layer of CoCrPt—SiO 2 is formed as a perpendicular magnetic layer with a thickness of 10 nm, a Ru film is formed as a nonmagnetic intermediate layer with a thickness of 0.6 nm, and a magnetic layer A granular structure layer of CoCrPt—SiO 2 was formed to a thickness of 6 nm.
  • the glass substrate for magnetic disk on which each of the above layers was laminated was taken out from the in-line type sputtering apparatus, and a carbon film having a thickness of 3 nm was formed as a protective layer by a CVD method. Thereafter, a perfluoropolyether lubricating film having a thickness of 2 nm was formed on the protective layer by dipping.
  • the produced magnetic disk glass substrate was evaluated with respect to the number of side surface particles, the number of chipping, the ease of insertion into the spindle, and the rate of occurrence of edge cracks.
  • the number of side surface particles and the number of chippings were performed on the inner peripheral side surface and the outer peripheral side surface of the magnetic disk glass substrate.
  • the ease of insertion into the spindle was performed on the inner peripheral side surface of the magnetic disk glass substrate.
  • the outer peripheral side surface portion of the magnetic disk glass substrate was used.
  • the number of particles having a size of 5 ⁇ m or more was counted by SEM (Scanning Electron Microscope) observation of the inner peripheral side surface portion and the outer peripheral side surface portion on the glass substrate for magnetic disk, and the number of particles per 1 mm 2 area The number of was calculated.
  • the inner peripheral side surface part or the outer peripheral side surface part for example, if the number of particles per 1 mm 2 is 10 particles / mm 2 or less, adhesion of an abrasive or the like is sufficiently suppressed on the end surface including the side surface part, For example, it can be said that the abrasive grains and the like are sufficiently prevented from re-adhering to the main surface when used in a cleaning tank.
  • the inner and outer side surfaces of the magnetic disk glass substrate are observed with a 200 ⁇ optical microscope, the number of chippings of 0.05 mm or more is counted, and the number of chippings per 100 mm is calculated. did.
  • the chipping number includes cracks.
  • the inner peripheral side surface portion or the outer peripheral side surface portion is 0.12 pieces / 100 mm or less, it can be said that the occurrence of chipping and cracking can be sufficiently suppressed.
  • the ease of insertion into a spindle was evaluated by inserting a glass substrate for a magnetic disk with a standard inner diameter of ⁇ 1 ⁇ m into a shaft with a standard diameter assuming an HDD spindle, and evaluating the ease of insertion.
  • indicates that it is inserted smoothly
  • indicates that it is slightly caught but ⁇ that is inserted almost smoothly
  • indicates that it is easily caught and difficult to insert. It was.
  • the ease of insertion of the spindle can be smoothly inserted when the magnetic disk is mounted on the spindle, and the magnetic film formed on the inner peripheral end surface is sufficiently peeled off.
  • there is a high possibility that at least a part of the magnetic film is peeled off. For this reason, it can be made a pass in the case of (double-circle) or (circle).
  • the incidence of cracks on the end face is determined by mounting the disk on a sputtering aluminum jig that supports the outer periphery of the magnetic disk glass substrate at three points, heating it to 600 ° C. in a vacuum with a lamp heater, then room temperature, normal pressure Move to room and quickly cool jig to 100 ° C in 30 seconds. Thereafter, the end face of the glass substrate for magnetic disk in contact with the jig was observed with a 50 ⁇ optical microscope, and the number of glass substrates for magnetic disk in which cracks occurred was counted.
  • the end face crack occurrence rate indicates the probability of occurrence of cracks or cracks in the magnetic disk glass substrate when the magnetic film is formed, and in the case of rank A or rank B, Even though the occurrence of cracks can be suppressed, it can be accepted.
  • rank A or rank B Even though the occurrence of cracks can be suppressed, it can be accepted.
  • C rank or D rank when the magnetic film is formed, there is a high possibility that cracks or cracks will occur in the magnetic disk glass substrate, which is rejected.
  • the SEM used above is S-3400 (manufactured by Hitachi High-Technologies Corporation), and the optical microscope is VHX2000 (manufactured by Keyence Corporation).
  • the film peeling is performed by forming a glass disk substrate for each example in the magnetic disk manufacturing process by forming an underlayer, a magnetic film, a protective layer, and a lubricating film as a magnetic disk. The film was visually inspected, and the film peeling was evaluated as 0, the film having 1-2 sheets was evaluated as ⁇ , and the film peeling was 3 or more.
  • the evaluation of film peeling indicates the degree of film peeling when the magnetic layer is formed as described above.
  • Table 1 shows conditions, results, and evaluations on the inner peripheral end face (inner peripheral side face), and Table 2 shows the outer peripheral end face (outer peripheral side face).
  • a dispersant is used as a polishing liquid (polishing slurry) for polishing.
  • a polishing liquid polishing slurry
  • polymer type sodium polyacrylate was added as dispersant A.
  • sodium stearate was added as dispersant B.
  • Sodium stearate has a surface active action.
  • a surfactant having a surface active action is not preferable in that the polishing rate is lowered and bubbles are generated.
  • the polishing rate is lowered and the polishing time is extended, so that the polishing streak increases.
  • the polishing streak tends to increase.
  • a surfactant is used, there is a problem that the polishing liquid is foamed.
  • pad polishing is performed in addition to brush polishing.
  • pad polishing was performed using a pad 220 for polishing the inner peripheral end face and a pad 230 for polishing the outer peripheral end face.
  • the pads 220 and 230 used as the polishing members were formed of foamed polyurethane, suede or the like, and cerium oxide having an average particle diameter of 1 ⁇ m was used as the abrasive grains. .
  • the pad 220 for polishing the inner peripheral end face is polished under the conditions of a rotational speed of 20 m / min and a pressing pressure of 12 kPa
  • the pad 230 for polishing the outer peripheral end face is polished under the conditions of a rotational speed of 20 m / min and a pressing pressure of 12 kPa. It was.
  • the pad shape can be formed by accurately performing truing of the pad, and processing for maintaining the shape of the end can be performed.
  • the polishing surface can be reduced by treating the pad surface.
  • polishing was performed using a tape 320 for polishing the inner peripheral end face and a tape 330 for polishing the outer peripheral end face.
  • the tape 320 for polishing the inner peripheral end surface is formed of a nonwoven fabric and is wound around two rollers 321 and 322.
  • the tape 330 for polishing the outer peripheral end surface is formed of a nonwoven fabric and is wound around two rollers 331 and 332.
  • the rollers 330, 332 rotate to move the tape 330 and perform polishing.
  • cerium oxide having an average particle diameter of 1 ⁇ m was used.
  • the tape 320 for polishing the inner peripheral end face is polished under the conditions of a moving speed of 8 m / min and a pressing pressure of 10 kPa
  • the tape 330 for polishing the outer peripheral end face is polished under the conditions of a moving speed of 8 m / min and a pressing pressure of 10 kPa. It was.
  • the angular direction is calculated based on the parallel direction with respect to the main surface of the magnetic disk glass substrate.
  • Example 1 In the glass substrate for magnetic disk in Example 1, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface are firstly polished with a polishing brush and an average particle diameter (hereinafter referred to as an average particle diameter) of about 1.5 ⁇ m of cerium oxide. Polishing was performed using a polishing liquid containing abrasive grains. The polishing conditions were such that the number of revolutions of the polishing brush was 1200 rpm, the pushing amount of the polishing brush was 1.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%. Thereafter, pad polishing was performed using a polishing liquid containing a polyurethane pad having an A hardness of 18 and a cerium oxide abrasive having an average particle size of 1.0 ⁇ m as a polishing member.
  • a polishing liquid containing a polyurethane pad having an A hardness of 18 and a cerium oxide abrasive having an average particle size of
  • the outer peripheral side surface portion and the outer peripheral chamfered portion at the outer peripheral end surface were first polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the rotation speed of the polishing brush was 200 rpm, the pushing amount of the polishing brush was 6.0 mm, and dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%. Thereafter, pad polishing was performed using a polishing liquid containing a polyurethane pad having an A hardness of 18 and a cerium oxide abrasive having an average particle size of 1.0 ⁇ m as a polishing member.
  • the arithmetic average roughness Ra obtained by AFM is 0.23 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0. 0.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.19 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.15 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 93 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 3 °.
  • Side unit number of particles at the inner peripheral surface part of the magnetic disk glass substrate for is 0.8 pieces / mm 2, the number of chipping is 0.02 / 100 mm, the ease of insertion into the spindle was ⁇ .
  • the arithmetic average roughness Ra obtained by AFM is 0.18 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.32 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is The value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.15 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 93 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate. The angle was + 3 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 0.6 / mm 2
  • the number of chipping was 0.02 / 100 mm
  • the crack generation rate was A rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 2 In the glass substrate for magnetic disk in Example 2, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface are firstly used with a polishing liquid containing a polishing brush and cerium oxide abrasive grains having an average particle diameter of about 1.5 ⁇ m. Polished. The polishing conditions were such that the number of revolutions of the polishing brush was 1200 rpm, the pushing amount of the polishing brush was 1.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%. Thereafter, pad polishing was performed using a polishing liquid containing a suede pad having an A hardness of 29 and a cerium oxide abrasive having an average particle diameter of 1.0 ⁇ m as a polishing member.
  • the outer peripheral side surface portion and the outer peripheral chamfered portion at the outer peripheral end surface were first polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the rotation speed of the polishing brush was 200 rpm, the pushing amount of the polishing brush was 6.0 mm, and dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%. Thereafter, pad polishing was performed using a polishing liquid containing a suede pad having an A hardness of 29 and a cerium oxide abrasive having an average particle diameter of 1.0 ⁇ m as a polishing member.
  • the arithmetic average roughness Ra obtained by AFM is 0.29 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0. 0.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.20 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.18 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 92 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 2 °.
  • the number of side surface particles in the inner peripheral side surface of the glass substrate for magnetic disk was 0.8 / mm 2
  • the number of chipping was 0.02 / 100 mm
  • the ease of insertion into the spindle was good. .
  • the arithmetic average roughness Ra obtained by AFM is 0.21 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.37 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is It was 0.18 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.19 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 93 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 3 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 0.8 / mm 2
  • the number of chipping was 0.02 / 100 mm
  • the crack generation rate was A rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 3 In the glass substrate for magnetic disk in Example 3, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface are first polished with a polishing brush and a polishing liquid containing a cerium oxide abrasive having an average particle diameter of 1.5 ⁇ m. did.
  • the polishing conditions were such that the number of revolutions of the polishing brush was 1200 rpm, the pushing amount of the polishing brush was 1.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%.
  • pad polishing was performed using a polishing liquid containing a suede pad having an A hardness of 66 and a cerium oxide abrasive having an average particle diameter of 1.0 ⁇ m as a polishing member.
  • the outer peripheral side surface portion and the outer peripheral chamfered portion at the outer peripheral end surface were first polished using a polishing liquid containing a polishing brush and a cerium oxide abrasive having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the rotation speed of the polishing brush was 200 rpm, the pushing amount of the polishing brush was 6.0 mm, and dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%.
  • pad polishing was performed using a polishing liquid containing a suede pad having an A hardness of 66 and a cerium oxide abrasive having an average particle diameter of 1.0 ⁇ m as a polishing member.
  • the arithmetic average roughness Ra obtained by AFM is 0.33 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.00.
  • the angle direction arithmetic average roughness minimum value Ra_deg_min was 0.20 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.20 nm.
  • the angle direction that is the angular direction arithmetic average roughness maximum value Ra_deg_max is 88 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was -2 °.
  • the number of side surface particles in the inner peripheral side surface of the glass substrate for magnetic disk was 0.8 / mm 2
  • the number of chipping was 0.04 / 100 mm
  • the ease of insertion into the spindle was good. .
  • the arithmetic average roughness Ra obtained by AFM is 0.27 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.42 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is It was 0.22 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.20 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 94 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 4 °.
  • the side surface portions the number of particles in the peripheral side face of the magnetic disk glass substrate for is 0.7 pieces / mm 2, the number of chipping is 0.04 / 100 mm, the cracking occurrence rate was A rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 4 In the glass substrate for magnetic disk in Example 4, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end face are first polished with a polishing brush and a polishing liquid containing a cerium oxide abrasive having an average particle diameter of 1.5 ⁇ m. did.
  • the polishing conditions were such that the number of revolutions of the polishing brush was 1200 rpm, the pushing amount of the polishing brush was 1.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%. Thereafter, pad polishing was performed using a polishing liquid containing a foamed polyurethane pad having an A hardness of 83 and a cerium oxide abrasive having an average particle diameter of 1.0 ⁇ m as a polishing member.
  • the outer peripheral side surface portion and the outer peripheral chamfered portion at the outer peripheral end surface were first polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the rotation speed of the polishing brush was 200 rpm, the pushing amount of the polishing brush was 6.0 mm, and dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%. Thereafter, pad polishing was performed using a polishing liquid containing a foamed polyurethane pad having an A hardness of 83 and a cerium oxide abrasive having an average particle diameter of 1.0 ⁇ m as a polishing member.
  • the arithmetic average roughness Ra obtained by AFM is 0.33 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.00.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.22 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.22 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 93 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 3 °.
  • the number of side surface particles in the inner peripheral side surface of the glass substrate for magnetic disk was 0.8 / mm 2
  • the number of chipping was 0.04 / 100 mm
  • the ease of insertion into the spindle was good. .
  • the arithmetic average roughness Ra obtained by AFM is 0.28 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.47 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is It was 0.24 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.23 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 92 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 2 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 0.7 / mm 2
  • the number of chippings was 0.03 / 100 mm
  • the crack generation rate was A rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 5 In the glass substrate for magnetic disk in Example 5, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the rotation speed of the polishing brush was 2400 rpm, the pushing amount of the polishing brush was 0.3 mm, and the dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%.
  • outer peripheral side surface portion and the outer peripheral chamfered portion at the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the rotation speed of the polishing brush was 300 rpm, the pushing amount of the polishing brush was 2.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%.
  • the arithmetic average roughness Ra obtained by AFM is 0.38 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.00.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.25 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.30 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 94 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 4 °.
  • the number of side surface particles in the inner peripheral side surface of the glass substrate for magnetic disk was 1.4 / mm 2
  • the number of chipping was 0.02 / 100 mm
  • the ease of insertion into the spindle was good. .
  • the arithmetic average roughness Ra obtained by the AFM is 0.32 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.51 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is The value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.29 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 86 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate. The angle was -4 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 1.0 / mm 2
  • the number of chipping was 0.02 / 100 mm
  • the crack generation rate was A rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 6 In the glass substrate for magnetic disk in Example 6, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the rotation speed of the polishing brush was 2400 rpm, the pushing amount of the polishing brush was 0.4 mm, and the dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%.
  • outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the rotation speed of the polishing brush was 300 rpm, the pushing amount of the polishing brush was 3.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 1.0 wt%.
  • the arithmetic average roughness Ra obtained by AFM is 0.39 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.00.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.27 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.34 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 97 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 7 °.
  • the number of side surface particles in the inner peripheral side surface portion of the glass substrate for magnetic disk was 1.6 particles / mm 2
  • the chipping number was 0.04 particles / 100 mm
  • the ease of insertion into the spindle was good. .
  • the arithmetic average roughness Ra obtained by AFM is 0.38 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.55 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is It was 0.24 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.31 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 93 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 3 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 1.0 / mm 2
  • the number of chipping was 0.03 / 100 mm
  • the crack generation rate was A rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 7 In the glass substrate for magnetic disk in Example 7, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the rotation speed of the polishing brush was 2400 rpm, the pushing amount of the polishing brush was 0.5 mm, and dispersant A was added to the polishing liquid so that the concentration was 0.7 wt%.
  • the outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the number of revolutions of the polishing brush was 300 rpm, the pushing amount of the polishing brush was 4.0 mm, and the dispersant A was added to the polishing liquid so that the concentration became 0.7 wt%.
  • the arithmetic average roughness Ra obtained by AFM is 0.45 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.00.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.32 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.48 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 96 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 6 °.
  • the number of side surface particles in the inner peripheral side surface of this glass substrate for magnetic disk was 2.2 / mm 2
  • the number of chipping was 0.05 / 100 mm
  • the ease of insertion into the spindle was good. .
  • the outer peripheral side surface portion has an arithmetic average roughness Ra obtained by AFM of 0.45 nm, an angular direction arithmetic average roughness maximum value Ra_deg_max is 0.63 nm, and an angular direction arithmetic average roughness minimum value Ra_deg_min is The value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.38 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 94 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate. The angle was + 4 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 1.9 / mm 2 , the number of chippings was 0.04 / 100 mm, and the crack generation rate was A rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 8 In the glass substrate for magnetic disk in Example 8, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the number of revolutions of the polishing brush was 2000 rpm, the pushing amount of the polishing brush was 0.5 mm, and the dispersant A was added to the polishing liquid so that the concentration was 0.5 wt%.
  • outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the number of revolutions of the polishing brush was 250 rpm, the pushing amount of the polishing brush was 5.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 0.5 wt%.
  • the arithmetic average roughness Ra obtained by AFM is 0.58 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.00.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.32 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.67 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 82 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was -8 °.
  • Side unit number of particles at the inner peripheral surface part of the magnetic disk glass substrate for is 4.8 pieces / mm 2, the number of chipping is 0.08 pieces / 100 mm, the ease of insertion into the spindle was ⁇ .
  • the arithmetic average roughness Ra obtained by AFM is 0.43 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.72 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is The value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.46 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 82 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate. The angle was -8 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 4.3 / mm 2
  • the number of chippings was 0.05 / 100 mm
  • the crack generation rate was B rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 9 In the glass substrate for magnetic disk in Example 9, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the rotation speed of the polishing brush was 2000 rpm, the pushing amount of the polishing brush was 1.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 0.5 wt%.
  • outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the number of revolutions of the polishing brush was 250 rpm, the pushing amount of the polishing brush was 5.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 0.5 wt%.
  • the arithmetic average roughness Ra obtained by AFM is 0.60 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 1.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.37 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.97 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 95 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 5 °.
  • the number of side surface particles on the inner peripheral side surface of this glass substrate for magnetic disk was 5.8 particles / mm 2
  • the number of chipping was 0.08 particles / 100 mm
  • the ease of insertion into the spindle was good. .
  • the arithmetic average roughness Ra obtained by AFM is 0.43 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.92 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is It was 0.27 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.65 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 98 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 8 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 5.5 particles / mm 2
  • the number of chippings was 0.05 particles / 100 mm
  • the crack generation rate was B rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 10 In the glass substrate for magnetic disk in Example 10, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the number of revolutions of the polishing brush was 2000 rpm, the pushing amount of the polishing brush was 0.7 mm, and the dispersant A was added to the polishing liquid so that the concentration was 0.5 wt%.
  • outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the number of revolutions of the polishing brush was 250 rpm, the pushing amount of the polishing brush was 5.0 mm, and the dispersant A was added to the polishing liquid so that the concentration was 0.5 wt%.
  • the arithmetic average roughness Ra obtained by AFM is 0.65 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 1.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.42 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.63 nm.
  • the angle direction that becomes the maximum value of the arithmetic average roughness Ra_deg_max is 87 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was -3 °.
  • the number of side surface particles in the inner peripheral side surface portion of this glass substrate for magnetic disk was 5.2 / mm 2
  • the number of chipping was 0.11 / 100 mm
  • the ease of insertion into the spindle was good. .
  • the arithmetic average roughness Ra obtained by AFM is 0.42 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.69 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is It was 0.24 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.44 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 90 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was 0 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 6.3 / mm 2
  • the number of chippings was 0.08 / 100 mm
  • the crack generation rate was B rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 11 In the glass substrate for magnetic disk in Example 11, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing liquid containing a tape and cerium oxide abrasive grains having an average particle diameter of 1.0 ⁇ m. Further, the outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface were polished using a polishing liquid containing a tape and cerium oxide abrasive grains having an average particle diameter of 1.0 ⁇ m.
  • the arithmetic average roughness Ra obtained by AFM is 0.19 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.00. It was 23 nm, the angular direction arithmetic average roughness minimum value Ra_deg_min was 0.13 nm, and the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.10 nm.
  • the angle direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 6 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was -84 °.
  • the number of side surface particles in the inner peripheral side surface of this glass substrate for magnetic disk was 0.9 / mm 2
  • the number of chipping was 0.02 / 100 mm
  • the ease of insertion into the spindle was ⁇ . .
  • the arithmetic average roughness Ra obtained by AFM is 0.15 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 0.19 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is The value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.09 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 91 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 1 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 0.9 / mm 2 , the number of chippings was 0.02 / 100 mm, and the crack generation rate was C rank.
  • the reason for the relatively low cracking rate is that the metal jig cools faster than the glass substrate during rapid cooling after heating, but the end surface of the glass substrate in contact with the jig is very smooth, has a large contact area, and conducts heat. This is presumably because the temperature difference between the jig contact portion on the end face and other portions in the glass substrate becomes remarkable, and stress due to thermal shrinkage is easily concentrated.
  • the film peeling was evaluated by the method described above, and the result was ⁇ .
  • Example 12 In the glass substrate for magnetic disk in Example 12, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the rotation speed of the polishing brush was 2000 rpm, the pushing amount of the polishing brush was 1.0 mm, and no dispersant was added. Further, the outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the rotation speed of the polishing brush was 200 rpm, the pushing amount of the polishing brush was 6.0 mm, and no dispersant was added.
  • the arithmetic average roughness Ra obtained by AFM is 1.31 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 2.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.75 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 1.40 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 96 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 6 °.
  • the number of side surface particles in the inner peripheral side surface of this glass substrate for magnetic disk was 15.2 particles / mm 2
  • the number of chipping was 0.26 particles / 100 mm
  • the ease of insertion into the spindle was ⁇ . .
  • the arithmetic average roughness Ra obtained by AFM is 0.89 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 1.31 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is It was 0.55 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.76 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 96 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 6 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 13.4 particles / mm 2
  • the number of chippings was 0.15 particles / 100 mm
  • the crack generation rate was C rank. The reason why the crack generation rate was relatively low is considered to be that there were relatively many fine cracks that were the starting points of cracks.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 13 In the glass substrate for magnetic disk in Example 13, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the rotation speed of the polishing brush was 1200 rpm, the pushing amount of the polishing brush was 1.0 mm, and no dispersant was added. Further, the outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the rotation speed of the polishing brush was 200 rpm, the pushing amount of the polishing brush was 6.0 mm, and no dispersant was added.
  • the arithmetic average roughness Ra obtained by AFM is 2.07 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 2.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 1.47 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 1.37 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 95 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 5 °.
  • the number of side surface particles in the inner peripheral side surface of the glass substrate for magnetic disk was 30.3 / mm 2
  • the number of chipping was 0.33 / 100 mm
  • the ease of insertion into the spindle was ⁇ . .
  • the arithmetic average roughness Ra obtained by AFM is 1.87 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 2.97 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is It was 0.89 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 2.08 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 98 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 8 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 26.2 particles / mm 2
  • the number of chippings was 0.22 particles / 100 mm
  • the crack generation rate was D rank. The reason why the crack generation rate was bad is thought to be that there were many fine cracks as the starting point of cracks as in Example 12.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 14 In the glass substrate for magnetic disk in Example 14, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the rotation speed of the polishing brush was 2000 rpm, the pushing amount of the polishing brush was 1.0 mm, and the dispersant B was added to the polishing liquid so that the concentration was 1.0 wt%.
  • outer peripheral side surface portion and the outer peripheral chamfered portion at the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were such that the number of revolutions of the polishing brush was 250 rpm, the pushing amount of the polishing brush was 5.0 mm, and the dispersant B was added to the polishing liquid so that the concentration was 1.0 wt%.
  • the arithmetic average roughness Ra obtained by AFM is 0.59 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 1.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.35 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 1.15 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 95 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was + 5 °.
  • Side unit number of particles at the inner peripheral surface part of the magnetic disk glass substrate for is 10.5 cells / mm 2, the number of chipping is 0.17 pieces / 100 mm, the ease of insertion into the spindle was ⁇ .
  • the arithmetic average roughness Ra obtained by AFM is 0.39 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 1.09 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is The value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.86 nm.
  • the angle direction that becomes the maximum value of the arithmetic average roughness Ra_deg_max is 87 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate. The angle was -3 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 10.1 particles / mm 2
  • the number of chippings was 0.11 particles / 100 mm
  • the crack generation rate was C rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • Example 15 In the glass substrate for magnetic disk in Example 15, the inner peripheral side surface portion and the inner peripheral chamfered portion on the inner peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the rotation speed of the polishing brush was 2000 rpm, the pushing amount of the polishing brush was 1.0 mm, and no dispersant was added. Further, the outer peripheral side surface portion and the outer peripheral chamfered portion on the outer peripheral end surface were polished using a polishing brush and a polishing liquid containing cerium oxide abrasive grains having an average particle diameter of 1.5 ⁇ m.
  • the polishing conditions were as follows: the rotation speed of the polishing brush was 250 rpm, the pushing amount of the polishing brush was 5.0 mm, and no dispersant was added.
  • the arithmetic average roughness Ra obtained by AFM is 0.63 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 1.
  • the minimum value Ra_deg_min in the angular direction arithmetic average roughness was 0.42 nm
  • the value of (Ra_deg_max) ⁇ (Ra_deg_min) was 1.20 nm.
  • the angle direction that becomes the maximum value of the arithmetic average roughness Ra_deg_max is 87 ° as an angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, with respect to the direction perpendicular to the main surface of the magnetic disk glass substrate.
  • the angle was -3 °.
  • the number of side surface particles in the inner peripheral side surface of this glass substrate for magnetic disk was 12.1 particles / mm 2
  • the chipping number was 0.21 particles / 100 mm
  • the ease of insertion into the spindle was ⁇ . .
  • the arithmetic average roughness Ra obtained by AFM is 0.44 nm
  • the angular direction arithmetic average roughness maximum value Ra_deg_max is 1.06 nm
  • the angular direction arithmetic average roughness minimum value Ra_deg_min is The value of (Ra_deg_max) ⁇ (Ra_deg_min) was 0.81 nm.
  • the angular direction at which the angular direction arithmetic average roughness maximum value Ra_deg_max is 93 ° as the angle with respect to the direction parallel to the main surface of the magnetic disk glass substrate, that is, the direction perpendicular to the main surface of the magnetic disk glass substrate. The angle was + 3 °.
  • the number of side surface particles in the outer peripheral side surface of the glass substrate for magnetic disk was 11.5 / mm 2
  • the number of chippings was 0.11 / 100 mm
  • the crack generation rate was D rank.
  • the film peeling was evaluated by the method described above, and it was O.
  • the intersection of the diagonals of the region is set as the center of rotation, but this is not limited to the intersection of the diagonals, and the angular direction may be obtained with reference to one specific point in the region,
  • the reference may be a direction parallel to the main surface or a vertical direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

本発明は、歩留まりを向上させることのできる磁気ディスク用ガラス基板を提供することを目的とする。本発明は主表面と、中心部に円形状の孔と、前記中心部側に内周側面部とを有する円盤形状の磁気ディスク用ガラス基板であって、前記内周側面部における算術平均粗さRaが0.7nm以下であり、前記内周側面部の所定の領域における(Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、1.0nm以下である磁気ディスク用ガラス基板に関する。

Description

磁気ディスク用ガラス基板及び磁気ディスク
 本発明は、磁気ディスク用ガラス基板及び磁気ディスクに関する。
 ハードディスクドライブ装置(HDD装置)に搭載される磁気記録媒体として磁気ディスクがある。磁気ディスクは、金属基板やガラス基板の上に、磁性層を成膜することにより形成されており、従来は、磁気ディスク用の基板としてアルミニウム合金基板が広く用いられていたが、近年の磁気ディスクの小型化、薄板化、高記録密度化に伴い、アルミニウム合金基板に比べて表面の平滑性が高く、薄板における強度に優れたガラス基板が多く用いられている。
 特許文献1には、磁気ディスク用ガラス基板における品質要求に対応するため、磁気ディスク用ガラス基板の端面を低コストで効率良く高品位に仕上げることのできる磁気ディスク用ガラス基板の加工方法が開示されている。また、引用文献2には、磁気ディスク用ガラス基板の中心の円孔の真円度等を所望の条件にすることにより、磁気ディスクにした場合に高速回転時のフラッタリングを改善することのできる磁気ディスク用ガラス基板が開示されている。
日本国特許第5639215号公報 日本国特許第5703430号公報
 ところで、ガラス基板の場合、アルミニウム合金基板よりも割れやすいことから、引用文献1及び2に開示されている磁気ディスク用ガラス基板においても、内周端面や外周端面では、割れ、チッピング、欠け等が発生しやすい。
 また、磁気ディスクでは、基板の主表面の上に成膜されている磁性膜において情報の記録が行われ、磁性膜はスパッタリング等の真空成膜により形成されている。このような磁性膜を磁気ディスク用基板に成膜する際、磁気ディスク用基板の主表面のみならず、端面にも、磁性膜を成膜するための粒子が回り込み付着し膜が成膜される。このような磁気ディスク用基板の端面に成膜された膜は、磁気ディスク用基板の端面の表面状態によっては、膜が剥がれる場合があり、このように剥がれた膜は塵となり、主表面に付着すると、磁気ディスクが不良となってしまう。
 例えば、次世代の磁気記録方式として期待される高温熱アシスト磁気記録(HAMR)用の媒体においては、磁性層としてFe-Pt系、Co-Pt系合金薄膜等が用いられる。これらの磁性層を成膜する際や、成膜の前後においては、500℃~700℃の温度に加熱されるが、この後の保護層の成膜の際には、100℃~室温程度まで冷却される。このようなガラス基板の急加熱及び急冷を行うと、ガラス基板の端面においてクラックや割れが発生する場合がある。また、このような急激な温度変化により、ガラス基板と磁性膜との熱膨張率の差より、ガラス基板の端面に付着していた磁性膜が剥がれる場合がある。このように、端面においてクラックや割れが発生したガラス基板や、端面から磁性層が剥がれ主表面に付着した磁気ディスクは、不良品となるため、歩留まりの低下を招く。
 このため、磁気ディスク用ガラス基板において、磁性膜を成膜しても、クラックや割れが発生しにくく、また、端面に成膜された磁性膜が剥がれにくいものが求められている。また、研磨において用いられる研磨剤が端面の凹凸部に入り込み、後の洗浄槽における洗浄の際に、凹凸部に入り込んでいた研磨剤が、洗浄槽に漂い、主表面に再付着する等の悪影響を及ぼす問題があり、その改善が求められている。
 すなわち、本発明の一側面では、磁気ディスクの歩留まりを向上させることのできる磁気ディスク用ガラス基板を提供することを目的とする。
 すなわち、本発明は下記<1>~<11>に関するものである。
<1> 主表面と、中心部に円形状の孔と、前記中心部側に内周側面部とを有する円盤形状の磁気ディスク用ガラス基板であって、
 前記内周側面部において、原子間力顕微鏡により測定した算術平均粗さRaが0.7nm以下であって、
 前記内周側面部の所定の領域を、前記主表面に平行な方向に対して角度方向を0°から180°まで1°ごとに変化させながら、原子間力顕微鏡により測定した結果に基づき各々の角度方向における角度方向算術平均粗さRa_degを算出し、前記算出された角度方向算術平均粗さRa_degのうち、最も大きい値を角度方向算術平均粗さ最大値Ra_deg_maxとし、最も小さい値を角度方向算術平均粗さ最小値Ra_deg_minとした場合に、
 (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、1.0nm以下である磁気ディスク用ガラス基板。
<2> (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、0.50nm以下である前記<1>に記載の磁気ディスク用ガラス基板。
<3> (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、0.40nm以下である前記<1>または<2>に記載の磁気ディスク用ガラス基板。
<4> 前記角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、前記主表面に垂直な方向に対して、-10°以上、+10°以下である前記<1>から<3>のいずれか1に記載の磁気ディスク用ガラス基板。
<5> 主表面と、中心部に円形状の孔と、前記中心部側に内周側面部とを有する円盤形状の磁気ディスク用ガラス基板であって、
 前記内周側面部の所定の領域を、前記主表面に平行な方向に対して角度方向を0°から180°まで1°ごとに変化させながら、原子間力顕微鏡により測定した結果に基づき各々の角度方向における角度方向算術平均粗さRa_degを算出し、前記算出された角度方向算術平均粗さRa_degのうち、最も大きい値となる角度方向算術平均粗さ最大値Ra_deg_maxの値が、0.30nm以上、1.4nm以下である磁気ディスク用ガラス基板。
<6> 主表面と、中心部に円形状の孔と、外周側面部とを有する円盤形状の磁気ディスク用ガラス基板であって、
 前記外周側面部において、原子間力顕微鏡により測定した算術平均粗さRaが0.6nm以下であって、
 前記外周側面部の所定の領域を、前記主表面に平行な方向に対して角度方向を0°から180°まで1°ごとに変化させながら、原子間力顕微鏡により測定した結果に基づき各々の角度方向における角度方向算術平均粗さRa_degを算出し、前記算出された角度方向算術平均粗さRa_degのうち、最も大きい値を角度方向算術平均粗さ最大値Ra_deg_maxとし、最も小さい値を角度方向算術平均粗さ最小値Ra_deg_minとした場合に、
 (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、0.70nm以下である磁気ディスク用ガラス基板。
<7> (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、0.40nm以下である前記<6>に記載の磁気ディスク用ガラス基板。
<8> 前記角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、前記主表面に垂直な方向に対して、-10°以上、+10°以下である前記<6>または<7>に記載の磁気ディスク用ガラス基板。
<9> 主表面と、中心部に円形状の孔と、外周側面部とを有する円盤形状の磁気ディスク用ガラス基板であって、
 前記外周側面部の所定の領域を、前記主表面に平行な方向に対して角度方向を0°から180°まで1°ごとに変化させながら、原子間力顕微鏡により測定した結果に基づき各々の角度方向における角度方向算術平均粗さRa_degを算出し、前記算出された角度方向算術平均粗さRa_degのうち、最も大きい値となる角度方向算術平均粗さ最大値Ra_deg_maxの値が、0.20nm以上、1.0nm以下である磁気ディスク用ガラス基板。
<10> 前記内周側面部又は前記外周側面部における角度方向算術平均粗さRa_degは、原子間力顕微鏡により測定した結果に、カットオフを50nmとするハイパスフィルタをかけたものに基づき算出する前記<1>から<9>のいずれか1に記載の磁気ディスク用ガラス基板。
<11> 前記<1>から<10>のいずれか1に記載の磁気ディスク用ガラス基板の主表面上に、磁性層が成膜されている磁気ディスク。
 本発明の磁気ディスク用ガラス基板によれば、磁性膜を成膜しても、クラックや割れの発生が抑制され、端面からの磁性膜の剥がれが抑制されるため、磁気ディスクの歩留まりを向上させることができる。また洗浄を容易にし、付着パーティクルの少ない磁気ディスク用ガラス基板を提供できる。更には、ハードディスクドライブ装置を作製する際のスピンドルへの挿入を容易にすることが可能となる。
図1は、本実施の形態における磁気ディスク用ガラス基板の斜視断面図を模式的に示した構造図である。 図2は、磁気ディスク用ガラス基板内周端面のブラシ研磨を説明する概略斜視断面説明図である。 図3は、磁気ディスク用ガラス基板外周端面のブラシ研磨を説明する概略斜視説明図である。 図4(a)は、本実施の形態における磁気ディスク用ガラス基板端面の評価方法の説明図(1)として用いられる磁気ディスク用ガラス基板の側面図であり、図4(b)は図4(a)における一点鎖線4Aで囲まれた領域の拡大図である。 図5は、本実施の形態における磁気ディスク用ガラス基板端面の評価方法の説明図(2)として用いられる、角度方向の角度θと角度方向算術平均粗さRa_degとの関係を表すグラフである。 図6は、本実施の形態における磁気ディスクの模式構造図である。 図7は、磁気ディスク用ガラス基板の内周端面及び外周端面のパッド研磨の説明図である。 図8は、磁気ディスク用ガラス基板の内周端面及び外周端面のテープ研磨の説明図である。
 実施するための形態について、以下に説明する。尚、同じ部材等については、同一の符号を付して説明を省略する。
 最初に、磁気ディスク用ガラス基板の端面(内周端面及び外周端面)について説明する。磁気ディスクは、磁気ディスク用ガラス基板の主表面に下地層、垂直磁性層等の磁性層、保護層等を成膜することにより作製される。
 このように作製された磁気ディスクは、磁性層を成膜する際の温度上昇、温度降下の際に、磁気ディスク用ガラス基板の端面にクラックが発生したり、割れが発生したりする場合がある。また、磁性層の成膜の際には、磁気ディスク用ガラス基板の内周端面及び外周端面にも、磁性粒子が回り込み磁性層が成膜されるが、このように成膜された磁性層は、ガラスと磁性層との熱膨張率差等に起因して剥がれる場合がある。
 ところで、発明者達は、このような磁気ディスクを製造する際に生じる磁気ディスク用ガラス基板の端面におけるクラックの発生や、割れ、成膜された磁性層の膜剥がれは、磁気ディスク用ガラス基板の端面表面の状態に大きく依存することを見出した。具体的には、高輝度下において目視により、研磨痕が見えない状態の基板であっても、AFM(Atomic Force Microscope:原子間力顕微鏡)等の高解像度の表面測定においては、ある方向に方向性を有する筋状パターンが存在している。このような方向性を有する筋状パターンが、磁気ディスク用ガラス基板の端面におけるクラックの発生や、割れ、成膜された磁性層の膜剥がれに大きく影響を与えることを見出した。
 本発明は、上記の見出された知見に基づくものであり、基板の端面、中でも側面において、AFMによって観測されるレベルの筋状パターンの状態を規定することにより、端面、特に側面におけるクラックや割れ、磁性層の剥がれの少ない磁気ディスク用ガラス基板を提供するものである。また、洗浄を容易にし、付着パーティクルの少ない磁気ディスク用ガラス基板を提供するものである。即ち、筋状パターンが顕著だと、付着パーティクルが増えるため、これを防いだ磁気ディスク用ガラス基板を提供するものである。更には、HDD用のスピンドルに挿入しやすい磁気ディスク用ガラス基板を提供するものである。
 (磁気ディスク用ガラス基板)
 本実施の形態における磁気ディスク用ガラス基板について説明する。図1に示されるように、本実施の形態における磁気ディスク用ガラス基板10は、ドーナツ形状、即ち、中心部に円形状の孔11を有している円盤形状となるように形成されており、主表面12を有している。磁気ディスク用ガラス基板10は、中心部側となる円形状の孔11が形成されている内側が内周端面20、外側が外周端面30となる。本実施の形態における磁気ディスク用ガラス基板10の主表面12の上に、磁性層を成膜することにより磁気ディスクが作製される。
 内周端面20は、内周側面部21と内周面取り部22とを有しており、内周面取り部22は、内周側面部21と主表面12との間において、面取り加工をすることにより形成される。外周端面30は、外周側面部31と外周面取り部32とを有しており、外周面取り部32は、外周側面部31と主表面12との間において、面取り加工をすることにより形成される。
 (磁気ディスク用ガラス基板の製造方法)
 磁気ディスク用ガラス基板の製造方法は、素板加工工程、面取部加工工程、端面研磨工程、および主表面研磨工程などを有する。これらの工程の間や、これらの工程の後に、エッチング工程、洗浄工程、乾燥工程などを行ってもよい。
 素板加工工程は、ガラス素板を加工することにより、中心部に円形状の孔を有する円盤形状のガラス基板を得る工程である。ガラス素板は、例えばフロート法、フュージョン法、プレス成形法、ダウンドロー法、リドロー法などで成形される。
 面取部加工工程は、面取砥石でガラス基板の端面(内周端面および外周端面)を研削することにより、ガラス基板の外周端面に外周側面部及び外周面取り部を形成し、ガラス基板の内周端面に内周側面部及び内周面取り部を形成する工程である。外周面取り部及び内周面取り部は、ガラス基板の主表面に対して斜めに形成されており、外周側面部及び内周側面部は、ガラス基板の主表面に対して略垂直に形成されている。尚、外周面取り部及び内周面取り部は平面でなくてもよく、丸みを帯びた曲面でもよい。
 端面研磨工程は、研磨液を供給しながら回転ブラシで、ガラス基板の内周端面における内周側面部及び内周面取り部、外周端面における外周側面部及び外周面取り部を研磨することにより、加工変質層を除去する工程である。回転ブラシによる研磨部位には研磨液が供給される。
 図2及び図3は、磁気ディスク用ガラス基板10の内周端面20及び外周端面30における端面研磨工程の一例として、ブラシ研磨の様子を示すものである。図2に示されるように、複数のブラシ毛121が植毛されている回転ブラシ120を、積層した磁気ディスク用ガラス基板10の円形状の孔11内に挿入し、回転ブラシ120を回転させて、回転ブラシ120のブラシ毛121の先端を磁気ディスク用ガラス基板10の内周端面20における内周側面部21及び内周面取り部22に接触させることにより、内周端面20の端面研磨が行われる。また、図3に示されるように、複数のブラシ毛131が植毛されている回転ブラシ130を、積層した磁気ディスク用ガラス基板10の外側より近づけて、回転ブラシ130を回転させて、回転ブラシ130のブラシ毛131の先端を磁気ディスク用ガラス基板10の外周端面30における外周側面部31及び外周面取り部32に接触させることにより、外周端面30の端面研磨が行われる。
 尚、複数の端面研磨工程が順次行われてもよく、回転ブラシだけで加工変質層を除去しなくてもよい。回転ブラシによるブラシ研磨の他に、パッド研磨、テープ研磨、スポンジ研磨、粘性流体研磨、磁性流体研磨などが行われてもよい。複数の端面研磨工程の間には、洗浄工程や乾燥工程が行われてもよい。
 端面研磨工程を実施する際には、研磨液を用いることができ、該研磨液には分散剤を添加することができる。
 端面研磨工程で用いる研磨液に好適に添加することができる分散剤としては、ポリアクリル酸ナトリウムや、ポリスルフォン酸塩、アクリル酸-マレイン酸共重合体の塩、クエン酸塩または2リン酸塩が挙げられる。
 例えば研磨液に含まれる酸化セリウムを主成分とする粒子や、酸化セリウムを主成分とする粒子以外の酸化物粒子等の研磨砥粒の種類により、適宜好ましい種類の分散剤を研磨液に添加することができる。研磨液に酸化セリウムが含まれる場合の分散剤としては、ポリアクリル酸塩、ポリスルフォン酸塩、アクリル酸-マレイン酸共重合体の塩、クエン酸塩、または2リン酸塩が好ましい。
 研磨液に添加する分散剤としては、研磨砥粒同士が付着しないようにするため、高分子タイプの分散剤を用いることがより好ましい。
 なお、界面活性作用のある分散剤は、研磨レートが低下する点、泡が発生する点で好ましくない。分散剤として界面活性剤を用いた場合、研磨レートが低下し、研磨時間が延びるため、研磨筋が増える。研磨時間を短縮しようとした場合、研磨圧を上げる必要があり、その結果研磨筋が増える傾向となる。また、界面活性剤を使用すると研磨液が泡立つ問題もある。
 これらを解消するため、一般的に界面活性剤に分類されないポリアクリル酸塩などのカルボシキル基を多く有する添加剤を添加することで研磨砥粒を分散させ、研磨レートの低下をなくすことが好ましい。また、研磨液の泡立ちも問題とならないレベルとすることができる。
 主表面研磨工程は、ガラス基板の主表面(表側主表面および裏側主表面)を研磨する。主表面研磨工程では、ガラス基板の表側主表面および裏側主表面を同時に研磨する両面研磨機が好ましく用いられる。両面研磨機により、複数のガラス基板を同時に研磨することもできる。
 なお、主表面研磨工程は、複数回実施することもでき、この場合、複数回の主表面研磨工程を順次実施できる。複数回行われる主表面研磨工程では、研磨パッドの種類や研磨液に含まれる砥粒の粒度を変えて行ってもよい。また、各回で行われる主表面研磨工程の間には、洗浄工程や乾燥工程が挿入されてもよい。
 また、各工程の順序は、特に限定されない。例えば、主表面研磨工程の後に、端面研磨工程が行われてもよい。また、上述の各工程以外の工程が行われてもよい。例えば、主表面研磨工程の前に、ガラス基板の主表面のラップ(例えば遊離砥粒ラップ、固定砥粒ラップなど)が行われてもよい。また、端面研磨工程や主表面研磨工程の後、または主表面研磨工程の間に、化学強化が行われてもよい。化学強化は、ガラス基板の表面に含まれる小さなイオン半径のイオン(例えばLiイオンやNaイオン)を大きなイオン半径のイオン(例えばKイオン)に置換し、表面から所定の深さの強化層を形成するものである。強化層には圧縮応力が残留するため、傷が付きにくい。
 また、磁気ディスク用ガラス基板は、洗剤等を用いたスクラブ洗浄、および洗剤、純水等に浸漬した状態で超音波を印加した精密洗浄等が行われ、イソプロピルアルコール等を用いた乾燥工程を経て、磁気ディスク製造工程に供される。
 (角度方向算術平均粗さ最大値Ra_deg_max、角度方向算術平均粗さ最小値Ra_deg_min)
 次に、本実施の形態における磁気ディスク用ガラス基板において、角度方向算術平均粗さ最大値Ra_deg_max、角度方向算術平均粗さ最小値Ra_deg_minの算出方法について説明する。
 最初に、AFMを用いて磁気ディスク用ガラス基板端面の測定を行う。AFM装置においては、機構的には磁気ディスク用ガラス基板の傾斜を完全には解消することができないため、AFMにより得られた測定結果に基づき、算術的に傾斜補正を行う。このように傾斜補正が行われたものに、ハイパスフィルタ(ローカットフィルタ)、例えば、カットオフ波長が50nmのハイパスフィルタをかける。この後、係る所定の処理を行った後のAFMで測定した値を用いて、図4(a)及び図4(b)に示されるように、所定の角度方向における角度方向算術平均粗さRa_degを各々の角度θにおける角度方向ごとに算出する。尚、図4(a)は、磁気ディスク用ガラス基板の側面図であり、図4(b)は、図4(a)における一点鎖線4Aで囲まれた領域の拡大図である。
 具体的には、図4(a)及び図4(b)は、磁気ディスク用ガラス基板の端面の側面部及び面取り部を見たもので、図上左右方向が磁気ディスク用ガラス基板平行方向(端面の円周方向)、上下方向が磁気ディスク用ガラス基板の板厚さ方向である。長手方向の長さL、短手方向の長さL/19の領域における角度方向算術平均粗さRa_degを算出する。本実施の形態においては、例えば、長手方向の長さLは8μmとする。この長手方向、短手方向を有する長方形の領域を、この領域の対角線の交点を回転の中心として、主表面に平行な方向から時計回りに角度を変化させるときに基準から変化させる角度θを角度方向とする。磁気ディスク用ガラス基板の主表面に平行な方向を角度方向が0°の基準とし、これより時計方向に角度方向を1°ごとに変化させ、角度を増加させて角度方向算術平均粗さRa_degを算出する。0°の基準から、磁気ディスク用ガラス基板の板厚方向まで角度を増加すると角度方向θが90°となる。なお、内周側面部、及び外周側面部における上記長方形の領域の位置はAFMの測定領域内であればよく、特に限定されないが、例えば長方形の領域の対角線の交点が、内周側面部、外周側面部の板厚方向の中央部に位置することが好ましい。
 このようにして得られた角度方向の角度θと角度方向算術平均粗さRa_degとの関係の一例を図5に示す。図5に示される角度方向算術平均粗さRa_degのうち、最大の値を角度方向算術平均粗さ最大値Ra_deg_maxとし、最小の値を角度方向算術平均粗さ最小値Ra_deg_minとする。
 図5のグラフを算出するに当たっては、AFM装置において測定の際、所定の測定領域は10μm□とし、サンプリング点は256点×256点で、磁気ディスク用ガラス基板の内周端面における内周側面部の板厚方向の中央部分及び外周端面における外周側面部の板厚方向の中央部分において測定を実施した。なお、図5では外周側面部についてのAFMの測定結果から算出したRa_degの結果のみを示しているが、内周側面部についての角度方向算術平均粗さ最大値Ra_deg_maxと、角度方向算術平均粗さ最小値Ra_deg_minの求め方も同様である。
 尚、本実施の形態においては、まず、AFMにより得られた磁気ディスク用ガラス基板の端面のデータにおいて、短手方向と長手方向による長方形の領域のデータを抽出し、各短手方向のデータについて高さの平均値(短手方向の平均高さ)を求める。次に、短手方向の平均高さにより形成される長手方向の曲線をその角度方向における断面曲線(その角度における長手方向の断面曲線)とする。そして、長手方向の断面曲線の算術平均粗さを算出し、これを角度方向算術平均粗さRa_degとしている。
 このようにして得られた角度方向算術平均粗さ最大値Ra_deg_max及び角度方向算術平均粗さ最小値Ra_deg_minに基づき、(Ra_deg_max)-(Ra_deg_min)の値を算出する。
 本実施の形態における磁気ディスク用ガラス基板は、磁気ディスク用ガラス基板の内周側面部21において、AFMにより得られた算術平均粗さRaが0.7nm以下であって、AFMにより得られた結果より内周側面部の所定の領域において角度方向を0°から180°まで1°ごとに変化させながら各々の角度方向における角度方向算術平均粗さRa_degを算出し、算出された角度方向算術平均粗さRa_degのうち、最も大きい値を角度方向算術平均粗さ最大値Ra_deg_maxとし、最も小さい値を角度方向算術平均粗さ最小値Ra_deg_minとした場合に、(Ra_deg_max)と(Ra_deg_min)との差ΔRa、即ち、(Ra_deg_max)-(Ra_deg_min)が、0.15nm以上、1.0nm以下となるものであり、より好ましくは0.15nm以上、0.60nm以下となるものであり、更に好ましくは0.15nm以上、0.50nm以下となるものであり、更に好ましくは0.15nm以上、0.40nm以下となるものであり、より一層好ましくは0.15nm以上、0.32nm以下となるものである。
 また、本実施の別の形態における磁気ディスク用ガラス基板は、磁気ディスク用ガラス基板の内周側面部21において、AFMにより得られた結果より内周側面部の所定の領域において角度方向を0°から180°まで1°ごとに変化させながら各々の角度方向における角度方向算術平均粗さRa_degを算出し、算出された角度方向算術平均粗さRa_degのうち、最も大きい値となる角度方向算術平均粗さ最大値Ra_deg_maxの値が、0.30nm以上、1.4nm以下となるものであり、より好ましくは0.30nm以上、0.90nm以下となるものであり、更に好ましくは0.30nm以上、0.86nm以下となるものである。
 また、本実施の別の形態における磁気ディスク用ガラス基板は、磁気ディスク用ガラス基板の外周側面部31において、AFMにより得られた算術平均粗さRaが0.6nm以下であって、AFMにより得られた結果より外周側面部の所定の領域において角度方向を0°から180°まで1°ごとに変化させながら各々の角度方向における角度方向算術平均粗さRa_degを算出し、算出された角度方向算術平均粗さRa_degのうち、最も大きい値を角度方向算術平均粗さ最大値Ra_deg_maxとし、最も小さい値を角度方向算術平均粗さ最小値Ra_deg_minとした場合に、(Ra_deg_max)と(Ra_deg_min)との差ΔRa、即ち、(Ra_deg_max)-(Ra_deg_min)が、0.15nm以上、0.70nm以下となるものであり、より好ましくは0.15nm以上、0.40nm以下となるものであり、更に好ましくは0.15nm以上、0.35nm以下となるものであり、より一層好ましくは0.15nm以上、0.30nm以下となるものである。
 また、本実施の別の形態における磁気ディスク用ガラス基板は、磁気ディスク用ガラス基板の外周側面部31において、AFMにより得られた結果より所定の領域において角度方向を0°から180°まで1°ごとに変化させながら各々の角度方向における角度方向算術平均粗さRa_degを算出し、算出された角度方向算術平均粗さRa_degのうち、最も大きい値となる角度方向算術平均粗さ最大値Ra_deg_maxの値が、0.20nm以上、1.0nm以下となるものであり、より好ましくは0.20nm以上、0.65nm以下となるものであり、更に好ましくは0.20nm以上、0.60nm以下となるものである。
 磁気ディスク用ガラス基板においては、内周側面部21及び外周側面部31における(Ra_deg_max)と(Ra_deg_min)との差ΔRaが、大きすぎると、凹凸が特定の方向に沿って形成されるため、磁気ディスク用ガラス基板の製造工程中、或いは磁気ディスク製造工程中に、ジグ等との接触によりチッピングやクラックが生じやすく、磁気ディスク製造工程において磁気ディスク用ガラス基板に急激な温度変化が生じた際に、クラックが伸展し割れが生じやすくなる。また、研磨において用いられる研磨剤が筋状パターンに入り込み、後の洗浄槽における洗浄の際に、筋状パターンに入り込んでいた研磨剤が、洗浄槽に漂い、悪影響を及ぼす。一方、差が小さすぎると、磁性層の剥がれ等が生じやすくなる。また、特に外周端面に於いては、磁気ディスク製造工程における急激な温度変化の際に、外周端面と接触する金属製のジグからの伝熱が、ΔRaの比較的大きい場合に比べ、速すぎるために、磁気ディスク用ガラス基板内の局部的な温度分布による応力が大きくなり、割れが生じやすくなる。従って、クラックや割れが生じにくく、磁性層の剥がれを生じにくくするためには、内周側面部21及び外周側面部31の少なくとも一方についてΔRaは、上記範囲の少なくともいずれか1を満たすことが好ましい。
 また、磁気ディスク用ガラス基板においては、内周側面部21及び外周側面部31における角度方向算術平均粗さ最大値Ra_deg_maxが、大きすぎると、凹凸が大きいため、磁気ディスク用ガラス基板の製造工程中、或いは磁気ディスク製造工程中に、ジグ等との接触によりチッピングやクラックが生じやすく、磁気ディスク製造工程において磁気ディスク用ガラス基板に急激な温度変化が生じた際に、クラックが伸展し割れが生じやすくなる。また、研磨において用いられる研磨剤が筋状パターンに入り込み、後の洗浄槽における洗浄の際に、筋状パターンに入り込んでいた研磨剤が、洗浄槽に漂い、悪影響を及ぼす。一方、Ra_deg_maxが小さすぎると、表面が平坦すぎるため磁性膜の付着力が低下し、磁性層の剥がれが生じやすくなる。従って、クラックや割れが生じにくく、磁性層の剥がれを生じにくくするためには、内周側面部21及び外周側面部31の少なくとも一方について角度方向算術平均粗さ最大値Ra_deg_maxは、上記範囲であることが好ましい。
 また、磁気ディスク用ガラス基板の内周側面部21において、AFMにより得られた結果より所定の領域において角度方向を0°から180°まで1°ごとに変化させながら各々の角度方向における角度方向算術平均粗さRa_degを算出し、算出された角度方向算術平均粗さRa_degのうち、最も大きい値となる角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向が、好ましくは磁気ディスク用ガラス基板の主表面に垂直方向に対し、-10°以上、+10°以下の範囲となるように形成されている。より好ましくは、-5°以上、+5°以下の範囲となるように形成されている。なお、この角度方向は、磁気ディスク用ガラス基板の主表面に対して垂直方向を基準に算出しており、図5とは角度の位相がずれており、基準を替えて表現している。これにより、磁性膜の成膜のなされた磁気ディスクをスピンドルに挿入する際、挿入しやすくなり、作業時間や作業工程が簡略化され、低コスト化することができる。
 磁気ディスク用ガラス基板の外周側面部についても、同様に、算出された角度方向算術平均粗さRa_degのうち、最も大きい値となる角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向が、好ましくは磁気ディスク用ガラス基板の主表面に垂直方向に対し、-10°以上、+10°以下の範囲となるように形成されている。より好ましくは、-5°以上、+5°以下の範囲となるように形成されている。
 尚、角度方向算術平均粗さRa_degは、測定の際のノイズや磁気ディスク用ガラス基板自体のうねり等に阻害されずに、筋状パターンの状態を正確に把握するために、筋状パターンの周期の2倍程度の波長のハイパスフィルタを使用するのが好ましい。
 (磁気ディスク)
 本実施の形態における磁気ディスクは、図6に示されるように、上述した本実施の形態における磁気ディスク用ガラス基板10の主表面12の上に、垂直磁化膜50となる垂直磁性層等の磁性層をスパッタリング等により成膜することにより作製される。すなわち、本実施の形態における磁気ディスクは、本実施の形態における磁気ディスク用ガラス基板の主表面上に磁性層を配置した構造を有することができる。垂直磁性層を形成する磁性材料としては、CoCrPt系合金、FePt系合金等が挙げられる。磁性層は、磁気ディスク用ガラス基板の少なくとも一方の主表面上に成膜されればよく、両方の主表面上に成膜されることが好ましい。
 具体的には、本実施の形態における磁気ディスク用ガラス基板10に、以下の方法にて垂直磁性層等を成膜することにより、磁気ディスクが作製される。作製される磁気ディスクは、磁気ディスク用ガラス基板の主表面において、少なくとも垂直磁性層、保護層、潤滑膜が形成されている。垂直磁性層は垂直磁気記録方式に対応した材料が用いられる。尚、記録密度を更に向上させたい場合は、エネルギーアシスト磁気記録方式(例えば、熱アシスト磁気記録方式、マイクロ波アシスト磁気記録方式など)が好ましく、この場合には、垂直磁性層にはエネルギーアシスト磁気記録方式に対応した材料が用いられる。
 垂直記録方式の場合には、磁気ヘッドからの記録磁界を環流させる役割を果たす軟磁性材料からなる軟磁性下地層を形成するのが一般的である。軟磁性下地層は、Co、Fe、Ni等を含む軟磁性材料が用いられる。具体的には、FeCo系合金、FeNi系合金、FeAl系合金、FeCr系合金、FeTa系合金、FeMg系合金、FeZr系合金、FeC系合金、FeN系合金、FeSi系合金、FeP系合金、FeNb系合金、FeHf系合金、FeB系合金等が用いられる。
 また、磁気ディスク用ガラス基板10の主表面12における吸着ガスや吸着水分の影響、或いは磁気ディスク用ガラス基板10に含まれる成分の拡散等による軟磁性下地層の腐食を抑制するために、磁気ディスク用ガラス基板10と軟磁性下地層との間に、密着層を設けてもよい。密着層を形成する材料としては、Cr、Cr合金、Ti、Ti合金等が挙げられ、厚さ2nm~40nm程度が好ましい。密着層は、例えば、スパッタリングによる成膜により形成することができる。
 軟磁性下地層と垂直磁性層との間に、配向制御層を設けることにより、垂直磁性層の結晶粒を微細化し、記録再生特性を向上させることができる。配向制御層は、RuやRu合金、Pt、Au及びAgを含む材料ならびにCoCr系合金、TiまたはTi合金等の材料を用いることができ、膜厚は約2~20nmが好ましい。この配向制御層は、垂直磁性層のエピタキシャル成長を容易にする機能及び軟磁性下地層と垂直磁性層との磁気交換結合を断つ機能を有している。更に、軟磁性下地層と配向制御層との間に、配向制御層の結晶粒径を制御するためのシード層を設けてもよい。シード層は、例えば、NiW系合金を用いることができる。垂直磁性層は、磁化容易軸が磁気ディスク用ガラス基板における主表面に対して垂直方向に向いている磁性膜であり、Co、Cr、Pt等を含む材料により形成されている。
 垂直磁性層は、高い固有媒体ノイズの原因となる粒間交換結合を低減するため、良好に隔離された微粒子構造、即ち、グラニュラ構造とすることが好ましい。具体的には、CoCrPt系合金等に、酸化物(SiO、SiO、Cr、CoO、Ta、TiO等)や、Cr、B、Ta、Zr等を添加することが好ましい。
 垂直磁性層は、磁性層と非磁性層とが交互に積層された構造としてもよい。この場合、非磁性層は、例えば、RuまたはRu合金の材料を用い、厚さ0.6~1.2nmとすることにより、磁性層をAFC結合(反強磁性交換結合)させることができる。
 垂直磁性層の腐食を防ぎ、かつ、磁気ヘッドが媒体に接触した際において、磁気ディスクの表面の損傷を防ぐため、垂直磁性層の上に保護層が形成される。保護層は、C、ZrO、SiO等を含む材料により形成されており、スパッタリング、CVD(chemical vapor deposition)等による成膜により形成することができる。
 保護層の表面には、磁気ヘッドと記録媒体との摩擦を低減するため、潤滑膜が形成されている。潤滑膜は、例えば、パーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などを用いることができる。これら潤滑膜は、ディップ法、スプレー法等により形成することができる。
 (磁気ディスク用ガラス基板の製造方法)
 本実施の形態における例1~例15における磁気ディスク用ガラス基板として、外径が65mm、内径が20mm、板厚が0.64mmの磁気ディスク用ガラス基板の製造方法について説明する。本願においては、例1~例10は実施例であり、例11~例15は比較例である。
 フロート法で成形されたSiOを主成分とするガラス素板をドーナツ状円形ガラス基板(中心部に円形状の孔を有する円盤形状ガラス基板、以下、単にガラス基板と記載する場合がある)に加工する、円形(ドーナツ形状)加工を行った。尚、ガラス基板を形成しているガラスの熱膨張係数は、70×10-7/℃である。
 次に、このガラス基板の内周端面と外周端面を、面取り幅0.15mm、面取り角度45°の磁気ディスク用ガラス基板が得られるように面取り加工した。
 次に、アルミナ砥粒を用いて、ガラス基板の上下における主表面をラッピングし、砥粒を洗浄除去した。研磨具として鋳鉄定盤と、アルミナ砥粒を含有する研削液を用いて、16B型両面研磨装置により、ガラス基板の上下における主表面を1次研削した。
 次に、ガラス基板の外周端面となる外周側面部と外周面取り部を研磨し、外周側面部と外周面取り部のキズを除去し、外周端面を研磨加工した。この後、外周端面研磨後のガラス基板を洗浄した。
 次に、ガラス基板の内周端面となる内周側面部と内周面取り部を研磨し、内周側面部と内周面取り部のキズを除去し、内周端面を研磨加工した。この後、内周端面研磨後のガラス基板を洗浄した。
 なお、各実験例において、後述する研磨加工条件により外周端面、及び内周端面の研磨を実施している。
 次に、研磨具として固定砥粒工具(平均粒径4μmのダイヤモンド粒子を含有)と界面活性剤を含有する研削液を用いて、16B型両面研磨装置により上下の主表面を2次研削(固定砥粒による研削)し、2次研削後のガラス基板を洗浄し、研削液その他の汚れを除去した。
 この後、このガラス基板の両主表面を研磨することにより、外径が65mm、内径が20mm、板厚が0.64mmの実施例及び比較例となる磁気ディスク用ガラス基板を作製した。
 主表面研磨工程では、最初に1次研磨を行った。具体的には、研磨具として軟質ウレタン製の研磨パッド(スエード系研磨パッド)と酸化セリウム砥粒を含有する研磨液(平均粒子直径(以下、平均粒子径と略す)約1.0μmの酸化セリウムを主成分した研磨液組成物)を用いて、16B型両面研磨装置により、ガラス基板の上下の主表面を1次研磨した。1次研磨は、メインの研磨加工圧力は120g/cm、下定盤回転数は30rpm、上定盤回転数は下定盤と逆方向に10rpm、研磨キャリア公転数10rpm、自転数3rpmで、上下両主表面を板厚方向で合計30μm研磨し、研磨後のガラス基板において、酸化セリウムを洗浄除去した。
 次に、2次研磨(仕上研磨)を行った。具体的には、研磨具として軟質ウレタン製の研磨パッドと、平均粒子径が20nmのコロイダルシリカ砥粒を含有する研磨液を用いて、16B型両面研磨装置により、1次研磨後のガラス基板の上下の主表面を2次研磨した。2次研磨は、メインの研磨加工圧力は10kPa、下定盤回転数は10rpm、上定盤回転数は下定盤と逆方向に5rpm、研磨キャリア公転数は4.9rpm、自転数は1.7rpmで、上下両主表面を板厚方向で合計1μm研磨した。
 次に、研磨後洗浄を行った。具体的には、研磨後のガラス基板において、研磨液を洗浄除去した。
 次に、最終洗浄を行った。具体的には、2次研磨及び研磨後洗浄を行ったガラス基板を、アルカリ性洗剤によるスクラブ洗浄、アルカリ性洗剤溶液に浸漬した状態での超音波洗浄、純水に浸漬した状態での超音波洗浄、を順次行い、イソプロピルアルコール蒸気により乾燥させた。
 (磁気ディスク用ガラス基板の算術平均粗さRaに基づく評価方法)
 磁気ディスク用ガラス基板の評価として、AFMを用いて磁気ディスク用ガラス基板の内周側面部及び外周側面部における算術平均粗さRaを測定した。また、前述の角度方向算術平均粗さRa_degの算出方法に基づき、角度方向算術平均粗さ最大値Ra_deg_max、角度方向算術平均粗さ最小値Ra_deg_minを得て、(Ra_deg_max)-(Ra_deg_min)の値を算出した。
 AFM装置は、PARK Systems社製、XE-HDMを使用した。所定の測定領域は10μm□とし、サンプリング点は256点×256点とした。AFMの測定は、磁気ディスク用ガラス基板の内周端面における内周側面部の板厚方向の中央部分及び外周端面における外周側面部の板厚方向の中央部分において実施した。
 尚、前述したように、測定データについては傾斜補正を行っており、傾斜補正のなされた測定データにカットオフが50nmのハイパスフィルタをかけた後、角度方向算術平均粗さRa_degを算出した。
 (磁気ディスクの製造方法)
 例1~例15における磁気ディスク用ガラス基板を用いた磁気ディスクの製造方法について説明する。
 具体的には、磁気ディスク用ガラス基板を精密洗浄して表面のパーティクルを除去した後、インライン型スパッタリング装置により、密着層を、Crターゲットとして、10nmの膜厚で成膜した。密着層の上には、軟磁性下地層を、Co-Fe-Zr-Ta合金をターゲットとして、30nmの膜厚で形成した。次に、シード層を、NiW合金をターゲットとして、10nmの膜厚で形成した。シード層の上には、配向制御層を、Ruをターゲットとして、10nmの膜厚で形成した。配向制御層の上には、垂直磁性層としてCoCrPt-SiOのグラニュラ構造層を10nmの膜厚で形成し、非磁性中間層としてRu膜を0.6nmの膜厚で形成し、更に磁性層としてCoCrPt-SiOのグラニュラ構造層を6nmの膜厚で形成した。上記の各層が積層された磁気ディスク用ガラス基板をインライン型スパッタリング装置から取り出し、CVD法により保護層としてカーボン膜を3nmの膜厚で形成した。この後、ディップ法により、保護層の上に、パーフルオロポリエーテルの潤滑膜を2nmの膜厚で形成した。
 (磁気ディスク用ガラス基板の評価)
 作製した磁気ディスク用ガラス基板において、側面部パーティクル数、チッピング数、スピンドルへの挿入容易性、端面割れ発生率に関する評価を行った。側面部パーティクル数、チッピング数については、磁気ディスク用ガラス基板の内周側面部及び外周側面部について行った。スピンドルへの挿入容易性については、磁気ディスク用ガラス基板の内周側面部について行った。端面割れ発生率については、磁気ディスク用ガラス基板の外周側面部について行った。
 側面部パーティクル数については、磁気ディスク用ガラス基板において、内周側面部及び外周側面部をSEM(Scanning Electron Microscope)観察により、大きさが5μm以上のパーティクルの数を数え、面積1mmあたりにおけるパーティクルの個数を算出した。
 なお、内周側面部、または外周側面部について、例えば1mm当りにおけるパーティクルの個数が10個/mm以下であれば、該側面部を含む端面について研磨剤等の付着を十分に抑制し、例えば洗浄槽に供した際に主表面に研磨砥粒等が再付着することを十分に抑制できているといえる。
 チッピング数については、磁気ディスク用ガラス基板の内周側面部及び外周側面部を200倍の光学顕微鏡により観察し、0.05mm以上のチッピングの数を数え、100mmあたりの長さにおけるチッピング数を算出した。尚、チッピング数には、割れも含まれている。
 チッピング数については、例えば内周側面部、または外周側面部について、例えば0.12個/100mm以下の場合、チッピングや割れの発生を十分に抑制できているといえる。
 スピンドルへの挿入容易性は、HDD用のスピンドルを想定した標準径のシャフトに、標準内径±1μmの磁気ディスク用ガラス基板を挿入し、挿入しやすさの評価を行った。評価では、ディスク基板の開口部をスピンドルに挿入した際、スムースに挿入されるものを◎とし、やや引っ掛かるものの概ねスムースに挿入されるものを○とし、挿入の際引っ掛かりやすく挿入しにくいものを△とした。
 スピンドルの挿入容易性は、その評価が◎または〇の場合、スピンドルに磁気ディスクを装着する際に、スムースに挿入することができ、内周端面に成膜された磁性膜が剥がれることを十分に抑制できるが、△の場合、磁性膜の少なくとも一部が剥がれる可能性が高い。このため、◎または〇の場合に合格とすることができる。
 端面割れ発生率は、磁気ディスク用ガラス基板の外周を3点で支持するスパッタ用アルミニウム製ジグにディスクを搭載し、真空中、ランプヒーターで、600℃の温度まで加熱した後、室温、常圧室に移動させジグを30秒間で100℃の温度まで急冷する。この後、ジグと接触している磁気ディスク用ガラス基板の端面を50倍の光学顕微鏡で観察し、クラックの発生している磁気ディスク用ガラス基板の数を数えた結果である。評価においては、各々の例ごとに200枚の磁気ディスク用ガラス基板を用い、(クラックの発生している磁気ディスク用ガラス基板の数)/200により得られた値をクラックの発生率とした。評価では、クラックの発生率が0%のものをAランクとし、0%を超えるが1%以下のものをBランクとし、1%を超えるが2%以下のものをCランクとし、2%を超えるものをDランクとした。
 端面割れ発生率は、磁性膜を成膜する際の磁気ディスク用ガラス基板にクラックや割れが発生する確率を示しており、AランクまたはBランクの場合に、磁性膜の成膜時のクラックや割れの発生を抑制できているといえ、合格とすることができる。一方、CランクまたはDランクの場合は、磁性膜を成膜する際に磁気ディスク用ガラス基板にクラックや割れが発生する可能性が高く、不合格となる。
 上記において用いたSEMは、S-3400((株)日立ハイテクノロジーズ製)であり、また、光学顕微鏡は、VHX2000((株)キーエンス製)である。尚、膜はがれは、各実施例の磁気ディスク用ガラス基板を磁気ディスク製造工程にて下地層、磁性膜、保護層、潤滑膜を形成して磁気ディスクとしとものを、各実施例200枚を目視検査し、膜はがれが0枚のものを○、1~2枚のものを△、3枚以上のものを×として評価した。
 膜はがれについての評価は、上述のように磁性層を成膜した際の、膜はがれの発生の程度を示しており、〇の場合に合格と評価することができる。
 尚、表1は内周端面(内周側面部)、表2は外周端面(外周側面部)における条件、結果及び評価を示す。
[規則26に基づく補充 08.07.2016] 
Figure WO-DOC-TABLE-1
 
 
[規則26に基づく補充 08.07.2016] 
Figure WO-DOC-TABLE-2
 
 
 以下、例1~例15の相違点となる内周端面及び外周端面の研磨加工条件と、内周側面部及び外周側面部における評価結果について説明する。
 尚、一部の例においては、研磨をする際の研磨液(研磨用スラリー)に分散剤を用いている。具体的には、例1~例10では分散剤Aとして、高分子タイプであるポリアクリル酸ナトリウムを添加した。また、例14では分散剤Bとしてステアリン酸ナトリウムを添加した。なお、ステアリン酸ナトリウムは界面活性作用を有する。
 なお、既述のように界面活性作用のある分散剤は、研磨レートが低下する点、泡が発生する点で好ましくない。分散剤として界面活性剤を用いた場合、研磨レートが低下し、研磨時間が延びるため研磨筋が増える。研磨時間を短縮しようとした場合、研磨圧を上げる必要があり、その結果研磨筋が増える傾向となる。また、界面活性剤を使用すると研磨液が泡立つ問題もある。
 これに対して、例1~例10では、分散剤Aを用いることで、研磨砥粒を分散させ、研磨レートの低下をなくすことができた。また、研磨液の泡立ちも問題とならないレベルとすることができた。
 また、表1、表2に示したように、一部の実験例ではブラシ研磨に加えてパッド研磨を実施している。パッド研磨を行う場合には、図7に示されるように、内周端面を研磨するパッド220と外周端面を研磨するパッド230を用いて研磨を行った。研磨部材となるパッド220、230は、表1、表2に示すように、発泡ポリウレタン、スウェード等により形成されているものを用い、研磨砥粒としては、平均粒子径1μmの酸化セリウムを用いた。内周端面を研磨するパッド220は、回転速度20m/min、押しつけ圧力12kPaの条件で研磨を行い、外周端面を研磨するパッド230は、回転速度20m/min、押しつけ圧力12kPaの条件で研磨を行った。
 なお、パッド220、230のA硬度が30以下の場合、パッドが軟質であることからパッド表面の発泡の不均一性を分散させることができ、研磨筋を低減させる点で好ましい。その一方、パッド220、230のA硬度が65より大きい場合、パッドのツルーイングを正確に行うことによりパッドの形状を作り込むことができ、端部の形状を維持する加工が可能となる。また、パッド表面のトリートメントを行うことにより研磨筋を低減させることが可能となった。
 また、テープ研磨を行う場合には、図8に示されるように、内周端面を研磨するテープ320と外周端面を研磨するテープ330を用いて研磨を行った。内周端面を研磨するテープ320は、不織布により形成されており、2つのローラ321、322に巻かれている。内周端面を研磨する際には、ローラ321、322が回転することにより、テープ320が動き研磨が行われる。外周端面を研磨するテープ330は、不織布により形成されており、2つのローラ331、332に巻かれている。外周端面を研磨する際には、ローラ331、332が回転することにより、テープ330が動き研磨が行われる。スラリーには平均粒子径1μmの酸化セリウムを用いた。内周端面を研磨するテープ320は、移動速度8m/min、押しつけ圧力10kPaの条件で研磨を行い、外周端面を研磨するテープ330は、移動速度8m/min、押しつけ圧力10kPaの条件で研磨を行った。また、各例で角度方向は磁気ディスク用ガラス基板の主表面に対して平行方向を基準に算出している。
 (例1)
 例1における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、最初に、研磨ブラシと平均粒子直径(以下、平均粒子径と略す)約1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は1200rpmであり、研磨ブラシの押込み量は1.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。この後、研磨部材としてA硬度18のポリウレタンパッドと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いてパッド研磨を行った。
 また、外周端面における外周側面部と外周面取り部は、最初に、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は200rpmであり、研磨ブラシの押込み量は6.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。この後、研磨部材としてA硬度18のポリウレタンパッドと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いてパッド研磨を行った。
 この条件で作製された例1における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.23nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.34nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.19nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.15nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては93°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+3°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は0.8個/mmであり、チッピング数は0.02個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.18nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.32nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.17nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.15nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては93°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+3°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は0.6個/mmであり、チッピング数は0.02個/100mmであり、割れ発生率はAランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例2)
 例2における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、最初に、研磨ブラシと平均粒子径約1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は1200rpmであり、研磨ブラシの押込み量は1.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。この後、研磨部材としてA硬度29のスウェードパッドと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いてパッド研磨を行った。
 また、外周端面における外周側面部と外周面取り部は、最初に、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は200rpmであり、研磨ブラシの押込み量は6.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。この後、研磨部材としてA硬度29のスウェードパッドと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いてパッド研磨を行った。
 この条件で作製された例2における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.29nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.38nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.20nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.18nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては92°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+2°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は0.8個/mmであり、チッピング数は0.02個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.21nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.37nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.18nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.19nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては93°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+3°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は0.8個/mmであり、チッピング数は0.02個/100mmであり、割れ発生率はAランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例3)
 例3における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、最初に、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は1200rpmであり、研磨ブラシの押込み量は1.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。この後、研磨部材としてA硬度66のスウェードパッドと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いてパッド研磨を行った。
 また、外周端面における外周側面部と外周面取り部は、最初に、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は200rpmであり、研磨ブラシの押込み量は6.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。この後、研磨部材としてA硬度66のスウェードパッドと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いてパッド研磨を行った。
 この条件で作製された例3における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.33nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.40nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.20nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.20nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては88°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は-2°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は0.8個/mmであり、チッピング数は0.04個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.27nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.42nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.22nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.20nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては94°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+4°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は0.7個/mmであり、チッピング数は0.04個/100mmであり、割れ発生率はAランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例4)
 例4における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、最初に、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は1200rpmであり、研磨ブラシの押込み量は1.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。この後、研磨部材としてA硬度83の発泡ポリウレタンパッドと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いてパッド研磨を行った。
 また、外周端面における外周側面部と外周面取り部は、最初に、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は200rpmであり、研磨ブラシの押込み量は6.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。この後、研磨部材としてA硬度83の発泡ポリウレタンパッドと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いてパッド研磨を行った。
 この条件で作製された例4における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.33nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.44nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.22nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.22nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては93°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+3°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は0.8個/mmであり、チッピング数は0.04個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.28nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.47nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.24nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.23nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては92°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+2°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は0.7個/mmであり、チッピング数は0.03個/100mmであり、割れ発生率はAランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例5)
 例5における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は2400rpmであり、研磨ブラシの押込み量は0.3mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。
 また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は300rpmであり、研磨ブラシの押込み量は2.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。
 この条件で作製された例5における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.38nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.55nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.25nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.30nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては94°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+4°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は1.4個/mmであり、チッピング数は0.02個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.32nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.51nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.22nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.29nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては86°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は-4°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は1.0個/mmであり、チッピング数は0.02個/100mmであり、割れ発生率はAランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例6)
 例6における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は2400rpmであり、研磨ブラシの押込み量は0.4mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は300rpmであり、研磨ブラシの押込み量は3.0mmであり、研磨液に分散剤Aを濃度が1.0wt%となるように添加した。
 この条件で作製された例6における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.39nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.61nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.27nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.34nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては97°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+7°であった。この磁気ディスク用ガラス基板の内周側面部おける側面部パーティクル数は1.6個/mmであり、チッピング数は0.04個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.38nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.55nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.24nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.31nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては93°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+3°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は1.0個/mmであり、チッピング数は0.03個/100mmであり、割れ発生率はAランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例7)
 例7における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は2400rpmであり、研磨ブラシの押込み量は0.5mmであり、研磨液に分散剤Aを濃度が0.7wt%となるように添加した。また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は300rpmであり、研磨ブラシの押込み量は4.0mmであり、研磨液に分散剤Aを濃度が0.7wt%となるように添加した。
 この条件で作製された例7における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.45nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.80nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.32nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.48nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては96°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+6°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は2.2個/mmであり、チッピング数は0.05個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部は、AFMにより得られた算術平均粗さRaは0.45nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.63nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.25nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.38nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては94°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+4°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は1.9個/mmであり、チッピング数は0.04個/100mmであり、割れ発生率はAランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例8)
 例8における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は2000rpmであり、研磨ブラシの押込み量は0.5mmであり、研磨液に分散剤Aを濃度が0.5wt%となるように添加した。また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は250rpmであり、研磨ブラシの押込み量は5.0mmであり、研磨液に分散剤Aを濃度が0.5wt%となるように添加した。
 この条件で作製された例8における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.58nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.98nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.32nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.67nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては82°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は-8°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は4.8個/mmであり、チッピング数は0.08個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.43nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.72nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.27nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.46nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては82°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は-8°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は4.3個/mmであり、チッピング数は0.05個/100mmであり、割れ発生率はBランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例9)
 例9における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は2000rpmであり、研磨ブラシの押込み量は1.0mmであり、研磨液に分散剤Aを濃度が0.5wt%となるように添加した。また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は250rpmであり、研磨ブラシの押込み量は5.0mmであり、研磨液に分散剤Aを濃度が0.5wt%となるように添加した。
 この条件で作製された例9における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.60nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは1.34nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.37nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.97nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては95°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+5°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は5.8個/mmであり、チッピング数は0.08個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.43nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.92nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.27nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.65nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては98°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+8°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は5.5個/mmであり、チッピング数は0.05個/100mmであり、割れ発生率はBランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例10)
 例10における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は2000rpmであり、研磨ブラシの押込み量は0.7mmであり、研磨液に分散剤Aを濃度が0.5wt%となるように添加した。また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は250rpmであり、研磨ブラシの押込み量は5.0mmであり、研磨液に分散剤Aを濃度が0.5wt%となるように添加した。
 この条件で作製された例10における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.65nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは1.05nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.42nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.63nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては87°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は-3°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は5.2個/mmであり、チッピング数は0.11個/100mmであり、スピンドルへの挿入容易性は○であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.42nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.69nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.24nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.44nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては90°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は0°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は6.3個/mmであり、チッピング数は0.08個/100mmであり、割れ発生率はBランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例11)
 例11における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、テープと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。また、外周端面における外周側面部と外周面取り部は、テープと平均粒子径1.0μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。
 この条件で作製された例11における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.19nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.23nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.13nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.10nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては6°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は-84°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は0.9個/mmであり、チッピング数は0.02個/100mmであり、スピンドルへの挿入容易性は△であった。スピンドルへの挿入が△(挿入の際引っ掛かりやすく挿入しにくい)であった原因は、挿入の際にやや斜めになった時、内径がスムースすぎて接触面が大きく、摩擦力が大きく働いたためと考えられる。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.15nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは0.19nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.10nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.09nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては91°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+1°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は0.9個/mmであり、チッピング数は0.02個/100mmであり、割れ発生率はCランクであった。割れ発生率が比較的悪かった原因は、加熱後急冷時に金属製ジグがガラス基板より早く冷却されるが、ジグと接触するガラス基板の端面が非常に平滑で接触面積が広く、熱の伝導がなされ易いため、ガラス基板内で端面のジグ接触部とその他の部分との温度差が顕著となり、熱収縮による応力が集中し易くなったためと考えられる。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、△であった。
 (例12)
 例12における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は2000rpmであり、研磨ブラシの押込み量は1.0mmであり、分散剤は添加していない。また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は200rpmであり、研磨ブラシの押込み量は6.0mmであり、分散剤は添加していない。
 この条件で作製された例12における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは1.31nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは2.15nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.75nmであり、(Ra_deg_max)-(Ra_deg_min)の値は1.40nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては96°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+6°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は15.2個/mmであり、チッピング数は0.26個/100mmであり、スピンドルへの挿入容易性は◎であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.89nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは1.31nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.55nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.76nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては96°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+6°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は13.4個/mmであり、チッピング数は0.15個/100mmであり、割れ発生率はCランクであった。割れ発生率が比較的悪かった原因は、割れの起点となる微細なクラックが比較的多かったためと考えられる。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例13)
 例13における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は1200rpmであり、研磨ブラシの押込み量は1.0mmであり、分散剤は添加してはいない。また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は200rpmであり、研磨ブラシの押込み量は6.0mmであり、分散剤は添加していない。
 この条件で作製された例13における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは2.07nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは2.84nmであり、角度方向算術平均粗さ最小値Ra_deg_minは1.47nmであり、(Ra_deg_max)-(Ra_deg_min)の値は1.37nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては95°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+5°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は30.3個/mmであり、チッピング数は0.33個/100mmであり、スピンドルへの挿入容易性は◎であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは1.87nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは2.97nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.89nmであり、(Ra_deg_max)-(Ra_deg_min)の値は2.08nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては98°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+8°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は26.2個/mmであり、チッピング数は0.22個/100mmであり、割れ発生率はDランクであった。割れ発生率が悪かった原因は、例12と同様に割れの起点となる微細なクラックが多かったためと考えられる。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例14)
 例14における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は2000rpmであり、研磨ブラシの押込み量は1.0mmであり、研磨液に分散剤Bを濃度が1.0wt%となるように添加した。
 また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は250rpmであり、研磨ブラシの押込み量は5.0mmであり、研磨液に分散剤Bを濃度が1.0wt%となるように添加した。
 この条件で作製された例14における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.59nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは1.50nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.35nmであり、(Ra_deg_max)-(Ra_deg_min)の値は1.15nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては95°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+5°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は10.5個/mmであり、チッピング数は0.17個/100mmであり、スピンドルへの挿入容易性は◎であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.39nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは1.09nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.23nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.86nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては87°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は-3°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は10.1個/mmであり、チッピング数は0.11個/100mmであり、割れ発生率はCランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 (例15)
 例15における磁気ディスク用ガラス基板は、内周端面における内周側面部と内周面取り部を、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は2000rpmであり、研磨ブラシの押込み量は1.0mmであり、分散剤は添加してはいない。また、外周端面における外周側面部と外周面取り部は、研磨ブラシと平均粒子径1.5μmの酸化セリウム砥粒を含む研磨液を用いて研磨した。この研磨における条件は、研磨ブラシの回転数は250rpmであり、研磨ブラシの押込み量は5.0mmであり、分散剤は添加してはいない。
 この条件で作製された例15における磁気ディスク用ガラス基板の内周側面部では、AFMにより得られた算術平均粗さRaは0.63nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは1.62nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.42nmであり、(Ra_deg_max)-(Ra_deg_min)の値は1.20nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては87°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は-3°であった。この磁気ディスク用ガラス基板の内周側面部における側面部パーティクル数は12.1個/mmであり、チッピング数は0.21個/100mmであり、スピンドルへの挿入容易性は◎であった。
 また、外周側面部では、AFMにより得られた算術平均粗さRaは0.44nmであり、角度方向算術平均粗さ最大値Ra_deg_maxは1.06nmであり、角度方向算術平均粗さ最小値Ra_deg_minは0.25nmであり、(Ra_deg_max)-(Ra_deg_min)の値は0.81nmであった。また、角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、磁気ディスク用ガラス基板における主表面に平行な方向に対する角度としては93°、即ち、磁気ディスク用ガラス基板における主表面に垂直方向に対する角度は+3°であった。この磁気ディスク用ガラス基板の外周側面部における側面部パーティクル数は11.5個/mmであり、チッピング数は0.11個/100mmであり、割れ発生率はDランクであった。
 さらに、上記条件で作製した磁気ディスク用ガラス基板を用いて作製した磁気ディスクについて、既述の方法で膜はがれの評価を行ったところ、〇であった。
 以上、実施の形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
 本実施の形態においては、領域の対角線の交点を回転の中心としたが、これはなにも対角線の交点に限らず、領域内の特定の一点を基準として角度方向を求めてもよいし、基準を主表面に平行な方向であっても垂直方向であってもよい。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2015年11月26日出願の日本特許出願(特願2015-230942)、及び2016年4月14日出願の日本特許出願(特願2016-081536)に基づくものであり、その内容はここに参照として取り込まれる。
10    磁気ディスク用ガラス基板
11    円形状の孔
12    主表面
20    内周端面
21    内周側面部
22    内周面取り部
30    外周端面
31    外周側面部
32    外周面取り部

Claims (11)

  1.  主表面と、中心部に円形状の孔と、前記中心部側に内周側面部とを有する円盤形状の磁気ディスク用ガラス基板であって、
     前記内周側面部において、原子間力顕微鏡により測定した算術平均粗さRaが0.7nm以下であって、
     前記内周側面部の所定の領域を、前記主表面に平行な方向に対して角度方向を0°から180°まで1°ごとに変化させながら、原子間力顕微鏡により測定した結果に基づき各々の角度方向における角度方向算術平均粗さRa_degを算出し、前記算出された角度方向算術平均粗さRa_degのうち、最も大きい値を角度方向算術平均粗さ最大値Ra_deg_maxとし、最も小さい値を角度方向算術平均粗さ最小値Ra_deg_minとした場合に、
     (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、1.0nm以下である磁気ディスク用ガラス基板。
  2.  (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、0.50nm以下である請求項1に記載の磁気ディスク用ガラス基板。
  3.  (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、0.40nm以下である請求項1または2に記載の磁気ディスク用ガラス基板。
  4.  前記角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、前記主表面に垂直な方向に対して、-10°以上、+10°以下である請求項1から3のいずれか1項に記載の磁気ディスク用ガラス基板。
  5.  主表面と、中心部に円形状の孔と、前記中心部側に内周側面部とを有する円盤形状の磁気ディスク用ガラス基板であって、
     前記内周側面部の所定の領域を、前記主表面に平行な方向に対して角度方向を0°から180°まで1°ごとに変化させながら、原子間力顕微鏡により測定した結果に基づき各々の角度方向における角度方向算術平均粗さRa_degを算出し、前記算出された角度方向算術平均粗さRa_degのうち、最も大きい値となる角度方向算術平均粗さ最大値Ra_deg_maxの値が、0.30nm以上、1.4nm以下である磁気ディスク用ガラス基板。
  6.  主表面と、中心部に円形状の孔と、外周側面部とを有する円盤形状の磁気ディスク用ガラス基板であって、
     前記外周側面部において、原子間力顕微鏡により測定した算術平均粗さRaが0.6nm以下であって、
     前記外周側面部の所定の領域を、前記主表面に平行な方向に対して角度方向を0°から180°まで1°ごとに変化させながら、原子間力顕微鏡により測定した結果に基づき各々の角度方向における角度方向算術平均粗さRa_degを算出し、前記算出された角度方向算術平均粗さRa_degのうち、最も大きい値を角度方向算術平均粗さ最大値Ra_deg_maxとし、最も小さい値を角度方向算術平均粗さ最小値Ra_deg_minとした場合に、
     (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、0.70nm以下である磁気ディスク用ガラス基板。
  7.  (Ra_deg_max)-(Ra_deg_min)の値が、0.15nm以上、0.40nm以下である請求項6に記載の磁気ディスク用ガラス基板。
  8.  前記角度方向算術平均粗さ最大値Ra_deg_maxとなる角度方向は、前記主表面に垂直な方向に対して、-10°以上、+10°以下である請求項6または7に記載の磁気ディスク用ガラス基板。
  9.  主表面と、中心部に円形状の孔と、外周側面部とを有する円盤形状の磁気ディスク用ガラス基板であって、
     前記外周側面部の所定の領域を、前記主表面に平行な方向に対して角度方向を0°から180°まで1°ごとに変化させながら、原子間力顕微鏡により測定した結果に基づき各々の角度方向における角度方向算術平均粗さRa_degを算出し、前記算出された角度方向算術平均粗さRa_degのうち、最も大きい値となる角度方向算術平均粗さ最大値Ra_deg_maxの値が、0.20nm以上、1.0nm以下である磁気ディスク用ガラス基板。
  10.  前記内周側面部又は前記外周側面部における角度方向算術平均粗さRa_degは、原子間力顕微鏡により測定した結果に、カットオフを50nmとするハイパスフィルタをかけたものに基づき算出する請求項1から9のいずれか1項に記載の磁気ディスク用ガラス基板。
  11.  請求項1から10のいずれか1項に記載の磁気ディスク用ガラス基板の主表面上に、磁性層が成膜されている磁気ディスク。
PCT/JP2016/062834 2015-11-26 2016-04-22 磁気ディスク用ガラス基板及び磁気ディスク WO2017090260A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-230942 2015-11-26
JP2015230942 2015-11-26
JP2016081536A JP5983897B1 (ja) 2015-11-26 2016-04-14 磁気ディスク用ガラス基板及び磁気ディスク
JP2016-081536 2016-04-14

Publications (1)

Publication Number Publication Date
WO2017090260A1 true WO2017090260A1 (ja) 2017-06-01

Family

ID=56843257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062834 WO2017090260A1 (ja) 2015-11-26 2016-04-22 磁気ディスク用ガラス基板及び磁気ディスク

Country Status (3)

Country Link
JP (1) JP5983897B1 (ja)
SG (1) SG10201607037VA (ja)
WO (1) WO2017090260A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175156A (zh) * 2019-07-31 2022-03-11 Hoya株式会社 圆环形状的玻璃板的制造方法、磁盘用玻璃基板的制造方法、磁盘的制造方法、圆环形状的玻璃板、磁盘用玻璃基板以及磁盘

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137282A (ja) * 1995-09-11 1997-05-27 Nippon Steel Corp 難クロム溶出性樹脂クロメート処理金属板
JP2007042263A (ja) * 2005-07-08 2007-02-15 Showa Denko Kk 磁気記録媒体用基板及び磁気記録媒体並びに磁気記録再生装置
JP2011253575A (ja) * 2010-05-31 2011-12-15 Konica Minolta Opto Inc 熱アシスト記録媒体用ガラス基板
WO2014133148A1 (ja) * 2013-03-01 2014-09-04 Hoya株式会社 磁気ディスク用ガラス基板および磁気ディスク

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639215B2 (ja) * 2013-03-25 2014-12-10 Hoya株式会社 磁気ディスク用ガラス基板及び磁気ディスク用ガラス基板の製造方法、並びに磁気ディスクの製造方法
JP5915718B1 (ja) * 2014-11-07 2016-05-11 旭硝子株式会社 磁気ディスク用ガラス基板及び磁気ディスク

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137282A (ja) * 1995-09-11 1997-05-27 Nippon Steel Corp 難クロム溶出性樹脂クロメート処理金属板
JP2007042263A (ja) * 2005-07-08 2007-02-15 Showa Denko Kk 磁気記録媒体用基板及び磁気記録媒体並びに磁気記録再生装置
JP2011253575A (ja) * 2010-05-31 2011-12-15 Konica Minolta Opto Inc 熱アシスト記録媒体用ガラス基板
WO2014133148A1 (ja) * 2013-03-01 2014-09-04 Hoya株式会社 磁気ディスク用ガラス基板および磁気ディスク

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114175156A (zh) * 2019-07-31 2022-03-11 Hoya株式会社 圆环形状的玻璃板的制造方法、磁盘用玻璃基板的制造方法、磁盘的制造方法、圆环形状的玻璃板、磁盘用玻璃基板以及磁盘
US11884582B2 (en) 2019-07-31 2024-01-30 Hoya Corporation Method for manufacturing annular glass plate, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk
CN114175156B (zh) * 2019-07-31 2024-04-19 Hoya株式会社 圆环形状的玻璃板的制造方法、磁盘用玻璃基板的制造方法、磁盘的制造方法、圆环形状的玻璃板、磁盘用玻璃基板以及磁盘

Also Published As

Publication number Publication date
SG10201607037VA (en) 2017-06-29
JP5983897B1 (ja) 2016-09-06
JP2017107630A (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP4982810B2 (ja) ガラス基板の製造方法および磁気ディスクの製造方法
JP5542989B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
US7875374B2 (en) Substrate for perpendicular magnetic recording media and perpendicular magnetic recording media using same
JP5915718B1 (ja) 磁気ディスク用ガラス基板及び磁気ディスク
US20050074635A1 (en) Information recording medium and method of manufacturing glass substrate for the information recording medium, and glass substrate for the information recording medium, manufactured using the method
JP2007197235A (ja) 磁気ディスク用ガラス基板の製造方法、磁気ディスク用ガラス基板、及び磁気ディスクの製造方法。
JP5126401B1 (ja) 磁気記録媒体用ガラス基板
JP5983897B1 (ja) 磁気ディスク用ガラス基板及び磁気ディスク
JPH07134823A (ja) 磁気記録媒体用ガラス基板及び磁気記録媒体の製造方法
JP6105488B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP2012033265A (ja) 磁気記録媒体用ガラス基板及びその製造方法
JP5939350B1 (ja) 磁気記録媒体用ガラス基板、磁気記録媒体
JP2004241089A (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP4860580B2 (ja) 磁気ディスク用基板及び磁気ディスク
JP6020754B1 (ja) 磁気記録媒体用ガラス基板、磁気記録媒体
JP2013016257A (ja) 磁気記録媒体用ガラス基板および磁気記録媒体
JP2005293840A (ja) ガラスディスク基板、磁気ディスク、磁気ディスク用ガラスディスク基板の製造方法及び磁気ディスクの製造方法
JP5494747B2 (ja) 磁気記録媒体用ガラス基板の製造方法、及び、磁気記録媒体用ガラス基板
JP4962598B2 (ja) 磁気記録媒体用ガラス基板及びその製造方法
JP2010073289A (ja) 磁気ディスク用基板および磁気ディスク
WO2012042735A1 (ja) 情報記録媒体用ガラス基板の製造方法
JP5333563B2 (ja) 磁気記録媒体用ガラス基板および磁気記録媒体
JP2011086371A (ja) 磁気ディスク用ガラス基板の製造方法
JP2015069685A (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JPWO2012132073A1 (ja) 情報記録媒体用ガラス基板の製造方法および情報記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868211

Country of ref document: EP

Kind code of ref document: A1