WO2017086690A1 - 과당-함유 기질로부터 사이코스를 생산하는 방법 - Google Patents

과당-함유 기질로부터 사이코스를 생산하는 방법 Download PDF

Info

Publication number
WO2017086690A1
WO2017086690A1 PCT/KR2016/013197 KR2016013197W WO2017086690A1 WO 2017086690 A1 WO2017086690 A1 WO 2017086690A1 KR 2016013197 W KR2016013197 W KR 2016013197W WO 2017086690 A1 WO2017086690 A1 WO 2017086690A1
Authority
WO
WIPO (PCT)
Prior art keywords
psychos
weight
fructose
reaction
content
Prior art date
Application number
PCT/KR2016/013197
Other languages
English (en)
French (fr)
Inventor
권순규
김혜정
박부수
박종진
이강표
천희순
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Priority to US15/774,340 priority Critical patent/US20230183764A1/en
Priority to AU2016357609A priority patent/AU2016357609B2/en
Priority to CN201680066863.6A priority patent/CN108474014A/zh
Priority to PL16866642T priority patent/PL3378943T3/pl
Priority to JP2018525587A priority patent/JP6820924B2/ja
Priority to EP16866642.8A priority patent/EP3378943B1/en
Publication of WO2017086690A1 publication Critical patent/WO2017086690A1/ko
Priority to IL259315A priority patent/IL259315B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/03Racemaces and epimerases (5.1) acting on carbohydrates and derivatives (5.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention provides a process for obtaining a high yield of a psychose-containing product on a industrial scale from a fructose-containing substrate in a short time by an immobilization reaction using a biocatalyst for the production of a psychose, separating the psychocos-containing product obtained by the above method into a liquid phase or
  • the present invention relates to a method of continuously producing a powdery psychosis.
  • sugar syrup production requires subsequent processes such as enrichment after the production of syrup, thus minimizing the necessity of such subsequent processes, and producing specific sugars with high purity to reduce the cost and time required for the separation and purification of specific sugars. I tried to reduce it.
  • Sugar syrup of a certain composition has excellent sweetness and sweetness in recent years, so it is necessary to commercialize the syrup produced after the biological production process and minimize the performance of additional concentration, separation and purification processes after the syrup itself or at least a subsequent process. There may be it.
  • the present invention provides a method for producing a psychose-containing product capable of producing a psychose at an industrial scale with high productivity from a fructose-containing substrate by an immobilization reaction using a biocatalyst for producing a psychose.
  • the present invention also provides a method for preparing a liquid or powdered psychose by separating the psychocos-containing product obtained by the above method.
  • One example of the present invention relates to a method for producing a psychocos-containing product from a fructose-containing substrate by an immobilization reaction using a biocatalyst for producing a psychos.
  • the present invention is carried out by the immobilization reaction at a reaction flow rate of 8.5 to 20, based on the reaction flow rate 1 to produce at least 25% by weight of the psychos content of 100% by weight of the solid content of the total sugars contained in the product,
  • the present invention relates to a process for producing a psychose-containing product comprising less than 20% by weight of total solids content of psychos and glucose, based on 100% by weight of solids content of psychocos, glucose and fructose in the product.
  • Another embodiment of the present invention is to produce a psychos-containing product from the fructose-containing substrate by the immobilization reaction using a biocatalyst for the production of a psychos, and a high purity separator using a high purity separator of at least 80% or at least 90% by weight ( For example, 90% by weight) of the cosmos fraction and the raffinate fraction having a sugar composition of 5% or less of the cosmos (raffinate) fraction is separated, and the psychic fraction is subjected to an additional process to obtain a psychos as a liquid or powder product. It is about a method.
  • One embodiment of the present invention relates to a method for preparing a psychocos-containing product from a fructose-containing substrate by an immobilization reaction using a biocatalyst for producing a psychos.
  • the substrate used in the immobilization reaction is a fructose-containing substrate, in order to efficiently produce a psychosis, the content of fructose used as a substrate is 75 to 95 based on 100 (w / v)% solids content of the total fructose-containing substrate % (w / v), for example 80-91% (w / v).
  • the fructose can be used in the process for preparing the sicose-containing product in the form of a solution dissolved in buffer or water (such as distilled water).
  • the fructose-containing substrate is not particularly limited as long as it includes fructose used in the psychos conversion reaction, and may be, for example, isosugar sugar syrup. If isosugar syrup is used as a substrate for the production of psychose, the isosaccharide syrup production process and the psycos production process may be continuously performed in a series of processes.
  • Pycos-containing products obtained according to the process of the present invention may contain not only psychocos but also fructose, glucose, and various oligosaccharides.
  • the total content of the psychos and glucose contained in the product may be less than 20% by weight, for example 9 weights, when the total content of fructose, glucose and psychos contained in the psychos-containing product is 100% by weight. Or more than 20% by weight.
  • the total content of fructose, glucose and psychos in the product is 100% by weight
  • the total solids content of psychos and glucose is And at least 9 wt% to less than 20 wt% and a fructose content of at least 80 wt% to 91 wt%.
  • the content of the psychos contained in the product may be 4% by weight to 29% by weight or less when the total content of fructose, glucose and psychos is 100% by weight.
  • Biocatalysts for the production of psychoses applicable to the present invention for example, enzymes or cells can be affected by factors such as conversion reaction temperature, reaction time, fructose content of the substrate and the like.
  • factors such as conversion reaction temperature, reaction time, fructose content of the substrate and the like.
  • the reaction temperature 50 to 60, it is possible to use a conversion of fructose from the fructose in the substrate to 4 to 29% within 1 hour.
  • the biocatalyst may be a bacterium producing a cosmos converting enzyme or a cosmos converting enzyme, which may be included in the beads and filled in a column for the immobilization reaction.
  • the biocatalyst for producing cosmos is a bacterium, it may be a strain that produces a cosmos epimerase or a recombinant strain into which a gene encoding a cosmos epimerase is introduced.
  • the strain producing the cosmos epimerase may be a strain that can produce a high yield and yet a high yield of cosmos epimerase.
  • the recombinant strain may be a variety of host cells, such as E. coli, Bacillus strains, Salmonella strains and Corynebacterium strains, etc., but may preferably be a Corynebacterium strain, GRAS strain, Corynebacter It may be Leeum glutaricum.
  • the cosmos epimerase may be used as a coding gene of an enzyme derived from various strains.
  • the triponema primithia-derived enzyme described in Korean Patent Publication No. 2014-0021974, Korean Patent Publication No. 2014-0080282 It may be a luminococcus-torque-derived enzyme described in the above and the clostridial synth-derived enzyme described in Korean Patent No. 10-1318422, and may also be an enzyme-adherence derived enzyme.
  • the cosmos epimerase according to the present invention may be a Closthydium synthase-derived enzyme, for example, has an amino acid sequence of SEQ ID NO: 7, and comprises a nucleic acid sequence of SEQ ID NO: 8 or SEQ ID NO: 9 .
  • the nucleic acid sequence of SEQ ID NO: 8 is an E. coli optimized nucleic acid sequence
  • SEQ ID NO: 9 is a nucleic acid sequence modified to be suitable for Corynebacterium.
  • the expression of the enzyme can be regulated using a regulatory sequence located above the nucleic acid sequence encoding the cyclic epimerizing enzyme, the regulatory sequence is essentially a transcriptional promoter. And further include ribosomal binding regions and / or spacer sequences, and the like.
  • the elements constituting the regulatory sequence may be directly linked or linked including one or more linkers of nucleic acid sequences having 1 to 100 bases, for example 5 to 80 bases.
  • the transcriptional promoter may be a nucleic acid molecule that expresses a nucleic acid sequence encoding a cosmos epimerase in a Corynebacterium strain, but may be a tac1, tac2, trc, sod promoter.
  • the sod promoter is derived from Corynebacterium glutaricum and preferably comprises the nucleic acid sequence of SEQ ID NO: 1 as a core region.
  • the trc promoter is an E. coli-derived promoter produced by a combination of the trp promoter and the lac UV5 promoter.
  • the Tac1 promoter is an E. coli-derived promoter, produced by a combination of the trp promoter and the lac UV5 promoter.
  • the Tac2 promoter is an E. coli-derived promoter produced by a combination of the trp promoter and the lac UV5 promoter, and is optimized by modifying the sequence of the Tac1 promoter.
  • the ribosomal binding region and the spacer may be directly connected chemically or indirectly via a linker nucleic acid sequence in the middle thereof.
  • the ribosomal binding region and the spacer sequence may include one oligonucleotide connected in sequence from 5 'to 3'.
  • the nucleic acid sequences of the promoter sequence, ribosomal binding region and spacer sequence according to one embodiment of the present invention are shown in Table 1 below. Darkly underlined parts in Table 1 indicate ribosomal binding regions, spacer sequences, linker sequences, and the like, in the regulatory sequences.
  • the psychic epimerase according to the present invention has excellent enzymatic activity and thermostability, and therefore, in an embodiment of the present invention, the transcriptional promoter or regulatory sequence is important in combination with a gene encoding a cyclic epimerase.
  • the taccos epimerase used in the present invention and the tac1, tac2, trc, and sod promoters can all provide more than adequate protein expression, and when the sod promoter is used, the folding of the protein is robust and thermal stability is achieved. It is more preferable because the result which shows high can be obtained.
  • Psychos production method using a recombinant strain may be carried out in accordance with the method described in Korea Patent Publication 2014-0021974, Korea Patent Publication 2014-0080282 and Korea Patent Registration 10-1318422, but is not particularly limited.
  • the method of producing a psychos includes the step of reacting the Corynebacterium strains with fructose-containing raw materials.
  • the step of reacting the Corynebacterium strain with fructose may be carried out by contacting the fructose with a carrier to which the strain or enzyme is immobilized.
  • the immobilized enzyme or cell can be reacted with a fructose-containing substrate to convert fructose into cyclose to produce cyclose from fructose.
  • the reaction may be carried out under conditions of pH 6 to 9.5, for example, pH 7 to 9, pH 7 to 8 or pH 8 to 9.
  • the reaction may also be carried out under temperature conditions of 30 ° C. or higher, such as 40 ° C. or higher. Since the browning phenomenon of fructose, which is a substrate, may occur when the temperature is 80 ° C. or higher, the reaction may be performed under conditions of 40 to 80 ° C., for example, 50 to 75 ° C., 60 to 75 ° C., or 68 to 75 ° C. .
  • the reaction time is preferably 0.5 hours (30 minutes) or more, 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, or 6 hours or more. If the reaction time exceeds 48 hours, the increase rate of the psychocos conversion is small or rather decreased, so the reaction time should not exceed 48 hours. Therefore, the reaction time may be 0.5 to 48 hours, 1 to 48 hours, 2 to 48 hours, 3 to 48 hours, 4 to 48 hours, 5 to 48 hours, or 6 to 48 hours, and industrial and economic aspects.
  • it may be about 0.5 to 48 hours, 0.5 to 36 hours, 0.5 to 24 hours, 0.5 to 12 hours, or 0.5 to 6 hours, but is not limited thereto.
  • the above conditions were selected as conditions under which fructose-to-sycos conversion efficiency is maximized.
  • the enzyme for converting the fructose to the psychos eg, epimerase
  • the enzyme for converting the fructose to the psychos can be activated by metal ions
  • the addition of metal ions the efficiency of conversion of fructose to psychos, namely Psycho production rate can be increased.
  • the composition for producing psychos containing the Corynebacterium strain may be further comprising a metal ion.
  • the method for producing a psychos using the Corynebacterium strain may further comprise the step of adding a metal ion.
  • the metal ions may be added to the culture medium of the culture step, or the culture step may be performed in a culture medium to which the metal ions are added.
  • the metal ion is added to fructose
  • the Corynebacterium strain is added to an immobilized carrier (prior to fructose addition), or the carrier of the Corynebacterium strain immobilized and a mixture of fructose It may be added to (after fructose addition), or in the form of a mixture with fructose or separately at the time of fructose addition.
  • the metal ion may be at least one selected from the group consisting of copper ions, manganese ions, calcium ions, magnesium ions, zinc ions, nickel ions, cobalt ions, iron ions, aluminum ions and the like.
  • the metal ions may be at least one selected from the group consisting of manganese ions, magnesium ions, nickel ions, cobalt ions, and the like.
  • the metal ions may be manganese ions, cobalt ions, or a mixture thereof.
  • the addition amount of the metal ion exceeds 5mM, the effect is insignificant compared to the excess amount, so that the addition amount of the metal ion can be 5mM or less.
  • the amount of the metal ion added may be in a range of 0.5 mM to 5 mM, for example, 0.5 mM to 2 mM.
  • the carrier is to create an environment in which the activity of the immobilized strain, or enzyme produced from the strain can be maintained for a long time
  • It may be any known carrier that can be used for enzyme immobilization.
  • sodium alginate may be used as the carrier.
  • Sodium alginate is a natural colloidal polysaccharide that is abundant in the algae cell walls. It contains mannuronic acid ( ⁇ -D-mannuronic acid) and gluronic acid ( ⁇ -L-gluronic acid). Formed by forming beta-1,4 bonds, the strain or enzyme may be stably immobilized to yield an excellent psychocos yield.
  • sodium alginate solution e.g. aqueous sodium alginate solution
  • w / v a concentration of 1.5 to 4.0%
  • the solution can be used for immobilization of the strain.
  • the enzyme may be purified from the strain, strain culture or lysate of the strain by conventional methods such as dialysis, precipitation, adsorption, electrophoresis, affinity chromatography, ion exchange chromatography and the like.
  • the carrier for example, the beads on which the cells or enzymes are loaded may be compressed to reduce the bead size and to reduce the swelling to increase the yield of the psychos, and may be a beads for producing the psychos that can be stably used for a long time.
  • One example is a compressed compressed beads containing alcos acid or salt thereof as a carrier and a cycose-producing enzyme, and the production of a psychos having an average particle diameter of 62 to 100 based on the average particle size of the beads 100 before the compression treatment. May be a bead.
  • the swelling phenomenon is reduced when the compressed beads react with the liquid substrate, and specifically, the swelling ratio of the average particle diameter of the beads may be 100 to 155 based on the swelling ratio 100 of the bead particle diameter before contact with the liquid substrate, for example 100 To 130, or 100 to 125, and the like.
  • Methods for preparing compressed beads according to the present invention may include a method for treating metal ions, a method for coating with a metal ion treatment and swelling inhibitor, and a lyophilization method.
  • the metal ions bead compression process, Mn 2 +, Zn 2 + , Co 2 +, Mg 2 +, Ni 2 +, Fe 2 +, and Cu 2 + group has a metal ion at least one selected species, 2 in made of one
  • the swelling inhibitor may be at least one selected from the group consisting of chitosan, chitin, polyethylene glycol (PEG), polyethyleneimine (PEI), chito-oligosaccharide and polylysine.
  • the freeze-drying method may be performed by freezing at a temperature range of -90 ° C to -10 ° C, and drying at a temperature range of -40 ° C to 20 ° C under a pressure of less than 10 mtorr.
  • the preferred moisture content of the compressed beads may be 50 to 88%.
  • the preferred water content may be 10 to 50%.
  • the present invention relates to a method for preparing a liquid or powdered psychos by performing a separation process from a fructose-containing substrate from a fructose-containing product by an immobilization reaction using a biocatalyst for producing a psychos according to the above method.
  • One specific example is the preparation of a psychose-containing product from a fructose-containing substrate in an immobilization reaction with a biocatalyst for the production of a psychose in accordance with the present invention
  • the concentrate is crystallized in a supersaturated state of the psychos
  • the present invention relates to a method for producing a sicose-containing powder.
  • Pycos-containing products obtained from fructose by the process of the present invention may be prepared by one or more of the following methods: desalting, decolorizing, concentrating, high purity separation purification using SMB chromatography, crystallization, centrifugation, filtration, etc. Can be.
  • the crystallization step may be crystallized by making the supersaturated state of the psychos, an example of a method of reaching the supersaturated state is a method of cooling the solution containing the psychos, but is not limited thereto.
  • the basic principle of SMB used in the purification step using SMB chromatography is to simulate the flow of countercurrents of the fixed and mobile phases by moving the positions between the columns at regular time intervals and to enable continuous separation.
  • the fast-moving material due to its weak affinity with the adsorbent is collected into fractions containing high-purity psychocoses separated by moving in the direction of the liquid phase.
  • the slow-moving material with strong affinity with the adsorbent is moved under the flow direction of the fixed phase and has a content of 5% or less.
  • the raffinate fractions with sugar composition are collected.
  • the columns are connected in series and the inlet consists of the mixture and the mobile phase, and the outlet consists of a fraction containing a high purity psychocos fraction and a low content of psychos.
  • SMB usually consists of four zones, classified by the location of the inlet and outlet.
  • SMB technology enables continuous separation and yields higher concentrations and higher yields than batch separation processes.
  • SMB experiments can be carried out by setting specific conditions in consideration of basic factors such as adsorption degree, diffusion and dispersion of each material to be separated.
  • the present invention is to continuously produce a liquid or powdery psychos by separating the method of producing a psychose-containing product from the fructose-containing substrate and the psychos-containing product obtained by the above method by an immobilization reaction using a biocatalyst for producing a psychos.
  • a method there is an advantage in that a cycle can be obtained with high productivity in a short time on an industrial scale.
  • 1 is a liquid fructose content in the range of 75% to 95%, the total content of glucose and psychos in the production of a psychos using a bead-filled immobilization reaction containing the cells of the psychosis according to an embodiment of the present invention It is a graph showing the change in the content of the psychos in the reactants according to the column flow rate in the range of 5% to less than 20%.
  • 2 is a liquid fructose content in the range of 75% to 95%, the total content of glucose and psychos in the production of the psychos using a bead-filled immobilization reaction containing the cells containing the psychosis according to an embodiment of the present invention It is a formula showing the change of the content of the psychos in the reactant according to the column flow rate in the range of 5% to less than 20% (%).
  • Figure 3 is a diagram showing an example of the expression recombinant vector (pCES_sodCDPE) for the production of psychic syrup of the present invention.
  • FIG. 4 is a process chart showing a process for producing a psychos according to an embodiment of the present invention.
  • DPE gene (Genbank: EDS06411.1) derived from crosstridium synthase (CCostridiuim scindens ATCC 35704) was synthesized into a polynucleotide of a modified form optimized for E. coli. Named CDPE
  • the sod promoter and T7 terminator from polynucleotides optimized for Escherichia coli and the pET21a vector were obtained as individual templates through PCAL, and these were connected to one template by overlapping PCR (PCR) method to T-vector cloning. Cloning into the pGEM T-easy vector, the sequence of the polynucleotide including the sod promoter (SEQ ID NO: 1), the optimized CDPE sequence of SEQ ID NO: 8 and the T7-terminator.
  • pCES208 J. Microbiol. Biotechnol., 18: 639-647, 2008
  • NEB restriction enzymes NotI and XbaI
  • pCES_sodCDPE Pycos epimerase
  • FIG. 1 A cleavage map of the prepared recombinant vector (pCES_sodCDPE) is shown in FIG. 1.
  • the prepared recombinant vector (pCES_sodCDPE) plasmid was transformed to Corynebacterium glutaricum using electroporation.
  • the colonies were picked and inoculated into 4 ml of LB medium (tryptone 10 g / L, NaCl 10 g / L, yeast extract 5 g / L) to which kanamycin was added at a final concentration of 15 ug / ml, followed by incubation at 30 ° C and 250 rpm. Incubated for about 16 hours.
  • 1 ml of the culture solution was obtained and inoculated in 100 ml LB medium containing 15 ug / ml of kanamycin, and the culture was performed for 16 hours or longer.
  • the cell suspension was then treated with 0.05% (w / v) of emulsifier (Ryoto (tkSugar Ester, M-1695) at a final volume for 60 minutes at 35 ° C. ( ⁇ 5 ° C.).
  • emulsifier Rosulfonate (tkSugar Ester, M-1695)
  • the supernatant containing the emulsifier was removed using a separator to recover the cells.
  • the recovered cells were mixed with distilled water to a final cell concentration of 5% (w / v), 4% (w / v) alginic acid dissolved in water and 5% (w / v) recovered cells. ) was mixed 1: 1 and refrigerated at 4 ° C. to remove bubbles generated during mixing.
  • the refrigerated mixed liquid is injected into the mixed liquid through the Neddle (inner diameter 0.20 ⁇ 0.30mm) is formed in the form of drops and falls by weight, and the dropped mixed liquid is hardened by dropping the prepared 100 mM calcium chloride (CaCl 2 ) solution To form spherical or oval beads (diameter 2.0-2.2 mm). The beads formed were immersed in 100 mM calcium chloride solution and allowed to harden by mixing evenly by the stirrer.
  • the beads were further cured while refrigerated for 4 to 6 hours, and then replaced with a new 100 mM calcium chloride solution to cure for about 6 hours in the refrigerated state.
  • the cured beads were removed by removing the water completely, added three times the volume of water to the bead volume, and stirred for 10 minutes, and then treated three times to remove the calcium chloride solution.
  • the washed beads are completely drained, added to the fructose-containing substrate (weight 50brix fructose-containing substrate containing 1mM MnCl 2 .4H 2 O) 3 times the volume of the beads and stirred for 10 minutes, this treatment is treated two or more times By the fructose-containing substrate used as the reaction substrate.
  • the reaction substrate is controlled by 3N NaOH to pH 6.8-7.2, depending on the type of product, liquid fructose or crystalline fructose may be the reaction substrate.
  • a cosmos syrup was produced under the following reaction conditions.
  • 88.8% by weight of fructose is contained in 100% by weight of solids of the total saccharides of the substrate (pH 6.8 to 7.2) containing 50% solids and having at least 50% (w / w) solids.
  • a raw material including the content of fructose in an amount of 88.8% by weight or more was provided to prepare a sicose syrup, a mixed sugar of two compositions. .
  • the reaction substrate of the column volume After filling the beads prepared in Example 1-2 into the immobilization reaction column, the reaction substrate of the column volume of 5 times the volume of the column volume 5 times the flow rate of each column flow rate for each hour under the reaction conditions as follows. This was compared at the point where the percentage of psychos content in the column was stabilized.
  • the reactor-like solution contained 50% solids (w / w) and the solids content of the total sugars was 100% by weight, a raw material was fed containing 88.8% by weight fructose and 4.8% by weight of glucose.
  • the sugar content analysis was performed using RI Aminex HPX-87C column (80?) Of Biorad was detected by RI by injecting 10 l of a sample diluted appropriately at a flow rate of 0.6 ml / min with fructose, within 30 minutes of analysis time. Cycos and other DP 1 or higher sugars were integrated to analyze each area. In addition, when the total area of fructose, psycose and other DP1 or more sugars, which is within 30 minutes of analysis time, was analyzed to analyze the content of each sugar composition, the value corresponding to the area of each sugar composition was calculated. The content of was analyzed.
  • reaction temperature the inner temperature of the column jacket 50 °C
  • Reaction substrate fructose-containing substrate having a solid content of 50% or more (w / w) (pH 6.8 to 7.2), including 88.8% by weight fructose and 4.8% by weight of glucose in 100% by weight of the total sugar, and other sugars of DP 1 or more
  • Substrate containing less than 6.4%, based on 100% by weight of the total content of fructose, glucose and psychic, is a raw material containing 94.9% and 5.1% of glucose in the raw material substrate
  • Table 2 shows the contents of each sugar based on 100% by weight of the total content of solids, fructose, glucose, and psychic in the total sugars in the product.
  • Table 2 shows the changes in the content of the psychos for each column flow rate, the change in the content of the psychos in the reactant according to the column flow rate increase rate.
  • Example 2 After the beads prepared in Example 1-2 were filled in the immobilization reaction column, the same fructose-containing substrate as in Example 2 was used.
  • the flow rate in the column flow rate section of the total content of the psychos and glucose less than 20% by weight Fixed and measured changes in the content of psychos in the product according to the reaction days. Specifically, in the solid content of 100% by weight of the total sugar of Example 1 fixed at a flow rate of 8.5 times higher than the production flow rate of 25% by weight or more, the reaction rate for 15 days to measure the change in the content of the psychos in the product Is shown in Table 3 below.
  • the Psycoconversion reaction is controlled by adjusting the flow rate of the Psychoconversion reaction column under the condition that the total content of fructose, glucose and psychos contained in the product is produced in an amount of less than 20 wt% of glucose and psychocos based on 100 wt%. And a raffinate fraction containing a large amount of fructose and a fructose-rich fraction from a cosmos-containing product were separated using a high purity separation process.
  • FIG. 4 is a schematic diagram of the entire reaction process of the production of the psychos, the illustrated process may be inserted or excluded depending on the production quality or production process.
  • the detailed production process is as follows.
  • the reaction raw material was prepared by adjusting to pH 7.0.
  • the reaction raw material was supplied to a reaction column (50 ° C constant temperature) filled with the cell immobilization beads prepared in Preparation Example 1-2, In the same manner as in Example 3, the fructose of the reaction raw material is converted to the psychos to produce a syrup containing less than 20% by weight of the glucose and the psychos content when the content of the fructose, glucose and the psychos sum of the reaction raw material is 100% by weight. It was.
  • the produced syrup containing syrup is added to the syrup by adding 0.05% (w / w) of activated carbon to the syrup, and decolorizing at 50 ° C. for 30 minutes, while decolorization is completed.
  • the coarse containing syrup was passed through a fine filter to remove activated carbon.
  • the fractionated raffinate was transferred to the fructose-containing substrate of the psychocos shift reaction to a solid content of 50 Brix (%), adjusted to pH 7.0 by addition of 5N NaOH, fed to the reaction column, recycled, and recycled to the cycle. was performed.
  • the high-purity psychocos separated from the SMB is transferred to a storage tank, concentrated to 60 Brix (%) or more solid weight at 60 °C, to produce the psychocos crystals of the concentrated supersaturated cosmos syrup by the cooling crystal method, centrifugation After dehydration, a method of drying was finally obtained in a yield of 99% Pycos powder in 81% yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

본 발명은 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물을 산업적 규모로 단시간내에 높은 생산성으로 얻는 방법, 및 상기 방법으로 얻어진 사이코스-함유 생산물을 분리하여 액상 또는 분말상의 사이코스를 제조하고 분리과정의 부산물을 사이코스-함유 생산물의 생산 공정에 투입하여 연속적으로 사이코스를 제조하는 방법에 관한 것이다.

Description

과당-함유 기질로부터 사이코스를 생산하는 방법
본 발명은 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물을 산업적 규모로 단시간 내에 높은 생산성으로 얻는 방법, 상기 방법으로 얻어진 사이코스-함유 생산물을 분리하여 액상 또는 분말상의 사이코스를 연속적으로 제조하는 방법에 관한 것이다.
당 시럽을 제조하는 생물학적 방법의 개발은 주로 효소 또는 균체를 이용하여 높은 전환율로 특정 당을 높은 농도로 생산하는 데 집중되어 왔다.
이러한 당 시럽 생산 개발의 이유는 당시럽 생산 이후에 농축 등의 후속 공정이 필요하므로 이러한 후속 공정의 필요성을 최소화하고, 높은 순도로 특정 당을 생산함으로써 특정 당의 분리 및 정제에 소요되는 비용과 시간을 줄이고자 하였다.
최근 특정 조성의 당 시럽의 경우, 우수한 감미질과 감미도를 가지므로 생물학적 생산공정 이후에, 추가적인 농축, 분리 및 정제 공정의 수행을 최소화하여 생산된 시럽 자체 또는 최소한의 후속 공정을 거친 후에 제품화할 필요성이 있는 경우가 있다.
또한, 특정 당을 함유하는 시럽을 산업적 규모로 단시간내에 높은 생산성으로 생산할 필요가 있으며, 아울러 안정적으로 시럽을 제조할 필요성이 있다.
본 발명은 사이코스 생산용 생촉매를 이용한 고정화 반응으로, 과당-함유 기질로부터 높은 생산성으로 사이코스를 산업적 규모로 생산할 수 있는 사이코스-함유 생산물을 제조하는 방법을 제공한다.
또한, 본 발명은 상기 방법으로 얻어진 사이코스-함유 생산물을 분리하여 액상 또는 분말상의 사이코스를 제조하는 방법을 제공한다.
본 발명의 일 예는 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물을 제조하는 방법에 관한 것이다.
더욱 자세하게는, 본 발명은 생산물내 포함된 전체 당류의 고형분 함량 100중량% 중 사이코스 함량 25 중량% 이상으로 생산하는 반응유속 1을 기준으로, 8.5 내지 20의 반응유속으로 고정화 반응을 수행하여, 생산물내 사이코스, 포도당 및 과당의 고형분 함량 100 중량%를 기준으로, 사이코스 및 포도당의 합계 고형분 함량이 20 중량% 미만으로 포함하는 사이코스-함유 생산물을 제조하는 방법에 관한 것이다.
본 발명의 또 다른 일예는 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물을 제조하고, 고순도 분리장치를 이용하여 사이코스 함량 80% 이상 또는 90중량% 이상 (예, 90 중량%)의 사이코스 분획과 사이코스 함량 5% 이하의 당 조성을 가지는 라피네이트(raffinate) 분획을 분리하고, 상기 사이코스 분획은 추가 공정을 수행하여 액상 또는 분말상 제품으로 사이코스를 얻는 방법에 관한 것이다.
이하, 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일예는 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물을 제조하는 방법에 관한 것이다.
상기 고정화 반응에 사용되는 기질은 과당-함유 기질로서, 효율적인 사이코스 생산을 위하여, 기질로서 사용되는 과당의 함량은 전체 과당-함유 기질의 고형분 함량 100 (w/v)%를 기준으로 75 내지 95%(w/v), 예컨대, 80 내지 91%(w/v)일 수 있다. 상기 과당은 완충용액 또는 물(예컨대 증류수)에 용해된 용액 상태로 사이코스-함유 생산물을 제조하는 방법에 사용될 수 있다. 상기 과당-함유 기질은 사이코스 전환반응에 이용되는 과당을 포함하는 한 특별히 한정되지 않으며, 예를 들면 이성화당 시럽일 수 있다. 이성화당 시럽을 사이코스 생산용 기질로 사용할 경우, 이성화당 시럽 생산 공정과 사이코스 생산공정을 일련의 공정으로 연속하여 진행할 수도 있다.
본 발명의 방법에 따라 얻어지는 사이코스-함유 생산물은 사이코스 뿐만아니라, 과당, 포도당, 및 다양한 올리고당을 함유할 수 있다. 상기 생산물에 포함된 사이코스 및 포도당의 합계 함량은, 사이코스-함유 생산물에 포함된 과당, 포도당 및 사이코스의 합계 함량이 100 중량%일 때, 20 중량% 미만일 수 있으며, 예를 들면 9 중량% 이상 내지 20 중량% 미만일 수 있다. 상기 생산물에 포함된 과당, 포도당 및 사이코스의 합계 함량이 100 중량%일 때, 사이코스 및 포도당의 합계 고형분 함량이 9 중량% 이상 내지 20 중량% 미만이고, 과당 함량이 80 중량% 초과 내지 91 중량%일 수 있다. 상기 생산물에 포함된 사이코스 함량은 과당, 포도당 및 사이코스의 합계 함량이 100 중량%일 때, 4 중량% 내지 29 중량% 이하일 수 있다.
본 발명에 적용 가능한 사이코스 생산용 생촉매는, 예를 들면 효소 또는 균체는 전환 반응온도, 반응시간, 기질의 과당 함량 등의 인자에 의해 영향을 받을 수 있다. 예를 들면, 반응 온도 50 내지 60 에서 1시간 이내에 기질내 과당으로부터 사이코스의 전환율이 4 내지 29%인 것을 사용할 수 있다.
상기 생촉매는 사이코스 전환 효소 또는 사이코스 전환 효소를 생산하는 균체일 수 있으며, 상기 효소 또는 균체는 비드에 포함되어 고정화 반응을 위한 칼럼에 충진될 수 있다.
상기 사이코스 생산용 생촉매가 균체인 경우, 사이코스 에피머화 효소를 생산하는 균주 또는 사이코스 에피머화 효소를 암호화하는 유전자가 도입된 재조합 균주일 수 있다.
본 발명의 구체적 일예에서, 사이코스 에피머화 효소를 생산하는 균주로는 높은 안정성을 가지면서도 고수율로 사이코스 에피머화 효소를 생산할 수 있는 균주일 수 있으며. 상기 재조합 균주는 다양한 숙주세포, 예컨대 대장균, 바실러스속 균주, 살모넬라속 균주 및 코리네박테리움속 균주 등을 사용할 수 있으나, 바람직하게는 GRAS 균주인 코리네박테리움속 균주일 수 있으며, 코리네박테리움 글루타리쿰일 수 있다.
재조합 균주를 이용한 경우 사이코스 에피머화 효소는 다양한 균주에서 유래된 효소의 암호화 유전자를 사용할 수 있으며, 예를 들면 한국특허공개 2014-0021974에 기재된 트리포네마 프리미티아 유래 효소, 한국특허공개 2014-0080282에 기재된 루미노코코스 토르크 유래 효소 및 한국등록특허 10-1318422호에 기재된 클로스티리디움 신댄스 유래 효소일 수 있으며, 또한 엔시퍼 아드해렌스 유래 효소일 수 있다. 구체적인 일예에서, 본 발명에 따른 사이코스 에피머화 효소는 클로스티리디움 신댄스 유래 효소일 수 있으며, 예를 들면 서열번호 7의 아미노산 서열을 가지며, 서열번호 8 또는 서열번호 9의 핵산서열을 포함한다. 서열번호 8의 핵산서열은 대장균 최적화 핵산서열이고, 서열번호 9은 코리네박테리움에 적합하게 변형된 핵산서열이다.
본 발명의 일예에 따른 재조합 균주의 제조에 있어서, 상기 사이코스 에피머화 효소를 암호화하는 핵산서열의 상부에 위치하는 조절 서열을 사용하여 효소의 발현을 조절할 수 있으며, 조절서열은 전사 프로모터를 필수적으로 포함하며, 추가로 리보솜 결합 영역 및/또는 스페이서 서열 등을 포함할 수 있다. 상기 조절 서열을 구성하는 요소들은 직접 연결되거나 1개 내지 100개의 염기, 예를 들면 5개 내지 80 염기를 가지는 핵산서열의 링커를 하나 이상 포함하여 연결될 수 있다.
일 구체예에서, 상기 전사 프로모터는 코리네박테리움속 균주에서 사이코스 에피머화 효소를 암호화하는 핵산서열을 발현하는 핵산분자일 수 있으나, tac1, tac2, trc, sod 프로모터일 수 있다. sod 프로모터는 코리네박테리움 글루타리쿰에서 유래된 것이며, 바람직하게는 서열번호 1의 핵산서열을 코어영역으로 포함한다. trc프로모터는 대장균 유래 프로모터로서 trp프로모터과 lac UV5 프로모터의 조합으로 제조된 것이다. Tac1 프로모터는 대장균 유래 프로모터로서, trp프로모터과 lac UV5 프로모터의 조합으로 제조된 것이다. Tac2 프로모터는 대장균 유래 프로모터로서 trp 프로모터와 lac UV5 프로모터의 조합으로 제조된 것으로서 상기 Tac1 프로모터의 서열을 변형하여 최적화한 형태이다.
상기 리보좀 결합 영역과 스페이서는 화학적으로 직접 연결되거나 그 중간에 링커 핵산서열을 개재하여 간적접으로 연결될 수 있다. 본 발명의 일예에서 리보좀 결합 영역(ribosome binding region) 및 스페이서 서열은 5'부터 3'순으로 순차적으로 연결된 하나의 올리고뉴클레오타이드를 포함할 수 있다. 본 발명의 일예에 따른 프로모터 서열, 리보좀 결합 영역(ribosome binding region) 및 스페이서 서열의 핵산서열을 하기 표 1에 나타낸다. 표 1에서 진하게 밑줄로 표시된 부분은 조절서열중, 리보솜결합영역, 스페이서 서열, 링커서열 등을 나타낸다.
서열번호 서열(5'-->3') 명명
1 aagcgcctcatcagcggtaaccatcacgggttcgggtgcgaaaaaccatgccataacaggaatgttcctttcgaaaattgaggaagccttatgcccttcaaccctacttagctgccaattattccgggcttgtgacccgctacccgataaataggtcggctgaaaaatttcgttgcaatatcaacaaaaaggcctatcattgggaggtgtcgcaccaagtacttttgcgaagcgccatctgacggattttcaaaagatgtatatgctcggtgcggaaacctac gaaaggattttttacccatggctgtatacgaactcccagaactcgactacgcatacgac gaaaggattacaaa Sod promoter
2 Tgacaattaatcatcggctcgtatattgt gtggaattgtgagcggataacaatttcacacaggaaacagaattcccggggaaaggattacaaa tac1 promoter
3 tgacaattaatcatccggctcgtataatgt taacaatttgtggaattgtgagcggacacacaggaaacagaccatggaattcgagctcggtacccggggaaaggattacaaa Tac2 promoter
4 tgacaattaatcatcggcctcgtataatgt trc promoter
5 gaaagga Ribosome binding region
6 ttacaaa Spacer sequence
본 발명에 따른 사이코스 에피머화 효소는 효소활성 및 열안정성이 우수한 것이 바람직하고, 이에 본 발명의 구체예에서, 전사 프로모터 또는 조절서열은 사이코스 에피머화 효소를 코딩하는 유전자와의 조합이 중요하며, 본 발명에 사용된 사이코스 에피머화 효소와는 tac1, tac2, trc, sod 프로모터 모두 적정 이상의 단백질 발현을 제공할 수 있으며, sod 프로모터를 사용한 경우에는 단백질의 폴딩(folding)이 견고하여 열안정성이 높게 나타나는 결과를 얻을 수 있어 더욱 바람직하다.
재조합 균주를 이용한 사이코스 생산방법 등은 한국특허공개 2014-0021974, 한국특허공개 2014-0080282 및 한국등록특허 10-1318422호에 기재된 방법에 따라 수행될 수 있으나 특별히 한정되지 않는다.
상기 사이코스 생산 방법은 상기 코리네박테리움속 균주를 과당-함유 원료와 반응시키는 단계를 포함한다. 일 구체예에서, 상기 코리네박테리움속 균주를 과당과 반응시키는 단계는 상기 균주 또는 효소가 고정화된 담체에 과당을 접촉시키는 단계에 의하여 수행될 수 있다. 이와 같이 고정화 효소 또는 균체를 과당-함유 기질과 반응시킴으로써 과당을 사이코스로 전환하여 과당으로부터 사이코스를 생산할 수 있다.
상기 사이코스 생산방법에 있어서, 상기 반응은 pH 6 내지 9.5, 예컨대, pH 7 내지 9, pH 7 내지 8 또는 pH 8 내지 9의 조건 하에서 수행될 수 있다.
또한, 상기 반응은 30℃ 이상, 예컨대 40℃ 이상의 온도 조건 하에서 수행될 수 있다. 온도가 80℃ 이상이 되면 기질인 과당의 갈변 현상이 일어날 수 있으므로, 상기 반응은 40 내지 80℃, 예컨대, 50 내지 75℃, 60 내지 75℃, 또는 68 내지 75℃의 조건 하에서 수행될 수 있다.
상기 반응 시간이 길수록 사이코스 전환률이 높아지며, 반응시간 짧아지면 생산성이 좋아진다. 예컨대, 상기 반응 시간은 0.5시간(30분)이상, 1시간 이상, 2시간 이상, 3시간 이상, 4시간 이상, 5시간 이상 또는 6시간 이상으로 하는 것이 좋다. 반응시간이 48시간을 넘어가면 사이코스 전환률의 증가율이 미미하거나 오히려 감소하므로, 반응시간은 48시간을 넘기지 않는 것이 좋다. 따라서 상기 반응 시간은 0.5 내지 48시간, 1 내지 48시간, 2 내지 48시간, 3 내지 48시간, 4 내지 48시간, 5 내지 48시간, 또는 6 내지 48시간으로 할 수 있으며, 산업적 및 경제적 측면을 고려하여, 0.5 내지 48시간, 0.5 내지 36시간, 0.5 내지 24시간, 0.5 내지 12시간, 또는 0.5 내지 6시간 정도로 할 수 있으나, 이에 제한되는 것은 아니다. 상기 조건은 과당에서 사이코스로의 전환 효율이 최대화되는 조건으로서 선정된 것이다.
상기 과당을 사이코스로 전환시키는 효소(예컨대, 에피머레이즈)는 금속 이온에 의하여 활성화가 조절될 수 있으므로, 상기 사이코스 생산에 있어서, 금속 이온을 첨가하면 과당에서 사이코스로의 전환 효율, 즉 사이코스 생산률이 증가될 수 있다.
따라서, 상기 코리네박테리움속 균주를 포함하는 사이코스 생산용 조성물은 금속 이온을 추가로 포함하는 것일 수 있다. 또한, 상기 코리네박테리움속 균주를 이용한 사이코스 생산 방법은 금속 이온을 첨가하는 단계를 추가로 포함할 수 있다. 일 구현예에서, 상기 금속 이온은 상기 배양 단계의 배양 배지에 첨가되거나, 상기 배양 단계가 상기 금속 이온이 첨가된 배양 배지에서 수행되는 것일 수 있다. 다른 구현예에서, 상기 금속 이온은 과당에 첨가되거나, 상기 코리네박테리움속 균주가 고정화된 담체에 첨가되거나(과당 첨가 전), 상기 코리네박테리움속 균주가 고정화된 담체와 과당과의 혼합물에 첨가되거나(과당 첨가 후), 또는 과당 첨가시에 과당과 혼합물의 형태로 또는 각각 첨가될 수 있다.
상기 금속 이온은 구리 이온, 망간 이온, 칼슘 이온, 마그네슘 이온, 아연 이온, 니켈 이온, 코발트 이온, 철 이온, 알루미늄 이온 등으로 이루어진 군에서 선택된 1종 이상일 수 있다. 예컨대, 상기 금속 이온은 망간 이온, 마그네슘 이온, 니켈 이온 및 코발트 이온 등으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 일 예에서 상기 금속 이온은 망간 이온, 코발트 이온, 또는 이들의 혼합물일 수 있다. 상기 금속 이온의 첨가량이 0.5mM 미만인 경우에는 사이코스 생산 수율 증진 효과가 미미하므로, 상기 금속 이온의 첨가량은 0.5mM 이상으로 할 수 있다. 한편, 상기 금속 이온의 첨가량이 5mM을 초과하면 그 초과량에 비하여 효과가 미미하기 때문에, 상기 금속 이온의 첨가량은 5mM 이하로 할 수 있다. 예컨대, 상기 금속 이온의 첨가량은 0.5mM 내지 5mM, 예컨대, 0.5 mM 내지 2mM 범위로 할 수 있다.
본 발명에 따른 사이코스 생산용 효소 또는 균체를 담체에 고정화하여 사용하는 경우, 상기 담체는 고정된 균주, 또는 상기 균주로부터 생산되는 효소의 활성이 장기간 유지될 수 있는 환경을 조성할 수 있는 것으로, 효소 고정화 용도로 사용할 수 있는 공지된 모든 담체일 수 있다. 예컨대, 상기 담체로서 알긴산나트륨(soduim alginate)을 사용할 수 있다. 알긴산나트륨은 해조류의 세포벽에 풍부하게 존재하는 천연 콜로이드성 다당류로, 만누로닉산(β-D-mannuronic acid)과 글루로닉산(α-L-gluronic acid)이 조성되어 있고, 함량면에서는 무작위로 베타-1,4 결합을 이루어 형성되어, 균주 또는 효소가 안정적으로 고정되어 우수한 사이코스 수율을 나타내는 데 유리할 수 있다.
일 구체예에서, 사이코스의 수율을 보다 증진시키기 위하여 1.5 내지 4.0%(w/v) 농도의 알긴산나트륨 용액(예컨대, 알긴산나트륨 수용액), 예컨대 약 2.0%의 (w/v) 농도의 알긴산나트륨 용액을 균주의 고정화에 사용할 수 있다. 예컨대, 균주의 균체, 상기 균주가 생산한 효소를 포함하는 배양액, 또는 상기 균주의 파쇄물의 1 내지 2 부피배의 알긴산나트륨 수용액에 상기 균주의 균체, 상기 균주가 생산한 효소를 포함하는 배양물, 또는 상기 균주의 파쇄물을 첨가하여 혼합한 후, 상기 얻어진 혼합액을 주사기 펌프와 진공 펌프를 사용하여 약 0.2M 칼슘 이온 용액에 떨어뜨려 비드가 생성되도록 함으로써, 알긴산나트륨 담체에 균주의 균체, 상기 균주가 생산한 효소를 포함하는 배양물, 또는 상기 균주의 파쇄물이 고정화시킬 수 있다. 상기 효소는 상기 균주, 균주 배양물 또는 상기 균주의 파쇄물로부터 통상의 방법, 예컨대 투석, 침전, 흡착, 전기영동, 친화 크로마토그래피, 이온교환 크로마토그래피 등의 방법에 의하여 정제된 것일 수 있다.
상기 균체 또는 효소가 담지된 담체, 예를 들면 비드는 압축처리하여 비드 크기를 감소시키고 팽윤을 감소시켜 사이코스 생산량을 증가시키고, 장기간 안정적으로 사용할 수 있는 사이코스 생산용 비드일 수 있다.
일 예는 사이코스 생산 효소 또는 균체와 담체로서 알긴산 또는 이의 염을 포함하는 압축처리된 압축 비드로서, 압축처리전 비드의 평균입경 100을 기준으로 압축 비드의 평균입경이 62 내지 100인 사이코스 생산용 비드일 수 있다. 압축 비드는 액상 기질과 반응시 팽윤현상이 감소하며, 구체적으로 비드 평균입경의 팽윤율이, 액상기질과 접촉전 비드 입경의 팽윤율 100을 기준으로, 100 내지 155일 수 있으며, 예를 들어 100 내지 130, 또는 100 내지 125 등일 수 있다.
본 발명에 따른 압축 비드를 제조하는 방법은 금속 이온 처리 방법과 금속 이온 처리 및 팽윤 억제제로 코팅하는 방법, 및 동결건조법을 포함할 수 있다. 상기 금속이온은 비드 압축처리는, Mn2 +, Zn2 +, Co2 +, Mg2 +, Ni2 +, Fe2 +, 및 Cu2 + 로 이루어지는 군에서 선택된 1종 이상의 2가 금속이온일 수 있으며, 팽윤 억제제는 키토산, 키틴, 폴리에틸렌글리콜(PEG), 폴리에틸렌이민(PEI), 키토-올리고당(Chito-oligosaccharide) 및 폴리라이신으로 이루어지는 군에서 선택되는 1종 이상일 수 있다. 상기 동결건조법은 -90℃ 내지 -10℃ 온도 범위에서 동결하고, 10 mtorr 미만의 압력하에서 -40℃ 내지 20℃ 온도범위에서 건조하여 수행될 수 있다.
금속 이온 처리 방법 또는 금속 이온 처리 및 팽윤 억제제로 코팅하는 방법으로 압축 처리를 수행한 비드의 경우, 압축 비드의 바람직한 함수율은 50 내지 88 %일 수 있다. 또한 동결건조법으로 제조된 압축 비드의 경우 바람직한 함수율은 10 내지 50 %일 수 있다.
본 발명은 상기 제조방법에 따라 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물로부터 분리 공정을 수행하여 액상 또는 분말상 사이코스를 제조하는 방법에 관한 것이다.
구체적인 일예는, 본 발명에 따라 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물을 제조하고;
생산된 사이코스-함유 생산물을 탈색 또는 탈염하고;
상기 탈색물 또는 탈염물을, 사이코스의 고형분 함량 75 Brix (%) 이상으로 농축하는 단계를 포함하는, 사이코스-함유 액상 제품을 얻는 사이코스의 제조방법에 관한 것이다.
또다른 일예로서, 본 발명에 따라 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물을 제조하고;
상기 사이코스-함유 생산물을 탈색 또는 탈염하고;
상기 탈색물 또는 탈염물을 고순도 분리장치를 이용하여 분리하여 사이코스 함량 90% 이상의 사이코스 분획과 사이코스 함량 5% 이하의 당 조성을 가지는 라피네이트 분획을 분리하고;
분리된 사이코스 분획을 농축하고;
농축물을 사이코스의 과포화 상태로 사이코스를 결정화하고;
결정화된 사이코스를 탈수시켜 결정 모액과 분리하고 건조하는 단계를 포함하는, 사이코스-함유 분말의 제조방법에 관한 것이다.
본 발명의 방법에 의하여 과당으로부터 수득된 사이코스-함유 생산물은 통상적인 방법에 의해 탈염, 탈색, 농축, SMB 크로마토그래피를 이용한 고순도 분리 정제, 결정화, 원심분리, 여과 등의 하나 이상의 방법에 의하여 이루어질 수 있다. 상기 결정화 단계는 사이코스를 과포화상태로 만들어 결정화할 수 있으며, 과포화상태에 도달하는 방법의 일예는 사이코스 함유 용액을 냉각하는 방법이 있으나 이에 한정되는 것은 아니다.
SMB 크로마토그래피를 이용한 정제 단계에 사용되는 SMB의 기본 원리는 칼럼 사이의 위치를 일정 시간 간격으로 움직임으로써 고정상과 이동상의 향류의 흐름을 모사하고 연속적인 분리를 가능하게 하는 것이다. 흡착제와 친화력이 약해서 빨리 움직이는 물질은 액상의 흐름 방향으로 움직여서 분리된 고순도 사이코스를 포함하는 분획으로 모이고 흡착제와 친화력이 강해서 느리게 움직이는 물질은 고정상의 흐름 방향으로 움직여서 분리된 사이코스 함량 5% 이하의 당 조성을 가지는 라피네이트 분획으로 모인다. 칼럼은 연속적으로 연결되어 있으며 입구는 혼합물과 이동상, 출구는 고순도 사이코스 분획과 낮은 함량의 사이코스를 포함하는 분획으로 구성된다. SMB는 보통 4개의 구역으로 구성되며 입구와 출구의 위치에 따라 구분된다. SMB 기술은 연속적인 분리가 가능하며 회분식 분리공정에 비해 고농도 및 고수율의 생산물을 얻을 수 있다. SMB 실험은 분리하고자 하는 각 물질의 흡착도, 확산 및 분산 등의 기본적인 인자를 고려하여 구체적 조건을 설정하여 수행할 수 있다.
상기 분획된 고순도 사이코스와 분리된 사이코스 함량 5% 이하의 당 조성을 가지는 라피네이트 분획을 분리하여, 연속적으로 사이코스를 제조할 수 있다.
본 발명은 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물의 제조방법 및 상기 방법으로 얻어진 사이코스-함유 생산물을 분리하여 액상 또는 분말상의 사이코스를 연속적으로 제조하는 방법으로서, 산업적 규모로 단시간 내에 높은 생산성으로 사이코스를 얻을 수 있는 장점이 있다.
도 1은 본 발명의 일실시예에 따라 사이코스 생산 세포를 포함하는 비드가 충진된 고정화 반응을 이용한 사이코스 생산에서, 액상 과당 함량이 75% 내지 95% 범위, 포도당과 사이코스의 합계 함량이 5% 내지 20% 미만인 범위에서의 칼럼 유속에 따른 반응물내 사이코스 함량 변화를 나타내는 그래프이다.
도 2는 본 발명의 일실시예에 따라 사이코스 생산 세포를 포함하는 비드가 충진된 고정화 반응을 이용한 사이코스 생산에서, 액상 과당 함량이 75% 내지 95% 범위, 포도당과 사이코스 의 합계 함량이 5% 내지 20% 미만(%) 범위에서의 칼럼 유속에 따른 반응물 내 사이코스 함량 변화를 나타내는 수식이다.
도 3은 본 발명의 사이코스 시럽 제조를 위한 발현 재조합 벡터(pCES_sodCDPE)의 일예를 도시한 도면이다.
도 4는 본 발명의 일실시예에 따른 사이코스 생산 절차를 나타내는 공정도이다.
실시예 1: 사이코스의 제조 시스템 확립
1-1: 사이코스 생산 균주의 제조
크로스트리디움 신댄스(Clostridiuim scindens ATCC 35704)로부터 유래된 사이코스 에피머화 효소의 암호화 유전자(DPE gene; Gene bank: EDS06411.1)를, 대장균에 최적화하여 변형한 형태의 폴리뉴클리오티드로 합성하고 CDPE라 명명하다. 대장균에 최적화된 폴리뉴클리오티드와 pET21a 벡터로부터 확보한 sod 프로모터와 T7 터미네이터를 피씨알을 통해 각각의 주형으로 확보하였고, 이를 오버랩 피씨알(PCR) 법으로 하나의 주형으로 연결하여 T-vector cloning을 통해 pGEM T-easy vector에 클로닝하여, sod 프로모터(서열번호 1), 서열번호 8의 최적화 CDPE 서열 및 T7-터미네이터를 포함하는 폴리뉴클레오티드의 서열을 확인하였다.
상기 확인된 전체 폴리뉴클레오티드를 제한효소 NotI과 XbaI(NEB)을 사용하여 발현벡터인 pCES208(J. Microbiol. Biotechnol., 18:639-647, 2008)의 동일한 제한효소 부위에 삽입하여 재조합 벡터 pCES208/사이코스 에피머화 효소(pCES_sodCDPE)를 제조하였다. 상기 제조된 재조합 벡터(pCES_sodCDPE)의 개열지도를 도 1에 개시하였다.
상기 제조된 재조합 벡터(pCES_sodCDPE) 플라스미드를 전기천공법(electroporation)을 사용하여 코리네박테리움 글루타리쿰을 형질전환시켰다. 콜로니를 picking하여 카나마이신(Kanamycin)을 최종농도 15ug/ml로 첨가한 LB 배지(트립톤 10g/L, NaCl 10g/L, 효모 추출물 5g/L) 4ml에 접종한 후, 배양조건 30℃ 및 250rpm에서 약 16시간 동안 배양하였다. 그리고 나서 상기 배양액 중 1ml을 수득하여 15ug/ml의 카나마이신을 포함하고 있는 100ml LB 배지에 접종하여 본 배양을 16시간 이상 진행하였다. Beadbeater를 이용하여 배양한 세포를 용해(lysis)시킨 후 상등액만 취득하여 샘플버퍼와 1 : 1로 혼합 후 100℃에서 5분간 가열한다. 준비한 샘플은 12% SDS-PAGE gel (조성: running gel - 3.3 ml H2O, 4.0 ml 30% acrylamide, 2.5 ml 1.5M Tris buffer(pH 8.8), 100 ㎕ 10% SDS, 100 ㎕, 10% APS, 4 ㎕ TEMED / stacking gel - 1.4 ml H2O, 0.33 ml 30% acrylamide, 0.25 ml 1.0M Tris buffer(pH 6.8), 20 ㎕ 10% SDS, 20 ㎕ 10% APS, 2 ㎕ TEMED)에 180V로 약 50 분 동안 전기영동하여 단백질 발현을 확인하였다. CDPE의 발현을 SDS-PAGE gel상에서 확인 후 정확한 발현량의 측정을 위해 Ni-NTA resin을 이용한 His-tag정제 진행하여, 계산식(발현율(%) = (Purified protein(mg) / Total soluble protein(mg)) * 100)을 이용하여 발현율 계산하였다. 상기 제조된 형질전환 코리네박테리움 글루타리쿰은 전체 수용성 단백질을 16.62 mg 및 정제된 효소 단백질 1.74 mg을 생산하였다.
1-2: 고정화 비드 제조
제조예 1-1에서 얻어진 사이코스 에피머화 효소를 생산하는 재조합 균주를 이용하여 과당으로부터 사이코스를 제조하고자, 균주 배양에서 원심분리로 세포를 회수하였다.
그런 후에 상기 세포 현탁액에 최종 부피에 유화제(Ryoto(tkSugar Ester, M-1695)를 0.05% (w/v) 처리하여 35 ℃(±5℃)에서 60 분간 처리하였다. 반응이 완료된 균체는 다시 원심분리기를 이용하여 유화제가 포함된 상등액은 제거한 뒤 균체를 회수하였다.
고정화 비드 제조를 위하여, 상기 회수된 균체는 증류수와 혼합하여 최종 균체 농도 5% (w/v)로 맞추고, 물에 용해된 4% (w/v) 알긴산과 회수된 균체 5%(w/v)를 1:1로 혼합하고, 혼합시 생성된 기포를 제거하기 위해 4 ℃에서 냉장 보관하였다. 상기 냉장 보관된 혼합액은 Neddle (내경 0.20~0.30mm)을 통해 혼합액이 사출되어 방울 형태로 형성되며 무게에 의해 낙하하게 되며, 낙하 된 혼합액은 미리 제조된 100mM 염화칼슘 (CaCl2) 용액으로 떨어뜨려 경화시켜 구형 또는 타원형의 비드를(지름 2.0~2.2mm) 형성하였다. 상기 형성된 비드들은 100mM 염화칼슘 용액에 담그어 교반기에 의해 골고루 섞어지면서 더욱 경화되도록 하였다.
상기 혼합액이 모두 사출된 후에, 4~6시간 냉장 보관하면서 비드를 더욱 경화시킨 뒤에 새로운 100mM 염화칼슘 용액과 교체하여 냉장 상태에서 약 6시간 정도 경화를 시켰다. 경화가 완료된 비드는 걷어내 물기를 완전히 제거한 후, 비드 부피 대비 3배 부피의 물을 투입한 후 10분간 교반하고, 이러한 과정을 3회 처리하여 염화칼슘 용액을 제거하였다. 세척된 비드들은 물기를 완전 제거한 후, 과당 함유 기질 (1mM MnCl2.4H2O 포함 중량 50brix 과당 함유 기질) 비드 부피 대비 3 배 부피로 투입한 후 10분간 교반하고, 이러한 처리를 2회 이상 처리하여 반응 기질로 사용되는 과당 함유 기질로 교체하였다. 반응 기질은 pH 6.8~7.2로 3N NaOH에 의해 조절되며, 생산물의 종류에 따라 액상 과당 또는 결정 과당이 반응 기질이 될 수 있다.
반응 기질로 교체된 비드들은 고정화 반응 컬럼에 충진 후 사이코스 시럽 생산에 이용하였다.
1-3: 사이코스 시럽의 제조
실시예 1-2에서 제조된 비드들을 고정화 반응 컬럼에 충진 후, 하기와 같은 반응조건으로 사이코스 시럽을 생산하였다. 하기 고정화 반응 컬럼에, 반응기질 용액이 50% 고형분을 포함하고, 고형분 50% (w/w)이상의 과당을 함유 기질 (pH 6.8~7.2)의 전체 당류의 고형분 100 중량% 중, 과당 88.8 중량% 및 포도당 4.8 중량%를 포함하며, 전체 당류의 고형분 함량이 100 중량%일 때, 과당의 함량이 88.8 중량% 이상의 중량%로 포함하는 원료를 제공하여 두 가지 조성의 혼합당인 사이코스 시럽을 제조하였다.
<고정화 컬럼 반응조건>
(1)반응 온도: 컬럼 자켓 내부 온도 50℃
(2)반응 기질: 고형분 50% (w/w)이상의 과당 함유 기질 전체 고형분 중 과당 88.8중량%와 포도당 4.8 중량%를 포함하며 이외 DP(Degree of Polymerization)이 1 이상의 당류 6.4 중량% 미만 함유 기질
(3)생산 기준: 생산물내 전체 당류의 고형분 함량 100 중량% 중 사이코스 함량 24 중량% 시럽 생산.
상기 반응결과, 반응액으로부터 포도당:과당:사이코스:올리고당의 중량비로 포도당:과당:사이코스:올리고당=5:65:24:6인 24(w/w)% 사이코스 시럽을 수득하였다.
실시예 2: 반응유속증가에 따른 사이코스 생산
실시예 1-2에서 제조된 비드를 고정화 반응 컬럼에 충진 후, 하기와 같은 반응조건으로 컬럼 유속별 사이코스 시럽의 생산량을 각 유속 증가비에 따라 컬럼 부피 5배수의 반응 기질을 1시간 동안 통액하여 컬럼 내의 사이코스 함량(%)이 안정화된 지점에서 비교하였다. 반응기질 용액이 50% (w/w)의 고형분을 포함하고, 전체 당류의 고형분 함량이 100 중량%일 때, 과당의 함량이 88.8 중량% 및 포도당 4.8 중량%로 포함하는 원료를 공급하였다.
상기 당 함량 분석은 Biorad사의 Aminex HPX-87C 컬럼 (80?)을 사용하여 물 용매를 0.6ml/min 유속으로 적절히 희석된 샘플을 10?l 주입하여 RI로 검출하였으며, 분석 시간 30분 이내에 과당, 사이코스 및 기타 DP 1 이상의 당류들이 적분되어져 각 면적을 분석하였다. 또한, 각 당류 조성별 함량을 분석하기 위해 분석 시간 30분 이내에 나타난 과당, 사이코스 및 기타 DP1 이상 당류의 전체 면적을 합한 값을 100으로 하였을 때, 각 당류 조성별 면적에 해당 하는 값을 각 당류의 함량으로 분석하였다.
<고정화 컬럼 반응조건>
(1) 반응 온도: 컬럼 자켓 내부 온도 50 ℃
(2) 반응 기질: 고형분 50% (w/w)이상의 과당 함유 기질 (pH 6.8~7.2) 전체 당류의 고형분 100 중량% 중 과당 88.8 중량% 및 포도당 4.8 중량%를 포함하며, 이외 DP 1이상의 당류 6.4% 미만으로 함유하는 기질로서, 과당, 포도당 및 사이코스의 합계 함량 100 중량%를 기준으로 환산하면, 원료 기질내 과당의 함량이 94.9% 및 포도당 5.1 %로 포함하는 원료임,
(3) 컬럼 유속: 실시예 1에서 생산물내 전체 당류의 고형분 함량 100 중량% 중 사이코스 함량 25 중량% 이상의 시럽을 생산하는 반응유속 1을 기준하여, 반응유속을 1 내지 20배로 증가시켜 반응을 진행하면서, 유속 증가비에 따른 생산물내 사이코스 함량 평가,
(4) 생산 기준: 생산물내 과당, 포도당 및 사이코스의 합계 함량이 100 중량%일 때, 포도당 및 사이코스의 합계 함량이 9 중량% 이상 ~ 20 중량% 미만 범위.
상기 실험결과를 하기 표 2와 도 1에 나타냈다. 표 2에는 생산물내 전체 당류의 고형분 함량중, 과당, 포도당 및 사이코스의 합계를 100중%를 기준으로 각 당류의 함량을 나타낸 것이다.
유속 증가비 과당 함량(중량%) 사이코스 함량(중량%) 포도당함량(중량%) 사이코스, 포도당합계 함량(중량%)
반응전 기질 94.9 0 5.1 5.1
1 67.8 27.1 5.1 32.2
2 69.7 25.2 5.1 30.3
4 73.5 21.4 5.1 26.5
6 76.7 18.2 5.1 23.3
8 79.6 15.3 5.1 20.4
10 81.8 13.1 5.1 18.2
12 83.8 11.1 5.1 16.2
16 87.5 7.4 5.1 12.5
20 90.3 4.6 5.1 9.7
표 2에 나타낸 바와 같이, 반응 기질에 포함된 과당, 포도당 및 사이코스의 합계 고형분 함량이 100중량%일 때, 과당의 함량이 94.9% 및 포도당 5.1 %로 포함하는 원료를 사용하였으며, 이중 과당이 사이코스로 전환되므로 전환반응이 진행되면서 포도당 함량은 5.1 %로 동일하고, 기질인 과당 함량 94.9 %는 점차 감소하면서 사이코스 함량이 증가하였다.
컬럼 유속의 증가에 따라 사이코스 전환율은 점차 감소하여 표 2의 사이코스 함량 27.1% 생산 유속 대비 20배 증가 유속에서 반응시 사이코스 함량 4.6% 를 나타내며, 유속을 실시예 1의 사이코스 함량 25% 생산 유속 대비 10배 증가 유속으로 반응하였을 때 포도당과 사이코스의 합계 함량이 20 중량% 미만의 시럽 조성물이 생산되었다.
표 2의 컬럼 유속별 사이코스 함량 변화를 도 1에 도시하여 컬럼 유속 증가율에 따른 반응물내 사이코스 함량의 변화를 나타냈다.
도 2에 나타난 바와 같이, 상기 수식에 컬럼 유속 수치를 대입하였을 때, 생산물의 과당, 포도당 및 사이코스 합의 함량이 100 중량%일 때 포도당과 사이코스의 합계 고형분 함량이 9.7 중량% 이상 ~ 20 중량% 미만으로 포함되는 시럽 조성물의 생산 조건은 실시예 1의 사이코스 함량 25 중량% 생산 유속의 8.5 내지 20배에서 조절이 가능한 것을 알 수 있었다. 이러한 결과는 실시예 1에서 25 중량% 사이코스 시럽 생산 조건에서 사용된 컬럼 유속 보다 약 10배 증가한 유속으로서, 포도당 포함 사이코스 함량 20 중량% 미만의 시럽 조성물 생산에 사용 가능한 컬럼 유속은, 실시예 1의 25% 사이코스 시럽 생산 유속에 비해 약 8.5배 증가한 결과이다.
또한, 도 2의 수식을 이용하여 상기 고정화 컬럼 반응 조건으로 컬럼 유속 이 10배 증가된 반응에서 생산이 완료된 생성물의 함량을 분석한 결과, 전체 당류 고형분 함량 100중량%을 기준으로 과당 76.5 중량%, 사이코스 12.3 중량%, 포도당 4.8 중량% 및 DP1 이상의 당류 6.4%을 함유하는 조성물을 얻었으며, 이를 과당, 포도당 및 사이코스의 합계 함량이 100 중량%로 환산하면, 사이코스와 포도당 함량의 합이 18.2 중량%로 생산할 수 있었다.
실시예 3: 반응의 안정성평가
실시예 1-2에서 제조된 비드들을 고정화 반응 컬럼에 충진 후, 실시예 2에서 실시한 반응조건과 동일한 과당-함유 기질을 사용하였다.
도 2의 수식을 이용하여, 생산물에 포함된 당류 중 과당, 포도당 및 사이코스의 합계 함량이 100 중량%일 때 사이코스와 포도당의 합계 함량이 20 중량% 미만의 컬럼 유속 구간 중 유속을 선정하여 고정하고 반응 일수에 따른 생산물내 사이코스의 함량 변화를 측정하였다. 구체적으로, 실시예 1의 전체 당류의 고형분 함량 100 중량% 중 사이코스 함량 25 중량% 이상 생산 유속 보다 8.5배 높은 유속으로 고정하여, 15일 동안 반응하여 생산물내 사이코스의 함량 변화를 측정한 결과를 하기 표 3에 나타냈다.
<고정화 반응조건>
(1)반응 온도: 50℃
(2)반응 기질: 실시예 2의 반응기질과 동일함
(3) 컬럼 조건: 실시예 1의 전체 당류의 고형분 함량 100 중량% 중 사이코스 함량 25 중량% 이상 생산 유속 대비 8.5배 증가 유속
(4) 생산 기준: 생산물 내 과당, 포도당 및 사이코스의 합계 함량이 100 중량%일 때 포도당 및 사이코스의 합계 함량이 15 중량%이상 ~ 20미만 중량% 범위
반응 일수(일) 과당함량 (wt%) 사이코스 함량 (wt%) 사이코스와 포도당 합계 함량 (wt%)
0 80.5 14.4 19.5
1 80.1 14.8 19.9
2 80.1 14.8 19.9
4 80.1 14.8 19.9
6 80.1 14.8 19.9
8 80.1 14.8 19.9
9 80.2 14.7 19.8
12 80.3 14.6 19.7
13 80.5 14.4 19.5
14 80.6 14.3 19.4
15 80.7 14.2 19.3
표 3에 나타낸 바와 같이, 높은 반응 유속에서 15일간 반응 동안 생산물내 사이코스 함량을 살펴보면, 생산물에 포함된 과당, 포도당 및 사이코스의 합계 함량이 100 중량%일 때 사이코스 함량 10 중량% 이상 내지 15중량% 미만이고, 사이코스와 포도당 합계 함량이 15 중량% 이상 내지 20 중량% 미만의 조성물을 15일 동안 안정적으로 생산될 수 있었다.
실시예 5: 사이코스의 연속 재순환 생산
생산물내 함유된 과당, 포도당 및 사이코스의 합계 함량이 100 중량%일 때, 포도당 및 사이코스의 합계 함량 20 중량% 미만인 사이코스 시럽을 연속적으로 생산하고, 상기 생산물로부터 사이코스를 분리하는 공정과 과당 라피네이트 분획으로 분리하여, 연속 생산 공정으로 사이코스 생산 시스템을 수립하였다.
구체적으로, 생산물내 함유된 과당, 포도당 및 사이코스의 합계 함량이 100 중량% 기준으로 포도당 및 사이코스 함량 20 중량% 미만으로 생산되는 조건으로 사이코스 전환반응 컬럼의 유속을 조절하여 사이코스 전환 반응을 수행하고, 고순도 분리 공정를 이용하여 사이코스-함유 생산물로 부터 사이코스 순도 90% 이상의 분획과 과당이 다량 함유된 라피네이트 분획을 분리하였다.
상기 사이코스 생산의 전체 반응공정의 모식도를 도 4에 나타냈으며, 상기 도시된 공정은 생산 품질 또는 생산 공정에 따라 삽입 또는 배제할 수 있다. 자세한 생산 공정은 하기와 같다.
고형분 중량 75 Brix(%) 액상 과당(전체 고형분 함량이 100 중량%일 때, 과당의 함량이 88.8 중량% 함유)에 물을 첨가하여 고형분 중량 50 Brix (%)로 맞춘 후, 5N NaOH를 첨가하여 pH 7.0으로 조절하여 반응 원료를 제조하였다. 상기 반응 원료를 제조예 1-2에서 제조된 균체 고정화 비드가 채워진 반응 컬럼(50℃ 항온)으로 공급하고, 실시예 3과 실질적으로 동일한 방법으로 반응 원료의 과당이 사이코스로 전환되어 반응 원료의 과당, 포도당 및 사이코스 합의 함량이 100 중량%일 때, 포도당 및 사이코스 함량 20중량% 미만 함유 시럽을 생산하였다.
상기 생산된 사이코스 시럽을 분리하는 공정으로서, 생산된 사이코스 함유 시럽을 시럽내 고형분 함량 대비 0.05%(w/w)의 활성탄을 시럽에 첨가하여 50℃에서 30분간 탈색하고, 탈색이 완료된 사이코스 함유 시럽을 미세 여과기를 통과시켜, 활성탄을 제거하였다.
활성탄이 제거된 상기 사이코스 함유 시럽을 이온 성분 등의 불순물을 제거하기 위해 양이온 교환수지, 음이온 교환수지 및 양이온과 음이온교환수지가 혼합된 수지로 충진된 상온의 컬럼에 시간 당 이온교환수지 2배(1~2배)부피의 속도로 통액시켜 탈염시켰다. 칼슘(Ca2 +) 타입의 이온교환수지로 충진된 SMB (simulated moving bed)에서 사이코스:과당의 분리 비율이 0.7:1, 유속 0.06SV으로 사이코스 전환 반응에 사용된 원료의 총 고형분 중량이 1일 때 0.15 비율로 사이코스를 분리하여 순도 96%의 고순도 사이코스 분획을 고형분 함량 4 Brix (%)로 수득하였다. 이동상은 식품으로 사용되기 위한 목적이므로 3차 증류수를 사용하였다.
동시에 고순도 사이코스 분획 이외 조성물의 함량이 포도당 5.5%, 과당 83.9%, 사이코스 3.4%, 기타 당류 4.2%을 포함하는 라피네이트 분획을 사이코스 전환 반응에 사용된 원료의 총 고형분 중량이 1일 때 0.85 비율로 수득하였다. 상기 분획된 라피네이트는 사이코스 전환반응의 과당-함유 기질로 이송되어 고형분 함량 50 Brix (%)로 맞춘 후, 5N NaOH를 첨가하여 pH 7.0으로 조절, 반응 컬럼으로 공급되어 재순환되어 사이코스 전환 반응을 수행하였다.
상기 SMB에서 분리된 고순도 사이코스는 저장조로 이송되어, 60℃에서 고형분 중량 80 Brix (%)이상으로 농축시키고, 농축된 과포화 상태의 사이코스 시럽을 냉각 결정 방법으로 사이코스 결정을 생성시키고, 원심 탈수 후, 건조하는 방식으로 최종적으로 순도 99% 사이코스 분말을 81% 수율로 수득하였다.

Claims (17)

  1. 사이코스 생산용 생촉매를 이용한 고정화 반응으로 과당-함유 기질로부터 사이코스-함유 생산물을 제조하는 방법으로서,
    상기 생촉매는 50 내지 60 반응 온도에서 1시간 이내에 과당-함유 기질로부터 사이코스 전환율이 4% 내지 29% 인 것이고,
    상기 고정화 반응은, 사이코스-함유 생산물내 포함된 전체 당류의 고형분 함량 100중량% 중 사이코스 함량 25 중량% 이상으로 생산하는 반응유속 1을 기준으로, 8.5 내지 20의 반응유속으로 수행하며,
    상기 사이코스-함유 생산물은, 생산물내 포함된 사이코스, 포도당 및 과당의 고형분 함량 100 중량%를 기준으로, 사이코스 및 포도당의 고형분 함량이 20 중량% 미만인 사이코스-함유 생산물을 제조하는 방법.
  2. 당 및 사이코스의 합계 고형분 함량 100 중량%를 기준으로, 사이코스 및 포도당의 고형분 함량이 9 중량% 이상 내지 20 중량% 미만이 되도록 수행되는 것인 방법.
  3. 제 1 항에 있어서, 상기 고정화 반응은 사이코스-함유 생산물내 포함된 전체 당류의 고형분 함량 100중량% 중 사이코스 함량 25 중량% 이상으로 생산하는 반응유속 1을 기준으로, 10 내지 18의 반응유속으로 수행하는 것인 방법.
  4. 제 1 항에 있어서, 상기 고정화 반응은 사이코스-함유 생산물내 과당, 포도당 및 사이코스의 합계 함량 100 중량%를 기준으로, 사이코스 및 포도당의 합계 고형분 함량이 9 중량% 이상 내지 20 중량% 미만이고, 과당 함량이 80 중량% 내지 91 중량%인 방법.
  5. 제 1 항에 있어서, 상기 과당-함유 기질은 기질내 전체 당류의 고형분 함량 100 중량% 중 75 중량% 내지 95 중량%의 과당을 함유하는 것인 방법.
  6. 제 1 항에 있어서, 상기 고정화 반응은 과당-함유 기질로부터 사이코스 전환율이 20 내지 29%을 갖는 사이코스 생산용 생촉매와, 과당-함유 기질내 전체 당류의 고형분 함량 100 중량% 중에서 80 중량% 내지 95중량%의 과당을 함유하는 기질을 이용하여 수행하는 것인 방법.
  7. 제 1 항에 있어서, 상기 과당-함유 기질은 이성화당 시럽인 방법.
  8. 제 1 항에 있어서, 상기 생촉매는 사이코스 생산용 효소 또는 사이코스 생산 균체인 방법.
  9. 제 1 항에 있어서, 상기 고정화 반응은 사이코스 생산용 효소 또는 사이코스 생산 균체를 함유하는 비드가 충진된 고정화 칼럼를 사용하는 것인 방법.
  10. 제 9 항에 있어서, 상기 고정화 반응은 균체 또는 효소가 함유된 비드를 2가 금속이온으로 처리하고, 키토산, 키틴, 폴리에틸렌글리콜(PEG), 폴리에틸렌이민(PEI), 키토-올리고당(Chito-oligosaccharide) 및 폴리라이신으로 이루어지는 군에서 선택되는 1종 이상의 팽윤 억제제로 코팅된 비드를 사용하는 것인 방법.
  11. 제 9 항에 있어서, 상기 고정화 반응은 사이코스 생산용 효소 또는 사이코스 생산 균체를 함유하는 비드를 동결건조하여 압축처리된 비드를 사용하는 것인 방법.
  12. 제 8 항에 있어서, 상기 사이코스를 생산하는 균체는 사이코스 에피머화 효소의 유전자로 형질전환된 코리네박테리움 균주인 방법.
  13. 제 12 항에 있어서, 상기 코리네박테리움속 균주는, 코리네박테리움 글루타미쿰, 코리네박테리움 아세토글루타미쿰 (acetoglutamicum), 코리네박테리움 아세토아시도필룸 (acetoacidophilum), 코리네박테리움 써모아미노제네스 (thermoaminogenes), 코리네박테리움 멜라쎄콜라 (melassecola) 및 코리네박테리움 에피시엔스 (efficiens)로 이루어지는 군에서 선택된 1종 이상의 코리네박테리움속 균주인 방법.
  14. 제 8 항에 있어서, 상기 사이코스를 생산하는 균체는 사이코스 에피머화 효소를 생산하는 균주인 방법.
  15. 제 1 항에 있어서, 상기 고정화 반응은 40 내지 80 ℃에서 0.5 내지 48시간 동안 수행되는 것인 방법.
  16. 제1항 내지 제15항중 어느 한 항의 방법에 따라 사이코스-함유 생산물을 얻고,
    생산된 사이코스-함유 생산물을 탈색 또는 탈염하고,
    상기 탈색물 또는 탈염물을, 사이코스의 고형분 함량 75 Brix (%) 이상으로 농축하는 단계를 포함하는, 사이코스-함유 액상 제품을 얻는 사이코스의 제조방법.
  17. 제1항 내지 제15항중 어느 한 항의 방법에 따라 사이코스-함유 생산물을 얻고,
    생산된 사이코스-함유 생산물을 탈색 또는 탈염하고,
    상기 탈색물 또는 탈염물을 분리하여 사이코스 함량 90 중량% 이상의 사이코스 분획과 라피네이트 분획을 분리하고,
    분리된 사이코스 분획을 농축하고,
    농축물을 사이코스 과포화 상태로 제조하여 사이코스를 결정화하고,
    결정화된 사이코스를 결정 모액과 분리하고 건조하는 단계를 포함하는,
    사이코스-함유 분말을 제조하는 단계를 포함하는 사이코스의 제조방법.
PCT/KR2016/013197 2015-11-16 2016-11-16 과당-함유 기질로부터 사이코스를 생산하는 방법 WO2017086690A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/774,340 US20230183764A1 (en) 2015-11-16 2016-11-16 Method for producing psicose from fructose-containing substrate
AU2016357609A AU2016357609B2 (en) 2015-11-16 2016-11-16 Method for producing psicose from fructose-containing substrate
CN201680066863.6A CN108474014A (zh) 2015-11-16 2016-11-16 由含果糖的底物生产阿洛酮糖的方法
PL16866642T PL3378943T3 (pl) 2015-11-16 2016-11-16 Sposób wytwarzania psikozy z substratu zawierającego fruktozę
JP2018525587A JP6820924B2 (ja) 2015-11-16 2016-11-16 フルクトース−含有基質からプシコースを生産する方法
EP16866642.8A EP3378943B1 (en) 2015-11-16 2016-11-16 Method for producing psicose from fructose-containing substrate
IL259315A IL259315B (en) 2015-11-16 2018-05-13 A method for producing psychosis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150160710A KR102087396B1 (ko) 2015-11-16 2015-11-16 과당-함유 기질로부터 사이코스를 생산하는 방법
KR10-2015-0160710 2015-11-16

Publications (1)

Publication Number Publication Date
WO2017086690A1 true WO2017086690A1 (ko) 2017-05-26

Family

ID=58719057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013197 WO2017086690A1 (ko) 2015-11-16 2016-11-16 과당-함유 기질로부터 사이코스를 생산하는 방법

Country Status (10)

Country Link
US (1) US20230183764A1 (ko)
EP (1) EP3378943B1 (ko)
JP (1) JP6820924B2 (ko)
KR (1) KR102087396B1 (ko)
CN (1) CN108474014A (ko)
AU (1) AU2016357609B2 (ko)
HU (1) HUE055744T2 (ko)
IL (1) IL259315B (ko)
PL (1) PL3378943T3 (ko)
WO (1) WO2017086690A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831952A (zh) * 2017-06-30 2020-02-21 株式会社三养社 甜味剂阿洛酮糖的制备方法
CN114601745A (zh) * 2022-03-25 2022-06-10 上海龙殷生物科技有限公司 一种护肤品原料、化妆品、制备方法及应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102065155B1 (ko) * 2016-12-08 2020-02-11 주식회사 삼양사 사이코스의 제조방법
KR102004941B1 (ko) 2016-12-08 2019-07-29 주식회사 삼양사 효율적인 사이코스의 제조 방법
CN108866247A (zh) * 2018-09-18 2018-11-23 上海立足生物科技有限公司 连续大规模分离制备d-阿洛酮糖的方法和设备
CN109022625A (zh) * 2018-09-18 2018-12-18 上海立足生物科技有限公司 一种生产浓缩的d-阿洛酮糖的方法
EP4053275A4 (en) * 2019-10-31 2023-11-15 Samyang Corporation CELLIMMOBILIZED BEADS HAVING EXCELLENT CONVERSION ACTIVITY AND METHOD FOR PRODUCING THE SAME
WO2021086119A1 (ko) * 2019-10-31 2021-05-06 주식회사 삼양사 우수한 전환 활성을 갖는 균체 고정화 비드 및 이의 제조방법
CN110951806B (zh) * 2019-12-24 2023-01-10 山东百龙创园生物科技股份有限公司 一种含有d-阿洛酮糖的结晶组合物的制备工艺
JP7348457B2 (ja) * 2020-06-03 2023-09-21 ティアンゴン バイオテクノロジー(ティアンジン)カンパニー,リミテッド プシコース3-エピメラーゼミュータント、それを発現するための遺伝子工学菌、その固定化酵素及び固定化方法
CN113080357B (zh) * 2021-05-17 2023-09-15 江苏赛威分离科技有限公司 一种低热量复配甜味剂及其生产工艺
CN113444753B (zh) * 2021-05-21 2022-09-27 诚志生命科技有限公司 一种含d-阿洛酮糖的果葡糖浆及其制备方法
CN113912655B (zh) * 2021-09-30 2024-01-23 中粮营养健康研究院有限公司 利用模拟移动床从混合糖浆中分离阿洛酮糖的方法
CN114231579A (zh) * 2022-01-13 2022-03-25 福州大学 一种连续、循环制备d-阿洛酮糖的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711296B2 (ja) 1995-08-25 2005-11-02 株式会社林原生物化学研究所 L−プシコースの製造方法
KR100864399B1 (ko) * 2007-06-20 2008-10-20 경상대학교산학협력단 유용 농업미생물의 내한발성 생존력을 개선시키는 알지네이트 쉘 비드를 이용한 농업용 유용 미생물의 캡슐화 방법
KR20110035805A (ko) * 2009-09-30 2011-04-06 씨제이제일제당 (주) 사이코스-에피머화 효소의 고정화 및 이를 이용한 사이코스의 제조방법
US8030035B2 (en) 2005-06-01 2011-10-04 Cj Cheiljedang Corp. D-psicose production method by D-psicose epimerase
KR20110108185A (ko) * 2010-03-26 2011-10-05 씨제이제일제당 (주) D-사이코스 결정을 제조하는 방법
KR101455759B1 (ko) * 2013-04-23 2014-10-28 씨제이제일제당(주) 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 제조 방법
KR101473918B1 (ko) * 2014-05-28 2014-12-17 대상 주식회사 사이코스 에피머화 효소, 이의 제조방법 및 이를 이용한 사이코스의 제조방법
WO2015099256A1 (en) 2013-12-26 2015-07-02 Samyang Genex Corporation Polynucleotide encoding psicose epimerase and method of producing psicose using the same
KR101616050B1 (ko) 2015-05-28 2016-04-27 주식회사 삼양사 사이코스 생산용 비드 및 이의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101203856B1 (ko) * 2011-08-24 2012-11-21 씨제이제일제당 (주) 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산
EP2918677B1 (en) * 2012-10-30 2020-12-09 Matsutani Chemical Industry Co., Ltd. Method for producing d-allose
KR101318422B1 (ko) * 2013-04-09 2013-10-15 주식회사 삼양제넥스 D-사이코스 에피머화 효소, 및 이를 이용하는 사이코스 생산방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3711296B2 (ja) 1995-08-25 2005-11-02 株式会社林原生物化学研究所 L−プシコースの製造方法
US8030035B2 (en) 2005-06-01 2011-10-04 Cj Cheiljedang Corp. D-psicose production method by D-psicose epimerase
KR100864399B1 (ko) * 2007-06-20 2008-10-20 경상대학교산학협력단 유용 농업미생물의 내한발성 생존력을 개선시키는 알지네이트 쉘 비드를 이용한 농업용 유용 미생물의 캡슐화 방법
KR20110035805A (ko) * 2009-09-30 2011-04-06 씨제이제일제당 (주) 사이코스-에피머화 효소의 고정화 및 이를 이용한 사이코스의 제조방법
US8735106B2 (en) 2009-09-30 2014-05-27 Cj Cheiljedang Corporation Immobilization of psicose-epimerase and a method of producing D-psicose using the same
KR20110108185A (ko) * 2010-03-26 2011-10-05 씨제이제일제당 (주) D-사이코스 결정을 제조하는 방법
US8524888B2 (en) 2010-03-26 2013-09-03 Cj Cheiljedang Corp. Method of producing D-psicose crystals
KR101455759B1 (ko) * 2013-04-23 2014-10-28 씨제이제일제당(주) 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 제조 방법
WO2015099256A1 (en) 2013-12-26 2015-07-02 Samyang Genex Corporation Polynucleotide encoding psicose epimerase and method of producing psicose using the same
KR101473918B1 (ko) * 2014-05-28 2014-12-17 대상 주식회사 사이코스 에피머화 효소, 이의 제조방법 및 이를 이용한 사이코스의 제조방법
KR101616050B1 (ko) 2015-05-28 2016-04-27 주식회사 삼양사 사이코스 생산용 비드 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3378943A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831952A (zh) * 2017-06-30 2020-02-21 株式会社三养社 甜味剂阿洛酮糖的制备方法
CN110831952B (zh) * 2017-06-30 2023-09-08 株式会社三养社 甜味剂阿洛酮糖的制备方法
CN114601745A (zh) * 2022-03-25 2022-06-10 上海龙殷生物科技有限公司 一种护肤品原料、化妆品、制备方法及应用
CN114601745B (zh) * 2022-03-25 2023-06-27 上海龙殷生物科技有限公司 一种护肤品原料、化妆品、制备方法及应用

Also Published As

Publication number Publication date
KR102087396B1 (ko) 2020-03-10
KR20170057078A (ko) 2017-05-24
JP6820924B2 (ja) 2021-01-27
IL259315A (en) 2018-07-31
AU2016357609A1 (en) 2018-05-31
EP3378943A4 (en) 2019-04-17
HUE055744T2 (hu) 2021-12-28
PL3378943T3 (pl) 2022-01-10
JP2018533958A (ja) 2018-11-22
IL259315B (en) 2022-01-01
CN108474014A (zh) 2018-08-31
EP3378943B1 (en) 2021-08-11
EP3378943A1 (en) 2018-09-26
AU2016357609B2 (en) 2020-03-12
US20230183764A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2017086690A1 (ko) 과당-함유 기질로부터 사이코스를 생산하는 방법
KR20180065784A (ko) 재순환을 이용한 사이코스의 제조방법 및 장치
WO2011040708A2 (en) Immobilization of psicose-epimerase and a method of producing d-psicose using the same
KR102004941B1 (ko) 효율적인 사이코스의 제조 방법
WO2014196811A1 (ko) 타가토스의 제조방법
WO2014175655A1 (ko) 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 제조 방법
EP3295808B1 (en) Saccharide mixture containing psicose with improved sweetness quality and crystallization
WO2018093153A1 (ko) 신규한 d-사이코스 3-에피머화 효소 및 이를 이용한 d-사이코스의 제조 방법
WO2017111563A1 (ko) D-사이코스 3-에피머화 효소 및 염을 포함하는 d-사이코스 제조용 조성물 및 이를 이용한 d-사이코스의 제조 방법
KR102065155B1 (ko) 사이코스의 제조방법
KR101177218B1 (ko) 아밀로수크라제를 이용한 투라노즈의 제조방법 및 상기 투라노즈를 이용한 감미료
CN112877386A (zh) 一种基于酶法合成烟酰胺单核苷酸的方法
CN113249372B (zh) 一种用于甘露糖生产的固定化细胞的制备方法及其应用
EP4368711A1 (en) Preparation method for and application of immobilized cell for tagatose production
WO2018093154A2 (ko) 카이스티아 속 미생물을 이용한 d-사이코스 제조방법
AU2020375503B2 (en) Improved method for manufacturing allulose
WO2021086010A1 (ko) 과당-6-인산 3-에피머화 효소 및 이의 용도
KR20210052192A (ko) 개선된 알룰로스의 제조 방법
CN117106835A (zh) 用于多酶级联催化合成gdp-l-岩藻糖的生物酶组合物及其制备方法和应用
CN114736942A (zh) 一种α-甘油葡萄糖苷的制备方法
CN116904537A (zh) 一种利用生物酶制备腺苷二磷酸纯品的方法
JPS6352887A (ja) グルコ−スイソメラ−ゼによる果糖の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 259315

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2018525587

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016357609

Country of ref document: AU

Date of ref document: 20161116

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016866642

Country of ref document: EP