WO2017082262A1 - 酸化黒鉛の製造方法 - Google Patents

酸化黒鉛の製造方法 Download PDF

Info

Publication number
WO2017082262A1
WO2017082262A1 PCT/JP2016/083141 JP2016083141W WO2017082262A1 WO 2017082262 A1 WO2017082262 A1 WO 2017082262A1 JP 2016083141 W JP2016083141 W JP 2016083141W WO 2017082262 A1 WO2017082262 A1 WO 2017082262A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphite oxide
mass
mixed solution
sulfuric acid
Prior art date
Application number
PCT/JP2016/083141
Other languages
English (en)
French (fr)
Inventor
博信 小野
鴻巣 修
晋一 奥岡
隼 郷田
修輔 鎌田
佐藤 裕一
勇太 仁科
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015221470A external-priority patent/JP6584298B2/ja
Priority claimed from JP2015221471A external-priority patent/JP6618777B2/ja
Priority claimed from JP2016009845A external-priority patent/JP6592365B2/ja
Priority claimed from JP2016044584A external-priority patent/JP6592384B2/ja
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to EP16864223.9A priority Critical patent/EP3375755A4/en
Priority to US15/775,285 priority patent/US11286166B2/en
Publication of WO2017082262A1 publication Critical patent/WO2017082262A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data

Definitions

  • the present invention relates to a method for producing graphite oxide. More specifically, catalysts (materials), battery and capacitor electrode materials, thermoelectric conversion materials, conductive materials, luminescent materials, lubricant additives (lubricant materials), polymer additives, permeable membrane materials, oxidizers, sterilizers
  • the present invention relates to a method for producing graphite oxide which can be suitably used as an agent, an antibacterial agent (antibacterial material), a water repellent material, an adsorbing material and the like.
  • Graphite oxide is obtained by oxidizing graphite with a layered structure in which carbon atoms bonded by sp 2 bonds are arranged in a plane and adding oxygen functional groups, and many studies have been conducted for its unique structure and physical properties. Has been made.
  • Graphite oxide is a catalyst (material), battery / capacitor electrode material, thermoelectric conversion material, conductive material, light emitting material, lubricant additive, polymer additive, permeable membrane material, oxidant, bactericide, antibacterial agent It is expected to be used as a water repellent material, an adsorbing material, and the like.
  • the present invention has been made in view of the above situation, and an object thereof is to provide a safe and highly efficient method for producing graphite oxide.
  • the present inventors have studied various methods for producing graphite oxide, and have focused on a method for producing graphite oxide with high efficiency by adding permanganate to a mixed solution containing graphite and sulfuric acid.
  • the inventors of the present invention add a permanganate to a mixed solution containing graphite and sulfuric acid under ice-cooling, in which explosive heptavalent manganese is reacted unless appropriate measures are taken. It was found that the risk of explosion increased when accumulated in the system and the oxidation reaction was carried out on an industrial scale.
  • the present inventors use a method of adding permanganate while maintaining the concentration of the seven-valent manganese low, for example, by monitoring the consumption of the seven-valent manganese in the mixed solution. It has been found that graphite oxide can be produced safely and efficiently.
  • the present invention is a method for producing graphite oxide by oxidizing graphite, which comprises adding a 7-valent manganese concentration in 100% by mass of the mixed solution to a mixed solution containing graphite and sulfuric acid.
  • This is a method for producing graphite oxide, which comprises a step of adding permanganate while maintaining the mass% or less to oxidize graphite.
  • the invention relating to the method for producing graphite oxide is also referred to as the first invention.
  • the method for producing graphite oxide of the present invention has the above-described configuration, can produce graphite oxide safely and with high efficiency, and is suitable for mass production.
  • 2 is a graph showing a Raman spectrum of natural graphite used as a raw material in Example 1-1.
  • 2 is a graph showing the results of measuring XRD of natural graphite used as a raw material in Example 1-1.
  • 4 is a graph showing the results of measuring XRD of the dried product obtained in Example 1-1.
  • 2 is a graph showing the results of measuring XPS of the dried product obtained in Example 1-1.
  • 3 is a graph showing the results of measuring XPS of natural graphite used as a raw material in Example 1-1.
  • 2 is a graph showing a Raman spectrum of natural graphite used as a raw material in Example 1-2.
  • 6 is a graph showing the results of measuring XRD of natural graphite used as a raw material in Example 1-2.
  • FIG. 3 is a graph showing the results of measuring XPS of natural graphite used as a raw material in Example 1-2. It is a graph which shows the result of having measured XRD of the dried material obtained in Example 2-1. 4 is a graph showing the results of measuring XPS of the dried product obtained in Example 2-1.
  • FIG. 3 is a graph showing the relationship between the standing time of the reaction liquids of Example 3-1 and Comparative Examples 3-1 and 3-2 and the amount of supernatant liquid.
  • FIG. 6 is a graph showing the relationship between the standing time of the reaction liquids of Example 3-2 and Comparative Examples 3-3 and 3-4 and the amount of supernatant liquid.
  • FIG. 6 is a graph showing the relationship between the standing time of the reaction liquids of Example 3-3 and Comparative Examples 3-5 and 3-6 and the amount of supernatant liquid.
  • FIG. 6 is a graph showing the relationship between the standing time of the reaction liquids of Example 3-4 and Comparative Examples 3-7 and 3-8 and the amount of supernatant liquid. It is a figure which shows the XRD pattern of the dried material obtained in Example 4-1. It is a figure which shows the C1s spectrum (narrow scan spectrum) obtained by the XPS measurement of the dried material obtained in Example 4-1.
  • Example 4-1 It is a figure which shows the XRD pattern of the dried material obtained in Example 4-1. It is a figure which shows the C1s spectrum (narrow scan spectrum) obtained by the XPS measurement of the dried material obtained in Example 4-1. It is a figure which shows the XRD pattern of the dried material obtained in Example 4-2. It is a figure which shows the C1s spectrum (narrow scan spectrum) obtained by the XPS measurement of the dried material obtained in Example 4-2.
  • the present invention is described in detail below.
  • the form which combined two or more each preferable characteristics described in a paragraph below is also a preferable form of this invention.
  • the “present invention” refers to the first present invention unless otherwise specified.
  • the preferred embodiments of the first present invention are the second present invention and third described below unless otherwise specified.
  • the present invention and the fourth invention can also be applied as preferred embodiments.
  • the graphite oxide obtained by the production method of the present invention is one in which oxygen is bonded to a graphitic carbon material such as graphene and graphite (oxygen), and oxygen-containing functionalities such as epoxy groups, carboxyl groups, carboxylate groups, and hydroxyl groups.
  • a graphitic carbon material such as graphene and graphite (oxygen)
  • oxygen-containing functionalities such as epoxy groups, carboxyl groups, carboxylate groups, and hydroxyl groups.
  • the graphite oxide is preferably graphene oxide in which oxygen is bonded to carbon of graphene.
  • the graphite oxide may further have other functional groups such as sulfur-containing groups, but the content of carbon, hydrogen, and oxygen as constituent elements with respect to all constituent elements is 97 mol% or more. It is preferable that it is 99 mol% or more.
  • the graphite oxide contains only carbon atoms and oxygen atoms, hydrogen atoms, and alkali metal atoms that form salts of oxygen-containing functional groups.
  • graphene refers to a sheet composed of one layer in which carbon atoms bonded by sp 2 bonds are arranged in a plane, and a stack of graphene sheets is referred to as graphite.
  • graphene oxide In addition to a sheet composed of only one carbon atom, those having a structure in which about 2 to 100 layers are laminated are included.
  • the graphene oxide is preferably a sheet composed of only one carbon atom layer or has a structure in which about 2 to 20 layers are laminated.
  • a permanganate is added to a mixed solution containing graphite and sulfuric acid while maintaining the concentration of 7-valent manganese in 100% by mass of the mixed solution at 1% by mass or less.
  • Including a step of oxidizing graphite means that the average concentration of 7-valent manganese in the mixed solution when the mixed solution containing graphite and sulfuric acid is stirred and homogenized is 1 mass. Say to keep below%.
  • the 7-valent manganese includes not only the 7-valent manganese existing in an ionic state but also 7-valent manganese present in the state of being contained in an oxide or the like.
  • the heptavalent manganese concentration is preferably maintained at 0.9% by mass or less, more preferably maintained at 0.8% by mass or less, and maintained at 0.7% by mass or less. More preferably, it is particularly preferable to maintain it at 0.5% by mass or less.
  • the lower limit of the concentration of the 7-valent manganese is not particularly limited, but in a preferred embodiment of the method for producing graphite oxide of the present invention, the concentration is, for example, 0.0001% by mass from the viewpoint of efficiently proceeding the oxidation reaction. Maintain above.
  • the above 7-valent manganese concentration is measured by the method of Examples described later.
  • the measurement of the heptavalent manganese concentration controls the reaction conditions, the permanganate addition conditions, etc. so that the heptavalent manganese concentration in the mixed solution is maintained at 1% by mass or less during the oxidation step. As long as it is possible, it can be omitted, but it is preferable to carry out once or a plurality of times during the oxidation step.
  • the permanganate added in the oxidation step includes sodium permanganate, potassium permanganate, ammonium permanganate, silver permanganate, zinc permanganate, magnesium permanganate, calcium permanganate, permanganate. Although barium acid etc. are mentioned and these 1 type (s) or 2 or more types can be used, Sodium permanganate and potassium permanganate are preferable among these, and potassium permanganate is more preferable.
  • the oxidizing agent added in the oxidation step in the second to fourth inventions described later is not particularly limited, and examples thereof include nitrates, hypochlorites, chromates and the like in addition to permanganates. One or two or more of these can be used, and among these, permanganate is preferable. The permanganate is the same as described above.
  • the total amount of the permanganate added in the oxidation step is 50 to 500% by mass with respect to 100% by mass of the graphite in the mixed solution. It is. Thereby, graphite oxide can be manufactured safely and efficiently.
  • the amount of oxygen atoms introduced into the graphite oxide can be adjusted by changing the total amount of permanganate added.
  • the total addition amount is more preferably 100% by mass or more, further preferably 150% by mass or more, further preferably 200% by mass or more, and particularly preferably 240% by mass or more.
  • the total addition amount is more preferably 450% by mass or less, further preferably 400% by mass or less, further preferably 350% by mass or less, and particularly preferably 300% by mass or less.
  • the amount of graphite in the mixed solution refers to the amount of graphite used for preparing the mixed solution.
  • the permanganate in the oxidation step, from the viewpoint of safety, is added in multiple portions or continuously. Add in.
  • the number of times of addition is preferably 3 times or more, more preferably 5 times or more, further preferably 7 times or more, 9 times The above is particularly preferable. Thereby, the concentration of the 7-valent manganese in the mixed solution can be easily maintained low, and the reaction can be controlled more easily by suppressing the rapid progress of the oxidation reaction.
  • the 7-valent manganese is added in order to determine the time interval between the additions so that the 7-valent manganese concentration in the mixture can be maintained at a desired level. It is preferable to measure the manganese concentration.
  • the time interval between additions refers to the time interval from the end of addition to the start of the next addition.
  • the addition amount per time may be the same or different, but is preferably the same.
  • the time intervals between the additions and additions may be the same or different, but they are the same. It is preferable that
  • the amount of the permanganate added per time in the oxidation step is 100% by mass of sulfuric acid in the mixed solution. On the other hand, it is 3 mass% or less.
  • the addition amount is more preferably 2% by mass or less, further preferably 1% by mass or less, and particularly preferably 0.5% by mass or less.
  • the maximum addition amount may be within the above preferable range.
  • the amount of sulfuric acid in the mixed solution refers to the amount of sulfuric acid charged (excluding moisture) used for preparing the mixed solution.
  • permanganate can be added while maintaining the temperature of the mixed solution within the range of ⁇ 10 to 60 ° C.
  • the temperature of the mixed solution is preferably maintained at 0 ° C. or higher.
  • permanganate is added while maintaining the temperature of the mixed solution within a range of 10 to 50 ° C. .
  • By maintaining in such a temperature range it is possible to sufficiently proceed while controlling the oxidation reaction. Specifically, by maintaining the above temperature at 10 ° C. or higher, the 7-valent manganese in the mixed solution can be reacted and consumed, and the accumulation of the 7-valent manganese in the reaction system is further prevented.
  • the heptavalent manganese concentration can be kept low.
  • the oxidation process can be performed more safely by maintaining the temperature at 50 ° C. or lower. More preferably, the temperature is maintained at 12 ° C or higher, more preferably 15 ° C or higher, still more preferably maintained at 18 ° C or higher, and particularly preferably maintained at 20 ° C or higher. Moreover, it is more preferable to maintain the said temperature at 45 degrees C or less, and it is still more preferable to maintain at 40 degrees C or less.
  • the oxidation step is a step of adding permanganate while maintaining the temperature change of the mixed solution at 25 ° C. or lower. .
  • an oxidation process can be performed more stably.
  • the temperature change is more preferably maintained at 20 ° C. or less, further preferably maintained at 15 ° C. or less, and particularly preferably maintained at 10 ° C. or less.
  • the oxidation step may be carried out for 10 minutes to 10 hours from the viewpoint of performing the oxidation step stably.
  • the permanganate is preferably added over 30 minutes or more, more preferably added over 1 hour or more, and particularly preferably added over 2 hours or more.
  • the addition time of the permanganate is more preferably 8 hours or less, further preferably 7 hours or less, and particularly preferably 6 hours or less. preferable.
  • the mass ratio of sulfuric acid to graphite (sulfuric acid / graphite) in the mixed solution is 25-60.
  • the mass ratio is 25 or more, graphite oxide can be efficiently produced by sufficiently preventing the reaction solution (mixed solution) from becoming highly viscous during the oxidation reaction.
  • the mass ratio is 60 or less, the amount of waste liquid can be sufficiently reduced.
  • the mass ratio is more preferably 26 or more, further preferably 27 or more, and particularly preferably 28 or more.
  • the mass ratio is more preferably 54 or less, still more preferably 48 or less, and particularly preferably 42 or less.
  • the oxidation step when the oxidation step is performed under a condition with a small amount of sulfuric acid, the viscosity of the mixed solution becomes high and it may be difficult to add the mixed solution. And a liquid diluted with water of less than 50 parts by mass with respect to 100 parts by mass of sulfuric acid.
  • the oxidation step may include a step of diluting the mixed solution with water in order to reduce the viscosity of the mixed solution.
  • the graphite in the oxidation step, has a ratio of the peak intensity of the D band to the peak intensity of the G band in the Raman spectrum of 0.4. It is as follows. This makes it easier to obtain graphene oxide.
  • the peak intensity of G band means the peak intensity of Raman shift 1580 cm ⁇ 1
  • the peak intensity of D band means the peak intensity of Raman shift 1350 cm ⁇ 1 .
  • the peak intensity ratio is more preferably 0.35 or less, and still more preferably 0.3 or less.
  • the peak intensity ratio is more preferably 0.04 or more.
  • the ratio of the peak intensities can be measured by carrying out the methods of Examples described later.
  • the graphite in the oxidation step, has a (0 0 2) plane spacing of 3.3 mm or more by X-ray diffraction of crystals. 3.4 or less. This makes it easier to obtain graphene oxide.
  • the surface spacing is more preferably 3.32 mm or more, and still more preferably 3.34 mm or more.
  • the spacing is more preferably 3.39 mm or less, still more preferably 3.38 mm or less.
  • the above-mentioned surface interval can be measured by carrying out the method of the example described later.
  • the graphite in the oxidation step, has an average particle size of 3 ⁇ m or more and 80 ⁇ m or less.
  • the average particle diameter is more preferably 3.2 ⁇ m or more, and further preferably 3.5 ⁇ m or more.
  • the average particle diameter is more preferably 70 ⁇ m or less.
  • the average particle diameter can be measured by a particle size distribution measuring device.
  • the shape of the graphite used for the oxidation step is not particularly limited, and examples thereof include fine powder, powder, granule, granule, scale, polyhedron, rod, and curved surface-containing shape.
  • the particles having the average particle diameter in the above range are produced by, for example, a method of pulverizing the particles with a pulverizer, a method of selecting the particle diameter by sieving the particles, a combination of these methods, or the like. It is possible to manufacture by optimizing the preparation conditions at the stage of obtaining and obtaining particles having a desired particle diameter.
  • the graphite in the oxidation step, has a specific surface area of 3 m 2 / g or more and 10 m 2 / g or less.
  • the specific surface area is more preferably 4 m 2 / g or more, and further preferably 4.5 m 2 / g or more.
  • this specific surface area is 9 m ⁇ 2 > / g or less, and it is still more preferable that it is 8.5 m ⁇ 2 > / g or less.
  • the specific surface area can be measured by a specific surface area measuring device by a nitrogen adsorption BET method.
  • the amount of graphite in 100% by mass of the mixed liquid containing graphite and sulfuric acid is preferably 0.5% by mass or more, more preferably 1% by mass or more, and 1.5% by mass. % Or more is more preferable, and 2% by mass or more is particularly preferable.
  • the graphite content is preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 7% by mass or less, and particularly preferably 6% by mass or less.
  • the graphite may be used alone, or two or more types different in any of the average particle diameter, shape, specific surface area, physical properties, and the like may be used.
  • the oxidation step is preferably performed while stirring using a known stirrer or the like.
  • the oxidation step can be performed, for example, in air or in an inert gas atmosphere such as nitrogen, helium, or argon.
  • the pressure condition of the oxidation step is not particularly limited, and can be performed under reduced pressure conditions, normal pressure conditions, or pressurized conditions. For example, it is preferably performed under normal pressure conditions.
  • the time for the oxidation step is preferably 0.1 hour or longer, more preferably 0.5 hour or longer, further preferably 1 hour or longer, particularly preferably 2 hours or longer. .
  • the time for the oxidation step is preferably 120 hours or less, more preferably 15 hours or less, still more preferably 10 hours or less, and particularly preferably 8 hours or less.
  • the oxidation step may be performed continuously or intermittently.
  • the mixed liquid can be obtained by mixing the graphite, the sulfuric acid, and other components as necessary.
  • the mixing can be appropriately performed by a known method. For example, it is preferable to uniformly disperse graphite by performing ultrasonic treatment or using a known disperser.
  • the method of oxidizing graphite is not particularly limited as long as graphite is oxidized, and the Hummers method, Brodie method, The graphite oxidation method in any method such as the Staudenmeier method may be used.
  • the oxidation method in the Hummers method is employed, and the step of adding permanganate to the mixed liquid containing graphite and sulfuric acid. There may be.
  • the oxidation step is a step of adding permanganate to a mixed solution containing graphite and sulfuric acid.
  • various conditions in the above-described oxidation step can be preferably applied.
  • the present invention is also a method for measuring the concentration of 7-valent manganese, in which 1 part by mass of a mixed solution containing 7-valent manganese is added to 10-10,000 parts by mass of water and the absorbance is measured. Thereby, it is possible to measure the concentration of the 7-valent manganese quickly and accurately.
  • the amount of the water is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 50 parts by mass or more, and 100 parts by mass with respect to 1 part by mass of the liquid mixture. Part or more is particularly preferable.
  • the amount of water is preferably 8000 parts by mass or less, more preferably 5000 parts by mass or less, still more preferably 3000 parts by mass or less, and particularly preferably 1000 parts by mass or less.
  • a strongly acidic mixed solution for example, a sulfuric acid solution
  • a carbon material such as graphite
  • the measurement is performed using 1 part by mass of the mixed solution containing the 7-valent manganese added to 10 to 10000 parts by mass of water. Enables rapid and accurate quantification.
  • fever is large and there exists a possibility that a 7-valent manganese density
  • concentration may reduce during a measurement.
  • an oxidation reaction may advance by the completion of filtration, and a 7valent manganese concentration may reduce.
  • the amount of water relative to 1 part by mass of the mixed liquid is less than 10 parts by mass, an equalization reaction with manganese having a low valence of about 2 to 3 is eluted from the oxidized graphite obtained by the oxidation reaction.
  • the concentration of the 7-valent manganese may be reduced.
  • the quantity of the water with respect to 1 mass part of liquid mixture exceeds 10000 mass parts, the exact measurement of a light absorbency becomes difficult.
  • the method for measuring the concentration of 7-valent manganese according to the present invention is obtained by adding 1 part by mass of the above mixed liquid containing 7-valent manganese to 10 to 10000 parts by weight of water and then adding the mixed liquid. It is preferable to stir the mixed solution. The stirring can be performed using a known stirrer or the like. Further, in the method for measuring the concentration of the 7-valent manganese according to the present invention, it is preferable to measure the absorbance of the filtrate by performing filtration after stirring the mixture obtained by adding the above mixture. Filtration is preferably performed using a filter.
  • the aging step for aging the reaction solution obtained in the oxidation step, the oxidation reaction stop (quenching) step, and the oxidant in the mixed solution obtained by the oxidation reaction stop step more sufficiently
  • Other steps such as a stirring step and a purification step for reduction can be included.
  • the temperature and time for aging the reaction solution obtained in the oxidation step may be appropriately selected, but the reaction solution is preferably maintained at a temperature of 0 to 90 ° C., more preferably 20 to 80 ° C. To maintain a temperature of °C.
  • the aging time is preferably 0.1 to 24 hours. More preferably, it is 0.5 to 5 hours.
  • the manufacturing method of the graphite oxide of this invention is arbitrary, you may include the oxidation reaction stop process.
  • the oxidation reaction stopping step a conventional method, that is, a method of adding water to the mixed solution obtained by the graphite oxidation method and then adding hydrogen peroxide to reduce the oxidizing agent to stop the reaction is adopted. You may do it.
  • the method for producing graphite oxide of the present invention preferably includes a step of adding the mixed liquid obtained in the oxidation step to water or hydrogen peroxide solution as the oxidation reaction stopping step.
  • the method for producing graphite oxide of the present invention includes a step of adding the mixed liquid obtained in the oxidation step to water or hydrogen peroxide solution, thereby ensuring higher safety and higher quality oxidation. It is also possible to produce graphite with high efficiency.
  • the second aspect of the present invention is a method for producing graphite oxide by oxidizing graphite, for example, and this production method oxidizes graphite by adding an oxidizing agent to a mixed solution containing graphite and sulfuric acid. It is a method for producing graphite oxide, comprising a step and a step of adding the liquid mixture obtained in the oxidation step to 120% by mass or more of water or hydrogen peroxide with respect to 100% by mass of the liquid mixture.
  • the amount of water or hydrogen peroxide water in the addition step is preferably 200% by mass or more.
  • the second aspect of the present invention is a method for producing graphite oxide by oxidizing graphite, wherein the production method comprises adding a 7-valent solution in 100% by mass of the mixed solution to a mixed solution containing graphite and sulfuric acid.
  • the second aspect of the present invention can adopt a preferred form of the first aspect of the present invention.
  • the mixed solution means a mixed solution obtained in the oxidation step unless otherwise specified.
  • the amount of water or hydrogen peroxide water in the addition step is preferably 120% by mass or more with respect to 100% by mass of the liquid mixture obtained in the oxidation step, from the viewpoint of sufficiently suppressing heat generation and foaming. More preferably, it is 200 mass% or more, More preferably, it is 300 mass% or more, More preferably, it is 400 mass% or more, It is especially preferable that it is 500 mass% or more.
  • the upper limit value of the amount of water or hydrogen peroxide solution is not particularly limited, but from the viewpoint of reducing the amount of waste water, the amount is preferably 2000% by mass or less, and more preferably 1600% by mass or less. More preferably, it is 1200 mass% or less, and it is especially preferable that it is 1000 mass% or less.
  • the concentration of the hydrogen peroxide solution in the addition step is 10% by mass or less from the viewpoint of suppressing foaming.
  • the concentration is more preferably 5% by mass or less, still more preferably 2% by mass or less, and particularly preferably 1.5% by mass or less.
  • the concentration is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 0.1% by mass or more from the viewpoint of sufficient reduction of the oxidizing agent. More preferably, the content is 0.2% by mass or more.
  • the adding step comprises mixing the liquid mixture obtained in the oxidation step while maintaining the temperature of water or hydrogen peroxide water at 60 ° C. or lower. It is a process of adding. Thereby, especially when a permanganate is used as an oxidizing agent, the adding step can be performed more safely, and high-quality graphite oxide can be produced. Further, in the addition step, since the mixed solution obtained in the oxidation step is added to excess water or hydrogen peroxide solution relative to the mixed solution, the temperature of the water or hydrogen peroxide solution is easily maintained at 60 ° C. or lower. As a result, graphite oxide can be produced efficiently. In the addition step, the temperature of the water or the hydrogen peroxide solution is more preferably maintained at 55 ° C. or less, and further preferably maintained at 50 ° C. or less.
  • the addition step is a mixed solution obtained in the oxidation step while maintaining the temperature change of water or hydrogen peroxide water at 40 ° C. or lower. Is a step of adding. Thereby, especially when a permanganate is used as an oxidizing agent, the addition step can be performed more safely, and high-quality graphite oxide can be produced. Furthermore, in the above addition step, the mixture obtained in the oxidation step is added to excess water or hydrogen peroxide solution relative to the mixture solution, so that the temperature change of water or hydrogen peroxide solution can be easily maintained at 40 ° C. or less. As a result, graphite oxide can be produced efficiently.
  • the temperature change refers to the temperature of water or hydrogen peroxide water before adding the liquid mixture, and the maximum value of the temperature of water or hydrogen peroxide water increased by the addition of the liquid mixture after adding the liquid mixture. Say the difference. More preferably, the temperature change is maintained at 35 ° C. or lower, and more preferably 30 ° C. or lower. In yet another preferred embodiment of any one of the methods for producing graphite oxide of the present invention, the mixed solution may be added to water or hydrogen peroxide water set at 5 to 25 ° C. .
  • the liquid mixture obtained in the oxidation step may be added to water or hydrogen peroxide solution all at once, may be added gradually, or may be added in a plurality of times. From the viewpoint of sufficiently suppressing heat generation and foaming, it is preferable to gradually add the liquid mixture obtained in the oxidation step to water or hydrogen peroxide water, or to add it in multiple portions, but the operation is simple. From the viewpoint of making it, it is preferable to add all at once.
  • the above multiple times are preferably 3 times or more, more preferably 5 times or more, from the viewpoint of sufficiently suppressing heat generation and foaming and exhibiting the effects of the present invention more fully. From the viewpoint of simplicity, it is preferably 50 times or less, and more preferably 30 times or less.
  • the addition step is performed by adding the mixture obtained in the oxidation step to water or hydrogen peroxide water in a plurality of times, the addition amount per time may be the same or different. Good.
  • the time interval between addition may be the same, respectively, and may differ.
  • the addition step includes the step of adding the liquid mixture obtained in the oxidation step to water or hydrogen peroxide water, and water or hydrogen peroxide water. It is added at an addition rate of 0.5% by mass / min or more with respect to 100% by mass. Thereby, the effect of this invention which manufactures high quality graphite oxide efficiently can be exhibited more notably.
  • the addition rate is more preferably 1% by mass / min or more, and further preferably 2% by mass / min or more.
  • the addition rate is preferably 100% by mass / min or less, more preferably 50% by mass / min or less, and further preferably 20% by mass / min or less.
  • the amount of water or hydrogen peroxide water refers to the amount of water or hydrogen peroxide water before adding the mixed solution.
  • the period from the start of addition to the end of addition is not particularly limited. Alternatively, it is added to the hydrogen peroxide solution over a period of 0.1 minutes to 180 minutes. From the viewpoint of further shortening the time required for stopping the reaction, the addition step is more preferably performed by adding the mixture obtained in the oxidation step for 120 minutes or less, and more preferably for 60 minutes or less. It is particularly preferable to add over 30 minutes or less. Further, in the addition step, it is more preferable to add the mixed liquid obtained in the oxidation step over 0.5 minutes or more from the viewpoint of producing higher quality graphite oxide, and over 1 minute or more. More preferably.
  • the adding step is a step of adding the mixed liquid obtained in the oxidizing step to the hydrogen peroxide solution.
  • hydrogen peroxide solution is not immediately added to the mixed solution obtained in the oxidation step to reduce and deactivate the oxidizing agent in the mixed solution. First, water was added, and then hydrogen peroxide solution was added to reduce and deactivate the oxidizing agent in the mixed solution, thereby stopping the reaction.
  • the mixed solution obtained in the oxidation step is added to a large excess of hydrogen peroxide solution with respect to the mixed solution.
  • the oxidizing agent therein can be reduced and deactivated, and stable quality graphite oxide can be produced very efficiently.
  • the addition step is a step of adding the mixed liquid obtained in the oxidation step to water, in order to reduce and deactivate the oxidizing agent such as permanganate.
  • a hydrogen peroxide solution is further added to the mixed solution obtained in the addition step.
  • the addition step is performed while stirring water or hydrogen peroxide solution to which the mixed liquid obtained in the oxidation step is added.
  • Stirring can be performed using a known stirrer or the like.
  • the said addition process can be performed, for example in air or inert gas atmosphere, such as nitrogen, helium, and argon.
  • the pressure conditions are not specifically limited for an addition process, For example, it is preferable to carry out on normal-pressure conditions.
  • the addition step has been described in detail.
  • the temperature of the mixed solution is set to 5 to 15 ° C.
  • water is added to the mixed solution, and then the reducing agent is added. It can also be carried out by adding hydrogen peroxide water.
  • the oxidation reaction stopping step can be performed, for example, in air, or in an inert gas atmosphere such as nitrogen, helium, or argon, or in a vacuum, as in the addition step.
  • the time for the oxidation reaction stopping step can be, for example, 0.01 to 5 hours.
  • the mixing obtained in the oxidation reaction stopping step is performed before the purification step. It is preferable to perform a stirring step of stirring the liquid.
  • the stirring step the stirring time of the mixed liquid obtained in the adding step is preferably 1 minute or longer, preferably 3 minutes or longer, and more preferably 5 minutes or longer. The time is preferably 2 hours or less, more preferably 1.5 hours or less, and even more preferably 1 hour or less.
  • the temperature of the mixed solution obtained in the oxidation reaction stopping step can be set to 20 ° C. to 60 ° C., for example.
  • the manufacturing method of the graphite oxide of this invention is arbitrary, the refinement
  • a conventional method that is, a method of separating or purifying graphite oxide by centrifuging or filtering a reaction solution containing graphite oxide may be employed.
  • the method for producing graphite oxide of the present invention preferably includes a step of separating the supernatant liquid after allowing the liquid containing graphite oxide to stand at a temperature of 30 to 90 ° C. as a purification step. By adopting a process of separating the supernatant liquid after allowing the liquid containing graphite oxide to stand at a temperature of 30 to 90 ° C.
  • the method for producing graphite oxide of the present invention includes a step (hereinafter also referred to as “supernatant liquid separation step”) of allowing the liquid containing graphite oxide to stand at a temperature of 30 to 90 ° C. and then separating the supernatant.
  • supernatant liquid separation step a step of separating the supernatant liquid after allowing the liquid containing graphite oxide to stand at a temperature of 30 to 90 ° C. It is possible to solve the problem (the problem of the third aspect of the present invention).
  • the third aspect of the present invention is a method for producing graphite oxide by oxidizing graphite, for example, and the production method comprises a step of oxidizing graphite and a step of purifying graphite oxide obtained in the oxidation step.
  • the above purification step is a method for producing graphite oxide, which comprises a step of allowing a liquid containing graphite oxide to stand at a temperature of 30 to 90 ° C. and then separating a supernatant.
  • the third aspect of the present invention is a method for producing graphite oxide by oxidizing graphite, wherein the production method comprises adding a 7-valent solution in 100% by mass of the mixed solution to a mixed solution containing graphite and sulfuric acid.
  • a method for producing graphite oxide which comprises a step of allowing the liquid containing the solution to stand at a temperature of 30 to 90 ° C. and then separating the supernatant liquid, is preferred.
  • the third aspect of the present invention can adopt a preferred form of the first aspect of the present invention.
  • the addition step may be adopted as the oxidation reaction stopping step.
  • particulate graphite In the production of graphite oxide, particulate graphite is often used, and in that case, the resulting graphite oxide is also particulate.
  • the molecular motion of a particulate material becomes active when heat is applied. Therefore, it is considered that the sedimentation of the particulate material is slowed when the temperature of the solution containing the particulate material is raised.
  • the reaction solution containing the solution In the case of the reaction solution containing the solution, it was found that the reverse tendency is that the sedimentation becomes faster by raising the temperature from room temperature. The reason for this is not clear, but is estimated as follows. That is, when the temperature of the reaction solution containing graphite oxide is increased, ionization of components such as sulfuric acid contained in the reaction solution proceeds, and hydrogen ions in the reaction solution increase.
  • the temperature at which the liquid containing graphite oxide is allowed to stand may be 30 to 90 ° C., but it is preferably 35 to 85 ° C. in view of production efficiency and economy. More preferably, it is 40 to 80 ° C., and further preferably 50 to 70 ° C.
  • the time for standing at a temperature of 90 ° C. is preferably 0.1 to 24 hours. More preferably, it is 0.2 to 12 hours, and still more preferably 0.3 to 6 hours.
  • the ratio of the mass of graphite used in the oxidation step to the mass of the reaction solution containing graphite oxide used in the purification step (graphite used in the oxidation step).
  • Mass / mass of the reaction liquid containing graphite oxide to be subjected to the purification step is 0.0001 to 0.05.
  • the mass ratio is more preferably 0.0005 to 0.03, still more preferably 0.001 to 0.02, particularly preferably 0.005 to 0.02, and most preferably 0.005 to 0.017.
  • the supernatant liquid separation step may include other steps as long as it includes a step of separating the supernatant liquid after allowing the liquid containing graphite oxide to stand at a temperature of 30 to 90 ° C. It is preferable to include a step of separating the cleaning liquid and the graphite oxide after adding a cleaning solvent to the graphite for cleaning. By including such a cleaning step, it is possible to obtain graphite oxide with higher purity.
  • the manufacturing method of the graphite oxide of this invention is arbitrary, you may also include a washing
  • the washing solvent used in the washing step is not particularly limited as long as graphite oxide is washed, but one or more kinds of water, methanol, ethanol, isopropanol, acetone and the like can be used.
  • the method for separating the cleaning liquid and the graphite oxide is not particularly limited, but the cleaning liquid containing graphite oxide is allowed to stand at a temperature of 30 to 90 ° C. as in the case of separating the graphite oxide from the reaction liquid. It is preferable to separate the supernatant. By doing in this way, graphite oxide and a washing
  • the preferable range of the temperature at which the cleaning liquid is allowed to stand is the same as the preferable range of the temperature at which the reaction liquid containing graphite oxide described above is allowed to stand.
  • the preferable range of the time for which the cleaning liquid is allowed to stand is the same as the preferable range of the time for which the reaction liquid containing the graphite oxide described above is allowed to stand.
  • the graphite oxide can be reduced to a more hydrophobic reduced-type graphite oxide by further reducing and removing the hydrophilic functional group.
  • the same steps as the oxidation process and the purification process of the above-described method for producing graphite oxide of the present invention can be used. By using such a process, reduced graphite oxide is used. Can be efficiently manufactured.
  • a method for producing such reduced graphite oxide that is, a method for producing reduced graphite oxide obtained by reducing graphite oxide, the method comprising oxidizing graphite and oxidation obtained in the oxidation step A step of purifying the graphite and a step of reducing the graphite oxide obtained in the purification step, wherein the purification step leaves the liquid containing graphite oxide at a temperature of 30 to 90 ° C.
  • a method for producing reduced graphite oxide characterized by including a separation step is also one aspect of the present invention.
  • the purification step includes a step of allowing the liquid containing graphite oxide to stand at a temperature of 30 to 90 ° C. and then separating the supernatant liquid. is there.
  • the step of reducing graphite oxide is not particularly limited as long as the hydrophilic functional group is eliminated from graphite oxide and reduced, and NaBH 4 ,
  • a method using a known reducing agent such as LiAlH 4 or L-ascorbic acid, electrolytic reduction, or the like can be used, but a method of reducing graphite oxide by heating is preferable.
  • the temperature for heating the graphite oxide is preferably 100 ° C. or higher. More preferably, it is 120 ° C. or higher. Although there is no upper limit in particular in the heating temperature of graphite oxide, it is normally performed at 2000 degrees C or less.
  • the time for heating the graphite oxide is preferably 0.1 to 100 hours. More preferably, it is 0.2 to 50 hours.
  • the graphite oxide may be heated in the air or in an inert gas atmosphere such as nitrogen, helium, or argon. Moreover, you may carry out in a vacuum.
  • the preferred forms of the step of oxidizing graphite in the method for producing reduced graphite oxide of the present invention and the step of purifying graphite oxide obtained in the oxidation step are preferred for these steps in the method of producing graphite oxide of the present invention described above. It is the same as the form.
  • the method for producing reduced graphite oxide of the present invention includes a step of oxidizing graphite, a step of purifying graphite oxide obtained in the oxidation step, and a step of reducing graphite oxide obtained in the purification step. These steps may be included. Examples of the other steps include the oxidation reaction stopping step described above.
  • the method for producing graphite oxide of the present invention is optional, but may include a step of recovering sulfuric acid used for the reaction of oxidizing graphite (hereinafter also referred to as a recovery step).
  • a recovery step the process of performing the reaction which oxidizes the said graphite is also called 1st oxidation process.
  • the manufacturing method of the graphite oxide of this invention collect
  • the recovered sulfuric acid may contain a small amount of oxidant, but it can be handled safely by including a mixing process, and a large amount of sulfuric acid treatment process can be reduced / reduced for efficient production. It was also confirmed that high quality graphite oxide was obtained by the method.
  • an oxidizing agent is added to the mixture obtained by the step of oxidizing graphite, the step of recovering sulfuric acid used for the reaction of oxidizing the graphite, the step of mixing the recovered sulfuric acid and graphite, and the mixing step.
  • the fourth aspect of the present invention is a method for producing graphite oxide by oxidizing graphite, for example, which comprises a step of recovering sulfuric acid used in a reaction for oxidizing graphite, the recovered sulfuric acid and graphite And a method for producing graphite oxide, which includes a step of adding an oxidizing agent to a mixed solution obtained by the mixing step and oxidizing the graphite.
  • the fourth aspect of the present invention is a method for producing graphite oxide by oxidizing graphite, the production method comprising a step of recovering sulfuric acid used in a reaction for oxidizing graphite, the recovered sulfuric acid and graphite A step of mixing, and a step of oxidizing the graphite by adding an oxidant to the mixed solution obtained by the mixing step, and (I) a reaction of oxidizing the graphite into a mixed solution containing graphite and sulfuric acid.
  • the fourth aspect of the present invention can adopt a preferred form of the first aspect of the present invention.
  • either or both of the addition step and the supernatant liquid separation step may be employed as the oxidation reaction stopping step.
  • the sulfuric acid used for the reaction which oxidizes graphite is the sulfuric acid used for the manufacturing method of this invention.
  • three processes, the said collection process, a mixing process, and an oxidation process, are demonstrated in order.
  • the following description of the three steps is an explanation of one embodiment of the first aspect of the present invention, but is common to the description of the third step of the fourth aspect of the present invention unless otherwise noted or contradictory.
  • the embodiment including these three steps in the method for producing graphite oxide of the present invention may be one in which these three steps are performed only once, and the sulfuric acid obtained in the last oxidation step is further recovered to 2 It may be performed repeatedly more than once.
  • the method for producing graphite oxide by oxidizing graphite may further include other steps such as a reaction stop (quenching) step and a purification step of graphite oxide after the oxidation step. The other steps will be briefly described after the above three steps.
  • the method includes a step of recovering sulfuric acid used in a reaction for oxidizing graphite.
  • the reaction for oxidizing graphite is not particularly limited, but is preferably the same reaction as the reaction in the oxidation step.
  • an oxidizing agent for oxidizing graphite is used.
  • the oxidizing agent those described above can be used, and permanganate is particularly preferable.
  • recovering sulfuric acids is called a 1st oxidation process.
  • the recovery step may recover sulfuric acid from a mixed solution obtained by a reaction that oxidizes graphite, and further mix the mixed solution with a large excess of water or hydrogen peroxide solution with respect to the mixed solution.
  • graphite may be added before the oxidation reaction stopping step. It is preferable to recover sulfuric acid from the liquid mixture obtained by the oxidation reaction. If before the oxidation reaction stop step, more of the oxidant-derived component (eg, manganese ions) is retained in the solid content (interlayer of graphite oxide), so the impurities are very much removed by removing the solid content. A small amount of sulfuric acid can be recovered. This sulfuric acid has a sufficiently small amount of water.
  • the recovery method in the recovery step is not particularly limited, but a solid-liquid separation method is preferable from the viewpoint of easily recovering sulfuric acid with a small amount of impurities.
  • the solid-liquid separation method include centrifugation, filtration, decantation, and the like, and one or more of these can be used in appropriate combination.
  • sulfuric acid which is a supernatant may be recovered.
  • the recovered sulfuric acid is further purified as necessary, or sulfuric acid other than the recovered sulfuric acid is added to the recovered sulfuric acid. You may mix.
  • the manganese concentration in sulfuric acid used in the mixing step described later is 10,000 ppm or less.
  • the manganese concentration refers to the manganese concentration in sulfuric acid used in the mixing step, and in the case where sulfuric acid other than the recovered sulfuric acid is mixed with the recovered sulfuric acid, it refers to the manganese concentration of the sulfuric acid after mixing.
  • the manganese concentration is more preferably 3000 ppm or less, still more preferably 1000 ppm or less, still more preferably 500 ppm or less, still more preferably 100 ppm or less, and even more preferably 50 ppm or less. It is preferably 10 ppm or less.
  • the said manganese concentration is measured by the method of the Example mentioned later.
  • the temperature of the mixed solution in the recovery step is not particularly limited, but is preferably 0 to 50 ° C., for example, and more preferably 10 to 40 ° C.
  • the recovery step can be performed, for example, in air or in an inert gas atmosphere.
  • the pressure conditions are not particularly limited, and the recovery step can be performed under reduced pressure conditions, normal pressure conditions, or pressurized conditions.
  • the recovery process is performed under normal pressure conditions. It is preferable.
  • the method includes a step of mixing the recovered sulfuric acid and graphite.
  • the amount of graphite in 100% by mass of the mixed liquid obtained by mixing the recovered sulfuric acid and graphite is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and The content is more preferably 5% by mass or more, and particularly preferably 1% by mass or more.
  • the amount of graphite is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and particularly preferably 10% by mass or less.
  • graphite may be used alone, or two or more types different in average particle diameter, shape, specific surface area, physical properties, etc. may be mixed and used.
  • the mixing step is preferably performed while stirring using a known stirrer or the like.
  • the mixing step can be performed, for example, in air or in an inert gas atmosphere.
  • the pressure conditions in the mixing step are not particularly limited, and can be performed under reduced pressure conditions, normal pressure conditions, or pressurized conditions. For example, it is preferably performed under normal pressure conditions.
  • the mixed liquid can be obtained by mixing the recovered sulfuric acid, graphite, and other components as required.
  • sulfuric acid other than the recovered sulfuric acid may be further mixed as necessary.
  • the mixing can be appropriately performed by a known method, but it is preferable to uniformly disperse the graphite, for example, by performing ultrasonic treatment or using a known disperser.
  • the method includes a step of oxidizing graphite by adding an oxidizing agent to the mixed liquid obtained by the mixing step.
  • the oxidation step using the recovered sulfuric acid is also referred to as a second oxidation step.
  • the said oxidation reaction is not specifically limited,
  • the preferable form in the said oxidation process is as having mentioned above.
  • the permanganate is added to the mixed solution while maintaining the 7-valent manganese concentration in the mixed solution of 100% by mass at 1% by mass or less. It is preferable to oxidize.
  • the oxidizing agent used in the oxidation step, the amount of addition, the form of addition, the temperature of the mixed solution in the oxidation step, the mass ratio of sulfuric acid to graphite (sulfuric acid / graphite), the stirring method, the pressure conditions, the time of the oxidation step The process is the same as described above.
  • Both the first oxidation step and the second oxidation step are permanganic acid in a mixed solution containing graphite and sulfuric acid while maintaining the concentration of 7-valent manganese in 100% by mass of the mixed solution at 1% by mass or less.
  • Particularly preferred is a step of oxidizing the graphite by adding a salt.
  • the method for producing graphite oxide of the present invention includes an aging step for aging the reaction solution obtained in the oxidation step, an oxidation reaction stop (quenching) step (for example, an addition step), and an oxidation in the mixed solution obtained by the oxidation reaction stop step. Other steps such as a stirring step and a purification step for sufficiently reducing the agent can be included. Each of these steps is the same as described above.
  • the method for producing graphite oxide of the present invention includes, for example, a step of adding the mixed solution obtained in the oxidation step to 120% by mass or more of water or hydrogen peroxide solution with respect to 100% by mass of the mixed solution.
  • the method for producing graphite oxide of the present invention includes, for example, stirring the mixed solution obtained in the addition step in order to more fully reduce the oxidizing agent in the mixed solution obtained in the addition step after the addition of the mixed solution. May be.
  • the method for producing graphite oxide of the present invention can include other steps depending on the desired application.
  • the present invention relates to a method for recovering and storing sulfuric acid used in a method for producing graphite oxide by oxidizing graphite, and the storage method includes a step of adding and storing graphite to the recovered sulfuric acid. It is also a storage method. Among them, permanganate is added to a mixed solution containing graphite and sulfuric acid while maintaining the concentration of 7-valent manganese in 100% by mass of the mixed solution at 1% by mass or less to oxidize the graphite to obtain oxidized graphite.
  • a method for recovering and storing sulfuric acid used in a manufacturing method wherein the method for storing sulfuric acid includes a step of storing graphite by adding graphite to the recovered sulfuric acid. It is.
  • the recovered sulfuric acid especially the sulfuric acid recovered before the oxidation reaction stop process, may contain a trace amount of explosive heptavalent manganese. By adding graphite to this, the recovered sulfuric acid can be stored stably. It becomes possible to do.
  • the storage step is preferably a step of maintaining a liquid obtained by adding graphite to the recovered sulfuric acid at 20 ° C. or lower.
  • the preservation step is more preferably a step of maintaining a liquid obtained by adding graphite to the recovered sulfuric acid at 15 ° C. or less, and further preferably a step of maintaining the solution at 10 ° C. or less.
  • the manganese concentration in the recovered sulfuric acid is preferably 10,000 ppm or less. Thereby, sulfuric acid can be stored more stably.
  • the manganese concentration is more preferably 3000 ppm or less, still more preferably 1000 ppm or less, still more preferably 500 ppm or less, still more preferably 100 ppm or less, and even more preferably 50 ppm or less. It is preferably 10 ppm or less.
  • the said manganese concentration is measured by the method of the Example mentioned later.
  • the amount of graphite in 100% by mass of the mixed liquid obtained by adding graphite to the recovered sulfuric acid is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and 0.5% More preferably, it is more preferably 1% by mass or more.
  • the amount of graphite is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and particularly preferably 10% by mass or less.
  • graphite may be used alone, or two or more types having different physical properties may be mixed and used. Moreover, graphite may be added all at once or may be added gradually.
  • the recovered sulfuric acid used in the storage step has a low water content (for example, less than 5% by mass)
  • graphite oxide having good quality for example, progress of thinning
  • the reaction slurry can be sufficiently prevented from solidifying during the oxidation reaction, and the amount of graphite charged in the mixed liquid can be sufficiently increased.
  • the moisture content is 15% by mass or less, the oxidation and peeling of the graphite can be sufficiently advanced when the graphite is oxidized.
  • the water content is more preferably 10% by mass or less.
  • the storage step can be performed, for example, in air or in an inert gas atmosphere.
  • the pressure condition is not particularly limited, and the storage step can be performed under reduced pressure conditions, normal pressure conditions, or pressurized conditions. For example, it is performed under normal pressure conditions. It is preferable.
  • Suitable physical properties of graphite used in the mixing step and the storage method of the present invention are the same as those described above as suitable physical properties of graphite used for preparing the mixed solution.
  • the above-described first to fourth methods for producing graphite oxide of the present invention can include other steps such as a filtration step using a flocculant depending on a desired application.
  • Graphite oxide obtained by the above-described first to fourth methods for producing graphite oxide of the present invention and reduced graphite oxide obtained by the method for producing reduced graphite oxide of the present invention have a specific surface area, chemical modification, It has excellent ease, affinity with various solvents and polymer components, etc., so catalysts (materials), battery and capacitor electrode materials, thermoelectric conversion materials, conductive materials, luminescent materials, lubricating additives, high It can be suitably used as a molecular additive, a permeable membrane material, an oxidizing agent, a bactericidal agent, an antibacterial agent, a water repellent material, an adsorbing material, and the like.
  • the preferable specific surface area of graphite oxide or reduced graphite oxide is, for example, 10 m 2 / g or more and 2700 m 2 / g or less.
  • the graphite oxide is one of preferable forms in which the sensitivity (grade) measured by a drop sensitivity test specified in JIS K 4810 is a 7th grade or less.
  • Such graphite oxide is presumed to have highly active (unstable) oxygen in the structure. Therefore, it is expected that a higher effect will be manifested particularly in applications such as oxidizing agents, bactericides, and antibacterial agents.
  • Examples of the battery include a lithium ion secondary battery, a polymer electrolyte fuel cell, and a metal-air battery.
  • Examples of the thermoelectric conversion device in which the thermoelectric conversion material is used include, for example, a geothermal / hot spring thermal power generator, a solar heat power generator, a waste heat power generator such as a factory or an automobile, a power generator such as a body temperature power generator, Examples include various electric products, electric motors, artificial satellites, and the like used as one.
  • ⁇ Measurement method of 7-valent manganese concentration> Prepare a plurality of solutions with known 7-valent manganese concentration values but different concentration values, and measure the absorbance of each solution at 540 nm with a photoelectric colorimeter (AP-1000M, manufactured by Apele Co., Ltd.) Then, a calibration curve is prepared by plotting the absorbance against the concentration of 7-valent manganese.
  • the graphite oxidation step 1 part by weight of the mixed solution is sampled and added to 10 to 10000 parts by weight of water, which is stirred and homogenized and filtered through a 0.2 to 0.5 ⁇ m pore size filter. Using the filtrate received by the glass cell, the absorbance at 540 nm is measured with the photoelectric colorimeter, and the concentration of the 7-valent manganese in the mixed solution is calculated from the calibration curve.
  • XRD measurement is performed using a sample horizontal X-ray diffractometer (SmartLab, manufactured by Rigaku Corporation), and the X-ray diffraction peak derived from the (0 0 2) plane of graphite is calculated.
  • the peak separation in the narrow scan spectrum of C1s is performed by performing the background correction by the Shirley method and performing peak fitting using a Gauss-Lorentz function as a fitting function.
  • XRF measurement was performed by a calibration curve method using a fluorescent X-ray analyzer (manufactured by Philips, PW2404).
  • ⁇ Sensitivity test> According to the sensitivity test method defined in JIS K 4810.
  • Example 1-1 To a 1 L separable flask, 869.40 g of concentrated sulfuric acid (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and 18.90 g of natural graphite (Z-100, scaly graphite, manufactured by Ito Graphite Industries, Ltd.) were added to obtain a mixed solution. .
  • the Raman spectrum of natural graphite (Z-100) is shown in FIG. 1, and the XRD pattern is shown in FIG. From FIG. 1, the ratio of the peak intensity of the D band to the peak intensity of the G band in the Raman spectrum is 0.084, and from FIG.
  • potassium permanganate special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • the amount of potassium permanganate input once was 5.04 g
  • the total amount input was 75.60 g.
  • the concentration of 7-valent manganese in the mixed solution was quantified by the method for measuring 7-valent manganese immediately before the charging. Specifically, 0.3 g of the mixed solution was sampled, added to 100 g of water, mixed with stirring, the absorbance of the filtrate after filtration was measured, and the concentration of 7-valent manganese was quantified.
  • the concentration of 7-valent manganese was all 0.65% by mass or less. Since the 7-valent manganese contained in one charge (5.04 g) of potassium permanganate is 0.2% by mass or less with respect to 100% by mass of the mixed solution, from the start of the introduction of potassium permanganate. Until the end of charging, the concentration of the 7-valent manganese in the mixed solution was maintained at 0.85% by mass or less. Note that the temperature of the mixed solution was within the range of 24 ° C. to 30 ° C. from the start to the end of the addition of potassium permanganate.
  • the mixture was heated to 35 ° C., and after the liquid temperature reached 35 ° C., the temperature was maintained at 35 ° C. and stirring was continued for 2 hours. Thereafter, 200 g of the mixed solution cooled to room temperature (20 ° C.) was added to a beaker containing 1000 g of water at room temperature (20 ° C.) over 15 minutes. From the start to the end of the addition of the mixed liquid, the water in the beaker was constantly stirred, and the water temperature (liquid temperature) was maintained at 45 ° C. or lower. Subsequently, 11.08 g of 30% hydrogen peroxide solution (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added over 1.5 minutes. Foaming was observed when hydrogen peroxide solution was added, but no sudden rise in the liquid level occurred.
  • 30% hydrogen peroxide solution special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • FIG. 3 shows a C1s spectrum (narrow scan spectrum) obtained by XPS measurement of natural graphite (Z-100) used as a raw material.
  • Example 1-2 Concentrated sulfuric acid (reagent special grade, manufactured by Wako Pure Chemical Industries, Ltd.) 10021.85 g and natural graphite (Z-5F, flake graphite, manufactured by Ito Graphite Industries Co., Ltd.) 348.59 g were added to a 20 L corrosion resistant reactor to obtain a mixed solution.
  • FIG. 6 shows the Raman spectrum of natural graphite (Z-5F)
  • FIG. 7 shows the XRD pattern. From FIG. 6, the ratio of the peak intensity of the D band to the peak intensity of the G band in the Raman spectrum is 0.21, and from FIG. 7, the interplanar spacing of the graphite (0 0 2) plane by X-ray diffraction is 3.38 mm. there were.
  • Natural graphite (Z-5F) had an average particle size of 3.38 ⁇ m and a specific surface area of 8.24 m 2 / g.
  • potassium permanganate special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • the amount of potassium permanganate input at one time was 43.57 g, and the total amount input was 871.40 g.
  • the concentration of 7-valent manganese in the mixed solution was quantified by the method for measuring 7-valent manganese immediately before the charging.
  • the concentration of 7-valent manganese was all 0.04% by mass or less. Since seven-valent manganese contained in one charge (43.57 g) of potassium permanganate is 0.15% by mass or less with respect to 100% by mass of the mixed solution, from the start of the addition of potassium permanganate. Until the end of charging, the concentration of the 7-valent manganese in the mixed solution was maintained at 0.19% by mass or less. Note that the temperature of the mixed solution was within the range of 18 ° C. to 28 ° C. from the start to the end of the addition of potassium permanganate.
  • the mixture was heated to 35 ° C., and after the liquid temperature reached 35 ° C., the temperature was maintained at 35 ° C. and stirring was continued for 2 hours. Thereafter, 6 g of the mixed solution was put into a beaker containing 100 g of water at room temperature (20 ° C.) and mixed with stirring for 1 minute.
  • graphite oxide graphene oxide
  • Example 1-1 and Example 1-2 a permanganate was added to a mixed solution containing graphite and sulfuric acid while maintaining the concentration of 7-valent manganese in 100% by mass of the mixed solution at 1% by mass or less.
  • concentration of 7-valent manganese 100% by mass of the mixed solution at 1% by mass or less.
  • explosion caused by accumulation of heptavalent manganese in the reaction system can be prevented, and graphite oxide can be produced safely and efficiently.
  • potassium permanganate is used as the permanganate, but the mechanism of action that produces the effects of the present invention is the same as long as it is a permanganate.
  • the first solution is to oxidize graphite by adding permanganate to a mixed solution containing graphite and sulfuric acid while maintaining the concentration of 7-valent manganese in 100% by mass of the mixed solution below a predetermined concentration. If there is an essential feature of the present invention and an explosion caused by the accumulation of heptavalent manganese in the reaction system can be prevented, the effects as shown in this example are exhibited. Therefore, if it is set as the manufacturing method of the graphite oxide comprised by the essential component in 1st this invention, it can be said that the advantageous effect of invention is expressed reliably.
  • Example 2-1 To a 2 L separable flask, 1499.40 g of concentrated sulfuric acid (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and 50.40 g of natural graphite (Z-100, scaly graphite, manufactured by Ito Graphite Industries, Ltd.) were added to obtain a mixed solution. . While stirring the mixed solution in the separable flask, a predetermined amount of potassium permanganate (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was introduced into the mixed solution 12 times at intervals of 17 minutes. The amount of potassium permanganate input at one time was 10.50 g, and the total amount input was 126.00 g.
  • the concentration of 7-valent manganese in the mixed solution was quantified by the method for measuring 7-valent manganese immediately before the charging. Specifically, 0.3 g of the mixed solution was sampled, added to 100 g of water, mixed with stirring, the absorbance of the filtrate after filtration was measured, and the concentration of 7-valent manganese was quantified. As a result, the concentration of 7-valent manganese was all 0.48% by mass or less. Since the 7-valent manganese contained in one charge of potassium permanganate (10.50 g) is 0.31% by mass or less with respect to 100% by mass of the mixed solution, from the start of the addition of potassium permanganate.
  • the concentration of the 7-valent manganese in the mixed solution was maintained at 0.79% by mass or less. Note that the temperature of the mixed solution was within the range of 17 ° C. to 27 ° C. from the start to the end of the addition of potassium permanganate.
  • the mixture was heated to 35 ° C., and after the liquid temperature reached 35 ° C., the temperature was maintained at 35 ° C. and stirring was continued for 2 hours. Thereafter, 167.58 g of water was added to the mixed solution cooled to room temperature (20 ° C.) over 30 minutes to adjust the viscosity to be easy to handle. While adding water, the liquid temperature of the liquid mixture was maintained at 50 ° C. or lower.
  • FIG. 11 shows an XRD pattern of the obtained dried product
  • graphite oxide graphene oxide
  • Example 1-1 an oxidizing agent is added to a mixed solution containing graphite and sulfuric acid, and the mixed solution obtained in the oxidation step of oxidizing graphite is added to a predetermined amount or more of water.
  • the liquid mixture obtained in the oxidation step is added to a predetermined amount or more of hydrogen peroxide solution.
  • foaming at the time of stopping the reaction can be sufficiently suppressed, and graphite oxide can be produced safely and efficiently.
  • graphite oxide can be produced by a simple operation. can do.
  • the dried product obtained in Examples 1-1 and 2-1 is high-quality graphite oxide.
  • the grounds for this determination are as follows. When the oxidation of graphite is insufficient or the oxidized portion has been reduced due to the influence of (local) heat generation etc., a remarkable diffraction peak in the range of 2 ⁇ of XRD data of 20-30 ° However, such a prominent peak is not observed in the dried products obtained in Examples 1-1 and 2-1 (FIGS. 3 and 11). Further, in the obtained XPS spectrum, the peak areas near 286 to 287 eV and 288 to 289 eV derived from the bond of carbon and oxygen are compared with the peak areas near 284 to 285 eV derived from the bond between carbons. Is clearly large (FIGS. 4 and 12). From the above results, it can be determined that the dried products obtained in Examples 1-1 and 2-1 are maintained in a sufficiently oxidized state, and can be said to be high-quality graphite oxide.
  • potassium permanganate is used as the oxidizing agent, but the mechanism of action that produces the effect of the second invention is the same as long as it is an oxidizing agent. That is, the essential feature of the second invention is that a mixture obtained by oxidizing graphite by adding an oxidizing agent to a mixture containing graphite and sulfuric acid is added to a predetermined amount or more of water or hydrogen peroxide. If there is a characteristic and the foaming at the time of stopping the reaction is sufficiently suppressed, the effect as shown in this example is exhibited. Therefore, if it is set as the manufacturing method of the graphite oxide comprised by the essential component in 2nd this invention, it can be said that the advantageous effect of invention is expressed reliably.
  • the concentration of heptavalent manganese in the mixed solution was quantified by the method for measuring heptavalent manganese immediately before the charging.
  • the concentration of 7-valent manganese was all 0.04% by mass or less.
  • Hexavalent manganese contained in one charge of potassium permanganate is 0.15% by mass or less with respect to 100% by mass of the mixed solution.
  • the 7-valent manganese concentration in the liquid was maintained at 0.19% by mass or less.
  • the mixture was heated to 35 ° C. and aged for 2 hours while maintaining the liquid temperature.
  • the extraction weight in each extraction of 1-6 times was 39, 4.4, 1.4, 21, 29, and 38 g, respectively. It was 2.4 weight% (mass%) when the sulfuric acid concentration contained in the reaction liquid after repeating 6 times was computed by XRF measurement.
  • Example 3-5 Purification was carried out under the same conditions as in Comparative Example 3-9, except that the standing temperature was changed from room temperature (25 ° C.) to 60 ° C.
  • the extraction weights in the 1-6 extractions were 43, 39, 36, 43, 42, and 24 g, respectively. It was 0.33 weight% when the sulfuric acid concentration contained in the reaction liquid after repeating 6 times was computed by XRF measurement. From this, it was clarified that by allowing to stand at 60 ° C., the sedimentation rate of graphite oxide was increased and it was possible to purify more efficiently.
  • Example 3-6 Purification was carried out under the same conditions as in Comparative Example 3-10, except that the standing temperature was changed from room temperature (25 ° C.) to 60 ° C.
  • the extraction weights in each extraction of 1-6 times were 58, 53, 52, 31, 25, and 25 g, respectively. It was 0.10 weight% when the sulfuric acid concentration contained in the reaction liquid after repeating 6 times was computed by XRF measurement. From this, it was clarified that by allowing to stand at 60 ° C., the sedimentation rate of graphite oxide was increased and it was possible to purify more efficiently.
  • Example 4-1 To a 0.5 L separable flask, 289.80 g of concentrated sulfuric acid (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and 6.30 g of natural graphite (Z-5F, flake graphite, manufactured by Ito Graphite Industries Co., Ltd.) were added and mixed. It was.
  • FIG. 6 shows the Raman spectrum of natural graphite (Z-5F)
  • FIG. 7 shows the XRD pattern. From FIG. 6, the ratio of the peak intensity of the D band to the peak intensity of the G band in the Raman spectrum is 0.21, and from FIG. 7, the interplanar spacing of the graphite (0 0 2) plane by X-ray diffraction is 3.38 mm. there were.
  • Natural graphite (Z-5F) had an average particle size of 3.38 ⁇ m and a specific surface area of 8.24 m 2 / g.
  • potassium permanganate special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • the amount of potassium permanganate input at one time was 1.575 g, and the total amount of input was 15.75 g.
  • the concentration of the 7-valent manganese in the mixed solution was determined by the method for measuring the 7-valent manganese concentration immediately before the charging.
  • the concentration of 7-valent manganese was all 0.50% by mass or less. Since 7-valent manganese contained in one charge (1.575 g) of potassium permanganate is 0.19% by mass or less with respect to 100% by mass of the mixed solution, from the start of the introduction of potassium permanganate. Until the end of charging, the concentration of the 7-valent manganese in the mixed solution was maintained at 0.69% by mass or less. Note that the temperature of the mixed solution was within the range of 24 ° C. to 30 ° C. from the start to the end of the addition of potassium permanganate.
  • the mixture was heated to 35 ° C., and after the liquid temperature reached 35 ° C., the temperature was maintained at 35 ° C. and stirring was continued for 2 hours. Thereafter, the mixed liquid cooled to room temperature (20 ° C.) was subjected to centrifugal separation to separate a supernatant component and a precipitation component, and the supernatant component was recovered in a separable flask. The recovered amount of the supernatant component was 121.42 g.
  • FIG. 17 shows an XRD pattern of the obtained dried product
  • FIG. 18 shows a C1s spectrum (narrow scan spectrum) obtained by XPS measurement.
  • Concentrated sulfuric acid (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added to the mixed solution in the separable flask stored in the refrigerator (10 ° C. or lower) for 12 days to obtain a mixed solution having a weight of 296.1 g.
  • a predetermined amount of potassium permanganate (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was introduced 10 times into the liquid mixture at 17 minute intervals.
  • the amount of potassium permanganate input at one time was 1.575 g, and the total amount of input was 15.75 g.
  • the concentration of the 7-valent manganese in the mixed solution was determined by the method for measuring the 7-valent manganese concentration immediately before the charging. Specifically, 0.2 g of the mixed solution was collected as a sample, added to 70 g of water, mixed with stirring, and the absorbance of the filtrate after filtration was measured to quantify the concentration of 7-valent manganese. As a result, the concentration of 7-valent manganese was all 0.50% by mass or less. Since 7-valent manganese contained in one charge (1.575 g) of potassium permanganate is 0.19% by mass or less with respect to 100% by mass of the mixed solution, from the start of the introduction of potassium permanganate.
  • the concentration of the 7-valent manganese in the mixed solution was maintained at 0.69% by mass or less. Note that the temperature of the mixed solution was within the range of 24 ° C. to 30 ° C. from the start to the end of the addition of potassium permanganate.
  • the mixture was heated to 35 ° C., and after the liquid temperature reached 35 ° C., the temperature was maintained at 35 ° C. and stirring was continued for 2 hours. Thereafter, 200 g of the mixed solution cooled to room temperature (20 ° C.) was added to a beaker containing 1000 g of water at room temperature (20 ° C.) over 15 minutes. From the start to the end of the addition of the mixed liquid, the water in the beaker was constantly stirred, and the water temperature (liquid temperature) was maintained at 45 ° C. or lower. Subsequently, 11.08 g of 30% hydrogen peroxide solution (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added over 1.5 minutes. Foaming was observed when hydrogen peroxide solution was added, but no sudden rise in the liquid level occurred.
  • 30% hydrogen peroxide solution special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 4-2 To a 0.5 L separable flask, 289.80 g of concentrated sulfuric acid (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and 6.30 g of natural graphite (Z-5F, flake graphite, manufactured by Ito Graphite Industries Co., Ltd.) were added and mixed. It was. While stirring the liquid mixture in the separable flask, a predetermined amount of potassium permanganate (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was introduced 10 times into the liquid mixture at 17 minute intervals. The amount of potassium permanganate input at one time was 1.575 g, and the total amount of input was 15.75 g.
  • concentrated sulfuric acid special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • Z-5F flake graphite, manufactured by Ito Graphite Industries Co., Ltd.
  • the concentration of the 7-valent manganese in the mixed solution was determined by the method for measuring the 7-valent manganese concentration immediately before the charging. Specifically, 0.2 g of the mixed solution was collected as a sample, added to 70 g of water, mixed with stirring, and the absorbance of the filtrate after filtration was measured to quantify the concentration of 7-valent manganese. As a result, the concentration of 7-valent manganese was all 0.50% by mass or less. Since 7-valent manganese contained in one charge (1.575 g) of potassium permanganate is 0.19% by mass or less with respect to 100% by mass of the mixed solution, from the start of the introduction of potassium permanganate.
  • the concentration of the 7-valent manganese in the mixed solution was maintained at 0.69% by mass or less. Note that the temperature of the mixed solution was within the range of 24 ° C. to 30 ° C. from the start to the end of the addition of potassium permanganate.
  • the mixture was heated to 35 ° C., and after the liquid temperature reached 35 ° C., the temperature was maintained at 35 ° C. and stirring was continued for 2 hours. Thereafter, 40 g of water was added to the liquid mixture cooled to room temperature (20 ° C.) while maintaining a liquid temperature of 45 ° C. or lower. Subsequently, the mixture was centrifuged to separate the supernatant component and the precipitation component, and the supernatant component was collected in a separable flask. The recovered amount of the supernatant component was 208.73 g.
  • the concentration of manganese contained in the supernatant component was 26488 ppm.
  • a mixture obtained by adding 6.30 g of natural graphite (Z-5F) to the collected supernatant component was stored in a refrigerator (10 ° C. or lower) for 12 days.
  • Concentrated sulfuric acid (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added to the mixed solution in the separable flask stored for 12 days in the refrigerator (10 ° C. or lower) to prepare a mixed solution having a weight of 296.1 g.
  • a predetermined amount of potassium permanganate (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was introduced 10 times into the liquid mixture at 17 minute intervals.
  • the amount of potassium permanganate input at one time was 1.575 g, and the total amount of input was 15.75 g.
  • the concentration of the 7-valent manganese in the mixed solution was determined by the method for measuring the 7-valent manganese concentration immediately before the charging. Specifically, 0.2 g of the mixed solution was collected as a sample, added to 70 g of water, mixed with stirring, and the absorbance of the filtrate after filtration was measured to quantify the concentration of 7-valent manganese. As a result, the concentration of 7-valent manganese was all 0.50% by mass or less. Since 7-valent manganese contained in one charge (1.575 g) of potassium permanganate is 0.19% by mass or less with respect to 100% by mass of the mixed solution, from the start of the introduction of potassium permanganate.
  • the concentration of the 7-valent manganese in the mixed solution was maintained at 0.69% by mass or less. Note that the temperature of the mixed solution was within the range of 24 ° C. to 30 ° C. from the start to the end of the addition of potassium permanganate.
  • the mixture was heated to 35 ° C., and after the liquid temperature reached 35 ° C., the temperature was maintained at 35 ° C. and stirring was continued for 2 hours. Thereafter, 200 g of the mixed solution cooled to room temperature (20 ° C.) was added to a beaker containing 1000 g of water at room temperature (20 ° C.) over 15 minutes. From the start to the end of the addition of the mixed liquid, the water in the beaker was constantly stirred, and the water temperature (liquid temperature) was maintained at 45 ° C. or lower. Subsequently, 11.08 g of 30% hydrogen peroxide solution (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added over 1.5 minutes. Foaming was observed when hydrogen peroxide solution was added, but no sudden rise in the liquid level occurred.
  • 30% hydrogen peroxide solution special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、安全かつ高効率な酸化黒鉛の製造方法を提供する。本発明は、黒鉛を酸化して酸化黒鉛を製造する方法であって、該製造方法は、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する工程を含む酸化黒鉛の製造方法である。

Description

酸化黒鉛の製造方法
本発明は、酸化黒鉛の製造方法に関する。より詳しくは、触媒(材料)、電池やキャパシタの電極材料、熱電変換材料、導電性材料、発光材料、潤滑用添加剤(潤滑材料)、高分子用添加剤、透過膜材料、酸化剤、殺菌剤、抗菌剤(抗菌材料)、撥水材料、吸着材料等として好適に用いることができる酸化黒鉛の製造方法に関する。
酸化黒鉛は、sp結合で結合した炭素原子が平面的に並んだ層状構造をもつ黒鉛を酸化し、酸素官能基を付与したものであり、その特異な構造や物性のために数多くの研究がなされている。酸化黒鉛は、触媒(材料)、電池やキャパシタの電極材料、熱電変換材料、導電性材料、発光材料、潤滑用添加剤、高分子用添加剤、透過膜材料、酸化剤、殺菌剤、抗菌剤、撥水材料、吸着材料等として用いられることが期待されている。
酸化黒鉛の製造方法としては、黒鉛を酸溶媒中で強力な酸化剤と作用させることで酸化黒鉛を合成した後、生成した酸化黒鉛を溶液中から分離、精製する方法が一般的であり、酸化剤として過マンガン酸カリウムを反応系内に氷冷下で添加して黒鉛を酸化するハマーズ法が知られており(非特許文献1参照。)、当該方法を改良することで安全性や得られる酸化黒鉛の品質等を向上させる試みがなされている(特許文献1、2、非特許文献2、3参照。)。またその他の方法として、硝酸と塩素酸カリウムを用いるBrodie法、酸化剤として硫酸、硝酸と塩素酸カリウムを用いるStaudenmaier法等が知られている。生成した酸化黒鉛の溶液中からの分離、精製は、酸化黒鉛を含む反応液の遠心分離又はろ過により行われることが一般的であるが、気体で加圧しながらろ過を行う方法が効率的な酸化黒鉛の分離、精製方法として報告されている(非特許文献4、5参照)。
特開2011-148701号公報 特開2002-53313号公報
William S. Hummers, et.al, Journal of American Chemical Society, 1958, 80, 1339 Nina I. Kovtyukhova, et.al, Chemistry of Materials, 1999, 11, 771-778 Daniela C. Marcano, et.al, ACS NANO, 2010, 4, 8, 4806-4814 Gabriel Ceriotti, et.al, RSC Advances, 2015, 5, 50365 Gabriel Ceriotti, et.al, Nanoscale, 2015, 00, SI, pp.1-8
従来の酸化黒鉛の製造方法は、安全性と効率性とを両立するために工夫の余地があるものであった。特に、酸化黒鉛を工業的規模で大量生産する場合に、安全性を充分に確保しつつ酸化黒鉛を高効率(短時間)で製造するための工夫の余地があった。
本発明は、上記現状に鑑みてなされたものであり、安全かつ高効率な酸化黒鉛の製造方法を提供することを目的とする。
本発明者らは、酸化黒鉛の製造方法について種々検討し、黒鉛と硫酸とを含む混合液に過マンガン酸塩を添加して酸化黒鉛を高効率で製造する方法に着目した。そして、本発明者らは、黒鉛と硫酸とを含む混合液に氷冷下で過マンガン酸塩を添加する従来の方法は、適切な措置を採らない限り爆発性のある7価のマンガンが反応系内に蓄積し、特に工業的規模で酸化反応を行った場合、爆発のリスクが高まるものであったことを見出した。そして、本発明者らは、例えば該混合液中の7価のマンガンの消費をモニターする等して、7価のマンガン濃度を低く維持しながら過マンガン酸塩を添加する方法を用いることで、安全かつ高効率に酸化黒鉛を製造することができることを見出した。
すなわち本発明は、黒鉛を酸化して酸化黒鉛を製造する方法であって、該製造方法は、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する工程を含む酸化黒鉛の製造方法である。以下においては、この酸化黒鉛の製造方法に係る発明を第1の本発明とも記載する。
本発明の酸化黒鉛の製造方法は、上述の構成よりなり、安全かつ高効率に酸化黒鉛を生産することができ、大量生産にも好適である。
実施例1-1で原料として用いた天然黒鉛のラマンスペクトルを示すグラフである。 実施例1-1で原料として用いた天然黒鉛のXRDを測定した結果を示すグラフである。 実施例1-1で得られた乾燥物のXRDを測定した結果を示すグラフである。 実施例1-1で得られた乾燥物のXPSを測定した結果を示すグラフである。 実施例1-1で原料として用いた天然黒鉛のXPSを測定した結果を示すグラフである。 実施例1-2で原料として用いた天然黒鉛のラマンスペクトルを示すグラフである。 実施例1-2で原料として用いた天然黒鉛のXRDを測定した結果を示すグラフである。 実施例1-2で得られた乾燥物のXRDを測定した結果を示すグラフである。 実施例1-2で得られた乾燥物のXPSを測定した結果を示すグラフである。 実施例1-2で原料として用いた天然黒鉛のXPSを測定した結果を示すグラフである。 実施例2-1で得られた乾燥物のXRDを測定した結果を示すグラフである。 実施例2-1で得られた乾燥物のXPSを測定した結果を示すグラフである。 実施例3-1及び比較例3-1、3-2の反応液の静置時間と上澄み液量との関係を示した図である。 実施例3-2及び比較例3-3、3-4の反応液の静置時間と上澄み液量との関係を示した図である。 実施例3-3及び比較例3-5、3-6の反応液の静置時間と上澄み液量との関係を示した図である。 実施例3-4及び比較例3-7、3-8の反応液の静置時間と上澄み液量との関係を示した図である。 実施例4-1において得られた乾燥物のXRDパターンを示す図である。 実施例4-1において得られた乾燥物のXPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を示す図である。 実施例4-1において得られた乾燥物のXRDパターンを示す図である。 実施例4-1において得られた乾燥物のXPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を示す図である。 実施例4-2において得られた乾燥物のXRDパターンを示す図である。 実施例4-2において得られた乾燥物のXPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を示す図である。
以下に本発明を詳述する。
なお、以下において段落に分けて記載される個々の好ましい特徴を2つ以上組み合わせた形態も、本発明の好ましい形態である。
以下では、「本発明」は、特に断りのない限り、第1の本発明を言うが、第1の本発明の好ましい形態は、特に断りのない限り、後述の第2の本発明、第3の本発明、及び、第4の本発明においても好ましい形態として適用することが可能である。
<酸化黒鉛の製造方法>
本発明の製造方法により得られる酸化黒鉛は、グラフェン、黒鉛(グラファイト)等の黒鉛質の炭素材料に酸素が結合したものであり、エポキシ基、カルボキシル基、カルボン酸塩基、水酸基等の酸素含有官能基を有する。該酸化黒鉛は、グラフェンの炭素に酸素が結合した酸化グラフェンであることが好ましい。
上記酸化黒鉛は、更に、硫黄含有基等のその他の官能基を有していてもよいが、全構成元素に対する炭素、水素、及び、酸素の構成元素としての含有率が97モル%以上であることが好ましく、99モル%以上であることがより好ましい。上記酸化黒鉛が、炭素原子、並びに、酸素含有官能基が有する酸素原子、水素原子、及び、塩を形成するアルカリ金属原子のみを構成元素とするものであることもまた好ましい。
なお、一般的にグラフェンとは、sp結合で結合した炭素原子が平面的に並んだ1層からなるシートをいい、グラフェンシートが多数積層されたものはグラファイトといわれるが、本発明における酸化グラフェンには、炭素原子1層のみからなるシートだけではなく、2層~100層程度積層した構造を有するものも含まれる。該酸化グラフェンは、炭素原子1層のみからなるシートであるか、又は、2層~20層程度積層した構造を有するものであることが好ましい。
(酸化工程)
本発明の酸化黒鉛の製造方法は、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する工程を含む。
上記「7価のマンガン濃度を1質量%以下に維持しながら」とは、黒鉛と硫酸とを含む混合液を撹拌して均一化したときの混合液中の7価のマンガン平均濃度が1質量%以下になるように維持することを言う。
上記7価のマンガンには、イオンの状態で存在する7価のマンガンのみではなく、酸化物等に含有された状態で存在する7価のマンガンも含まれる。
上記酸化工程において、上記7価のマンガン濃度を0.9質量%以下に維持することが好ましく、0.8質量%以下に維持することがより好ましく、0.7質量%以下に維持することが更に好ましく、0.5質量%以下に維持することが特に好ましい。
上記7価のマンガン濃度の下限値は特に限定されないが、本発明の酸化黒鉛の製造方法の好ましい一実施形態では、酸化反応を効率的に進行させる観点から、該濃度を例えば0.0001質量%以上に維持する。
上記7価のマンガン濃度は、後述する実施例の方法により測定されるものである。該7価のマンガン濃度の測定は、上記酸化工程の間、上記混合液中の7価のマンガン濃度が1質量%以下に維持されるように反応条件、過マンガン酸塩の添加条件等を制御する限り、省略可能であるが、上記酸化工程中に1回又は複数回実施することが好ましい。
上記酸化工程で添加する過マンガン酸塩としては、過マンガン酸ナトリウム、過マンガン酸カリウム、過マンガン酸アンモニウム、過マンガン酸銀、過マンガン酸亜鉛、過マンガン酸マグネシウム、過マンガン酸カルシウム、過マンガン酸バリウム等が挙げられ、これらの1種又は2種以上を使用できるが、中でも過マンガン酸ナトリウム、過マンガン酸カリウムが好ましく、過マンガン酸カリウムがより好ましい。
なお、後述する第2~第4の本発明において酸化工程で添加する酸化剤としては、特に限定されず、過マンガン酸塩の他、例えば硝酸塩、次亜塩素酸塩、クロム酸塩等が挙げられ、これらの1種又は2種以上を使用できるが、中でも過マンガン酸塩が好ましい。上記過マンガン酸塩としては、上述したものと同様である。
本発明の酸化黒鉛の製造方法の別の好ましい一実施形態では、上記酸化工程における上記過マンガン酸塩の全添加量は、上記混合液中の黒鉛量100質量%に対し、50~500質量%である。これにより、酸化黒鉛を安全かつ効率的に製造することができる。なお、過マンガン酸塩の全添加量を変化させることで、酸化黒鉛に導入される酸素原子の量を調節することができる。
該全添加量は、100質量%以上であることがより好ましく、150質量%以上であることが更に好ましく、200質量%以上であることが一層好ましく、240質量%以上であることが特に好ましい。また、該全添加量は、450質量%以下であることがより好ましく、400質量%以下であることが更に好ましく、350質量%以下であることが一層好ましく、300質量%以下であることが特に好ましい。
本明細書中、混合液中の黒鉛量とは、上記混合液を作製するために用いられた黒鉛の仕込み量を言う。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態において、上記酸化工程では、安全性の観点から、上記過マンガン酸塩を複数回に分けて添加するか、又は、連続で添加する。過マンガン酸塩を複数回に分けて添加する場合、添加する回数は、3回以上であることが好ましく、5回以上であることがより好ましく、7回以上であることが更に好ましく、9回以上であることが特に好ましい。これにより、混合液中の7価のマンガン濃度を簡便に低く維持することができ、酸化反応が急激に進行することを抑えて反応の制御をよりしやすくすることができる。過マンガン酸塩を複数回に分けて添加する場合、上記混合液中の7価のマンガン濃度を所望の濃度に維持できるような添加と添加との間の時間間隔を決定するために7価のマンガン濃度の測定を行うことが好ましい。なお、添加と添加との間の時間間隔とは、添加終了時から次の添加開始時までの時間間隔を言う。
上記酸化工程が、上記過マンガン酸塩を複数回に分けて添加する場合、1回当たりの添加量は、それぞれ同じであってもよく、異なっていてもよいが、それぞれ同じであることが好ましい。
また上記酸化工程が、上記過マンガン酸塩を3回以上に分けて添加する場合、添加と添加との間の時間間隔は、それぞれ同じであってもよく、異なっていてもよいが、それぞれ同じであることが好ましい。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記酸化工程における上記過マンガン酸塩の1回当たりの添加量は、上記混合液中の硫酸量100質量%に対し、3質量%以下である。該添加量は、2質量%以下であることがより好ましく、1質量%以下であることが更に好ましく、0.5質量%以下であることが特に好ましい。
なお、過マンガン酸塩を複数回に分けて添加する場合であって、1回当たりの添加量が異なるときは、最大添加量が上記の好ましい範囲内であればよい。
上記混合液中の硫酸量とは、上記混合液を作製するために用いられた硫酸の仕込み量(水分は除く)を言う。
上記酸化工程では、上記混合液の温度を-10~60℃の範囲内に維持しながら過マンガン酸塩を添加することができる。上記混合液の温度は、0℃以上に維持することが好ましい。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記酸化工程では、上記混合液の温度を10~50℃の範囲内に維持しながら過マンガン酸塩を添加する。このような温度範囲に維持することで、酸化反応を制御しながら充分に進行させることができる。具体的には、上記温度を10℃以上に維持することにより、混合液中の7価のマンガンを反応させて消費することができ、7価のマンガンが反応系内に蓄積することをより防止することができ、7価のマンガン濃度を低く維持することができる。また、該温度を50℃以下に維持することにより、酸化工程をより安全に行うことができる。
上記温度を12℃以上に維持することがより好ましく、15℃以上に維持することが更に好ましく、18℃以上に維持することが一層好ましく、20℃以上に維持することが特に好ましい。また、上記温度を45℃以下に維持することがより好ましく、40℃以下に維持することが更に好ましい。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記酸化工程は、上記混合液の温度変化を25℃以下に維持しながら過マンガン酸塩を添加する工程である。これにより、より安定的に酸化工程を行うことができる。
上記酸化工程は、該温度変化を20℃以下に維持することがより好ましく、15℃以下に維持することが更に好ましく、10℃以下に維持することが特に好ましい。
また本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記酸化工程は、安定的に酸化工程を行う観点から、上記過マンガン酸塩を10分~10時間の間にわたって添加する。
上記酸化工程は、上記過マンガン酸塩を30分以上の間にわたって添加することがより好ましく、1時間以上の間にわたって添加することが更に好ましく、2時間以上の間にわたって添加することが特に好ましい。また、酸化黒鉛を効率的に製造する点から、過マンガン酸塩の添加時間は、8時間以下であることがより好ましく、7時間以下であることが更に好ましく、6時間以下であることが特に好ましい。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記酸化工程において、上記混合液における黒鉛に対する硫酸の質量比(硫酸/黒鉛)は、25~60である。該質量比が25以上であることにより、酸化反応中に反応液(混合液)の高粘度化を充分に防止して酸化黒鉛を効率的に製造することができる。また、該質量比が60以下であることにより、廃液量を充分に少なくすることができる。
上記質量比は、26以上であることがより好ましく、27以上であることが更に好ましく、28以上であることが特に好ましい。また、該質量比は、54以下であることがより好ましく、48以下であることが更に好ましく、42以下であることが特に好ましい。
なお、硫酸が少ない条件で酸化工程を行った場合等に、混合液の粘度が高くなりその添加が困難となるときがあるため、混合液は、酸化工程における酸化剤の添加の後に少量(例えば、硫酸100質量部に対して50質量部未満)の水で希釈された液であってもよい。言い換えれば、酸化工程が、混合液の粘度を低下させるために混合液を水で希釈する工程を含んでいてもよい。
以下では、上記混合液を作製するために用いられる黒鉛の好適な物性について説明する。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記酸化工程において、上記黒鉛は、ラマンスペクトルにおけるGバンドのピーク強度に対するDバンドのピーク強度の比が0.4以下である。これにより、酸化グラフェンがより得られやすくなる。
本明細書中、Gバンドのピーク強度とは、ラマンシフト1580cm-1のピーク強度を意味し、Dバンドのピーク強度とは、ラマンシフト1350cm-1のピーク強度を意味する。
該ピーク強度の比は、0.35以下であることがより好ましく、0.3以下であることが更に好ましい。また、該ピーク強度の比は、0.04以上であることがより好ましい。
上記ピーク強度の比は、後述する実施例の方法を行うことにより測定することができる。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記酸化工程において、上記黒鉛は、結晶のX線回折による(0 0 2)面の面間隔が3.3Å以上、3.4Å以下である。これにより、酸化グラフェンがより得られやすくなる。
上記面間隔は、3.32Å以上であることがより好ましく、3.34Å以上であることが更に好ましい。該面間隔は、3.39Å以下であることがより好ましく、3.38Å以下であることが更に好ましい。
上記面間隔は、後述する実施例の方法を行うことにより測定することができる。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記酸化工程において、上記黒鉛は、平均粒子径が3μm以上、80μm以下である。このような平均粒子径のものを用いることで、酸化反応をより効率的に進めることができる。
上記平均粒子径は、3.2μm以上であることがより好ましく、3.5μm以上であることが更に好ましい。該平均粒子径は、70μm以下であることがより好ましい。
上記平均粒子径は、粒度分布測定装置により測定することができる。
上記酸化工程に用いる黒鉛の形状は特に制限されず、微粉状、粉状、粒状、顆粒状、鱗片状、多面体状、ロッド状、曲面含有状等が挙げられる。なお、平均粒子径が上述のような範囲の粒子は、例えば、粒子を粉砕機等により粉砕する方法や、粒子をふるい等にかけて粒子径を選別する方法、これら方法の組み合わせのほか、粒子を製造する段階で調製条件を最適化し、所望の粒子径の粒子を得る方法等により製造することが可能である。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記酸化工程において、上記黒鉛は、比表面積が3m/g以上、10m/g以下である。
酸化反応をより円滑に進める観点からは、上記比表面積が4m/g以上であることがより好ましく、4.5m/g以上であることが更に好ましい。また、該比表面積が9m/g以下であることがより好ましく、8.5m/g以下であることが更に好ましい。
上記比表面積は、窒素吸着BET法で比表面積測定装置により測定することができる。
上記酸化工程において、上記黒鉛と硫酸とを含む混合液100質量%中の黒鉛量は、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、1.5質量%以上であることが更に好ましく、2質量%以上であることが特に好ましい。該黒鉛の含有量は、10質量%以下であることが好ましく、8質量%以下であることがより好ましく、7質量%以下であることが更に好ましく、6質量%以下であることが特に好ましい。
上記酸化工程において、上記黒鉛は単独で用いてもよいし、上記平均粒子径、形状、比表面積や物性等のいずれかにおいて異なる2種以上のものを用いてもよい。
上記酸化工程は、公知の撹拌機等を用いて撹拌しながら行うことが好ましい。
上記酸化工程は、例えば空気中、又は、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気中で行うことができる。また、上記酸化工程は、その圧力条件は特に限定されず、減圧条件下、常圧条件下、加圧条件下で行うことができるが、例えば常圧条件下で行うことが好ましい。
また上記酸化工程の時間は、0.1時間以上とすることが好ましく、0.5時間以上とすることがより好ましく、1時間以上とすることが更に好ましく、2時間以上とすることが特に好ましい。また、上記酸化工程の時間は、120時間以下とすることが好ましく、15時間以下とすることがより好ましく、10時間以下とすることが更に好ましく、8時間以下とすることが特に好ましい。
上記酸化工程は、連続的に行ってもよいし、断続的に行ってもよい。
上記混合液を調製するために用いる硫酸中の水分が少ない(例えば、5質量%未満)と、品質(例えば、薄膜化の進行)が良好な酸化黒鉛を得ることができる。しかし、プロセス面では、市販されている濃硫酸に水分をある程度添加する等して、例えば5質量%以上、15質量%以下の水分量の硫酸を用いることが好ましい。該水分量を5質量%以上とすることにより、酸化反応中に反応スラリーが固化することをより充分に防止でき、混合液中の黒鉛仕込み量を充分に上げることができる。また、該水分量を15質量%以下とすることにより、黒鉛の酸化や剥離をより充分に進行させることができる。該水分量は、10質量%以下であることがより好ましい。
上記混合液は、上記黒鉛、上記硫酸、及び、必要に応じてその他の成分を混合して得ることができる。上記混合は、公知の方法で適宜行うことが可能であるが、例えば、超音波処理を行ったり、公知の分散機を用いたりして黒鉛を均一に分散させることが好ましい。
なお、後述する第2~第4の本発明の酸化黒鉛の製造方法において黒鉛を酸化する工程は、黒鉛が酸化されることになる限り、その方法は特に制限されず、Hummers法、Brodie法、Staudenmaier法等のいずれの方法における黒鉛の酸化方法を用いてもよく、上述したように、Hummers法における酸化方法を採用した、黒鉛と硫酸とを含む混合液に過マンガン酸塩を添加する工程であってもよい。このように、酸化工程が、黒鉛と硫酸とを含む混合液に過マンガン酸塩を添加する工程であることは、第2~第4の本発明の好適な実施形態の1つである。また、第2~第4の本発明においても、上述した酸化工程における種々の条件を好適に適用することが可能である。
<7価のマンガン濃度の測定方法>
本発明は、7価のマンガンを含む混合液1質量部を10~10000質量部の水に添加し、吸光度を測定する7価のマンガン濃度の測定方法でもある。これにより、迅速かつ正確に7価のマンガン濃度を測定することができる。
上記水の量は、上記混合液1質量部に対して、20質量部以上であることが好ましく、30質量部以上であることがより好ましく、50質量部以上であることが更に好ましく、100質量部以上であることが特に好ましい。該水の量は、8000質量部以下であることが好ましく、5000質量部以下であることがより好ましく、3000質量部以下であることが更に好ましく、1000質量部以下であることが特に好ましい。
上記混合液としては、例えば、過マンガン酸塩と黒鉛等の炭素材料とを含む強酸性の混合液(例えば、硫酸溶液)を用いることができる。
本発明の7価のマンガン濃度の測定方法においては、上述したように上記7価のマンガンを含む混合液1質量部を10~10000質量部の水に対して添加したものを用いて測定することにより、迅速かつ正確な定量が可能となる。なお、上記混合液に対して水を添加して測定する場合は、発熱が大きく、測定中に7価のマンガン濃度が減少するおそれがある。また、上記混合液を水希釈せずに測定する場合は、ハンドリングに難があるとともに、ろ過完了までに酸化反応が進行して7価のマンガン濃度が減少するおそれがある。更に、上記混合液1質量部に対する水の量が10質量部未満である場合は、酸化反応により得られる酸化黒鉛内から溶出する2~3価程度の低価数のマンガンによる均等化反応が進行し、7価のマンガン濃度が減少するおそれがある。そして、混合液1質量部に対する水の量が10000質量部を超える場合は、吸光度の正確な測定が難しくなる。
本発明の7価のマンガン濃度の測定方法においては、上記7価のマンガンを含む混合液1質量部を10~10000質量部の水に対して添加した後、該混合液を添加して得られる混合液を撹拌することが好ましい。該撹拌は、公知の撹拌機等を用いて行うことができる。
更に本発明の7価のマンガン濃度の測定方法は、上記混合液を添加して得られる混合液を撹拌した後、ろ過を行ってろ液の吸光度を測定することが好ましい。ろ過は、フィルターを用いて行うことが好ましい。
(他の工程)
本発明の酸化黒鉛の製造方法は、酸化工程で得られた反応液を熟成させる熟成工程、酸化反応停止(クエンチ)工程、該酸化反応停止工程により得られる混合液中の酸化剤をより充分に還元するための撹拌工程、精製工程等の、その他の工程を含むものとすることができる。
(熟成工程)
上記熟成工程において、酸化工程で得られた反応液を熟成させる温度及び時間は適宜選択すればよいが、反応液を0~90℃の温度に維持することが好ましく、より好ましくは、20~80℃の温度に維持することである。
また熟成させる時間は、0.1~24時間であることが好ましい。より好ましくは、0.5~5時間である。
(酸化反応停止工程)
本発明の酸化黒鉛の製造方法は、任意であるが、酸化反応停止工程を含んでいても良い。上記酸化反応停止工程としては、従来の方法、すなわち、黒鉛の酸化方法で得られる混合液に水を添加し、次いで過酸化水素水を添加して酸化剤を還元し、反応停止する方法を採用しても良い。しかし、本発明の酸化黒鉛の製造方法は、酸化反応停止工程として、酸化工程で得られる混合液を水又は過酸化水素水に添加する工程を含むものであることが好ましい。
酸化反応停止工程として、酸化工程で得られる混合液を水又は過酸化水素水に添加する工程を採用することにより、水和熱(希釈熱)による大きな液温上昇を抑えることが可能となることから、停止反応をより安全に実施できるとともに、停止反応に要する時間を短縮することが可能となる。また、上記大きな液温上昇を抑えることにより、従来の方法において水や過酸化水素水の添加時に酸化黒鉛も還元されることを抑制し、より高品質な酸化黒鉛を安定的に製造することが可能となる。さらに、上記大きな液温上昇を抑えることにより、従来の方法において過酸化水素水の添加時に酸化黒鉛の還元に起因する酸素ガスが発生することを抑制し、激しい発泡が生じて液面が急激に上昇する場合があったことを抑制することができるので、停止反応に要する時間を短縮することが可能となる。
すなわち、本発明の酸化黒鉛の製造方法は、酸化工程で得られる混合液を水又は過酸化水素水に添加する工程を含むことにより、より優れた安全性を確保しつつ、より高品質な酸化黒鉛を高効率に製造することも可能となる。
なお、酸化工程で得られる混合液を水又は過酸化水素水に添加する工程を含む酸化黒鉛の製造方法(第2の本発明)により、高品質な酸化黒鉛を高効率に製造するという課題(第2の本発明の課題)を解決することが可能となる。すなわち、第2の本発明は、例えば、黒鉛を酸化して酸化黒鉛を製造する方法であって、該製造方法は、黒鉛と硫酸とを含む混合液に酸化剤を添加して黒鉛を酸化する工程、及び、該酸化工程で得られる混合液を、該混合液100質量%に対して120質量%以上の水又は過酸化水素水に添加する工程を含む酸化黒鉛の製造方法である。該添加工程における水又は過酸化水素水の量は、200質量%以上であることが好ましい。第2の本発明における酸化工程としては特に制限されないが、安全性が顕著に向上することから、上記第1の本発明で記載した酸化工程を採用することが好ましい。すなわち、第2の本発明は、黒鉛を酸化して酸化黒鉛を製造する方法であって、該製造方法は、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する酸化工程と、該酸化工程で得られる混合液を、該混合液100質量%に対して120質量%以上の水又は過酸化水素水に添加する工程とを含む酸化黒鉛を製造する方法であることが好ましい。第2の本発明は、第1の本発明の好ましい形態を採用することができる。
以下では、酸化反応停止工程の中でも、このように酸化工程で得られる混合液を水又は過酸化水素水に添加するものを、添加工程とも言う。該添加工程の説明において、混合液とは、特に断らない限り、酸化工程で得られる混合液を言う。なお、以下は特に言及する場合を除き、第1の本発明の一形態の説明であるが、適用可能な範囲で第2~第4の本発明の説明とも共通する。
このように酸化工程で得られる混合液を混合液に対して過剰の水又は過酸化水素水に添加して酸化反応を停止することにより、発熱、発泡を充分に抑制することができる。これにより、添加を止めて待機する時間を削減することができ、反応停止に要する時間を短縮することができるとともに、酸化黒鉛の還元反応を抑制でき、また、液面の急激な上昇等を充分に抑制して安定的に反応を停止することができる。その結果、高品質な酸化黒鉛を効率的に製造することができる。
また上記添加工程では、上記酸化工程で得られる混合液中の粗酸化グラフェンが、水又は過酸化水素水に添加された後、凝集・沈降し易い傾向がある。したがって、上記添加工程は、デカンテーション等の固液分離による精製の効率を向上すると考えられる。
上記添加工程における水又は過酸化水素水の量は、発熱、発泡をより充分に抑制する観点から、酸化工程で得られる混合液100質量%に対して、120質量%以上であることが好ましく、200質量%以上であることがより好ましく、300質量%以上であることが更に好ましく、400質量%以上であることが一層好ましく、500質量%以上であることが特に好ましい。また水又は過酸化水素水の量の上限値は特に限定されないが、廃水量を低減する観点から、該量は、2000質量%以下であることが好ましく、1600質量%以下であることがより好ましく、1200質量%以下であることが一層好ましく、1000質量%以下であることが特に好ましい。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記添加工程における過酸化水素水の濃度は、発泡の抑制の観点からは、10質量%以下である。該濃度は、5質量%以下であることがより好ましく、2質量%以下であることが更に好ましく、1.5質量%以下であることが特に好ましい。また、該濃度は、酸化剤の充分な還元の観点からは、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.1質量%以上であることが更に好ましく、0.2質量%以上であることが特に好ましい。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記添加工程は、水又は過酸化水素水の温度を60℃以下に維持しながら酸化工程で得られる混合液を添加する工程である。これにより、特に酸化剤として過マンガン酸塩を使用した場合に、添加工程をより安全に行うことができ、また、高品質な酸化黒鉛を製造することができる。更に、上記添加工程では、酸化工程で得られる混合液を混合液に対して過剰の水又は過酸化水素水に添加するため、水又は過酸化水素水の温度を60℃以下に容易に維持することができ、その結果、酸化黒鉛を効率的に製造することができる。
上記添加工程において、水又は過酸化水素水の温度を55℃以下に維持することがより好ましく、50℃以下に維持することが更に好ましい。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記添加工程は、水又は過酸化水素水の温度変化を40℃以下に維持しながら酸化工程で得られる混合液を添加する工程である。これにより、特に酸化剤として過マンガン酸塩を使用した場合に、添加工程をより安全に行うことができ、また、高品質の酸化黒鉛を製造することができる。更に、上記添加工程では、酸化工程で得られる混合液を混合液に対して過剰の水又は過酸化水素水に添加するため、水又は過酸化水素水の温度変化を40℃以下に容易に維持することができ、その結果、酸化黒鉛を効率的に製造することができる。
上記温度変化とは、混合液を添加する前の水又は過酸化水素水の温度と、混合液を添加した後の、混合液の添加により上昇した水又は過酸化水素水の温度の最大値との差を言う。
上記温度変化を35℃以下に維持することがより好ましく、30℃以下に維持することが更に好ましい。
なお、本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記混合液を、5~25℃に設定した、水又は過酸化水素水に添加して行ってもよい。
上記添加工程において、酸化工程で得られる混合液を水又は過酸化水素水に一括で添加してもよく、徐々に添加してもよく、複数回に分けて添加してもよい。発熱及び発泡を充分に抑制する観点からは、酸化工程で得られる混合液を水又は過酸化水素水に徐々に添加するか、又は、複数回に分けて添加することが好ましいが、操作を簡便にする観点からは、一括で添加することが好ましい。
上記複数回は、発熱及び発泡を充分に抑制して本発明の効果をより充分に発揮する観点からは、3回以上であることが好ましく、5回以上であることがより好ましいが、操作を簡便にする観点からは、50回以下であることが好ましく、30回以下であることがより好ましい。
上記添加工程が、上記酸化工程で得られる混合液を水又は過酸化水素水に複数回に分けて添加する場合、1回当たりの添加量は、それぞれ同じであってもよく、異なっていてもよい。
また上記酸化工程が、上記酸化工程で得られる混合液を3回以上に分けて添加する場合、添加と添加との間の時間間隔は、それぞれ同じであってもよく、異なっていてもよい。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記添加工程は、上記酸化工程で得られる混合液を水又は過酸化水素水に、水又は過酸化水素水の量100質量%に対し、0.5質量%/分以上の添加速度で添加する。これにより、高品質の酸化黒鉛を効率的に製造する本発明の効果をより顕著に発揮できる。該添加速度は、1質量%/分以上であることがより好ましく、2質量%/分以上であることが更に好ましい。また、該添加速度は、100質量%/分以下であることが好ましく、50質量%/分以下であることがより好ましく、20質量%/分以下であることが更に好ましい。
なお、上記水又は過酸化水素水の量とは、混合液を添加する前の水又は過酸化水素水の量を言う。
また上記添加工程は、添加開始から添加終了までの期間は特に限定されないが、本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、酸化工程で得られる混合液を水又は過酸化水素水に0.1分以上、180分以下の間にわたって添加する。
上記添加工程は、反応停止に要する時間をより短縮する観点から、酸化工程で得られる混合液を120分以下の間にわたって添加することがより好ましく、60分以下の間にわたって添加することが更に好ましく、30分以下の間にわたって添加することが特に好ましい。また、該添加工程は、より高品質の酸化黒鉛を製造する観点から、酸化工程で得られる混合液を0.5分以上の間にわたって添加することがより好ましく、1分以上の間にわたって添加することが更に好ましい。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記添加工程は、酸化工程で得られる混合液を、過酸化水素水に添加する工程である。
従来の反応停止方法では、発熱及び発泡を抑制する観点から、酸化工程で得られる混合液に対して直ぐに過酸化水素水を添加して混合液中の酸化剤を還元・失活させるのではなく、先ず水を添加し、次いで過酸化水素水を添加して混合液中の酸化剤を還元・失活させ、反応停止していた。これに対し、本発明の酸化黒鉛の製造方法では、発熱及び発泡を充分に抑制できるため、酸化工程で得られる混合液を混合液に対して大過剰の過酸化水素水に添加して混合液中の酸化剤を還元・失活させることができ、安定した品質の酸化黒鉛を極めて効率的に製造することができる。
なお、本発明の酸化黒鉛の製造方法において、上記添加工程が、酸化工程で得られる混合液を水に添加する工程である場合、過マンガン酸塩等の酸化剤を還元・失活させるために、通常は添加工程で得られる混合液に更に過酸化水素水を添加することになる。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、上記添加工程は、酸化工程で得られる混合液を添加する水又は過酸化水素水を撹拌しながら行う。撹拌は、公知の撹拌機等を用いて行うことができる。
上記添加工程は、例えば空気中、又は、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気中で行うことができる。また真空中で行っても良い。
また、添加工程は、その圧力条件は特に限定されないが、例えば常圧条件下で行うことが好ましい。
上記酸化反応停止工程の内、添加工程について詳しく説明したが、上記酸化反応停止工程は、上記混合液の温度を例えば5~15℃に設定し、該混合液に水を添加し、次いで還元剤として過酸化水素水を添加して行うこともできる。上記酸化反応停止工程は、上記添加工程と同様に、例えば空気中、又は、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気中や真空中で行うことができる。
上記酸化反応停止工程の時間は、例えば0.01~5時間とすることができる。
(撹拌工程)
上記酸化反応停止工程(例えば、添加工程)の後、酸化反応停止工程により得られる混合液中の酸化剤をより充分に還元するために、精製工程の前に、酸化反応停止工程で得られる混合液を撹拌する撹拌工程を行うことが好ましい。
上記撹拌工程において添加工程で得られる混合液を撹拌する時間は、1分以上であることが好ましく、3分以上であることが好ましく、5分以上であることが更に好ましい。また、該時間は、2時間以下であることが好ましく、1.5時間以下であることがより好ましく、1時間以下であることが更に好ましい。
上記撹拌工程において酸化反応停止工程で得られる混合液の温度は、例えば20℃~60℃とすることができる。
(精製工程)
本発明の酸化黒鉛の製造方法は、任意であるが、精製工程を含んでいても良い。上記精製工程としては、従来の方法、すなわち、酸化黒鉛を含む反応液を遠心分離又はろ過して酸化黒鉛を分離精製する方法を採用しても良い。しかし、本発明の酸化黒鉛の製造方法は、精製工程として、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を含むものであることが好ましい。
精製工程として、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を採用することにより、工業的に生産する場合であっても過度に大がかりな設備を必要とせず、上澄み液と沈澱(固形分)層との分離が比較的短時間で進行することから、精製工程をより安全に実施できるとともに、精製工程に要する時間を短縮することが可能となる。
すなわち、本発明の酸化黒鉛の製造方法は、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程(以下、「上澄み液分離工程」ともいう)を含むことにより、より優れた安全性を確保しつつ、酸化黒鉛をより高効率に製造することも可能となる。
なお、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を含む酸化黒鉛の製造方法(第3の本発明)により、酸化黒鉛をより高効率に製造するという課題(第3の本発明の課題)を解決することが可能となる。すなわち、第3の本発明は、例えば、黒鉛を酸化して酸化黒鉛を製造する方法であって、上記製造方法は、黒鉛を酸化する工程と、上記酸化工程で得られる酸化黒鉛を精製する工程とを含み、上記精製工程は、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を含む酸化黒鉛の製造方法である。第3の本発明における酸化工程としては特に制限されないが、安全性が顕著に向上することから、上記第1の本発明で記載した酸化工程を採用することが好ましい。すなわち、第3の本発明は、黒鉛を酸化して酸化黒鉛を製造する方法であって、該製造方法は、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する酸化工程と、該酸化工程で得られる酸化黒鉛を精製する工程とを含み、上記精製工程は、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を含む酸化黒鉛の製造方法であることが好ましい。第3の本発明は、第1の本発明の好ましい形態を採用することができる。例えば、第3の本発明においても酸化反応停止工程として上記添加工程を採用しても良い。
酸化黒鉛の製造には微粒子状の黒鉛が用いられることが多く、その場合、得られる酸化黒鉛も微粒子状である。通常、微粒子状物質は熱を加えると分子運動が活発になるため、微粒子状物質を含む溶液の温度を上げると微粒子状物質の沈降が遅くなるようにも考えられるが、本発明では酸化黒鉛を含む反応液の場合、室温より上げることで沈降が速くなるという逆の傾向を示すことを見出した。この理由は明らかではないが、以下のように推定される。すなわち、酸化黒鉛を含む反応液の液温を高くすると、反応液に含まれる硫酸等の成分の電離が進み、反応液中の水素イオンが増加する。反応液中に水素イオンが増えると、酸化黒鉛が有する水酸基の電離が抑制されて水酸基のままで存在するものの割合が高くなり、その結果、酸化黒鉛同士の反発がなくなって凝集しやすくなったものと考えられる。
上記上澄み液分離工程において、酸化黒鉛を含む液を静置する温度は、30~90℃であればよいが、製造の効率と経済性とを考えると35~85℃であることが好ましい。より好ましくは、40~80℃であり、更に好ましくは、50~70℃である。
上記上澄み液分離工程において、酸化黒鉛を含む反応液を静置する時間が長いほど反応液と酸化黒鉛との分離が進むが、酸化黒鉛の製造効率も考慮すると、酸化黒鉛を含む液を30~90℃の温度で静置する時間は、0.1~24時間であることが好ましい。より好ましくは、0.2~12時間であり、更に好ましくは、0.3~6時間である。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、酸化工程に用いる黒鉛の質量と精製工程に供する酸化黒鉛を含む反応液の質量との比(酸化工程に用いる黒鉛の質量/精製工程に供する酸化黒鉛を含む反応液の質量)は、0.0001~0.05である。黒鉛と反応液との質量比がこのような割合であると、廃液の量を増やしすぎることなく反応液と酸化黒鉛とをより充分に分離することができる。当該質量比は、より好ましくは、0.0005~0.03であり、更に好ましくは、0.001~0.02であり、特に好ましくは、0.005~0.02であり、最も好ましくは、0.005~0.017である。
本発明においては、上記のような質量比となるように酸化工程の後に酸化黒鉛を含む反応液に水を添加する工程を含んでいてもよい。
上記上澄み液分離工程は、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を含む限り、その他の工程を含んでいてもよく、該分離された酸化黒鉛に洗浄溶媒を加えて洗浄した後、洗浄液と酸化黒鉛とを分離する工程を含むことが好ましい。このような洗浄工程を含むことで、更に純度の高い酸化黒鉛を得ることができる。
本発明の酸化黒鉛の製造方法は、任意であるが、洗浄工程を含んでも良い。上記洗浄工程で用いる洗浄溶媒としては、酸化黒鉛が洗浄されることになる限り特に制限されないが、水、メタノール、エタノール、イソプロパノール、アセトン等の1種又は2種以上を用いることができる。
上記洗浄工程において、洗浄液と酸化黒鉛とを分離する方法は特に制限されないが、反応液から酸化黒鉛を分離する場合と同様に、酸化黒鉛を含む洗浄液を30~90℃の温度で静置した後、上澄み液を分離することが好ましい。このようにすることで、効率的に酸化黒鉛と洗浄液とを分離することができる。洗浄液を静置する温度の好ましい範囲は、上述した酸化黒鉛を含む反応液を静置する温度の好ましい範囲と同様である。
また、洗浄液を静置する時間の好ましい範囲も、上述した酸化黒鉛を含む反応液を静置する時間の好ましい範囲と同様である。
酸化黒鉛は、更に還元して親水性の官能基を脱離させることで、より疎水性の強い還元型酸化黒鉛とすることができる。このような還元型酸化黒鉛の製造にも、上述した本発明の酸化黒鉛の製造方法の酸化工程、精製工程と同じ工程を用いることができ、そのような工程を用いることで、還元型酸化黒鉛を効率的に製造することができる。
このような還元型酸化黒鉛の製造方法、すなわち、酸化黒鉛が還元された還元型酸化黒鉛を製造する方法であって、該製造方法は、黒鉛を酸化する工程と、該酸化工程で得られる酸化黒鉛を精製する工程と、該精製工程で得られた酸化黒鉛を還元する工程とを含み、該精製工程は、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を含むことを特徴とする還元型酸化黒鉛の製造方法もまた、本発明の1つである。中でも、酸化黒鉛が還元された還元型酸化黒鉛を製造する方法であって、該製造方法は、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する工程と、該酸化工程で得られる酸化黒鉛を精製する工程と、該精製工程で得られる酸化黒鉛を還元する工程とを含み、該精製工程は、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を含む還元型酸化黒鉛の製造方法が本発明の好ましい形態の1つである。
本発明の還元型酸化黒鉛の製造方法において、酸化黒鉛を還元する工程は、酸化黒鉛から親水性の官能基が脱離して還元されることになる限りその方法は特に制限されず、NaBH、LiAlH、L-アスコルビン酸等の公知の還元剤を使用する方法や電解還元等も用いることができるが、酸化黒鉛を加熱することで還元する方法が好ましい。
酸化黒鉛を加熱する温度は、100℃以上が好ましい。より好ましくは、120℃以上である。酸化黒鉛の加熱温度に特に上限はないが、通常2000℃以下で行われる。
酸化黒鉛を加熱する時間は、0.1~100時間が好ましい。より好ましくは、0.2~50時間である。
酸化黒鉛の加熱は空気中で行ってもよく、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気中で行ってもよい。また真空中で行っても良い。
本発明の還元型酸化黒鉛の製造方法における黒鉛を酸化する工程、該酸化工程で得られる酸化黒鉛を精製する工程の好ましい形態は、上述した本発明の酸化黒鉛の製造方法におけるこれらの工程の好ましい形態と同様である。
本発明の還元型酸化黒鉛の製造方法は、黒鉛を酸化する工程、該酸化工程で得られる酸化黒鉛を精製する工程、及び、精製工程で得られた酸化黒鉛を還元する工程を含む限り、その他の工程を含んでいてもよい。その他の工程としては、上述した酸化反応停止工程等が挙げられる。
本発明の酸化黒鉛の製造方法は、任意であるが、黒鉛を酸化する反応に用いた硫酸を回収する工程(以下、回収工程とも言う)を含んでいても良い。なお、上記黒鉛を酸化する反応を行う工程を、第1の酸化工程とも言う。上記回収工程としては、特に制限はないが、黒鉛を酸化する反応に用いた硫酸を回収する場合、本発明の酸化黒鉛の製造方法は、黒鉛を酸化する反応に用いた硫酸を回収する工程(以下、回収工程とも言う)に加え、回収した硫酸と黒鉛とを混合する工程(以下、混合工程とも言う)、及び、該混合工程により得られる混合液に酸化剤を添加して黒鉛を酸化する工程(以下、第2の酸化工程とも言う。)を含むものであることが好ましい。
上記回収工程、混合工程、酸化工程を採用することにより、安全性を確保し、省資源性・省エネルギー性を高めつつ、高品質の酸化黒鉛を効率的に生産することが可能となる。すなわち、回収した硫酸は微量の酸化剤を含む可能性があるが、混合工程を含むことにより、安全に取り扱うことが可能となり、大量の硫酸の処理工程を削減・縮減できることから、効率的な生産方法となり、高品質な酸化黒鉛が得られることも確認された。
なお、黒鉛を酸化する工程、該黒鉛を酸化する反応に用いた硫酸を回収する工程、回収した硫酸と黒鉛とを混合する工程、及び、該混合工程により得られる混合液に酸化剤を添加して黒鉛を酸化する工程とを含む酸化黒鉛の製造方法(第4の本発明)により、省資源性・省エネルギー性に優れ、高品質の酸化黒鉛を効率的に生産するという課題(第4の本発明の課題)を解決することが可能となる。すなわち、第4の本発明は、例えば、黒鉛を酸化して酸化黒鉛を製造する方法であって、該製造方法は、黒鉛を酸化する反応に用いた硫酸を回収する工程、回収した硫酸と黒鉛とを混合する工程、及び、該混合工程により得られる混合液に酸化剤を添加して黒鉛を酸化する工程を含む酸化黒鉛の製造方法である。第4の本発明に係る酸化工程としては特に制限されないが、安全性が顕著に向上することから、上記第1の本発明に係る酸化工程と同様の形態を採用することが好ましい。すなわち、第4の本発明は、黒鉛を酸化して酸化黒鉛を製造する方法であって、該製造方法は、黒鉛を酸化する反応に用いた硫酸を回収する工程、回収した硫酸と黒鉛とを混合する工程、及び、該混合工程により得られる混合液に酸化剤を添加して黒鉛を酸化する工程を含み、(I)該黒鉛を酸化する反応が、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する反応であるか、(II)該黒鉛を酸化する工程が、該混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する酸化工程であるか、のいずれか1以上を充足する、酸化黒鉛の製造方法であることが好ましい。第4の本発明は、第1の本発明の好ましい形態を採用することができる。例えば、第4の本発明においても酸化反応停止工程として上記添加工程、上記上澄み液分離工程のいずれか一方もしくは両方を採用しても良い。また、黒鉛を酸化する反応に用いた硫酸は、本発明の製造方法に用いられた硫酸であることも好ましい。
以下では、上記回収工程、混合工程、酸化工程の3工程について順に説明する。なお、以下の3工程の説明は第1の本発明の一形態の説明であるが、特に言及し、または矛盾する場合を除き、第4の本発明の3工程の説明とも共通する。
本発明の酸化黒鉛の製造方法においてこれら3工程を含む実施形態は、これら一連の3工程を1回のみ行うものであってもよく、最後の酸化工程で得られた硫酸を更に回収して2回以上繰り返し行うものであってもよい。
また黒鉛を酸化して酸化黒鉛を製造する方法は、酸化工程の後、反応停止(クエンチ)工程、酸化黒鉛の精製工程等のその他の工程を更に含んでいてもよい。その他の工程については、上記3工程の後に簡単に説明する。
(回収工程)
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、黒鉛を酸化する反応に用いた硫酸を回収する工程を含む。
黒鉛を酸化する反応とは、特に限定はされないが、酸化工程における反応と同様の反応であることが好ましい。通常、該反応では黒鉛を酸化するための酸化剤を用いるが、酸化剤は、上述したものを使用することができ、中でも過マンガン酸塩が好ましい。なお、硫酸を回収する前の、上記黒鉛を酸化する反応を含む工程を、第1の酸化工程という。
上記回収工程は、黒鉛を酸化する反応で得られる混合液から硫酸を回収するものであってもよく、更に該混合液を、該混合液に対して大過剰の水又は過酸化水素水と混合して反応を停止する工程等を行って得られる混合液から硫酸を回収するものであってもよいが、より不純物量の少ない硫酸を回収する観点からは、酸化反応停止工程前に、黒鉛を酸化する反応で得られる混合液から硫酸を回収することが好ましい。酸化反応停止工程前であれば、酸化剤由来の成分(例えば、マンガンイオン)のより多くが、固形分中(酸化黒鉛層間)に保持されているため、固形分を取り除くことにより不純物が非常に少ない硫酸の回収が可能である。この硫酸は、水の量も充分に少ないものである。
上記回収工程における回収方法としては、特に限定されないが、簡便に不純物量の少ない硫酸を回収する観点から、固液分離法が好ましい。固液分離法としては、例えば遠心分離、ろ過、デカンテーション等が挙げられ、これらの1種又は2種以上を適宜組み合わせて用いることができる。なお、酸化黒鉛を固液分離法により精製する際に、上澄み液である硫酸を回収してもよい。また、後述する混合工程に用いる硫酸中の酸化剤由来の成分の濃度を更に低減するために、必要に応じて回収した硫酸を更に精製したり、回収した硫酸に、回収した硫酸以外の硫酸を混合したりしても構わない。
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、後述する混合工程に用いる硫酸中のマンガン濃度は、10000ppm以下である。このような硫酸を用いて黒鉛を酸化することにより、酸化反応を充分に進めて高純度かつ高品質な酸化黒鉛が簡便に得られる傾向にある。該マンガン濃度とは、混合工程に用いる硫酸におけるマンガン濃度を言い、回収した硫酸に、回収した硫酸以外の硫酸を混合する場合は、混合後の硫酸のマンガン濃度を言う。該マンガン濃度は、3000ppm以下であることがより好ましく、1000ppm以下であることが更に好ましく、500ppm以下であることが一層好ましく、100ppm以下であることがより一層好ましく、50ppm以下であることが更に一層好ましく、10ppm以下であることが特に好ましい。
上記マンガン濃度は、後述する実施例の方法により測定されるものである。
回収工程における混合液の温度は、特に限定されないが、例えば0~50℃であることが好ましく、10~40℃であることがより好ましい。
回収工程は、例えば空気中、又は、不活性ガス雰囲気中で行うことができる。また、回収工程は、硫酸が溶液状態である限り、その圧力条件は特に限定されず、減圧条件下、常圧条件下、加圧条件下で行うことができるが、例えば常圧条件下で行うことが好ましい。
(混合工程)
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、回収した硫酸と黒鉛とを混合する工程を含む。
回収した硫酸と黒鉛とを混合して得られる混合液100質量%中の黒鉛量は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましく、1質量%以上であることが特に好ましい。該黒鉛量は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが更に好ましく、10質量%以下であることが特に好ましい。
混合工程において、黒鉛は単独で用いてもよいし、平均粒子径、形状、比表面積や物性等のいずれかにおいて異なる2種以上のものを混合して用いてもよい。
混合工程は、公知の撹拌機等を用いて撹拌しながら行うことが好ましい。
混合工程は、例えば空気中、又は、不活性ガス雰囲気中で行うことができる。また、混合工程は、その圧力条件は特に限定されず、減圧条件下、常圧条件下、加圧条件下で行うことができるが、例えば常圧条件下で行うことが好ましい。
上記混合液を調製するために用いる硫酸中の水分が少ない(例えば、5質量%未満)と、品質(例えば、薄膜化の進行)が良好な酸化黒鉛を得ることができる。しかし、プロセス面では、濃硫酸に水分をある程度添加する等して、例えば5質量%以上、15質量%以下の水分量の硫酸を用いることが好ましい。該水分量を5質量%以上とすることにより、酸化反応中に反応スラリーが高粘度化(固化)することを充分に防止でき、混合液中の黒鉛仕込み量を充分に上げることができる。また、該水分量を15質量%以下とすることにより、黒鉛の酸化や剥離を充分に進行させることができる。該水分量は、10質量%以下であることがより好ましい。
上記混合液は、回収した硫酸、黒鉛、及び、必要に応じてその他の成分を混合して得ることができる。例えば、必要に応じて回収した硫酸以外の硫酸を更に混合してもよい。混合は、公知の方法で適宜行うことが可能であるが、例えば、超音波処理を行ったり、公知の分散機を用いたりして黒鉛を均一に分散させることが好ましい。
(酸化工程)
本発明の酸化黒鉛の製造方法のいずれかの更に別の好ましい一実施形態では、混合工程により得られる混合液に酸化剤を添加して黒鉛を酸化する工程を含む。なお、回収した硫酸を使用する酸化工程を、第2の酸化工程とも言う。
上記酸化反応は特に限定されないが、上記酸化工程における好ましい形態は、上述した通りである。例えば、酸化剤として過マンガン酸塩を使用する場合は、混合液に、混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化することが好ましい。上記酸化工程で用いる酸化剤、その添加量、添加の形態、酸化工程における混合液の温度、黒鉛に対する硫酸の質量比(硫酸/黒鉛)、撹拌の方法、圧力条件、酸化工程の時間は、酸化工程で上述したものと同様である。第1の酸化工程及び第2の酸化工程の両方が、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する工程であることが特に好ましい。
(その他の工程)
本発明の酸化黒鉛の製造方法は、酸化工程で得られた反応液を熟成させる熟成工程、酸化反応停止(クエンチ)工程(例えば、添加工程)、酸化反応停止工程により得られる混合液中の酸化剤をより充分に還元するための撹拌工程、精製工程等の、その他の工程を含むものとすることができる。これら各工程は、上述したものと同様である。
本発明の酸化黒鉛の製造方法は、例えば、上記酸化工程で得られる混合液を、該混合液100質量%に対して120質量%以上の水又は過酸化水素水に添加する工程を含んでいることが好ましく、200質量%以上の水又は過酸化水素水に添加する工程を含んでいることがより好ましい。また、本発明の酸化黒鉛の製造方法は、例えば、混合液の添加の後、添加工程で得られる混合液中の酸化剤をより充分に還元するために、添加工程で得られる混合液を撹拌してもよい。
本発明の酸化黒鉛の製造方法は、所望の用途に応じてその他の工程を含むことができる。
(硫酸の保存方法)
本発明は、黒鉛を酸化して酸化黒鉛を製造する方法で使用した硫酸を回収して保存する方法であって、該保存方法は、回収した硫酸に黒鉛を添加して保存する工程を含む硫酸の保存方法でもある。中でも、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化して酸化黒鉛を製造する方法で使用した硫酸を回収して保存する方法であって、該保存方法は、回収した硫酸に黒鉛を添加して保存する工程を含む硫酸の保存方法が本発明における好ましい形態の1つである。回収した硫酸、特に酸化反応停止工程前に回収した硫酸は、爆発性のある7価のマンガンを微量含む可能性があるが、これに黒鉛を添加することにより、回収した硫酸を安定的に保存することが可能となる。
本発明の硫酸の保存方法において、上記保存工程は、回収した硫酸に黒鉛を添加した液を20℃以下に維持する工程であることが好ましい。これにより、回収した硫酸をより安定的に保存することができる。
保存工程は、回収した硫酸に黒鉛を添加した液を15℃以下に維持する工程であることがより好ましく、10℃以下に維持する工程であることが更に好ましい。
回収した硫酸中のマンガン濃度は、10000ppm以下であることが好ましい。これにより、硫酸をより安定的に保存することができる。
該マンガン濃度は、3000ppm以下であることがより好ましく、1000ppm以下であることが更に好ましく、500ppm以下であることが一層好ましく、100ppm以下であることがより一層好ましく、50ppm以下であることが更に一層好ましく、10ppm以下であることが特に好ましい。
上記マンガン濃度は、後述する実施例の方法により測定されるものである。
回収した硫酸に黒鉛を添加して得られる混合液100質量%中の黒鉛量は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましく、1質量%以上であることが特に好ましい。該黒鉛量は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることが更に好ましく、10質量%以下であることが特に好ましい。
保存工程において、黒鉛は単独で用いてもよいし、物性等が異なるものを2種類以上混合して用いてもよい。また、黒鉛は一括で添加してもよいし、徐々に添加してもよい。
保存工程で用いる回収した硫酸中の水分が少ない(例えば、5質量%未満)と、当該硫酸を用いて黒鉛を酸化する際に、品質(例えば、薄膜化の進行)が良好な酸化黒鉛を得ることができる。しかし、プロセス面では、例えば5質量%以上、15質量%以下の水分量の硫酸を用いることが好ましい。該水分量を5質量%以上とすることにより、酸化反応中に反応スラリーが固化することを充分に防止でき、混合液中の黒鉛仕込み量を充分に上げることができる。また、該水分量を15質量%以下とすることにより、黒鉛を酸化する際に、黒鉛の酸化や剥離を充分に進行させることができる。該水分量は、10質量%以下であることがより好ましい。
保存工程は、例えば空気中、又は、不活性ガス雰囲気中で行うことができる。また、保存工程は、硫酸が溶液状態である限り、その圧力条件は特に限定されず、減圧条件下、常圧条件下、加圧条件下で行うことができるが、例えば常圧条件下で行うことが好ましい。
上記混合工程及び本発明の保存方法に用いる黒鉛の好適な物性は、上記混合液を作製するために用いられる黒鉛の好適な物性として上述したものと同様である。
上述した第1~4の本発明の酸化黒鉛の製造方法は、所望の用途に応じて凝集剤を使用したろ過工程等のその他の工程を含むことができる。
上述した第1~4の本発明の酸化黒鉛の製造方法により得られる酸化黒鉛や本発明の還元型酸化黒鉛の製造方法により得られる還元型酸化黒鉛は、比表面積の大きさ、化学的修飾の容易さ、種々の溶媒やポリマー成分との親和性等に優れるものであるため、触媒(材料)、電池やキャパシタの電極材料、熱電変換材料、導電性材料、発光材料、潤滑用添加剤、高分子用添加剤、透過膜材料、酸化剤、殺菌剤、抗菌剤、撥水材料、吸着材料等として好適に使用できる。なお、酸化黒鉛や還元型酸化黒鉛の好ましい比表面積は、例えば、10m/g以上、2700m/g以下である。
また酸化黒鉛は、JIS K 4810に規定される落つい感度試験で測定される感度(等級)が7級以下である酸化黒鉛であることも、好ましい形態の1つである。このような酸化黒鉛は、構造内に高活性(不安定)な酸素を保有していると推測される。したがって、特に酸化剤、殺菌剤、抗菌剤などの用途で、より高い効果を発現することが見込まれる。なお、本発明の製造方法により、上記感度が7級以下である酸化黒鉛を容易に得ることができる。
なお、上記電池としては、例えば、リチウムイオン二次電池、固体高分子型燃料電池、金属-空気電池等が挙げられる。
上記熱電変換材料が用いられる熱電変換装置としては、例えば、地熱・温泉熱発電機、太陽熱発電機、工場や自動車等の廃熱発電機、体温発電機等の発電機や、該発電機を電源の少なくとも一つとして用いた各種電気製品、電動機、人工衛星等が挙げられる。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。
下記実施例及び比較例においては、次のようにして分析し、評価を行った。
<7価のマンガン濃度の測定方法>
7価のマンガン濃度の値が分かっていて、且つその濃度の値が異なる複数の溶液を準備し、光電比色計(AP-1000M、株式会社アペレ製)にて540nmにおける各溶液の吸光度を測定し、7価のマンガン濃度に対する吸光度をプロットして検量線を作成する。
黒鉛の酸化工程において、混合液1質量部を試料として採取して10~10000質量部の水に対して添加し、これを撹拌して均一化し、孔径0.2~0.5μmフィルターでろ過してガラスセルで受けたろ液を用いて、上記の光電比色計にて540nmにおける吸光度を測定し、上記混合液中の7価のマンガン濃度を検量線から算出する。
<ラマンスペクトルにおけるGバンドのピーク強度に対するDバンドのピーク強度の比の測定方法>
顕微レーザーラマン分光計(NSR-3100、日本分光株式会社製)を用いて、532nmの波長のレーザーを試料に照射して測定する。
<面間隔の測定方法>
試料水平型X線回折装置(SmartLab、株式会社リガク製)を用いてXRD測定を行い、黒鉛の(0 0 2)面に由来するX線回折ピークの位置より算出する。
<XPS測定>
光電子分光装置(JPS-9000MX、日本電子株式会社製)を用いて測定した。C1sのナロースキャンスペクトルにおけるピーク分離は、バックグラウンド補正をShirley法で行い、フィッティング関数としてGauss-Lorentz関数を用いたピークフィットにより行う。
<XRF測定>
XRF測定は、蛍光X線分析装置(Philips社製、PW2404)を用いて、検量線法にて測定を行った。
<落つい感度試験>
JIS K 4810に規定される落つい感度試験方法による。
<実施例1-1>
1Lのセパラブルフラスコに濃硫酸(試薬特級、和光純薬工業社製)869.40gと天然黒鉛(Z-100、鱗片状黒鉛、伊藤黒鉛工業社製)18.90gを加えて混合液とした。天然黒鉛(Z-100)のラマンスペクトルを図1に、XRDパターンを図2に示す。図1より、ラマンスペクトルにおけるGバンドのピーク強度に対するDバンドのピーク強度の比は0.084であり、図2より、X線回折による黒鉛(0 0 2)面の面間隔は3.36Åであった。また、天然黒鉛(Z-100)の平均粒子径は61.80μmであり、比表面積は4.65m/gであった。
セパラブルフラスコ内の混合液を撹拌しながら、所定量の過マンガン酸カリウム(試薬特級、和光純薬工業社製)を17分間隔で混合液中へ15回投入した。過マンガン酸カリウムの1回の投入量は5.04gであり、投入量の合計は75.60gであった。また、過マンガン酸カリウムの2回目以降の投入に当たっては、投入の直前に上記7価のマンガンの測定方法により、混合液中の7価のマンガン濃度を定量した。具体的には、混合液0.3gを試料として採取して100gの水に添加して撹拌混合し、ろ過後のろ液の吸光度を測定して7価のマンガンの濃度を定量した。その結果、7価のマンガンの濃度はすべて0.65質量%以下であった。過マンガン酸カリウムの1回の投入量(5.04g)に含まれる7価のマンガンは、混合液100質量%に対して0.2質量%以下であるため、過マンガン酸カリウムの投入開始から投入終了までの間、混合液中の7価のマンガン濃度は0.85質量%以下を維持していたことになる。なお、過マンガン酸カリウムの投入開始から投入終了までの間、混合液の温度は24℃~30℃の範囲内であった。
過マンガン酸カリウムの投入終了後、混合液を35℃まで昇温し、液温が35℃に到達後、温度を35℃に維持して2時間撹拌を継続した。その後、室温(20℃)まで冷却した混合液200gを、室温(20℃)の水1000gが入ったビーカーの中へ15分間かけて添加した。混合液の添加開始から終了までの間、ビーカー内の水は常に撹拌しており、水温(液温)は45℃以下を維持していた。続いて、30%過酸化水素水(試薬特級、和光純薬工業社製)11.08gを1.5分間かけて添加した。過酸化水素水の添加時に発泡が見られたが、急激な液面の上昇は起こらなかった。
次に、ビーカー内の混合液200gを1000gの水で希釈した後、希釈液をろ過した。ろ紙上に残ったろ物に水200gを注いで洗浄した後、ろ物を40℃で1晩減圧乾燥した。得られた乾燥物のXRDパターンを図3に、XPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を図4に示した。また、原料として用いた天然黒鉛(Z-100)のXPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を図5に示した。図3より、黒鉛の(0 0 2)面に由来するピーク(2θ=26.5°付近)は認められず、2θ=10~12°付近に酸化黒鉛(酸化グラフェン)由来の特徴的なピークが認められた。また、図5では、大部分が炭素原子どうしの結合に由来するピーク(284~285eV付近)であるのに対して、図4ではC-O結合に由来するピーク(286~287eV付近)やC=O結合に由来するピーク(288~289eV付近)の割合が顕著に大きくなっていた。これらの分析結果から、得られた乾燥物は酸化黒鉛(酸化グラフェン)であることが確かめられた。
<実施例1-2>
20Lの耐食性反応器に濃硫酸(試薬特級、和光純薬工業社製)10021.85gと天然黒鉛(Z-5F、鱗片状黒鉛、伊藤黒鉛工業社製)348.59gを加えて混合液とした。天然黒鉛(Z-5F)のラマンスペクトルを図6に、XRDパターンを図7に示す。図6より、ラマンスペクトルにおけるGバンドのピーク強度に対するDバンドのピーク強度の比は0.21であり、図7より、X線回折による黒鉛(0 0 2)面の面間隔は3.38Åであった。また、天然黒鉛(Z-5F)の平均粒子径は3.38μmであり、比表面積は8.24m/gであった。
耐食性反応器内の混合液を撹拌しながら、所定量の過マンガン酸カリウム(試薬特級、和光純薬工業社製)を15分間隔で混合液中へ20回投入した。過マンガン酸カリウムの1回の投入量は43.57gであり、投入量の合計は871.40gであった。また、過マンガン酸カリウムの2回目以降の投入に当たっては、投入の直前に上記7価のマンガンの測定方法により、混合液中の7価のマンガン濃度を定量した。具体的には、混合液3gを試料として採取して100gの水に添加して1分間撹拌混合し、ろ過後のろ液の吸光度を測定して7価のマンガンの濃度を定量した。その結果、7価のマンガンの濃度はすべて0.04質量%以下であった。過マンガン酸カリウムの1回の投入量(43.57g)に含まれる7価のマンガンは、混合液100質量%に対して0.15質量%以下であるため、過マンガン酸カリウムの投入開始から投入終了までの間、混合液中の7価のマンガン濃度は0.19質量%以下を維持していたことになる。なお、過マンガン酸カリウムの投入開始から投入終了までの間、混合液の温度は18℃~28℃の範囲内であった。
過マンガン酸カリウムの投入終了後、混合液を35℃まで昇温し、液温が35℃に到達後、温度を35℃に維持して2時間撹拌を継続した。その後、混合液6gを、室温(20℃)の水100gが入ったビーカーの中へ投入して、1分間撹拌混合した。
続いて、ビーカー内の混合液全量をろ過し、ろ紙上に残ったろ物にアセトン20gを注いで洗浄した後、ろ物を乾燥した。得られた乾燥物のXRDパターンを図8に、XPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を図9に示した。また、原料として用いた天然黒鉛(Z-5F)のXPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を図10に示した。図8より、黒鉛の(0 0 2)面に由来するピーク(2θ=26.5°付近)は認められず、2θ=10~12°付近に酸化黒鉛(酸化グラフェン)由来の特徴的なピークが認められた。また、図10では、大部分が炭素原子どうしの結合に由来するピーク(284~285eV付近)であるのに対して、図9ではC-O結合に由来するピーク(286~287eV付近)やC=O結合に由来するピーク(288~289eV付近)の割合が顕著に大きくなっていた。これらの分析結果から、得られた乾燥物は酸化黒鉛(酸化グラフェン)であることが確かめられた。また、落つい感度試験による感度は4級であった。
実施例1-1及び実施例1-2では、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化することにより、7価のマンガンが反応系内に蓄積することに起因する爆発を防止でき、安全かつ高効率で酸化黒鉛を生産することができる。上述した実施例では、過マンガン酸塩として過マンガン酸カリウムを用いているが、過マンガン酸塩である限り、本発明の効果を生じさせる作用機構は同様である。すなわち、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を所定濃度以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化するところに第1の本発明の本質的特徴があり、7価のマンガンが反応系内に蓄積することに起因する爆発を防止できるものであれば、この実施例で示されるような効果を奏することになる。したがって、第1の本発明における必須構成要素によって構成される酸化黒鉛の製造方法とすれば、発明の有利な効果を発現することは確実であるといえる。
<実施例2-1>
2Lのセパラブルフラスコに濃硫酸(試薬特級、和光純薬工業社製)1499.40gと天然黒鉛(Z-100、鱗片状黒鉛、伊藤黒鉛工業社製)50.40gを加えて混合液とした。セパラブルフラスコ内の混合液を撹拌しながら、所定量の過マンガン酸カリウム(試薬特級、和光純薬工業社製)を17分間隔で混合液中へ12回投入した。過マンガン酸カリウムの1回の投入量は10.50gであり、投入量の合計は126.00gであった。また、過マンガン酸カリウムの2回目以降の投入に当たっては、投入の直前に上記7価のマンガンの測定方法により、混合液中の7価のマンガン濃度を定量した。具体的には、混合液0.3gを試料として採取して100gの水に添加して撹拌混合し、ろ過後のろ液の吸光度を測定して7価のマンガンの濃度を定量した。その結果、7価のマンガンの濃度はすべて0.48質量%以下であった。過マンガン酸カリウムの1回の投入量(10.50g)に含まれる7価のマンガンは、混合液100質量%に対して0.31質量%以下であるため、過マンガン酸カリウムの投入開始から投入終了までの間、混合液中の7価のマンガン濃度は0.79質量%以下を維持していたことになる。なお、過マンガン酸カリウムの投入開始から投入終了までの間、混合液の温度は17℃~27℃の範囲内であった。
過マンガン酸カリウムの投入終了後、混合液を35℃まで昇温し、液温が35℃に到達後、温度を35℃に維持して2時間撹拌を継続した。その後、室温(20℃)まで冷却した混合液中に水167.58gを30分間かけて添加し、扱いやすい粘度に調整した。水を添加している間、混合液の液温は50℃以下を維持していた。
続いて、室温(20℃)まで冷えた混合液200gを、室温(20℃)の過酸化水素水(濃度0.3%)2000gが入ったビーカーの中へ2分間で投入した。混合液の投入開始から終了までの間、ビーカー内の水は常に撹拌しており、水温(液温)は35℃以下を維持していた。また、混合液の投入時に発泡は見られたが、急激な液面の上昇は起こらなかった。
次に、ビーカー内の混合液500gを1000gの水で希釈した後、希釈液をろ過した。ろ紙上に残ったろ物に水300gを注いで洗浄した後、ろ物を40℃で1晩減圧乾燥した。得られた乾燥物のXRDパターンを図11に、XPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を図12に示した。図11より、黒鉛の(0 0 2)面に由来するピーク(2θ=26.5°付近)が僅かに認められ、2θ=10~12°付近に酸化黒鉛(酸化グラフェン)由来の特徴的なピークが顕著に認められた。また、図5では、大部分が炭素原子どうしの結合に由来するピーク(284~285eV付近)であるのに対して、図12ではC-O結合に由来するピーク(286~287eV付近)やC=O結合に由来するピーク(288~289eV付近)の割合が顕著に大きくなっていた。これらの分析結果から、得られた乾燥物は酸化黒鉛(酸化グラフェン)であることが確かめられた。
実施例1-1では黒鉛と硫酸とを含む混合液に酸化剤を添加して黒鉛を酸化する酸化工程で得られる混合液を所定量以上の水に添加することにより、実施例2-1では酸化工程で得られる混合液を所定量以上の過酸化水素水に添加することにより、反応停止の際の発泡を充分に抑制することができ、安全かつ高効率で酸化黒鉛を生産することができる。中でも、本発明では、実施例2-1のように、混合液を過酸化水素水に添加しても発熱及び発泡を充分に抑制することができるため、これにより簡便な操作で酸化黒鉛を生産することができる。
また実施例1-1、2-1で得られた乾燥物は、高品質な酸化黒鉛である。その判断根拠は下記の通りである。
黒鉛の酸化が不充分であったり、酸化された部分が(局所的な)発熱等の影響により還元されてしまった場合には、XRDデータの2θが20~30°の範囲に顕著な回折ピークが認められるようになるが、実施例1-1、2-1で得られた乾燥物ではそのような顕著なピークは見られない(図3、図11)。また、得られたXPSスペクトルにおいて、炭素どうしの結合に由来する284~285eV付近のピーク面積と比較して、炭素と酸素の結合に由来する286~287eV付近及び288~289eV付近のピーク面積の方が明らかに大きい(図4、図12)。以上の結果から、実施例1-1、2-1で得られた乾燥物は、充分な酸化状態が維持されていると判断でき、高品質な酸化黒鉛であると言える。
上述した実施例では、酸化剤として過マンガン酸カリウムを用いているが、酸化剤である限り、第2の本発明の効果を生じさせる作用機構は同様である。すなわち、黒鉛と硫酸とを含む混合液に酸化剤を添加して黒鉛を酸化して得られる混合液を所定量以上の水又は過酸化水素水に添加するところに第2の本発明の本質的特徴があり、反応停止の際の発泡を充分に抑制するものであれば、この実施例で示されるような効果を奏することになる。したがって、第2の本発明における必須構成要素によって構成される酸化黒鉛の製造方法とすれば、発明の有利な効果を発現することは確実であるといえる。
<調製例3-1>
耐食性反応器に濃硫酸(試薬特級、和光純薬工業社製)28.75部と天然黒鉛(Z-5F、鱗片状黒鉛、伊藤黒鉛工業社製)1.00部を加えて混合液とした。混合液を撹拌しながら過マンガン酸カリウム(試薬特級、和光純薬工業社製)を15分間隔で混合液中へ20回投入した。過マンガン酸カリウムの一回の投入量は0.125部であり、投入量の合計は2.50部であった。また、過マンガン酸カリウムの2回目以降の投入に当たっては、投入の直前に上記7価マンガンの測定方法により、混合液中の7価マンガン濃度を定量した。その結果、7価マンガンの濃度はすべて0.04質量%以下であった。過マンガン酸カリウムの1回の投入量に含まれる7価マンガンは、混合液100質量%に対して0.15質量%以下であるため、過マンガン酸カリウム投入開始から投入終了までの間、混合液中の7価マンガン濃度は0.19質量%以下を維持していたことになる。過マンガン酸カリウムの投入終了後、混合液を35℃まで昇温し液温を維持したまま2時間熟成を行った。その後60℃以下の液温を維持したままイオン交換水15.48部と30%過酸化水素水(試薬特級、和光純薬工業社製)1.77部を投入し反応を停止させた。当該手法により得られた酸化黒鉛含有スラリーを以下から“反応後スラリー”と呼称する。
<実施例3-1~3-4、比較例3-1~3-8>
調製例3-1で作成した反応後スラリー中から上澄み液を分離することで約58wt%含まれている硫酸を除去し精製することを試みた。100mlスクリュー管瓶に所定量の反応後スラリーとイオン交換水を投入し、静置した際にそれぞれの温度に於ける酸化黒鉛の沈降によって得られる透明な上澄み液量の時間変化を計測した。実施例3-1~3-4、比較例3-1~3-8に於ける反応後スラリーとイオン交換水の比率と静置する際の温度を表1に示す。また実施例3-1~3-4と比較例3-1~3-8に於ける透明な上澄み液量の時間変化を計測した結果を図13~16に示す。図13~16に示すようにいずれの反応後スラリーとイオン交換水比率の場合においても60℃で実施することで酸化黒鉛の沈降が早く効率よく精製が可能であることが明らかとなった。特に比率 (酸化工程に用いる黒鉛の質量/精製工程に供する酸化黒鉛を含む反応液の質量)が0.0101以下である実施例3-3と3-4に於いてより速い酸化黒鉛の沈降が可能であった。
Figure JPOXMLDOC01-appb-T000001
<比較例3-9>
調製例3-1で作成した反応後スラリー37.5gとイオン交換水37.5gを100mlスクリュー管瓶に投入し25℃にて30分静置した。酸化黒鉛の沈降によって生じた透明な上澄みを抜き出した。ここに、抜き出した上澄み重量と同じ重量のイオン交換水を投入して30分静置した後に上澄みを抜き出す操作を繰り返すことで混合液中に含まれる硫酸を除去し精製することを実施した。1-6回の各抜き出しに於ける抜き出し重量はそれぞれ39、4.4、1.4、21、29、38gであった。6回繰り返した後の反応液中に含まれる硫酸濃度をXRF測定により算出したところ2.4重量%(質量%)であった。
<実施例3-5>
静置温度を室温(25℃)から60℃に変更した以外は比較例3-9と同様の条件にて精製を実施した。1-6回の各抜き出しに於ける抜き出し重量はそれぞれ43、39、36、43、42、24gであった。6回繰り返した後の反応液中に含まれる硫酸濃度をXRF測定により算出したところ0.33重量%であった。このことから60℃にて静置することで酸化黒鉛の沈降速度が上昇しより効率的に精製することが可能であることが明らかとなった。
<比較例3-10>
調製例3-1で作成した反応後スラリー25gとイオン交換水50gを100mlスクリュー管瓶に投入した以外は比較例3-9と同様の条件にて精製を実施した。1-6回の各抜き出しに於ける抜き出し重量はそれぞれ52、47、46、0.91、0.61、8gであった。6回繰り返した後の反応液中に含まれる硫酸濃度をXRF測定により算出したところ0.71重量%であった。
<実施例3-6>
静置温度を室温(25℃)から60℃に変更した以外は比較例3-10と同様の条件にて精製を実施した。1-6回の各抜き出しに於ける抜き出し重量はそれぞれ58、53、52、31、25、25gであった。6回繰り返した後の反応液中に含まれる硫酸濃度をXRF測定により算出したところ0.10重量%であった。このことから60℃にて静置することで酸化黒鉛の沈降速度が上昇しより効率的に精製することが可能であることが明らかとなった。
<実施例4-1>
0.5Lのセパラブルフラスコに濃硫酸(試薬特級、和光純薬工業社製)289.80gと天然黒鉛(Z-5F、鱗片状黒鉛、伊藤黒鉛工業社製)6.30gを加えて混合液とした。天然黒鉛(Z-5F)のラマンスペクトルを図6に、XRDパターンを図7に示す。図6より、ラマンスペクトルにおけるGバンドのピーク強度に対するDバンドのピーク強度の比は0.21であり、図7より、X線回折による黒鉛(0 0 2)面の面間隔は3.38Åであった。また、天然黒鉛(Z-5F)の平均粒子径は3.38μmであり、比表面積は8.24m/gであった。
セパラブルフラスコ内の混合液を撹拌しながら、所定量の過マンガン酸カリウム(試薬特級、和光純薬工業社製)を17分間隔で混合液中へ10回投入した。過マンガン酸カリウムの1回の投入量は1.575gであり、投入量の合計は15.75gであった。また、過マンガン酸カリウムの2回目以降の投入に当たっては、投入の直前に上記7価のマンガン濃度の測定方法により、混合液中の7価のマンガン濃度を定量した。具体的には、混合液0.2gを試料として採取して70gの水に添加して撹拌混合し、ろ過後のろ液の吸光度を測定して7価のマンガンの濃度を定量した。その結果、7価のマンガンの濃度はすべて0.50質量%以下であった。過マンガン酸カリウムの1回の投入量(1.575g)に含まれる7価のマンガンは、混合液100質量%に対して0.19質量%以下であるため、過マンガン酸カリウムの投入開始から投入終了までの間、混合液中の7価のマンガン濃度は0.69質量%以下を維持していたことになる。なお、過マンガン酸カリウムの投入開始から投入終了までの間、混合液の温度は24℃~30℃の範囲内であった。
過マンガン酸カリウムの投入終了後、混合液を35℃まで昇温し、液温が35℃に到達後、温度を35℃に維持して2時間撹拌を継続した。その後、室温(20℃)まで冷却した混合液を遠心分離処理して上澄み成分と沈殿成分に分離し、上澄み成分をセパラブルフラスコに回収した。上澄み成分の回収量は121.42gであり、ICP発光分光分析装置(サーモフィッシャーサイエンティフィック社製、iCAP6500 Duo)を用いて分析した結果、上澄み成分に含まれるマンガン濃度は3.2ppmであった。回収した上澄み成分に、天然黒鉛(Z-5F)6.30gを加えて得られた混合液を、冷蔵庫内(10℃以下)で12日間保存した。
約300gの水が入ったビーカー中に、液温を45℃以下に保ちながら、上記の遠心分離処理で得られた沈殿成分を少しずつ投入してスラリーを得た。このスラリーを撹拌しながら、30%過酸化水素水(試薬特級、和光純薬工業社製)17.8gを徐々に添加した。
次に、ビーカー内のスラリー10質量部を90質量部の水で希釈した後、希釈液をろ過した。ろ紙上に残ったろ物に水10質量部を注いで洗浄した後、ろ物を40℃で1晩減圧乾燥した。得られた乾燥物のXRDパターンを図17に、XPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を図18に示した。また、原料として用いた天然黒鉛(Z-5F)のXPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を図10に示した。図17より、黒鉛の(0 0 2)面に由来するピーク(2θ=26.5°付近)は認められず、2θ=10~12°付近に酸化黒鉛(酸化グラフェン)由来の特徴的なピークが認められた。また、図10では、大部分が炭素原子どうしの結合に由来するピーク(284~285eV付近)であるのに対して、図18ではC-O結合に由来するピーク(286~287eV付近)やC=O結合に由来するピーク(288~289eV付近)の割合が顕著に大きくなっていた。これらの分析結果から、得られた乾燥物は酸化黒鉛(酸化グラフェン)であることが確かめられた。
上記の冷蔵庫内(10℃以下)で12日間保存したセパラブルフラスコ内の混合液に濃硫酸(試薬特級、和光純薬工業社製)を加え、重量が296.1gの混合液とした。
セパラブルフラスコ内の混合液を撹拌しながら、所定量の過マンガン酸カリウム(試薬特級、和光純薬工業社製)を17分間隔で混合液中へ10回投入した。過マンガン酸カリウムの1回の投入量は1.575gであり、投入量の合計は15.75gであった。また、過マンガン酸カリウムの2回目以降の投入に当たっては、投入の直前に上記7価のマンガン濃度の測定方法により、混合液中の7価のマンガン濃度を定量した。具体的には、混合液0.2gを試料として採取して70gの水に添加して撹拌混合し、ろ過後のろ液の吸光度を測定して7価のマンガンの濃度を定量した。その結果、7価のマンガンの濃度はすべて0.50質量%以下であった。過マンガン酸カリウムの1回の投入量(1.575g)に含まれる7価のマンガンは、混合液100質量%に対して0.19質量%以下であるため、過マンガン酸カリウムの投入開始から投入終了までの間、混合液中の7価のマンガン濃度は0.69質量%以下を維持していたことになる。なお、過マンガン酸カリウムの投入開始から投入終了までの間、混合液の温度は24℃~30℃の範囲内であった。
過マンガン酸カリウムの投入終了後、混合液を35℃まで昇温し、液温が35℃に到達後、温度を35℃に維持して2時間撹拌を継続した。その後、室温(20℃)まで冷却した混合液200gを、室温(20℃)の水1000gが入ったビーカーの中へ15分間かけて添加した。混合液の添加開始から終了までの間、ビーカー内の水は常に撹拌しており、水温(液温)は45℃以下を維持していた。続いて、30%過酸化水素水(試薬特級、和光純薬工業社製)11.08gを1.5分間かけて添加した。過酸化水素水の添加時に発泡が見られたが、急激な液面の上昇は起こらなかった。
次に、ビーカー内の混合液200gを1000gの水で希釈した後、希釈液をろ過した。ろ紙上に残ったろ物に水200gを注いで洗浄した後、ろ物を40℃で1晩減圧乾燥した。得られた乾燥物のXRDパターンを図19に、XPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を図20に示した。図19より、黒鉛の(0 0 2)面に由来するピーク(2θ=26.5°付近)は認められず、2θ=10~12°付近に酸化黒鉛(酸化グラフェン)由来の特徴的なピークが認められた。また、図10では、大部分が炭素原子どうしの結合に由来するピーク(284~285eV付近)であるのに対して、図20ではC-O結合に由来するピーク(286~287eV付近)やC=O結合に由来するピーク(288~289eV付近)の割合が顕著に大きくなっていた。これらの分析結果から、得られた乾燥物は酸化黒鉛(酸化グラフェン)であることが確かめられた。
<実施例4-2>
0.5Lのセパラブルフラスコに濃硫酸(試薬特級、和光純薬工業社製)289.80gと天然黒鉛(Z-5F、鱗片状黒鉛、伊藤黒鉛工業社製)6.30gを加えて混合液とした。
セパラブルフラスコ内の混合液を撹拌しながら、所定量の過マンガン酸カリウム(試薬特級、和光純薬工業社製)を17分間隔で混合液中へ10回投入した。過マンガン酸カリウムの1回の投入量は1.575gであり、投入量の合計は15.75gであった。また、過マンガン酸カリウムの2回目以降の投入に当たっては、投入の直前に上記7価のマンガン濃度の測定方法により、混合液中の7価のマンガン濃度を定量した。具体的には、混合液0.2gを試料として採取して70gの水に添加して撹拌混合し、ろ過後のろ液の吸光度を測定して7価のマンガンの濃度を定量した。その結果、7価のマンガンの濃度はすべて0.50質量%以下であった。過マンガン酸カリウムの1回の投入量(1.575g)に含まれる7価のマンガンは、混合液100質量%に対して0.19質量%以下であるため、過マンガン酸カリウムの投入開始から投入終了までの間、混合液中の7価のマンガン濃度は0.69質量%以下を維持していたことになる。なお、過マンガン酸カリウムの投入開始から投入終了までの間、混合液の温度は24℃~30℃の範囲内であった。
過マンガン酸カリウムの投入終了後、混合液を35℃まで昇温し、液温が35℃に到達後、温度を35℃に維持して2時間撹拌を継続した。その後、室温(20℃)まで冷却した混合液に、45℃以下の液温を保ちながら、水40gを添加した。続いて、混合液を遠心分離処理して上澄み成分と沈殿成分に分離し、上澄み成分をセパラブルフラスコに回収した。上澄み成分の回収量は208.73gであり、ICP発光分光分析装置(サーモフィッシャーサイエンティフィック社製、iCAP6500 Duo)を用いて分析した結果、上澄み成分に含まれるマンガン濃度は26488ppmであった。回収した上澄み成分に、天然黒鉛(Z-5F)6.30gを加えて得られた混合液を、冷蔵庫内(10℃以下)で12日間保存した。
冷蔵庫内(10℃以下)で12日間保存したセパラブルフラスコ内の混合液に濃硫酸(試薬特級、和光純薬工業社製)を加え、重量が296.1gの混合液とした。
セパラブルフラスコ内の混合液を撹拌しながら、所定量の過マンガン酸カリウム(試薬特級、和光純薬工業社製)を17分間隔で混合液中へ10回投入した。過マンガン酸カリウムの1回の投入量は1.575gであり、投入量の合計は15.75gであった。また、過マンガン酸カリウムの2回目以降の投入に当たっては、投入の直前に上記7価のマンガン濃度の測定方法により、混合液中の7価のマンガン濃度を定量した。具体的には、混合液0.2gを試料として採取して70gの水に添加して撹拌混合し、ろ過後のろ液の吸光度を測定して7価のマンガンの濃度を定量した。その結果、7価のマンガンの濃度はすべて0.50質量%以下であった。過マンガン酸カリウムの1回の投入量(1.575g)に含まれる7価のマンガンは、混合液100質量%に対して0.19質量%以下であるため、過マンガン酸カリウムの投入開始から投入終了までの間、混合液中の7価のマンガン濃度は0.69質量%以下を維持していたことになる。なお、過マンガン酸カリウムの投入開始から投入終了までの間、混合液の温度は24℃~30℃の範囲内であった。
過マンガン酸カリウムの投入終了後、混合液を35℃まで昇温し、液温が35℃に到達後、温度を35℃に維持して2時間撹拌を継続した。その後、室温(20℃)まで冷却した混合液200gを、室温(20℃)の水1000gが入ったビーカーの中へ15分間かけて添加した。混合液の添加開始から終了までの間、ビーカー内の水は常に撹拌しており、水温(液温)は45℃以下を維持していた。続いて、30%過酸化水素水(試薬特級、和光純薬工業社製)11.08gを1.5分間かけて添加した。過酸化水素水の添加時に発泡が見られたが、急激な液面の上昇は起こらなかった。
次に、ビーカー内の混合液200gを1000gの水で希釈した後、希釈液をろ過した。ろ紙上に残ったろ物に水200gを注いで洗浄した後、ろ物を40℃で1晩減圧乾燥した。得られた乾燥物のXRDパターンを図21に、XPS測定で得られるC1sスペクトル(ナロースキャンスペクトル)を図22に示した。図21より、黒鉛の(0 0 2)面に由来するピーク(2θ=26.5°付近)が認められ、2θ=10~12°付近に酸化黒鉛(酸化グラフェン)由来の特徴的なピークも認められた。また、図10では、大部分が炭素原子どうしの結合に由来するピーク(284~285eV付近)であるのに対して、図22ではC-O結合に由来するピーク(286~287eV付近)やC=O結合に由来するピーク(288~289eV付近)の割合が顕著に大きくなっていた。これらの分析結果から、得られた乾燥物は黒鉛と酸化黒鉛(酸化グラフェン)の混合物であることが確かめられた。

Claims (22)

  1. 黒鉛を酸化して酸化黒鉛を製造する方法であって、
    該製造方法は、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する工程を含む
    ことを特徴とする酸化黒鉛の製造方法。
  2. 前記酸化工程で得られる混合液を、該混合液100質量%に対して120質量%以上の水又は過酸化水素水に添加する工程を含む
    ことを特徴とする請求項1に記載の酸化黒鉛の製造方法。
  3. 前記酸化工程で得られる酸化黒鉛を精製する工程を含み、
    該精製工程は、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を含むことを特徴とする請求項1又は2に記載の酸化黒鉛の製造方法。
  4. 前記酸化工程の反応に用いた硫酸を回収する工程、
    回収した硫酸と黒鉛とを混合する工程、及び、
    該混合工程により得られる混合液に酸化剤を添加して黒鉛を酸化する工程を含む
    ことを特徴とする請求項1~3のいずれかに記載の酸化黒鉛の製造方法。
  5. 前記酸化工程の反応に用いる混合液における黒鉛に対する硫酸の質量比(硫酸/黒鉛)は、25~60である
    ことを特徴とする請求項1~4のいずれかに記載の酸化黒鉛の製造方法。
  6. 前記酸化工程における前記過マンガン酸塩の全添加量は、前記酸化工程の反応に用いる混合液中の黒鉛量100質量%に対し、50~500質量%である
    ことを特徴とする請求項1~5のいずれかに記載の酸化黒鉛の製造方法。
  7. 前記酸化工程は、前記酸化工程の反応に用いる混合液の温度変化を25℃以下に維持しながら過マンガン酸塩を添加する工程である
    ことを特徴とする請求項1~6のいずれかに記載の酸化黒鉛の製造方法。
  8. 前記酸化工程の反応に用いる黒鉛は、ラマンスペクトルにおけるGバンドのピーク強度に対するDバンドのピーク強度の比が0.4以下である
    ことを特徴とする請求項1~7のいずれかに記載の酸化黒鉛の製造方法。
  9. 前記酸化工程の反応に用いる黒鉛は、結晶のX線回折による(0 0 2)面の面間隔が3.3Å以上、3.4Å以下である
    ことを特徴とする請求項1~8のいずれかに記載の酸化黒鉛の製造方法。
  10. 前記酸化工程の反応に用いる黒鉛は、平均粒子径が3μm以上、80μm以下である
    ことを特徴とする請求項1~9のいずれかに記載の酸化黒鉛の製造方法。
  11. 前記酸化工程の反応に用いる黒鉛は、比表面積が3m/g以上、10m/g以下である
    ことを特徴とする請求項1~10のいずれかに記載の酸化黒鉛の製造方法。
  12. 前記混合液の添加工程は、前記酸化工程で得られる混合液を、過酸化水素水に添加する工程である
    ことを特徴とする請求項2に記載の酸化黒鉛の製造方法。
  13. 前記混合液の添加工程における過酸化水素水の濃度は、10質量%以下である
    ことを特徴とする請求項2又は12に記載の酸化黒鉛の製造方法。
  14. 前記混合液の添加工程は、水又は過酸化水素水の温度を60℃以下に維持しながら前記酸化工程で得られる混合液を添加する工程である
    ことを特徴とする請求項2、12、13のいずれかに記載の酸化黒鉛の製造方法。
  15. 前記混合液の添加工程は、水又は過酸化水素水の温度変化を40℃以下に維持しながら前記酸化工程で得られる混合液を添加する工程である
    ことを特徴とする請求項2、12~14のいずれかに記載の酸化黒鉛の製造方法。
  16. 前記酸化黒鉛を含む液を30~90℃の温度で静置する時間は、0.1~24時間であることを特徴とする請求項3に記載の酸化黒鉛の製造方法。
  17. 前記酸化工程に用いる黒鉛の質量と前記精製工程に供する酸化黒鉛を含む液の質量との比(酸化工程に用いる黒鉛の質量/精製工程に供する酸化黒鉛を含む液の質量)は、0.0001~0.05であることを特徴とする請求項3又は16に記載の酸化黒鉛の製造方法。
  18. 前記酸化剤は、過マンガン酸塩である
    ことを特徴とする請求項4に記載の酸化黒鉛の製造方法。
  19. 前記混合工程に用いる硫酸中のマンガン濃度は、10000ppm以下である
    ことを特徴とする請求項18に記載の酸化黒鉛の製造方法。
  20. 酸化黒鉛が還元された還元型酸化黒鉛を製造する方法であって、
    該製造方法は、黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化する工程と、
    該酸化工程で得られる酸化黒鉛を精製する工程と、
    該精製工程で得られる酸化黒鉛を還元する工程とを含み、
    該精製工程は、酸化黒鉛を含む液を30~90℃の温度で静置した後、上澄み液を分離する工程を含むことを特徴とする還元型酸化黒鉛の製造方法。
  21. 黒鉛と硫酸とを含む混合液に、該混合液100質量%中の7価のマンガン濃度を1質量%以下に維持しながら過マンガン酸塩を添加して黒鉛を酸化して酸化黒鉛を製造する方法で使用した硫酸を回収して保存する方法であって、
    該保存方法は、回収した硫酸に黒鉛を添加して保存する工程を含む
    ことを特徴とする硫酸の保存方法。
  22. 前記保存工程は、回収した硫酸に黒鉛を添加した液を20℃以下に維持する工程である
    ことを特徴とする請求項21に記載の硫酸の保存方法。
PCT/JP2016/083141 2015-11-11 2016-11-08 酸化黒鉛の製造方法 WO2017082262A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16864223.9A EP3375755A4 (en) 2015-11-11 2016-11-08 PROCESS FOR THE PREPARATION OF GRAPHITE OXIDE
US15/775,285 US11286166B2 (en) 2015-11-11 2016-11-08 Method for producing graphite oxide

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015221470A JP6584298B2 (ja) 2015-11-11 2015-11-11 酸化黒鉛の製造方法
JP2015221471A JP6618777B2 (ja) 2015-11-11 2015-11-11 酸化黒鉛の製造方法
JP2015-221471 2015-11-11
JP2015-221470 2015-11-11
JP2016-009845 2016-01-21
JP2016009845A JP6592365B2 (ja) 2016-01-21 2016-01-21 酸化黒鉛の製造方法
JP2016-044584 2016-03-08
JP2016044584A JP6592384B2 (ja) 2016-03-08 2016-03-08 酸化黒鉛の製造方法

Publications (1)

Publication Number Publication Date
WO2017082262A1 true WO2017082262A1 (ja) 2017-05-18

Family

ID=58695422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083141 WO2017082262A1 (ja) 2015-11-11 2016-11-08 酸化黒鉛の製造方法

Country Status (3)

Country Link
US (1) US11286166B2 (ja)
EP (1) EP3375755A4 (ja)
WO (1) WO2017082262A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117669999A (zh) * 2024-02-01 2024-03-08 嘉祥洪润电碳有限公司 一种石墨纯化生产的智能管理系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3786111A4 (en) 2018-04-27 2022-02-16 Nippon Shokubai Co., Ltd. PROCESS FOR MAKING A CARBON MATERIAL COMPLEX
CN112441580B (zh) * 2019-08-28 2023-07-04 东丽先端材料研究开发(中国)有限公司 石墨的氧化物粉末、其制备方法及其应用
CN112174134A (zh) * 2020-11-12 2021-01-05 常州第六元素材料科技股份有限公司 一种循环硫酸制备氧化石墨的方法
CN114410329B (zh) * 2022-02-10 2022-10-28 山西沁新能源集团股份有限公司 具有杂化碳的高碳焦及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053313A (ja) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc 炭素からなる骨格を持つ薄膜状粒子
JP2010102829A (ja) * 2008-10-21 2010-05-06 Mitsubishi Gas Chemical Co Inc 酸化黒鉛粒子含有液の評価方法、これを用いた酸化黒鉛粒子含有液の製造方法及び導電体の製造方法
JP2011148701A (ja) * 2011-05-09 2011-08-04 Mitsubishi Gas Chemical Co Inc 炭素からなる骨格を持つ薄膜状粒子の合成方法
JP2011213583A (ja) * 2010-03-15 2011-10-27 Sekisui Chem Co Ltd 黒鉛層間化合物の製造方法
JP2014125406A (ja) * 2012-12-27 2014-07-07 Micc Tec Co Ltd 酸化グラフェンの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596396B2 (en) 2000-08-09 2003-07-22 Mitsubishi Gas Chemical Company, Inc. Thin-film-like particles having skeleton constructed by carbons and isolated films
DE102005029997B4 (de) * 2005-06-28 2009-08-13 Hilti Aktiengesellschaft Polyurethan-Graphitoxid-Verbundmaterial, Verfahren zu seiner Herstellung und seine Verwendung
US9558860B2 (en) * 2010-09-10 2017-01-31 Samsung Electronics Co., Ltd. Graphene-enhanced anode particulates for lithium ion batteries
CN102153075B (zh) * 2011-03-22 2013-06-19 桂林理工大学 超声辅助Hummers法合成氧化石墨烯的方法
WO2012166472A2 (en) * 2011-05-27 2012-12-06 Graphea, Inc. Production of propene
JP2013079176A (ja) * 2011-10-05 2013-05-02 Dic Corp 修飾グラフェン、膜、及び成形体
EP3059209A3 (en) 2012-03-14 2017-05-17 Friedrich-Alexander-Universität Erlangen-Nürnberg Preparation method for graphene oxide suitable for graphene production
CN103570007A (zh) 2012-08-03 2014-02-12 东丽先端材料研究开发(中国)有限公司 一种氧化石墨的制备方法
KR20140028381A (ko) 2012-08-28 2014-03-10 (주)그랜드 텍 그래핀의 제조 방법
US9284193B2 (en) 2013-10-21 2016-03-15 The Penn State Research Foundation Method for preparing graphene oxide films and fibers
CN103803537A (zh) 2014-01-22 2014-05-21 深圳市智慧低碳技术有限公司 一种制备石墨烯的方法
KR101614837B1 (ko) 2014-04-22 2016-04-25 사단법인 코티티시험연구원 생산 수율 및 재현성이 우수한 산화흑연 분산액의 제조장치
CN104617300A (zh) * 2015-02-09 2015-05-13 天津师范大学 一种采用还原氧化石墨烯制备锂离子电池正负极材料的方法
CN105621403A (zh) * 2016-02-01 2016-06-01 江南石墨烯研究院 一种高效率环境友好的氧化石墨的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053313A (ja) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc 炭素からなる骨格を持つ薄膜状粒子
JP2010102829A (ja) * 2008-10-21 2010-05-06 Mitsubishi Gas Chemical Co Inc 酸化黒鉛粒子含有液の評価方法、これを用いた酸化黒鉛粒子含有液の製造方法及び導電体の製造方法
JP2011213583A (ja) * 2010-03-15 2011-10-27 Sekisui Chem Co Ltd 黒鉛層間化合物の製造方法
JP2011148701A (ja) * 2011-05-09 2011-08-04 Mitsubishi Gas Chemical Co Inc 炭素からなる骨格を持つ薄膜状粒子の合成方法
JP2014125406A (ja) * 2012-12-27 2014-07-07 Micc Tec Co Ltd 酸化グラフェンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3375755A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117669999A (zh) * 2024-02-01 2024-03-08 嘉祥洪润电碳有限公司 一种石墨纯化生产的智能管理系统
CN117669999B (zh) * 2024-02-01 2024-04-30 嘉祥洪润电碳有限公司 一种石墨纯化生产的智能管理系统

Also Published As

Publication number Publication date
EP3375755A4 (en) 2019-10-02
US20180319668A1 (en) 2018-11-08
EP3375755A1 (en) 2018-09-19
US11286166B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2017082262A1 (ja) 酸化黒鉛の製造方法
Han et al. Porous SnO 2 nanowire bundles for photocatalyst and Li ion battery applications
JP2011520744A (ja) メソ多孔性二酸化マンガン
JP6765831B2 (ja) 還元型酸化黒鉛の製造方法
JP2015520725A (ja) 多孔性複合体及びこの製造方法
JP6618777B2 (ja) 酸化黒鉛の製造方法
JP5774619B2 (ja) 低bet四三酸化マンガンの製造及び粒度制御方法、並びに四三酸化マンガン
JP2016006003A (ja) 金属酸化物ナノワイヤーの製造方法およびナノワイヤー
Zhang et al. A novel study on preparation of H 2 TiO 3–lithium adsorbent with titanyl sulfate as titanium source by inorganic precipitation–peptization method
WO2023018546A1 (en) Methods for preparing hard carbon by acid oxidation
JP5156224B2 (ja) 鉄砒素化合物の製法
Sun et al. Formation of hierarchically polyhedral Cu 7 S 4 cages from Cu 2 O templates and their structure-dependent photocatalytic performances
CN108545724B (zh) 石墨烯及其生产方法、用途与电池
JP6762417B2 (ja) 黒鉛類似の微結晶炭素ナノ材料の製造方法、並びに応用
JP5713756B2 (ja) セレン化銅粒子粉末およびその製造方法
CN112135793A (zh) 用于由电极石墨废料制造氧化石墨烯的方法
JP7252261B2 (ja) 電極グラファイトスクラップから還元型酸化グラフェンを製造するための方法
WO2014183169A1 (en) Method for producing hollow structures
JP6592384B2 (ja) 酸化黒鉛の製造方法
JP7457307B2 (ja) グラファイトの薄板状構造物の製造方法、並びに、薄片化グラファイトおよびその製造方法
Liu et al. BiVO4 hollow nanoplates with improved photocatalytic water oxidation efficiency
Dias et al. The relation between structural features and electrochemical activity of MnO2 nanoparticles synthesized from a polyol-made Mn3O4 precursor
Zhang et al. Mixed-solvothermal slow release synthesis of Zn x Cd 1− x S y nanorods with high visible light photocatalytic activities
JP6584298B2 (ja) 酸化黒鉛の製造方法
JP5039953B2 (ja) 水溶液中のヒ素とクロムとを分離する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15775285

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016864223

Country of ref document: EP