WO2017082110A1 - 吸湿性、防皺性に優れた芯鞘複合断面繊維 - Google Patents

吸湿性、防皺性に優れた芯鞘複合断面繊維 Download PDF

Info

Publication number
WO2017082110A1
WO2017082110A1 PCT/JP2016/082368 JP2016082368W WO2017082110A1 WO 2017082110 A1 WO2017082110 A1 WO 2017082110A1 JP 2016082368 W JP2016082368 W JP 2016082368W WO 2017082110 A1 WO2017082110 A1 WO 2017082110A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
fiber
sheath
composite cross
sheath composite
Prior art date
Application number
PCT/JP2016/082368
Other languages
English (en)
French (fr)
Inventor
大輔 吉岡
健太郎 ▲たか▼木
佳史 佐藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017501741A priority Critical patent/JP6213693B2/ja
Priority to AU2016351997A priority patent/AU2016351997B2/en
Priority to CN201680061247.1A priority patent/CN108138378B/zh
Priority to US15/774,021 priority patent/US20190024264A1/en
Priority to EP16864073.8A priority patent/EP3375918B1/en
Priority to KR1020187006770A priority patent/KR102575877B1/ko
Priority to CA3003107A priority patent/CA3003107A1/en
Publication of WO2017082110A1 publication Critical patent/WO2017082110A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/292Conjugate, i.e. bi- or multicomponent, fibres or filaments
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/022Moisture-responsive characteristics hydrophylic

Definitions

  • the present invention relates to a core-sheath composite cross-section fiber excellent in hygroscopicity and antifungal properties.
  • Synthetic fibers made of thermoplastic resins such as polyamide and polyester are widely used in clothing and industrial applications because they are excellent in strength, chemical resistance, heat resistance and the like.
  • polyamide fiber has excellent moisture absorption and release properties in addition to its unique softness, high tensile strength, coloring properties when dyeing, and high heat resistance, and is widely used for applications such as innerwear and sportswear. ing.
  • polyamide fibers do not have sufficient moisture absorption and release performance compared to natural fibers such as cotton, and have problems such as stuffiness and stickiness, and are inferior to natural fibers in terms of wearing comfort. It has become.
  • Patent Document 1 discloses a polyether block amide copolymer having a core-sheath composite cross-sectional fiber having a core part and a sheath part, the core part not exposed on the fiber surface, and a hard segment made of polycaproamide.
  • a core-sheath composite cross-section fiber having a core / sheath area ratio of 3/1 to 1/5 in the cross section of the fiber is disclosed.
  • Patent Document 2 discloses a core-sheath composite cross-section fiber having a thermoplastic polymer as a core and a fiber-forming polyamide as a sheath, and the main component of the thermoplastic polymer forming the core is a polyether ester.
  • Patent Document 3 a polyether block amide copolymer is used as a core, and a fiber-forming polymer such as polyamide or polyester is used as a sheath, and the core is exposed in an exposure angle range of 5 ° to 90 °.
  • a core-sheath composite cross-sectional fiber excellent in antistatic performance, water absorption performance, and contact cooling feeling is disclosed.
  • the core-sheath composite cross-section fibers of Patent Documents 1 to 3 are increasingly used as woven or knitted fabrics for inner and sports applications.
  • the core-sheath composite cross-section fibers of Patent Documents 1 to 3 are excellent in moisture absorption and release due to the high moisture absorption performance of the core component polymer, but have high shrinkage properties and are flexible.
  • the problem was that the material was easily deformed and easily wrinkled. The same phenomenon was likely to occur during washing.
  • the core part deteriorated by repeated actual use, and a decrease in moisture absorption performance due to repeated use was also a problem.
  • An object of the present invention is to overcome the problems of the prior art and to provide a core-sheath composite cross-sectional fiber excellent in moisture absorption / release performance and anti-mold properties. It is another object of the present invention to provide a core-sheath composite cross-section fiber that maintains moisture absorption performance even after washing.
  • the present invention has the following configuration.
  • the core polymer is a thermoplastic polymer
  • the sheath polymer is a polyamide having a dicarboxylic acid unit whose main component is a sebacic acid unit, and the boiling water shrinkage is 6.0 to 12.0%.
  • a core-sheath composite cross-section fiber having a stress per unit fineness of 3% elongation in a tensile test of 0.60 cN / dtex or more.
  • a core-sheath composite cross-sectional fiber that is excellent in moisture absorption performance and anti-mold properties and that maintains moisture absorption performance even after washing.
  • the core-sheath composite cross-section fiber of the present invention uses a polyamide having a dicarboxylic acid unit whose main component is a sebacic acid unit as the sheath polymer, and a thermoplastic polymer having high moisture absorption performance as the core polymer.
  • a polyamide having a dicarboxylic acid unit mainly composed of a sebacic acid unit in a sheath is a polymer composed of a high molecular weight substance in which a so-called hydrocarbon is connected to a main chain through an amide bond.
  • Examples include pentamethylene sebacamide, polyhexamethylene sebacamide, and copolymers thereof, but from an economical aspect, relatively easy to produce yarn, dyeability, and excellent mechanical properties.
  • Such a polyamide is preferably a polyamide mainly composed of polyhexamethylene sebacamide.
  • the polyamide having a dicarboxylic acid unit whose main component is a sebacic acid unit in the sheath includes various additives such as matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, A fluorescent whitening agent, an antistatic agent, a hygroscopic polymer, carbon, and the like may be copolymerized or mixed as required when the total additive content is 0.001 to 10% by weight.
  • the thermoplastic polymer having a high hygroscopic performance in the core portion refers to a polymer having ⁇ MR measured in a pellet shape of 10% or more, and examples thereof include a polyether ester amide copolymer, polyvinyl alcohol, and a cellulose-based thermoplastic polymer. Among them, polyether ester amide copolymers are preferable from the viewpoint of good thermal stability and compatibility with the polyamide in the sheath and excellent peel resistance.
  • ⁇ MR here refers to weighing 1 to 2 g of a pellet in a weighing bottle, drying it at 110 ° C. for 2 hours, measuring the weight (W0), and then measuring the pellet at 20 ° C. and 65% relative humidity.
  • the weight (W65) after holding for a time is measured.
  • maintaining a pellet for 24 hours at 30 degreeC and 90% of relative humidity is measured. And it is calculated according to the following formula.
  • the polyether ester amide copolymer is a block copolymer having an ether bond, an ester bond and an amide bond in the same molecular chain. More specifically, one or two or more polyamide components (A) selected from lactam, aminocarboxylic acid, diamine and dicarboxylic acid salt, and polyetherester component consisting of dicarboxylic acid and poly (alkylene oxide) glycol ( It is a block copolymer polymer obtained by subjecting B) to a polycondensation reaction.
  • A polyamide components selected from lactam, aminocarboxylic acid, diamine and dicarboxylic acid salt, and polyetherester component consisting of dicarboxylic acid and poly (alkylene oxide) glycol
  • polyamide component (A) examples include lactams such as ⁇ -caprolactam, dodecanolactam and undecanolactam, ⁇ -aminocarboxylic acids such as aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, and polyhexamethylene azimuth.
  • lactams such as ⁇ -caprolactam, dodecanolactam and undecanolactam
  • ⁇ -aminocarboxylic acids such as aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid
  • polyhexamethylene azimuth There are nylon salts of diamine-dicarboxylic acid which are precursors of pamide, polyhexamethylene sebacamide, polyhexamethylene dodecanamide and the like, and a preferred polyamide component is ⁇ -caprolactam.
  • the polyether ester component (B) is composed of a dicarboxylic acid having 4 to 20 carbon atoms and poly (alkylene oxide) glycol.
  • dicarboxylic acid having 4 to 20 carbon atoms include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, and dodecanoic acid, terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • An aromatic dicarboxylic acid such as an acid, an alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, and the like can be mentioned, and one or a mixture of two or more can be used.
  • Preferred dicarboxylic acids are adipic acid, sebacic acid, dodecanoic acid, terephthalic acid, and isophthalic acid.
  • Examples of poly (alkylene oxide) glycols include polyethylene glycol, poly (1,2- and 1,3-propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, and the like. Polyethylene glycol having good moisture absorption performance is preferred.
  • the number average molecular weight of poly (alkylene oxide) glycol is preferably 300 to 10,000, more preferably 500 to 5,000. It is preferable for the molecular weight to be 300 or more because the fiber is less likely to splash out of the system during the polycondensation reaction and the moisture absorption performance is stable. Moreover, it is preferable that it is 10000 or less because a uniform block copolymer is obtained and the spinning property is stabilized.
  • the constituent ratio of the polyether ester component (B) is preferably 20 to 80% in terms of mol ratio. When it is 20% or more, good hygroscopicity is obtained, which is preferable. Moreover, it is preferable that it is 80% or less because good dyeing fastness and washing durability can be obtained.
  • the core-sheath composite cross-section fiber of the present invention needs to have a boiling water shrinkage of 6.0 to 12.0%.
  • the boiling water shrinkage rate exceeds 12.0%, the fiber is likely to be deformed in the dyeing process, and easily wrinkled.
  • the boiling water shrinkage rate is less than 6.0%, although the fouling resistance is excellent, the operability in the yarn making process may be deteriorated and the quality may be deteriorated.
  • the anti-mold property is excellent.
  • it is 6.0 to 10.0%.
  • the core-sheath composite cross-section fiber of the present invention needs to have a stress per unit fineness of 0.60 cN / dtex or more when stretched by 3% in a fiber tensile test.
  • the stress at the time of 3% elongation in the tensile test of the fiber was determined by performing a tensile test on the sample under the constant speed elongation condition shown in JIS L1013 (chemical fiber filament yarn test method, 2010). Obtain from the strength at the point of 3% elongation.
  • the strength divided by the fineness of the fiber is the stress per unit fineness at 3% elongation in the fiber tensile test.
  • the stress per unit fineness at the time of 3% elongation in the fiber tensile test is a rising portion of the tensile strength-elongation curve, and is a parameter indicating the rigidity of the fiber.
  • the ⁇ -crystal orientation parameter of the polyamide in the sheath is preferably 2.10 to 2.70, more preferably 2.20 to 2.60. It is generally known that an ⁇ crystal is a stable crystal form and is formed when a high stress is applied.
  • the polyamide in the sheath is preferentially subjected to drawing during spinning and drawing between take-up rollers and drawing between take-off rollers, and ⁇ crystals that are stable crystal forms. Can be sufficiently present.
  • the stretching force is concentrated on the polyamide in the sheath during melt spinning, the crystallization of the thermoplastic polymer having a high hygroscopic performance in the core is suppressed, and the hygroscopic performance of the core-sheath composite fiber can be further enhanced.
  • the rigidity of the sheath portion is increased, and the tensile stress of the core-sheath composite fiber can be further increased.
  • the ⁇ crystal orientation parameter of the polyamide of the sheath is 2.10 or more, the crystallization of the polyamide of the sheath advances, the tensile stress at 3% elongation as the core-sheath composite cross-section fiber becomes good, and the core Therefore, the crystallization of the thermoplastic polymer having high moisture absorption performance does not proceed and the moisture absorption / release performance is also improved.
  • the ⁇ crystal orientation parameter is 2.70 or less, the crystallization of the polyamide in the sheath portion does not proceed, and the occurrence of yarn breakage and fluff generation in the high-order processing step can be suppressed, so that productivity is improved.
  • the core-sheath composite cross-section fiber of the present invention preferably has a stress retention rate of 60% or more per unit fineness when stretched by 3% in a fiber tensile test before and after boiling water treatment.
  • a stress retention rate 60% or more per unit fineness when stretched by 3% in a fiber tensile test before and after boiling water treatment.
  • the fiber structure changes and the degree of orientation of the amorphous part change, so that the fiber shrinks and the stiffness of the fiber decreases. Therefore, by suppressing the shrinkage of the fiber as much as possible and maintaining the rigidity of the fiber as much as possible before and after boiling water, the deformation of the fiber in the dyeing process is suppressed, and the antifungal property is improved. Furthermore, deformation of the fiber is suppressed even during washing, and the anti-mold property is improved.
  • thermoplastic polymer having high hygroscopic performance of the core part constituting the core-sheath composite cross-section fiber of the present invention is a polymer having low crystallinity and poor rigidity. Therefore, it is also a polymer whose shrinkage characteristics are increased by boiling water treatment and flexibility is easily increased. Therefore, the core-sheath composite cross-section fiber of the present invention has a rigid sheath portion by selecting a polyamide made of polyhexamethylene sebacamide having a relatively high rigidity and low shrinkage among polyamides as the sheath portion polymer.
  • the shrinkage characteristics are suppressed and the rigidity is improved, so that the fender resistance and moisture absorption performance are improved. is there. More preferably, it is 70% or more.
  • the core-sheath composite cross-section fiber of the present invention preferably has a tensile strength of 3.0 cN / dtex or more, more preferably 3.5 to 5.0 cN / dtex. By setting it as such a range, it becomes possible to provide a product excellent in practical durability.
  • the core-sheath composite cross-section fiber of the present invention preferably has an elongation of 35% or more, more preferably 40 to 65%. By setting it as such a range, the passage property in high-order processes, such as weaving, knitting, and false twisting, becomes good.
  • the core-sheath composite cross-section fiber of the present invention needs to have a function of adjusting the humidity in the clothes in order to obtain good comfort when worn.
  • the temperature in the clothes represented by 30 ° C x 90% RH and the outside air temperature represented by 20 ° C x 65% RH when performing light to medium work or light to medium exercise ⁇ MR expressed by the difference in moisture absorption is used.
  • a larger ⁇ MR corresponds to higher moisture absorption performance and better comfort when worn.
  • the core-sheath composite cross-section fiber of the present invention preferably has a ⁇ MR of 5.0% or more. More preferably, it is 7.0% or more, More preferably, it is 10.0% or more. By setting it as this range, the stuffiness and stickiness at the time of wear can be suppressed, and the clothing excellent in comfort can be provided.
  • the core-sheath composite cross-section fiber of the present invention preferably has a ⁇ MR retention of 90% or more and 100% or less after 20 washings. More preferably, it is 95% or more and 100% or less. By setting it as this range, since the washing durability which can endure actual use is obtained, the clothing which hold
  • the core-sheath composite cross-section fiber of the present invention may be either a filament or a staple, and is selected depending on the application. Further, the total fineness, the number of filaments (for long fibers), and the length / crimp number (for short fibers) are not particularly limited, but considering the use as a long fiber material for clothing, the total fineness is 5 235 dtex and the number of filaments is preferably 1 to 144.
  • the core-sheath composite cross-section fiber of the present invention can be obtained by techniques of melt spinning and composite spinning, and examples thereof are as follows.
  • polyamide (sheath part) and thermoplastic polymer (core part) with high moisture absorption performance are melted separately, measured and transported with a gear pump, formed into a composite flow as it is, and discharged from a melt spinneret.
  • the yarn is cooled to room temperature by a yarn cooling device such as the above, and is fed and converged by the oil supply device, entangled by the first fluid entanglement nozzle device, and drawn according to the ratio of the peripheral speed of the take-up roller and the drawing roller. Further, the yarn is heat-set by a drawing roller and wound by a winder (winding device).
  • the core-sheath composite cross-section fiber of the present invention it is possible to preferably control by selecting a polyamide having an appropriate molecular structure, a suitable take-up speed, a fueling position, and a heat set temperature after stretching. These will be described in detail below.
  • the polyamide used in the core-sheath composite cross-section fiber of the present invention is a polyamide having a dicarboxylic acid unit whose main component is a sebacic acid unit in the sheath, a so-called hydrocarbon is connected to the main chain via an amide bond. It is preferable to use a polymer comprising a high molecular weight substance.
  • the core-sheath composite cross-section fiber excellent in the anti-mold property of the fabric during dyeing can be obtained.
  • the ability to form hydrogen bonds between amide bonds here is determined by the degree of freedom of the polyamide molecular main chain, that is, the number of methylene groups per amide bond. Therefore, the core-sheath composite cross-section fiber excellent in the antifungal property of the fabric at the time of dyeing is obtained by selecting the polyamide of the range concerning a sheath part.
  • the polyamide used for the core-sheath composite cross-section fiber of the present invention includes various additives such as matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent whitening agents, An antistatic agent, a hygroscopic polymer, carbon and the like may be copolymerized or mixed as necessary with a total additive content of 0.001 to 10% by weight.
  • the relative viscosity of sulfuric acid of the polyamide chip used for the core-sheath composite cross-section fiber of the present invention is preferably 2.30 to 3.30. By setting it as such a range, it becomes possible to add suitable extending
  • the relative viscosity of sulfuric acid of the polyamide in the sheath is 2.30 or more, a practical fiber strength and elongation can be obtained.
  • the relative viscosity of sulfuric acid is 3.30 or less, the melt viscosity is suitable for spinning, so that the spinnability at the time of melt spinning is improved, and stable production without yarn breakage becomes possible. More preferably, it is 2.50 to 3.10.
  • the ratio of the core part of the core-sheath composite cross-section fiber of the present invention is preferably 20 to 80 parts by weight with respect to 100 parts by weight of the composite fiber. More preferably, it is 30 to 70 parts by weight. By setting it as such a range, it becomes possible to add suitable extending
  • polyamide having a dicarboxylic acid unit composed mainly of sebacic acid units used in the sheath part is 250 to 290 ° C. in the case of polyhexamethylene sebacamide chips, and has a high moisture absorption performance used in the core part.
  • polymer in the case of “MH1657” manufactured by Arkema, it is preferably 220 to 260 ° C.
  • the take-up speed is preferably 2500-3400 m / min.
  • the orientation crystallization of the core polymer is appropriately advanced, and the crystallization of the core polymer is moderately suppressed, so that the stress per unit fineness at the time of 3% elongation and the boiling water shrinkage rate are reduced. It can be controlled within a preferable range, and is excellent in moisture absorption performance and antifungal properties. Furthermore, moisture absorption performance can be maintained even after washing.
  • the orientation crystallization of the polyamide in the sheath proceeds when it is stretched by spinning tension, but the ⁇ -crystal orientation parameter of the polyamide in the sheath decreases because the mechanical stretch ratio decreases, and the sheath The rigidity of the polymer is reduced and it tends to become wrinkles. If it is less than 2500 m / min, the mechanical stretch ratio is increased, but since the stretching by spinning tension is insufficient, the ⁇ crystal orientation parameter of the polyamide in the sheath is lowered, the rigidity of the sheath polymer is lowered, and It becomes a fiber that tends to become. In addition, the oriented crystallization of the core polymer proceeds and the moisture absorption performance decreases. More preferably, it is 2700-3200 m / min.
  • the refueling position from the bottom surface of the base is 800 to 1500 mm.
  • the polymer discharged from the die is blown with cooling air by a cooling device to solidify the yarn.
  • the polymer is stretched by spinning tension accompanied by an accompanying flow, and then between the take-up roller and the drawing roller. Mechanical stretching.
  • the core-sheath composite cross-section fiber of the present invention has a high mechanical stretch ratio in order to enhance the orientation crystallization of the sheath polymer and increase the rigidity, and to suppress the crystallization of the core polymer and enhance the moisture absorption performance. The point is to reduce the spinning tension.
  • the refueling position in such a range, the stress per unit fineness at the time of 3% elongation in the fiber tensile test can be increased, and a fiber excellent in antifungal properties and moisture absorption performance can be obtained.
  • the lubrication position is less than 800 mm, the bend between the base and the lubrication position becomes large, and the thread is lubricated when the thread is not sufficiently solidified, resulting in frequent thread breaks and reduced operability. is there.
  • the oil supply position exceeds 1500 mm, the spinning tension increases, so that the oriented crystallization of the core polymer progresses and the moisture absorption performance decreases, and the mechanical stretch ratio decreases and the rigidity of the sheath polymer decreases. For this reason, the fiber may easily become wrinkles. More preferably, it is 1000 to 1300 mm.
  • the heat setting temperature after stretching is preferably 165 to 180 ° C. Due to the stretching between the rollers, the fibers having undergone oriented crystallization are further crystallized by the high-temperature heat setting treatment on the heating roller, and the fiber structure is stabilized.
  • the boiling water shrinkage ratio depends on the shrinkage of the amorphous part of the fiber, that is, the ratio of the amorphous part.
  • the heat setting temperature as used in the field of this invention shows the preset temperature of a heating roller.
  • the polymer having high hygroscopic performance of the core part constituting the core-sheath composite cross-section fiber of the present invention has high amorphousness and high shrinkage, so that the boiling water shrinkage when fiberized with a single polymer is large. It is expected that. Therefore, the core-sheath composite cross-section fiber of the present invention uses a polyamide having a dicarboxylic acid unit mainly composed of a sebacic acid unit as a sheath polymer, which has relatively high rigidity and low shrinkage among polyamides.
  • Stiffness is provided to the sheath part, the shrinkability of the core part is suppressed, and the fiber structure is stabilized by heat setting after stretching at such a temperature range, and the boiling water shrinkage rate is controlled to 6.0 to 12.0%. And a fiber having excellent antifungal properties can be obtained.
  • the heat setting temperature is lower than 165 ° C.
  • the crystallization of the polyamide in the sheath portion is insufficient, the fiber structure is not stable, and the fibers may be prone to wrinkles.
  • the heat set temperature exceeds 180 ° C, fibers with excellent anti-mold properties can be obtained.
  • contamination of the spinning oil decomposition products is promoted on the heating roller, resulting in frequent deterioration in quality and spun yarn breakage.
  • the passability of the high-order machining process deteriorates. More preferably, it is 170 to 175 ° C.
  • the core-sheath composite cross-section fiber of the present invention is preferably used for apparel because of its excellent moisture absorption performance, and the fabric form can be selected according to the purpose, such as woven fabric, knitted fabric, and non-woven fabric.
  • the fabric having at least a part of the core-sheath composite fiber of the present invention can be used for clothing having excellent comfort by adjusting the mixing ratio of the composite fiber of the present invention so that ⁇ MR is 5.0% or more.
  • ⁇ MR is 5.0% or more.
  • clothing it can be set as various textile products, such as innerwear and sportswear.
  • Sulfuric acid relative viscosity A polyamide chip sample was dissolved so as to be 1 g with respect to 100 ml of sulfuric acid having a concentration of 98% by weight, and the flow time (T1) at 25 ° C. was measured using an Ostwald viscometer. Subsequently, the flow-down time (T2) of only 98% by weight sulfuric acid was measured. The ratio of T1 to T2, that is, T1 / T2, was defined as sulfuric acid relative viscosity.
  • Fineness Set a fiber sample on a 125 m / round measuring instrument, rotate it 200 times, create a looped skein, dry with a hot air dryer (105 ⁇ 2 ° C. ⁇ 60 minutes), and weigh A fine weight was calculated from a value obtained by weighing with a balance and multiplying by the official moisture content.
  • the fiber sample was measured by laser Raman spectroscopy, and the intensity ratio (I1120) parallel in the parallel polarization of the Raman band derived from the ⁇ crystal of nylon observed near 1120 cm ⁇ 1 ; By taking a ratio of intensity ratio (I1120) perpendicular) in vertical polarization, it was set as a parameter for evaluating the degree of orientation.
  • the scattering intensity of each polarization condition parallel / vertical was normalized based on the Raman band intensity of the CH bending band (near 1440 cm ⁇ 1 ) having a small anisotropy with respect to orientation.
  • ⁇ crystal orientation parameter (I1120 / I1440) parallel / (I1120 / I1440) vertical
  • the section thickness was 2.0 ⁇ m.
  • the section sample was cut by being slightly tilted from the fiber axis so that the cut surface was elliptical, and a portion where the thickness of the elliptical short axis was constant was selected and measured. The measurement is performed in the microscopic mode, and the laser spot diameter at the sample position is 1 ⁇ m.
  • the orientation of the core and sheath layer center was analyzed, and the orientation was measured under polarization conditions.
  • the degree of orientation was evaluated from the ratio of the Raman band intensities obtained when the polarization direction coincided with the fiber axis and the perpendicular condition when the direction was perpendicular. Each measurement point was measured three times, and the average value was used. Detailed conditions are shown below.
  • Laser Raman spectroscopy system T-64000 (Jobin Yvon / Ehime Bussan) Condition: Measurement mode; Microscopic Raman Objective lens: x100 Beam diameter: 1 ⁇ m Light source: Ar + laser / 514.5nm Laser power: 50mW Diffraction grating: Single 600gr / mm Slit: 100 ⁇ m Detector: CCD / Jobin Yvon 1024 ⁇ 256.
  • the core-sheath composite cross-section fiber of the present invention is used for warp and weft, and the warp density is set to 188 yarns / 2.54 cm and the weft density is 155 yarns / 2.54 cm. Weaved with tissue.
  • the obtained green ground was scoured with a solution containing 2 g of caustic soda (NaOH) per liter using an open soaper, dried at 120 ° C. with a cylinder dryer, and then preset at 170 ° C. Thereafter, the temperature was raised to 120 ° C. at a rate of 2.0 ° C./min with a pressure-resistant drum type dyeing machine, and dyeing was performed for 60 minutes at a set temperature of 120 ° C. After dyeing, the fabric was washed with running water for 20 minutes, dehydrated and dried to obtain a woven fabric having a warp density of 200 / 2.54 cm and a weft density of 160 / 2.54 cm.
  • CaOH caustic soda
  • MR65 [(W65 ⁇ W0) / W0] ⁇ 100%
  • MR90 [(W90 ⁇ W0) / W0] ⁇ 100%
  • ⁇ MR MR90 ⁇ MR65
  • the rotation speed of the gear pump was selected so that the total fineness of the obtained core-sheath composite yarn was 56 dtex, and the discharge rate was 22 g / min.
  • the yarn is cooled and solidified by the yarn cooling device, and the non-hydrous oil agent is supplied at the oil supply position 1000 mm from the lower surface of the base by the oil supply device.
  • the roller is stretched at a peripheral speed of 2800 m / min, the stretching ratio between the take-off roller and the stretching roller is 1.50 times, the setting temperature of the stretching roller is 170 ° C., heat setting is performed, and the winding speed is 4000 m / min.
  • the core-sheath composite cross-section fiber of 56 dtex24 filament was obtained.
  • Example 2 A 56 dtex 24 filament core-sheath composite cross-section fiber was obtained in the same manner as in Example 1 except that the heat setting temperature of the heating roller was 180 ° C.
  • Example 3 A 56 dtex 24 filament core-sheath composite cross-section fiber was obtained in the same manner as in Example 1 except that the heat setting temperature of the heating roller was 165 ° C.
  • Example 4 A 56 dtex 24 filament core-sheath composite cross-section fiber was obtained in the same manner as in Example 1 except that the oil supply position was 1500 mm from the lower surface of the die and the winding speed was 3900 m / min.
  • Example 5 A 56 dtex 24 filament core-sheath composite cross-section fiber was obtained in the same manner as in Example 1 except that the oil supply position was 800 mm from the lower surface of the die.
  • Example 6 The core sheath of 56 dtex 24 filament was obtained in the same manner as in Example 1 except that the oiling position was 1500 mm from the bottom of the base, the draw ratio between the take-up roller and the draw roller was 1.45 times, and the take-up speed was 3900 m / min. A composite cross-section fiber was obtained.
  • Example 7 The core sheath of 56 dtex 24 filament was obtained in the same manner as in Example 1 except that the oiling position was 800 mm from the bottom of the base, the draw ratio between the take-up roller and the draw roller was 1.55, and the take-up speed was 4100 m / min. A composite cross-section fiber was obtained.
  • Example 8 Example 1 except that the winding speed of the take-up roller as the first roll was 2500 m / min, the draw ratio between the take-up roller and the drawing roller was 1.65 times, and the take-up speed was 3900 m / min.
  • the core-sheath composite cross-section fiber of 56 dtex24 filament was obtained by the method.
  • Example 9 Example 1 except that the winding speed of the take-up roller as the first roll was 3400 m / min, the draw ratio between the take-up roller and the drawing roller was 1.20 times, and the take-up speed was 3900 m / min.
  • the core-sheath composite cross-section fiber of 56 dtex24 filament was obtained by the method.
  • Example 1 A core-sheath composite cross-section yarn of 56 dtex 24 filament was obtained in the same manner as in Example 1 except that the heat setting temperature of the heating roller was 190 ° C.
  • the moisture absorption performance and anti-mold properties are excellent, and furthermore, the moisture absorption performance is maintained even after washing, but stains such as decomposition products of spinning oil on the heating roller. Was promoted, yarn breakage frequently occurred in the high-order processing step, and the process passability was poor.
  • Example 2 A core-sheath composite cross-section fiber of 56 dtex 24 filament was obtained in the same manner as in Example 1 except that the set temperature of the drawing roller was 150 ° C.
  • Example 3 The core sheath of 56 dtex 24 filament was obtained in the same manner as in Example 1 except that the oiling position was 1800 mm from the bottom of the base, the draw ratio between the take-up roller and the draw roller was 1.30 times, and the take-up speed was 3500 m / min. A composite cross-section fiber was obtained.
  • Example 4 (Comparative Example 4) Example 1 except that the winding speed of the take-up roller as the first roll was 2200 m / min, the draw ratio between the take-up roller and the drawing roller was 1.80 times, and the take-up speed was 3800 m / min.
  • the core-sheath composite cross-section fiber of 56 dtex24 filament was obtained by the method.
  • Example 5 (Comparative Example 5) Example 1 except that the winding speed of the take-up roller as the first roll was 3700 m / min, the draw ratio between the take-up roller and the drawing roller was 1.05 times, and the take-up speed was 3700 m / min.
  • the core-sheath composite cross-section fiber of 56 dtex24 filament was obtained by the method.
  • Example 6 A core-sheath composite cross-section fiber of 56 dtex24 filaments was collected in the same manner as in Example 1 except that nylon 6 having a relative viscosity of sulfuric acid of 2.40 was used as the sheath and the heat setting temperature of the heating roller was 150 ° C.
  • the rigidity of the sheath nylon 6 is low, the balance with the shrinkage characteristics of the core polyetheresteramide copolymer is lost, and the stress per unit fineness at 3% elongation was as low as 0.53 cN / dtex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

芯部ポリマーが熱可塑性ポリマーであり、鞘部ポリマーがセバシン酸単位を主成分とするジカルボン酸単位を有するポリアミドであり、沸騰水収縮率が6.0~12.0%、繊維の引張試験における3%伸長時の単位繊度当たりの応力が0.60cN/dtex以上であることを特徴とする芯鞘複合断面繊維。 吸湿性能と防皺性に優れ、さらには、洗濯しても吸湿性能を維持する芯鞘複合断面繊維を提供する。

Description

吸湿性、防皺性に優れた芯鞘複合断面繊維
 本発明は、吸湿性、防皺性に優れた芯鞘複合断面繊維に関する。
 ポリアミドやポリエステルなどの熱可塑性樹脂からなる合成繊維は、強度、耐薬品性、耐熱性などに優れるために、衣料用途や産業用途など幅広く用いられている。
 特にポリアミド繊維はその独特な柔らかさ、高い引っ張り強度、染色時の発色性、高い耐熱性等の特性に加え、吸放湿性能に優れており、インナーウェア、スポーツウェアなどの用途に広く使用されている。しかしながら、ポリアミド繊維は綿等の天然繊維と比べると吸放湿性能は十分とはいえず、また、ムレやべたつき感といった問題点を有し、着用快適性の面で天然繊維に劣ることが問題となっている。
 そのような背景からムレやべたつき感を防ぐための優れた吸放湿性能を示し、天然繊維に近い着用快適性を有する合成繊維が、主にインナー用途やスポーツ衣料用途において要望されている。
 そこで、特許文献1には、芯部と鞘部からなり芯部が繊維表面に露出しない形状の芯鞘複合断面繊維であり、ハードセグメントがポリカプロアミドであるポリエーテルブロックアミド共重合体を芯部とし、ポリカプロアミドを鞘部とした、繊維横断面における芯部と鞘部の面積比率が3/1~1/5である芯鞘複合断面繊維が開示されている。
 また、特許文献2には、熱可塑性ポリマーを芯部とし、繊維形成性ポリアミドを鞘部とした芯鞘複合断面繊維であって、該芯部を形成する熱可塑性ポリマーの主成分がポリエーテルエステルアミド共重合体であり、かつ芯部の比率が複合繊維全重量の5~50重量%であることを特徴とする吸放湿性能に優れた芯鞘複合断面繊維が開示されている。
 また、特許文献3には、ポリエーテルブロックアミド共重合体を芯部とし、ポリアミドやポリエステル等の繊維形成性ポリマーを鞘部とした、芯部を露出角度で5°~90°の範囲で露出させている制電性能、吸水性能、接触冷感に優れた芯鞘複合断面繊維が開示されている。これら特許文献1~3の芯鞘複合断面繊維は、インナーやスポーツ用途で織編物としての使用が進んでいる。
国際公開第2014/10709号 特開平6-136618号公報 国際公開第2008/123586号
 しかしながら、特許文献1~3の芯鞘複合断面繊維は、芯成分ポリマーの高い吸湿性能により、吸放湿性に優れるものの、収縮特性が高く、柔軟性のあるポリマーであることから、染色工程で繊維が変形し易く、皺になりやすいことが課題であった。また、洗濯時においても同様の現象が起きやすかった。さらに、芯部が繰り返しの実使用によって劣化し、繰り返し使用による吸湿性能の低下も課題であった。
 本発明は、前記従来技術の課題を克服し、吸放湿性能と防皺性に優れた芯鞘複合断面繊維を提供することを目的とする。さらには、洗濯しても吸湿性能を維持する芯鞘複合断面繊維を提供することを目的とする。
 本発明は、上記課題を解決するために、下記の構成からなる。
 (1)芯部ポリマーが熱可塑性ポリマーであり、鞘部ポリマーがセバシン酸単位を主成分とするジカルボン酸単位を有するポリアミドであり、沸騰水収縮率が6.0~12.0%、繊維の引張試験における3%伸長時の単位繊度当たりの応力が0.60cN/dtex以上であることを特徴とする芯鞘複合断面繊維。
 (2)鞘部のα結晶配向パラメーターが2.10~2.70であることを特徴とする(1)に記載の芯鞘複合断面繊維。
 (3)沸騰水処理前後での繊維の引張試験における3%伸長時の単位繊度当たりの応力保持率が60%以上であることを特徴とする(1)または(2)に記載の芯鞘複合断面繊維。
 (4)(1)~(3)のいずれかに記載の芯鞘複合断面繊維を少なくとも一部に有する布帛。
 (5)(1)~(3)のいずれかに記載の芯鞘複合断面繊維を少なくとも一部に有する繊維製品。
 本発明によれば、吸湿性能と防皺性に優れ、さらには、洗濯しても吸湿性能を維持する芯鞘複合断面繊維を提供することができる。
 本発明の芯鞘複合断面繊維は、鞘部ポリマーにセバシン酸単位を主成分とするジカルボン酸単位を有するポリアミド、芯部ポリマーに高い吸湿性能を有する熱可塑性ポリマーを用いる。
 鞘部のセバシン酸単位を主成分とするジカルボン酸単位を有するポリアミドとは、いわゆる炭化水素が主鎖にアミド結合を介して連結された高分子量体からなるポリマーであり、具体的には、ポリペンタメチレンセバカミド、ポリヘキサメチレンセバカミド等やこれらの共重合体が挙げられるが、経済的な面、製糸が比較的容易な点や染色性、機械特性に優れている点等から、かかるポリアミドとしては、主としてポリヘキサメチレンセバカミドからなるポリアミドであることが好ましい。
 鞘部のセバシン酸単位を主成分とするジカルボン酸単位を有するポリアミドには、各種の添加剤、たとえば、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、吸湿性ポリマー、カーボンなどを、総添加物含有量が0.001~10重量%の間で必要に応じて共重合または混合していてもよい。
 芯部の高い吸湿性能を有する熱可塑性ポリマーとは、ペレット形状で測定したΔMRが10%以上のポリマーを指し、ポリエーテルエステルアミド共重合体やポリビニルアルコール、セルロース系熱可塑性ポリマー等が挙げられる。その中でも、熱安定性や鞘部のポリアミドとの相溶性が良く耐剥離性に優れる観点から、ポリエーテルエステルアミド共重合体が好ましい。
 ここでいうΔMRとは、ペレットを秤量瓶に1~2g程度はかり取り、110℃で2時間乾燥させた後の重量(W0)を測定し、次にペレットを20℃、相対湿度65%で24時間保持した後の重量(W65)を測定する。そして、ペレットを30℃、相対湿度90%で24時間保持した後の重量(W90)を測定する。そして、以下の式にしたがい計算したものである。
 MR65(%)=[(W65-W0)/W0]×100
 MR90(%)=[(W90-W0)/W0]×100
 ΔMR(%)=MR90-MR65 。
 ポリエーテルエステルアミド共重合体とは、同一分子鎖内にエーテル結合、エステル結合およびアミド結合を持つブロック共重合体である。より具体的にはラクタム、アミノカルボン酸、ジアミンとジカルボン酸の塩から選ばれた1種もしくは2種以上のポリアミド成分(A)およびジカルボン酸とポリ(アルキレンオキシド)グリコールからなるポリエーテルエステル成分(B)を重縮合反応させて得られるブロック共重合体ポリマーである。
 ポリアミド成分(A)としては、ε-カプロラクタム、ドデカノラクタム、ウンデカノラクタム等のラクタム類、アミノカプロン酸,11-アミノウンデカン酸、12-アミノドデカン酸などのω-アミノカルボン酸、ポリヘキサメチレンアジパミド、ポリヘキサメチレンセバカミド、ポリヘキサメチレンドデカンアミド等の前駆体であるジアミン-ジカルボン酸のナイロン塩類があり、好ましいポリアミド成分はε-カプロラクタムである。
 ポリエーテルエステル成分(B)は、炭素数4~20のジカルボン酸とポリ(アルキレンオキシド)グリコールとからなるものである。炭素数4~20のジカルボン酸としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、ドデカン酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸等が挙げられ、1種または2種以上を混合して用いることができる。好ましいジカルボン酸としては、アジピン酸、セバシン酸、ドデカン酸、テレフタル酸、イソフタル酸である。またポリ(アルキレンオキシド)グリコールとしては、ポリエチレングリコール、ポリ(1,2-及び1,3-プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール等が挙げられ、特に良好な吸湿性能を有するポリエチレングリコールが好ましい。
 ポリ(アルキレンオキシド)グリコールの数平均分子量は300~10000が好ましく、より好ましくは500~5000である。分子量が300以上であると、重縮合反応中に系外に飛散しにくく、吸湿性能が安定した繊維となるため好ましい。また、10000以下であると、均一なブロック共重合体が得られ製糸性が安定するため好ましい。
 ポリエーテルエステル成分(B)の構成比率はmol比にて、20~80%であることが好ましい。20%以上であると、良好な吸湿性が得られるため好ましい。また、80%以下であると、良好な染色堅牢性や洗濯耐久性が得られるため好ましい。
 このようなポリエーテルエステルアミド共重合体として、アルケマ社製“MH1657”や“MV1074”等が市販されている。
 本発明の芯鞘複合断面繊維は、沸騰水収縮率が6.0~12.0%であることが必要である。沸騰水収縮率が12.0%を超える場合、染色工程で繊維が変形し易く、皺になりやすい。また、沸騰水収縮率が6.0%未満の場合、防皺性には優れるものの、製糸工程での操業性悪化、品質低下を引き起こす場合がある。沸騰水収縮率を前記範囲とすることにより、防皺性に優れる。好ましくは、6.0~10.0%である。
 本発明の芯鞘複合断面繊維は、繊維の引張試験における3%伸長時の単位繊度あたりの応力が0.60cN/dtex以上であることが必要である。繊維の引張試験における3%伸長時の応力は、試料をJIS L1013(化学繊維フィラメント糸試験方法、2010年)に示される定速伸長条件で引張試験を行い、引張強さ-伸び曲線における試料が3%伸長した点での強力から求める。この強力を繊維の繊度で割り返したものが、繊維の引張試験における3%伸長時の単位繊度あたりの応力である。
 繊維の引張試験における3%伸長時の単位繊度あたりの応力は、引張強さ-伸び曲線の立ち上がり部分であり、繊維の剛直性を示すパラメーターである。この値が大きいほど(引張強さ-伸び曲線の立ち上がりが急勾配であるほど)、剛直な繊維である。すなわち、繊維の引張試験における3%伸長時の単位繊度あたりの応力が0.60cN/dtex以上とすることにより、染色工程での繊維の変形が抑制され、防皺性に優れた繊維とすることができる。好ましくは0.70cN/dtex以上である。
 本発明の芯鞘複合断面繊維は、鞘部のポリアミドのα結晶配向パラメーターが2.10~2.70であることが好ましく、更に好ましくは2.20~2.60である。α結晶は安定した結晶型であり、高い応力が加わった際にα結晶が形成されることが一般的に知られている。鞘部のポリアミドのα結晶配向パラメーターをかかる範囲とすることで、鞘部のポリアミドに紡糸から引取時の延伸および引取りローラー間での延伸が優先的に加わり、安定した結晶型であるα結晶が十分に存在することが可能となる。その結果、溶融紡糸の際に延伸力が鞘部のポリアミドに集中し、芯部の高い吸湿性能を有する熱可塑性ポリマーの結晶化が抑制され、芯鞘複合繊維の吸湿性能をより高めることができると共に、鞘部の剛直性が増し、芯鞘複合繊維の引張応力をより高めることができる。
 鞘部のポリアミドのα結晶配向パラメーターが2.10以上であると、鞘部のポリアミドの結晶化が進み、芯鞘複合断面繊維としての3%伸長時の引張応力が良好となり、且つ、芯部の高い吸湿性能を有する熱可塑性ポリマーの結晶化が進まず、吸放湿性能も良好になる。一方、α結晶配向パラメーターが2.70以下であると、鞘部のポリアミドの結晶化が進まず、高次加工工程での糸切れや毛羽の発生を抑制できるので生産性が向上する。
 本発明の芯鞘複合断面繊維は、沸騰水処理前後での繊維の引張試験における3%伸長時の単位繊度当たりの応力保持率が60%以上であることが好ましい。かかる範囲とすることにより、染色工程での繊維構造変化および結晶配向度変化が少なく、繊維の収縮が抑制されると共に繊維の剛直性も維持し易く、防皺性に優れた繊維とすることができる。繊維を沸騰水処理すると、主に非晶部に繊維構造変化が生じ、非晶部のアミド結合間の水素結合が切断され、分子鎖の運動性が向上し、配向度が低下する。その結果、非晶部の繊維構造変化および配向度が変化することによって、繊維が収縮すると共に、繊維の剛直性が低下する。そのため、繊維の収縮をできる限り抑えること、沸騰水前後で繊維の剛直性をできる限り維持させることで、染色工程での繊維の変形が抑制され、防皺性が向上する。さらには、洗濯時においても繊維の変形が抑制され、防皺性が向上する。
 本発明の芯鞘複合断面繊維を構成する芯部の高い吸湿性能を有する熱可塑性ポリマーは、結晶性が低く、剛直性に乏しいポリマーである。そのため、沸騰水処理により収縮特性が高くなり、柔軟性を増しやすいポリマーでもある。そこで、本発明の芯鞘複合断面繊維は、鞘部ポリマーに、ポリアミドの中でも比較的剛直性が高く、収縮性の低いポリヘキサメチレンセバカミドからなるポリアミドを選択することで、鞘部に剛性を与え、さらに後述するように特定の製糸条件(熱セット温度や給油位置など)で繊維化することで、収縮特性を抑え、剛性を向上させることで、防皺性と吸湿性能を向上させるのである。さらに好ましくは、70%以上である。
 本発明の芯鞘複合断面繊維は、引張強度が3.0cN/dtex以上であることが好ましく、更に好ましくは3.5~5.0cN/dtexである。かかる範囲とすることで、実用耐久性に優れた製品を提供することが可能となる。
 本発明の芯鞘複合断面繊維は、伸度が35%以上であることが好ましく、更に好ましくは40~65%である。かかる範囲とすることで、製織、製編、仮撚りといった高次工程での通過性が良好となる。
 本発明の芯鞘複合断面繊維は、着用時に良好な快適性を得るため、衣服内の湿度を調節する機能を有することが必要である。湿度調整の指標として、軽~中作業あるいは軽~中運動を行った際の30℃×90%RHに代表される衣服内温湿度と、20℃×65%RHに代表される外気温湿度における吸湿率の差で表されるΔMRを用いる。ΔMRは大きければ大きいほど吸湿性能が高く、着用時の快適性が良好であることに対応する。
 本発明の芯鞘複合断面繊維は、ΔMRが5.0%以上であることが好ましい。より好ましくは7.0%以上、更に好ましくは10.0%以上である。かかる範囲とすることで、着用時のムレやベタツキを抑制でき、快適性に優れる衣料が提供可能となる。
 本発明の芯鞘複合断面繊維は、洗濯20回後のΔMRの保持率が90%以上100%以下であることが好ましい。より好ましくは95%以上100%以下である。かかる範囲とすることで、実使用に耐えうる洗濯耐久性が得られるため、優れた快適性を保持した衣料を提供可能となる。更には、△MRが5.0%以上かつ洗濯20回後のΔMRの保持率が90%以上を満たすことが、実使用に耐えうる洗濯耐久性を持った快適性に優れる衣料を提供することを可能とする。
 本発明の芯鞘複合断面繊維は、フィラメント、ステープルのどちらでも良く、用途によって選択される。また、総繊度、フィラメント本数(長繊維の場合)、長さ・捲縮数(短繊維の場合)も特に限定はないが、衣料用長繊維素材として使用する事を考慮すると、総繊度は5~235dtex、フィラメント数は1~144本が好ましい。
 本発明の芯鞘複合断面繊維は、溶融紡糸、複合紡糸の手法により得ることができるが、例示すると以下の通りである。例えば、ポリアミド(鞘部)と高い吸湿性能を有する熱可塑性ポリマー(芯部)とを別々に溶融してギヤポンプにて計量・輸送し、そのまま複合流を形成して溶融紡糸口金から吐出し、チムニー等の糸条冷却装置によって糸条を室温まで冷却し、給油装置で給油・集束し、第1流体交絡ノズル装置で交絡し、引取ローラーと延伸ローラーの周速度の比に従って延伸する。更に、糸条を延伸ローラーにより熱セットし、ワインダー(巻取装置)で巻き取る。
 本発明の芯鞘複合断面繊維を得るためには、適切な分子構造のポリアミドを選択すること、好適な引取速度、給油位置、延伸後の熱セット温度を採用すると好ましく制御することができる。これらについて、以下詳細に説明する。
 本発明の芯鞘複合断面繊維に用いるポリアミドは、上述した通り、鞘部にセバシン酸単位を主成分とするジカルボン酸単位を有するポリアミド、いわゆる炭化水素が主鎖にアミド結合を介して連結された高分子量体からなるポリマーを用いることが好ましい。鞘部にアミド結合間での水素結合の形成能の高いポリアミドを選択することで、100℃を超える高温染色や乾燥においても、非晶部のアミド結合間の水素結合が切断されにくく、鞘部の繊維構造変化が少なくなり、染色時の布帛の防皺性に優れた芯鞘複合断面繊維が得られる。ここでいうアミド結合間の水素結合形成能は、ポリアミド分子主鎖の自由度の大きさ、つまりは、アミド結合1個あたりのメチレン基の数の多さによって決まる。よって、鞘部にかかる範囲のポリアミドを選択することで、染色時の布帛の防皺性に優れた芯鞘複合断面繊維が得られる。
 本発明の芯鞘複合断面繊維に用いるポリアミドには、各種の添加剤、例えば、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、吸湿性ポリマー、カーボンなどを、総添加物含有量が0.001~10重量%で必要に応じて共重合または混合していても良い。
 本発明の芯鞘複合断面繊維に用いるポリアミドチップの硫酸相対粘度は、2.30~3.30であることが好ましい。かかる範囲とすることで、鞘部のポリアミドに適切な延伸を加えることが可能となる。鞘部のポリアミドの硫酸相対粘度が2.30以上であると、実用可能な繊維の強伸度が得られる。一方、硫酸相対粘度が3.30以下であると、紡糸に適した溶融粘度であるため、溶融紡糸の際の曳糸性が向上して、糸切れがない安定した生産が可能となる。更に好ましくは、2.50~3.10である。
 本発明の芯鞘複合断面繊維の芯部の比率は、複合繊維100重量部に対して20重量部~80重量部であることが好ましい。更に好ましくは、30重量部~70重量部である。かかる範囲とすることにより、鞘部のポリアミドに適切な延伸を加えることが可能となる。また、良好な染色堅牢性、吸湿性能が得られる。
 溶融工程において、鞘部に用いるセバシン酸単位を主成分とするジカルボン酸単位を有するポリアミドについて、ポリヘキサメチレンセバカミドチップの場合は250~290℃、芯部に用いる高い吸湿性能を有する熱可塑性ポリマーについて、アルケマ社製“MH1657”の場合は220~260℃であることが好ましい。
 引取工程において、引取速度は2500~3400m/minであることが好ましい。かかる範囲とすることで、芯部ポリマーの配向結晶化を適度に進ませ、芯部ポリマーの結晶化を適度に抑制させることで、3%伸長時の単位繊度当たりの応力と沸騰水収縮率を好ましい範囲に制御することができ、吸湿性能と防皺性に優れ、さらには、洗濯しても吸湿性能を維持することができる。3400m/minを超える場合、紡糸張力により延伸される際に鞘部のポリアミドの配向結晶化が進むが、機械延伸倍率が低くなるため、鞘部のポリアミドのα結晶配向パラメーターは低下し、鞘部ポリマーの剛直性が低下し、皺になりやすい。2500m/min未満の場合、機械延伸倍率を高くなるが、紡糸張力による延伸が不十分であるため、鞘部のポリアミドのα結晶配向パラメーターは低下し、鞘部ポリマーの剛直性が低下し、皺になりやすい繊維となる。また、芯部ポリマーの配向結晶化が進み吸湿性能が低下する。更に好ましくは、2700~3200m/minである。
 給油工程において、口金下面からの給油位置は800~1500mmであることが好ましい。口金から吐出されたポリマーは、冷却装置によって冷却風を吹き当て糸条を固化し、固化位置から給油位置までの間は、随伴流を伴う紡糸張力により延伸され、その後引き取りローラーと延伸ローラー間で機械延伸する。本発明の芯鞘複合断面繊維は、鞘部ポリマーの配向結晶化を促進させて剛直性を高めるためには機械延伸倍率を高く、芯部ポリマーの配向結晶化を抑制させて吸湿性能を高めるためには紡糸張力を小さくすることがポイントになる。つまり、給油位置をかかる範囲とすることで、繊維の引張試験における3%伸長時の単位繊度あたりの応力を大きくすることができ、防皺性と吸湿性能に優れた繊維が得られる。給油位置が800mm未満の場合、口金-給油位置間の屈曲が大きくなると共に、糸条が十分固化していない状態で糸条に給油することから、糸切れが多発し操業性が低下する場合がある。また、給油位置が1500mmを超える場合、紡糸張力が高くなるため芯部ポリマーの配向結晶化が進み吸湿性能が低下するだけでなく、機械延伸倍率が低くなるため鞘部ポリマーの剛直性が低下するため、皺になりやすい繊維となる場合がある。更に好ましくは、1000~1300mmである。
 延伸工程において、延伸後の熱セット温度は165~180℃であることが好ましい。ローラー間の延伸により、配向結晶化の進んだ繊維は、加熱ローラー上での高温熱セット処理によって更に結晶化が進み、繊維構造が安定化される。沸騰水収縮率は、繊維の非晶部の収縮、つまりは非晶部の割合に依る。なお、本発明でいう熱セット温度とは、加熱ローラーの設定温度を示す。
 本発明の芯鞘複合断面繊維を構成する芯部の高い吸湿性能を有するポリマーは、非晶性が高く、収縮性が大きいことから、単独ポリマーで繊維化した場合での沸騰水収縮率は大きいことが予想される。そこで、本発明の芯鞘複合断面繊維は、鞘部ポリマーにポリアミドの中でも比較的剛直性が高く、収縮性の低い、セバシン酸単位を主成分とするジカルボン酸単位を有するポリアミドを用いることで、鞘部に剛性を与え、芯部の収縮性を抑えるとともに、かかる範囲の温度で延伸後に熱セットすることで繊維構造が安定し、沸騰水収縮率を6.0~12.0%にコントロールすることができ、防皺性に優れた繊維が得られる。熱セット温度が165℃未満の場合、鞘部のポリアミドの結晶化が不十分で繊維構造が安定せず、皺になりやすい繊維となる場合がある。また、熱セット温度が180℃を超える場合、防皺性に優れる繊維が得られるものの、加熱ローラー上に紡糸油剤の分解物等の汚れが促進され、品位の悪化や紡糸糸切れが多発し操業性が悪化すると共に、高次加工工程通過性が悪化する場合がある。更に好ましくは170~175℃である。
 本発明の芯鞘複合断面繊維は、吸湿性能に優れているので衣料品に好ましく用いられ、布帛形態としては、織物、編物、不織布など目的に応じて選択できる。前述したとおり、ΔMRは大きければ大きいほど吸湿性能が高く、着用時の快適性が良好であることに対応する。従って、本発明の芯鞘複合繊維を少なくとも一部に有する布帛は、△MRが5.0%以上となるように本発明の複合繊維の混率を調整することで、快適性に優れた衣料を提供することができる。衣料品としては、インナーウェア、スポーツウェアなどの各種繊維製品とすることができる。
 以下、実施例を挙げて本発明をさらに具体的に説明する。なお実施例における特性値の測定法等は次の通りである。
 (1)硫酸相対粘度
 ポリアミドチップ試料を濃度98重量%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98重量%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
 (2)オルトクロロフェノール相対粘度(OCP相対粘度)
 ポリエーテルエステルアミド共重合体チップ試料をオルトクロロフェノール100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、オルトクロロフェノールのみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2をオルトクロロフェノール相対粘度とした。
 (3)繊度
 1.125m/周の検尺器に繊維試料をセットし、200回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥後(105±2℃×60分)、秤量天秤にてかせ重量を量り、公定水分率を乗じた値から正量繊度を算出した。
 (4)強度、伸度
 繊維試料を、オリエンテック(株)製“TENSILON”(登録商標)、UCT-100でJIS L1013(化学繊維フィラメント糸試験方法、2010年)に示される定速伸長条件で測定した。伸度は、引張強さ-伸び曲線における最大強力を示した点の伸びから求めた。また、強度は、最大強力を正量繊度で除した値を強度とした。測定は10回行い、平均値を強度及び伸度とした。
 (5)3%伸長時の単位繊度あたりの応力(3%伸長時応力)
前記(4)項記載の方法にて繊維試料の引張試験を行い、引張強さ-伸び曲線における試料が3%の伸びを示した点での強力を求め3%伸長時応力とした。測定は10回行い、平均値を3%伸長時応力とした。
 (6)α結晶配向パラメーター
 繊維試料を、レーザーラマン分光法にて測定し、1120cm-1付近に認められるナイロンのα結晶に由来するラマンバンドの平行偏光での強度比(I1120)平行)と、垂直偏光での強度比(I1120)垂直)の比をとることで、配向度評価のパラメーターとした。また、配向に対する異方性が小さいCH変角バンド(1440cm-1付近)のラマンバンド強度を基準とし、各偏光条件(平行/垂直)の散乱強度を規格化した。
 α結晶配向パラメーター=(I1120/I1440)平行/(I1120/I1440)垂直
 なお、配向測定用の繊維試料は、樹脂包埋後(ビスフェノール系エポキシ樹脂、24時間硬化)、ミクロトームにより切片化した。切片厚みは2.0μmとした。切片試料は切断面が楕円形になるように繊維軸から僅かに傾けて切断し、楕円形の短軸の厚みが一定厚になる箇所を選択して測定した。測定は顕微モードで行い、試料位置におけるレーザーのスポット径は1μmである。芯、鞘層中心部の配向性解析を行い、配向の測定は偏光条件下で行った。偏光方向が繊維軸と一致する場合を平行条件、直行する場合を垂直条件として、それぞれ得られるラマンバンド強度の比から配向の程度を評価した。なお、各測定点について3回測定を行い、その平均値を用いた。詳細条件を以下に示す。
 レーザーラマン分光法
 装置:T-64000(Jobin Yvon/愛宕物産)
 条件:測定モード;顕微ラマン
 対物レンズ:×100
 ビーム径:1μm
 光源:Ar+レーザー/514.5nm
 レーザーパワー:50mW
 回折格子:Single 600gr/mm
 スリット:100μm
 検出器:CCD/Jobin Yvon 1024×256 。
 (7)沸騰水収縮率
 JIS L1013:2010 8.18.1(B法)に準じて、測定した。
 (8)織物の製造
 本発明における芯鞘複合断面繊維を経糸、緯糸に用い、経密度188本/2.54cm、緯密度155本/2.54cmに設定し、ウォータージェットルーム織機にて、平組織で製織した。
 得られた生機地を常法に従って、1リットル当たり2gの苛性ソーダ(NaOH)を含む溶液でオープンソーパーにより精練し、シリンダー乾燥機にて120℃で乾燥し、次いで170℃にてプレセットした。その後、耐圧性のドラム型染色機にて、2.0℃/分の速度で120℃まで昇温させ、120℃の設定温度で60分間染色を行った。染色後は流水にて20分間水洗し、脱水、乾燥をして、経密度200本/2.54cm、緯密度160本/2.54cmである織物を得た。
 (9)防皺性評価
 上記(8)で得られた織物を、JIS L1059-2(繊維製品の防皺性試験方法-第2部:しわ付け後の外観評価(リンクル法)、2009年)の9項記載の方法にて行い、5級(最も滑らかな外観)から1級(最もしわの多い外観)で判定した。3級以上の場合、防皺性に優れると判断した。
 (10)ΔMR
 上記(8)で得られた織物を、秤量瓶に1~2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、以下の式にしたがい計算した。
 MR65=[(W65-W0)/W0]×100% ・・・・・ (1)
 MR90=[(W90-W0)/W0]×100% ・・・・・ (2)
 ΔMR=MR90-MR65    ・・・・・・・・・・・・ (3)   。
 (11)洗濯後ΔMR
 上記(8)で得られた織物を、JIS L0217(1995)付表1記載の番号103記載の方法にて、繰り返し20回洗濯を実施した後、上記(10)記載の△MRを測定し算出した。
 ΔMRが5.0%以上の場合、着用時に良好な快適性が得られると判断した。
 (12)洗濯後ΔMR保持率
 洗濯前後のΔMRの変化指標として、洗濯後のΔMR保持率を下記式にて算出した。
 (洗濯処理後のΔMR-洗濯処理前のΔMR)/洗濯処理前のΔMR × 100
 ΔMR保持率が90%以上の場合は、洗濯耐久性有りと判断した。
 (13)高次加工工程通過性
 本発明の芯鞘複合断面繊維を用いて、ウォータージェットルーム織機にて、織機回転数750rpm、緯糸長1620mmで平織物を10疋(1000m/疋) 製織した際の織機の糸切れによる停台回数を評価し、糸切れが2回以下の場合、良好な工程通過性であると判断した。
 (実施例1)
 オルトクロロフェノール相対粘度が1.69であるポリエーテルエステルアミド共重合体(アルケマ社製、MH1657(チップΔMR:18.9))を芯部とし、硫酸相対粘度が2.72であるナイロン610を鞘部とし、それぞれ270℃にて溶融し、同心円芯鞘複合用口金から芯/鞘比率(重量部)=50/50になるように紡糸した。
 この時、得られる芯鞘複合糸の総繊度が56dtexとなるようにギヤポンプの回転数を選定し、それぞれ22g/minの吐出量とした。そして糸条冷却装置で糸条を冷却固化し、給油装置により口金下面からの給油位置1000mmで非含水油剤を給油したのち、第1流体交絡ノズル装置で交絡を付与し、第1ロールである引き取りローラーの周速度を2800m/min、引き取りローラーと延伸ローラー間の延伸倍率を1.50倍で延伸、延伸ローラーの設定温度を170℃にして熱セットを行い、巻き取り速度を4000m/minで巻き取り、56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時の単位繊度あたりの応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表1に示す。
 (実施例2)
 加熱ローラーの熱セット温度を180℃とした以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表1に示す。
 (実施例3)
 加熱ローラーの熱セット温度を165℃とした以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維糸について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表1に示す。
 (実施例4)
 給油位置を口金下面から1500mm、巻き取り速度を3900m/minで巻き取った以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表1に示す。
 (実施例5)
 給油位置を口金下面から800mmとした以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表1に示す。
 (実施例6)
 給油位置を口金下面から1500mm、引き取りローラーと延伸ローラー間の延伸倍率を1.45倍、巻き取り速度を3900m/minで巻き取った以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表1に示す。
 (実施例7)
 給油位置を口金下面から800mm、引き取りローラーと延伸ローラー間の延伸倍率を1.55倍、巻き取り速度を4100m/minで巻き取った以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表1に示す。
 (実施例8)
 第1ロールである引き取りローラーの周速度を2500m/min、引き取りローラー-延伸ローラー間の延伸倍率を1.65倍、巻き取り速度を3900m/minで巻き取った以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表1に示す。
 (実施例9)
 第1ロールである引き取りローラーの周速度を3400m/min、引き取りローラー-延伸ローラー間の延伸倍率を1.20倍、巻き取り速度を3900m/minで巻き取った以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表1に示す。
 (比較例1)
 加熱ローラーの熱セット温度を190℃とした以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面糸を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表2に示す。
 加熱ローラーの熱セット温度が高い本水準においては、吸湿性能と防皺性に優れ、さらには、洗濯しても吸湿性能を維持しているが、加熱ローラー上に紡糸油剤の分解物等の汚れが促進され、高次加工工程での糸切れが多発し、工程通過性に劣る結果であった。
 (比較例2)
 延伸ローラーの設定温度を150℃とした以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表2に示す。
 加熱ローラーの熱セット温度が低い本水準においては、鞘部ナイロン610と芯部ポリエーテルエステルアミド共重合体の収縮特性とのバランスが崩れ、沸騰水収縮率が15.0%と高く、皺のある織物となった。
 (比較例3)
 給油位置を口金下面から1800mm、引き取りローラーと延伸ローラー間の延伸倍率を1.30倍、巻き取り速度を3500m/minで巻き取った以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表2に示す。
 口金下面から給油位置までの距離が長い本水準においては、鞘部ナイロン610の剛直性が低下し、芯部ポリエーテルエステルアミド共重合体の収縮特性とのバランスが崩れ、3%伸長時の単位繊度あたりの応力が0.58cN/dtexと低く、皺のある織物となった。
 (比較例4)
 第1ロールである引き取りローラーの周速度を2200m/min、引き取りローラー-延伸ローラー間の延伸倍率を1.80倍、巻き取り速度を3800m/minで巻き取った以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表2に示す。
 引き取り速度の遅い本水準においては、鞘部ナイロン610の剛直性が低下し、芯部ポリエーテルエステルアミド共重合体の収縮特性とのバランスが崩れ、沸騰水収縮率が12.3%となり、皺のある織物となった。
 (比較例5)
 第1ロールである引き取りローラーの周速度を3700m/min、引き取りローラー-延伸ローラー間の延伸倍率を1.05倍、巻き取り速度を3700m/minで巻き取った以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を得た。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表2に示す。
 引き取り速度の速い本水準においては、鞘部ナイロン610の剛性が低下し、芯部ポリエーテルエステルアミド共重合体の収縮特性とのバランスが崩れ、3%伸長時の単位繊度あたりの応力が0.54cN/dtexと低く、皺のある織物となると共に、高次加工工程での糸切れが多発し、工程通過性に劣る結果であった。
 (比較例6)
 硫酸相対粘度が2.40であるナイロン6を鞘部とし、加熱ローラーの熱セット温度を150℃とした以外は、実施例1と同様の方法で56dtex24フィラメントの芯鞘複合断面繊維を採取した。
 得られた芯鞘複合断面繊維について、繊度、強度、伸度、3%伸長時の単位繊度あたりの応力、沸騰水収縮率、沸騰水処理前後での3%伸長時応力の保持率、α結晶配向パラメーターについて測定した。また、得られた織物について、防皺性、△MR、洗濯後△MR、洗濯後△MR保持率について評価した。これらの結果を表2に示す。
 鞘部ポリアミドがナイロン6である本水準においては、鞘部ナイロン6の剛性が低く、芯部ポリエーテルエステルアミド共重合体の収縮特性とのバランスが崩れ、3%伸長時の単位繊度あたりの応力が0.53cN/dtexと低く、皺のある織物となった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (5)

  1.  芯部ポリマーが熱可塑性ポリマーであり、鞘部ポリマーがセバシン酸単位を主成分とするジカルボン酸単位を有するポリアミドであり、沸騰水収縮率が6.0~12.0%、繊維の引張試験における3%伸長時の単位繊度あたりの応力が0.60cN/dtex以上であることを特徴とする芯鞘複合断面繊維。
  2.  鞘部のα結晶配向パラメーターが2.10~2.70であることを特徴とする請求項1に記載の芯鞘複合断面繊維。
  3.  沸騰水処理前後での繊維の引張試験における3%伸長時の単位繊度あたりの応力保持率が60%以上であることを特徴とする請求項1または2に記載の芯鞘複合断面繊維。
  4.  請求項1~3のいずれかに記載の芯鞘複合断面繊維を少なくとも一部に有する布帛。
  5.  請求項1~3のいずれかに記載の芯鞘複合断面繊維を少なくとも一部に有する繊維製品。
PCT/JP2016/082368 2015-11-10 2016-11-01 吸湿性、防皺性に優れた芯鞘複合断面繊維 WO2017082110A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017501741A JP6213693B2 (ja) 2015-11-10 2016-11-01 吸湿性、防皺性に優れた芯鞘複合断面繊維
AU2016351997A AU2016351997B2 (en) 2015-11-10 2016-11-01 Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention
CN201680061247.1A CN108138378B (zh) 2015-11-10 2016-11-01 吸湿性、防皱性优异的芯鞘复合截面纤维
US15/774,021 US20190024264A1 (en) 2015-11-10 2016-11-01 Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention
EP16864073.8A EP3375918B1 (en) 2015-11-10 2016-11-01 Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention
KR1020187006770A KR102575877B1 (ko) 2015-11-10 2016-11-01 흡습성, 주름방지성이 우수한 심초 복합 단면섬유
CA3003107A CA3003107A1 (en) 2015-11-10 2016-11-01 Core-sheath composite cross-section fiber having excellent moisture absorbency and wrinkle prevention

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015220438 2015-11-10
JP2015-220438 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017082110A1 true WO2017082110A1 (ja) 2017-05-18

Family

ID=58695211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082368 WO2017082110A1 (ja) 2015-11-10 2016-11-01 吸湿性、防皺性に優れた芯鞘複合断面繊維

Country Status (9)

Country Link
US (1) US20190024264A1 (ja)
EP (1) EP3375918B1 (ja)
JP (1) JP6213693B2 (ja)
KR (1) KR102575877B1 (ja)
CN (1) CN108138378B (ja)
AU (1) AU2016351997B2 (ja)
CA (1) CA3003107A1 (ja)
TW (1) TW201734273A (ja)
WO (1) WO2017082110A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065121A1 (ja) * 2020-09-24 2022-03-31 東レ株式会社 ポリアミド芯鞘複合繊維及び布帛

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI781555B (zh) * 2021-03-16 2022-10-21 立綺實業有限公司 防水透濕線材、織物及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048216A (ja) * 1973-09-04 1975-04-30
JP2001159030A (ja) * 1999-11-29 2001-06-12 Toray Ind Inc 複合ポリアミド繊維
JP2007169849A (ja) * 2005-12-26 2007-07-05 Toray Ind Inc 芯鞘型複合繊維、捲縮糸、およびそれらを用いてなる繊維構造体
WO2015129735A1 (ja) * 2014-02-26 2015-09-03 東レ株式会社 ポリアミド捲縮加工糸およびそれを用いた織編物
WO2016190102A1 (ja) * 2015-05-22 2016-12-01 東レ株式会社 吸湿性芯鞘複合糸およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144092B2 (ja) * 1992-10-26 2001-03-07 東レ株式会社 吸湿性に優れた芯鞘型複合繊維
JP3297492B2 (ja) * 1993-04-23 2002-07-02 旭化成株式会社 鞘芯型複合繊維
JPH0941221A (ja) * 1995-07-28 1997-02-10 Toray Ind Inc 快適性に優れた合成繊維
JP2002088577A (ja) * 2000-09-13 2002-03-27 Toray Ind Inc ポリアミド繊維およびその製造方法ならびにその用途
ATE298015T1 (de) * 2000-09-29 2005-07-15 Invista Tech Sarl Dehnbare polymerfasern und daraus hergestellte artikel
WO2007046397A1 (ja) * 2005-10-19 2007-04-26 Toray Industries, Inc. 捲縮糸およびその製造方法ならびに繊維構造体
CN101313091A (zh) * 2005-10-19 2008-11-26 东丽株式会社 卷曲弹力丝及其制造方法、纤维结构体
TW200741049A (en) * 2005-12-27 2007-11-01 Shell Int Research Polyester yarn and process for producing
JP2007321295A (ja) * 2006-06-01 2007-12-13 Teijin Ltd 捲縮複合繊維
WO2008004448A1 (fr) * 2006-07-03 2008-01-10 Kuraray Co., Ltd. Fibre conjuguée conductrice de structure à noyau gainé et son procédé de fabrication
EP2130955A4 (en) 2007-04-04 2011-06-15 Kb Seiren Ltd ANTISTATIC COMPOSITE FIBER FRESH TO TOUCH AND ABSORBENT MOISTURE
JP2011200352A (ja) * 2010-03-25 2011-10-13 Toray Monofilament Co Ltd テーパードブリッスルおよびブラシ
JP5807456B2 (ja) * 2011-08-31 2015-11-10 東レ株式会社 ポリアミド410繊維およびそれからなる繊維構造体
TWI595127B (zh) * 2012-02-29 2017-08-11 東麗股份有限公司 聚醯胺纖維及其製造方法
CN104471122B (zh) 2012-07-12 2016-08-24 Kb世联株式会社 皮芯复合纤维
JP2016204784A (ja) * 2015-04-23 2016-12-08 東レ株式会社 吸湿性、接触冷感に優れたポリアミド系芯鞘複合繊維およびそれを用いた布帛
JP6600969B2 (ja) * 2015-04-02 2019-11-06 東レ株式会社 吸放湿性能に優れた芯鞘複合断面繊維

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048216A (ja) * 1973-09-04 1975-04-30
JP2001159030A (ja) * 1999-11-29 2001-06-12 Toray Ind Inc 複合ポリアミド繊維
JP2007169849A (ja) * 2005-12-26 2007-07-05 Toray Ind Inc 芯鞘型複合繊維、捲縮糸、およびそれらを用いてなる繊維構造体
WO2015129735A1 (ja) * 2014-02-26 2015-09-03 東レ株式会社 ポリアミド捲縮加工糸およびそれを用いた織編物
WO2016190102A1 (ja) * 2015-05-22 2016-12-01 東レ株式会社 吸湿性芯鞘複合糸およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065121A1 (ja) * 2020-09-24 2022-03-31 東レ株式会社 ポリアミド芯鞘複合繊維及び布帛

Also Published As

Publication number Publication date
AU2016351997A1 (en) 2018-05-17
JPWO2017082110A1 (ja) 2017-11-16
JP6213693B2 (ja) 2017-10-18
KR20180079288A (ko) 2018-07-10
TW201734273A (zh) 2017-10-01
CA3003107A1 (en) 2017-05-18
US20190024264A1 (en) 2019-01-24
EP3375918A1 (en) 2018-09-19
KR102575877B1 (ko) 2023-09-07
AU2016351997B2 (en) 2020-07-30
CN108138378B (zh) 2020-07-28
EP3375918A4 (en) 2019-06-26
CN108138378A (zh) 2018-06-08
EP3375918B1 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
JP6127969B2 (ja) ポリアミド繊維およびその製造方法
JP5807456B2 (ja) ポリアミド410繊維およびそれからなる繊維構造体
WO2011122272A1 (ja) 吸湿性繊維およびその製造方法
TW201945466A (zh) 聚醯胺纖維及編織物,暨聚醯胺纖維之製造方法
JP2016204784A (ja) 吸湿性、接触冷感に優れたポリアミド系芯鞘複合繊維およびそれを用いた布帛
TWI693311B (zh) 吸濕性芯鞘複合絲及其製造方法
JP6213693B2 (ja) 吸湿性、防皺性に優れた芯鞘複合断面繊維
US20180363169A1 (en) Moisture-absorbing core-sheath composite yarn, and fabric
US11105019B2 (en) Polyamide fiber capable of high-temperature dyeing
JP6690160B2 (ja) 耐久性に優れた制電性ポリアミド芯鞘複合繊維
JP6600969B2 (ja) 吸放湿性能に優れた芯鞘複合断面繊維
WO2020262511A1 (ja) 芯鞘複合糸及び布帛
WO2022065121A1 (ja) ポリアミド芯鞘複合繊維及び布帛
JP2016132828A (ja) 吸湿性芯鞘複合糸
JP2017214672A (ja) 吸湿性芯鞘複合糸が巻かれた繊維パッケージ
JP2016117979A (ja) 洗濯耐久性に優れた吸湿性芯鞘複合糸

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017501741

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187006770

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3003107

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016351997

Country of ref document: AU

Date of ref document: 20161101

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016864073

Country of ref document: EP