WO2017077701A1 - 単結晶シリコンの製造方法および単結晶シリコン - Google Patents

単結晶シリコンの製造方法および単結晶シリコン Download PDF

Info

Publication number
WO2017077701A1
WO2017077701A1 PCT/JP2016/004768 JP2016004768W WO2017077701A1 WO 2017077701 A1 WO2017077701 A1 WO 2017077701A1 JP 2016004768 W JP2016004768 W JP 2016004768W WO 2017077701 A1 WO2017077701 A1 WO 2017077701A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
single crystal
crucible
crystal silicon
pulling
Prior art date
Application number
PCT/JP2016/004768
Other languages
English (en)
French (fr)
Inventor
竜介 横山
藤原 俊幸
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to JP2017516966A priority Critical patent/JP6489209B2/ja
Priority to CN201680061735.2A priority patent/CN108291327B/zh
Priority to DE112016005020.8T priority patent/DE112016005020B4/de
Priority to KR1020187012042A priority patent/KR102060422B1/ko
Publication of WO2017077701A1 publication Critical patent/WO2017077701A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation

Definitions

  • the present invention relates to a single crystal silicon manufacturing method and single crystal silicon, and more particularly to a single crystal silicon manufacturing method and single crystal silicon capable of suppressing fluctuations in oxygen concentration in the crystal pulling direction.
  • the silicon melt accommodated in the crucible flows vigorously by thermal convection and is taken into the single crystal silicon produced by oxygen contained in the crucible at a high concentration. Therefore, by pulling up the single crystal silicon while applying a transverse magnetic field (horizontal magnetic field) to the silicon melt in the crucible, the flow of the silicon melt is suppressed to control the oxygen concentration of the single crystal silicon.
  • a transverse magnetic field horizontal magnetic field
  • FIG. 1 shows an example of a lateral magnetic field application type single crystal silicon manufacturing apparatus.
  • the single crystal silicon manufacturing apparatus 10 shown in this figure has a crucible 12 containing polycrystalline silicon as a raw material of the single crystal silicon 16 in a chamber 11, and a silicon melt 13 by heating the raw material in the crucible 12.
  • a crucible 12 containing polycrystalline silicon as a raw material of the single crystal silicon 16 in a chamber 11, and a silicon melt 13 by heating the raw material in the crucible 12.
  • a magnetic field applicator 21 that applies a transverse magnetic field (horizontal magnetic field) to the silicon melt 13 in the crucible 12 is disposed oppositely across the crucible 12 outside the lower portion of the chamber 11.
  • the single crystal silicon 16 can be manufactured using the single crystal silicon manufacturing apparatus 10 as described below. That is, first, a predetermined amount of polycrystalline silicon is accommodated in the crucible 12, heated by the heater 14 to obtain the silicon melt 13, and a predetermined transverse magnetic field is applied to the silicon melt 13 by the magnetic field applicator 21. Apply.
  • the seed crystal 17 held in the seed crystal holder 18 is immersed in the silicon melt 13 with a transverse magnetic field applied to the silicon melt 13.
  • the crucible rotating mechanism 15 rotates the crucible 12 at a predetermined rotation speed, and the seed crystal 17 (that is, single crystal silicon 16) is wound up by the winding mechanism 20 while rotating at the predetermined rotation speed.
  • the single crystal silicon 16 grown on the seed crystal 17 is pulled up.
  • single crystal silicon having a predetermined diameter can be manufactured.
  • an object of the present invention is to provide a method for producing single crystal silicon and a single crystal silicon capable of suppressing fluctuations in oxygen concentration in the crystal pulling direction.
  • the gist configuration of the present invention for solving the above-described problems is as follows. ⁇ 1> A seed crystal is immersed in a silicon melt filled in a crucible, and the crucible is rotated and the seed crystal is rotated while a magnetic field is applied in a direction perpendicular to the pulling direction of the seed crystal. In the method for producing single crystal silicon, in which the single crystal silicon is grown on the seed crystal, the seed crystal is pulled up by pulling the seed crystal at least under a solid-liquid interface. A method for producing single crystal silicon, which is performed under a state of flowing from one side to the other side with respect to a plane including an axis and parallel to the magnetic field application direction.
  • the magnetic field strength is B (T)
  • the rotation speed of the single crystal silicon is A (rpm)
  • the radius of the single crystal silicon is R 1 (mm)
  • the radius of the crucible is R 2 (mm)
  • the conditions of the following formulas (1) to (3) are satisfied, and the single crystal silicon according to the above ⁇ 1> Production method.
  • ⁇ 3> The production according to ⁇ 1> or ⁇ 2>, wherein the production of the single crystal silicon using a predetermined amount of the silicon melt filled in the crucible is performed in a plurality of times of pulling up the seed crystal.
  • a method for producing single crystal silicon A method for producing single crystal silicon.
  • FIG. 1 It is a figure which shows an example of the single crystal silicon manufacturing apparatus of a transverse magnetic field application type. It is a schematic diagram explaining the flow state of the silicon melt in a crucible. It is a figure which shows the flow state of the silicon melt in the crucible obtained by three-dimensional flow analysis, (a) shows the result with respect to the case where the rotational speed of a single crystal silicon is 0 rpm, (b) is 9 rpm, respectively. ing. It is a figure which shows the relationship between the magnetic field strength and the rotational speed of single crystal silicon, and the number of vortex flows of the silicon melt in the crucible. It is a figure which shows the measured value and calculated value of the temperature of the silicon melt in a crucible.
  • a seed crystal is immersed in a silicon melt filled in a crucible, and the crucible is rotated under a state in which a magnetic field is applied in a direction perpendicular to the pulling direction of the seed crystal.
  • the seed crystal that is, single crystal silicon
  • the pulling of the seed crystal is performed in a state where the silicon melt forms one vortex in the crucible in at least a part of the pulling process of the seed crystal.
  • the present inventors diligently studied how to suppress the fluctuation of the oxygen concentration in the crystal pulling direction in the manufactured single crystal silicon. This variation in oxygen concentration is considered to be greatly influenced by the flow state of the silicon melt. Therefore, the present inventors investigated in detail the flow state of the silicon melt in the crucible during single crystal silicon production under various production conditions by analysis using a three-dimensional flow analysis model. As a result, it was found that the silicon melt in the crucible flows under a specific manufacturing condition, forming one vortex.
  • the silicon melt in the crucible at the time of producing single crystal silicon forms two vortexes centered on an axis parallel to the applied transverse magnetic field, as schematically shown in FIG. It has been thought to flow. Also in the above-described three-dimensional flow analysis by the present inventors, the silicon melt flowed in two vortexes under many production conditions. However, under specific manufacturing conditions, it has been found that the silicon melt flows in a single vortex as shown schematically in FIG.
  • the reason why the silicon melt flows by forming such a single vortex is not necessarily clear, but the present inventors speculate that it may be due to the Lorentz force generated immediately below the single crystal silicon to be pulled up. That is, in general, the flow of the silicon melt is suppressed by the application of a magnetic field, but on the other hand, immediately below the pulling crystal, the Lorentz force due to the current flowing in and out of the crystal and the silicon melt through the solid-liquid interface. Occurs and the flow is accelerated.
  • the Lorentz force exceeds a predetermined magnitude, the inventors of the present invention break the symmetry of the flow of the silicon melt that has flowed by forming two vortex flows, forming a single vortex flow as a whole. I think it will change.
  • the present inventors have found that the silicon melt flowing while forming the one vortex flows stably in the vicinity of the solid-liquid interface immediately below the pulling crystal, so that the silicon melt forms one vortex.
  • the single crystal silicon was actually manufactured under the flowing condition, and the oxygen concentration in the crystal pulling direction was examined in the obtained single crystal silicon. As a result, it was found that the fluctuation of the oxygen concentration in the crystal pulling direction was remarkably suppressed as compared with the single crystal silicon produced under the condition that the silicon melt formed two vortex flows.
  • the formation of one vortex depends on the shape of the melt, that is, the shape of the crucible and the liquid level of the melt in the crucible. . That is, the driving force for the flow of the silicon melt is the Lorentz force and thermal convection.
  • the radius of the crucible is too large compared with the radius of the pulling crystal, the contribution of the Lorentz force is small with respect to the entire flow of the silicon melt, and one vortex cannot be realized.
  • the rotational speed of the crucible did not affect the formation of one vortex of the silicon melt at least at a normal rotational speed (for example, about 0 to 10 rpm).
  • the liquid level height h of the silicon melt in the crucible decreases as the crystal pulling progresses. Therefore, even when the above formula (3) is satisfied at a certain point in time of the pulling, as the pulling progresses, the liquid level height h of the silicon melt becomes the liquid level height defined by the formula (3). Below the lower limit, it can change to two vortices.
  • the portion manufactured under the conditions satisfying the above formulas (1) to (3) is in a state where the silicon melt flows in one vortex.
  • fluctuations in oxygen concentration in the crystal pulling direction are suppressed. Therefore, a portion of the single crystal silicon manufactured by one pulling can be collected and used under conditions that satisfy the conditions of the above formulas (1) to (3).
  • the level h of the silicon melt in the crucible exceeds the upper limit defined in the above formula (3), and the condition of the formula (3) is satisfied from the middle of the manufacturing process.
  • the production of single crystal silicon is performed in, for example, two pulls, and the amount of silicon melt filled in the crucible at the start of pulling is V / 2. It can comprise so that the conditions of (3) may be satisfied.
  • the amount of silicon melt filled in the crucible may not satisfy the condition defined in the above formula (3).
  • the production of single crystal silicon is performed in a plurality of pulling operations, so that the silicon melt flows in a single vortex flow in all the pulling processes.
  • Single crystal silicon can be manufactured, and fluctuations in oxygen concentration in the crystal pulling direction can be suppressed in all portions of the manufactured single crystal silicon.
  • the flow state of the silicon melt is not constant from the start to the end of the pulling of the single crystal silicon and varies in a complicated manner with time.
  • the number of vortex flows in the silicon melt is one immediately after the start of pulling of the single crystal silicon, but becomes a plurality (for example, three) as time passes, and returns to one as time passes. It fluctuates like that.
  • Such time fluctuation of the flow state of the silicon melt may occur in the same manner even when the above equations (1) to (3) are satisfied, and the silicon melt is averaged over a predetermined period (for example, 600 seconds). It has also been found that although a single vortex flows and flows, it may flow by forming multiple vortices. However, it has been found that even when there is a period during which the silicon melt forms a plurality of vortex flows, fluctuations in the oxygen concentration in the pulling direction in the obtained single crystal silicon are suppressed.
  • the present inventors have lifted the seed crystal immersed in the silicon melt so that the silicon melt is at least below the solid-liquid interface.
  • the surface including the pulling axis of the seed crystal and parallel to the direction in which the magnetic field is applied may be performed in a state of flowing from one side to the other side.
  • the flow of the silicon melt immediately below the solid-liquid interface (15 mm depth region from the interface to the melt depth direction) is caused by the force dragged by the rotation of the single crystal silicon and the single crystal through the solid-liquid interface.
  • the flow of the silicon melt that transports oxygen immediately below the solid-liquid interface determines the oxygen concentration in the single crystal silicon.
  • the silicon melt having the same oxygen concentration can be stably supplied to the region immediately below the solid-liquid interface, and the fluctuation of the oxygen concentration in the crystal pulling direction of the obtained single crystal silicon can be suppressed. it can.
  • the single crystal silicon according to the present invention has a diameter of 300 mm or more and the fluctuation of the oxygen concentration within an arbitrary 50 mm range in the pulling axis direction of the single crystal is within ⁇ 5% based on the average value of the oxygen concentration in the above range.
  • the temperature and flow distribution of the silicon melt were analyzed using a three-dimensional flow analysis model.
  • the three-dimensional flow analysis model is a simulation model constructed based on numerical fluid dynamics. In the calculation area simulating the actual furnace structure, give the physical property value according to the material, and solve the temperature distribution, flow distribution, current distribution, and Lorentz force distribution by numerical calculation. In general, in a transverse magnetic field, it is known that a silicon melt has a non-axisymmetric flow distribution, and therefore the calculation needs to be handled in three dimensions.
  • the radius of the pulling crystal was 150 mm (diameter 300 mm)
  • the radius of the crucible was 400 mm (diameter 800 mm)
  • the liquid surface height of the silicon melt in the crucible was 230 mm.
  • a lateral magnetic field of 0.3 T was applied in a direction perpendicular to the crystal pulling direction, and the rotation speed of the pulling crystal was calculated for two cases of 0.0 rpm and 9.0 rpm.
  • the crucible was rotated at a rotation speed of 0.5 rpm in the direction opposite to the rotation direction of the pulled crystal.
  • Other process conditions were analyzed under the conditions of general pulling conditions.
  • Fig. 3 shows the flow distribution in the plane perpendicular to each magnetic field.
  • the flow distribution is shown by streamline display limited to the display surface.
  • FIG. 3A when the rotational speed of the pulling crystal is 0.0 rpm, two vortices exist symmetrically with respect to the plane including the center of the crucible. Also, immediately below the pulling crystal, the silicon melt flows from the two vortex flows, and they collide and mix with each other, so the flow of the silicon melt near the solid-liquid interface becomes unstable, and the oxygen concentration in the crystal pulling direction It is thought that it leads to fluctuation.
  • FIG. 4 is a diagram showing the relationship between the magnetic field strength and the single-crystal silicon rotation speed and the number of vortex flows of the silicon melt in the crucible.
  • the molten silicon in the crucible actually formed one vortex by satisfying the conditions defined in the above formulas (1) to (3).
  • the temperature of the silicon melt being pulled was directly measured using a thermocouple.
  • the manufacturing conditions for single crystal silicon were as follows: This is the same as when the rotation speed is 9.0 rpm.
  • the temperature of the silicon melt was measured at a total of four points of 230 mm and 260 mm in the direction perpendicular to the magnetic field application direction from the center of the crystal pulling axis 20 mm below the surface of the silicon melt. The obtained results are shown in FIG. 5 together with the results of the simulation performed under the same conditions. Here, for both the actually measured value and the calculated value, the time average value for 600 seconds was taken as the melt temperature.
  • FIG. 5 shows that both the measured value and the calculated value show an asymmetric distribution in which the temperature is low on one side away from the center of the crucible and high on the other side, and the behavior is in good agreement.
  • the silicon melt flows by forming two vortex flows as shown in FIG. 3A the asymmetric distribution as shown in FIG. 5 is not shown. Therefore, when manufacturing single crystal silicon under the above-mentioned conditions, it is indicated that the silicon melt does not flow by forming at least two vortices as conventionally considered.
  • the flow velocity on the surface of the silicon melt during the production of single crystal silicon was measured. That is, when the crystal is pulled up under the same conditions as the temperature measurement of the silicon melt using the thermocouple, a silicon piece having a size of 2 to 5 mm of silicon crystal is dropped on the surface of the silicon melt, and its trajectory is determined by the CCD. Recorded with a camera, the locus of the silicon piece was analyzed. At that time, the target positions for dropping the silicon pieces were four locations of 260 mm in the direction perpendicular to the magnetic field from the center of the pulling axis, and one silicon piece was dropped at each target position. However, a slight deviation occurred between the target position and the position where the liquid actually arrived due to the problem of experimental accuracy.
  • FIG. 6 schematically shows the locus of the obtained silicon piece. From this figure, it can be seen that the four dropped silicon pieces have advanced in the left direction in the figure. The locus of these silicon pieces reflects the flow state of the silicon melt and is considered to indicate the flow direction of the silicon melt. Therefore, it can be seen from the locus of the silicon piece shown in FIG. 6 that the silicon melt on the surface flows on the left side in the figure, and the silicon melt flows in a single vortex.
  • FIG. 7 shows the oxygen concentration in the crystal pulling direction of single crystal silicon.
  • (A) is for the case where the rotation speed of the crystal is 3.0 rpm
  • (b) is for the case where the rotation speed of the crystal is 9.0 rpm.
  • the rotation speed of the pulling crystal is 9.0 rpm
  • the conditions of the above formulas (1) to (3) are satisfied (invention example)
  • the rotation speed of the pulling crystal is In the case of 3.0 rpm
  • the conditions of the above formulas (1) to (3) are not satisfied (comparative example).
  • the oxygen concentration in the figure is a normalized oxygen concentration obtained by normalizing the measured oxygen concentration with an average oxygen concentration in the crystal pulling direction of 50 mm.
  • FIG. 7A shows that when the rotational speed of the pulling crystal is 3.0 rpm (that is, in the case of the comparative example), the normalized oxygen concentration varies greatly in the crystal pulling direction.
  • FIG. 7B when the rotation speed of the pulling crystal is 9.0 rpm (that is, in the case of the invention example), the normalized oxygen concentration is higher than that in FIG. It can be seen that the fluctuation range of the fluctuation is significantly reduced.
  • the reason that the oxygen concentration greatly fluctuates is considered to be that the silicon melt flows in two vortex flows and the flow is unstable.
  • the fluctuation of the oxygen concentration in FIG. 7B can be remarkably reduced because the Lorentz force immediately below the pulling crystal is increased by increasing the rotation speed of the pulling crystal. This is thought to be because one vortex was formed due to the loss of symmetry.
  • Single crystal silicon was manufactured under the seven levels (conditions) shown in Table 1, and it was confirmed whether or not the silicon melt was flowing while forming a single vortex during the pulling of the single crystal silicon. This confirmation was performed by dropping a 2 to 5 mm size silicon piece into the silicon melt and measuring the locus of the silicon piece with a CCD camera, as in FIG.
  • levels 1, 3, 5 and 7 satisfy the conditions of the above formulas (1) to (3).
  • level 2 does not satisfy the condition of equation (1)
  • level 4 does not satisfy the condition of equation (3)
  • levels 6 and 10 do not satisfy the condition of equation (2).
  • the silicon melt flows in a single vortex. It was confirmed.
  • the silicon melt does not flow by forming one vortex. It was confirmed.
  • level 8 although the formulas (1) to (3) were satisfied, dislocation occurred during pulling, and single crystal silicon could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

結晶引き上げ方向の酸素濃度の変動を抑制することができる単結晶シリコンの製造方法を提案する。坩堝12に充填されたシリコン融液13に種結晶17を浸漬し、該種結晶17の引き上げ方向に垂直な方向に磁場を印加した状態の下で、坩堝12を回転させるとともに、種結晶17を回転させつつ引き上げて、種結晶17上に単結晶シリコン16を成長させる単結晶シリコンの製造方法において、種結晶17の引き上げは、シリコン融液13が、少なくとも固液界面下にて、種結晶17の引き上げ軸を含みかつ磁場の印加方向に平行な面について一方側から他方側に流動する状態の下で種結晶の引き上げを行うことを特徴とする。

Description

単結晶シリコンの製造方法および単結晶シリコン
 本発明は、単結晶シリコンの製造方法および単結晶シリコンに関し、特に、結晶引き上げ方向の酸素濃度の変動を抑制することができる単結晶シリコンの製造方法および単結晶シリコンに関する。
 今日、半導体デバイスを作製する際には、チョクラルスキー(Czochralski、CZ)法により育成された単結晶シリコンをスライスし、得られたシリコンウェーハを基板として使用するのが一般的である。
 CZ法により単結晶シリコンを製造する際、坩堝に収容されたシリコン融液は、熱対流により激しく流動し、坩堝に含まれる酸素が製造する単結晶シリコンに高濃度で取り込まれる。そこで、坩堝内のシリコン融液に横磁場(水平磁場)を印加しながら単結晶シリコンを引き上げることにより、シリコン融液の流動を抑制して単結晶シリコンの酸素濃度を制御することが行われている(例えば、特許文献1参照)
 図1は、横磁場印加式の単結晶シリコン製造装置の一例を示している。この図に示した単結晶シリコン製造装置10は、チャンバー11内に、単結晶シリコン16の原料である多結晶シリコンを収容する坩堝12と、該坩堝12内の原料を加熱してシリコン融液13とするヒーター14と、坩堝12の下部に設けられ、坩堝12を円周方向に回転させる坩堝回転機構15と、単結晶シリコン16を育成するための種結晶17を保持する種結晶保持器18と、該種結晶保持器18が先端に取り付けられているワイヤーロープ19と、該ワイヤーロープ19を回転させながら単結晶シリコン16、種結晶17および種結晶保持器18を回転させつつ引き上げる巻取り機構20とを備える。
 また、チャンバー11の下部外側には、坩堝12中のシリコン融液13に横磁場(水平磁場)を印加する磁場印加器21が坩堝12を挟んで対向配置されている。
 このような単結晶シリコン製造装置10を用いて、以下のように単結晶シリコン16を製造することができる。すなわち、まず、坩堝12中に所定量の多結晶シリコンを収容し、ヒーター14で加熱してシリコン融液13とするとともに、磁場印加器21により、シリコン融液13に対して所定の横磁場を印加する。
 次に、シリコン融液13に対して横磁場を印加した状態で、種結晶保持器18に保持された種結晶17をシリコン融液13に浸漬する。そして、坩堝回転機構15により坩堝12を所定の回転速度で回転させるとともに、種結晶17(すなわち単結晶シリコン16)を所定の回転速度で回転させながら巻き取り機構20で巻き取って、種結晶17および該種結晶17上に成長させた単結晶シリコン16を引き上げる。こうして、所定の直径を有する単結晶シリコンを製造することができる。
 上述のように、シリコン融液に横磁場を印加することにより、製造した単結晶シリコンに含まれる酸素濃度を大きく低減することができる。しかし、結晶引き上げ方向の酸素濃度が変動する問題がある。そこで、特許文献2には、横磁場を印加するCZ法において、坩堝内のシリコン融液表面に発生する高温部と低温部のうち、いずれか一方が常に結晶成長の固液界面に位置するようにして結晶成長を行うことにより、結晶引き上げ方向の酸素濃度の均一性を向上させる技術について記載されている。
特公昭58-50953号公報 特開2000-264784号公報
 特許文献2に記載された方法により、結晶引き上げ方向の酸素濃度の変動はある程度抑制できるものの不十分であり、結晶引き上げ方向の酸素濃度の変動をさらに抑制することができる技術の提案が希求されていた。
 そこで、本発明の目的は、結晶引き上げ方向の酸素濃度の変動を抑制することができる単結晶シリコンの製造方法および単結晶シリコンを提供することにある。
 上記課題を解決する本発明の要旨構成は以下の通りである。
<1> 坩堝に充填されたシリコン融液に種結晶を浸漬し、該種結晶の引き上げ方向に垂直な方向に磁場を印加した状態の下で、前記坩堝を回転させるとともに、前記種結晶を回転させつつ引き上げて、前記種結晶上に単結晶シリコンを成長させる単結晶シリコンの製造方法において、前記種結晶の引き上げは、前記シリコン融液が、少なくとも固液界面下にて、前記種結晶の引き上げ軸を含みかつ前記磁場の印加方向に平行な面について一方側から他方側に流動する状態の下で行うことを特徴とする単結晶シリコンの製造方法。
<2> 前記磁場の強度をB(T)、前記単結晶シリコンの回転速度をA(rpm)、前記単結晶シリコンの半径をR1(mm)、前記坩堝の半径をR2(mm)、前記融液の前記坩堝内の液面高さをh(mm)とした場合に、以下の式(1)~式(3)の条件を満足する、前記<1>に記載の単結晶シリコンの製造方法。
 AB2≧0.275      (1)
 2R1≦R2≦3R1      (2)
 R1≦h≦2R1       (3)
<3> 前記坩堝に充填された所定量の前記シリコン融液を用いた前記単結晶シリコンの製造を、複数回の前記種結晶の引き上げに分けて行う、前記<1>または<2>に記載の単結晶シリコンの製造方法。
<4> 直径300mm以上、かつ単結晶の引き上げ軸方向の任意の50mmの範囲内における酸素濃度の変動が、前記範囲における酸素濃度の平均値を基準として±5%以内であることを特徴とする単結晶シリコン。
 本発明によれば、製造した単結晶シリコンにおける結晶引き上げ方向の酸素濃度の変動を抑制することができる。
横磁場印加式の単結晶シリコン製造装置の一例を示す図である。 坩堝内のシリコン融液の流動状態を説明する模式図である。 3次元流動解析により得られた坩堝中のシリコン融液の流動状態を示す図であり、(a)は単結晶シリコンの回転速度が0rpmの場合、(b)は9rpmの場合に対する結果をそれぞれ示している。 磁場強度および単結晶シリコンの回転速度と、坩堝内のシリコン融液の渦流の数との関係を示す図である。 坩堝内のシリコン融液の温度の実測値および計算値を示す図である。 シリコン融液に投入されたシリコン片の流れを示す図である。 製造された単結晶シリコンにおける結晶引き上げ方向の規格化された酸素濃度を示す図であり、(a)は2つの渦流が形成される場合、(b)は1つの渦流が形成される場合に対する結果をそれぞれ示している。
(単結晶シリコンの製造方法)
 以下、図面を参照して本発明について詳細に説明する。本発明による単結晶シリコンの製造方法は、坩堝に充填されたシリコン融液に種結晶を浸漬し、該種結晶の引き上げ方向に垂直な方向に磁場を印加した状態の下で、坩堝を回転させるとともに、種結晶(すなわち、単結晶シリコン)を回転させつつ引き上げて、種結晶上に単結晶シリコンを成長させる単結晶シリコンの製造方法である。ここで、種結晶の引き上げは、該種結晶の引き上げ過程の少なくとも一部において、シリコン融液が坩堝内において1つの渦流を形成している状態の下で行うものである。
 本発明者らは、製造された単結晶シリコンにおける結晶引き上げ方向の酸素濃度の変動を抑制する方途について鋭意検討した。この酸素濃度の変動は、シリコン融液の流動状態に大きく影響されていると考えられる。そこで、本発明者らは、3次元流動解析モデルを用いた解析により、様々な製造条件について、単結晶シリコン製造時の坩堝内におけるシリコン融液の流動状態について詳細に調査した。その結果、特定の製造条件においては、坩堝内のシリコン融液が、1つの渦流を形成して流動することが判明した。
 すなわち、従来、単結晶シリコン製造時の坩堝内におけるシリコン融液は、図2(a)に模式的に示すように、印加する横磁場に平行な軸を中心とする2つの渦流を形成して流動するものと考えられてきた。本発明者らの上記3次元流動解析においても、多くの製造条件下において、シリコン融液は2つの渦流を形成して流動した。しかし、特定の製造条件の下では、シリコン融液は、図2(b)に模式的に示すように、1つの渦流を形成して流動することが判明したのである。
 シリコン融液がこうした1つの渦流を形成して流動する原因は必ずしも明らかではないが、本発明者らは、引き上げる単結晶シリコン直下に発生するローレンツ力によるものではないかと推察している。すなわち、一般に、磁場の印加によってシリコン融液の流動は抑制されるが、一方で、引き上げ結晶直下では、固液界面を通って結晶とシリコン融液との間を出入りする電流に起因したローレンツ力が発生し、流動が加速される。本発明者らは、ローレンツ力が所定の大きさを超えると、2つの渦流を形成して流動していたシリコン融液の流動の対称性が崩れ、全体で1つの渦流を形成して流動するように変化するのではないかと考えている。
 本発明者らは、上記1つの渦流を形成しながら流動するシリコン融液が、引き上げ結晶直下の固液界面付近において安定して流動していることから、シリコン融液が1つの渦流を形成して流動する条件の下で単結晶シリコンを実際に製造し、得られた単結晶シリコンにおいて結晶引き上げ方向の酸素濃度を調べた。その結果、シリコン融液が2つの渦流を形成して流動する条件下で製造された単結晶シリコンに比べて、結晶引き上げ方向の酸素濃度の変動が著しく抑制されていることが判明した。
 本発明者らはさらに、シリコン融液が1つの渦流を形成して流動する条件について鋭意検討した。その結果、少なくとも以下の式(1)~式(3)の条件全てを満足する場合には、坩堝内のシリコン融液が1つの渦流を形成して流動することが判明した。
  AB2≧0.275          (1)
  2R1≦R2≦3R1          (2)
  R1≦h≦2R1            (3)
 以下、上記式(1)~式(3)に記載された各条件について説明する。上述のように、1つの渦流が形成される原因は、引き上げ結晶の固液界面直下に形成されるローレンツ力によるものと推察されるが、このローレンツ力は、印加する磁場の強度をB(T)、引き上げ結晶の回転速度をA(rpm)とすると、AB2に比例すると近似できる。そこで、印加磁場強度Bおよび結晶の回転速度A以外は同じ条件の下で、シリコン融液が1つの渦流を形成して流動する印加磁場強度Bおよび回転速度Aとの関係について詳細に調査した。その結果、上記のAB2≧0.275の条件を満足する場合に、シリコン融液は1つの渦流を形成して流動することが分かったのである。
 ただし、上記式(1)の条件を満足した場合であっても、1つの渦流の形成は、融液の形状、すなわち、坩堝の形状や坩堝内の融液の液面高さにも依存する。すなわち、シリコン融液の流動の駆動力は、上記ローレンツ力および熱対流である。ここで、坩堝の半径が引き上げ結晶の半径に比べて大きすぎる場合には、シリコン融液の流動全体に対して上記ローレンツ力の寄与が小さくなり、1つの渦流を実現することはできない。
 逆に、坩堝の径が引き上げ結晶の径に近い場合には、必ずしも明らかではないが、上記ローレンツ力の寄与が大きすぎるため流動分布は時間と共に無秩序に変動し続ける乱流状態となり、この場合にも1つの渦流を実現することはできなくなる。こうした坩堝の半径R2と引き上げ結晶の半径R1との関係を調べた結果、2R1≦R2≦3R1の条件を満足する場合には、シリコン融液が1つの渦流を形成して流動できることが分かった。
 また、坩堝内におけるシリコン融液の液面高さについては、液面高さが大きすぎる場合には、熱対流の効果が大きくなり、ローレンツ力の寄与が小さくなる。その結果、シリコン融液は1つの渦流を形成して流動することはできなくなる。一方、融液の高さが低すぎる場合には、坩堝底部からの入熱が大きくなり、中心部からの上昇対流が生まれる。この場合についても、シリコン融液は1つの渦流を形成して流動することはできなくなる。こうした坩堝内におけるシリコン融液の液面高さhと引き上げ結晶の半径R1との関係を調べた結果、R1≦h≦2R2の条件を満足する場合には、シリコン融液は1つの渦流を形成して流動できることが判明したのである。
 このように、少なくとも上記式(1)~式(3)の条件を満足する場合には、単結晶シリコンの製造時に、坩堝内のシリコン融液が1つの渦流を形成して流動することを見出し、このような1つの渦流を形成している条件の下で単結晶シリコンを製造することにより、結晶引き上げ方向の酸素濃度の変動を著しく低減できることが分かったのである。
 なお、本発明者らの検討によれば、坩堝の回転速度は、少なくとも通常の回転速度(例えば、0~10rpm程度)においては、シリコン融液の1つの渦流の形成に影響を与えなかった。
 所定量の溶融シリコンを坩堝に充填した状態で、種結晶の引き上げを開始して所定の長さの単結晶シリコンを製造する際に、引き上げの開始から終了までの全ての過程において、上記式(1)~(3)を満足するとは限らない。
 すなわち、坩堝内のシリコン融液の液面高さhは、結晶の引き上げが進行するにつれて低下する。そこで、引き上げのある時点で上記式(3)を満足する場合であっても、引き上げが進行するにつれて、シリコン融液の液面高さhが、式(3)で規定した液面高さの下限を下回り、2つの渦流に変化しうる。
 また、引き上げ開始時点では、シリコン融液の液面高さhが、式(3)において規定された上限を上回る場合であっても、引き上げが進行するにつれて、式(3)の条件を満足するようになる場合もあり得る。
 これらの場合においても、製造した単結晶シリコンにおいて、上記式(1)~式(3)を満足する条件の下で製造された部分は、シリコン融液が1つの渦流を形成して流動する状態で製造された部分であるため、結晶引き上げ方向の酸素濃度の変動は抑制されている。よって、1回の引き上げによって製造された単結晶シリコンのうち、上記式(1)~式(3)の条件を満足する条件下で製造された部分を採取して使用することができる。
 一方、所定量のシリコン融液から単結晶シリコンを製造する際に、単結晶シリコンの全ての部分を、上記式(1)~式(3)の条件を満足する状態の下で製造するために、単結晶シリコンの製造を、複数回の引き上げに分けて行うこともできる。
 すなわち、引き上げ開始時には、坩堝内におけるシリコン融液の液面高さhが上記式(3)に規定された上限を上回り、製造過程の途中から式(3)の条件を満足するようになる場合において、単結晶シリコンの製造を、例えば2回の引き上げに分けて行うようにし、引き上げ開始時に坩堝に充填するシリコン融液の量をV/2とすると、引き上げ開始時から終了に至るまで、式(3)の条件を満足するように構成することができる。
 このように、単結晶シリコンを製造する際に、目標とする半径および長さによっては、坩堝に充填するシリコン融液の量が上記式(3)に規定された条件を満足しない場合があり得るが、このような場合には、単結晶シリコンの製造を、複数回の引き上げに分けて行うことにより、引き上げ過程の全てにおいて、シリコン融液が1つの渦流を形成して流動した状態の下で単結晶シリコンを製造することができ、製造した単結晶シリコンの全ての部分において、結晶引き上げ方向の酸素濃度の変動が抑制されたものとすることができる。
 以上、シリコン融液が坩堝内において1つの渦流を形成している状態の下で、シリコン融液に浸漬した種結晶を引き上げることにより、得られた単結晶シリコンにおける結晶引き上げ方向の酸素濃度の変動が抑制されることを説明した。しかし、本発明者らがさらに検討を進めた結果、上記酸素濃度の変動の抑制は、シリコン融液が坩堝内において1つの渦流を形成して流動すること自体によるものではないことが判明した。
 すなわち、本発明者らによるさらなる検討の結果、シリコン融液の流動状態は、単結晶シリコンの引き上げ開始から終了までの間に一定ではなく、時間とともに複雑に変動することが判明した。例えば、シリコン融液の渦流の数は、単結晶シリコンの引き上げ開始直後には1つであったところ、時間の経過とともに複数(例えば、3つ)になり、さらに時間が経過すると1つに戻るというように変動するのである。
 こうしたシリコン融液の流動状態の時間変動は、上記式(1)~(3)を満たす場合にも同様に生じる場合があり、シリコン融液は、所定の期間(例えば、600秒)の平均としては1つの渦流を形成して流動するものの、複数の渦流を形成して流動する場合があることも判明した。しかしながら、シリコン融液が複数の渦流を形成して流動する期間がある場合にも、得られた単結晶シリコンにおける引き上げ方向の酸素濃度の変動が抑制されることが分かった。
 そこで本発明者らは、単結晶シリコンにおける引き上げ方向の酸素濃度の変動を抑制する要件を見直した結果、シリコン融液に浸漬した種結晶の引き上げを、シリコン融液が、少なくとも固液界面下にて、種結晶の引き上げ軸を含みかつ磁場の印加方向に平行な面について、一方側から他方側に流動する状態の下で行えばよいことを見出した。
 詳述すると、固液界面直下(界面から融液深さ方向に15mmの深さ領域)におけるシリコン融液の流動は、単結晶シリコンの回転により引きずられる力と、固液界面を通って単結晶シリコンとシリコン融液との間を出入りする電流に起因したローレンツ力によって、固液界面へと巻き上げられるシリコン融液の流動が存在する。この固液界面直下に酸素を輸送するシリコン融液の流動が単結晶シリコン中の酸素濃度を決定することになる。
 このため、固液界面位置から少なくとも融液深さ方向に20mm離れた深さ位置において、シリコン融液が水平方向に流動するように構成することが望ましい。これにより、固液界面直下の領域には、同程度の酸素濃度のシリコン融液が安定的に供給され続けて、得られた単結晶シリコンの結晶引き上げ方向の酸素濃度の変動を抑制することができる。
(単結晶シリコン)
 また、本発明による単結晶シリコンは、直径300mm以上、かつ単結晶の引き上げ軸方向の任意の50mmの範囲内における酸素濃度の変動が、前記範囲における酸素濃度の平均値を基準として±5%以内であることを特徴とする単結晶シリコンである。この本発明による単結晶シリコンは、シリコン融液が2つの渦流を形成して流動する条件の下で製造されたものに比べて、結晶引き上げ方向の酸素濃度の変動が抑制されている。
 以下、実施例を用いて本発明を更に詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 3次元流動解析モデルを用いて、シリコン融液の温度および流動分布を解析した。上記3次元流動解析モデルは、数値流体力学に基づいて構築されたシミュレーションモデルである。実在の炉構造を模擬した計算領域にて、物質に応じた物性値を与えた上で、温度分布、流動分布、電流分布、ローレンツ力分布を数値計算にて解く。一般に、横磁場中では、シリコン融液は非軸対称な流動分布となることが知られていることから、計算は3次元で扱う必要がある。
 計算条件としては、引き上げ結晶の半径を150mm(直径300mm)、坩堝の半径を400mm(直径800mm)、坩堝内におけるシリコン融液の液面高さを230mmとした。また、結晶引き上げ方向と垂直な方向に0.3Tの横磁場を印加し、引き上げ結晶の回転速度を0.0rpmおよび9.0rpmの2つの場合について計算した。さらに、坩堝は、引き上げ結晶の回転方向と反対方向に0.5rpmの回転速度で回転させた。その他のプロセス条件は、一般的な引き上げ条件とした状態の下で解析した。
 図3に、それぞれの磁場と垂直な面の流動分布を示す。流動分布は表示面に限定した流線表示で示している。図3(a)を見ると、引き上げ結晶の回転速度が0.0rpmの場合には、2つの渦流が坩堝の中心を含む面に対して対称に存在していることが分かる。また、引き上げ結晶の直下では、2つの渦流からシリコン融液が流れ込み、それらが衝突し混ざり合うために固液界面近傍のシリコン融液の流動が不安定となって、結晶引き上げ方向の酸素濃度の変動に繋がっているものと考えられる。
 これに対して、図3(b)を見ると、引き上げ結晶の回転速度が9.0rpmの場合には、シリコン融液は、全体で1つの渦流を形成して流動していることが分かる。また、引き上げ結晶の直下におけるシリコン融液の流れは一方向に整流されており、こうした安定したシリコン融液の流動が結晶引き上げ方向の酸素濃度の変動の抑制に繋がったものと考えられる。
 図4は、磁場強度および単結晶シリコンの回転速度と、坩堝内のシリコン融液の渦流の数との関係を示す図である。この図における破線は、AB2=0.275を満足する点をプロットしたものである。この図から明らかなように、AB2≧0.275を満たす領域においては、シリコン融液は、1つの渦流を形成して流動することが示された。
 次に、上記した式(1)~式(3)において規定した条件を満足することにより、坩堝内の溶融シリコンが実際に1つの渦流を形成していることを実験により確認した。そのために、まず、引き上げ中のシリコン融液の温度を熱電対を用いて直接測定した、その際、単結晶シリコンの製造条件は、図3に結果を示した上記3次元流動解析において、引き上げ結晶の回転速度を9.0rpmとした場合と同じである。
 シリコン融液の温度の測定は、シリコン融液表面下20mm、かつ結晶引き上げ軸中心から、磁場印加方向に垂直な方向に230mm、260mmの計4点において行った。得られた結果を、同条件で行ったシミュレーションの結果と合わせて図5に示す。ここで、実測値および計算値の双方とも、600秒間の時間平均値を融液温度とした。
 図5から、実測値および計算値の双方ともに、坩堝の中心から離れた一方においては温度が低く、他方においては高いという非対称な分布を示しており、挙動は良く一致していることが分かる。シリコン融液が図3(a)に示したような2つの渦流を形成して流動する場合には、図5に示したような非対称な分布を示すことはない。よって、上記条件の下での単結晶シリコンの製造時には、シリコン融液は、少なくとも従来考えられてきたような2つの渦流を形成して流動してはいないことを示している。
 次に、単結晶シリコン製造時のシリコン融液表面の流速を測定した。すなわち、上記熱電対を用いたシリコン融液の温度測定と同じ条件で結晶の引き上げを行った際に、シリコン結晶の2~5mmサイズのシリコン片をシリコン融液表面に落下させ、その軌道をCCDカメラにより記録して、シリコン片の軌跡を解析した。その際、シリコン片を落下させる目標位置は、引き上げ軸中心から磁場に垂直方向と平行方向に260mmの4箇所であり、それぞれの目標位置に1つのシリコン片を落下させた。ただし、実験精度の問題から、目標位置と実際に着液した位置との間で多少ずれが生じた。
 図6は、得られたシリコン片の軌跡を模式的に示している。この図から、落下させた4つのシリコン片は、図中の左方向に進んでいることが分かる。これらシリコン片の軌跡は、シリコン融液の流動状態を反映しており、シリコン融液の流動方向を示していると考えられる。よって、図6に示したシリコン片の軌跡から、表面のシリコン融液は、図中の左側に流れており、シリコン融液は、1つの渦流を形成して流動していることが分かる。
 図7は、単結晶シリコンの結晶引き上げ方向の酸素濃度を示しており、(a)は結晶の回転速度が3.0rpm、(b)は結晶の回転速度が9.0rpmの場合に対するものである。ここで、引き上げ結晶の回転速度が9.0rpmの場合には、上記した式(1)~式(3)の条件を満足しているのに対して(発明例)、引き上げ結晶の回転速度が3.0rpmの場合には、上記した式(1)~式(3)の条件を満足していない(比較例)。また、図中の酸素濃度は、測定された酸素濃度を結晶引き上げ方向50mmの平均の酸素濃度で規格化した規格化酸素濃度である。
 図7(a)を見ると、引き上げ結晶の回転速度が3.0rpmの場合(すなわち、比較例の場合)には、結晶引き上げ方向において、規格化酸素濃度が大きく変動していることが分かる。これに対して、図7(b)を見ると、引き上げ結晶の回転速度が9.0rpmの場合(すなわち、発明例の場合)には、図7(a)に比べて、規格化酸素濃度の変動の変動幅が著しく低減されていることが分かる。
 図7(a)において酸素濃度が大きく変動した原因は、シリコン融液が2つの渦流を形成して流動し、流動が不安定であることに起因したものと考えられる。これに対して、図7(b)において酸素濃度の変動が著しく低減できたのは、引き上げ結晶の回転速度を大きくしたことにより、引き上げ結晶の直下のローレンツ力が大きくなり、そのため、2つの渦流の対称性が崩れて1つの渦流が形成されたためと考えられる。
 図7(b)においても、酸素濃度の変動は完全には消えていないが、これは、ヒーター位置が中心の場合、融液に与える環境は、横磁場の影響も考慮すると、引き上げ軸に対して2回対称性を有している。それにも関わらず、シリコン融液は、2回対称性が崩れた状態で流動して安定しているが、環境が2回対称性を有しているため、シリコン融液の流動は2回対称の流動、すなわち、2つの渦流を形成した状態での流動に近づこうとし、2回対称性の2つの渦流を形成した状態での流動と、2回対称性が崩れた1つの渦流を形成した状態での流動との間を行き来する振動が発生して、酸素濃度が変動したものと考えられる。
 表1に示す7つの水準(条件)の下で単結晶シリコンの製造を行い、単結晶シリコンの引き上げ中に、シリコン融液が1つの渦流を形成して流動しているか否かを確認した。この確認は、図6の場合と同様に、2~5mmサイズのシリコン片をシリコン融液中に落下させ、シリコン片の軌跡をCCDカメラで計測することにより行った。
Figure JPOXMLDOC01-appb-T000001
 表1に示した7つの水準のうち、水準1、3、5および7については、上記式(1)~式(3)の条件を満足している。これに対して、水準2は、式(1)の条件を、水準4は式(3)の条件を、水準6および水準10は式(2)の条件をそれぞれ満足していないものとなっている。表1に示したように、式(1)~式(3)の条件を満足する水準1、3、5、7および9については、シリコン融液が1つの渦流を形成して流動していることが確認された。これに対して、式(1)~式(3)のいずれかの条件を満足していない水準2、4、6および10については、シリコン融液は1つの渦流を形成して流動していないことが確認された。また、水準8については式(1)~(3)を満たすものの、引き上げ中に有転位化してしまい、単結晶シリコンが得られなかった。
 本発明によれば、製造された単結晶シリコンにおける結晶引き上げ方向の酸素濃度の変動を抑制することができるため、半導体産業において有用である。
10 単結晶シリコン製造装置
11 チャンバー
12 坩堝
13 シリコン融液
14 ヒーター
15 坩堝回転機構
16 単結晶シリコン
17 種結晶
18 種結晶保持器
19 ワイヤーロープ
20 巻き取り機構
21 磁場印加器

Claims (4)

  1.  坩堝に充填されたシリコン融液に種結晶を浸漬し、該種結晶の引き上げ方向に垂直な方向に磁場を印加した状態の下で、前記坩堝を回転させるとともに、前記種結晶を回転させつつ引き上げて、前記種結晶上に単結晶シリコンを成長させる単結晶シリコンの製造方法において、
     前記種結晶の引き上げは、前記シリコン融液が、少なくとも固液界面下にて、前記種結晶の引き上げ軸を含みかつ前記磁場の印加方向に平行な面について一方側から他方側に流動する状態の下で行うことを特徴とする単結晶シリコンの製造方法。
  2.  前記磁場の強度をB(T)、前記単結晶シリコンの回転速度をA(rpm)、前記単結晶シリコンの半径をR1(mm)、前記坩堝の半径をR2(mm)、前記融液の前記坩堝内の液面高さをh(mm)とした場合に、以下の式(1)~式(3)の条件を満足する、請求項1に記載の単結晶シリコンの製造方法。
     AB2≧0.275     (1)
     2R1≦R2≦3R1      (2)
     R1≦h≦2R1       (3)
  3.  前記坩堝に充填された所定量の前記シリコン融液を用いた前記単結晶シリコンの製造を、複数回の前記種結晶の引き上げに分けて行う、請求項1または2に記載の単結晶シリコンの製造方法。
  4.  直径300mm以上、かつ単結晶の引き上げ軸方向の任意の50mmの範囲内における酸素濃度の変動が、前記範囲における酸素濃度の平均値を基準として±5%以内であることを特徴とする単結晶シリコン。
PCT/JP2016/004768 2015-11-02 2016-10-31 単結晶シリコンの製造方法および単結晶シリコン WO2017077701A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017516966A JP6489209B2 (ja) 2015-11-02 2016-10-31 単結晶シリコンの製造方法および単結晶シリコン
CN201680061735.2A CN108291327B (zh) 2015-11-02 2016-10-31 单晶硅的制造方法及单晶硅
DE112016005020.8T DE112016005020B4 (de) 2015-11-02 2016-10-31 Verfahren zum Herstellen eines Einkristall-Siliziums und Einkristall-Silizium
KR1020187012042A KR102060422B1 (ko) 2015-11-02 2016-10-31 단결정 실리콘의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015215623 2015-11-02
JP2015-215623 2015-11-02

Publications (1)

Publication Number Publication Date
WO2017077701A1 true WO2017077701A1 (ja) 2017-05-11

Family

ID=58661825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004768 WO2017077701A1 (ja) 2015-11-02 2016-10-31 単結晶シリコンの製造方法および単結晶シリコン

Country Status (6)

Country Link
JP (1) JP6489209B2 (ja)
KR (1) KR102060422B1 (ja)
CN (1) CN108291327B (ja)
DE (1) DE112016005020B4 (ja)
TW (1) TWI625432B (ja)
WO (1) WO2017077701A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083717A (ja) * 2018-11-28 2020-06-04 株式会社Sumco シリコン単結晶の製造方法
WO2020174598A1 (ja) * 2019-02-27 2020-09-03 株式会社Sumco シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法
CN112074627A (zh) * 2018-02-28 2020-12-11 胜高股份有限公司 硅熔液的对流模式推测方法、单晶硅的氧浓度推测方法、单晶硅的制造方法及单晶硅的提拉装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247394A (ja) * 2000-03-06 2001-09-11 Nec Corp 半導体単結晶育成装置および半導体単結晶育成方法
JP2009018984A (ja) * 2007-06-15 2009-01-29 Covalent Materials Corp 低酸素濃度シリコン単結晶およびその製造方法
JP2009161363A (ja) * 2007-12-28 2009-07-23 Japan Siper Quarts Corp シリコン単結晶引上げ用石英ガラスルツボ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5850953B2 (ja) 1980-01-28 1983-11-14 ソニー株式会社 結晶成長法
JPS6058657B2 (ja) 1981-09-24 1985-12-20 株式会社ナシヨナル技研 人工歯牙
JPH0431386A (ja) 1990-05-25 1992-02-03 Shin Etsu Handotai Co Ltd 半導体単結晶引上方法
US5178720A (en) * 1991-08-14 1993-01-12 Memc Electronic Materials, Inc. Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
JP2940437B2 (ja) 1995-06-01 1999-08-25 信越半導体株式会社 単結晶の製造方法及び装置
JP3589077B2 (ja) 1999-03-17 2004-11-17 信越半導体株式会社 シリコン単結晶の製造方法ならびにこの方法で製造された単結晶およびシリコンウエーハ
JP2006069841A (ja) 2004-09-02 2006-03-16 Sumco Corp 磁場印加式シリコン単結晶の引上げ方法
US7223304B2 (en) * 2004-12-30 2007-05-29 Memc Electronic Materials, Inc. Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
JP4725752B2 (ja) * 2008-05-09 2011-07-13 信越半導体株式会社 単結晶の製造方法
DE102008062049A1 (de) 2008-05-19 2009-12-03 Covalent Materials Corp. Silicium-Einkristalle mit niedriger Sauerstoffkonzentration sowie deren Herstellung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247394A (ja) * 2000-03-06 2001-09-11 Nec Corp 半導体単結晶育成装置および半導体単結晶育成方法
JP2009018984A (ja) * 2007-06-15 2009-01-29 Covalent Materials Corp 低酸素濃度シリコン単結晶およびその製造方法
JP2009161363A (ja) * 2007-12-28 2009-07-23 Japan Siper Quarts Corp シリコン単結晶引上げ用石英ガラスルツボ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074627A (zh) * 2018-02-28 2020-12-11 胜高股份有限公司 硅熔液的对流模式推测方法、单晶硅的氧浓度推测方法、单晶硅的制造方法及单晶硅的提拉装置
US11885038B2 (en) 2018-02-28 2024-01-30 Sumco Corporation Method of estimating convection pattern of silicon melt, method of estimating oxygen concentration of silicon single crystal, method of manufacturing silicon single crystal, and raising device of silicon single crystal
JP2020083717A (ja) * 2018-11-28 2020-06-04 株式会社Sumco シリコン単結晶の製造方法
JP7052694B2 (ja) 2018-11-28 2022-04-12 株式会社Sumco シリコン単結晶の製造方法
WO2020174598A1 (ja) * 2019-02-27 2020-09-03 株式会社Sumco シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法
KR20200111776A (ko) 2019-02-27 2020-09-29 가부시키가이샤 사무코 실리콘 융액의 대류 패턴 제어 방법 및, 실리콘 단결정의 제조 방법
JPWO2020174598A1 (ja) * 2019-02-27 2021-03-11 株式会社Sumco シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法
US11186921B2 (en) 2019-02-27 2021-11-30 Sumco Corporation Method for controlling convection pattern of silicon melt and method for producing monocrystalline silicon
JP7006788B2 (ja) 2019-02-27 2022-01-24 株式会社Sumco シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法

Also Published As

Publication number Publication date
JP6489209B2 (ja) 2019-03-27
CN108291327A (zh) 2018-07-17
KR20180061307A (ko) 2018-06-07
JPWO2017077701A1 (ja) 2017-11-09
CN108291327B (zh) 2021-01-08
KR102060422B1 (ko) 2019-12-30
DE112016005020B4 (de) 2022-12-15
DE112016005020T5 (de) 2018-07-19
TWI625432B (zh) 2018-06-01
TW201716646A (zh) 2017-05-16

Similar Documents

Publication Publication Date Title
JP6489209B2 (ja) 単結晶シリコンの製造方法および単結晶シリコン
JP7036217B2 (ja) シリコン単結晶の育成方法
JP6202119B2 (ja) シリコン単結晶の製造方法
KR101385997B1 (ko) 단결정 제조장치 및 단결정 제조방법
JP4771989B2 (ja) Fz法シリコン単結晶の製造方法
JP6268936B2 (ja) シリコン単結晶製造方法
JP2009057270A (ja) シリコン単結晶の引上方法
CN105765114A (zh) 单晶硅的生长方法
TWI694182B (zh) 矽單結晶的氧濃度推測方法及矽單結晶的製造方法
WO2019167986A1 (ja) シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法
JP6729484B2 (ja) シリコン単結晶の製造方法
JPWO2020174598A1 (ja) シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法
JP4314974B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶
JP7249913B2 (ja) シリコン単結晶の製造方法
JP2018043904A (ja) シリコン単結晶の製造方法
JP4484599B2 (ja) シリコン単結晶の製造方法
KR101597207B1 (ko) 실리콘 단결정 잉곳, 그 잉곳을 제조하는 방법 및 장치
JP2013028476A (ja) 単結晶引上方法
JP2014129236A (ja) シリコン単結晶の欠陥解析方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017516966

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16861778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187012042

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016005020

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16861778

Country of ref document: EP

Kind code of ref document: A1