JP7052694B2 - シリコン単結晶の製造方法 - Google Patents

シリコン単結晶の製造方法 Download PDF

Info

Publication number
JP7052694B2
JP7052694B2 JP2018222321A JP2018222321A JP7052694B2 JP 7052694 B2 JP7052694 B2 JP 7052694B2 JP 2018222321 A JP2018222321 A JP 2018222321A JP 2018222321 A JP2018222321 A JP 2018222321A JP 7052694 B2 JP7052694 B2 JP 7052694B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
heat shield
silicon
convection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018222321A
Other languages
English (en)
Other versions
JP2020083717A (ja
Inventor
大基 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2018222321A priority Critical patent/JP7052694B2/ja
Publication of JP2020083717A publication Critical patent/JP2020083717A/ja
Application granted granted Critical
Publication of JP7052694B2 publication Critical patent/JP7052694B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン単結晶の製造方法に関する。
従来、チョクラルスキー法によるシリコン単結晶の引き上げにおいて、引き上げ時に水平磁場を印加するに際して、一部の磁場を遮蔽して、磁力線密度を不均一にしたり、石英坩堝の回転中心に対して、シリコン単結晶の引き上げ軸をずらしてシリコン単結晶の引き上げを行う技術が提案されている(たとえば、特許文献1参照)。
特開2004-196655号公報
ところで、近年、水平磁場を印加したチョクラルスキー法によるシリコン単結晶の引き上げにおいては、同一の引き上げ装置を用いて、同一の引き上げ条件でシリコン単結晶を引き上げても、引き上げられたシリコン単結晶の品質、特にシリコン単結晶中の酸素濃度がばらつくことが知られるようになった。
しかしながら、前記特許文献1に記載の技術では、このような課題が生じていることについて全く認識もされていないため、前記特許文献1に記載の技術によって酸素濃度のばらつきの課題を解決できない。
本発明の目的は、シリコン単結晶ごとの酸素濃度のばらつきを抑制できるシリコン単結晶の製造方法を提供することにある。
本発明のシリコン単結晶の製造方法は、チャンバと、シリコン融液を収容する石英坩堝と、育成中のシリコン単結晶を囲むように前記石英坩堝の上方に配置された熱遮蔽体とを備えた単結晶引き上げ装置を用い、前記石英坩堝内に不活性ガスを流しつつ、前記シリコン融液に水平磁場を印加して、前記シリコン単結晶を引き上げるシリコン単結晶の製造方法であって、前記シリコン融液に前記水平磁場を印加することで、前記シリコン融液内の前記水平磁場の印加方向に直交する第1の基準平面における対流の方向が、所定の方向に固定された状態において、前記熱遮蔽体の下端部と前記シリコン融液表面との間を流れる不活性ガスの流れに、前記単結晶引き上げ装置の引き上げ軸を含みかつ前記水平磁場の印加方向と平行な第2の基準平面に対して非面対称なガス流動分布を形成するガス流動分布形成工程と、前記対流の方向が前記所定の方向に固定され、かつ、前記非面対称なガス流動分布が形成された状態で、前記シリコン単結晶を引き上げる育成工程とを備え、前記ガス流動分布形成工程において、前記シリコン単結晶の酸素濃度が所定の濃度となるように非面対称なガス流動分布を形成させることを特徴とする。
本発明によれば、シリコン単結晶ごとの酸素濃度のばらつきを抑制できるシリコン単結晶の製造方法を提供できる。
本発明のシリコン単結晶の製造方法において、前記熱遮蔽体は、前記第2の基準平面に対して非面対称構造を有し、前記非面対称なガス流動分布は、前記熱遮蔽体の配置状態が調整されることによって形成されることが好ましい。
本発明によれば、非面対称構造を有する熱遮蔽体の配置状態を調整するだけの簡単な方法で、第2の基準平面に対する非面対称な不活性ガスのガス流動分布を形成できる。
本発明のシリコン単結晶の製造方法において、前記熱遮蔽体は、当該熱遮蔽体の一部に切欠部が形成された非面対称構造を有することが好ましい。
本発明によれば、熱遮蔽体の切欠部の位置を調整するだけの簡単な方法で、不活性ガスの所定のガス流動分布を形成できる。
本発明のシリコン単結晶の製造方法において、前記熱遮蔽体は、当該熱遮蔽体の下端から前記シリコン融液表面までの距離が一部で異なるように形成された非面対称構造を有することが好ましい。
本発明によれば、熱遮蔽体の下端におけるシリコン融液表面までの距離が異なる部分の位置を調整するだけの簡単な方法で、不活性ガスの所定のガス流動分布を形成できる。なお、熱遮蔽体の下端からシリコン融液表面までの距離を一部で異ならせる構成としては、熱遮蔽体の一部を厚くしたり、段差を設けたりすることが例示できる。
本発明のシリコン単結晶の製造方法において、前記熱遮蔽体の配置状態の調整は、前記非面対称構造を有する熱遮蔽体を、その中心軸で回転させることによって行われることが好ましい。
本発明によれば、非面対称構造を有する熱遮蔽体を、その中心軸で回転させるだけの簡単な方法で、不活性ガスの所定のガス流動分布を形成できる。
本発明の一実施形態に係る単結晶引き上げ装置の構造を示す模式図。 前記実施形態における熱遮蔽体の切欠部の位置と水平磁場の印加方向との関係を示す模式図。 前記実施形態における水平磁場の印加方向とシリコン融液の対流の方向との関係を示す模式図であり、(A)は右回りの対流、(B)は左回りの対流を表す。 (A)~(D)は前記実施形態におけるシリコン融液の対流の変化を示す模式図。 (A),(B)は前記実施形態における単結晶引き上げ装置の不活性ガスの流れを示す模式図。 前記実施形態におけるシリコン単結晶の製造方法を示すフローチャート。 (A),(B)は本発明の変形例に係る熱遮蔽体の模式図。 本発明の実施例に係る切欠部の位置と不活性ガスの流れとシリコン融液の対流の方向との関係を示す模式図であり、(A)は実験例1、(B)は実験例2、(C)は実験例3を表す。 前記実施例の実験例1~3におけるシリコン単結晶の固化率と酸素濃度との関係を示すグラフ。 前記実施例における切欠部の配置角度とシリコン単結晶の酸素濃度との関係を示すグラフ。
[単結晶引き上げ装置の構成]
図1に示すように、単結晶引き上げ装置1は、チョクラルスキー法によりシリコン単結晶10を引き上げる装置であり、外郭を構成するチャンバ2と、チャンバ2の中心部に配置される坩堝3とを備える。
坩堝3は、内側の石英坩堝3Aと、外側の黒鉛坩堝3Bとから構成される二重構造であり、回転および昇降が可能な支持軸4の上端部に固定されている。
坩堝3の外側には、坩堝3を囲む抵抗加熱式のヒータ5が設けられ、その外側には、チャンバ2の内面に沿って断熱材6が設けられている。
坩堝3の上方には、支持軸4と同軸上で逆方向または同一方向に所定の速度で回転するワイヤなどの引き上げ軸7が設けられている。この引き上げ軸7の下端には種結晶8が取り付けられている。
熱遮蔽体12は、育成中のシリコン単結晶10に対して、坩堝3内のシリコン融液9やヒータ5や坩堝3の側壁からの高温の輻射熱を遮断するとともに、結晶成長界面である固液界面の近傍に対しては、外部への熱の拡散を抑制し、シリコン単結晶10の中心部および外周部の引き上げ軸7方向の温度勾配を制御する役割を担う。
また、熱遮蔽体12は、シリコン融液9からの蒸発物を炉上方から導入した不活性ガスにより、炉外に排気する整流筒としての機能もある。熱遮蔽体12は、上端がチャンバ2の支持部21に支持された円筒状の本体部121と、本体部121の下端全周から内側に鍔状に突出する厚さが均一の円環板状の突出部122とを備える。なお、本体部121は、下端に向かうにしたがって直径が小さくなる円錐台筒状に形成されていてもよい。
チャンバ2の上部には、アルゴンガスなどの不活性ガスをチャンバ2内に導入するガス導入口13が設けられている。チャンバ2の下部には、図示しない真空ポンプの駆動により、チャンバ2内の気体を吸引して排出する排気口14が設けられている。
ガス導入口13からチャンバ2内に導入された不活性ガスは、育成中のシリコン単結晶10と熱遮蔽体12との間を下降し、熱遮蔽体12の下端とシリコン融液9の液面との隙間を経た後、熱遮蔽体12の外側、さらに坩堝3の外側に向けて流れ、その後に坩堝3の外側を下降し、排気口14から排出される。
単結晶引き上げ装置1は、図2に示すような磁場印加部15を備える。
磁場印加部15は、それぞれ電磁コイルで構成された第1の磁性体15Aおよび第2の磁性体15Bを備える。第1,第2の磁性体15A,15Bは、チャンバ2の外側において坩堝3を挟んで対向するように設けられている。磁場印加部15は、中心の磁力線15Cが引き上げ軸7と重なる石英坩堝3Aの中心軸3Cを通り、かつ、当該中心の磁力線15Cの向きが図2における上方向(図1における紙面手前から奥に向かう方向)となるように、水平磁場を印加することが好ましい。中心の磁力線15Cの高さ位置については特に限定されず、シリコン単結晶10の品質に合わせて、シリコン融液9の内部にしてもよいし外部にしてもよい。
また、図2に示すように、引き上げ軸7を含みかつ水平磁場の印加方向と平行な第2の基準平面R2に対して、非面対称な不活性ガスのガス流動分布を形成するために、熱遮蔽体12の突出部122の一部には、切欠部122Aが形成されている。例えば、熱遮蔽体12は、切欠部122Aが図1におけるシリコン単結晶10の左側に位置するように、配置される。
また、チャンバ2の上部の切欠部122Aの直上には、放射温度計16が配置され、図2に示すように、切欠部122Aの近傍となる測定点Pにおけるシリコン融液9の表面温度を非接触で測定することができるようになっている。
ガス導入口13から供給される不活性ガスは、シリコン融液9の表面9Aに供給され、液面に沿って石英坩堝3Aの外側に向かって流れる。この際、切欠部122Aの部分(図2の左側部分)を流れる不活性ガスの流速は、切欠部122Aによって隙間が大きくなっているので、速くなる。一方、切欠部122Aが形成されていない部分(図2の右側部分)の不活性ガスの流速は、切欠部122Aが形成されている部分よりも隙間が小さくなっているので、遅くなる。
このような単結晶引き上げ装置1を用いてシリコン単結晶10を製造する際、チャンバ2内を減圧下の不活性ガス雰囲気に維持した状態で、坩堝3に充填した多結晶シリコンなどの固形原料をヒータ5の加熱により溶融させ、シリコン融液9を形成する。
坩堝3内にシリコン融液9が形成されると、引き上げ軸7を下降させて種結晶8をシリコン融液9に浸漬し、坩堝3および引き上げ軸7を所定の方向に回転させながら、引き上げ軸7を徐々に引き上げ、これにより種結晶8に連なったシリコン単結晶10を育成する。
[本発明に至る背景]
本発明者らは、同一の単結晶引き上げ装置1を用い、同一の引き上げ条件で引き上げを行っても、引き上げられたシリコン単結晶10の酸素濃度が高い場合と、酸素濃度が低い場合があることを知っていた。従来、これを解消するために、引き上げ条件等を重点的に調査してきたが、確固たる解決方法が見つからなかった。
その後、調査を進めていくうちに、本発明者らは、石英坩堝3A中に固体の多結晶シリコン原料を投入して、溶解した後、水平磁場を印加すると、シリコン融液9内の水平磁場の印加方向に直交する第1の基準平面R1(第2の磁性体15B側(図1の紙面手前側、図2の下側)から見たときの断面)において、水平磁場の中心の磁力線15Cを軸として石英坩堝3Aの底部からシリコン融液9の表面9Aに向かって回転する対流90があることを知見した。その対流90の回転方向は、図3(A)に示すように、右回りが優勢となる場合と、図3(B)に示すように、左回りが優勢となる場合の2つの対流パターンであった。
このような現象の発生は、発明者らは、以下のメカニズムによるものであると推測した。
まず、水平磁場を印加せず、石英坩堝3Aを回転させない状態では、石英坩堝3Aの外周近傍でシリコン融液9が加熱されるため、シリコン融液9の底部から表面9Aに向かう上昇方向の対流が生じている。上昇したシリコン融液9は、シリコン融液9の表面9Aで冷却され、石英坩堝3Aの中心で石英坩堝3Aの底部に戻り、下降方向の対流が生じる。
外周部分で上昇し、中央部分で下降する対流が生じた状態では、熱対流による不安定性により下降流の位置は無秩序に移動し、中心からずれる。このような下降流は、シリコン融液9の表面9Aにおける下降流に対応する部分の温度が最も低く、表面9Aの外側に向かうにしたがって温度が徐々に高くなる温度分布によって発生する。例えば、図4(A)の状態では、中心が石英坩堝3Aの回転中心からずれた第1の領域A1の温度が最も低く、その外側に位置する第2の領域A2、第3の領域A3、第4の領域A4、第5の領域A5の順に温度が高くなっている。
そして、図4(A)の状態で、中心の磁力線15Cが石英坩堝3Aの中心軸3Cを通る水平磁場を印加すると、石英坩堝3Aの上方から見たときの下降流の回転が徐々に拘束され、図4(B)に示すように、水平磁場の中心の磁力線15Cの位置からオフセットした位置に拘束される。
なお、下降流の回転が拘束されるのは、シリコン融液9に作用する水平磁場の強度が特定強度よりも大きくなってからと考えられる。このため、下降流の回転は、水平磁場の印加開始直後には拘束されず、印加開始から所定時間経過後に拘束される。
図4(B)に示す状態から水平磁場の強度をさらに大きくすると、図4(C)に示すように、下降流の右側と左側における上昇方向の対流の大きさが変化し、図4(C)であれば、下降流の左側の上昇方向の対流が優勢になる。
その後、図4(D)に示すように、下降流の右側の上昇方向の対流が消え去り、左側が上昇方向の対流、右側が下降方向の対流となり、右回りの対流90(右渦)となる。
一方、図4(A)の最初の下降流の位置を石英坩堝3Aの回転方向に180°ずらせば、下降流は、図4(C)とは位相が180°ずれた左側の位置で拘束され、左回りの対流90となる。
このような右回りや左回りのシリコン融液9の対流90は、水平磁場の印加を停止しない限り、維持される。
そこで、本発明者らは、この右回りまたは左回りの対流90と、第2の基準平面R2に対して非面対称な不活性ガスのガス流動分布との組み合わせが、シリコン単結晶10の酸素濃度に違いを生じさせる原因となっているものと推測した。
以上のことから、本発明者らは、予め準備しておいた不活性ガスのガス流動分布と、シリコン融液9の対流90の方向と、シリコン単結晶10の酸素濃度との関係に基づいて、対流90の方向をシリコン単結晶10の酸素濃度が所定の濃度となる方向に固定することで、シリコン単結晶10ごとの酸素濃度のばらつきを抑制できると考えた。
[シリコン単結晶の製造方法]
次に、シリコン単結晶の製造方法を説明する。
まず、例えば、図5(A),(B)に示すように、不活性ガスのガス流動分布(切欠部122Aの位置)とシリコン融液9の対流90の方向とが所定の関係を有する場合に、シリコン単結晶10の酸素濃度が所定の濃度となるような引き上げ条件(例えば、不活性ガスの流量、チャンバ2の炉内圧力、石英坩堝3Aの回転数など)を事前決定条件として予め決めておき、図示しない記憶部に記憶させる。
次に、図6に示すように、熱遮蔽体12の下端部とシリコン融液9の表面9Aとの間を流れる不活性ガスの流れに、第2の基準平面R2に対して非面対称なガス流動分布が形成されるように、チャンバ2内の状態を調整する(ステップS1:状態調整工程)。例えば、作業者は、図2に示すように、第2の磁性体15B側から見たときに、切欠部122Aが第2の基準平面R2に対して左側に位置し、かつ、第1の基準平面R1上に位置するように、熱遮蔽体12を配置する。
次に、図示しない制御部は、水平磁場を印加せずに、チャンバ2内に不活性ガスを導入し、減圧下の不活性ガス雰囲気に維持した状態で、坩堝3を回転させるとともに、坩堝3に充填した多結晶シリコンなどの固形原料をヒータ5の加熱により溶融させ、シリコン融液9を生成する(ステップS2:融液生成工程)。
その後、制御部は、磁場印加部15および放射温度計16を駆動して、シリコン融液9の対流90の方向を所定の方向に固定する(ステップS3:対流固定工程)。
例えば、放射温度計16の測定結果に基づき第1の領域A1の位置を確認し、この第1の領域A1が、図4(A)に示す位置から右回りで180°回転するまでの間に、シリコン融液9に所定の強さ(例えば、0.2T(テスラ)以上)の水平磁場を作用させると、図4(D)に示すように、図5(A)に示すように、対流90を右回りに固定でき、第1の領域A1が、さらに右回りで180°回転するまでの間に、前記所定の強さの水平磁場を作用させると、図5(B)に示すように、対流90を左回りに固定できる。
このとき、ステップS1の状態調整工程の実施によって、切欠部122Aが設けられている側(図5(A),(B)中左側)の不活性ガスの流量が、設けられていない側(図5(A),(B)中右側)と比べて増加し、流速が速くなっていると考えられる。また、シリコン融液9の表層部は、当該表層部からの酸素の蒸発によって低酸素濃度領域9Bになっていると考えられる。
図5(A)に示す状態の場合、対流90が右回りであり、低酸素濃度領域9Bがシリコン単結晶10に接近する流れに対して、切欠部122Aにより形成された流量および流速が大きい不活性ガスの流れが逆行している。このため、シリコン単結晶10は、低酸素濃度領域9Bを取り込みにくくなり、高酸素濃度となる。
一方、図5(B)に示す状態の場合、対流90が左回りであり、低酸素濃度領域9Bがシリコン単結晶10に接近する流れに対して、切欠部122Aにより形成された流量および流速が大きい不活性ガスの流れが順方向となっている。このため、シリコン単結晶10は、低酸素濃度領域9Bを取り込みやすくなり、低酸素濃度となる。
ステップS3の対流固定工程では、事前決定条件に基づいて、シリコン単結晶10の酸素濃度を高くしたい場合には対流90の方向を右回りに固定し、低くしたい場合には左回りに固定する。
以上のステップS1~S3の処理は、本発明のガス流動分布形成工程に対応する。
この後、制御部は、事前決定条件に基づき、シリコン融液9に種結晶8を着液してから、シリコン単結晶10を引き上げる(ステップS4:育成工程)。なお、ステップS2~S4のうち少なくともいずれか1つの処理は、作業者の操作によって行ってもよい。
[実施形態の作用効果]
上記実施形態によれば、熱遮蔽体12の下端部とシリコン融液9の表面9Aとの間を流れる不活性ガスの流れに、第2の基準平面R2に対して非面対称なガス流動分布が形成されるように、チャンバ2内の状態を調整し、対流90の方向を所定の方向に固定するだけの簡単な方法で、所定の酸素濃度のシリコン単結晶10を製造できる。
[変形例]
なお、本発明は上記実施の形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能である。
例えば、図7(A)に示すように、突出部122の一部に肉厚部122Bを設け、シリコン単結晶10の右側に肉厚部122Bが位置するように熱遮蔽体12を配置し、肉厚部122Bの下端からシリコン融液9の表面9Aまでの距離が、それ以外の部分の下端からの距離よりも短くなるように形成された非面対称構造を有するようにしてもよい。このような構成にすれば、肉厚部122B以外の部分(図7の左側部分)の下方を流れる不活性ガスの流速は、肉厚部122Bの下方(図7の右側部分)よりも隙間が大きくなっているので、速くなる。その結果、対流90が右回りの場合、低酸素濃度領域9Bがシリコン単結晶10に接近する流れに対して、流量および流速が大きい不活性ガスの流れが逆行することになり、シリコン単結晶10は、高酸素濃度となる。
図7(B)に示すように、厚さが均一の突出部122の内周形状を楕円形にして幅狭部122Cを設け、シリコン単結晶10の左側に幅狭部122Cが位置するように、熱遮蔽体12を配置してもよい。このような構成にすれば、幅狭部122Cの下方を流れる不活性ガスの流速は、他の部分の下方よりも速くなる。その結果、対流90が右回りの場合、シリコン単結晶10は、高酸素濃度となる。
不活性ガスの流速が他の部分と比べて速くなる部分(例えば、上記実施形態の切欠部122A)を、第2の基準平面R2に重なる位置を含めて、平面視でシリコン単結晶10を囲む円周上のどの位置に位置させてもよい。
切欠部122Aの形状を、上記実施形態で例示した形状と異ならせてもよい。
切欠部122Aを複数設けてもよい。
次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
〔実験例1〕
まず、上記実施形態の単結晶引き上げ装置1を準備し、図8(A)に示すように、切欠部122Aが第2の基準平面R2上における引き上げ軸7よりも第2の磁性体15B側に位置するように(切欠部の配置角度0°)、熱遮蔽体12を配置した。そして、上記実施形態と同様の融液生成工程、対流固定工程、育成工程を実施し、1本のシリコン単結晶10を製造した。なお、対流固定工程では、対流90を左回りに固定した。
〔実験例2〕
図8(B)に示すように、切欠部122Aが実験例1の位置から左回りに90°回転した方向に位置するように(切欠部の配置角度90°)、熱遮蔽体12を配置したこと以外は、実験例1と同じ条件で1本のシリコン単結晶10を製造した。
〔実験例3〕
図8(C)に示すように、切欠部122Aが実験例1の位置から左回りに270°回転した方向に位置するように(切欠部の配置角度270°)、熱遮蔽体12を配置したこと以外は、実験例1と同じ条件で1本のシリコン単結晶10を製造した。
〔評価〕
実験例1~3で製造したシリコン単結晶10の直胴部から複数のウェーハを取得し、当該ウェーハの酸素濃度(ASTM F121-1979)を測定した。酸素濃度の測定に、FTIR(Fourier Transform Infrared Spectroscopy:フーリエ変換赤外分光法)を用いた。
固化率で表した測定位置と酸素濃度との関係を図9に示す。なお、固化率とは、最初に坩堝に貯留されたシリコン融液の初期チャージ重量に対するシリコン単結晶の引上げ重量の割合をいう。
図9に示すように、酸素濃度は、直胴部の長手方向のいずれの位置においても、実験例2が最も高く、実験例3が最も低く、実験例1が実験例1,2の間の値であった。
実験例2の酸素濃度が最も高かった理由は、シリコン融液9の低酸素濃度領域9Bがシリコン単結晶10に接近する流れに対して、切欠部122Aにより形成された流量および流速が大きい不活性ガスの流れが逆行しており、シリコン単結晶10が低酸素濃度領域9Bを取り込みやすくなったためと推定できる。
一方、実験例3の酸素濃度が最も低かった理由は、実験例2とは逆の現象によって、シリコン単結晶10が低酸素濃度領域9Bを取り込みにくくなったためと推定できる。
また、実験例1の酸素濃度が実験例1,2の間の値であった理由は、低酸素濃度領域9Bがシリコン単結晶10に接近する流れと、切欠部122Aにより形成された不活性ガスの流れとが直交しているため、シリコン単結晶10への低酸素濃度領域9Bの取り込みやすさが実験例2と実験例3との間の状態となったためと推定できる。
また、実験例1~3の酸素濃度の測定結果に基づき、切欠部122Aの配置角度と酸素濃度との関係を評価した。その結果を図10に示す。なお、酸素濃度は、測定結果の平均値とした。また、低酸素濃度領域9Bがシリコン単結晶10に接近する流れと、切欠部122Aにより形成された不活性ガスの流れとの関係が、配置角度が180°の場合と0°の場合とで同じであるため、配置角度が180°の場合のデータとして0°のデータを用いた。さらに、配置角度が360°の位置は、0°の位置と同じであるため、0°のデータを用いた。
図10に示すように、近似曲線Aを求めると、配置角度が0°から90°の間と270°から360°の間では、切り欠き角度が大きくなるにしたがって酸素濃度が低くなり、90°から270°の間では、配置角度が大きくなるにしたがって酸素濃度が高くなることが確認できた。
以上のことから、不活性ガスのガス流動分布(切欠部122Aの位置)と、シリコン融液9の対流90の方向とを調整することによって、所定の酸素濃度を有するシリコン単結晶10を製造できることが確認できた。
1…単結晶引き上げ装置、2…チャンバ、3A…石英坩堝、7…引き上げ軸、9…シリコン融液、10…シリコン単結晶、12…熱遮蔽体、122A…切欠部、R1…第1の基準平面、R2…第2の基準平面。

Claims (5)

  1. チャンバと、シリコン融液を収容する石英坩堝と、育成中のシリコン単結晶を囲むように前記石英坩堝の上方に配置された熱遮蔽体とを備えた単結晶引き上げ装置を用い、前記石英坩堝内に不活性ガスを流しつつ、前記シリコン融液に水平磁場を印加して、前記シリコン単結晶を引き上げるシリコン単結晶の製造方法であって、
    前記熱遮蔽体の下端部と前記シリコン融液表面との間を流れる不活性ガスの流れに、前記単結晶引き上げ装置の引き上げ軸を含みかつ前記水平磁場の印加方向と平行な第2の基準平面に対して非面対称なガス流動分布が形成されるように、前記チャンバ内の状態を調整する状態調整工程と、
    前記水平磁場を印加していない状態で、前記シリコン融液を生成する融液生成工程と、
    前記シリコン融液に前記水平磁場を印加することで、前記シリコン融液内の前記水平磁場の印加方向に直交する第1の基準平面における対流の方向前記水平磁場の中心の磁力線を軸として右回りまたは左回りの方向に固定する対流固定工程と、
    前記対流の方向が前記右回りまたは左回りの方向に固定され、かつ、前記非面対称なガス流動分布が形成された状態で、前記シリコン単結晶を引き上げる育成工程とを備え、
    前記対流固定工程において、予め準備しておいた前記ガス流動分布と、前記シリコン融液の対流の方向と、前記シリコン単結晶の酸素濃度との関係に基づいて、前記対流の方向を前記シリコン単結晶の酸素濃度が所定の濃度となる方向に固定することを特徴とするシリコン単結晶の製造方法。
  2. 請求項1に記載のシリコン単結晶の製造方法において、
    前記熱遮蔽体は、前記第2の基準平面に対して非面対称構造を有し、
    前記非面対称なガス流動分布は、前記熱遮蔽体の配置状態が調整されることによって形成されることを特徴とするシリコン単結晶の製造方法。
  3. 請求項2に記載のシリコン単結晶の製造方法において、
    前記熱遮蔽体は、当該熱遮蔽体の一部に切欠部が形成された非面対称構造を有することを特徴とするシリコン単結晶の製造方法。
  4. 請求項2に記載のシリコン単結晶の製造方法において、
    前記熱遮蔽体は、当該熱遮蔽体の下端から前記シリコン融液表面までの距離が一部で異なるように形成された非面対称構造を有することを特徴とするシリコン単結晶の製造方法。
  5. 請求項3または請求項4に記載のシリコン単結晶の製造方法において、
    前記熱遮蔽体の配置状態の調整は、前記非面対称構造を有する熱遮蔽体を、その中心軸で回転させることによって行われることを特徴とするシリコン単結晶の製造方法。
JP2018222321A 2018-11-28 2018-11-28 シリコン単結晶の製造方法 Active JP7052694B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018222321A JP7052694B2 (ja) 2018-11-28 2018-11-28 シリコン単結晶の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018222321A JP7052694B2 (ja) 2018-11-28 2018-11-28 シリコン単結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2020083717A JP2020083717A (ja) 2020-06-04
JP7052694B2 true JP7052694B2 (ja) 2022-04-12

Family

ID=70909658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018222321A Active JP7052694B2 (ja) 2018-11-28 2018-11-28 シリコン単結晶の製造方法

Country Status (1)

Country Link
JP (1) JP7052694B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264784A (ja) 1999-03-17 2000-09-26 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法ならびにこの方法で製造された単結晶およびシリコンウエーハ
JP2001002492A (ja) 1999-06-17 2001-01-09 Komatsu Electronic Metals Co Ltd 単結晶製造方法およびその装置
WO2017077701A1 (ja) 2015-11-02 2017-05-11 株式会社Sumco 単結晶シリコンの製造方法および単結晶シリコン
JP2019151503A (ja) 2018-02-28 2019-09-12 株式会社Sumco シリコン単結晶の製造方法およびシリコン単結晶の引き上げ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264784A (ja) 1999-03-17 2000-09-26 Shin Etsu Handotai Co Ltd シリコン単結晶の製造方法ならびにこの方法で製造された単結晶およびシリコンウエーハ
JP2001002492A (ja) 1999-06-17 2001-01-09 Komatsu Electronic Metals Co Ltd 単結晶製造方法およびその装置
WO2017077701A1 (ja) 2015-11-02 2017-05-11 株式会社Sumco 単結晶シリコンの製造方法および単結晶シリコン
JP2019151503A (ja) 2018-02-28 2019-09-12 株式会社Sumco シリコン単結晶の製造方法およびシリコン単結晶の引き上げ装置

Also Published As

Publication number Publication date
JP2020083717A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6844560B2 (ja) シリコン融液の対流パターン制御方法、シリコン単結晶の製造方法、および、シリコン単結晶の引き上げ装置
JP6583142B2 (ja) シリコン単結晶の製造方法及び装置
JP6950581B2 (ja) シリコン単結晶の製造方法およびシリコン単結晶の引き上げ装置
WO2001063027A1 (fr) Procede de preparation d'un monocristal de silicium et monocristal de silicium obtenu
KR101385997B1 (ko) 단결정 제조장치 및 단결정 제조방법
JP4209325B2 (ja) 単結晶半導体の製造装置および製造方法
JP6977619B2 (ja) シリコン単結晶の酸素濃度推定方法、およびシリコン単結晶の製造方法
WO2014199571A1 (ja) 炭化珪素単結晶の製造方法
JP4758338B2 (ja) 単結晶半導体の製造方法
JP7052694B2 (ja) シリコン単結晶の製造方法
WO2019167986A1 (ja) シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法
JP2020114802A (ja) シリコン単結晶の製造方法
JP7006788B2 (ja) シリコン融液の対流パターン制御方法、および、シリコン単結晶の製造方法
JP4484540B2 (ja) 単結晶半導体の製造方法
KR101611439B1 (ko) 단결정의 제조 방법 및 단결정의 제조 장치
JP6919629B2 (ja) シリコン単結晶の酸素縞平坦化製造条件の決定方法、及び、それを用いたシリコン単結晶の製造方法
JP3589077B2 (ja) シリコン単結晶の製造方法ならびにこの方法で製造された単結晶およびシリコンウエーハ
JP7249913B2 (ja) シリコン単結晶の製造方法
JP2018043904A (ja) シリコン単結晶の製造方法
JP5077299B2 (ja) 単結晶製造装置及び単結晶製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7052694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150