WO2017074013A1 - 인간 및 마우스 sema3a에 교차결합하는 항체 및 그의 용도 - Google Patents

인간 및 마우스 sema3a에 교차결합하는 항체 및 그의 용도 Download PDF

Info

Publication number
WO2017074013A1
WO2017074013A1 PCT/KR2016/012072 KR2016012072W WO2017074013A1 WO 2017074013 A1 WO2017074013 A1 WO 2017074013A1 KR 2016012072 W KR2016012072 W KR 2016012072W WO 2017074013 A1 WO2017074013 A1 WO 2017074013A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
seq
sema3a
antibody
variable region
Prior art date
Application number
PCT/KR2016/012072
Other languages
English (en)
French (fr)
Inventor
남도현
신용재
이재현
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160123233A external-priority patent/KR101854529B1/ko
Priority to CN201680062739.2A priority Critical patent/CN108290942B/zh
Priority to US15/771,488 priority patent/US20180346567A1/en
Priority to JP2018542072A priority patent/JP6886474B2/ja
Priority to MX2018005202A priority patent/MX2018005202A/es
Priority to BR112018008348-8A priority patent/BR112018008348A2/pt
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Priority to AU2016346595A priority patent/AU2016346595B2/en
Priority to EP16860196.1A priority patent/EP3385281A4/en
Publication of WO2017074013A1 publication Critical patent/WO2017074013A1/ko
Priority to US15/964,463 priority patent/US10604571B2/en
Priority to US15/964,763 priority patent/US10640777B2/en
Priority to US15/964,648 priority patent/US10604572B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Definitions

  • the present invention relates to antibodies and their use which crosslink human and mouse Sema3A.
  • Sema3A is a secretory protein consisting of an Ig-like (immunoglobulin-like) C2 form domain, a PSI domain, and a Sema domain, and is known to bind to NRP1 and PLXNA1 to induce related signaling.
  • Ig-like (immunoglobulin-like) C2 form domain a PSI domain
  • Sema domain a secretory protein consisting of an Ig-like (immunoglobulin-like) C2 form domain, a PSI domain, and a Sema domain
  • NRP1 and PLXNA1 binds to NRP1 and PLXNA1 to induce related signaling.
  • the growth rate of cancer cells in the specific carcinoma with high Sema3A is high, the migration of cancer cells is increased, thereby promoting cancer metastasis and poor patient prognosis.
  • Antisema3A antibodies that neutralize Sema3A and inhibit related signaling may be a new antican
  • Antibodies that inhibit Sema3A can be used as anticancer therapies as therapeutics in glioblastomas with high Sema3A expression, pancreatic cancer, and liver cancer.
  • Sema3A plays an important role in the migration of cancer-associated macrophage (AM) cells involved in cancer growth.
  • Antibodies against Sema3A can be expected to have antitumor effects in various cancers.
  • Sema3A is considered to be a treatment target for diabetic retinopathy, autoimmune arthritis, neuropathic pain, and osteoporosis, and can be used as a treatment for many related diseases in addition to anticancer drugs.
  • the present inventors have tried to develop an antibody that binds to Sema3A, a factor involved in cancer cell growth, and prevents and treats cancer. As a result, the present inventors have cross-linking ability to human Sema3A and mouse Sema3A, and exhibit excellent cancer cell growth and migration inhibition ability Having the preventive and therapeutic effect of By developing novel antibodies, the present invention has been completed.
  • Another object of the present invention is to provide a nucleic acid molecule encoding a heavy chain variable region of an antibody against human Sema3A.
  • Another object of the present invention is to provide a nucleic acid molecule encoding a light chain variable region of an antibody against human Sema3A.
  • Another object of the present invention is to provide a recombinant vector comprising the nucleic acid molecule.
  • Another object of the present invention to provide a host cell transformed with the recombinant vector.
  • Another object of the present invention to provide a pharmaceutical composition for preventing or treating cancer.
  • the invention provides an antibody against human Sema3A (clone name A08) or an antigen binding fragment thereof, comprising:
  • a heavy chain variable region comprising the following heavy chain CDR determining amino acid sequence; CDRH1 of SEQ ID NO: 1, CDRH2 of SEQ ID NO: 2, and CDRH3 of SEQ ID NO: 3;
  • a light chain variable region comprising the following light chain CDR amino acid sequence; CDRL1 of SEQ ID NO: 4, CDRL2 of SEQ ID NO: 5 and CDRL3 of SEQ ID NO: 6.
  • the invention provides an antibody against human Sema3A (clone name C10) or an antigen binding fragment thereof comprising:
  • a light chain variable region comprising the following light chain CDR amino acid sequence; CDRL1 of SEQ ID NO: 10, CDRL2 of SEQ ID NO: 11, and CDRL3 of SEQ ID NO: 12.
  • the invention provides an antibody against human Sema3A (clone name F11) or an antigen binding fragment thereof comprising:
  • a light chain variable region comprising the following light chain CDR amino acid sequence; CDRL1 of SEQ ID NO: 16, CDRL2 of SEQ ID NO: 17, and CDRL3 of SEQ ID NO: 18.
  • the present inventors have tried to develop an antibody that binds to Sema3A, a factor involved in cancer cell growth, and prevents and treats cancer. As a result, the present inventors have cross-linking ability to human Sema3A and mouse Sema3A, and exhibit excellent cancer cell growth and migration inhibition ability Having the preventive and therapeutic effect of New antibodies have been developed.
  • Antibodies of the invention have specific binding capacity to human Sema3A.
  • the antibodies of the invention have crosslinking capacity against human Sema3A and mouse Sema3A.
  • antibody as used to refer to an antibody against human Sema3A, is a specific antibody against human Sema3A, which specifically binds to human Sema3A, and binds antigens of the antibody molecule as well as the complete antibody form. Contains fragments.
  • a complete antibody is a structure having two full length light chains and two full length heavy chains, each of which is linked by heavy and disulfide bonds.
  • the heavy chain constant region has gamma ( ⁇ ), mu ( ⁇ ), alpha ( ⁇ ), delta ( ⁇ ) and epsilon ( ⁇ ) types and subclasses gamma 1 ( ⁇ 1), gamma 2 ( ⁇ 2), and gamma 3 ( ⁇ 3). ), Gamma 4 ( ⁇ 4), alpha 1 ( ⁇ 1) and alpha 2 ( ⁇ 2).
  • the constant regions of the light chains have kappa ( ⁇ ) and lambda ( ⁇ ) types (Cellular and Molecular Immunology, Wonsiewicz, MJ, Ed., Chapter 45, pp. 41-50, WB Saunders Co. Philadelphia, PA (1991); Nisonoff, A., Introduction to Molecular Immunology, 2nd Ed., Chapter 4, pp. 45-65, sinauer Associates, Inc., Sunderland, MA (1984)).
  • the term “antigen binding fragment” means a fragment having antigen binding function and includes Fab, F (ab '), F (ab') 2 , Fv, and the like.
  • Fab in the antibody fragment has a structure having a variable region of the light and heavy chains, a constant region of the light chain and the first constant region of the heavy chain (C H1 ) having one antigen binding site.
  • F (ab ') 2 antibodies are produced when the cysteine residues of the hinge region of Fab' form disulfide bonds.
  • Double-chain Fv is a non-covalent bond in which the heavy chain variable region and the light chain variable region are linked, and the single-chain Fv (scFv) is generally a variable region of the heavy chain and the light chain through a peptide linker.
  • the covalent bonds or the C-terminus link directly to form a dimer-like structure such as a double-chain Fv.
  • Such antibody fragments can be obtained using proteolytic enzymes (for example, restriction digestion of the entire antibody with papain can yield Fab and cleavage with pepsin can yield F (ab ') 2 fragment).
  • proteolytic enzymes for example, restriction digestion of the entire antibody with papain can yield Fab and cleavage with pepsin can yield F (ab ') 2 fragment.
  • the antibody of the invention is in scFv form or in the form of a complete antibody.
  • the heavy chain constant region may be selected from any one isotype of gamma ( ⁇ ), mu ( ⁇ ), alpha ( ⁇ ), delta ( ⁇ ) or epsilon ( ⁇ ).
  • the term “heavy chain” refers to an entirety comprising a variable region domain V H and three constant region domains C H1 , C H2 and C H3 comprising an amino acid sequence having sufficient variable region sequence to confer specificity to the antigen. It means both length heavy chains and fragments thereof.
  • the term “light chain” herein also refers to both the full-length light chain and fragments thereof comprising the variable region domain V L and the constant region domain C L comprising an amino acid sequence having sufficient variable region sequence to confer specificity to the antigen. do.
  • complementarity determining region refers to the amino acid sequences of the hypervariable regions of immunoglobulin heavy and light chains (Kabat et al., Sequences of Proteins of Immunological Interest, 4th Ed., US Department of Health and Human Services, National Institutes of Health (1987)).
  • the heavy chains (CDRH1, CDRH2 and CDRH3) and light chains (CDRL1, CDRL2 and CDRL3) each contain three CDRs. CDRs provide key contact residues for the antibody to bind antigen or epitope.
  • the human Sema3A antibody or antigen-binding fragment thereof of the present invention may include a variant of the amino acid sequence described in the attached sequence list within a range capable of specifically recognizing human Sema3A.
  • changes can be made to the amino acid sequence of the antibody to improve the binding affinity and / or other biological properties of the antibody.
  • modifications include, for example, deletions, insertions and / or substitutions of amino acid sequence residues of the antibody.
  • amino acid variations are made based on the relative similarity of amino acid side chain substituents such as hydrophobicity, hydrophilicity, charge, size, and the like.
  • amino acid side chain substituents such as hydrophobicity, hydrophilicity, charge, size, and the like.
  • arginine, lysine and histidine are all positively charged residues; Alanine, glycine and serine have similar sizes; It can be seen that phenylalanine, tryptophan and tyrosine have a similar shape.
  • arginine, lysine and histidine; Alanine, glycine and serine; Phenylalanine, tryptophan and tyrosine are biologically equivalent functions.
  • each amino acid is assigned a hydrophobicity index according to its hydrophobicity and charge: isoleucine (+4.5); Valine (+4.2); Leucine (+3.8); Phenylalanine (+2.8); Cysteine / cysteine (+2.5); Methionine (+1.9); Alanine (+1.8); Glycine (-0.4); Threonine (-0.7); Serine (-0.8); Tryptophan (-0.9); Tyrosine (-1.3); Proline (-1.6); Histidine (-3.2); Glutamate (-3.5); Glutamine (-3.5); Aspartate (-3.5); Asparagine (-3.5); Lysine (-3.9); And arginine (-4.5).
  • the hydrophobic amino acid index is very important in conferring the interactive biological function of proteins. It is known that substitution with amino acids having similar hydrophobicity indexes can retain similar biological activity. When introducing mutations with reference to the hydrophobicity index, substitutions are made between amino acids which exhibit a hydrophobicity index difference of preferably within ⁇ 2, more preferably within ⁇ 1, even more preferably within ⁇ 0.5.
  • substitutions are made between amino acids which exhibit a hydrophilicity value difference of preferably within ⁇ 2, more preferably within ⁇ 1 and even more preferably within ⁇ 0.5.
  • an antibody of the present invention or a nucleic acid molecule encoding the same is also interpreted to include sequences that exhibit substantial identity with the sequences listed in the Sequence Listing.
  • the above substantial identity is at least 61% when the sequence of the present invention is aligned as closely as possible with any other sequence, and the aligned sequence is analyzed using algorithms commonly used in the art.
  • a sequence that shows homology more preferably 70% homology, even more preferably 80% homology, and most preferably 90% homology.
  • Alignment methods for sequence comparison are known in the art. Various methods and algorithms for alignment are described in Smith and Waterman, Adv . Appl . Math. 2: 482 (1981) ; Needleman and Wunsch, J.
  • NCBI National Center for Biological Information
  • BLSAT is accessible at http://www.ncbi.nlm.nih.gov/BLAST/. Sequence homology comparison methods using this program can be found at http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html.
  • FR framework region
  • CDRs sequencing analysis in the antibody variable region can be displayed based on the IMGT (http://www.imgt.org/) sequence commonly used in the art.
  • the heavy chain variable region of the A08 antibody comprises the amino acid sequence of SEQ ID NO: 19 sequence.
  • the light chain variable region of the A08 antibody comprises the amino acid sequence of SEQ ID NO: 20 sequence.
  • the heavy chain variable region of the C10 antibody comprises the amino acid sequence of SEQ ID NO: 21.
  • the light chain variable region of the C10 antibody comprises the amino acid sequence of SEQ ID NO: 22.
  • the heavy chain variable region of the F11 antibody comprises the amino acid sequence of SEQ ID NO: 23 sequence.
  • the light chain variable region of the F11 antibody comprises the amino acid sequence of SEQ ID NO: 24 sequence.
  • Antibodies of the invention include monoclonal antibodies, multispecific antibodies, human antibodies, humanized antibodies, chimeric antibodies, single chain Fvs (scFV), single chain antibodies, Fab fragments, F (ab ') fragments, disulfide-binding Fvs (sdFV) And anti-idiotype (anti-Id) antibodies, epitope-binding fragments of the antibodies, and the like.
  • the antibody of the present invention basically consists of "variable region (V H ) -linker-light chain variable region (V L ) of heavy chain".
  • the linker means an amino acid sequence of a certain length that functions to artificially link the variable regions of the heavy and light chains.
  • ScFv antibodies of the invention include V H (SEQ ID NO: 19) -Linker-V L (SEQ ID NO: 20); V H (SEQ ID NO: 21) -Linker-V L (SEQ ID NO: 22); And V H (SEQ ID NO: 23) -Linker-V L (SEQ ID NO: 24).
  • Antibodies or antigen binding fragments of the invention specifically crosslink human Sema3A and mouse Sema3A.
  • Antibodies or antigen-binding fragments of the present invention can specifically bind to mouse Sema3A as well as human Sema3A can be confirmed more accurate preclinical results in the efficacy evaluation using a mouse tumor model.
  • the invention encodes a heavy chain variable region of an antibody that cross-links human Sema3A and mouse Sema3A comprising the amino acid sequence of SEQ ID NO: 19, SEQ ID NO: 21 or SEQ ID NO: 23 It provides a nucleic acid molecule.
  • the invention encodes the light chain variable region of an antibody cross-linking to human Sema3A and mouse Sema3A comprising the amino acid sequence of SEQ ID NO: 20, SEQ ID NO: 22 or SEQ ID NO: 24 It provides a nucleic acid molecule.
  • nucleic acid molecule is meant to encompass DNA (gDNA and cDNA) and RNA molecules inclusively, and the nucleotides, which are the basic structural units in nucleic acid molecules, are modified from sugar or base sites, as well as natural nucleotides. Analogues (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews , 90: 543-584 (1990)). Nucleic acid molecular sequences encoding the heavy and light chain variable regions of the present invention can be modified. Such modifications include addition, deletion or non-conservative substitutions or conservative substitutions of nucleotides.
  • Nucleic acid molecules of the present invention encoding human Sema3A antibodies are also construed to include nucleotide sequences that exhibit substantial identity to the nucleotide sequences described above. This substantial identity is at least 80% when the nucleotide sequence of the present invention is aligned with the nucleotide sequence of the present invention to the maximum correspondence, and the aligned sequence is analyzed using algorithms commonly used in the art. A nucleotide sequence that exhibits homology, more preferably at least 90% homology, most preferably at least 95% homology.
  • the present invention provides a recombinant vector comprising the nucleic acid molecule described above.
  • vector refers to a plasmid vector as a means for expressing a gene of interest in a host cell; Cosmid vector; And viral vectors such as bacteriophage vectors, adenovirus vectors, retrovirus vectors, and adeno-associated virus vectors, and the like.
  • the nucleic acid molecule encoding the light chain variable region and the nucleic acid molecule encoding the heavy chain variable region in the vector of the present invention are operatively linked with the promoter.
  • operably linked refers to the functional binding between a nucleic acid expression control sequence (eg, an array of promoters, signal sequences, or transcriptional regulator binding sites) and other nucleic acid sequences, thereby The regulatory sequence will control the transcription and / or translation of said other nucleic acid sequence.
  • a nucleic acid expression control sequence eg, an array of promoters, signal sequences, or transcriptional regulator binding sites
  • the recombinant vector system of the present invention can be constructed through various methods known in the art, and specific methods thereof are disclosed in Sambrook et al., Molecular Cloning, A Laboratory Manual , Cold Spring Harbor Laboratory Press (2001). This document is incorporated herein by reference.
  • Vectors of the present invention can typically be constructed as vectors for cloning or vectors for expression.
  • the vector of the present invention can be constructed using prokaryotic or eukaryotic cells as hosts.
  • promoters derived from the genome of mammalian cells e.g., metallothionine promoter, ⁇ -actin promoter, human heroglobin promoter and Human muscle creatine promoter
  • promoters derived from mammalian viruses e.g., adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus promoter, tk promoter of HSV, mouse breast tumor virus (MMTV) promoter, LTR promoter of HIV, promoter of Moroni virus Epstein bar virus (EBV) and promoter of Loose sacoma virus (RSV)
  • EBV Moroni virus Epstein bar virus
  • RSV Loose sacoma virus
  • Vectors of the invention may be fused with other sequences to facilitate purification of the antibody expressed therefrom.
  • Sequences to be fused include, for example, glutathione S-transferase (Pharmacia, USA), maltose binding protein (NEB, USA), FLAG (IBI, USA) and 6x His (hexahistidine; Quiagen, USA).
  • the protein expressed by the vector of the present invention is an antibody
  • the expressed antibody can be easily purified through a Protein A column or the like without additional sequences for purification.
  • the expression vector of the present invention as an optional marker, and includes antibiotic resistance genes commonly used in the art, for example, ampicillin, gentamicin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neo There are genes resistant to mycin and tetracycline.
  • the present invention provides a host cell transformed with the recombinant vector.
  • Host cells capable of stably and continuously cloning and expressing the vectors of the present invention are known in the art and can be used with any host cell, for example, suitable eukaryotic host cells of the vector are monkey kidney cells (COS7: monkey). kidney cells, NSO cells, SP2 / 0, Chinese hamster ovary (CHO) cells, W138, baby hamster kidney (BHK) cells, MDCK, myeloma cell lines, HuT 78 cells and HEK-293 cells Including but not limited to.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising (a) a pharmaceutically effective amount of a human Sema3A antibody or antigen-binding fragment thereof of the present invention as described above; And (b) provides a pharmaceutical composition for preventing or treating cancer comprising a pharmaceutically acceptable carrier.
  • composition of the present invention utilizes the above-described human Sema3A antibody or antigen-binding fragment thereof of the present invention as an active ingredient, the contents in common between the two are described in order to avoid excessive complexity of the present specification by repeated description. Omit.
  • the human Sema3A antibody of the present invention inhibits the growth of cancer cells from various carcinomas due to high anti-Sema3A binding and thus inhibition of Sema3A function, and phosphorylation of Sema3A and ERK, a lower signal transducing agent Suppresses Sema3A signaling and inhibits cancer cell migration. Therefore, the antibodies of the present invention are very effective for the prevention and treatment of cancer.
  • Cancers that can be prevented or treated by the compositions of the present invention include various cancers known in the art and include, for example, breast cancer, colon cancer, lung cancer, gastric cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, brain cancer, Include uterine cancer, nasopharyngeal cancer, laryngeal cancer, colon cancer, ovarian cancer, rectal cancer, colon cancer, vaginal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, ureter cancer, urethral cancer, prostate cancer, bronchial cancer, bladder cancer, kidney cancer and bone marrow cancer do.
  • the cancer that can be prevented or treated by the composition of the present invention is a Sema3A expressing cancer.
  • Pharmaceutically acceptable carriers included in the pharmaceutical compositions of the present invention are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like It doesn't happen.
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, a kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mann
  • compositions of the present invention can be administered parenterally, such as intravenous, subcutaneous, intramuscular, intraperitoneal, and the like.
  • Suitable dosages of the pharmaceutical compositions of the invention vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to reaction, Usually a skilled practitioner can easily determine and prescribe a dosage effective for the desired treatment or prophylaxis.
  • the daily dose of the pharmaceutical composition of the present invention is 0.0001-100 mg / kg.
  • pharmaceutically effective amount means an amount sufficient to prevent or treat cancer.
  • compositions of the present invention may be prepared in unit dosage form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container.
  • the formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media or in the form of extracts, powders, suppositories, powders, granules, tablets or capsules, and may further comprise dispersants or stabilizers.
  • the present invention provides an antibody having crosslinking ability against human Sema3A and mouse Sema3A.
  • the antibody of the present invention can be used as an antibody therapeutic for inhibiting Sema3A in various carcinomas such as glioblastoma, pancreatic cancer, and liver cancer with high Sema3A expression.
  • Sema3A is considered to be a therapeutic target for diabetic retinopathy, autoimmune arthritis, neuropathic pain, osteoporosis, and the antibody or antigen-binding fragment of the present invention can be used as a therapeutic agent for related diseases in addition to anticancer drugs.
  • the antibody of the present invention inhibits the growth of cancer cells derived from various carcinomas due to high anti-Sema3A binding and thus suppression of Sema3A function, and inhibits the migration of cancer cells by inhibiting ERK phosphorylation in the lower signaling agent of Sema3A. Very effective in prevention and treatment.
  • FIG. 1 is a schematic diagram of a phage display selection procedure for identifying anti-Sema3A scFv antibody fragments.
  • 2 is a graph showing phage display panning results.
  • Figure 3 shows the results of analyzing the binding capacity of 52 scFv antibody fragments that bind to human Sema3A.
  • FIG. 6 is a schematic diagram of phagemid vector for scFv antibody fragment production.
  • Figure 13 is the result of confirming the cell migration inhibitory ability using anti-Sema3A scFv and 83 cells.
  • Figure 15 shows the results of confirming the size of the anti-Sema3A IgG through Coomassie staining.
  • Figure 16 shows the results confirming the binding capacity for human and mouse Sema3A.
  • Figure 21 shows the results confirming the anti-Sema3A antibody efficacy that inhibits ERK phosphorylation.
  • Figure 22 shows the results of confirming the anti-Sema3A IgG glioblastoma cell growth inhibitory ability.
  • Figure 23 is the result of measuring the cell growth inhibition according to the anti Sema3A IgG concentration.
  • Figure 24 shows the results confirming tumor size reduction by anti-Sema3A IgG in animal models.
  • 25 shows the results of measuring tumor weight change by anti-Sema3A IgG in an animal model.
  • Figure 26 is the result of measuring the weight change according to the anti-Sema3A IgG administration in the animal model.
  • Figure 28 shows the results of confirming the TAM distribution after administration of anti-Sema3A IgG in an animal model.
  • Example 1 recombinant human Sema3a Protein-based Panning
  • scFv antibody fragments binding to human Sema3A were identified through phage display screening.
  • the phage display screening process is shown in FIG. 1.
  • kanamycin antibiotic antibiotic gene introduced into helper phage
  • PEG polyethylene glycol
  • Phage display screening was performed using the phage library thus obtained, which proceeded to repeated round panning.
  • the counted sublibrary was collected at a level of about 2.5 ⁇ 10 12 pfu and treated for 1 hour in an immunotube coated with rhSema3A-Fc protein diluted to 10 ⁇ g / ml in TBS.
  • the immune tube and phage particles Prior to treatment, the immune tube and phage particles were treated with a blocking solution containing 3% whole milk for 1 hour to prevent nonspecific binding.
  • Phages bound to Sema3A were recovered by washing the immunotubes with TBST (0.1% Tween20) solution and then leaving 100 mM TEA for 10 minutes.
  • Phage particle amplification was then performed by taking 50 ⁇ l of the stored all-time phage solution to proceed with repeated panning cycles. Phage particles recovered by incorporating helper phage after culturing in host cell ER2537 were separated by PEG precipitation and used the same in the next round panning. As the number of cycles was repeated, the ratio of phage particles before and after panning was increased, which means that phage particles specific for Sema3A are amplified through panning. This figure is specified in FIG. 2.
  • Example 2 term Sema3a scFv ELISA and Sequence Analysis for Candidate Selection
  • Phage particles recovered in the fourth panning were identified as colonies in the culture medium through infection with the host cell ER2537. These colonies were taken and inoculated in a 96 well plate containing 200 ⁇ l SB / ampicillin culture medium and incubated at 37 ° C. for 2-3 hours. Then, each well was treated with IPTG (Isopropyl ⁇ -D-1-thiogalactopyranoside) at a final concentration of 1 mM to induce expression of scFv-pIII protein and incubated overnight at 30 ° C.
  • IPTG Isopropyl ⁇ -D-1-thiogalactopyranoside
  • the cultured plate was centrifuged at 3,000 rpm for 15 minutes to remove supernatant and 40 ⁇ l of TES solution (20% w / v sucrose, 50 mM) per well to recover phage particles in the periplasm of cultured cells.
  • Cells were lysed by adding Tris, 1 mM EDTA, pH 8.0) and standing at 4 ° C for 30 minutes.
  • 60 ⁇ l of 0.2X TES solution was treated and placed at 4 ° C. for 30 minutes to decompose the cells by osmotic pressure.
  • the plate was then centrifuged at 3,000 rpm for 15 minutes to obtain supernatant scFv-pIII protein.
  • the total number of clones analyzed was 86, of which 52 clones (binding capacity> 2) showed high binding capacity to Sema3A (FIG. 3).
  • BSA solution was used and 31 clones having high binding capacity were selected from the 52 clones through reconfirmation ELISA (FIG. 4).
  • the phagemid was then recovered from 31 clones, followed by DNA sequencing, and clones with a total of five different sequences were selected. There were three clones with three identical DNA sequences, three A08s, 21 F11s, and C10s.
  • A10 and E10 clones were identified to have different DNA sequences (FIG. 5). F11, A08, and C10 were selected as the final Sema3A scFv candidates in the order of the same sequence of clones.
  • phagemid The basic composition of phagemid can be confirmed in FIG. 6.
  • scFv alone expression is impossible because it inhibits the transcriptional codon (amber codon (UAG)) located in front of phage pIII. Therefore, phagemid was transduced into the expression strain using an expression strain (TOP10F ′) that is a non-suppressor strain. Thereafter, each phagemid was identified through the DNA sequencing, and the expression strains without mutation were taken. The expression strains were taken as colonies, and then inoculated in 3 ml of LB / ampicillin culture medium and then cultured overnight at 37 ° C.
  • the scFv protein present in the filtered solution was combined with 1 ml of Ni-NTA beads (Qiagen) for 1 hour at room temperature for His-tag purification, and then packed in a gravity column (Bio-rad) to 200 mM. Recovered through imidazole solution. After expression and purification of each clone, SDS-PAGE and coomassie blue staining confirmed scFv corresponding size of about 28 kDa and the results are shown in FIG. 7.
  • the DNA sequences of each clone in purified scFv form are shown in Tables 1 and 2.
  • Light chain FR region and CDR region sequence information of three anti-Sema3A scFv antibody fragments Light chain FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4 A08 QSVLTQPPSASGTPGQRVTISCTGS SSNIGSNA VTWYQQLPGTAPKLLIY DDN HRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYC GAWDDSLSAYV FGGGTKLTVL C10 QSVLTQPPSASGTPGQRVTISCSGS SSNIGNNS VNWYQQLPGTAPKLLIY SDS QRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYC GSWDYSLSAYV FGGGTKLTVL F11 QSVLTQPPSASGTPGQRVTISCSGS SSNIGNND VSWYQQLPGTAPKLLIY ADS HRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYC GAWDSSLSGYV
  • each scFv in 200 ng NRP1 and BSA-coated 96 wells 2,000 ng / ml, 1,000 ng / ml, 500 ng / ml, 250 ng OD values were analyzed by treatment at concentrations of / ml, 125 ng / ml, 62.5 ng / ml, 31.25 ng / ml, and 15.62 ng / ml.
  • the size of the binding ability to Sema3A increases with increasing concentrations of scFv bound to Sema3A compared to BSA through the change of OD value, which can be seen in FIG. 8.
  • Example 4 term Sema3a scFv Cell growth Inhibitory ability Cell migration Inhibitory ability Confirm
  • the cell growth rate was measured using the EZ-Cytox Cell Viability Assay Kit (Daeil Lab.Service). 559 cells with low secretion of Sema3A showed no change in cell growth rate after anti-Sema3A scFv treatment, whereas 131 cells with high secretion of Sema3A showed 70% cell growth rate after treatment with anti-Sema3A scFv (FIG. 10).
  • cell migration assays were performed using S873 MG, 131, 83 cells, which are Sema3A hypersecreting cells.
  • PLO Poly-L-Ornithine
  • U87-MG cells 5 ⁇ 10 4 U87-MG cells and 50 ⁇ g / ml of three Sema3A scFv were placed in a transwell in DMEM medium without 100 ⁇ l of growth factor, and the wells were placed in 10% FBS ( 600 ⁇ l of DMEM medium containing Fetal bovine serum) was added and incubated overnight at 37 ° C.
  • FBS 600 ⁇ l of DMEM medium containing Fetal bovine serum
  • Patient-derived cells 131 and 83 cells contained 1 ⁇ 10 5 cells and three Sema3A scFv in 100 ⁇ l NBA medium without growth factors (EGF and bFGF), and the NBA medium containing growth factors in the well Incubated overnight at 37 ° C.
  • the heavy and light chain genes of Sema3A scFv were transfected using the Expi 293F expression system (life technologies).
  • the yield was 118 mg / L for A08, 138 mg / L for C10, 330 mg / L for F11.
  • High-performance liquid chromatography was introduced to determine the purity of the purified anti-Sema3A antibody. Since the size of the IgG is 150 kD, it corresponds to the substance coming out at 16.388 minutes from the marker peak.
  • Sema3A antibodies (A08, C10, F11) were detected at this peak and the purity was confirmed to be 98%, 98.5%, 99%.
  • SDS PAGE and Coomassie staining confirmed anti Sema3A IgG morphology according to size. In the unreduced condition, a band was detected at 150 kD, the IgG size, and in the reduced condition, disulfide bonds were broken, resulting in 50 and 25 kD heavy chain sequences and light chain sequences, respectively (FIG. 15).
  • ELISA was performed at two concentration conditions (500 nM, 50 nM) to determine the binding capacity of the three Sema3A antibodies to Sema3A.
  • BSA was used as a negative control group
  • mouse Sema3A and human Sema3A proteins were used as experimental groups.
  • Three Sema3A antibodies were confirmed to have binding capacity to human Sema3A and mouse Sema3A, which can be seen in FIG.
  • the reason for having a binding ability to mouse Sema3A is less cross-specificity than other proteins, the significance of the human Sema3A and mouse Sema3A sequence is considered to have a cross-linking ability to human and mouse Sema3A more than 98% (Fig. 16).
  • cancer cell migration inhibition of anti-Sema3A scFv was re-validated to inhibit the cancer cell migration of three Sema3A antibodies (A08, C10, F11) converted to IgG form.
  • Cell migration was performed using U87-MG, 131, 83 cells oversecreting Sema3A and 2 ⁇ g / ml anti Sema3A antibody.
  • Cell migration was performed in the same manner as in FIGS. 11 to 13 and described above.
  • A08 showed the highest cell migration inhibition rate (50%) (FIG. 18).
  • F11 had the highest effect and 74% and 52% showed lower cell migration than the control group (Fig. 18). 19, 20).
  • ERK signaling mechanism is involved in Sema3A-induced cell migration in colorectal cancer (Neufeld, G et al., Cold Spring Harbor perspectives in medicine, 2012) and ERK with Rho / ROCK signaling mechanism in glioblastoma A study has been reported that signaling mechanisms are involved (Zohrabian, VM, Anticancer research, 119-123,2009).
  • Sema3A is involved in glioblastoma cell growth.
  • Example 8 131 Term Using Subcutaneous Model Sema3a IgG Efficacy Evaluation
  • an xenograft model using glioblastoma 131 cells hypersecreting Sema3A was constructed. After injecting Anti-Sema3A F11 for 3 weeks (iv) at 5 mg / kg and 25 mg / kg for 3 weeks, the tumor size was 60% compared to the control group. It was confirmed that is reduced (Fig. 24). Tumor weight change in the population was calculated similar to the tumor size comparison (FIG. 25).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 인간 Sema3A 및 마우스 Sema3A에 대하여 교차결합능을 갖는 항체를 제공한다. 본 발명의 항체는 Sema3A 발현이 높은 교모세포종, 췌장암, 간암 등의 다양한 암종에서 Sema3A를 억제하는 항체 치료제로 사용 가능하다. Sema3A는 당뇨망막병증, 자가면역관절염, 신경병증 통증, 골다공증의 치료 타겟으로 여겨지고 있어 본 발명의 항체 또는 항원 결합 단편은 항암치료제 외에도 관련 질환에 대한 치료제로 사용될 수 있다. 본 발명의 항체는 높은 항 Sema3A 결합 및 이에 따른 Sema3A 기능 억제로 인해 다양한 암종 유래 암세포의 성장을 억제하며, Sema3A의 하위 신호전달물질 중 ERK 인산화를 억제하여 암세포의 이동을 억제함으로써 암의 예방 및 치료에 매우 유효하다.

Description

인간 및 마우스 SEMA3A에 교차결합하는 항체 및 그의 용도
본 특허출원은 2015년 10월 27일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2015-0149272호 및 2016년 9월 26일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2016-0123233호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
본 발명은 인간 및 마우스 Sema3A에 교차결합하는 항체 및 그의 용도 에 관한 것이다.
Sema3A는 Ig-like(immunoglobulin-like) C2 형태 도메인, PSI 도메인, Sema 도메인으로 구성되어 있는 분비성 단백질로서 NRP1과 PLXNA1에 결합하여 관련 신호전달을 유도하는 것으로 알려져 있다. 또한, Sema3A가 높은 특이적 암종에서 암세포의 성장 속도가 높고, 암세포의 이동이 증가하여 암 전이가 촉진되고 환자 예후가 좋지 않은 것으로 보고되고 있다. 현재 항암표적으로 Sema3A를 억제시키는 항암제가 보고되고 있지 않아 Sema3A를 중화시켜 관련 신호전달을 억제하는 항 Sema3A 항체가 새로운 항암치료 전략이 될 수 있다.
Sema3A를 억제하는 항체는 Sema3A 발현이 높은 교모세포종, 췌장암, 간암 등의 암종에서 치료제로써 항암 치료요법으로 사용 가능하다. 또한, Sema3A는 암 성장에 관여하는 암 관련 대식세포(Tumor-Associated Macrophage, AM)의 이동에 중요한 역할을 하는 인자로 Sema3A에 대한 항체는 다양한 암종에서 항종양 효과를 기대할 수 있다. Sema3A는 당뇨망막병증, 자가면역관절염, 신경병증 통증, 골다공증의 치료 타겟으로 여겨지고 있어 항암치료제 외에도 많은 관련 질환에서의 치료제로 사용될 수 있다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 암세포 성장에 관여하는 인자인 Sema3A에 결합하며 암을 예방 및 치료할 수 있는 항체를 개발하고자 노력한 결과, 인간 Sema3A 및 마우스 Sema3A에 교차결합능을 가지며, 암세포의 성장 및 이동 억제능을 나타냄으로써 우수한 암의 예방 및 치료 효과를 갖는 신규한 항체를 개발함으로써, 본 발명을 완성하게 되었다.
본 발명의 목적은 인간 Sema3A에 대한 항체 또는 그의 항원 결합 단편을 제공하는 데 있다.
본 발명의 다른 목적은 인간 Sema3A에 대한 항체의 중쇄 가변영역을 코딩하는 핵산 분자를 제공하는 데 있다.
본 발명의 다른 목적은 인간 Sema3A에 대한 항체의 경쇄 가변영역을 코딩하는 핵산 분자를 제공하는 데 있다.
본 발명의 다른 목적은 상기 핵산 분자를 포함하는 재조합 벡터를 제공하는 데 있다.
본 발명의 다른 목적은 상기 재조합 벡터로 형질전환된 숙주세포를 제공하는 데 있다.
본 발명의 다른 목적은 암 예방 또는 치료용 약제학적 조성물을 제공하는 데 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 다음을 포함하는 인간 Sema3A에 대한 항체(클론명 A08) 또는 그의 항원 결합 단편을 제공한다:
(a) 다음의 중쇄 CDR(complementarity determining region) 아미노산 서열을 포함하는 중쇄 가변영역; 서열목록 제1서열의 CDRH1, 서열목록 제2서열의 CDRH2 및 서열목록 제3서열의 CDRH3; 그리고
(b) 다음의 경쇄 CDR 아미노산 서열을 포함하는 경쇄 가변영역; 서열목록 제4서열의 CDRL1, 서열목록 제5서열의 CDRL2 및 서열목록 제6서열의 CDRL3.
본 발명의 다른 일 양태에 따르면, 본 발명은 다음을 포함하는 인간 Sema3A에 대한 항체(클론명 C10) 또는 그의 항원 결합 단편을 제공한다:
(a) 다음의 중쇄 CDR 아미노산 서열을 포함하는 중쇄 가변영역; 서열목록 제7서열의 CDRH1, 서열목록 제8서열의 CDRH2 및 서열목록 제9서열의 CDRH3; 그리고
(b) 다음의 경쇄 CDR 아미노산 서열을 포함하는 경쇄 가변영역; 서열목록 제10서열의 CDRL1, 서열목록 제11서열의 CDRL2 및 서열목록 제12서열의 CDRL3.
본 발명의 다른 일 양태에 따르면, 본 발명은 다음을 포함하는 인간 Sema3A에 대한 항체(클론명 F11) 또는 그의 항원 결합 단편을 제공한다:
(a) 다음의 중쇄 CDR 아미노산 서열을 포함하는 중쇄 가변영역; 서열목록 제13서열의 CDRH1, 서열목록 제14서열의 CDRH2 및 서열목록 제15서열의 CDRH3; 그리고
(b) 다음의 경쇄 CDR 아미노산 서열을 포함하는 경쇄 가변영역; 서열목록 제16서열의 CDRL1, 서열목록 제17서열의 CDRL2 및 서열목록 제18서열의 CDRL3.
본 발명자들은 암세포 성장에 관여하는 인자인 Sema3A에 결합하며 암을 예방 및 치료할 수 있는 항체를 개발하고자 노력한 결과, 인간 Sema3A 및 마우스 Sema3A에 교차결합능을 가지며, 암세포의 성장 및 이동 억제능을 나타냄으로써 우수한 암의 예방 및 치료 효과를 갖는 신규한 항체를 개발하였다.
본 발명의 항체는 인간 Sema3A에 대하여 특이적 결합능을 갖는다. 특히, 본 발명의 항체는 인간 Sema3A 및 마우스 Sema3A에 대하여 교차결합능을 갖는다.
본 명세서에서, 인간 Sema3A에 대한 항체를 언급하면서 사용되는 용어 “항체(antibody)”는 인간 Sema3A에 대한 특이 항체로서, 인간 Sema3A에 대해 특이적으로 결합하며, 완전한 항체 형태뿐만 아니라 항체 분자의 항원 결합 단편을 포함한다.
완전한 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 구조이며 각각의 경쇄는 중쇄와 다이설파이드 결합으로 연결되어 있다. 중쇄 불변 영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ) 및 엡실론(ε) 타입을 가지고 서브클래스로 감마1(γ1), 감마2(γ2), 감마3(γ3), 감마4(γ4), 알파1(α1) 및 알파2(α2)를 가진다. 경쇄의 불변영역은 카파(κ) 및 람다(λ) 타입을 가진다 (Cellular and Molecular Immunology, Wonsiewicz, M. J., Ed., Chapter 45, pp. 41-50, W. B. Saunders Co. Philadelphia, PA(1991); Nisonoff, A., Introduction to Molecular Immunology, 2nd Ed., Chapter 4,pp. 45-65, sinauer Associates, Inc., Sunderland, MA (1984)).
본 명세서에서, 용어 “항원 결합 단편”은 항원 결합 기능을 보유하고 있는 단편을 의미하며, Fab, F(ab'), F(ab')2 및 Fv 등을 포함한다. 항체 단편 중 Fab는 경쇄 및 중쇄의 가변영역과 경쇄의 불변 영역 및 중쇄의 첫 번째 불변 영역(CH1)을 가지는 구조로 1개의 항원 결합 부위를 가진다. Fab'는 중쇄 CH1 도메인의 C-말단에 하나 이상의 시스테인 잔기를 포함하는 힌지 영역(hinge region)을 가진다는 점에서 Fab와 차이가 있다. F(ab')2 항체는 Fab'의 힌지 영역의 시스테인 잔기가 디설파이드 결합을 이루면서 생성된다. Fv는 중쇄 가변부위 및 경쇄 가변부위만을 가지고 있는 최소의 항체조각으로 Fv 단편을 생성하는 재조합 기술은 PCT 국제 공개특허출원 WO 88/10649, WO 88/106630, WO 88/07085, WO 88/07086 및 WO 88/09344에 개시되어 있다. 이중쇄 Fv(two-chain Fv)는 비공유 결합으로 중쇄 가변부위와 경쇄 가변부위가 연결되어 있고 단쇄 Fv(single-chain Fv, scFv)는 일반적으로 펩타이드 링커를 통하여 중쇄의 가변 영역과 경쇄의 가변 영역이 공유 결합으로 연결되거나 또는 C-말단에서 바로 연결되어 있어서 이중쇄 Fv와 같이 다이머와 같은 구조를 이룰 수 있다. 이러한 항체 단편은 단백질 가수분해 효소를 이용해서 얻을 수 있고(예를 들어, 전체 항체를 파파인으로 제한 절단하면 Fab를 얻을 수 있고 펩신으로 절단하면 F(ab')2 단편을 얻을 수 있다), 바람직하게는 유전자 재조합 기술을 통하여 제작할 수 있다.
본 발명의 일 구현예에 따르면, 본 발명의 항체는 scFv 형태이거나 완전한 항체 형태이다. 또한, 중쇄 불변 영역은 감마(γ), 뮤(μ), 알파(α), 델타(δ) 또는 엡실론(ε) 중의 어느 한 이소타입으로부터 선택될 수 있다.
본 명세서에서, 용어 “중쇄”는 항원에 특이성을 부여하기 위한 충분한 가변 영역 서열을 갖는 아미노산 서열을 포함하는 가변 영역 도메인 VH 및 3 개의 불변 영역 도메인 CH1, CH2 및 CH3를 포함하는 전체길이 중쇄 및 이의 단편을 모두 의미한다. 또한 본 명세서에서 용어“경쇄”는 항원에 특이성을 부여하기 위한 충분한 가변영역 서열을 갖는 아미노산 서열을 포함하는 가변 영역 도메인 VL 및 불변 영역 도메인 CL을 포함하는 전체길이 경쇄 및 이의 단편을 모두 의미한다.
본 명세서에서, 용어 “CDR(complementarity determining region)”은 면역글로블린 중쇄 및 경쇄의 고가변 영역(hypervariable region)의 아미노산 서열을 의미한다(Kabat et al., Sequences of Proteins of Immunological Interest, 4th Ed., U.S. Department of Health and Human Services, National Institutes of Health (1987)). 중쇄(CDRH1, CDRH2 및 CDRH3) 및 경쇄(CDRL1, CDRL2 및 CDRL3)에는 각각 3개의 CDRs이 포함되어 있다. CDR은 항체가 항원 또는 에피토프에 결합하는 데 있어서 주요한 접촉 잔기를 제공한다.
본 발명의 인간 Sema3A 항체 또는 그의 항원 결합 단편은, 인간 Sema3A를 특이적으로 인식할 수 있는 범위 내에서 첨부한 서열목록에 기재된 아미노산 서열의 변이체를 포함할 수 있다. 예를 들면, 항체의 결합 친화도 및/또는 기타 생물학적 특성을 개선시키기 위하여 항체의 아미노산 서열에 변화를 줄 수 있다. 이러한 변형은, 예를 들어 항체의 아미노산 서열 잔기의 결실, 삽입 및/또는 치환을 포함한다.
이러한 아미노산 변이는 아미노산 곁사슬 치환체의 상대적 유사성, 예컨대, 소수성, 친수성, 전하, 크기 등에 기초하여 이루어진다. 아미노산 곁사슬 치환체의 크기, 모양 및 종류에 대한 분석에 의하여, 아르기닌, 라이신과 히스티딘은 모두 양전하를 띤 잔기이고; 알라닌, 글라이신과 세린은 유사한 크기를 갖으며; 페닐알라닌, 트립토판과 타이로신은 유사한 모양을 갖는다는 것을 알 수 있다. 따라서, 이러한 고려 사항에 기초하여, 아르기닌, 라이신과 히스티딘; 알라닌, 글라이신과 세린; 그리고 페닐알라닌, 트립토판과 타이로신은 생물학적으로 기능 균등물이라 할 수 있다.
변이를 도입하는 데 있어서, 아미노산의 소수성 인덱스(hydropathic index)가 고려될 수 있다. 각각의 아미노산은 소수성과 전하에 따라 소수성 인덱스가 부여되어 있다: 아이소루이신(+4.5); 발린(+4.2); 루이신(+3.8); 페닐알라닌(+2.8); 시스테인/시스타인(+2.5); 메티오닌(+1.9); 알라닌(+1.8); 글라이신(-0.4); 쓰레오닌(-0.7); 세린 (-0.8); 트립토판(-0.9); 타이로신(-1.3); 프롤린(-1.6); 히스티딘(-3.2); 글루타메이트(-3.5); 글루타민(-3.5); 아스파르테이트(-3.5); 아스파라긴(-3.5); 라이신(-3.9); 및 아르기닌(-4.5).
단백질의 상호적인 생물학적 기능(interactive biological function)을 부여하는 데 있어서 소수성 아미노산 인덱스는 매우 중요하다. 유사한 소수성 인덱스를 가지는 아미노산으로 치환하여야 유사한 생물학적 활성을 보유할 수 있다는 것은 공지된 사실이다. 소수성 인덱스를 참조하여 변이를 도입시키는 경우, 바람직하게는 ± 2 이내, 보다 바람직하게는 ± 1 이내, 보다 더 바람직하게는 ± 0.5 이내의 소수성 인덱스 차이를 나타내는 아미노산 사이에 치환을 한다.
한편, 유사한 친수성 값(hydrophilicity value)을 가지는 아미노산 사이의 치환이 균등한 생물학적 활성을 갖는 단백질을 초래한다는 것도 잘 알려져 있다. 미국 특허 제4,554,101호에 개시된 바와 같이, 다음의 친수성 값이 각각의 아미노산 잔기에 부여되어 있다: 아르기닌(+3.0); 라이신(+3.0); 아스팔테이트(+3.0± 1); 글루타메이트(+3.0± 1); 세린(+0.3); 아스파라긴(+0.2); 글루타민(+0.2); 글라이신(0); 쓰레오닌(-0.4); 프롤린(-0.5 ± 1); 알라닌(-0.5); 히스티딘(-0.5); 시스테인(-1.0); 메티오닌(-1.3); 발린(-1.5); 루이신(-1.8); 아이소루이신(-1.8); 타이로신(-2.3); 페닐알라닌(-2.5); 트립토판(-3.4).
친수성 값을 참조하여 변이를 도입시키는 경우, 바람직하게는 ± 2 이내, 보다 바람직하게는 ± 1 이내, 보다 더 바람직하게는 ± 0.5 이내의 친수성 값 차이를 나타내는 아미노산 사이에 치환을 한다.
분자의 활성을 전체적으로 변경시키지 않는 단백질에서의 아미노산 교환은 당해 분야에 공지되어 있다(H. Neurath, R.L.Hill, The Proteins, Academic Press, New York, 1979). 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다.
상술한 생물학적 균등 활성을 갖는 변이를 고려한다면, 본 발명의 항체 또는 이를 코딩하는 핵산 분자는 서열목록에 기재된 서열과 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 61%의 상동성, 보다 바람직하게는 70%의 상동성, 보다 더 바람직하게는 80%의 상동성, 가장 바람직하게는 90%의 상동성을 나타내는 서열을 의미한다. 서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. 얼라인먼트에 대한 다양한 방법 및 알고리즘은 Smith and Waterman, Adv . Appl . Math. 2:482(1981); Needleman and Wunsch, J. Mol . Bio. 48:443(1970); Pearson and Lipman, Methods in Mol . Biol . 24: 307-31(1988); Higgins and Sharp, Gene 73:237-44(1988); Higgins and Sharp, CABIOS 5:151-3(1989); Corpet et al., Nuc . Acids Res. 16:10881-90(1988); Huang et al., Comp. Appl . BioSci . 8:155-65(1992) and Pearson et al., Meth . Mol . Biol . 24:307-31(1994)에 개시되어 있다. NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol . 215:403-10(1990))은 NCBI(National Center for Biological Information) 등에서 접근 가능하며, 인터넷 상에서 blastp, blasm, blastx, tblastn and tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLSAT는 http://www.ncbi.nlm.nih.gov/BLAST/에서 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 http://www.ncbi.nlm.nih.gov/BLAST/blast_help.html에서 확인할 수 있다. 또한 항체 가변영역 내 FR(framework region) 및 CDRs 서열순서 분석은 당업계에서 보편적으로 이용하는 IMGT(http://www.imgt.org/) 순서를 기준하여 표시할 수 있다.
본 발명의 일 구현예에 따르면, A08 항체의 중쇄 가변영역은 서열목록 제19서열의 아미노산 서열을 포함한다.
본 발명의 일 구현예에 따르면, A08 항체의 경쇄 가변영역은 서열목록 제20서열의 아미노산 서열을 포함한다.
본 발명의 일 구현예에 따르면, C10 항체의 중쇄 가변영역은 서열목록 제21서열의 아미노산 서열을 포함한다.
본 발명의 일 구현예에 따르면, C10 항체의 경쇄 가변영역은 서열목록 제22서열의 아미노산 서열을 포함한다.
본 발명의 일 구현예에 따르면, F11 항체의 중쇄 가변영역은 서열목록 제23서열의 아미노산 서열을 포함한다.
본 발명의 일 구현예에 따르면, F11 항체의 경쇄 가변영역은 서열목록 제24서열의 아미노산 서열을 포함한다.
본 발명의 항체는 단일클론 항체, 다특이적 항체, 인간 항체, 인간화 항체, 키메라 항체, 단쇄 Fvs(scFV), 단쇄 항체, Fab 단편, F(ab')단편, 다이설파이드-결합 Fvs(sdFV) 및 항-이디오타입(항-Id) 항체, 그리고 상기 항체들의 에피토프-결합 단편 등을 포함하나, 이에 한정되는 것은 아니다.
본 발명의 항체는 기본적으로, "중쇄의 가변 영역(VH)-링커-경쇄의 가변 영역(VL)"으로 이루어져 있다. 본 발명의 scFv 항체에서, 상기 링커는 중쇄 및 경쇄의 가변성 부위를 인위적으로 연결하는 작용을 하는 일정 길이의 아미노산 서열을 의미한다.
본 발명의 scFv 항체는 VH(서열목록 제19서열)-링커-VL(서열목록 제20서열); VH(서열목록 제21서열)-링커-VL(서열목록 제22서열); 및 VH(서열목록 제23서열)-링커-VL(서열목록 제24서열)로 표시될 수 있다.
본 발명의 항체 또는 항원 결합 단편은 인간 Sema3A 및 마우스 Sema3A에 특이적으로 교차결합한다. 본 발명의 항체 또는 항원 결합 단편은 인간 Sema3A 뿐 만 아니라 마우스 Sema3A에 특이적으로 결합할 수 있어 마우스 종양모델을 이용한 효능 평가에서 보다 정확한 전임상 결과를 확인할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 서열목록 제19서열, 서열목록 제21서열 또는 서열목록 제23서열의 아미노산 서열을 포함하는 인간 Sema3A 및 마우스 Sema3A에 교차결합하는 항체의 중쇄 가변영역을 코딩하는 핵산 분자를 제공한다.
본 발명의 다른 양태에 따르면, 본 발명은 서열목록 제20서열, 서열목록 제22서열 또는 서열목록 제24서열의 아미노산 서열을 포함하는 인간 Sema3A 및 마우스 Sema3A에 교차결합하는 항체의 경쇄 가변영역을 코딩하는 핵산 분자를 제공한다.
본 명세서에서, 용어 “핵산 분자”는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 가지며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다(Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)). 본 발명의 상기 중쇄 가변영역 및 경쇄 가변영역을 코딩하는 핵산 분자 서열은 변형될 수 있다. 상기 변형은 뉴클레오타이드의 추가, 결실 또는 비보존적 치환 또는 보존적 치환을 포함한다.
인간 Sema3A 항체를 코딩하는 본 발명의 핵산 분자는 상기한 뉴클레오타이드 서열에 대하여 실질적인 동일성을 나타내는 뉴클레오타이드 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 뉴클레오타이드 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 80%의 상동성, 보다 바람직하게는 최소 90%의 상동성, 가장 바람직하게는 최소 95%의 상동성을 나타내는 뉴클레오타이드 서열을 의미한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 핵산 분자를 포함하는 재조합 벡터를 제공한다.
본 명세서에서 용어 “벡터”는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단으로 플라스미드 벡터; 코즈미드 벡터; 그리고 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터 같은 바이러스 벡터 등을 포함된다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 벡터에서 경쇄 가변영역을 코딩하는 핵산 분자 및 중쇄 가변영역을 코딩하는 핵산 분자는 프로모터와 작동적으로 결합(operatively linked)되어 있다.
본 명세서에서, 용어 “작동적으로 결합된”은 핵산 발현 조절 서열(예: 프로모터, 시그널 서열, 또는 전사조절인자 결합 위치의 어레이)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절 서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다.
본 발명의 재조합 벡터 시스템은 당업계에 공지된 다양한 방법을 통해 구축될 수 있으며, 이에 대한 구체적인 방법은 Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(2001)에 개시되어 있으며, 이 문헌은 본 명세서에 참조로서 삽입된다.
본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다.
예를 들어, 본 발명의 벡터가 발현 벡터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 지놈으로부터 유래된 프로모터(예: 메탈로티오닌 프로모터, β-액틴 프로모터, 사람 헤로글로빈 프로모터 및 사람 근육 크레아틴 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터, HSV의 tk 프로모터, 마우스 유방 종양 바이러스(MMTV) 프로모터, HIV의 LTR 프로모터, 몰로니 바이러스의 프로모터 엡스타인 바 바이러스(EBV)의 프로모터 및 로우스 사코마 바이러스(RSV)의 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.
본 발명의 벡터는 그로부터 발현되는 항체의 정제를 용이하게 하기 위하여, 다른 서열과 융합될 수도 있다. 융합되는 서열은 예컨대, 글루타티온 S-트랜스퍼라제(Pharmacia, USA), 말토스 결합 단백질(NEB, USA), FLAG(IBI, USA) 및 6x His(hexahistidine; Quiagen, USA) 등이 있다.
또한, 본 발명의 벡터에 의해 발현되는 단백질이 항체이기 때문에, 정제를 위한 추가적인 서열 없이도, 발현된 항체는 단백질 A 컬럼 등을 통하여 용이하게 정제할 수 있다.
한편, 본 발명의 발현 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 제네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 재조합 벡터로 형질전환된 숙주세포를 제공한다.
본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포는 당업계에 공지되어 어떠한 숙주 세포도 이용할 수 있으며, 예컨대, 상기 벡터의 적합한 진핵세포 숙주 세포는 원숭이 신장 세포7(COS7: monkey kidney cells), NSO 세포, SP2/0, 차이니즈 햄스터 난소(CHO: Chinese hamster ovary) 세포, W138, 어린 햄스터 신장(BHK: baby hamster kidney) 세포, MDCK, 골수종 세포주, HuT 78 세포 및 HEK-293 세포를 포함하나 이에 한정되지 않는다.
본 발명의 또 다른 양태에 따르면, 본 발명은 (a) 상술한 본 발명의 인간 Sema3A 항체 또는 그의 항원 결합 단편의 약제학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함하는 암 예방 또는 치료용 약제학적 조성물을 제공한다.
본 발명의 약제학적 조성물은 상술한 본 발명의 인간 Sema3A 항체 또는 그의 항원 결합 단편을 유효성분으로 이용하기 때문에, 이 둘 사이에 공통된 내용은 반복 기재에 의해 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.
하기의 실시예에서 입증된 바와 같이, 본 발명의 인간 Sema3A 항체는 높은 항 Sema3A 결합 및 이에 따른 Sema3A 기능 억제로 인해 다양한 암종 유래의 암세포의 성장을 억제하며, Sema3A와 하부 신호 전달물질인 ERK의 인산화를 억제함으로써 Sema3A 신호전달을 억제하여, 암세포의 이동을 억제한다. 따라서, 본 발명의 항체는 암의 예방 및 치료에 매우 유효하다.
본 발명의 조성물에 의해 예방 또는 치료될 수 있는 암은 당업계에 공지된 다양한 암을 포함하며, 예를 들어 유방암, 대장암, 폐암, 위암, 간암, 혈액암, 골암, 췌장암, 피부암, 뇌암, 자궁암, 비인두암, 후두암, 결장암, 난소암, 직장암, 대장암, 질암, 소장암, 내분비암, 갑상선암, 부갑상선암, 요관암, 요도암, 전립선암, 기관지암, 방광암, 신장암 및 골수암을 포함한다.
구체적으로, 본 발명의 조성물에 의해 예방 또는 치료될 수 있는 암은 Sema3A 발현 암이다.
본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences(19th ed., 1995)에 상세히 기재되어 있다.
본 발명의 약제학적 조성물은 비경구로 투여할 수 있고, 예컨대 정맥 내 주입, 피하 주입, 근육 주입, 복강 주입 등으로 투여할 수 있다.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하며, 보통으로 숙련된 의사는 소망하는 치료 또는 예방에 효과적인 투여량을 용이하게 결정 및 처방할 수 있다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 약제학적 조성물의 1일 투여량은 0.0001-100 ㎎/㎏이다. 본 명세서에서 용어 “약제학적 유효량”은 암의 예방 또는 치료하는 데 충분한 양을 의미한다.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 산제, 좌제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 인간 Sema3A 및 마우스 Sema3A에 대하여 교차결합능을 갖는 항체를 제공한다.
(b) 본 발명의 항체는 Sema3A 발현이 높은 교모세포종, 췌장암, 간암 등의 다양한 암종에서 Sema3A를 억제하는 항체 치료제로 사용 가능하다.
(c) Sema3A는 당뇨망막병증, 자가면역관절염, 신경병증 통증, 골다공증의 치료 타겟으로 여겨지고 있어 본 발명의 항체 또는 항원 결합 단편은 항암치료제 외에도 관련 질환에 대한 치료제로 사용될 수 있다.
(d) 본 발명의 항체는 높은 항 Sema3A 결합 및 이에 따른 Sema3A 기능 억제로 인해 다양한 암종 유래 암세포의 성장을 억제하며, Sema3A의 하위 신호전달물질 중 ERK 인산화를 억제하여 암세포의 이동을 억제함으로써 암의 예방 및 치료에 매우 유효하다.
도 1은 항 Sema3A scFv 항체 단편 동정을 위한 파지 디스플레이 선별 과정에 대한 모식도이다.
도 2는 파지 디스플레이 패닝 결과를 나타낸 그래프이다.
도 3은 인간 Sema3A에 결합하는 52종의 scFv 항체 단편들의 결합력을 분석한 결과이다.
도 4는 52종의 Sema3A scFv의 결합력을 재검증한 결과이다.
도 5는 31종의 Sema3A scFv의 서열을 확인한 결과이다.
도 6는 scFv 항체 단편 생산을 위한 파지미드 벡터 구성도이다.
도 7은 정제된 3종의 Sema3A scFv 항체 단편의 쿠마시 염색 결과이다.
도 8은 3종의 항 Sema3A 항체 단편들의 농도별 Indirect ELISA 결과를 나타낸 그래프이다.
도 9는 Sandwich ELISA를 이용하여 Sema3A 분비 세포를 확인한 결과이다.
도 10은 항 Sema3A를 이용하여 세포성장 억제능을 확인한 결과이다.
도 11은 항 Sema3A scFv와 U87-MG 세포를 이용하여 세포이동 억제능을 확인한 결과이다.
도 12는 항 Sema3A scFv와 131 세포를 이용하여 세포이동 억제능을 확인한 결과이다.
도 13은 항 Sema3A scFv와 83 세포를 이용하여 세포이동 억제능을 확인한 결과이다.
도 14는 HPLC분석법을 통해 항 Sema3A IgG 순도를 확인한 결과이다.
도 15는 항 Sema3A IgG의 크기를 쿠마시염색을 통해 확인한 결과이다.
도 16은 인간 및 마우스 Sema3A에 대한 결합능을 확인한 결과이다.
도 17은 인간 및 마우스 Sema3A에 대한 3종 항 Sema3A IgG의 결합능에 대한 SPR 분석 결과이다.
도 18은 항 Sema3A IgG와 U87-MG 세포를 이용하여 세포이동 억제능을 확인한 결과이다.
도 19는 항 Sema3A IgG와 131 세포를 이용하여 세포이동 억제능을 확인한 결과이다.
도 20은 항 Sema3A IgG와 83 세포를 이용하여 세포이동 억제능을 확인한 결과이다.
도 21은 ERK 인산화를 억제하는 항 Sema3A 항체 효능을 확인한 결과이다.
도 22는 항 Sema3A IgG의 교모세포종 세포 성장 억제능을 확인한 결과이다.
도 23은 항 Sema3A IgG 농도에 따른 세포 성장 억제정도를 측정한 결과이다.
도 24는 동물모델에서 항 Sema3A IgG에 의한 종양 크기 감소를 확인한 결과이다.
도 25는 동물모델에서 항 Sema3A IgG에 의한 종양 무게 변화를 측정한 결과이다.
도 26은 동물모델에서 항 Sema3A IgG 투여에 따른 몸무게 변화를 측정한 결과이다.
도 27은 동물모델에서 항 Sema3A IgG 투여 후 면역형광염색을 실시하여 세포사멸 효과를 확인한 결과이다.
도 28은 동물모델에서 항 Sema3A IgG 투여 후 TAM 분포를 확인한 결과이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실시예 1: 재조합 인간 Sema3A 단백질을 이용한 패닝
기존에 제작된 합성 scFv 항체 단편 파지 라이브러리(Yang et al., Mol. Cells. 27:225- 235, 2009)를 이용하여 인간 Sema3A에 결합하는 scFv 항체 단편을 파지 디스플레이 스크리닝을 통해 동정하였다. 파지 디스플레이 스크리닝 과정은 도 1과 같다.
상세하게, 대장균 숙주 ER2537 내에 도입되어 있는 파지미드(phagemid) 벡터를 파지(phage) 형태로 회수하기 위해 4개의 하위 라이브러리 샘플을 각 400 ml의 배양배지(SB/암피실린/2% 글루코오스)에서 2시간 배양한다. O.D600에서 흡광도가 0.5-0.7 정도 되면 5,000 g에서 20분 동안 원심분리하여 상층액을 제거 후 400 ml의 2차 배양배지(SB/암피실린) 내에 부유시킨 다음 1012 pfu(plaque forming unit)의 헬퍼 파지(VCSM13)를 첨가하여 1시간 배양한다. 그 다음 카나마이신 항생제 (헬퍼 파지 내 도입된 항생제 유전자)를 70 μg/ml 첨가한 후 30℃에서 밤샘 배양을 하여 파지 라이브러리가 숙주 세포 외로 분비될 수 있도록 한다. 이어 원심분리를 통해 얻은 배양물은 PEG(polyethylene glycol) 용액을 이용해 파지 형태만 침전시켜 파지 라이브러리만을 얻는다.
이렇게 얻어진 파지 라이브러리를 이용해 파지 디스플레이 스크리닝을 실시하였고 이는 반복 회차 패닝으로 진행되었다. 계수된 하위 라이브러리를 약 2.5 x 1012 pfu수준으로 취합한 후 TBS 내에 10 μg/ml 수준으로 희석된 rhSema3A-Fc 단백질이 코팅된 면역튜브(immunotube)에 1시간 처리하였다. 처리 전 면역 튜브 및 파지 입자는 3% 전지유를 함유한 블로킹 용액으로 1시간 처리하여 비특이적인 결합을 방지하였다. 면역튜브를 TBST(0.1% Tween20) 용액으로 세척한 다음 100 mM TEA를 10분간 정치함으로써 Sema3A에 결합된 파지들을 회수하였다. 회수한 파지(output)수 확인을 위해 숙주세포에 감염시킨 후 배양배지에서 계수하였다. 잔여 회수용액은 3,000 rpm으로 15분간 원심분리시켜 가라앉은 ER2537를 배양배지(SB) 500 μl로 섞은 후 15 cm 배양배지에 도말하여 배양 후 5 ml의 SB배양배지(50% glycerol)를 첨가하여 콜로니들을 회수 및 보관(-80℃)하였다.
이어 반복되는 패닝 회차를 진행하기 위해 보관된 전 회차 파지 용액 중 50 μl를 취해 파지 입자 증폭 작업을 수행하였다. 숙주세포인 ER2537에 배양 후 헬퍼 파지를 넣어 회수된 파지입자들은 PEG 침전을 통해 분리하였고 이를 다음 회차 패닝때도 동일하게 사용하였다. 회차가 거듭될수록 패닝 전 대비 후의 파지입자의 비율이 증가됨을 확인하였고 이는 패닝을 거쳐 Sema3A에 특이적인 파지입자들이 증폭됨을 의미한다. 이 수치는 도 2에 명시되어 있다.
실시예 2: 항 Sema3A scFv 후보 선별을 위한 ELISA 및 서열 분석
4회차 패닝에서 회수된 파지 입자들은 숙주세포 ER2537에 감염을 통해 배양배지에서 콜로니로 확인되었다. 이 콜로니들을 취하여 200 μl SB/암피실린 배양배지가 담긴 96웰 플레이트에 접종 후 37℃ 2-3시간 배양하였다. 그 다음 scFv-pⅢ단백질 발현 유도를 위해 각 웰에 최종농도 1 mM 의 IPTG(Isopropyl β-D-1-thiogalactopyranoside)를 처리하고 30℃ 에서 밤샘 배양하였다. 배양한 플레이트는 3,000 rpm에서 15분간 원심분리하여 상층액을 제거한 후 배양세포의 주변세포질(periplasm) 내에 있는 파지입자를 회수하기 위해 각 웰당 40 μl의 TES 용액(20% w/v 수크로오스, 50 mM Tris, 1 mM EDTA, pH 8.0)을 넣고 4℃에서 30분 동안 정치함으로써 세포를 용해시켰다. 이후 60 μl의 0.2X TES용액을 처리하여 4℃에서 30분 동안 두어 삼투압으로 세포를 분해시킨 다음 플레이트를 3,000 rpm 15분간 원심분리시켜 상층액의 scFv-pⅢ 단백질을 얻는다.
미리 준비한 Sema3A 단백질이 코팅된 96웰 플레이트에 얻은 상층액 중 25 μl를 각 해당 웰에 첨가한 후 1시간 동안 실온에서 결합시킨 후 TBST와 증류수를 이용해 6번의 세척과정을 거친다. 이 후 scFv-pⅢ 의 HA 태그에 결합할 수 있는 HRP가 결합된 항 HA항체를 이용해 1시간동안 실온에서 결합시킨 후 다시 후 TBST(0.1% Tween20)와 증류수를 이용해 6번의 세척과정을 거친다. TMB 용액을 이용한 발색반응을 유도한 후 H2SO4 용액으로 발색반응을 멈추고 O.D 450 nm에서 그 값을 측정한다. 총 분석된 클론 수는 86개였고, 이 중 52개의 클론 (결합능배수 >2)이 Sema3A에 대한 높은 결합능을 보였다(도 3). 대조군으로는 BSA용액이 사용되었으며 이 52개 클론 중 재확인 ELISA를 통해서 결합능이 높은 31개의 클론들을 선택하였다(도 4). 이후 31개의 클론들로부터 파지미드를 회수한 다음 DNA 서열분석을 진행하였고, 총 5개의 다른 서열을 지닌 클론들이 선별되었다. A08은 3개, F11은 21개, C10은 2개의 동일한 DNA서열을 가진 클론들이 존재하였으며, 그 외에 A10, E10 클론은 다른 DNA서열을 가진 것으로 확인되었다(도 5). 동일서열의 클론이 많이 나온 순서로 F11, A08, C10이 최종적인 Sema3A scFv 후보로 선택되었다.
실시예 3: 항 Sema3A scFv 단백질 생산 및 Sema3A 결합능 확인
파지미드의 기본 구성은 도 6에서 확인할 수 있는데 위 과정에서 쓰인 숙주세포 ER2537의 경우 phage pⅢ앞에 위치한 전사억제 코돈(amber codon(UAG))를 억제하기 때문에 scFv 단독 발현이 불가능하다. 따라서 비억제 숙주(non-suppressor strain)인 발현균주(TOP10F’)를 이용하여 파지미드를 발현균주 내로 형질도입하였다. 이후 DNA 서열분석을 통해 각 파지미드가 돌연변이 없이 도입된 발현균주를 확인하였고, 이 발현균주를 콜로니로 취한 다음 LB/암피실린 배양배지 3 ml에 접종 후 37℃에서 밤샘 배양하였다. 이후 밤샘 배양시킨 배양액 3 ml은 400 ml 배양배지(SB/암피실린)로 옮겨 OD600에서 0.5-0.7이 될 때까지 배양하였고, 최종 농도 1 mM IPTG를 첨가하여 30℃에서 밤샘 배양하였다. 배양액은 원심분리 후 TES 용액 40 ml을 이용하여 발현숙주를 용해시킨 후 O.2X TES 60 ml을 투입해 주변세포질 내 파지입자를 회수하였고, 회수한 상층액은 0.45 μm 필터를 통해 여과되었다. 여과된 용액 내에 존재하는 scFv 단백질은 His-tag 정제를 위해 Ni-NTA 비드(Qiagen) 1 ml이 첨가되어 상온에서 1시간 결합되었고, 이후 중력 컬럼(gravity column, Bio-rad)에 패킹되어 200 mM 이미다졸 용액을 통해 회수되었다. 각 클론의 발현 및 정제 후 SDS-PAGE 및 쿠마시 염색(coomassie blue staining)을 통해 scFv 해당크기인 약 28 kDa를 확인하였고 결과는 도 7에 명시되어 있다. 정제된 scFv 형태의 각 클론의 DNA 서열은 표 1 및 표 2에 기재하였다.
3종의 항 Sema3A scFv 항체 단편의 중쇄 FR 부위 및 CDR 부위 서열 정보
중쇄 FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4
A08 EVQLLESGGGLVQPGGSLRLSCAAS GFTFSDYA MSWVRQAPGKGLEWVSG IYYDDSSQ YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC AKNLGRFDY WGQGTLVTVSS
C10 EVQLLESGGGLVQPGGSLRLSCAAS GFTFSDYA MSWVRQAPGKGLEWVSG IYYDDSSQ YYADSVEGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC ARYLGLFDY WGQGTLVTVSS
F11 EVQLLESGGGLVQTGGSLRLSCAAS GFTFSDYA MSWVRQAPGKGLEWVSW IYYDSGSK YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC AKLNGDFDY WGQGTLVTVSS
3종의 항 Sema3A scFv 항체 단편의 경쇄 FR 부위 및 CDR 부위 서열 정보
경쇄 FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4
A08 QSVLTQPPSASGTPGQRVTISCTGS SSNIGSNA VTWYQQLPGTAPKLLIY DDN HRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYC GAWDDSLSAYV FGGGTKLTVL
C10 QSVLTQPPSASGTPGQRVTISCSGS SSNIGNNS VNWYQQLPGTAPKLLIY SDS QRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYC GSWDYSLSAYV FGGGTKLTVL
F11 QSVLTQPPSASGTPGQRVTISCSGS SSNIGNND VSWYQQLPGTAPKLLIY ADS HRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYC GAWDSSLSGYV FGGGTKLTVL
인간 Sema3A에 대한 각 항체 단편 단백질의 농도에 따른 결합능을 측정하기 위해 각각 200 ng의 NRP1, BSA이 코팅된 96웰에 각 scFv를 2,000 ng/ml, 1,000 ng/ml, 500 ng/ml, 250 ng/ml, 125 ng/ml, 62.5 ng/ml, 31.25 ng/ml, 15.62 ng/ml 농도로 처리하여 OD 값 변화를 분석하였다. Sema3A에 대한 결합능의 크기가 A08, C10, F11 scFv의 경우 고농도로 갈수록 BSA 대비 Sema3A에 결합한 scFv가 증가함을 OD값 변화를 통해 알 수 있고 이는 도 8에서 확인할 수 있다.
실시예 4: 항 Sema3A scFv의 세포 성장 억제능과 세포 이동 억제능 확인
Sema3A 단백질에 대한 결합능을 ELISA로 확인한 뒤 실제 세포가 분비하는 Sema3A에 대한 항암 능력을 검증하기 위해 세포증식 분석법과 세포이동 분석법을 이용하였다. 먼저 Sema3A를 분비하는지 Sandwich ELISA로 확인해본 결과 보유한 환자유래 세포 중에 559는 Sema3A를 적게 분비하는 반면 131과 83은 과분비하는 것을 확인하였다. 배지와 NPC는 음성대조군으로 쓰였고, U87-MG세포는 양성대조군으로 사용하였다(도 9). 세포증식 분석법을 수행하기 위해 5×103개의 559세포와 131세포를 이용하여 50 μg/ml 의 항 Sema3A scFv 처리하였다. 처리 후 4일 후에 EZ-Cytox 세포 생존능 어세이 키트(Daeil Lab. Service)를 이용해 세포성장 속도를 측정하였다. Sema3A를 적게 분비하는 559 세포는 항 Sema3A scFv 처리 후 세포성장속도 변화가 없는 반면, Sema3A 과분비하는 131 세포의 경우 항 Sema3A scFv를 처리 후 대조군 대비 70%의 세포성장 속도를 보였다(도 10).
항 Sema3A scFv를 이용한 세포 이동 억제능을 확인하기 위해 Sema3A 과분비 세포인 U87-MG, 131, 83세포를 이용하여 세포이동 분석법을 수행하였다. 먼저 transwell(Corning)에 PLO(Poly-L-Ornithine)을 넣어 실온에서 30분간 코팅 시킨 후 자연 건조시켰다. U87-MG 세포의 경우, 100 μl의 성장인자가 빠진 DMEM 배양액에 5×104개의 U87-MG세포와 3종의 Sema3A scFv 50 μg/ml을 담아 트랜스웰에 넣었고, 밑에 웰에는 10% FBS(Fetal bovine serum)을 포함한 DMEM 배양액 600 μl을 넣고 37℃에서 밤샘 배양했다. 환자유래 세포인 131과 83 세포는 성장인자(EGF and bFGF)가 없는 100 μl NBA 배양액에 각각의 1×105 세포와 3종의 Sema3A scFv 를 넣었고, 밑에 웰에는 성장인자를 포함한 NBA 배양액을 넣고 37℃에서 밤샘 배양했다. 이후 12웰에 메탄올(Methanol), 헤마톡시린(Hematoxylin), 에오신(Eosin) 600 μl를 트랜스웰 당 하나씩 준비한 후 트랜스웰을 메탄올에 1분간 둔 후 헤마톡시린에 5분 정치하여 핵을 염색했다. 그 다음 물로 세척한 후 물기를 없애고 에오신에 30초간 두어 세포질을 염색시키고 다시 물로 세척하여 면봉으로 트랜스웰 안쪽으로 깨끗하게 닦았다. 도 11을 보면 핵은 헤마톡실린에 의해, 세포질은 에오신에 의해 염색된 것을 관찰할 수 있다.
U87-MG세포의 경우, Sema3A scFv 항체단편을 처리하지 않은 대조군을 100% 세포이동 되었다고 보았을 때, A08 항체단편을 넣은 세포의 경우 78%, C10 항체단편은 70%, F11 항체단편은 74%의 감소된 세포이동을 보였다(도 11). 환자유래 세포인 131, 83의 경우는 각각 A08 항체단편을 넣은 세포의 경우 11%, 21%를 보였고, C10 항체단편은 19%, 44% 의 세포이동을, F11 항체단편은 7%, 28%의 감소된 세포이동을 보였다(도 12, 13). 3종의 Sema3A 항체단편들은 세포주 U87-MG보다 환자유래 세포인 131, 83 세포에서 세포 이동 저해시키는 효과가 더 크게 나타났으며, 암세포의 세포이동을 저해시키는 항암제로의 가능성을 보여주었다.
실시예 5: 항 Sema3A 단편항체를 IgG로의 생산
항-Sema3A 항체단편을 IgG 형태로 형태 전환을 위해 Sema3A scFv의 중쇄서열과 경쇄서열의 유전자를 Expi 293F 발현시스템(life technologies)을 이용해 형질주입 하였다. 배양액에 있는 Sema3A IgG를 얻기 위해 ΔKTA 단백질 정제 시스템과 Amicon 원심분리 필터를 이용해 정제를 하였고, 생산량은 A08은 118 mg/L, C10은 138 mg/L, F11은 330 mg/L이였다. 정제된 항 Sema3A 항체의 순도를 알아보기 위해 고속액체 크로마토그래피를 도입하였다. IgG의 크기가 150 kD이므로 마커 피크에서 16.388분에서 나오는 물질에 해당한다. 3종의 Sema3A 항체(A08, C10, F11)가 이 피크에서 검출되었고, 순도는 98%, 98.5%, 99%로 확인되었다. SDS PAGE 및 쿠마시 염색을 하여 크기에 따른 항 Sema3A IgG 형태를 확인하였다. 환원시키지 않은 조건에서는 IgG 크기인 150 kD에서 밴드가 검출되었고, 환원시킨 조건에서는 이황화결합이 깨져 중쇄서열과 경쇄서열의 크기가 각각 50 kD, 25 kD로 나왔다(도 15).
Sema3A에 대한 3종의 Sema3A 항체의 결합능을 알아보기 위해 두 가지 농도 조건(500 nM, 50 nM)으로 ELISA를 수행하였다. 음성대조군으로 BSA를 이용했고, 마우스 Sema3A와 인간 Sema3A 단백질을 실험군으로 사용하였다. 3종의 Sema3A 항체가 인간 Sema3A와 마우스 Sema3A에 대한 결합능을 가짐을 확인하였고 이는 도 16에서 확인할 수 있다. 인간 Sema3A 외에도 마우스 Sema3A에도 결합능을 갖는 이유는 다른 단백질에 비해 종간 특이성이 적어 인간 Sema3A와 마우스 Sema3A 서열의 유의성이 98% 이상 되기 때문에 인간 및 마우스 Sema3A에 교차결합능을 지닌 것으로 생각된다(도 16).
3종의 anti-Sema3A 항체의 인간 Sema3A, 마우스 Sema3A에 대한 결합력을 측정하기 위해 Biacore system을 이용한 SPR analysis로 분석하였다. 인간 Sema3A에 대한 결합력은 A08 (KD=1.187E-9), C10 (KD=5.312E-10), F11 (KD=5.617E-10) 이였고, 마우스 Sema3A에 대한 결합력은 A08 (KD=4.221E-9), C10 (KD=3.090E-9), F11 (KD=3.272E-10) 으로 측정되었다. 따라서 3종의 anti-Sema3A항체가 cross-reactivity를 보임을 확인하였고, 특히 F11이 인간 Sema3A와 마우스 Sema3A에 대한 결합력을 가장 높음을 확인하였다(도 17).
실시예 6: 항 Sema3A IgG의 세포 이동 억제능 확인
앞에서 항 Sema3A scFv의 암세포 이동억제를 확인한 것과 같이 IgG 형태로 전환된 3종의 Sema3A 항체(A08, C10, F11)의 암세포 이동 억제능을 재검증하였다. Sema3A를 과분비하는 U87-MG, 131, 83세포와 2 μg/ml의 항 Sema3A 항체를 이용해 세포 이동법을 수행하였다. 세포 이동법은 도 11 내지 도 13과 같은 방법으로 수행하였고, 앞에 기술되어 있다. U87-MG 세포에서는 A08이 50%로 제일 높은 세포 이동 억제능을 보였고(도 18), 131, 83세포에서는 F11이 효과가 가장 높았으며 74%, 52%로 대조군에 비해 낮은 세포 이동을 보였다(도 19, 20).
대장암에서 Sema3A가 관여하는 세포이동에 ERK 신호기작이 관련되어 있다는 연구((Neufeld, G et al., Cold Spring Harbor perspectives in medicine,2012)와 교모세포종에서 Sema3A가 Rho/ROCK 신호 기작과 함께 ERK 신호기작이 연관되어 있다는 연구(Zohrabian, V. M., Anticancer research , 119-123,2009)가 보고되어 있다.
1×106개의 83세포와 F11(50 μg/ml)을 30분 동안 37℃에서 처리 후 웨스턴 블로팅을 수행하여 ERK의 인산화를 억제하는지 확인하였다. 8%젤에서 SDS-PAGE 단백질전기영동을 진행하고 p-ERK, ERK, β-액틴을 항체로 탐지하였다. 대조군과 F11을 처리한 실험군을 비교해본 결과 ERK와 β-액틴은 변함없었고, ERK의 인산화가 줄어듦을 확인하였다(도 21). 이로써 항 Sema3A 항체가 Sema3A의 하위전달물질 중 ERK 인산화를 억제시켜 세포 이동 억제함을 확인하였다.
실시예 7: 항 Sema3A IgG의 세포 성장 억제능 확인
Sema3A가 교모세포종 세포 성장에 관여하는지 알아보기 위해 재조합 인간 Sema3A를 131, 83세포에 처리한 후 세포성장변화를 살펴보았다. Edu를 이용한 세포증식 어세이(proliferation assay)를 진행한 결과 각각 20%, 15%의 세포성장이 증가함을 확인하였다(도 22).
이어 131세포를 이용해 anti-Sema3A 항체인 F11를 처리한 결과 항체 농도에 따른 세포성장 억제를 보임을 확인하였고, 최고농도인 2 μM에서 대조군 대비 40% 억제를 보임을 확인하였다(도 23).
실시예 8: 131 Subcutaneous 모델을 이용한 항 Sema3A IgG의 효능평가
In vivo에서 anti-Sema3A F11의 항암효능을 확인하기 위해 Sema3A를 과분비하는 교모세포종 131세포를 이용한 xenograft model를 제작하였다. Anti-Sema3A F11를 5 mg/kg, 25 mg/kg씩 3주간 주입(i.v.) 한 후 종양크기를 확인한 결과, 25 mg/kg (3회/주) 주입한 군의 종양이 대조군 대비 60% 크기가 감소됨을 확인하였다(도 24). 개체군의 종양무게 변화도 종양크기 비교와 유사하게 산출되었다(도 25).
주입된 anti-Sema3A 항체에 의한 특이적인 몸무게 변화는 확인되지 않았다(도 26). 대조군과 가장 효능이 높게 나타난 Group3 조직(F11 25mg/kg, 3회/주)에 대하여 면역형광염색을 수행하였고, anti-Sema3A를 처리한 군의 조직에서 Sema3A와 p-ERK가 확연하게 감소함을 확인하였다. 또한 대조군 대비 TUNEL 양성세포가 증가함으로써 세포 사멸 효과도 관찰하였다(도 27). Sema3A가 TAM infiltration에 관여한다는 논문이 많이 보고되어지고 있다(Casazza A, et al. Cancer cell. 2013; 24(6):695-709 / Hu ZQ, et al. Oncotarget. 2016.). 따라서 이를 확인하기 위해 Macrophage 마커인 Iba1 염색을 통해 Sema3A 항체에 의한 TAM 분포가 감소함도 확인하였다(도 28).
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (17)

  1. 다음을 포함하는 인간 Sema3A에 대한 항체 또는 그의 항원 결합 단편:
    (a) 다음의 중쇄 CDR(complementarity determining region) 아미노산 서열을 포함하는 중쇄 가변영역; 서열목록 제1서열의 CDRH1, 서열목록 제2서열의 CDRH2 및 서열목록 제3서열의 CDRH3; 그리고
    (b) 다음의 경쇄 CDR 아미노산 서열을 포함하는 경쇄 가변영역; 서열목록 제4서열의 CDRL1, 서열목록 제5서열의 CDRL2 및 서열목록 제6서열의 CDRL3.
  2. 다음을 포함하는 인간 Sema3A에 대한 항체 또는 그의 항원 결합 단편:
    (a) 다음의 중쇄 CDR 아미노산 서열을 포함하는 중쇄 가변영역; 서열목록 제7서열의 CDRH1, 서열목록 제8서열의 CDRH2 및 서열목록 제9서열의 CDRH3; 그리고
    (b) 다음의 경쇄 CDR 아미노산 서열을 포함하는 경쇄 가변영역; 서열목록 제10서열의 CDRL1, 서열목록 제11서열의 CDRL2 및 서열목록 제12서열의 CDRL3.
  3. 다음을 포함하는 인간 Sema3A에 대한 항체 또는 그의 항원 결합 단편:
    (a) 다음의 중쇄 CDR 아미노산 서열을 포함하는 중쇄 가변영역; 서열목록 제13서열의 CDRH1, 서열목록 제14서열의 CDRH2 및 서열목록 제15서열의 CDRH3; 그리고
    (b) 다음의 경쇄 CDR 아미노산 서열을 포함하는 경쇄 가변영역; 서열목록 제16서열의 CDRL1, 서열목록 제17서열의 CDRL2 및 서열목록 제18서열의 CDRL3.
  4. 제 1 항에 있어서, 상기 중쇄 가변영역은 서열목록 제19서열의 아미노산 서열을 포함하는 것을 특징으로 하는 항체 또는 그의 항원 결합 단편.
  5. 제 1 항에 있어서, 상기 경쇄 가변영역은 서열목록 제20서열의 아미노산 서열을 포함하는 것을 특징으로 하는 항체 또는 그의 항원 결합 단편.
  6. 제 2 항에 있어서, 상기 중쇄 가변영역은 서열목록 제21서열의 아미노산 서열을 포함하는 것을 특징으로 하는 항체 또는 그의 항원 결합 단편.
  7. 제 2 항에 있어서, 상기 경쇄 가변영역은 서열목록 제22서열의 아미노산 서열을 포함하는 것을 특징으로 하는 항체 또는 그의 항원 결합 단편.
  8. 제 3 항에 있어서, 상기 중쇄 가변영역은 서열목록 제23서열의 아미노산 서열을 포함하는 것을 특징으로 하는 항체 또는 그의 항원 결합 단편.
  9. 제 3 항에 있어서, 상기 경쇄 가변영역은 서열목록 제24서열의 아미노산 서열을 포함하는 것을 특징으로 하는 항체 또는 그의 항원 결합 단편.
  10. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 상기 항체 또는 항원 결합 단편은 인간 Sema3A 및 마우스 Sema3A에 교차결합하는 것을 특징으로 하는 항체 또는 그의 항원 결합 단편.
  11. 서열목록 제19서열, 서열목록 제21서열 또는 서열목록 제23서열의 아미노산 서열을 포함하는 인간 Sema3A 및 마우스 Sema3A에 교차결합하는 항체의 중쇄 가변영역을 코딩하는 핵산 분자.
  12. 서열목록 제20서열, 서열목록 제22서열 또는 서열목록 제24서열의 아미노산 서열을 포함하는 인간 Sema3A 및 마우스 Sema3A에 교차결합하는 항체의 경쇄 가변영역을 코딩하는 핵산 분자.
  13. 제 11 항 또는 제 12 항의 핵산 분자를 포함하는 재조합 벡터.
  14. 제 13 항의 재조합 벡터로 형질전환된 숙주세포.
  15. (a) 제 1 항 내지 제 10 항 중 어느 한 항의 인간 Sema3A에 대한 항체 또는 그의 항원 결합 단편의 약제학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함하는 암의 예방 및 치료용 약제학적 조성물.
  16. 제 15 항에 있어서, 상기 암은 유방암, 대장암, 폐암, 위암, 간암, 혈액암, 골암, 췌장암, 피부암, 뇌암, 자궁암, 비인두암, 후두암, 결장암, 난소암, 직장암, 대장암, 질암, 소장암, 내분비암, 갑상선암, 부갑상선암, 요관암, 요도암, 전립선암, 기관지암, 방광암, 신장암 또는 골수암인 것을 특징으로 하는 약제학적 조성물.
  17. 제 15 항 내지 제 16 항 중 어느 한 항의 조성물을 대상(subject)에 투여하는 단계를 포함하는 암의 예방 또는 치료 방법.
PCT/KR2016/012072 2015-10-27 2016-10-26 인간 및 마우스 sema3a에 교차결합하는 항체 및 그의 용도 WO2017074013A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP16860196.1A EP3385281A4 (en) 2015-10-27 2016-10-26 ANTIBODY FOR CROSS-LINKING TO HUMAN SEMA3A AND MOUSE, AND USE THEREOF
US15/771,488 US20180346567A1 (en) 2015-10-27 2016-10-26 Antibody To Be Cross-Linked To Human SEMA3A And Use Thereof
JP2018542072A JP6886474B2 (ja) 2015-10-27 2016-10-26 ヒト及びマウスSema3Aに交差結合する抗体及びその用途
MX2018005202A MX2018005202A (es) 2015-10-27 2016-10-26 Anticuerpos que serán reticulados con sema3a de humanos y ratones y sus usos.
BR112018008348-8A BR112018008348A2 (pt) 2015-10-27 2016-10-26 anticorpo a ser reticulado para sema3a humana e de camundongo e uso do mesmo
CN201680062739.2A CN108290942B (zh) 2015-10-27 2016-10-26 与人及小鼠信号素3a交联的抗体及其用途
AU2016346595A AU2016346595B2 (en) 2015-10-27 2016-10-26 Antibody to be cross-linked to human and mouse Sema3A, and use thereof
US15/964,463 US10604571B2 (en) 2015-10-27 2018-04-27 Antibody to human and mouse SEMA3A and use thereof
US15/964,763 US10640777B2 (en) 2015-10-27 2018-04-27 Antibody to human and mouse SEMA3A and use thereof
US15/964,648 US10604572B2 (en) 2015-10-27 2018-04-27 Antibody to human and mouse Sema3A and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0149272 2015-10-27
KR20150149272 2015-10-27
KR1020160123233A KR101854529B1 (ko) 2015-10-27 2016-09-26 인간 및 마우스 Sema3A에 교차결합하는 항체 및 그의 용도
KR10-2016-0123233 2016-09-26

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US15/771,488 A-371-Of-International US20180346567A1 (en) 2015-10-27 2016-10-26 Antibody To Be Cross-Linked To Human SEMA3A And Use Thereof
US15/964,763 Continuation US10640777B2 (en) 2015-10-27 2018-04-27 Antibody to human and mouse SEMA3A and use thereof
US15/964,463 Continuation US10604571B2 (en) 2015-10-27 2018-04-27 Antibody to human and mouse SEMA3A and use thereof
US15/964,648 Continuation US10604572B2 (en) 2015-10-27 2018-04-27 Antibody to human and mouse Sema3A and use thereof

Publications (1)

Publication Number Publication Date
WO2017074013A1 true WO2017074013A1 (ko) 2017-05-04

Family

ID=58631728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012072 WO2017074013A1 (ko) 2015-10-27 2016-10-26 인간 및 마우스 sema3a에 교차결합하는 항체 및 그의 용도

Country Status (3)

Country Link
CN (1) CN108290942B (ko)
AU (1) AU2016346595B2 (ko)
WO (1) WO2017074013A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225400A1 (en) 2019-05-09 2020-11-12 Boehringer Ingelheim International Gmbh Anti-sema3a antibodies and their uses for treating eye or ocular diseases
WO2022084490A1 (en) 2020-10-23 2022-04-28 Boehringer Ingelheim International Gmbh Anti-sema3a antibodies and their uses for treating a thrombotic disease of the retina
WO2022207554A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft Anti-sema3a antibodies and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123186A1 (ja) * 2013-02-06 2014-08-14 公立大学法人横浜市立大学 抗セマフォリン3a抗体、並びにこれを用いたアルツハイマー病及び免疫・炎症性疾患の治療
WO2014127479A1 (en) * 2013-02-21 2014-08-28 Rsem, Limited Partnership Inhibition of sema3a in the prevention and treatment of ocular hyperpermeability
US20140349311A1 (en) * 2009-11-05 2014-11-27 Osaka University Therapeutic agent for autoimmune diseases or allergy, and method for screening for the therapeutic agent
WO2015083156A1 (en) * 2013-12-02 2015-06-11 Bnai Zion Medical Center Semaphorin 3a as a diagnostic marker for urothelial cancer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007803A2 (en) * 2001-07-20 2003-01-30 Mount Sinai School Of Medicine Of New York University Methods for diagnosing and treating alzheimer's disease and parkinson's disease

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140349311A1 (en) * 2009-11-05 2014-11-27 Osaka University Therapeutic agent for autoimmune diseases or allergy, and method for screening for the therapeutic agent
WO2014123186A1 (ja) * 2013-02-06 2014-08-14 公立大学法人横浜市立大学 抗セマフォリン3a抗体、並びにこれを用いたアルツハイマー病及び免疫・炎症性疾患の治療
WO2014127479A1 (en) * 2013-02-21 2014-08-28 Rsem, Limited Partnership Inhibition of sema3a in the prevention and treatment of ocular hyperpermeability
WO2015083156A1 (en) * 2013-12-02 2015-06-11 Bnai Zion Medical Center Semaphorin 3a as a diagnostic marker for urothelial cancer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAIONE ET AL.: "Semaphorin 3A Overcomes Cancer Hypoxia and Metastatic Dissemination Induced by Antiangiogenic Treatment in Mice", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 122, no. 5, 1 May 2012 (2012-05-01), pages 1832 - 1848, XP055378679 *
See also references of EP3385281A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225400A1 (en) 2019-05-09 2020-11-12 Boehringer Ingelheim International Gmbh Anti-sema3a antibodies and their uses for treating eye or ocular diseases
WO2022084490A1 (en) 2020-10-23 2022-04-28 Boehringer Ingelheim International Gmbh Anti-sema3a antibodies and their uses for treating a thrombotic disease of the retina
WO2022207554A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft Anti-sema3a antibodies and uses thereof

Also Published As

Publication number Publication date
CN108290942A (zh) 2018-07-17
AU2016346595B2 (en) 2019-11-14
AU2016346595A1 (en) 2018-06-14
CN108290942B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2020076105A1 (ko) 신규 항-c-kit 항체
WO2019098682A1 (ko) 항-her2 항체 또는 그의 항원 결합 단편, 및 이를 포함하는 키메라 항원 수용체
WO2014119969A1 (ko) 보체 관련 질환의 예방 및 치료를 위한 c5 항체 및 방법
WO2020111913A1 (en) Anti-4-1bb antibody and use thereof
WO2015005632A1 (ko) Dll4와 vegf에 특이적으로 결합하는 신규 이중표적 단백질 및 이의 용도
WO2017074074A1 (en) Novel anti-glypican 3 antibody and pharmaceutical composition containing the same
WO2012165925A2 (ko) Hgf 활성을 가지는 c-met에 대한 인간항체 및 이의 용도
WO2019112347A2 (ko) 악성 b 세포를 특이적으로 인지하는 항체 또는 그의 항원 결합 단편, 이를 포함하는 키메라 항원 수용체 및 이의 용도
WO2019132533A1 (ko) 항-pd-l1 항체 및 이의 용도
WO2021107566A1 (ko) C-kit에 대한 항체 및 이의 용도
WO2021049830A1 (ko) Ykl-40 표적 인간 단일클론항체
WO2017074013A1 (ko) 인간 및 마우스 sema3a에 교차결합하는 항체 및 그의 용도
WO2016089126A1 (ko) 뉴로필린 1(Neuropilin 1)에 대한 항체 및 이의 용도
WO2024049161A1 (ko) 신규한 항-pd-l1 키메릭 항원 수용체 및 이를 발현하는 면역세포
WO2020004934A1 (ko) 항-bcma 항체 및 그 용도
WO2016084993A1 (ko) 신규 EGFRvIII 항체 및 이를 포함하는 조성물
WO2022216014A1 (ko) 항-cntn4 항체 및 그의 용도
WO2022025585A1 (ko) 항-lilrb1 항체 및 그의 용도
WO2017179862A1 (ko) 안정성이 개선된 her2에 특이적으로 결합하는 항체
WO2014021693A2 (ko) Tm4sf5 단백질에 특이적으로 결합하는 신규한 단일클론항체 및 이의 용도
WO2017142294A1 (ko) EGFRvIII에 대한 항체 및 이의 용도
KR101854529B1 (ko) 인간 및 마우스 Sema3A에 교차결합하는 항체 및 그의 용도
WO2017209553A2 (ko) 환자 유래 세포를 이용한 항체 스크리닝 방법
WO2024014619A1 (ko) 사스-코로나 바이러스 2 중화 항체
WO2019088658A1 (ko) Scf 및 갈렉틴-1을 표적으로 하는 이중표적항체 및 그 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/005202

Country of ref document: MX

Ref document number: 2018542072

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018008348

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016860196

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016346595

Country of ref document: AU

Date of ref document: 20161026

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018008348

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180425