WO2017073672A1 - 高分子電解質の製造方法 - Google Patents

高分子電解質の製造方法 Download PDF

Info

Publication number
WO2017073672A1
WO2017073672A1 PCT/JP2016/081893 JP2016081893W WO2017073672A1 WO 2017073672 A1 WO2017073672 A1 WO 2017073672A1 JP 2016081893 W JP2016081893 W JP 2016081893W WO 2017073672 A1 WO2017073672 A1 WO 2017073672A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
ion exchange
group
exchange group
dihalogen compound
Prior art date
Application number
PCT/JP2016/081893
Other languages
English (en)
French (fr)
Inventor
克行 岸
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2017073672A1 publication Critical patent/WO2017073672A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a polymer electrolyte, and more particularly to a method for producing a polymer electrolyte for a fuel cell.
  • fuel cells have attracted attention as an effective power source for solving environmental and energy problems.
  • fuel such as hydrogen is oxidized by an oxidant such as oxygen, and chemical energy generated at this time is converted into electric energy.
  • the polymer main body of the polymer electrolyte fuel cell is small, and therefore the polymer electrolyte fuel cell is particularly expected as an in-vehicle power source or a home stationary power source. Examples of the technology relating to the polymer electrolyte fuel cell include those disclosed in Patent Document 1 to Patent Document 3.
  • the present invention has been made in view of the above circumstances, and provides a method for producing a polymer electrolyte, particularly a method for producing a polymer electrolyte for a fuel cell, in which the synthesis route is simple and the production cost can be reduced. With the goal.
  • a method for producing a polymer electrolyte according to one aspect of the present invention is a method for producing a polymer electrolyte including a block copolymer having a polymer electrolyte segment including an ion exchange group and a segment not including an ion exchange group.
  • the water content in the reaction vessel is 1 ppm in the presence of a dihalogen compound containing an ion exchange group forming a metal salt, a dihalogen compound not containing an ion exchange group, and a catalyst containing a transition metal complex. It is characterized in that the polymerization is carried out within a range of 2,000 ppm or less and a stirring speed of 800 rpm or more and 3,000 rpm or less.
  • a polymer electrolyte exhibiting a high molecular weight and an acid value can be produced by a simple synthesis route. Thereby, an inexpensive polymer electrolyte can be provided.
  • the present inventors have found that in a reaction vessel in the presence of a dihalogen compound containing an ion exchange group that forms a metal salt, a dihalogen compound not containing an ion exchange group, and a catalyst containing a transition metal complex. It is found that a polymer electrolyte showing a high molecular weight and an acid value can be produced by a simple synthesis route by polymerizing at a specific water content and a specific number of rotations of the stirring, and completes the present invention. It came to.
  • One embodiment of the present invention provides an ion exchange group that forms a metal salt when producing a polymer electrolyte that includes a block copolymer having a segment that includes an ion exchange group and a segment that does not include an ion exchange group.
  • the water content in the reaction vessel is in the range of 1 ppm to 2,000 ppm and stirring Is polymerized within the range of 800 rpm to 3,000 rpm to produce a polymer electrolyte.
  • the copolymer is synthesized by condensation polymerization in the presence of a dihalogen compound containing an ion exchange group, a dihalogen compound not containing an ion exchange group, and a catalyst containing a transition metal complex.
  • the ion exchange group of the dihalogen compound containing an ion exchange group is polymerized in the form of a metal salt. Therefore, it is not necessary to protect the ion exchange group before polymerization as in the prior art. Moreover, since there is no free acid, the polymerization reaction is not inhibited.
  • the ion exchange group is a group that contributes to ion conduction when used as a polymer electrolyte, and examples thereof include sulfonic acid, phosphoric acid, and carboxylic acid, and preferably sulfonic acid.
  • the ions that form the metal salt with the ion exchange group include group ions such as hydrogen ions, lithium ions, sodium ions, potassium ions, and rubidium ions, and ions such as magnesium ions, calcium ions, strontium ions, and barium ions.
  • group ions such as hydrogen ions, lithium ions, sodium ions, potassium ions, and rubidium ions, and ions such as magnesium ions, calcium ions, strontium ions, and barium ions.
  • Examples include Group 2 element ions, preferably sodium ions.
  • the halogen of the dihalogen compound include fluorine, chlorine, bromine and iodine, preferably chlorine and bromine.
  • the polymerization is carried out in the range where the water content in the reaction vessel is 1 ppm or more and 2,000 ppm or less. 1 ppm or more and 1,000 ppm or less are more preferable, and the range of 10 ppm or more and 500 ppm or less is more preferable. If the water content in the reaction vessel is greater than 2,000 ppm, the activity of the catalyst is lost and the polymerization does not proceed well. Moreover, when the water content in the reaction vessel is less than 1 ppm, the production becomes difficult. In one embodiment of the present invention, the polymerization is carried out within the range of the stirring speed of 800 rpm to 3,000 rpm. A range of 1,000 rpm to 2,000 rpm is more preferable.
  • the transition metal complex is one in which a ligand forms a coordination bond with a transition metal.
  • the transition metal complex include a nickel complex, a palladium complex, a platinum complex, a copper complex, a rhodium complex, a zirconium complex, and an iron complex.
  • the reaction efficiency can be increased and the reaction can be performed under mild conditions.
  • the transition metal complex may be a commercially available product or may be synthesized separately.
  • Examples of the method of synthesizing the transition metal complex include a method of synthesizing a transition metal halide or transition metal oxide by reacting with a ligand.
  • the synthesized transition metal complex may be used by being taken out from the reaction system, or may be used in situ without being taken out, that is, in a state in the reaction system.
  • Examples of the ligand include 2,2′-bipyridyl, 1,10-phenanthroline, N, N, N ′, N′-tetramethylethylenediamine, acetylacetonate, triphenylphosphine, tolylphosphine, tributylphosphine, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, and 1,1′-bis (diphenylphosphino) ferrocene It is preferable to have at least one of the above.
  • the transition metal complex may have one kind of these ligands alone, or may have two or more kinds in combination.
  • a zero-valent transition metal complex such as a zero-valent nickel complex or a zero-valent palladium complex as the transition metal complex. It is desirable to use it.
  • the zerovalent nickel complex include bis (1,5-cyclooctadiene) nickel (0), (ethylene) bis (triphenylphosphine) nickel (0), tetrakis (triphenylphosphine) nickel (0), and the like. Can be mentioned.
  • bis (1,5-cyclooctadiene) nickel (0) is easily available and therefore suitable for use in the synthesis of polymer electrolytes.
  • the zero-valent transition metal complex a commercially available product may be used as described above, or a separately synthesized product may be used.
  • a method for synthesizing a zero-valent transition metal complex for example, a known method such as a method of reducing a transition metal compound to a zero valence by using a reducing agent such as zinc or magnesium can be used.
  • the synthesized zero-valent transition metal complex may be used after being taken out from the reaction system, or may be used in situ without being taken out, that is, in a state in the reaction system.
  • Examples of the reducing agent used in the synthesis of the zero-valent transition metal complex include iron, zinc, manganese, aluminum, magnesium, sodium, and calcium. Of these, zinc, magnesium and manganese are preferred. These reducing agents can be used after being more activated by contacting with an acid such as an organic acid. If necessary, for example, sodium compounds such as sodium fluoride, sodium chloride, sodium bromide, sodium iodide, sodium sulfate, potassium fluoride, potassium chloride, potassium bromide, potassium iodide, potassium sulfate, etc.
  • Ammonium compounds such as potassium compounds, tetraethylammonium fluoride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, and tetraethylammonium sulfate may be used in combination.
  • a divalent transition metal compound is usually used, but a zero-valent transition metal compound may be used.
  • a divalent nickel compound or a divalent palladium compound is preferably used.
  • the divalent nickel compound include nickel chloride, nickel bromide, nickel iodide, nickel acetate, nickel acetylacetonate, nickel chloride bis (triphenylphosphine), nickel bromide bis (triphenylphosphine), nickel iodide. And bis (triphenylphosphine).
  • divalent palladium compound examples include palladium chloride, palladium bromide, palladium iodide, palladium chloride bis (triphenylphosphine), palladium bromide bis (triphenylphosphine), and palladium iodide bis (triphenylphosphine). Can be mentioned.
  • a compound that can be a ligand of the transition metal complex used When polymerizing using a transition metal complex, it is preferable to add a compound that can be a ligand of the transition metal complex used. Thereby, the reactivity of a polymerization reaction is improved and the yield of a copolymer and a polymerization degree are raised.
  • the compound to be added may be the same as or different from the ligand of the transition metal complex used.
  • triphenylphosphine and 2,2'-bipyridyl are preferable because they are versatile and inexpensive.
  • 2,2'-bipyridyl is used in combination with bis (1,5-cyclooctadiene) nickel (0), it is possible to increase the copolymer yield and molecular weight.
  • the addition amount of the ligand is preferably 10 mol% or more and 1000 mol% or less, and more preferably 100 mol% or more and 500 mol% or less with respect to 100 mol% of the zero-valent transition metal complex.
  • the amount of the zero-valent transition metal complex used is 10 mol% or more with respect to 100 mol% of the dihalogen compound containing an ion exchange group represented by the following general formula (1). It can suppress that a yield and a polymerization degree fall that the usage-amount is 10 mol% or more.
  • limiting in particular about the upper limit of usage-amount The process at the time of post-processing of superposition
  • (R 1 and R 2 are each independently — (CH 2 ) a —, —O— (CH 2 ) a —, —S— (CH 2 ) a —, —NH The group consisting of — (CH 2 ) a —, — (CF 2 ) a —, —O— (CF 2 ) a —, —S— (CF 2 ) a —, and —NH— (CF 2 ) a — (Wherein a is an integer of 2 or more) X 1 and X 2 each independently represent a halogen atom, and Y 1 and Y 2 are each independently a Group 1 element and Group 2 And Z is an atom selected from the group consisting of —CO—, —O—, —S—, and —SO 2 —.
  • the reaction temperature is preferably 0 ° C. or higher and 200 ° C. or lower, and more preferably 50 ° C. or higher and 100 ° C. or lower.
  • the reaction time is preferably 0.5 hours or more and 100 hours or less, and more preferably 1 hour or more and 40 hours or less.
  • the polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon. According to such conditions, the yield and degree of polymerization of the polymerization reaction are increased.
  • reaction solvent for the polymerization examples include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, toluene, xylene, mesitylene, Aromatic hydrocarbon solvents such as benzene and butylbenzene, ether solvents such as tetrahydrofuran, 1,4-dioxane, dibutyl ether and tert-butyl methyl ether, ester solvents such as ethyl acetate, butyl acetate and methyl benzoate, Examples thereof include alkyl halide solvents such as chloroform and dichloroethane. These polymerization solvents are preferably used after sufficiently dehydrated.
  • aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrroli
  • the polymer is sufficiently dissolved in the solvent. Therefore, for example, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, toluene, etc., which are good solvents for polymers Is preferably used.
  • N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, and a mixture of two or more of these are preferably used.
  • the concentration of the total amount of the dihalogen compound containing the ion exchange group represented by the general formula (1) in the polymerization solvent is preferably 1% by weight or more and 90% by weight or less. Moreover, it is preferable that the density
  • Ar 1 , Ar 2 , Ar 3 , and Ar 4 are each independently a divalent aromatic group
  • B 1 and B 2 are each independently a single bond or It is a divalent linking group
  • C 1 and C 2 are each independently an oxygen atom or a sulfur atom
  • X 3 and X 4 are each independently a halogen atom
  • b, c, d, and e are each independently 0 or 1
  • n is an integer of 5 or more.
  • a copolymer is synthesized by the above procedure.
  • a conventional method can be applied.
  • the polymer can be precipitated by adding a poor solvent to the reaction mixture, and the target product can be obtained by filtration or the like.
  • it can refine
  • the sulfonic acid group in the produced copolymer is in the form of a salt such as sodium salt, the sulfonic acid group can be converted to the free acid form.
  • Conversion to the free acid is usually performed by washing with an acidic solvent. Examples of the acid used include hydrochloric acid, sulfuric acid, nitric acid and the like, and hydrochloric acid is particularly preferable.
  • the amount of ion exchange groups introduced into the polymer electrolyte is preferably in the range of 0.5 meq / g or more and 4.0 meq / g or less in terms of ion exchange capacity, and 1.0 meq / g or more. More preferably, it is in the range of 3.0 meq / g or less.
  • the ion exchange capacity is 0.5 meq / g or more
  • the ion exchange capacity is 4.0 meq / g or less
  • water resistance and mechanical strength as an electrolyte membrane of a polymer electrolyte fuel cell are enhanced.
  • the polymer electrolyte preferably has a molecular weight in the range of 10,000 or more and 1,000,000 or less, expressed in terms of polystyrene-equivalent weight average molecular weight, and in the range of 20,000 or more and 500,000 or less. It is more preferable that When the molecular weight is 10,000 or more, when used as an electrolyte membrane of a polymer electrolyte fuel cell, the film formability and mechanical strength of the membrane are enhanced. Moreover, manufacture becomes simpler because molecular weight is 1,000,000 or less.
  • Examples of the dihalogen compound containing an ion exchange group that is preferable in the production method of the present embodiment include the dihalogen compound represented by the general formula (1).
  • Y is a Group 1 element ion such as a hydrogen ion, a lithium ion, a sodium ion, a potassium ion, or a rubidium ion, and a Group 2 such as a magnesium ion, a calcium ion, a strontium ion, or a barium ion. Elemental ions are mentioned.
  • Y 1 and Y 2 may be different ions, but if they are the same ion, synthesis of a dihalogen compound containing an ion exchange group is facilitated.
  • Y is preferably a group 1 element ion, and most preferably a sodium ion.
  • X is a group composed of a halogen atom such as fluorine, chlorine, bromine or iodine.
  • X 1 and X 2 may be different atoms, but if they are the same atom, synthesis of the dihalogen compound (1) containing an ion exchange group is facilitated.
  • the halogen atom is preferably chlorine or bromine. Whether the halogen atom is chlorine or bromine is selected according to the polymerization method.
  • the dihalogen compound (1) containing an ion exchange group has R as a linking group between the —SO 3 Y group and the benzene ring.
  • R represents, for example, — (CH 2 ) a —, —O— (CH 2 ) a —, —S— (CH 2 ) a —, —NH— (CH 2 ) a —, — (CF 2 ) a — , —O— (CF 2 ) a —, —S— (CF 2 ) a —, and —NH— (CF 2 ) a —.
  • A represents an integer of 2 or more.
  • R is preferably —O— (CH 2 ) a —, and a is preferably 3 or 4.
  • R 1 and R 2 may be different linking groups, but when they are the same linking group, synthesis of the dihalogen compound (1) containing an ion exchange group is facilitated.
  • a polyarylene polymer electrolyte whose main chain is composed of an aromatic ring has an ion exchange group directly bonded to the aromatic ring.
  • the main chain since the main chain itself has hydrophilicity and the stack of polymer main chains is inhibited, the presence of water molecules around the main chain is stabilized, resulting in swelling of the polymer electrolyte.
  • the term “stack” means that polymer main chains are physically connected by weak interaction such as van der Waals force.
  • the dihalogen compound (1) containing an ion exchange group of this embodiment the ion exchange group and the benzene ring are kept away by providing a linking group. Therefore, in the polymer electrolyte using the dihalogen compound (1) containing this ion exchange group, the decrease in water resistance is suppressed, and swelling hardly occurs.
  • Examples of the dihalogen compound that does not contain an ion exchange group that is preferable in the production method of the present embodiment include the dihalogen compound represented by the general formula (2).
  • the divalent aromatic group that is any one of Ar 1 , Ar 2 , Ar 3 , Ar 4 is, for example, a fluorine atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • the following alkoxy groups or nitrile groups may be substituted.
  • these alkyl groups and alkoxy groups may have a substituent.
  • B 1 or B 2 when B 1 or B 2 is a divalent linking group, B 1 and B 2 are, for example, carbonyl group, sulfonyl group, 2,2-isopropylidene group, 2,2-hexa A linking group based on a fluoroisopropylidene group or a 9,9-2 substituted fluorene is preferred.
  • “n” represents an integer of 5 or more, and “n” is preferably in the range of 5 or more and 200 or less, and more preferably 10 or more. When “n” is 5 or more, when the polymer electrolyte is used as an electrolyte membrane of a polymer electrolyte fuel cell, the film formability, mechanical strength, and durability can be sufficiently obtained.
  • X is a group composed of a halogen atom such as fluorine, chlorine, bromine or iodine.
  • X 3 and X 4 may be different atoms, but if they are the same atom, synthesis of the dihalogen compound (2) containing no ion exchange group is facilitated.
  • X 1 , X 2, X 3 and X 4 are the same atom, and chlorine or bromine is preferred.
  • Whether the halogen atom is chlorine or bromine is selected according to the polymerization method.
  • a dihalogen not containing an ion exchange group represented by the general formula (2) for example, a dihalogen not containing an ion exchange group represented by the following chemical formulas (3) to (8): Compounds.
  • a method for producing a polymer electrolyte according to the present embodiment is a method for producing a polymer electrolyte including a block copolymer having a segment containing an ion exchange group and a segment not containing an ion exchange group.
  • the dihalogen compound (1) containing an ion exchange group and the dihalogen compound (2) containing no ion exchange group can be uniformly polymerized. Therefore, a polymer electrolyte exhibiting a high molecular weight and a high acid value can be produced by a simple synthesis route. Thereby, an inexpensive polymer electrolyte can be provided.
  • the catalyst containing the transition metal complex may be a zero-valent nickel complex. With such a configuration, the catalyst can be easily obtained.
  • the dihalogen compound (1) containing an ion exchange group may be represented by the above-mentioned general formula (1).
  • the ion exchange group and the benzene ring are separated by the linking group. Therefore, in the polymer electrolyte using the dihalogen compound (1) containing this ion exchange group, the decrease in water resistance is suppressed, and swelling hardly occurs.
  • the dihalogen compound (2) which does not contain an ion exchange group may be represented by the above-mentioned general formula (2).
  • “n” is 5 or more, when the polymer electrolyte is used as an electrolyte membrane of a polymer electrolyte fuel cell, the film formability, mechanical strength, and durability are improved. You can get enough.
  • the polymer electrolyte according to this embodiment is a polymer electrolyte including a block copolymer having a segment including an ion exchange group and a segment not including an ion exchange group,
  • the molecular weight is expressed as a weight average molecular weight in terms of polystyrene, and is in the range of 10,000 to 1,000,000, and the ion exchange capacity of the polymer electrolyte is 0.5 meq / g to 4.0. Within the range of milliequivalent / g or less. With such a configuration, a polymer electrolyte exhibiting a high molecular weight and a high acid value can be provided.
  • Example 2 the manufacturing method of the polymer electrolyte for fuel cells in this embodiment is demonstrated, giving a specific Example.
  • the obtained polymer electrolyte was evaluated by molecular weight measurement and ion exchange capacity measurement.
  • Column: TSKgel SuperAWM-H (6.0 mm ID X 15 cm) are connected in series.
  • ⁇ Ion exchange capacity measurement> The polymer electrolyte in which the sulfonic acid group is in a free acid state was dried, weighed in a predetermined amount, stirred in a 2M aqueous sodium chloride solution overnight, and filtered. The filtrate was titrated with NaOH standard solution using phenolphthalein as an indicator, and the ion exchange capacity was determined from the neutralization point.
  • Example 1 A polymerization reaction between a dihalogen compound (M1) containing an ion exchange group and a dihalogen compound (M2) containing no ion exchange group was carried out. 0.50 g (0.823 mmol) of a dihalogen compound (M1) containing an ion exchange group was placed in a 50 mL Schlenk tube, and dried under reduced pressure in an oil bath at 120 ° C. After drying, the Schlenk tube was purged with nitrogen, and the dried solid was dissolved in a 120 ° C. solution containing 200 mg of macromonomer, 359 mg of 2,2′-bipyridyl (2.30 mmol), and 4 mL of dehydrated dimethyl sulfoxide.
  • Example 2 A polymer electrolyte (P1) was synthesized by the same procedure as in Example 1. However, the water content of the solution was 483 ppm, and stirring was performed at a rotational speed of 2,500 rpm.
  • Example 3 A polymer electrolyte (P1) was synthesized by the same procedure as in Example 1. However, the water content of the solution was 1,554 ppm, and stirring was performed at a rotation speed of 1,000 rpm.
  • Example 4 A polymer electrolyte (P1) was synthesized by the same procedure as in Example 1. However, the water content of the solution was 81 ppm, and stirring was performed at a rotation speed of 1,500 rpm.
  • Example 1 A polymer electrolyte (P1) was synthesized by the same procedure as in Example 1. However, the water content of the solution was 2,433 ppm, and stirring was performed at a rotation speed of 1,000 rpm.
  • Example 2 A polymer electrolyte (P1) was synthesized by the same procedure as in Example 1. However, the water content of the solution was 854 ppm, and stirring was performed at a rotation speed of 400 rpm.
  • Example 3 A polymer electrolyte (P1) was synthesized by the same procedure as in Example 1. However, the water content of the solution was 0.7 ppm, and stirring was performed at a rotational speed of 2,500 rpm.
  • Example 4 A polymer electrolyte (P1) was synthesized by the same procedure as in Example 1. However, the water content of the solution was 1,236 ppm, and stirring was performed at a rotational speed of 3,200 rpm.
  • a polymer electrolyte (P1) was synthesized by the same procedure as in Example 1 except that a dihalogen compound (M3) having a protecting group was used instead of the dihalogen compound (M1) containing an ion exchange group, and deprotecting. ) During the synthesis, the solution had a water content of 219 ppm and was stirred at a rotation speed of 500 rpm.
  • the polymer electrolyte obtained in Example 1-4 had a high molecular weight and ion exchange capacity.
  • the polymerization reaction did not proceed uniformly, and the molecular weight or ion exchange capacity was lower than that in Example 1-4.
  • Comparative Example 5 a synthesized polymer electrolyte in which Na ions of the ion exchange group are replaced with a protecting group can obtain the same results as in this example, but the production of the polymer electrolyte is very complicated. Become.
  • indicates that the performance of the polymer electrolyte is extremely excellent and the production of the polymer electrolyte is easy, and the performance of the polymer electrolyte is excellent and the production of the polymer electrolyte is easy. In this case, “ ⁇ ” is displayed, and when the performance of the polymer electrolyte is inferior or when the production of the polymer electrolyte is complicated, “ ⁇ ” is displayed.
  • Nafion is suitable for direct methanol fuel cell (DMFC) electrolytes and when a stable membrane that can withstand high temperatures (100 ° C or higher) is required to increase the temperature of the battery to increase catalytic activity. It can not be said.
  • DMFC direct methanol fuel cell
  • hydrocarbon-based polymer electrolytes have been promoted for the electrolytes of the above-described polymer electrolyte fuel cells.
  • the hydrocarbon polymer electrolyte include aromatic polymers sulfonated from engineering plastics such as sulfonated polyetheretherketone (see Patent Document 1) and sulfonated polyethersulfone (see Patent Document 2), ions, and the like.
  • An aromatic copolymer (see Patent Document 3) composed of a segment containing an exchange group and a segment not containing an ion exchange group has been proposed. Since these aromatic hydrocarbon polymer electrolytes are easier to manufacture than Nafion, the manufacturing costs can be reduced. Further, the heat resistant temperature is higher than that of Nafion, and it can be used in a high temperature atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

合成経路が簡易で製造コスト削減が可能な燃料電池用の高分子電解質の製造方法を提供する。本発明の一態様に係る高分子電解質の製造方法は、イオン交換基を含むセグメントと、イオン交換基を含まないセグメントと、を有するブロック共重合体を含む高分子電解質の製造方法であって、金属塩を形成するイオン交換基を含むジハロゲン化合物(1)と、イオン交換基を含まないジハロゲン化合物(2)と、遷移金属錯体を含む触媒と、の共存下で、反応容器中の水分量が1ppm以上2,000ppm以下の範囲内であり、且つ攪拌の回転数が800rpm以上3,000rpm以下の範囲内で重合させる。

Description

高分子電解質の製造方法
 本発明は、高分子電解質の製造方法、特に燃料電池用の高分子電解質の製造方法に関する。
 近年、環境問題やエネルギー問題の解決に有効な動力源として、燃料電池が注目されている。燃料電池では、水素等の燃料が酸素等の酸化剤によって酸化され、この際に生じる化学エネルギーが電気エネルギーに変換される。燃料電池の中でも固体高分子形燃料電池の電池本体は小型であることから、車載電源や家庭据置電源として特に固体高分子形燃料電池は期待されている。この固体高分子形燃料電池に関する技術としては、例えば、特許文献1から特許文献3に開示されたものがある。
特開平6-93114号公報 特開平9-245818号公報 特許第5295655号公報
 燃料電池の普及においては、高温低湿度下で作動する電解質膜が望まれている。しかしながら、特許文献1及び特許文献2に記載の芳香族炭化水素系高分子電解質では、プロトン伝導性やイオン交換容量を高めるために高分子中の親水基を増加させると、電解質が水分を含んで膨潤しやすく機械的強度が低下する。また、特許文献3に記載の芳香族炭化水素系高分子電解質においては、プロトン伝導性と機械的強度を両立することができるが、合成経路が複雑であり製造コストが低くならない。
 本発明は、このような実情に鑑みてなされたものであり、合成経路が簡易で製造コスト削減が可能な高分子電解質の製造方法、特に燃料電池用の高分子電解質の製造方法を提供することを目的とする。
 本発明の一態様に係る高分子電解質の製造方法は、高分子電解質を、イオン交換基を含むセグメントと、イオン交換基を含まないセグメントと、を有するブロック共重合体を含む高分子電解質の製造方法であって、金属塩を形成するイオン交換基を含むジハロゲン化合物と、イオン交換基を含まないジハロゲン化合物と、遷移金属錯体を含む触媒と、の共存下で、反応容器中の水分量が1ppm以上2,000ppm以下の範囲内であり、且つ攪拌の回転数が800rpm以上3,000rpm以下の範囲内で重合させることを特徴としている。
 本発明の一態様によれば、高い分子量と酸価を示す高分子電解質を、簡易な合成経路で製造できる。これにより、安価な高分子電解質を提供できる。
 本発明者らは鋭意検討の結果、金属塩を形成するイオン交換基を含むジハロゲン化合物と、イオン交換基を含まないジハロゲン化合物と、遷移金属錯体を含む触媒との共存下で、反応容器中の水分量が特定の水分量であり、且つ特定の攪拌の回転数で重合させることにより、高い分子量と酸価を示す高分子電解質を、簡易な合成経路で製造できることを見出し、本発明を完成させるに至った。
 本発明の一実施形態は、イオン交換基を含むセグメントと、イオン交換基を含まないセグメントと、を有するブロック共重合体を含む高分子電解質を製造する際に、金属塩を形成するイオン交換基を含むジハロゲン化合物と、イオン交換基を含まないジハロゲン化合物と、遷移金属錯体を含む触媒と、の共存下で、反応容器中の水分量が1ppm以上2,000ppm以下の範囲内であり、且つ攪拌の回転数が800rpm以上3,000rpm以下の範囲内で重合させて高分子電解質を製造するものである。
 共重合体は、イオン交換基を含むジハロゲン化合物と、イオン交換基を含まないジハロゲン化合物と、遷移金属錯体を含む触媒と、の共存下で縮重合することによって合成される。
 本発明の一実施形態では、イオン交換基を含むジハロゲン化合物のイオン交換基は、金属塩の状態で重合を行う。そのため、従来技術の様に重合前にイオン交換基を保護する必要がない。また、遊離酸がないため、重合反応を阻害しない。
 イオン交換基は、高分子電解質として用いられた場合に、イオン伝導に寄与する基であり、例えば、スルホン酸、リン酸、カルボン酸が挙げられ、好ましくはスルホン酸である。
 イオン交換基と金属塩を形成するイオンは、水素イオン、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン等の第1族元素イオン、及び、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等の第2族元素イオンが挙げられ、好ましくはナトリウムイオンである。
 ジハロゲン化合物のハロゲンは、フッ素、塩素、臭素、ヨウ素が挙げられ、好ましくは塩素、臭素である。
 本発明の一実施形態では、反応容器中の水分量が1ppm以上2,000ppm以下の範囲内で重合を行う。1ppm以上1,000ppm以下がより好ましく、10ppm以上500ppm以下の範囲内がさらに好ましい。反応容器中の水分量が2,000ppmより大きいと、触媒の活性が失われ、重合が良好に進行しない。また、反応容器中の水分量が1ppmより小さいと、製造が困難になる。
 本発明の一実施形態では、攪拌の回転数が800rpm以上3,000rpm以下の範囲内で重合を行う。1,000rpm以上2,000rpm以下の範囲内がより好ましい。攪拌の回転数が3,000rpmより大きいと、溶媒の飛散等が発生し、製造が困難になる。また、攪拌の回転数が800rpmより小さいと、イオン交換基を含むジハロゲン化合物とイオン交換基を含まないジハロゲン化合物とが均一に重合できない。
 遷移金属錯体は、配位子が遷移金属と配位結合とを形成したものである。遷移金属錯体としては、例えば、ニッケル錯体、パラジウム錯体、白金錯体、銅錯体、ロジウム錯体、ジルコニウム錯体、鉄錯体等が挙げられる。これらの中でも、ニッケル錯体やパラジウム錯体を用いると、反応効率が高められると共に、温和な条件で反応を行うことができる。遷移金属錯体は市販品でもよく、別途合成したものでもよい。遷移金属錯体の合成方法としては、例えば、遷移金属のハロゲン化物又は遷移金属酸化物と配位子とを反応させて合成する方法が挙げられる。合成した遷移金属錯体は、反応系中から取り出して使用してもよく、又は取り出さずにin situで、つまり、反応系にある状態で使用してもよい。
 配位子としては、例えば、2,2’-ビピリジル、1,10-フェナントロリン、N,N,N’,N’-テトラメチルエチレンジアミン、アセチルアセトナート、トリフェニルホスフィン、トリトリルホスフィン、トリブチルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、及び、1,1’-ビス(ジフェニルホスフィノ)フェロセンのいずれかを少なくとも1つ有していることが好ましい。遷移金属錯体は、これらの配位子について、1種類を単独で有していてもよく、2種類以上を併せて有していてもよい。
 以下では、上述した共重合体を含む高分子電解質の製造方法について、より詳しく説明する。
 共重合体である高分子電解質を重合する際には、遷移金属錯体としては、例えばゼロ価ニッケル錯体やゼロ価パラジウム錯体等のゼロ価遷移金属錯体を用いることが好ましく、特にゼロ価ニッケル錯体を用いることが望ましい。
 ゼロ価ニッケル錯体としては、例えば、ビス(1,5-シクロオクタジエン)ニッケル(0)、(エチレン)ビス(トリフェニルホスフィン)ニッケル(0)、テトラキス(トリフェニルホスフィン)ニッケル(0)等が挙げられる。特に、ビス(1,5-シクロオクタジエン)ニッケル(0)は、容易に入手が可能であるため、高分子電解質の合成に用いることに適している。
 ゼロ価遷移金属錯体は、前述のように市販品を用いてもよく、別途合成したものを用いてもよい。ゼロ価遷移金属錯体の合成方法は、例えば、遷移金属化合物を亜鉛やマグネシウム等の還元剤を用いて還元してゼロ価とする方法等、公知の方法を用いることができる。合成したゼロ価遷移金属錯体は、反応系中から取り出して使用してもよく、あるいは取り出さずにin situで、つまり、反応系にある状態で使用してもよい。
 ゼロ価遷移金属錯体の合成において用いられる還元剤としては、例えば、鉄、亜鉛、マンガン、アルミニウム、マグネシウム、ナトリウム、又はカルシウム等が挙げられる。これらのうち、亜鉛、マグネシウム、マンガンが好ましい。これらの還元剤は、有機酸等の酸に接触させることにより、より活性化して用いることができる。また、必要に応じて、例えば、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、硫酸ナトリウム等のナトリウム化合物、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、硫酸カリウムなどのカリウム化合物、フッ化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、硫酸テトラエチルアンモニウム等のアンモニウム化合物を併用してもよい。
 ゼロ価遷移金属錯体を合成する際には、通常、2価の遷移金属化合物が用いられるが、0価のものを用いても構わない。2価の遷移金属化合物としては、例えば、2価ニッケル化合物、2価パラジウム化合物を用いることが好ましい。2価ニッケル化合物としては、例えば、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、ニッケルアセテート、ニッケルアセチルアセトナート、塩化ニッケルビス(トリフェニルホスフィン)、臭化ニッケルビス(トリフェニルホスフィン)、ヨウ化ニッケルビス(トリフェニルホスフィン)等が挙げられる。2価パラジウム化合物としては、例えば、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、塩化パラジウムビス(トリフェニルホスフィン)、臭化パラジウムビス(トリフェニルホスフィン)、ヨウ化パラジウムビス(トリフェニルホスフィン)等が挙げられる。
 遷移金属錯体を用いて重合する際には、用いた遷移金属錯体の配位子となり得る化合物を添加しておくことが好ましい。これにより、重合反応の反応性が向上されて共重合体の収率や重合度が高められる。添加する化合物は、用いた遷移金属錯体の配位子と同じでもよいし、異なっていてもよい。例えば、トリフェニルホスフィンや2,2’-ビピリジルは、汎用性が高く安価であるため好ましい。特に、2,2’-ビピリジルはビス(1,5-シクロオクタジエン)ニッケル(0)と組み合わせて用いると、共重合体の高収率化や高分子量化が可能となる。
 配位子の添加量としては、ゼロ価遷移金属錯体100モル%に対して、10モル%以上1000モル%以下であることが好ましく、100モル%以上500モル%以下であるとより好ましい。
 ゼロ価遷移金属錯体の使用量としては、下記の一般式(1)で示されるイオン交換基を含むジハロゲン化合物100モル%に対して、10モル%以上である。使用量が10モル%以上であると、収率や重合度が低下することを抑制することができる。使用量の上限について特に制限はないが、500モル%以下であると、重合の後処理をする際の処理が容易となる。
Figure JPOXMLDOC01-appb-C000003
 なお、一般式(1)中の(R及びRは、それぞれ独立に-(CH-、-O-(CH-、-S-(CH-、-NH-(CH-、-(CF-、-O-(CF-、-S-(CF-、及び、-NH-(CF-からなる群から選択される連結基(aは2以上の整数)である。X及びXは、それぞれ独立にハロゲン原子を示し、Y及びYは、それぞれ独立に第1族元素及び第2族元素であり、Zは、-CO-、-O-、-S-、-SO-からなる群から選択される原子である。
 重合反応の条件としては、反応温度は0℃以上200℃以下が好ましく、50℃以上100℃以下がより好ましい。反応時間は、0.5時間以上100時間以下で行われることが好ましく、1時間以上40時間以下であるとより好ましい。重合反応は、窒素やアルゴン等の不活性ガス雰囲気下で行われることが好ましい。こうした条件によれば、重合反応の収率や重合度が高められる。
 重合の反応溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、等の非プロトン性極性溶媒、トルエン、キシレン、メシチレン、ベンゼン、ブチルベンゼン等の芳香族炭化水素系溶媒、テトラヒドロフラン、1,4-ジオキサン、ジブチルエーテル、tert-ブチルメチルエーテル等のエーテル系溶媒、酢酸エチル、酢酸ブチル、安息香酸メチルなどのエステル系溶媒、クロロホルム、ジクロロエタン等のハロゲン化アルキル系溶媒等が挙げられる。これらの重合溶媒は、十分に脱水してから用いることが好ましい。
 重合反応の収率や重合度を高めるためには、高分子が溶媒に十分溶解していることが望ましい。したがって、例えば、高分子に対して良溶媒であるテトラヒドロフラン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、トルエン等を用いることが好ましい。特に、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、及びこれら2種類以上の混合物が好ましく用いられる。
 重合溶媒中における前述の一般式(1)で示されるイオン交換基を含むジハロゲン化合物の総量の濃度は、1重量%以上90重量%以下であることが好ましい。また、重合溶媒中における下記の一般式(2)で示されるイオン交換基を含まないジハロゲン化合物の総量の濃度は、5重量%以上40重量%以下であることが好ましい。濃度の下限がこうした値であれば、生成した高分子化合物の回収が容易となる。また、濃度の上限がこうした値であれば、反応中の攪拌が容易となる。
Figure JPOXMLDOC01-appb-C000004
 なお、一般式(2)中の、Ar、Ar、Ar、及び、Arは、それぞれ独立に2価の芳香族基であり、B及びBは、それぞれ独立に単結合又は2価の連結基である。C及びCは、それぞれ独立に酸素原子または硫黄原子であり、X及びXは、それぞれ独立にハロゲン原子を示す。b、c、d、及び、eは、それぞれ独立に0又は1であり、nは5以上の整数である。
 以上の手順によって、共重合体が合成される。生成した共重合体を反応混合物から取り出す際には、常法が適用できる。例えば、反応混合物に貧溶媒を添加することでポリマーを析出させ、濾別等により目的物を得ることができる。また、必要に応じて、さらに水洗や良溶媒と貧溶媒を用いての再沈殿等の通常の精製方法によって精製することができる。
 また、燃料電池用の電解質膜として利用する場合には、生成した共重合体中のスルホン酸基がナトリウム塩等の塩の形である場合、スルホン酸基を遊離酸の形に変換することが好ましい。遊離酸への変換は、通常、酸性溶媒での洗浄によって行われる。使用される酸としては、例えば、塩酸、硫酸、硝酸等が挙げられ、特に塩酸が好ましい。
 高分子電解質のイオン交換基導入量は、イオン交換容量で表して0.5ミリ当量/g以上4.0ミリ当量/g以下の範囲内であることが好ましく、1.0ミリ当量/g以上3.0ミリ当量/g以下の範囲内であるとより好ましい。イオン交換容量が0.5ミリ当量/g以上であると、固体高分子形燃料電池の電解質膜として用いた場合に、プロトン伝導性が向上されるため、燃料電池の発電性能が高くなる。また、イオン交換容量が4.0ミリ当量/g以下であると、固体高分子形燃料電池の電解質膜としての耐水性及び機械的強度が高められる。
 また、高分子電解質は、分子量が、ポリスチレン換算の重量平均分子量で表して、10,000以上1,000,000以下の範囲内であることが好ましく、20,000以上500,000以下の範囲内であることがより好ましい。分子量が10,000以上であると、固体高分子形燃料電池の電解質膜として用いた場合に、膜の成膜性や機械的強度が高められる。また、分子量が1,000,000以下であることで、製造がより簡便になる。
 本実施形態の製造方法で好ましいイオン交換基を含むジハロゲン化合物として、前述の一般式(1)に示すジハロゲン化合物が挙げられる。
 一般式(1)において、Yは、水素イオン、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン等の第1族元素イオン、及び、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等の第2族元素イオンが挙げられる。YとYとは、異なるイオンであってもよいが、同じイオンであると、イオン交換基を含むジハロゲン化合物の合成が容易となる。また、共重合体の製造を容易とするためには、Yは1族元素イオンであることが好ましく、ナトリウムイオンが最も好ましい。
 一般式(1)において、Xは、フッ素、塩素、臭素、ヨウ素などハロゲン原子からなる基である。XとXとは、異なる原子であってもよいが、同じ原子であると、イオン交換基を含むジハロゲン化合物(1)の合成が容易となる。また、共重合体の製造を容易とするためには、ハロゲン原子は、塩素又は臭素が好ましい。ハロゲン原子を塩素及び臭素のいずれとするかは、重合法に応じて選択される。
 イオン交換基を含むジハロゲン化合物(1)は、-SOY基とベンゼン環との間に、連結基であるRを備えている。Rは、例えば、-(CH-、-O-(CH-、-S-(CH-、-NH-(CH-、-(CF-、-O-(CF-、-S-(CF-、及び、-NH-(CF-からなる群から選択されるいずれかである。なお、aは2以上の整数を示す。イオン交換基を含むジハロゲン化合物(1)の合成を容易とするためには、Rは、-O-(CH-であることが好ましく、aは、3又は4であることが好ましい。また、RとRとは、異なる連結基であってもよいが、同じ連結基であると、イオン交換基を含むジハロゲン化合物(1)の合成が容易となる。
 一般に、主鎖が芳香環から構成されているポリアリーレン型の高分子電解質は、イオン交換基が芳香環に直接結合したものである。こうした構造では、主鎖自身が親水性を有すると共に高分子主鎖同士のスタックが阻害されるため、主鎖周囲での水分子の存在が安定する結果、高分子電解質が膨潤することになる。なお、スタックとは、ファンデルワールス力等の弱い相互作用により高分子主鎖同士が物理的に結びつくことを示す。
 これに対し、本実施形態のイオン交換基を含むジハロゲン化合物(1)は、連結基が設けられることによってイオン交換基とベンゼン環が遠ざけられている。したがって、このイオン交換基を含むジハロゲン化合物(1)を用いた高分子電解質では、耐水性の低下が抑制され、膨潤が起こりにくくなる。
 本実施形態の製造方法で好ましいイオン交換基を含まないジハロゲン化合物として、前述の一般式(2)に示すジハロゲン化合物が挙げられる。
 一般式(2)において、Ar、Ar、Ar、Arのいずれかとなる2価の芳香族基は、例えば、フッ素原子、炭素数1以上20以下のアルキル基、炭素数1以上20以下のアルコキシ基又はニトリル基等で置換されていてもよい。なお、これらのアルキル基、アルコキシ基は置換基を有していてもよい。
 一般式(2)において、B又はBを2価の連結基とした場合、B及びBは、例えば、カルボニル基、スルホニル基、2,2-イソプロピリデン基、2,2-ヘキサフルオロイソプロピリデン基又は9,9-2置換フルオレンにもとづく連結基であると好ましい。
 一般式(2)において、「n」は、5以上の整数を表し、「n」は、5以上200以下の範囲内であることが好ましく、10以上であることがより好ましい。「n」が5以上であると、高分子電解質を固体高分子形燃料電池の電解質膜として用いた場合に、膜の成膜性や機械的強度、耐久性を十分に得ることができる。
 一般式(2)において、Xは、フッ素、塩素、臭素、ヨウ素等のハロゲン原子からなる基である。XとXとは、異なる原子であってもよいが、同じ原子であると、イオン交換基を含まないジハロゲン化合物(2)の合成が容易となる。また、共重合体の製造を容易とするためには、X、X2、及びXが同じ原子であり、塩素又は臭素が好ましい。ハロゲン原子を塩素及び臭素のいずれとするかは、重合法に応じて選択される。
 一般式(2)で示される、イオン交換基を含まないジハロゲン化合物として、より具体的な例として、例えば、次の化学式(3)~化学式(8)で表されるイオン交換基を含まないジハロゲン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(本実施形態の効果)
(1)本実施形態に係る高分子電解質の製造方法は、イオン交換基を含むセグメントと、イオン交換基を含まないセグメントと、を有するブロック共重合体を含む高分子電解質の製造方法であって、金属塩を形成するイオン交換基を含むジハロゲン化合物(1)と、イオン交換基を含まないジハロゲン化合物(2)と、遷移金属錯体を含む触媒と、の共存下で、反応容器中の水分量が1ppm以上2,000ppm以下であり、且つ攪拌の回転数が800rpm以上3,000rpm以下で重合させる。
 このような構成であれば、触媒の活性が失われずに重合が良好に進行する。また、溶媒の飛散等を低減し高分子電解質の製造が容易になる。また、イオン交換基を含むジハロゲン化合物(1)とイオン交換基を含まないジハロゲン化合物(2)とが均一に重合できる。よって、高い分子量と高い酸価を示す高分子電解質を、簡易な合成経路で製造できる。これにより、安価な高分子電解質を提供できる。
(2)また、本実施形態に係る高分子電解質の製造方法において、遷移金属錯体を含む触媒は、ゼロ価ニッケル錯体であってもよい。
 このような構成であれば、触媒の入手が容易となる。
(3)また、本実施形態に係る高分子電解質の製造方法において、イオン交換基を含むジハロゲン化合物(1)は、前述の一般式(1)で表されるものであってもよい。
 このような構成であれば、連結基によってイオン交換基とベンゼン環が遠ざけられている。したがって、このイオン交換基を含むジハロゲン化合物(1)を用いた高分子電解質では、耐水性の低下が抑制され、膨潤が起こりにくくなる。
(4)また、本実施形態に係る高分子電解質の製造方法において、イオン交換基を含まないジハロゲン化合物(2)は、前述の一般式(2)で表されるものであってもよい。
 このような構成であれば、「n」が5以上であるので、高分子電解質を固体高分子形燃料電池の電解質膜として用いた場合に、膜の成膜性や機械的強度、耐久性を十分に得ることができる。
(5)本実施形態に係る高分子電解質は、イオン交換基を含むセグメントと、イオン交換基を含まないセグメントと、を有するブロック共重合体を含む高分子電解質であって、前記高分子電解質の分子量は、ポリスチレン換算の重量平均分子量で表して、10,000以上1,000,000以下の範囲内であり、前記高分子電解質のイオン交換容量は、0.5ミリ当量/g以上4.0ミリ当量/g以下の範囲内である。
 このような構成であれば、高い分子量と高い酸価を示す高分子電解質を提供できる。
(実施例)
 以下に、本実施形態における燃料電池用の高分子電解質の製造方法を、具体的な実施例を挙げて説明する。得られた高分子電解質は、分子量測定、イオン交換容量測定により評価した。
〈分子量測定〉
 ゲルパーミエーションクロマトグラフィー(GPC)により測定した。
・GPC装置:HLC-8120GPC(東ソー製)
・カラム:TSKgel SuperAWM-H(6.0mmI.D.
×15cm)を2本直列に接続
・検出器:示差屈折率計(RI検出器)、Polarity=(+)
・溶離液:N,N-ジメチルホルムアミド+LiBr+リン酸
・流速:0.6mL/min
・カラム温度:40℃
・試料濃度:1mg/mL
・試料注入量:20μL
〈イオン交換容量測定〉
 高分子電解質中のスルホン酸基が遊離酸の状態のものを、乾燥後、所定量を秤量し、2M塩化ナトリウム水溶液中で1晩攪拌し、濾別した。濾液を、フェノールフタレインを指示薬とし、NaOHの標準液を用いて滴定を行い、中和点からイオン交換容量を求めた。〈水分量測定〉
 反応容器中の溶液の水分量は、カールフィッシャー水分計により求めた。
(イオン交換基を含むジハロゲン化合物の合成)
 ビス(4-ヒドロキシ-3-クロロフェニル)スルホン6.38g(20.0mmol)を500mLナスフラスコに入れ70mLのエタノールに溶かした。水酸化ナトリウム1.68g(42.0mmol)を加えて反応温度70℃で30分間攪拌した。次に、1,3-プロパンスルトン4.94g(40.5mmol)を加えて20時間加熱還流を行った。析出した白色固体を濾過により回収した。回収した固体を水/エタノール溶液で洗浄後、再度、濾過を行い、濾物を回収、減圧乾燥後、次の化学式(M1)で表される目的物を7.84g(白色固体、収率65%)得た。
Figure JPOXMLDOC01-appb-C000011
(イオン交換基を含まないジハロゲン化合物の合成)
 三口フラスコに4,4’-ジクロロジフェニルスルホン7.40g(25.7mmol)、ビス(4-ヒドロキシフェニル)スルホン5.83g(23.3mmol)、炭酸カリウム4.20g(30.3mmol)を入れて窒素置換、N,N-ジメチルアセトアミド(DMAc)150mL、トルエン20mLを加えて加熱還流を行い、系中の水を除去しながら反応させた。反応後、4,4’-ジクロロフェニルスルホン1.00g(3.48mmol)を加えてさらに反応温度180℃で反応させた。反応後の溶液をメタノールに注ぎ、再沈殿を行った。析出物を濾過で回収し水で洗浄後、105℃の温度環境下で、2時間減圧乾燥した。乾燥により得られた固体を再びクロロホルムに溶解させてメタノールに注ぎ、再沈殿を行った。析出物を濾過にて回収後105℃の温度環境下で、3時間減圧乾燥し、次の化学式(M2)で表される目的物を得た。得られた目的物の分子量(Mw)は、20,000であった。
Figure JPOXMLDOC01-appb-C000012
[実施例1]
 イオン交換基を含むジハロゲン化合物(M1)とイオン交換基を含まないジハロゲン化合物(M2)との重合反応を行った。50mLシュレンク管にイオン交換基を含むジハロゲン化合物(M1)を0.50g(0.823mmol)入れ、120℃のオイルバスで減圧乾燥した。乾燥後、シュレンク管を窒素置換し、マクロモノマー200mg、2,2’-ビピリジル359mg(2.30mmol)、脱水ジメチルスルホキシドを4mL加えた、120℃の溶液中で乾燥した固体を溶解させた。すべて溶解したことを確認した後、溶液温度を80℃まで下げ、ビス(1,5-シクロオクタジエン)ニッケル(0)(Ni(cod))を0.63g(2.29mmol)加えた。得られた溶液の水分量は、514ppmであった。この溶液を、回転数1,000rpm、溶液温度を80℃に維持した状態で、24時間攪拌した。反応後溶液をメタノールに滴下し、ポリマーを析出させ、濾過により回収した。回収したポリマーは再度メタノール洗浄し、3N塩酸中で攪拌することにより、プロトン化を行った。ポリマーを再度濾過により回収し、水で洗浄後、80℃の温度環境下で、2時間減圧乾燥することで、次の化学式P1で表される高分子電解質を得た。
Figure JPOXMLDOC01-appb-C000013
[実施例2]
 実施例1と同様の手順で高分子電解質(P1)を合成した。ただし、溶液の水分量は483ppmで、回転数2,500rpmとして攪拌を行った。
[実施例3]
 実施例1と同様の手順で高分子電解質(P1)を合成した。ただし、溶液の水分量は1,554ppmで、回転数1,000rpmとして攪拌を行った。
[実施例4]
 実施例1と同様の手順で高分子電解質(P1)を合成した。ただし、溶液の水分量は81ppmで、回転数1,500rpmとして攪拌を行った。
[比較例1]
 実施例1と同様の手順で高分子電解質(P1)を合成した。ただし、溶液の水分量は2,433ppmで、回転数1,000rpmとして攪拌を行った。
[比較例2]
 実施例1と同様の手順で高分子電解質(P1)を合成した。ただし、溶液の水分量は854ppmで、回転数400rpmとして攪拌を行った。
[比較例3]
 実施例1と同様の手順で高分子電解質(P1)を合成した。ただし、溶液の水分量は0.7ppmで、回転数2,500rpmとして攪拌を行った。
[比較例4]
 実施例1と同様の手順で高分子電解質(P1)を合成した。ただし、溶液の水分量は1,236ppmで、回転数3,200rpmとして攪拌を行った。
[比較例5]
 イオン交換基を含むジハロゲン化合物(M1)の代わりに保護基のついたジハロゲン化合物(M3)を用いた以外は実施例1と同様の手順で合成し、脱保護をすることで高分子電解質(P1)を得た。合成時、溶液の水分量は219ppmで、回転数500rpmとして攪拌を行った。
Figure JPOXMLDOC01-appb-C000014
[評価結果]
 各実施例及び各比較例で得られた高分子電解質(P1)について、分子量及びイオン交換容量をそれぞれ測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000015
 表1に示すように、実施例1-4で得られた高分子電解質は、高い分子量及びイオン交換容量を有していた。一方、比較例1-4で得られた高分子電解質は、重合反応が均一に進まず、分子量又はイオン交換容量が実施例1-4に比べて低い値を示した。また、比較例5のように、イオン交換基のNaイオンを保護基に代えた合成した高分子電解質は、本実施例と同等の結果を得られるが、高分子電解質の製造が非常に煩雑となる。また、比較例3では脱水が困難なため、比較例4では製造時に溶媒の飛散が発生するため、比較例3-4で得られた各高分子電解質の製造も煩雑となる。
 以上から、高い分子量と酸価を示す高分子電解質を、簡易な合成経路で製造できることが確認できた。
 なお、表1では、製造した高分子電解質の性能が極めて優れている場合を「◎」、優れている場合を「○」、劣っている場合を「×」と表示している。また、高分子電解質の製造が容易な場合を「○」、煩雑な場合を「×」と表示している。また、総合評価では、高分子電解質の性能が極めて優れており、且つ高分子電解質の製造が容易な場合を「◎」、高分子電解質の性能が優れており、且つ高分子電解質の製造が容易な場合を「○」、高分子電解質の性能が劣っている場合や高分子電解質の製造が煩雑な場合を「×」と表示している。
 以上、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。したがって、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例又は実施形態も網羅すると解すべきである。
(参考例)
 以下、上述の技術的特徴を備えない高分子電解質及びその製造方法を、本実施形態に係る高分子電解質の製造方法の参考例として、簡単に説明する。
 固体高分子形燃料電池では、電解質中をプロトンが伝導することによって、電極反応が進行する。固体高分子形燃料電池の電解質としては、現在まで、ナフィオン(デュポン社製:登録商標)に代表されるパーフルオロ系電解質が多く提案されている。
 しかしながら、ナフィオンは、製造に複雑な合成経路を必要とし、固体高分子形燃料電池の製造コストが高くなる。また、ナフィオンのガラス転移温度は、車載に際し求められる耐久温度よりも低い。よって、ダイレクトメタノール燃料電池(DMFC)の電解質や、触媒活性を上げるために電池の温度を上げ、高温(100℃以上)に耐え得る安定な膜が必要な場合等には、ナフィオンは適しているとは言えない。
 そこで、上述の固体高分子形燃料電池の電解質では、従来から、炭化水素系高分子電解質の開発が進められている。炭化水素系高分子電解質としては、例えば、スルホン化ポリエーテルエーテルケトン(特許文献1参照)やスルホン化ポリエーテルスルホン(特許文献2参照)等のエンジニアリングプラスチックをスルホン化した芳香族系高分子、イオン交換基を含むセグメントとイオン交換基を含まないセグメントからなる芳香族系共重合体(特許文献3参照)が提案されている。これらの芳香族炭化水素系高分子電解質は、ナフィオンと比べて製造が容易であるため、製造コストを低くすることが可能である。また、ナフィオンと比べて耐熱温度が高く、高温雰囲気でも使用可能である。

Claims (4)

  1.  イオン交換基を含むセグメントと、イオン交換基を含まないセグメントと、を有するブロック共重合体を含む高分子電解質の製造方法であって、
     金属塩を形成するイオン交換基を含むジハロゲン化合物と、イオン交換基を含まないジハロゲン化合物と、遷移金属錯体を含む触媒と、の共存下で、
     反応容器中の水分量が1ppm以上2,000ppm以下の範囲内であり、且つ攪拌の回転数が800rpm以上3,000rpm以下の範囲内で重合させることを特徴とする高分子電解質の製造方法。
  2.  前記遷移金属錯体を含む触媒は、ゼロ価ニッケル錯体であることを特徴とする請求項1に記載の高分子電解質の製造方法。
  3.  前記イオン交換基を含むジハロゲン化合物は、一般式(1)で表されることを特徴とする請求項1又は請求項2に記載の高分子電解質の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     なお、一般式(1)中の(R及びRは、それぞれ独立に-(CH-、-O-(CH-、-S-(CH-、-NH-(CH-、-(CF-、-O-(CF-、-S-(CF-、及び、-NH-(CF-からなる群から選択される連結基(aは2以上の整数)である。X及びXは、それぞれ独立にハロゲン原子を示し、Y及びYは、それぞれ独立に第1族元素及び第2族元素であり、Zは、-CO-、-O-、-S-、-SO-からなる群から選択される原子である。
  4.  前記イオン交換基を含まないジハロゲン化合物は、一般式(2)で表されることを特徴とする請求項1から請求項3のいずれか1項に記載の高分子電解質の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     なお、一般式(2)中の、Ar、Ar、Ar、及び、Arは、それぞれ独立に2価の芳香族基であり、B及びBは、それぞれ独立に単結合又は2価の連結基である。C及びCは、それぞれ独立に酸素原子または硫黄原子であり、X及びXは、それぞれ独立にハロゲン原子を示す。b、c、d、及び、eは、それぞれ独立に0又は1であり、nは5以上の整数である。
PCT/JP2016/081893 2015-10-29 2016-10-27 高分子電解質の製造方法 WO2017073672A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-212942 2015-10-29
JP2015212942 2015-10-29

Publications (1)

Publication Number Publication Date
WO2017073672A1 true WO2017073672A1 (ja) 2017-05-04

Family

ID=58630739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081893 WO2017073672A1 (ja) 2015-10-29 2016-10-27 高分子電解質の製造方法

Country Status (1)

Country Link
WO (1) WO2017073672A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019226A (ja) * 2017-07-18 2019-02-07 小西化学工業株式会社 共重合体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280798A (ja) * 2008-04-21 2009-12-03 Sumitomo Chemical Co Ltd ポリアリーレンの製造方法
JP2011126920A (ja) * 2008-12-08 2011-06-30 Sumitomo Chemical Co Ltd ポリアリーレンの製造方法
WO2012165420A1 (ja) * 2011-06-03 2012-12-06 株式会社クラレ 有機半導体用組成物及びそれを用いた光電変換素子
JP2013042085A (ja) * 2011-08-19 2013-02-28 Kuraray Co Ltd 有機半導体用組成物及びそれを用いた光電変換素子
JP2013203999A (ja) * 2012-03-29 2013-10-07 Tokyo Institute Of Technology 高分子電解質用のジフェニルスルホン化合物、高分子電解質、膜電極接合体、固体高分子形燃料電池、及び、高分子電解質の製造方法
JP2015067580A (ja) * 2013-09-30 2015-04-13 凸版印刷株式会社 高分子電解質用のジフェニル化合物、高分子電解質、膜電極接合体、固体高分子形燃料電池、及び、高分子電解質の製造方法
JP2015122308A (ja) * 2013-11-21 2015-07-02 凸版印刷株式会社 高分子電解質、膜電極接合体、および固体高分子形燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280798A (ja) * 2008-04-21 2009-12-03 Sumitomo Chemical Co Ltd ポリアリーレンの製造方法
JP2011126920A (ja) * 2008-12-08 2011-06-30 Sumitomo Chemical Co Ltd ポリアリーレンの製造方法
WO2012165420A1 (ja) * 2011-06-03 2012-12-06 株式会社クラレ 有機半導体用組成物及びそれを用いた光電変換素子
JP2013042085A (ja) * 2011-08-19 2013-02-28 Kuraray Co Ltd 有機半導体用組成物及びそれを用いた光電変換素子
JP2013203999A (ja) * 2012-03-29 2013-10-07 Tokyo Institute Of Technology 高分子電解質用のジフェニルスルホン化合物、高分子電解質、膜電極接合体、固体高分子形燃料電池、及び、高分子電解質の製造方法
JP2015067580A (ja) * 2013-09-30 2015-04-13 凸版印刷株式会社 高分子電解質用のジフェニル化合物、高分子電解質、膜電極接合体、固体高分子形燃料電池、及び、高分子電解質の製造方法
JP2015122308A (ja) * 2013-11-21 2015-07-02 凸版印刷株式会社 高分子電解質、膜電極接合体、および固体高分子形燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019226A (ja) * 2017-07-18 2019-02-07 小西化学工業株式会社 共重合体の製造方法
JP7113480B2 (ja) 2017-07-18 2022-08-05 小西化学工業株式会社 共重合体の製造方法

Similar Documents

Publication Publication Date Title
KR101546816B1 (ko) 부분 가지형 블록 공중합체를 포함하는 이온전도성 고분자 및 이의 용도
WO2006095919A1 (ja) ポリアリーレン系ブロック共重合体及びその用途
CN101426836B (zh) 芳香族化合物和磺化聚芳撑系聚合物
Zhang et al. Synthesis and characterization of sulfonated poly (arylene ether phosphine oxide) s with fluorenyl groups by direct polymerization for proton exchange membranes
JP4706023B2 (ja) スルホン酸化芳香族ポリエーテル、その製造方法及び電解質膜
JP2007294408A (ja) Ppp型炭化水素電解質及びその製造方法、ppp、並びに、ppp型炭化水素電解質を用いた電解質膜、触媒層及び固体高分子型燃料電池
JP2003183526A (ja) ポリアリーレン系重合体組成物およびプロトン伝導膜
JP2006299080A (ja) 多スルホン化芳香族化合物、スルホン化ポリマー、固体高分子電解質およびプロトン伝導膜
JP5625317B2 (ja) 新規な芳香族化合物および側鎖にスルホン酸基を含む芳香環を有するポリアリーレン系共重合体
WO2008029937A1 (en) Polymer, polyelectrolyte, and fuel cell employing the same
JP2013221086A (ja) ポリアリーレン及びその製造方法
JP2017014423A (ja) 陽イオン交換樹脂、ならびにそれを用いた陽イオン交換膜および燃料電池用電解質膜
JP2015122308A (ja) 高分子電解質、膜電極接合体、および固体高分子形燃料電池
KR20070011431A (ko) 폴리아릴렌계 고분자, 및 그 용도
JP4505573B2 (ja) 芳香族スルホン酸誘導体、スルホン化ポリマー、固体高分子電解質およびプロトン伝導膜
JP2010031231A (ja) 新規な芳香族化合物および含窒素芳香環を有するポリアリーレン系共重合体
WO2017073672A1 (ja) 高分子電解質の製造方法
JP2018073651A (ja) 燃料電池用高分子電解質の製造方法
JP5266691B2 (ja) ポリマー、高分子電解質およびそれを用いてなる燃料電池
JP5180808B2 (ja) 電解質及びその製造方法、並びに、電解質膜及びその製造方法、触媒層及び燃料電池
KR101605049B1 (ko) 조절된 갯수의 술폰산기가 치환된 폴리페닐술폰 구조를 포함하는 이온전도성 고분자 및 이의 용도
JP3937912B2 (ja) 直接メタノール型燃料電池用電解質膜及びそれを使用した直接メタノール型燃料電池
WO2011062302A1 (ja) ポリアリーレン系ブロック共重合体及びその用途
JP2004244517A (ja) ポリアリーレン系共重合体およびその製造方法、ならびにプロトン伝導膜
JP3841168B2 (ja) 新規な含リン芳香族ジハロゲン化合物、ポリアリーレン重合体、スルホン化ポリアリーレン重合体およびこれら重合体の製造方法、ならびにプロトン伝導膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP