WO2017073115A1 - コーティング液、コーティング液用組成物及びコーティング層を有する耐火物 - Google Patents

コーティング液、コーティング液用組成物及びコーティング層を有する耐火物 Download PDF

Info

Publication number
WO2017073115A1
WO2017073115A1 PCT/JP2016/070284 JP2016070284W WO2017073115A1 WO 2017073115 A1 WO2017073115 A1 WO 2017073115A1 JP 2016070284 W JP2016070284 W JP 2016070284W WO 2017073115 A1 WO2017073115 A1 WO 2017073115A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
coating liquid
mass
parts
coating
Prior art date
Application number
PCT/JP2016/070284
Other languages
English (en)
French (fr)
Inventor
大野 大輔
勇人 永縄
福原 徹
Original Assignee
株式会社Inui
愛知県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Inui, 愛知県 filed Critical 株式会社Inui
Priority to JP2017539462A priority Critical patent/JP6311135B2/ja
Priority to KR1020187014329A priority patent/KR102149166B1/ko
Priority to CN201680036101.1A priority patent/CN107709273B/zh
Publication of WO2017073115A1 publication Critical patent/WO2017073115A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4596Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with fibrous materials or whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5037Clay, Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres

Definitions

  • the present invention relates to a coating liquid for applying to a refractory, a composition for preparing the coating liquid, and a refractory having a coating layer prepared using the coating liquid.
  • Heating furnaces that can be heated at high temperatures such as soaking furnaces and heat treatment furnaces used in the manufacture of steel materials, firing furnaces used in the manufacture of ceramics, etc., have an outer wall and an inner wall disposed inside the outer wall. have.
  • the inner wall is made of a refractory material.
  • Refractory constituting the inner wall is usually attached to the outer wall of the heating furnace via a mounting bracket.
  • a block made of ceramic fibers containing silica, alumina, zirconia, or the like is frequently used. Since this block has excellent heat insulation performance, the temperature in the furnace and the rate of temperature rise can be easily controlled by using it on the inner wall of the heating furnace. Moreover, since the said block contains the ceramic fiber with small bulk specific gravity, it is comparatively lightweight. Therefore, the block can be easily attached to the outer wall of the heating furnace.
  • a block made of ceramic fibers has a problem that it gradually contracts when placed in a high temperature environment of, for example, 1000 ° C. or more for a long period of time. For this reason, when the heating furnace is used for a long period of time, a gap is generated between adjacent blocks, resulting in a decrease in heat insulation performance.
  • aggregates consist of heat-resistant refractory bricks, chamotte, alumina and chrome based on acidic oxide, neutral oxide and basic oxide as defined in JIS R2611.
  • a refractory material such as a plastic refractory material, a castable refractory material containing calcia and alumina as an aggregate, and a refractory material such as a refractory mortar may be used as an inner wall of a heating furnace.
  • these refractories also have a problem of gradually shrinking when placed in a high temperature environment for a long time as described above.
  • Patent Document 1 discloses a non-precipitation refractory mortar containing ceramic powder, clay mineral and colloidal oxide solution and having thixotropic properties.
  • Patent Document 2 discloses a coating material containing inorganic fibers, inorganic particles, an inorganic binder, and an organic binder.
  • JP 2009-137809 A Japanese Patent No. 4297204
  • the refractory mortar of Patent Document 1 Since the refractory mortar of Patent Document 1 has a high viscosity, it is difficult to apply to a portion having deep irregularities or a complicated structure such as a joint of a refractory. Therefore, there is a problem that workability when applying the refractory mortar is low. In addition, since it is difficult to reduce the coating thickness of the refractory mortar, there is a problem that the refractory coated with the refractory mortar easily peels off from the outer wall of the heating furnace.
  • the coating liquid having a low viscosity usually contains a large amount of organic substances such as an organic binder and an organic solvent like the coating material of Patent Document 2. Therefore, when the coating liquid is heated and dried, the organic binder or the like is gasified, and there is a possibility that cracks or the like are generated in the resulting coating layer. Such a crack is not preferable because it causes a decrease in heat insulation performance and the like. Moreover, the coating liquid containing an organic binder or an organic solvent may be spoiled when stored for a long period of time.
  • the coating liquid for refractory has a low viscosity and does not contain an organic binder or the like from the viewpoints of coating property, coating thickness, performance, and storage stability.
  • a low-viscosity coating solution prepared without using an organic binder or organic solvent is difficult to disperse the solid content in the solvent over a long period of time.
  • solids are precipitated.
  • such a coating solution needs to be mixed with the solvent and the solid content each time it is used, or to be sufficiently stirred immediately before being applied to the refractory to re-disperse the solid content in the solvent.
  • the preparatory work before application was complicated.
  • the present invention has been made in view of such a background, a coating liquid that can be prepared by a simple operation and exhibits excellent performance when applied to a refractory, a composition for producing this coating liquid, and It is intended to provide a refractory having a coating layer.
  • One aspect of the present invention is a coating liquid for applying to a refractory, 100 parts by weight of water, 10 parts by mass or more of an inorganic binder, 0.2-2 parts by weight of a swellable clay mineral, 10 to 200 parts by mass of radiation scattering material
  • the radiation scattering material is Ceramic fiber composed of fibrous particles containing Al 2 O 3 and having an average fiber length of 100 ⁇ m or less and / or Selected from the group consisting of alumina powder, silica powder, titania powder, chromia powder, yttria powder, zirconia powder, lanthanum oxide powder, ceria powder, silicon carbide powder, silicon carbide aluminum powder, silicon nitride powder and boron nitride powder, 60 ⁇ m or less
  • the coating liquid contains one or two or more ceramic powders having a median diameter.
  • Another aspect of the present invention is a composition of a coating liquid for application to a refractory, 10 parts by mass or more of an inorganic binder, 0.2-2 parts by weight of a swellable clay mineral, 10 to 200 parts by mass of radiation scattering material
  • the radiation scattering material is Ceramic fiber composed of fibrous particles containing Al 2 O 3 and having an average fiber length of 100 ⁇ m or less and / or Selected from the group consisting of alumina powder, silica powder, titania powder, chromia powder, yttria powder, zirconia powder, lanthanum oxide powder, ceria powder, silicon carbide powder, silicon carbide aluminum powder, silicon nitride powder and boron nitride powder, 60 ⁇ m or less
  • the composition for coating liquids contains one or more ceramic powders having a median diameter of 5%.
  • Still another aspect of the present invention is a substrate composed of a refractory, A coating layer formed on the substrate,
  • the coating layer is 10 parts by mass or more of an inorganic binder, 0.2-2 parts by weight of a swellable clay mineral, 10 to 200 parts by mass of radiation scattering material
  • the radiation scattering material is Ceramic fiber composed of fibrous particles containing Al 2 O 3 and having an average fiber length of 100 ⁇ m or less and / or Selected from the group consisting of alumina powder, silica powder, titania powder, chromia powder, yttria powder, zirconia powder, lanthanum oxide powder, ceria powder, silicon carbide powder, silicon carbide aluminum powder, silicon nitride powder and boron nitride powder, 60 ⁇ m or less
  • a refractory having a coating layer which includes one or more ceramic powders having a median diameter of.
  • the coating liquid contains the specific ratio of the inorganic binder, the swellable clay mineral (hereinafter referred to as “clay mineral”), and the radiation scattering material with respect to 100 parts by mass of water. And the said radiation scattering material is comprised from the ceramic fiber and / or ceramic powder by which the particle size distribution was controlled as mentioned above.
  • the solvent and binder of the coating liquid are composed of inorganic substances. Therefore, the coating liquid has excellent storability and can suppress the occurrence of cracks in the coating layer after drying.
  • the coating liquid can form the coating layer having excellent performance by having the specific composition. Moreover, since the said coating liquid is low-viscosity, while having the outstanding applicability
  • the coating liquid can stably disperse the solid content in the solvent over a long period of time. Therefore, the coating liquid can be mixed with water and solids in advance, and further, the stirring work before application to the refractory can be shortened. In some cases, it is not necessary to perform the stirring work. As a result, the preparatory work prior to application can be greatly simplified.
  • the coating liquid can be prepared by a simple operation, has excellent coating properties, and can reduce the coating thickness.
  • the refractory since the refractory has the coating layer containing the inorganic binder, the clay mineral, and the radiation scattering material in the specific ratio, it has excellent heat insulation performance, wind speed resistance, refractory corrosion resistance improvement effect, and the like. .
  • the refractory having the coating layer can maintain excellent performance over a long period of time in a high temperature environment of, for example, 1000 ° C. or higher.
  • the coating liquid composition contains the inorganic binder, the clay mineral, and the radiation scattering material in the specific ratio. Therefore, the coating liquid can be easily prepared by adding water to the composition.
  • composition of the coating solution will be described below.
  • the said coating liquid contains 10 mass parts or more of inorganic binders with respect to 100 mass parts of water
  • An inorganic binder has the effect
  • the inorganic binder fine particles that can be dispersed in water to form an inorganic colloidal solution such as colloidal silica can be used. That is, the coating liquid can be prepared by, for example, a method of blending colloidal silica or the like with the coating liquid such that the content of colloidal particles is in the specific range. Usually, the median diameter of the colloidal particles contained in the inorganic colloidal solution is 100 nm or less.
  • colloidal silica, colloidal alumina, colloidal zirconia, or the like can be used as the inorganic colloid solution.
  • the content of the inorganic binder is less than 10 parts by mass, the adhesiveness between the coating layer and the substrate is lowered, and there is a possibility that cracking or peeling occurs in the coating layer. As a result, the performance of the refractory may be reduced.
  • the content of the inorganic binder is large.
  • the content of the inorganic binder is excessively large, it may be difficult to obtain an effect commensurate with the cost, or the melting point of the coating layer may be lowered.
  • the inorganic binder since the inorganic binder has high reactivity, if the content of the inorganic binder is excessively large, the coating layer may be deteriorated by reacting with the substrate or the radiation scattering material in a high temperature environment, and the performance may be deteriorated. is there.
  • the reaction with the substrate, the radiation scattering material, etc. can occur when any of fine particles derived from colloidal silica, fine particles derived from colloidal alumina, and fine particles derived from colloidal zirconia is used. In particular, fine particles derived from colloidal silica. This is likely to occur when is used as an inorganic binder.
  • the content of the inorganic binder is preferably 20 parts by mass or less.
  • the content of the inorganic binder is more preferably 10 to 20 parts by mass from the viewpoint of improving the adhesion between the coating layer and the substrate and suppressing the performance degradation of the coating layer at high temperature.
  • Swellable clay mineral 0.2 to 2 parts by mass
  • the coating liquid contains 0.2 to 2 parts by mass of the clay mineral with respect to 100 parts by mass of water.
  • the clay mineral has an action of improving the dispersibility of solid content in water.
  • the coating liquid can stably disperse the clay mineral, the inorganic binder, and the radiation scattering material in water over a long period of time by setting the content of the clay mineral in the specific range. As a result, the preparatory work prior to application can be greatly simplified.
  • clay minerals having swelling properties such as kaolinite, halloysite, smectite, mica, vermiculite, chlorite, imogolite, allophane, sepiolite, varigilskite, and gibbsite can be used.
  • the content of the clay mineral is less than 0.2 parts by mass, it is difficult to disperse the solid content in water, and the solid content may settle relatively early after the solid content is dispersed in water. is there.
  • the content of the clay mineral exceeds 2 parts by mass, there is a possibility that problems such as a decrease in coatability due to an increase in the viscosity of the coating liquid and a decrease in heat resistance of the coating layer may occur.
  • Radiation scattering material 10 to 200 parts by mass
  • the coating liquid contains 10 to 200 parts by mass of radiation scattering material with respect to 100 parts by mass of water.
  • the radiation scattering material has an action of reflecting or scattering electromagnetic waves such as infrared rays radiated from the furnace.
  • the refractory In a heating furnace in which the temperature in the furnace is a high temperature of 1000 ° C. or higher, heat transfer from the inside of the furnace to the outside of the furnace by radiation is dominant as compared to heat transfer by convection or conduction.
  • the coating layer formed by drying the coating liquid contains a radiation scattering material, it can effectively reflect or scatter electromagnetic waves such as infrared rays radiated from the furnace.
  • the said refractory can reflect or scatter the electromagnetic waves radiated
  • the refractory can reduce the electromagnetic wave reaching the substrate due to the presence of the coating layer, the temperature rise of the substrate can be suppressed. As a result, the refractory can suppress the shrinkage of the substrate due to heating, and thus can suppress the shrinkage of the entire refractory.
  • the content of the radiation scattering material is set to 10 to 200 parts by mass in order to achieve both heat insulation performance and applicability.
  • the content of the radiation scattering material is preferably 10 to 120 parts by mass, and more preferably 10 to 80 parts by mass.
  • ceramic fiber and / or one or more ceramic powders having a median diameter of 60 ⁇ m or less can be used as the radiation scattering material.
  • the median diameter of the ceramic powder can be calculated based on the particle size distribution measured by the laser diffraction scattering method.
  • the ceramic fiber is composed of fibrous particles containing Al 2 O 3 .
  • the ceramic fiber is usually made of Al 2 O 3 and SiO 2 , but may contain other components.
  • the ceramic fiber can effectively reflect or scatter the radiated electromagnetic wave as the content of Al 2 O 3 increases. Therefore, the ceramic fiber having a large content of Al 2 O 3 can improve the performance of the refractory finally obtained.
  • the content of Al 2 O 3 in the ceramic fiber is preferably 50% by mass or more, more preferably 60% by mass or more, and 65% by mass or more. Is more preferable, and it is especially preferable that it is 70 mass% or more.
  • the individual fibrous particles constituting the ceramic fiber usually have a length of 1 or more times the diameter.
  • the average diameter of the fibrous particles can be 60 ⁇ m or less. In this case, the dispersibility of the ceramic fiber can be improved and the coating thickness of the coating liquid can be reduced. From the viewpoint of industrial availability, the average diameter of the fibrous particles is preferably 12 ⁇ m or less.
  • the average fiber length of the ceramic fiber is 100 ⁇ m or less.
  • the average fiber length exceeds 100 ⁇ m, the content of excessively long fibrous particles increases, so that the ceramic fiber tends to settle during storage.
  • the content of excessively long fibrous particles increases, it becomes difficult to reduce the coating thickness of the coating liquid, and thus it becomes difficult to reduce the thickness of the coating layer after drying.
  • the average fiber length of the ceramic fiber is set to 100 ⁇ m or less. From the same viewpoint, the average fiber length of the ceramic fibers is preferably 60 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the ceramic powder examples include alumina (Al 2 O 3 ), silica (SiO 2 ), titania (TiO 2 ), chromia (Cr 2 O 3 ), yttria (Y 2 O 3 ), and zirconia (ZrO 2 ). ), Lanthanum oxide (La 2 O 3 ), ceria (CeO 2 ), silicon carbide (SiC), silicon carbide aluminum (Al 4 SiC 4 ), silicon nitride (Si 3 N 4 ) and boron nitride (BN) Any one or more selected powders can be used. These ceramic powders may be used alone or in combination with ceramic fibers.
  • the ceramic powder has a particle size distribution with a median diameter of 60 ⁇ m or less.
  • the median diameter of the ceramic powder is preferably 40 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less. From the viewpoint of avoiding an increase in the viscosity of the coating liquid, it is preferable that the median diameter of the ceramic powder is 1 ⁇ m or more.
  • the coating liquid contains only one of ceramic fiber or alumina powder as a radiation scattering material
  • the content of Al 2 O 3 with respect to the total solid content of the coating liquid is preferably 50% by mass or more.
  • the coating liquid can form a coating layer that can more effectively reflect or scatter the radiated electromagnetic waves. And the heat insulation performance of the said refractory etc. can be improved more by using the said coating liquid.
  • the coating liquid contains two or more types of radiation scattering materials, it is preferable that at least ceramic fibers are included as the radiation scattering materials. That is, it is preferable that the coating liquid contains two or more kinds of radiation scattering materials including ceramic fibers.
  • the above ceramic powders have excellent performance as a radiation scattering material.
  • the viscosity of the coating liquid tends to increase, which may cause problems such as poor applicability or thick application thickness.
  • ceramic fibers are unlikely to increase the viscosity of the coating liquid when used in combination with the ceramic powder. Therefore, the coating liquid containing two or more kinds of radiation scattering materials containing ceramic fibers can further improve the performance of the refractory while suppressing an increase in viscosity.
  • the coating liquid preferably has an alumina powder content of 30 parts by mass or less.
  • Alumina powder when used in combination with ceramic fibers, tends to increase the viscosity of the coating solution compared to silicon carbide powder, silicon nitride powder and boron nitride powder. Therefore, the increase in the viscosity of the coating liquid can be suppressed by regulating the content of the alumina powder to 30 parts by mass or less.
  • the coating solution is more preferably the content of Al 2 O 3 with respect to the total solid content is 50 mass% or more.
  • the coating liquid can form a coating layer that can more effectively reflect or scatter the radiated electromagnetic waves. And the heat insulation performance of the said refractory etc. can be improved more by using the said coating liquid.
  • the coating liquid preferably has a viscosity of 20 Pa ⁇ s or less.
  • the coating liquid can be applied to the substrate by spraying.
  • the substrate can also be applied by immersing it in a coating solution.
  • the coating liquid preferably has a viscosity of 5 Pa ⁇ s or less.
  • the coating liquid is configured to maintain a state in which the solid content is dispersed in water for one day or more.
  • the stirring work before application to the refractory can be shortened, and in some cases, it is not necessary to perform the stirring work. As a result, the preparatory work prior to application can be greatly simplified.
  • the coating liquid may contain an organic substance as long as it does not impair applicability and storage stability.
  • organic substances that can be included in the coating liquid include colorants, preservatives, and thickeners.
  • the coating liquid may contain 0.5 parts by mass or less of a colorant with respect to 100 parts by mass of water.
  • the color tone of the coating liquid can be adjusted to a color tone different from that of the substrate. As a result, it is possible to easily distinguish between a portion where the coating liquid is applied and a portion where the coating liquid is not applied. As a result, coating unevenness of the coating liquid can be reduced.
  • the coating liquid may contain the antiseptic
  • the coating liquid may contain 0.5 mass part or less of thickener with respect to 100 mass parts of water.
  • the thickener is used for finely adjusting the viscosity of the coating liquid.
  • the content of the colorant, preservative and thickener is preferably 0.5 parts by mass or less.
  • the refractory material can be produced, for example, by applying the coating liquid to a base made of a refractory material and then drying the coating liquid to form a coating layer.
  • the coating liquid for forming the coating layer, the thickness of the resulting coating layer can be reduced.
  • the said coating liquid can make a viscosity lower than before as above-mentioned, it can apply
  • the said coating liquid can also be apply
  • the substrate to which the coating liquid is applied is composed of a conventionally known refractory material.
  • a block including a ceramic fiber and a molded product can be employed as the refractory constituting the base.
  • the ceramic fiber constituting the substrate for example, refractory ceramic fiber, alumina fiber, and biosoluble fiber can be used.
  • Refractory ceramic fibers for example, Al 2 O 3: 30 ⁇ 60 wt%, SiO 2: containing 40 to 60 wt%, fibrous particles having a chemical composition the balance being ZrO 2 and / or Cr 2 O 3 It is composed of The fibrous particles constituting the refractory ceramic fiber are amorphous.
  • Alumina fibers for example, Al 2 O 3: comprises at least 60 wt%, the balance is composed of fibrous particles with a chemical composition consisting of SiO 2. Further, the fibrous particles constituting the alumina fiber contain both mullite crystals and alumina crystals.
  • the biosoluble fiber is composed of fibrous particles containing, for example, SiO 2 : 40 to 60% by mass and the balance having chemical components composed of MgO and / or CaO.
  • the fibrous particles constituting the biosoluble fiber are amorphous.
  • refractory refractory bricks specified in JIS R2611 plastic refractories containing chamotte, alumina and chrome as aggregates, castable refractories containing calcia and alumina as aggregates, refractory mortar, etc. It is also possible to use it.
  • the above-mentioned heat-resistant refractory bricks, plastic refractories, castable refractories and refractory mortars have a smoother surface than blocks containing ceramic fibers. Therefore, when a coating layer is formed using a conventional coating solution, the adhesion between the substrate and the coating layer is low, and problems such as cracks in the coating layer or peeling of the coating layer are suppressed. It was difficult.
  • the coating liquid can reduce the thickness of the coating on the substrate surface as compared with the conventional case, and as a result, the thickness of the coating layer can be reduced. Therefore, it is possible to improve the adhesion of the coating layer to the base made of heat-resistant fire-resistant brick and the like, and to suppress the occurrence of peeling or cracking of the coating layer.
  • a coating solution was prepared using the following materials.
  • the average fiber length of the ceramic fiber was calculated by the following method. First, an SEM (scanning electron microscope) image of the ceramic fiber before mixing was obtained. Of the fibrous particles shown in this SEM image, 100 fibrous particles that can be confirmed at both ends were randomly selected. And the value which averaged the length of these fibrous particles was made into average fiber length.
  • the average diameter of the fibrous particles was calculated by the following method. First, an SEM (scanning electron microscope) image of the ceramic fiber before mixing was obtained. Of the fibrous particles reflected in the SEM image, 10 fibrous particles whose end faces could be confirmed were randomly selected. And the value which averaged the diameter of the end surface of these fibrous particles was made into the average diameter of fibrous particles.
  • the median diameter of the ceramic powder was measured using a laser diffraction / scattering particle size distribution measuring device (“LA-500” manufactured by Horiba, Ltd.).
  • Example 1 This example is an example of a coating liquid containing one kind of ceramic fiber as a radiation scattering material.
  • 14 types of coating liquids (test agents 1 to 14) were prepared by changing the types and contents of ceramic fibers. Thereafter, the properties of the obtained coating liquid were evaluated.
  • ⁇ Method for preparing test agent> First, the swellable clay mineral was added in several portions while stirring water, and the swellable clay mineral was dispersed in water. While stirring this solution, an inorganic binder, a radiation scattering material, a colorant, a preservative, and a thickener were sequentially added to prepare test agents 1 to 14. In addition, the inorganic binder was mixed with the said solution in the state of the colloidal silica solution.
  • Viscosity of each test agent at 20 ° C. was measured using a viscometer (“Bisco Tester VT-04E” manufactured by Rion Co., Ltd.). The results are shown in Table 1. The meanings of the symbols in the “viscosity” column in Table 1 are as follows.
  • a + The viscosity of the test agent was 1 Pa ⁇ s or less.
  • a + The solid content did not settle during the evaluation period.
  • ⁇ Applicability> As a test piece, a grid having a large number of holes each having a square shape of 3 mm in length and 3 mm in width was prepared. Each test agent was applied to the test piece using a spray and a spatula to evaluate whether spray application was possible. Moreover, the test piece after application
  • a + The test agent could be applied by spraying. No clogging of the holes occurred in the test piece after spray application, and all the holes were open.
  • - The test agent could not be applied because the viscosity of the test agent was extremely high.
  • Glass plates, alumina plates, refractory bricks and ceramic fiber blocks were prepared as test pieces.
  • the glass plate and the alumina plate have a smooth surface and have a square shape of 5 cm long ⁇ 5 cm wide.
  • the refractory brick has a rough surface and has a cubic shape with a side of 5 cm.
  • the ceramic fiber block has a large number of gaps on the surface and has a cubic shape with a side of 5 cm.
  • test agent was applied to the surfaces of the above four types of test pieces as thinly as possible and covering the entire surface. Thereafter, the test piece was dried by heating at 110 ° C. for 12 hours.
  • a + Cracks did not occur in the coating layer after drying.
  • A Cracks occurred in a part of the coating layer after drying, but no decrease in heat insulation performance due to the cracks was observed.
  • B Cracks occurred on almost the entire surface of the coating layer after drying.
  • the test agent could not be applied because the viscosity of the test agent was extremely high.
  • A The entire surface of the coating layer was smooth.
  • B Unevenness was observed in part of the coating layer.
  • C Unevenness was observed on the entire surface of the coating layer.
  • the test agent could not be applied because the viscosity of the test agent was extremely high.
  • the thickness of the coating layer formed on the alumina plate was measured.
  • the results are shown in Table 1.
  • the meaning of the symbol described in the column of “the thickness of the coating layer” in Table 1 is as follows.
  • the thickness of the coating layer was measured by the following method.
  • the thickness of five locations randomly selected in advance on the alumina plate before applying the coating layer was measured using a caliper.
  • the average value of the five thicknesses thus obtained was defined as the average thickness of the alumina plate.
  • the coating layer was formed on the alumina board by the above-mentioned method, and the test piece was produced. And in the said test piece, the thickness of the thickest part and the thinnest part judged visually was measured using calipers. Furthermore, three places were selected at random from the portion excluding the two places, and the thickness of the test piece was measured using a caliper.
  • the average value of the five thicknesses obtained as described above was taken as the average thickness of the test piece. And the value which deducted the average thickness of the alumina board from the average thickness of the test piece was made into the thickness of a coating layer.
  • a + The thickness of the coating layer was 0.1 mm or less.
  • the test agent could not be applied because the viscosity of the test agent was extremely high.
  • a + No cracks occurred in the coating layer after firing.
  • A Cracks occurred in a part of the coating layer after firing, but no decrease in heat insulation performance due to cracks was observed.
  • B Cracks occurred on almost the entire surface of the coating layer after firing.
  • the test agent could not be applied because the viscosity of the test agent was extremely high.
  • the test agent was applied to the surface of the substrate made of refractory so as to be as thin as possible and to cover the entire surface. Thereafter, the substrate was heated at 110 ° C. for 12 hours to dry the test agent, thereby forming a coating layer. Thus, a refractory having a coating layer was prepared.
  • As the substrate two types of ceramic fiber block having a maximum use temperature of 1260 ° C. and a castable refractory having a maximum use temperature of 1300 ° C. were used.
  • a high temperature endurance test for heating the refractory for a long time was performed by the following method.
  • the temperature inside the device is increased to 1500 ° C. at a temperature increase rate of 150 ° C./hour, and then the temperature of 1500 ° C. is increased. Hold for 24 hours. After holding for 24 hours, heating was stopped and the refractory was allowed to cool naturally in the apparatus, completing the high temperature durability test.
  • a high temperature durability test was conducted in the same manner as described above except that the temperature rising rate was 100 ° C./hour and the holding time at 1500 ° C. was 3 hours.
  • Example 2 This example is an example of a coating liquid in which the contents of the inorganic binder and the swellable clay mineral are changed.
  • Table 2 in this example, eight types of coating liquids (test agents 15 to 22) with different contents of the inorganic binder and the swellable clay mineral were prepared in the same manner as in Experimental Example 1.
  • Various characteristics were evaluated in the same manner as in Experimental Example 1. The results are shown in Table 2.
  • Example 3 This example is an example of a coating liquid containing only ceramic powder as a radiation scattering material. As shown in Table 3, in this example, 18 types of coating liquids (test agents 23 to 39, 41) with different types and contents of ceramic powders were prepared in the same manner as in Experimental Example 1. Various characteristics were evaluated in the same manner as in Experimental Example 1. The results are shown in Table 3.
  • Example 4 This example is an example of a coating liquid containing both ceramic fibers and ceramic powder as a radiation scattering material.
  • Tables 4 and 5 in this example, 26 types of coating liquids (test agents 43 to 68) with different types and contents of ceramic powders were prepared in the same manner as in Experimental Example 1. Various characteristics were evaluated in the same manner as in Experimental Example 1. The results are shown in Tables 4 and 5.
  • the test agent in which the content of the inorganic binder, the swellable clay mineral and the radiation scattering material is within the above specified range has a low viscosity and an excellent dispersion stability. And spray coating could be performed.
  • such a test agent can form a coating layer exhibiting excellent adhesion to various test pieces such as glass and brick, and can suppress cracking of the coating layer after drying and firing. It was.
  • test agent in which the content of the swellable clay mineral and the radiation scattering material is within the above specific range is compared with the refractory using the refractory having no coating layer and the test agent 4 not containing the radiation scattering material.
  • the linear shrinkage rate after the high temperature durability test could be reduced.
  • the test agent in which the content of the inorganic binder, the swellable clay mineral and the radiation scattering material is within the above specific range can be prepared by a simple operation and can form a coating layer having excellent performance. Understandable.
  • Example 5 This example is an example of evaluating wind resistance of a refractory.
  • the specimen used for evaluation was produced by the following method. First, a ceramic fiber block having a plate shape of 10 cm in length, 10 cm in width, and 1 cm in thickness was prepared as a substrate.
  • the test agent 2 (see Table 1) was applied to the surface of the substrate so as to be as thin as possible and to cover the entire surface. Thereafter, the substrate was heated at 110 ° C. for 12 hours to dry the test agent 2 to form a coating layer.
  • the refractory (test body A) was produced by the above.
  • test body B consisting only of the above-mentioned substrate and test bodies C to F shown in Table 6 were prepared.
  • Specimens C to F are refractories produced by the same method as Specimen A, except that the components of the coating liquid were changed as shown in Table 6.
  • the wind speed resistance was evaluated by the following method. First, the masses of the test specimens A to F obtained by the above method were measured. Subsequently, the compressed air supplied from the compressor was sprayed on the center of the plate surface of the test body for 20 seconds. The pressure of the compressed air was 9 kg / cm 2 . Moreover, the blowout port of the compressed air was arrange
  • Table 6 shows the mass reduction rate of each specimen.
  • the refractory (test body A) produced using the test agent 2 in which the content of the inorganic binder, the swellable clay mineral, and the radiation scattering material is within the specific range is a ceramic fiber block. It was possible to reduce the mass reduction rate as compared with the test body B consisting of only the test body B, and the test bodies C, D and F that do not have at least one of the inorganic binder or the clay mineral.
  • Specimen E had a lower mass reduction rate than Specimen A. However, since the test body D does not contain the radiation scattering material (ceramic fiber B), it is estimated that the heat insulation performance is inferior to the test body A.
  • Example 6 In this example, a part of the coating liquid shown above (test agents 1, 2, 14, 33, 34, 36, 54, 60, 61, 62, 23, 24, 38, 39, 41) was used, and the corrosion resistance The result of having conducted the experiment which evaluates an improvement effect is shown.
  • the first ceramic fiber block used in this example contains 50% by mass of Al 2 O 3 and SiO 2 , and is commercially available with an upper limit use temperature of 1260 ° C. (ITM Co., Ltd.) Made).
  • the second ceramic fiber block has a composition of Al 2 O 3 content of 70% by mass and SiO 2 content of 30% by mass, and is commercially available with an upper limit use temperature of 1600 ° C. (manufactured by ITM Co., Ltd.). is there.
  • the coating liquid (test agent) was applied to the surface of these ceramic fiber blocks so as to be as thin as possible and to cover the entire surface. Thereafter, the coating liquid was dried by heating at 110 ° C. for 12 hours to obtain a refractory specimen having a coating layer having a thickness of 0.3 mm or less on the surface of the ceramic fiber block as the substrate.
  • the refractory test body using the 2nd ceramic fiber block was used only with respect to the test agents 2 and 54 as shown in Table 7 mentioned later.
  • the scale 2 is stronger than the scale 1 in terms of corrosivity.
  • A In visual observation and cross-sectional observation, no corrosion was observed on the substrate.
  • B Although it cannot be judged visually, erosion of the substrate was observed by cross-sectional observation.
  • C It was found that there was a depression in a portion where there was a scale, and there was erosion to the substrate by visual observation without observing the cross section.
  • Example 7 This example shows the result of conducting an experiment for evaluating another effect of improving corrosion resistance using a part of the coating liquid shown above (test agent 2, 14, 36, 38, 39, 41). .
  • a refractory serving as a base As a refractory serving as a base, a 10 cm square ceramic fiber block having a use upper limit temperature of 1260 ° C. similar to that in Experimental Example 6 was prepared, and a recess for receiving molten aluminum described later was provided on the surface. As in the case of Experimental Example 6, a coating liquid (test agent) was applied to the surface of the ceramic fiber block so as to be as thin as possible and to cover the entire surface. Thereafter, the coating liquid was dried by heating at 110 ° C. for 12 hours to obtain a refractory specimen having a coating layer having a thickness of 0.3 mm or less on the surface of the ceramic fiber block as the substrate.
  • A In visual observation and cross-sectional observation, no corrosion was observed on the substrate.
  • B Although it cannot be judged visually, erosion of the substrate was observed by cross-sectional observation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)
  • Paints Or Removers (AREA)

Abstract

簡素な作業により準備でき、優れた性能を有する耐火物用のコーティング液、コーティング液を作製するための組成物及び優れた断熱性能と耐風速性とを有するコーティング層を有する耐火物を提供する。コーティング液は、100質量部の水分と、10~20質量部の無機バインダーと、0.2~2質量部の膨潤性粘土鉱物と、10~200質量部の輻射散乱材とを含有している。輻射散乱材は、Al23を含む繊維状粒子より構成されている平均繊維長が100μm以下のセラミックスファイバー及び/または、アルミナ粉末、シリカ粉末、チタニア粉末、クロミア粉末、イットリア粉末、ジルコニア粉末、酸化ランタン粉末、セリア粉末、炭化ケイ素粉末、炭化ケイ素アルミニウム粉末、窒化ケイ素粉末及び窒化ホウ素粉末からなる群より選択され、60μm以下のメジアン径を有する1種または2種以上のセラミックス粉末を含んでいる。

Description

コーティング液、コーティング液用組成物及びコーティング層を有する耐火物
 本発明は、耐火物に塗布するためのコーティング液、このコーティング液を作製するための組成物及びコーティング液を用いて作製されたコーティング層を有する耐火物に関する。
 鋼材等の製造に用いる均熱炉や熱処理炉、セラミックス等の製造に用いる焼成炉等の、高温での加熱が可能に構成された加熱炉は、外壁と、外壁の内側に配置された内壁とを有している。内壁は、耐火物から構成されている。
 内壁を構成する耐火物は、通常、取付金具を介して加熱炉の外壁に取り付けられている。この種の耐火物としては、シリカ、アルミナ、ジルコニア等を含むセラミックスファイバーより構成されたブロックが多用されている。このブロックは、優れた断熱性能を有しているため、加熱炉の内壁に用いることにより炉内の温度や昇温速度の制御を容易に行うことができる。また、上記ブロックは、かさ比重が小さいセラミックスファイバーを含んでいるため比較的軽量である。それ故、上記ブロックは、加熱炉の外壁に容易に取り付けることができる。
 しかし、セラミックスファイバーより構成されたブロックは、例えば1000℃以上の高温環境下に長期間置かれると徐々に収縮するという問題がある。そのため、加熱炉を長期間に亘って使用すると、隣り合うブロックの間に隙間が生じ、断熱性能の低下を招いていた。
 また、セラミックスファイバーを含むブロック以外にも、JIS R2611に規定される酸性酸化物、中性酸化物及び塩基性酸化物を主成分とする耐熱耐火レンガ、シャモット質、アルミナ質及びクロム質を骨材として含むプラスチック耐火物、カルシア及びアルミナを骨材として含むキャスタブル耐火物、並びに耐火モルタル等の耐火物が加熱炉の内壁として用いられることがある。しかし、これらの耐火物も、上記と同様に高温環境下に長期間置かれると徐々に収縮するという問題がある。また、金属を加熱する加熱炉内の耐火物に、金属や金属精錬時に発生する副生成物が接触した場合、耐火物が腐食する場合があるという不具合も存在していた。特にアルカリ物質を含む酸化第一鉄(スケール)が接触した場合には、顕著であった。
 そこで、温度上昇による耐火物の収縮を抑制するために、耐火物の表面にコーティング層を設ける技術が提案されている。例えば、特許文献1には、セラミック粉末、粘土鉱物及びコロイド状酸化物溶液を含有し、チクソトロピック性を有する非沈降性耐火モルタルが開示されている。また、特許文献2には、無機繊維、無機粒子、無機バインダー及び有機バインダーを含むコート材が開示されている。
特開2009-137809号公報 特許第4297204号
 特許文献1の耐火モルタルは、高い粘度を有しているため、例えば耐火物の目地等の、深い凹凸や複雑な構造を有する部分への塗布が難しい。それ故、耐火モルタルを塗布する際の作業性が低いという問題がある。また、耐火モルタルは、塗布厚みを薄くすることが難しいため、耐火モルタルを塗布した耐火物が自重により加熱炉の外壁から剥落しやすいという問題がある。
 耐火物に塗布するコーティング液の塗布性を向上させ、また、塗布厚みを薄くするためには、粘度の低いコーティング液を用いることが有効である。しかし、粘度の低いコーティング液は、通常、特許文献2のコート材のように有機バインダーや有機溶媒等の有機物を多量に含んでいる。そのため、コーティング液を加熱して乾燥する際に有機バインダー等がガス化し、得られるコーティング層にクラック等を発生させるおそれがある。このようなクラックは、断熱性能等が低下する原因となるため好ましくない。また、有機バインダーや有機溶媒を含むコーティング液は、長期間保存した際に腐敗するおそれがある。
 以上のように、塗布性、塗布厚さ、性能及び保存性の観点から、耐火物用のコーティング液は、低粘度であり、有機バインダー等を含まないことが好ましい。ところが、有機バインダーや有機溶媒を用いずに作製した低粘度のコーティング液は、長期間に亘って固形分を溶媒中に分散させることが難しく、溶媒に固形分を分散させた後、比較的早期に固形分が沈殿するという問題がある。そのため、このようなコーティング液は、使用の都度溶媒と固形分とを混合する、あるいは、耐火物に塗布する直前に十分に攪拌して固形分を溶媒中に再度分散させる等の作業を行う必要があり、塗布前の準備作業が煩雑になっていた。
 本発明は、かかる背景に鑑みてなされたものであり、簡素な作業により準備でき、耐火物用に塗布することによって優れた性能を発揮するコーティング液、このコーティング液を作製するための組成物及びコーティング層を有する耐火物を提供しようとするものである。
 本発明の一態様は、耐火物に塗布するためのコーティング液であって、
 100質量部の水分と、
 10質量部以上の無機バインダーと、
 0.2~2質量部の膨潤性粘土鉱物と、
 10~200質量部の輻射散乱材とを含有し、
 該輻射散乱材は、
 Al23を含む繊維状粒子より構成されている平均繊維長100μm以下のセラミックスファイバー及び/または、
 アルミナ粉末、シリカ粉末、チタニア粉末、クロミア粉末、イットリア粉末、ジルコニア粉末、酸化ランタン粉末、セリア粉末、炭化ケイ素粉末、炭化ケイ素アルミニウム粉末、窒化ケイ素粉末及び窒化ホウ素粉末からなる群より選択され、60μm以下のメジアン径を有する1種または2種以上のセラミックス粉末を含んでいる、コーティング液にある。
 本発明の他の態様は、耐火物に塗布するためのコーティング液の組成物であって、
10質量部以上の無機バインダーと、
 0.2~2質量部の膨潤性粘土鉱物と、
 10~200質量部の輻射散乱材とを含有し、
 該輻射散乱材は、
 Al23を含む繊維状粒子より構成されている平均繊維長100μm以下のセラミックスファイバー及び/または、
 アルミナ粉末、シリカ粉末、チタニア粉末、クロミア粉末、イットリア粉末、ジルコニア粉末、酸化ランタン粉末、セリア粉末、炭化ケイ素粉末、炭化ケイ素アルミニウム粉末、窒化ケイ素粉末及び窒化ホウ素粉末からなる群より選択され、60μm以下のメジアン径を有する1種または2種以上のセラミックス粉末を含んでいる、コーティング液用組成物にある。
 本発明の更に他の態様は、耐火物より構成された基体と、
 該基体上に形成されたコーティング層とを有しており、
 該コーティング層は、
 10質量部以上の無機バインダーと、
 0.2~2質量部の膨潤性粘土鉱物と、
 10~200質量部の輻射散乱材とを含有し、
 該輻射散乱材は、
 Al23を含む繊維状粒子より構成されている平均繊維長100μm以下のセラミックスファイバー及び/または、
 アルミナ粉末、シリカ粉末、チタニア粉末、クロミア粉末、イットリア粉末、ジルコニア粉末、酸化ランタン粉末、セリア粉末、炭化ケイ素粉末、炭化ケイ素アルミニウム粉末、窒化ケイ素粉末及び窒化ホウ素粉末からなる群より選択され、60μm以下のメジアン径を有する1種または2種以上のセラミックス粉末を含んでいる、コーティング層を有する耐火物にある。
 上記コーティング液は、100質量部の水分に対して、上記特定の比率の上記無機バインダー、上記膨潤性粘土鉱物(以下、「粘土鉱物」という。)及び上記輻射散乱材を含有している。そして、上記輻射散乱材は、上述のように粒径分布が制御されたセラミックスファイバー及び/またはセラミックス粉末より構成されている。
 上記コーティング液の溶媒及びバインダーは、無機物から構成されている。それ故、上記コーティング液は、優れた保存性を有すると共に、乾燥後のコーティング層におけるクラックの発生を抑制することができる。
 また、上記コーティング液は、上記特定の組成を有することにより、優れた性能を有する上記コーティング層を形成することができる。また、上記コーティング液は、低粘度であるため、優れた塗布性を有すると共に、塗布厚みを薄くすることができる。
 また、上記コーティング液は、長期間に亘って安定して固形分を溶媒中に分散させることができる。それ故、上記コーティング液は、予め水と固形分とを混合しておくことができ、更には耐火物への塗布前の攪拌作業を短縮でき、場合によっては攪拌作業を行う必要がなくなる。その結果、塗布前の準備作業を大幅に簡素化することができる。
 以上のように、上記コーティング液は、簡素な作業により準備でき、塗布性に優れ、塗布厚みを薄くすることができる。
 また、上記耐火物は、上記特定の比率の上記無機バインダー、上記粘土鉱物及び上記輻射散乱材を含む上記コーティング層を有するため、優れた断熱性能及び耐風速性あるいは耐火物耐食性向上効果等を有する。上記コーティング層を有する耐火物は、例えば1000℃以上となる高温環境において、長期間に亘って優れた性能を維持することができる。
 また、上記コーティング液用組成物は、上記無機バインダー、上記粘土鉱物及び上記輻射散乱材を上記特定の比率で含有している。それ故、上記組成物に水を加えることにより、上記コーティング液を容易に作製することができる。
 上記コーティング液の組成について、以下に説明する。
・無機バインダー:10質量部以上
 上記コーティング液は、100質量部の水分に対して10質量部以上の無機バインダーを含有している。無機バインダーは、乾燥後のコーティング層を耐火物よりなる基体に強固に接着させる作用を有する。コーティング液は、無機バインダーの含有量を上記特定の範囲にすることにより、乾燥後のコーティング層にクラック等が発生する、あるいはコーティング層が基体から剥落するなどの問題を抑制することができる。
 無機バインダーとしては、水に分散させてコロイダルシリカ等の無機コロイド溶液を形成可能な微粒子を用いることができる。即ち、上記コーティング液は、例えば、コロイド粒子の含有量が上記特定の範囲となるように、上記コーティング液にコロイダルシリカ等を配合する方法等により作製することができる。通常、無機コロイド溶液に含まれるコロイド粒子のメジアン径は100nm以下である。無機コロイド溶液としては、コロイダルシリカ、コロイダルアルミナ及びコロイダルジルコニア等を用いることができる。
 無機バインダーの含有量が10質量部未満の場合には、コーティング層と基体との接着性が低下し、コーティング層にクラックや剥離が発生するおそれがある。その結果、耐火物の性能が低下するおそれがある。
 コーティング層と基体との接着性を向上させるためには、無機バインダーの含有量が多いほうが好ましい。しかし、無機バインダーの含有量が過度に多くなると、コストに見合った効果を得ることが難しくなる、コーティング層の融点が低下するなどの問題を招くおそれがある。
 また、無機バインダーは高い反応性を有するため、無機バインダーの含有量が過度に多くなると、高温環境下において基体や輻射散乱材等と反応してコーティング層が変質し、ひいては性能が低下するおそれがある。基体や輻射散乱材等との反応は、コロイダルシリカに由来する微粒子、コロイダルアルミナに由来する微粒子及びコロイダルジルコニアに由来する微粒子のいずれを用いた場合にも起こり得るが、特にコロイダルシリカに由来する微粒子を無機バインダーとして用いた場合に起こり易い。これらの問題を回避するため、無機バインダーの含有量は、20質量部以下とすることが好ましい。
 従って、コーティング層と基体との接着性を向上させると共に高温下でのコーティング層の性能低下を抑制する観点から、無機バインダーの含有量を10~20質量部とすることがより好ましい。
・膨潤性粘土鉱物:0.2~2質量部
 上記コーティング液は、100質量部の水分に対して0.2~2質量部の上記粘土鉱物を含有している。粘土鉱物は、固形分の水中への分散性を向上させる作用を有する。上記コーティング液は、粘土鉱物の含有量を上記特定の範囲にすることにより、粘土鉱物、無機バインダー及び輻射散乱材を長期間に亘って安定して水中に分散させることができる。その結果、塗布前の準備作業を大幅に簡素化することができる。
 上記粘土鉱物としては、例えば、カオリナイト、ハロイサイト、スメクタイト、雲母、バーミキュライト、緑泥石、イモゴライト、アロフェン、セピオライト、バリギルスカイト及びギブサイト等の、膨潤性を有する粘土鉱物を用いることができる。
 粘土鉱物の含有量が0.2質量部未満の場合には、固形分を水中に分散させることが難しくなり、固形分を水に分散させた後、比較的早期に固形分が沈降するおそれがある。一方、粘土鉱物の含有量が2質量部を超えると、コーティング液の粘度増大により塗布性が低下する、コーティング層の耐熱性が低下するなどの問題を招くおそれがある。
・輻射散乱材:10~200質量部
 コーティング液は、100質量部の水分に対して10~200質量部の輻射散乱材を含有している。輻射散乱材は、炉内から輻射された赤外線等の電磁波を反射させ、または散乱させる作用を有する。
 炉内の温度が1000℃以上の高温となる加熱炉においては、対流や伝導による熱移動に比べて、輻射による炉内から炉外への熱移動が支配的となる。これに対し、上記コーティング液を乾燥してなるコーティング層は、輻射散乱材を含んでいるため、炉内から輻射された赤外線等の電磁波を効果的に反射あるいは散乱することができる。そして、上記耐火物は、上記コーティング層により炉内から輻射された電磁波を表面で反射あるいは散乱することができるため、炉外への熱移動を効果的に低減することができる。その結果、上記耐火物は優れた断熱性能等を有する。
 また、上記耐火物は、上記コーティング層の存在により基体まで到達する上記電磁波を低減することができるため、基体の温度上昇を抑制することができる。その結果、上記耐火物は、加熱による基体の収縮を抑制することができ、ひいては耐火物全体の収縮を抑制することができる。
 輻射散乱材の含有量が10質量部未満の場合には、電磁波を反射あるいは散乱させる作用が不十分となるため、断熱性能を向上させることが難しい。一方、輻射散乱材の含有量が200質量部を超える場合には、コーティング液の粘度が高くなり、塗布性が悪化するおそれがある。従って、断熱性能と塗布性とを両立させるため、輻射散乱材の含有量を10~200質量部とする。同様の観点から、輻射散乱材の含有量を10~120質量部とすることが好ましく、10~80質量部とすることがより好ましい。
 輻射散乱材としては、セラミックスファイバー及び/または60μm以下のメジアン径を有する1種または2種以上のセラミックス粉末を用いることができる。なお、セラミックス粉末のメジアン径は、レーザー回折散乱法により測定した粒径分布に基づいて算出することができる。
 セラミックスファイバーは、Al23を含む繊維状粒子より構成されている。セラミックスファイバーは、通常、Al23及びSiO2から構成されているが、これら以外の成分を含んでいても良い。
 セラミックスファイバーは、Al23の含有量が多いほど輻射された電磁波を効果的に反射または散乱することができる。それ故、Al23の含有量が多いセラミックスファイバーは、最終的に得られる耐火物の性能を向上させることができる。断熱性等の性能を向上させる観点から、セラミックスファイバー中のAl23の含有量は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、65質量%以上であることが更に好ましく、70質量%以上であることが特に好ましい。
 セラミックスファイバーを構成する個々の繊維状粒子は、通常、直径の1倍以上の長さを有している。繊維状粒子の平均直径は、60μm以下とすることができる。この場合には、セラミックスファイバーの分散性を向上させると共にコーティング液の塗布厚みを薄くすることができる。工業的な入手性の観点からは、繊維状粒子の平均直径は12μm以下であることが好ましい。
 上記セラミックスファイバーの平均繊維長は100μm以下である。平均繊維長が100μmを超える場合には、過度に長い繊維状粒子の含有量が多くなるため、セラミックスファイバーが保管中に沈降し易くなる。また、過度に長い繊維状粒子の含有量が多くなると、コーティング液の塗布厚みを薄くすることが難しくなり、ひいては乾燥後のコーティング層の厚みを薄くすることが難しくなる。
 それ故、セラミックスファイバーの分散性を向上させると共にコーティング液の塗布厚みを薄くするため、セラミックスファイバーの平均繊維長を100μm以下とする。同じ観点から、セラミックスファイバーの平均繊維長を60μm以下とすることが好ましく、40μm以下とすることがより好ましい。
 セラミックス粉末としては、具体的には、アルミナ(Al23)、シリカ(SiO2)、チタニア(TiO2)、クロミア(Cr23)、イットリア(Y23)、ジルコニア(ZrO2)、酸化ランタン(La23)、セリア(CeO2)、炭化ケイ素(SiC)、炭化ケイ素アルミニウム(Al4SiC4)、窒化ケイ素(Si34)及び窒化ホウ素(BN)からなる群より選択されるいずれか1種または2種以上の粉末を用いることができる。これらのセラミックス粉末は、単独で用いても良く、セラミックスファイバーと併用してもよい。
 上記セラミックス粉末は、メジアン径が60μm以下となる粒径分布を有している。セラミックス粉末のメジアン径を60μm以下とすることにより、粒径が大きい粒子の含有量を低減することができる。その結果、水中へのセラミックス粉末の分散性を向上させるとともに、コーティング液の塗布厚みを容易に薄くすることができる。同じ観点から、セラミックス粉末のメジアン径を40μm以下とすることが好ましく、20μm以下とすることがより好ましく、10μm以下とすることが更に好ましい。また、コーティング液の粘度増大を回避する観点からは、セラミックス粉末のメジアン径を1μm以上とすることが好ましい。
 コーティング液がセラミックスファイバーまたはアルミナ粉末のいずれか一方のみを輻射散乱材として含んでいる場合には、コーティング液の全固形分に対するAl23の含有量が50質量%以上であることが好ましい。この場合には、コーティング液は、輻射された電磁波をより効果的に反射または散乱することができるコーティング層を形成することができる。そして、上記コーティング液を用いることにより、上記耐火物の断熱性能等をより向上させることができる。
 コーティング液が2種以上の輻射散乱材を含んでいる場合には、輻射散乱材として、少なくともセラミックスファイバーを含んでいることが好ましい。即ち、コーティング液は、セラミックスファイバーを含む2種以上の輻射散乱材を含んでいることが好ましい。
 上記セラミックス粉末は、いずれも輻射散乱材として優れた性能を有する。しかし、2種以上のセラミックス粉末を併用する場合には、コーティング液の粘度が増大し易くなり、塗布性が悪化する、あるいは塗布厚みが厚くなるなどの問題が生じるおそれがある。一方、セラミックスファイバーは、上記セラミックス粉末と併用した場合にコーティング液の粘度を増大させにくい。それ故、セラミックスファイバーを含む2種以上の輻射散乱材を含んでいるコーティング液は、粘度増大を抑制しつつ、耐火物の性能をより向上させることができる。
 上記の場合において、コーティング液は、アルミナ粉末の含有量が30質量部以下であることがより好ましい。アルミナ粉末は、セラミックスファイバーと併用した場合に、炭化ケイ素粉末、窒化ケイ素粉末及び窒化ホウ素粉末に比べてコーティング液の粘度を増大させ易い。それ故、アルミナ粉末の含有量を30質量部以下に規制することにより、コーティング液の粘度増大を抑制することができる。
 また、上記の場合において、コーティング液は、全固形分に対するAl23の含有量が50質量%以上であることがより好ましい。この場合には、コーティング液は、輻射された電磁波をより効果的に反射または散乱することができるコーティング層を形成することができる。そして、上記コーティング液を用いることにより、上記耐火物の断熱性能等をより向上させることができる。
 上記コーティング液は、20Pa・s以下の粘度を有することが好ましい。この場合には、スプレーにより上記コーティング液を上記基体に塗布することができる。また、この場合には、コーティング液に基体を浸漬して塗布することもできる。これらの結果、コーティング液の塗布作業における作業性をより向上させることができる。スプレー塗布や浸漬による塗布をより容易に行う観点から、コーティング液は5Pa・s以下の粘度を有することがより好ましい。
 また、上記コーティング液は上記固形分が水中に分散された状態を一日以上維持することができるよう構成されていることが好ましい。この場合には、予め水と固形分とを混合しておくことにより耐火物への塗布前の攪拌作業を短縮でき、場合によっては攪拌作業を行う必要がなくなる。その結果、塗布前の準備作業を大幅に簡素化することができる。
 上記コーティング液は、塗布性及び保存性を損なわない範囲であれば、有機物を含有していてもよい。上記コーティング液に含まれ得る有機物としては、例えば、着色剤、防腐剤及び増粘剤等がある。
・着色剤:0.5質量部以下
 コーティング液は、100質量部の水に対して0.5質量部以下の着色剤を含有していてもよい。この場合には、コーティング液の色調を、基体とは異なる色調に調整することができる。これにより、コーティング液が塗布された部分と塗布されていない部分との判別を容易に行うことができる。その結果、コーティング液の塗布ムラを低減することができる。
・防腐剤:0.5質量部以下
 コーティング液は、100質量部の水に対して0.5質量部以下の防腐剤を含有していてもよい。この場合には、コーティング液の腐敗をより長期に亘って防ぐことができる。
・増粘剤:0.5質量部以下
 コーティング液は、100質量部の水に対して0.5質量部以下の増粘剤を含有していてもよい。増粘剤は、コーティング液の粘度を微調整するために用いられる。
 着色剤、防腐剤及び増粘剤の含有量は、0.5質量部以下であることが好ましい。これらの有機物の含有量を上記特定の範囲に制限することにより、コーティング液の乾燥時に発生するガスの量を十分に低減することができる。その結果、乾燥後のコーティング層におけるクラックの発生を回避することができる。
 上記耐火物は、例えば、耐火物より構成された基体に上記コーティング液を塗布した後、コーティング液を乾燥してコーティング層を形成することにより作製できる。上記コーティング層の形成に上記コーティング液を使用することにより、得られるコーティング層の厚みを薄くすることができる。また、上記コーティング液は、上述した通り従来よりも粘度を低くすることができるため、スプレーにより基体に塗布することができる。なお、上記コーティング液は、従来と同様に、刷毛やヘラ等を用いて基体の表面に塗布することも可能である。
 コーティング液を塗布する基体は、従来公知の耐火物から構成されている。具体的に、基体を構成する耐火物としては、セラミックスファイバーを含むブロック及び成形物を採用することができる。基体を構成するセラミックスファイバーとしては、例えば、リフラクトリーセラミックスファイバー、アルミナファイバー及び生体溶解性ファイバーを用いることができる。
 リフラクトリーセラミックスファイバーは、例えば、Al23:30~60質量%、SiO2:40~60質量%を含み、残部がZrO2及び/またはCr23からなる化学成分を有する繊維状粒子から構成されている。また、リフラクトリーセラミックスファイバーを構成する繊維状粒子は、非晶質である。
 アルミナファイバーは、例えば、Al23:60質量%以上を含み、残部がSiO2からなる化学成分を有する繊維状粒子から構成されている。また、アルミナファイバーを構成する繊維状粒子は、ムライト結晶及びアルミナ結晶の両方を含んでいる。
 生体溶解性ファイバーは、例えば、SiO2:40~60質量%を含み、残部がMgO及び/またはCaOからなる化学成分を有する繊維状粒子から構成されている。また、生体溶解性ファイバーを構成する繊維状粒子は、非晶質である。
 また、耐火物として、JIS R2611に規定される耐熱耐火レンガ、シャモット質、アルミナ質及びクロム質を骨材として含むプラスチック耐火物、カルシア及びアルミナを骨材として含むキャスタブル耐火物、並びに耐火モルタル等を用いることも可能である。
 上述した耐熱耐火レンガ、プラスチック耐火物、キャスタブル耐火物及び耐火モルタルは、セラミックスファイバーを含むブロック等に比べて表面が平滑である。そのため、従来のコーティング液を用いてコーティング層を形成した場合には、基体とコーティング層との接着性が低く、コーティング層にクラック等が発生する、あるいはコーティング層が剥離する等の問題を抑制することが困難であった。
 これに対し、上記コーティング液は、従来に比べて基体表面への塗布厚みを薄くすることができ、結果としてコーティング層の厚みを薄くすることができる。それ故、耐熱耐火レンガ等からなる基体に対するコーティング層の接着性を向上させ、コーティング層の剥離やクラック等の発生を抑制することができる。
 上記コーティング液の実施例について以下に説明する。なお、本例においては、以下の材料を用いてコーティング液を作製した。
・無機バインダー コロイダルシリカに由来する微粒子
・膨潤性粘土鉱物 スメクタイト
・セラミックスファイバーA Al23含有量:65質量%、SiO2含有量:35質量%、繊維状粒子の平均直径:6μm、平均繊維長:10μm
・セラミックスファイバーB Al23含有量:65質量%、SiO2含有量:35質量%、繊維状粒子の平均直径:6μm、平均繊維長:20μm
・セラミックスファイバーC Al23含有量:65質量%、SiO2含有量:35質量%、繊維状粒子の平均直径:6μm、平均繊維長:40μm
・セラミックスファイバーD Al23含有量:65質量%、SiO2含有量:35質量%、繊維状粒子の平均直径:6μm、平均繊維長:60μm
・セラミックスファイバーE Al23含有量:65質量%、SiO2含有量:35質量%、繊維状粒子の平均直径:6μm、平均繊維長:80μm
・セラミックスファイバーF Al23含有量:65質量%、SiO2含有量:35質量%、繊維状粒子の平均直径:6μm、平均繊維長:100μm
・セラミックスファイバーG Al23含有量:70質量%、SiO2含有量:30質量%、繊維状粒子の平均直径:6μm、平均繊維長:20μm
・セラミックスファイバーH Al23含有量:50質量%、SiO2含有量:50質量%、繊維状粒子の平均直径:6μm、平均繊維長:20μm
・炭化ケイ素粉末A メジアン径:1μm
・炭化ケイ素粉末B メジアン径:5μm
・炭化ケイ素粉末C メジアン径:40μm
・アルミナ粉末A メジアン径:1μm
・アルミナ粉末B メジアン径:20μm
・アルミナ粉末C メジアン径:40μm
・シリカ粉末 メジアン径:40μm
・クロミア粉末 メジアン径:40μm
・ジルコニア粉末 メジアン径:40μm
 なお、セラミックスファイバーの平均繊維長は、以下の方法により算出した。まず、混合前のセラミックスファイバーのSEM(走査型電子顕微鏡)像を取得した。このSEM像に写った繊維状粒子のうち、両端が確認できる繊維状粒子を無作為に100個選択した。そして、これらの繊維状粒子の長さを平均した値を平均繊維長とした。
 また、繊維状粒子の平均直径は、以下の方法により算出した。まず、混合前のセラミックスファイバーのSEM(走査型電子顕微鏡)像を取得した。このSEM像に写った繊維状粒子のうち、端面が確認できる繊維状粒子を無作為に10個選択した。そして、これらの繊維状粒子の端面の直径を平均した値を繊維状粒子の平均直径とした。
 また、セラミックス粉末のメジアン径は、レーザー回折/散乱式粒子径分布測定装置(株式会社堀場製作所製、「LA-500」)を用いて測定した。
(実験例1)
 本例は、1種類のセラミックスファイバーを輻射散乱材として含むコーティング液の例である。本例においては、表1に示すようにセラミックスファイバーの種類及び含有量を変更して14種のコーティング液(試験剤1~14)を作製した。その後、得られたコーティング液の特性について評価を行った。
<試験剤の作製方法>
 まず、水を攪拌しながら膨潤性粘土鉱物を数回に分けて加え、膨潤性粘土鉱物を水に分散させた。この溶液を攪拌しながら、無機バインダー、輻射散乱材、着色剤、防腐剤及び増粘剤を順次加え、試験剤1~14を作製した。なお、無機バインダーは、コロイダルシリカ溶液の状態で上記溶液に混合した。
<試験剤の特性評価>
・粘度
 粘度計(リオン株式会社製「ビスコテスタ VT-04E」)を用いて20℃における各試験剤の粘度を測定した。その結果を表1に示す。なお、表1における「粘度」欄の記号の意味は以下の通りである。
 A+:試験剤の粘度は1Pa・s以下であった。
 A:試験剤の粘度は1Pa・s超え5Pa・s以下であった。
 B:試験剤の粘度は5Pa・s超え20Pa・s以下であった。
 C:試験剤の粘度は20Pa・sを超えていた。
 D:水分が不足しており、粘度測定が不可能であった。
<分散安定性>
 各試験剤を激しく攪拌して固形分を分散させた後、室温環境下で試験剤を静置した。そして、固形分が完全に沈降するまでの時間を計測した。その結果を表1に示す。なお、表1における「分散安定性」の欄に示した記号の意味は、以下の通りである。また、「固形分が完全に沈降した状態」とは、沈降した固形分と上澄みの液体との境界が明瞭に観察された状態をいう。
 A+:評価期間の間、固形分は沈降しなかった。
 A:固形分は数日程度で沈降した。
 B:固形分は数十分程度で沈降した。
 C:固形分は静置した直後に沈降した。
 -:試験剤の粘度が極めて高いため評価が不可能であった。
<塗布性>
 テストピースとして、縦3mm×横3mmの正方形状を呈する孔部を多数有する格子を準備した。このテストピースに、スプレー及びヘラを用いて各試験剤の塗布を試み、スプレー塗布の可否を評価した。また、塗布後のテストピースを目視観察し、試験剤による孔部の目詰まりの有無を評価した。表1に評価結果を示す。なお、表1における「塗布性」の欄に示した記号の意味は、以下の通りである。
 A+:試験剤のスプレー塗布を行うことができた。スプレー塗布後のテストピースに孔部の目詰まりは発生せず、全ての孔部が開口していた。
 A:試験剤のスプレー塗布を行うことができた。スプレー塗布後のテストピースにおける孔部の一部に試験剤の目詰まりが発生した。
 B:試験剤のスプレー塗布を行うことができず、ヘラによる塗布を行った。塗布後のテストピースは、ほぼ全ての孔部に試験剤の目詰まりが発生した。
 -:試験剤の粘度が極めて高いため試験剤の塗布が不可能であった。
<乾燥後のひび割れ>
 テストピースとして、ガラス板、アルミナ板、耐火レンガ及びセラミックスファイバーブロックを準備した。ガラス板及びアルミナ板は、滑らかな表面を有しており、縦5cm×横5cmの正方形状を呈している。耐火レンガは粗い表面を有しており、1辺が5cmの立方体状を呈している。セラミックスファイバーブロックは、表面に多数の隙間が存在しており、1辺が5cmの立方体状を呈している。
 上記4種のテストピースの表面に、可能な限り薄く、かつ、表面の全面が覆われるようにして試験剤を塗布した。その後、テストピースを110℃で12時間加熱して乾燥させた。
 乾燥後のテストピース表面を目視により観察し、コーティング層のひび割れの有無を評価した。その結果を表1に示す。なお、表1における「乾燥後のひび割れ」欄に示した記号の意味は、以下の通りである。
 A+:乾燥後のコーティング層にひび割れは発生しなかった。
 A:乾燥後のコーティング層の一部にひび割れが発生したが、ひび割れによる断熱性能の低下は見られなかった。
 B:乾燥後のコーティング層のほぼ全面にひび割れが発生した。
 -:試験剤の粘度が極めて高いため試験剤の塗布が不可能であった。
<コーティング層の粗さ>
 上記により得られたテストピースのうち、アルミナ板上にコーティング層を形成したテストピースの表面を斜め方向から目視により観察し、コーティング層表面の粗さを評価した。その結果を表1に示す。なお、表1における「表面の粗さ」の欄に記載した記号の意味は、以下の通りである。
 A:コーティング層の全面が平滑であった。
 B:コーティング層の一部に凹凸が観察された。
 C:コーティング層の全面に凹凸が観察された。
 -:試験剤の粘度が極めて高いため試験剤の塗布が不可能であった。
<コーティング層の厚み>
 上記により得られたテストピースのうち、アルミナ板上に形成したコーティング層の厚みを測定した。その結果を表1に示す。なお、表1における「コーティング層の厚み」の欄に記載した記号の意味は、以下の通りである。また、コーティング層の厚みは、以下の方法により測定した。
 予め、コーティング層を塗布する前のアルミナ板において無作為に選んだ5箇所の厚みをノギスを用いて測定した。これにより得られた5箇所の厚みの平均値をアルミナ板の平均厚みとした。その後、上述の方法によりアルミナ板上にコーティング層を形成し、テストピースを作製した。そして、上記テストピースにおいて、目視により判断した最も厚い部分及び最も薄い部分の厚みをノギスを用いて測定した。更に、上記2箇所を除いた部分から無作為に3箇所を選び、ノギスを用いてテストピースの厚みを測定した。以上により得られた5箇所の厚みの平均値をテストピースの平均厚みとした。そして、テストピースの平均厚みからアルミナ板の平均厚みを差し引いた値をコーティング層の厚みとした。
 A+:コーティング層の厚みは0.1mm以下であった。
 A:コーティング層の厚みは0.1mm超え0.3mm以下であった。
 B:コーティング層の厚みは0.3mm超え1mm以下であった。
 C:コーティング層の厚みは1mm超え3mm以下であった。
 D:コーティング層の厚みは3mmを超えていた。
 -:試験剤の粘度が極めて高いため試験剤の塗布が不可能であった。
<焼成後のひび割れ>
 上記によりコーティング層を形成した4種のテストピースのうち、アルミナ板、耐火レンガ及びセラミックスファイバーブロックの3種を1500℃で3時間加熱してコーティング層を焼成した。
 焼成後のテストピース表面を目視により観察し、コーティング層のひび割れの有無を評価した。その結果を表1に示す。なお、表1における「焼成後のひび割れ」欄に示した記号の意味は、以下の通りである。
 A+:焼成後のコーティング層にひび割れは発生しなかった。
 A:焼成後のコーティング層の一部にひび割れが発生したが、ひび割れによる断熱性能の低下は見られなかった。
 B:焼成後のコーティング層のほぼ全面にひび割れが発生した。
 -:試験剤の粘度が極めて高いため試験剤の塗布が不可能であった。
<断熱性能の評価>
 耐火物よりなる基体の表面に、可能な限り薄く、かつ、表面の全面が覆われるようにして試験剤を塗布した。その後、基体を110℃で12時間加熱して試験剤を乾燥させ、コーティング層を形成した。以上によりコーティング層を有する耐火物を作成した。なお、基体としては、最高使用温度が1260℃であるセラミックスファイバーブロック及び最高使用温度が1300℃であるキャスタブル耐火物の2種を用いた。
 次に、以下の方法により、上記耐火物を長時間加熱する高温耐久試験を行った。セラミックスファイバーブロックを用いた耐火物においては、耐火物を加熱装置に装入した後、装置内の温度を150℃/時間の昇温速度で1500℃まで昇温させ、次いで、1500℃の温度を24時間保持した。24時間の保持を行った後、加熱を停止して耐火物を装置内で自然放冷させ、高温耐久試験を完了した。また、キャスタブル耐火物を用いた耐火物においては、昇温速度を100℃/時間とし、1500℃での保持時間を3時間とした以外は、上記と同様に高温耐久試験を行った。
 次に、高温耐久試験を行った後の耐火物の寸法を測定し、予め測定した高温耐久試験前の耐火物の寸法に対する線収縮率を算出した。その結果を表1中の「線収縮率」の欄に示す。なお、表1における符号「-」は、線収縮率の測定を行っていないことを示す。また、コーティング層を有する耐火物との比較のため、コーティング層を設けていない状態のセラミックスファイバーブロック及びキャスタブル耐火物を用いて高温耐久試験を行った。セラミックスファイバーブロックの線収縮率は5.4%であり、キャスタブル耐火物の線収縮率は4.8%であった。
Figure JPOXMLDOC01-appb-T000001
(実験例2)
 本例は、無機バインダー及び膨潤性粘土鉱物の含有量を変更したコーティング液の例である。表2に示すように、本例においては、無機バインダー及び膨潤性粘土鉱物の含有量を変更した8種のコーティング液(試験剤15~22)を実験例1と同様の方法により作製した。そして、実験例1と同様の方法により、各種特性の評価を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(実験例3)
 本例は、輻射散乱材としてセラミックス粉末のみを含むコーティング液の例である。表3に示すように、本例においては、セラミックス粉末の種類及び含有量を変更した18種のコーティング液(試験剤23~39、41)を実験例1と同様の方法により作製した。そして、実験例1と同様の方法により、各種特性の評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(実験例4)
 本例は、輻射散乱材として、セラミックスファイバーとセラミックス粉末との両方を含むコーティング液の例である。表4及び表5に示すように、本例においては、セラミックス粉末の種類及び含有量を変更した26種のコーティング液(試験剤43~68)を実験例1と同様の方法により作製した。そして、実験例1と同様の方法により、各種特性の評価を行った。その結果を表4及び表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 以上の実験例1~4より知られるように、無機バインダー、膨潤性粘土鉱物及び輻射散乱材の含有量が上記特定の範囲内である試験剤は、粘度が低く、優れた分散安定性を有し、スプレー塗布を行うことができた。また、かかる試験剤は、ガラスやレンガ等の種々のテストピースに対して優れた接着性を示すコーティング層を形成することができ、乾燥後及び焼成後のコーティング層のひび割れを抑制することができた。
 また、膨潤性粘土鉱物及び輻射散乱材の含有量が上記特定の範囲内である試験剤は、コーティング層を有しない耐火物や、輻射散乱材を含有しない試験剤4を用いた耐火物に比べて、高温耐久試験後の線収縮率を小さくすることができた。
 以上の結果から、無機バインダー、膨潤性粘土鉱物及び輻射散乱材の含有量が上記特定の範囲内である試験剤は、簡素な作業により準備できると共に、優れた性能を有するコーティング層を形成できることが理解できる。
(実験例5)
 本例は、耐火物の耐風速性を評価した例である。評価に用いた試験体は、以下の方法により作製した。まず、基体として、縦10cm、横10cm、厚さ1cmの平板状を呈するセラミックスファイバーブロックを準備した。この基体の表面に、可能な限り薄く、かつ、表面の全面が覆われるようにして試験剤2(表1参照)を塗布した。その後、基体を110℃で12時間加熱して試験剤2を乾燥させ、コーティング層を形成した。以上により耐火物(試験体A)を作製した。
 また、試験体Aとの比較のため、上記基体のみからなる試験体B及び表6に示す試験体C~Fを準備した。試験体C~Fは、コーティング液の成分を表6に示すように変更した以外は、試験体Aと同様の方法により作製した耐火物である。
 耐風速性の評価は以下の方法により行った。まず、上記の方法により得られた試験体A~Fの質量を測定した。次いで、試験体の板面中央に、コンプレッサーから供給した圧縮空気を20秒間吹き付けた。圧縮空気の圧力は圧力9kg/cm2とした。また、圧縮空気の吹き出し口は、試験体の板面から厚さ方向に3cm離れた位置に配置した。吹き出し口の口径は3mmであった。その後、圧縮空気を吹き付けた後の試験体の質量を測定した。
 以上により得られた吹き付け前後の試験体の質量に基づいて、圧縮空気を吹き付ける前の試験体の質量を基準とした質量減少率を算出した。即ち、質量減少率R(%)は、下記式により算出される値である。
   R=(Wi-Wf)/Wi×100
 なお、上記式において、Wiは圧縮空気を吹き付ける前の試験体の質量(g)であり、Wfは圧縮空気を吹き付けた後の試験体の質量(g)である。
 表6に、各試験体の質量減少率を示した。
Figure JPOXMLDOC01-appb-T000006
 表6から知られるように、無機バインダー、膨潤性粘土鉱物及び輻射散乱材の含有量が上記特定の範囲内である試験剤2を用いて作製した耐火物(試験体A)は、セラミックスファイバーブロックのみからなる試験体Bや、無機バインダーまたは粘土鉱物のうち少なくとも一方を有しない試験体C、D及びFに比べて質量減少率を低減することができた。
 試験体Eは、試験体Aよりも質量減少率が低くなった。しかしながら、試験体Dは、輻射散乱材(セラミックスファイバーB)を含有していないため、試験体Aよりも断熱性能が劣っていると推定される。
(実験例6)
 本例は、先に示したコーティング液の一部(試験剤1、2、14、33、34、36、54、60、61、62、23、24、38、39、41)を用い、耐食性向上効果を評価する実験を行った結果を示すものである。
<耐火物試験体の作製>
 基体となる耐火物として、10cm角のセラミックスファイバーブロックを2種類準備した。本例で用いた第1のセラミックスファイバーブロックは、組成がAl23とSiO2をそれぞれ50質量%含有するものであり、上限使用温度が1260℃として市販されているもの(株式会社ITM社製)である。第2のセラミックスファイバーブロックは、組成がAl23含有量70質量%、SiO2含有量30質量%であり、上限使用温度が1600℃として市販されているもの(株式会社ITM社製)である。
 これらのセラミックスファイバーブロックの表面に、可能な限り薄く、かつ、表面の全面が覆われるようにしてコーティング液(試験剤)を塗布した。その後、110℃で12時間加熱してコーティング液を乾燥させることにより、基体であるセラミックスファイバーブロックの表面に0.3mm以下の厚みのコーティング層を有する耐火物試験体を得た。なお、第2のセラミックスファイバーブロックを用いた耐火物試験体は、後述する表7に示すように、試験剤2及び54のみに対して使用した。
<腐食試験>
 耐火物の腐食を誘発する物質として、スケールを2種類準備した。スケール1は、質量比にて、FeO粉末:カーボン粉末=10:0.5のものであり、スケール2は、質量比にて、FeO粉末:炭酸ナトリウム:カーボン粉末=9:1:0.45のものである。腐食性は、スケール2の方がスケール1よりも強い。
 これらのスケールを、上記の耐火物試験体の表面に、直径2~3cmの円形状態となるように薄く広げて載せる。比較のために、コーティング層を有していない上記2種のセラミックスファイバーブロックの表面に直接スケールを載せた試験体も作製した。スケールを載せた耐火物試験体を加熱装置に挿入した後、装置内の温度を150℃/時間の昇温速度で1400℃まで昇温させ、次いで、1500℃の温度を3時間保持した。その後、耐火物試験体を加熱装置から取り出し、目視観察及び断面観察をすることにより浸食の状態を評価した。その結果は、表7に示す。なお、表7における「耐食性」欄に示した記号の意味は、以下の通りである。
 A:目視及び断面観察において、基体に浸食が見られなかった。
 B:目視では判断できないが、断面観察により基体の浸食が見られた。
 C:スケールがある部分の陥没があり、断面観察するまでもなく目視で基体への浸食があることがわかった。
 表7に示されているように、基体としての耐火物の表面に、本例のコーティング液を塗装してコーティング層を形成することが、耐火物の耐食性を向上させる効果があることがわかる。少なくとも、上限使用温度が1260℃のセラミックファイバーブロックの場合には、スケール1に対しては、実験した全てのコーティング液によるコーティング層が優れた耐食性向上効果を示した。また、スケール2の結果から見れば、少なくともコーティング液中の固形分としてアルミナ(Al23)含有量が50質量%以上の場合に、より高い耐食性向上効果が得られる傾向が見られた。
Figure JPOXMLDOC01-appb-T000007
(実験例7)
 本例は、先に示したコーティング液の一部(試験剤2、14、36、38、39、41)を用い、更に別の耐食性向上効果を評価する実験を行った結果を示すものである。
<耐火物試験体の作製>
 基体となる耐火物として、実験例6と同様の使用上限温度が1260℃の10cm角のセラミックスファイバーブロックを準備し、その表面に後述する溶湯アルミを受ける窪みを設けた。このセラミックスファイバーブロックの表面に、実験例6の場合と同様に、可能な限り薄く、かつ、表面の全面が覆われるようにしてコーティング液(試験剤)を塗布した。その後、110℃で12時間加熱してコーティング液を乾燥させることにより、基体であるセラミックスファイバーブロックの表面に0.3mm以下の厚みのコーティング層を有する耐火物試験体を得た。
<腐食試験>
 耐火物の腐食を誘発する物質として、アルミニウム合金溶湯を想定し、ADC12のアルミニウム合金インゴット(10g)を準備した。アルミニウム合金インゴットをセラミックスファイバーブロックの窪みに載せ、加熱装置に挿入した後、装置内の温度を150℃/時間の昇温速度で800℃まで昇温させてアルミニウム合金を溶融させ、次いで、800℃の温度を10時間保持した。その後、耐火物試験体を加熱装置から取り出し、目視観察及び断面観察をすることにより浸食の状態を評価した。比較のために、コーティング層を有していないセラミックスファイバーブロックの窪みに直接アルミニウム合金インゴットを載せた試験体についても同様の試験を行った。その結果は、表8に示す。なお、表8における「耐食性」欄に示した記号の意味は、以下の通りである。
 A:目視及び断面観察において、基体に浸食が見られなかった。
 B:目視では判断できないが、断面観察により基体の浸食が見られた。
 表8に示されているように、基体としての耐火物の表面に本例のコーティング液を塗装してコーティング層を形成することが、耐火物の耐食性を向上させる効果があることがわかる。
Figure JPOXMLDOC01-appb-T000008

Claims (10)

  1.  耐火物に塗布するためのコーティング液であって、
     100質量部の水分と、
     10質量部以上の無機バインダーと、
     0.2~2質量部の膨潤性粘土鉱物と、
     10~200質量部の輻射散乱材とを含有し、
     該輻射散乱材は、
     Al23を含む繊維状粒子より構成されている平均繊維長100μm以下のセラミックスファイバー及び/または、
     アルミナ粉末、シリカ粉末、チタニア粉末、クロミア粉末、イットリア粉末、ジルコニア粉末、酸化ランタン粉末、セリア粉末、炭化ケイ素粉末、炭化ケイ素アルミニウム粉末、窒化ケイ素粉末及び窒化ホウ素粉末からなる群より選択され、60μm以下のメジアン径を有する1種または2種以上のセラミックス粉末を含んでいる、コーティング液。
  2.  上記コーティング液は、上記セラミックスファイバー及び上記セラミックス粉末からなる群のうちいずれか1種のみを上記輻射散乱材として含んでいる、請求項1に記載のコーティング液。
  3.  上記コーティング液は、上記セラミックスファイバーまたは上記アルミナ粉末のいずれか一方のみを上記輻射散乱材として含んでおり、上記コーティング液の全固形分に対するAl23の含有量が50質量%以上である、請求項2に記載のコーティング液。
  4.  上記コーティング液は、上記セラミックスファイバーを含む2種以上の上記輻射散乱材を含んでいる、請求項1に記載のコーティング液。
  5.  上記コーティング液は、上記アルミナ粉末の含有量が30質量部以下である、請求項4に記載のコーティング液。
  6.  上記コーティング液は、全固形分に対するAl23の含有量が50質量%以上である、請求項4または5に記載のコーティング液。
  7.  上記コーティング液は20Pa・s以下の粘度を有する、請求項1~6のいずれか1項に記載のコーティング液。
  8.  上記コーティング液は、上記固形分が水中に分散された状態を一日以上維持することができるよう構成されている、請求項1~7のいずれか1項に記載のコーティング液。
  9.  耐火物に塗布するためのコーティング液の組成物であって、
     10質量部以上の無機バインダーと、
     0.2~2質量部の膨潤性粘土鉱物と、
     10~200質量部の輻射散乱材とを含有し、
     該輻射散乱材は、
     Al23を含む繊維状粒子より構成されている平均繊維長100μm以下のセラミックスファイバー及び/または、
     アルミナ粉末、シリカ粉末、チタニア粉末、クロミア粉末、イットリア粉末、ジルコニア粉末、酸化ランタン粉末、セリア粉末、炭化ケイ素粉末、炭化ケイ素アルミニウム粉末、窒化ケイ素粉末及び窒化ホウ素粉末からなる群より選択され、60μm以下のメジアン径を有する1種または2種以上のセラミックス粉末を含んでいる、コーティング液用組成物。
  10.  耐火物より構成された基体と、
     該基体上に形成されたコーティング層とを有しており、
     該コーティング層は、
     10質量部以上の無機バインダーと、
     0.2~2質量部の膨潤性粘土鉱物と、
     10~200質量部の輻射散乱材とを含有し、
     該輻射散乱材は、
     Al23を含む繊維状粒子より構成されている平均繊維長100μm以下のセラミックスファイバー及び/または、
     アルミナ粉末、シリカ粉末、チタニア粉末、クロミア粉末、イットリア粉末、ジルコニア粉末、酸化ランタン粉末、セリア粉末、炭化ケイ素粉末、炭化ケイ素アルミニウム粉末、窒化ケイ素粉末及び窒化ホウ素粉末からなる群より選択され、60μm以下のメジアン径を有する1種または2種以上のセラミックス粉末を含んでいる、コーティング層を有する耐火物。
PCT/JP2016/070284 2015-10-27 2016-07-08 コーティング液、コーティング液用組成物及びコーティング層を有する耐火物 WO2017073115A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017539462A JP6311135B2 (ja) 2015-10-27 2016-07-08 コーティング液、及びコーティング層を有する耐火物の製造方法
KR1020187014329A KR102149166B1 (ko) 2015-10-27 2016-07-08 코팅액, 및 코팅층을 갖는 내화물의 제조 방법
CN201680036101.1A CN107709273B (zh) 2015-10-27 2016-07-08 涂布液、涂布液用组合物以及具有涂布层的耐火材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-210339 2015-10-27
JP2015210339 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017073115A1 true WO2017073115A1 (ja) 2017-05-04

Family

ID=58630175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070284 WO2017073115A1 (ja) 2015-10-27 2016-07-08 コーティング液、コーティング液用組成物及びコーティング層を有する耐火物

Country Status (4)

Country Link
JP (1) JP6311135B2 (ja)
KR (1) KR102149166B1 (ja)
CN (1) CN107709273B (ja)
WO (1) WO2017073115A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001942A (ja) * 2018-06-26 2020-01-09 イソライト工業株式会社 断熱材及びその製造方法
CN114804903A (zh) * 2022-06-30 2022-07-29 北京绿清科技有限公司 一种光学陶瓷基模具的生产方法
CN115160835A (zh) * 2022-07-27 2022-10-11 西安热工研究院有限公司 一种微纳多尺度防结焦抗磨损涂料、复合材料及其制备方法
JP2022550617A (ja) * 2020-11-10 2022-12-02 山▲東▼▲魯▼▲陽▼▲節▼能材料股▲フン▼有限公司 高温ナノ複合塗料およびその製造方法、並びに小袋軟包装塗料
CN115521695A (zh) * 2022-05-18 2022-12-27 四川大学 一种耐高温防腐蚀轻质涂层及其制法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108659674B (zh) * 2018-05-16 2020-08-18 安徽三环水泵有限责任公司 一种用于渣浆泵过流部件的修补浆料
CN108529637A (zh) * 2018-05-21 2018-09-14 东北大学 一种粘土改性制备灰-绿色系矿物材料的方法
JP7029421B2 (ja) * 2019-02-28 2022-03-03 日本碍子株式会社 ハニカム構造体用コーティング材、ハニカム構造体の外周コーティング及び外周コーティング付きハニカム構造体
CN110415870A (zh) * 2019-06-17 2019-11-05 东莞市明盛电气有限公司 一种云母电线的生产方法
CN112299883B (zh) * 2019-07-26 2022-06-07 维沃泰克仪器(扬州)有限公司 一种碳化硅加热元件的耐高温保护涂层及其制备方法
CN110483046B (zh) * 2019-09-26 2021-06-29 中钢集团洛阳耐火材料研究院有限公司 一种高发射率红外节能材料以及制备方法
CN111039684A (zh) * 2019-12-31 2020-04-21 山东鲁阳节能材料股份有限公司 一种炉衬缝隙修复材料和炉衬缝隙的修复方法
CN117164343B (zh) * 2023-09-04 2024-03-22 苏州晶瓷超硬材料有限公司 一种高抗冲击性氧化铝氧化锆复合陶瓷垫片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557541A (en) * 1978-06-30 1980-01-19 Nippon Crucible Co Silicon carbide coating material
JP2009137809A (ja) * 2007-12-10 2009-06-25 Ngk Insulators Ltd 非沈降性耐火モルタル
JP2014073950A (ja) * 2012-10-05 2014-04-24 Toyoji Ogura セラミックファイバー表面に高温輻射塗料の塗装
WO2014091665A1 (ja) * 2012-12-11 2014-06-19 ニチアス株式会社 断熱材及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033279A (ja) * 1983-08-03 1985-02-20 日本碍子株式会社 耐火性被覆材
JP4297204B2 (ja) 2000-01-24 2009-07-15 ニチアス株式会社 無機繊維質成形体のコート材及びコートされた無機繊維質成形体
CN1407031A (zh) * 2001-09-08 2003-04-02 金科 复合绝热涂层
JP2003095757A (ja) 2001-09-26 2003-04-03 Shinagawa Refract Co Ltd カーボン含有耐火物の断熱コーティング材
JP2007008793A (ja) * 2005-07-01 2007-01-18 Okayama Ceramics Gijutsu Shinko Zaidan Al−Si−C系化合物を主構成物とする炭素含有導電性セラミックス
CN101497105B (zh) * 2009-03-12 2011-08-10 深圳市景鼎现代科技有限公司 一种铸型水基涂料及其制备工艺
CN101817058A (zh) * 2010-03-30 2010-09-01 深圳市景鼎现代科技有限公司 屏蔽型涂料组合物及其涂料的制备工艺
CN102372490A (zh) * 2011-08-08 2012-03-14 河南三兴热能技术有限公司 耐火纤维反辐射抗冲刷涂料
CA2863294C (en) 2012-02-29 2016-08-16 Scg Chemicals Co., Ltd. High emissivity coating compositions and manufacturing processes therefore
CN102603319B (zh) * 2012-03-15 2014-01-01 苏州伊索来特耐火纤维有限公司 一种1600℃硅酸铝陶瓷纤维表面涂料
CN102875177B (zh) * 2012-10-31 2014-03-12 淄博中硅陶瓷技术有限公司 高温炉窑红外节能涂料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557541A (en) * 1978-06-30 1980-01-19 Nippon Crucible Co Silicon carbide coating material
JP2009137809A (ja) * 2007-12-10 2009-06-25 Ngk Insulators Ltd 非沈降性耐火モルタル
JP2014073950A (ja) * 2012-10-05 2014-04-24 Toyoji Ogura セラミックファイバー表面に高温輻射塗料の塗装
WO2014091665A1 (ja) * 2012-12-11 2014-06-19 ニチアス株式会社 断熱材及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001942A (ja) * 2018-06-26 2020-01-09 イソライト工業株式会社 断熱材及びその製造方法
JP2022550617A (ja) * 2020-11-10 2022-12-02 山▲東▼▲魯▼▲陽▼▲節▼能材料股▲フン▼有限公司 高温ナノ複合塗料およびその製造方法、並びに小袋軟包装塗料
JP7256334B2 (ja) 2020-11-10 2023-04-11 山▲東▼▲魯▼▲陽▼▲節▼能材料股▲フン▼有限公司 高温ナノ複合塗料およびその製造方法、並びに小袋軟包装塗料
US11926762B2 (en) 2020-11-10 2024-03-12 Luyang Energy-Saving Materials Co., Ltd. High-temperature nano-composite coating and preparation method thereof, and small bag flexible packaging coating
CN115521695A (zh) * 2022-05-18 2022-12-27 四川大学 一种耐高温防腐蚀轻质涂层及其制法和应用
CN115521695B (zh) * 2022-05-18 2023-05-05 四川大学 一种耐高温防腐蚀轻质涂层及其制法和应用
CN114804903A (zh) * 2022-06-30 2022-07-29 北京绿清科技有限公司 一种光学陶瓷基模具的生产方法
CN115160835A (zh) * 2022-07-27 2022-10-11 西安热工研究院有限公司 一种微纳多尺度防结焦抗磨损涂料、复合材料及其制备方法

Also Published As

Publication number Publication date
CN107709273A (zh) 2018-02-16
KR102149166B1 (ko) 2020-08-28
KR20180074735A (ko) 2018-07-03
JP6311135B2 (ja) 2018-04-18
JPWO2017073115A1 (ja) 2017-12-14
CN107709273B (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
JP6311135B2 (ja) コーティング液、及びコーティング層を有する耐火物の製造方法
RU2394798C2 (ru) Слой или покрытие и композиция для их получения
KR102051934B1 (ko) 고내열성 세라믹 코팅 조성물
JP2016196387A (ja) 断熱コーティング液、断熱材及び断熱コーティング液用組成物
US7820278B2 (en) Refractory mortar cured material
JP5561999B2 (ja) 金属鋳造用耐火成形体、金属鋳造用耐火成形体の製造方法、金属鋳造用不定形耐火組成物及び金属鋳造用溶湯保持部材
WO2013032368A2 (ru) Высокотемпературное теплозащитное покрытие
JP5110539B2 (ja) 耐FeO性コーティング材
JP6955519B2 (ja) 低生体内持続性繊維を含有する耐火被覆材及びその製造方法
JP6977986B2 (ja) コーティング液、コーティング液用組成物及びコーティング層
JP4783660B2 (ja) コーティング材
JPWO2019082240A1 (ja) 溶融金属浴用部材の製造方法
JP4583788B2 (ja) 断熱構造体
JP6537286B2 (ja) 金属鋳造用不定形耐火組成物及びその製造方法、金属鋳造用不定形耐火組成物の硬化物
JP4373691B2 (ja) 電子部品焼成用耐熱構造体及びその製造方法
JP7201951B1 (ja) 耐火物部材を製造する方法および耐火物部材
WO2023191090A1 (ja) 鋼板の搬送用ロール
JP2004168565A (ja) 加熱炉の耐スケール性コーティング材
JP2007022821A (ja) 耐火物付着防止剤およびその塗料
JPH069288A (ja) 耐火物用カーボン物質付着防止用コーティング組成物および耐火物用コーティング皮膜
JP2008001548A (ja) 不定形耐火物
Lino et al. Coated flame sprayed ceramic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187014329

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16859352

Country of ref document: EP

Kind code of ref document: A1