WO2014091665A1 - 断熱材及びその製造方法 - Google Patents

断熱材及びその製造方法 Download PDF

Info

Publication number
WO2014091665A1
WO2014091665A1 PCT/JP2013/006470 JP2013006470W WO2014091665A1 WO 2014091665 A1 WO2014091665 A1 WO 2014091665A1 JP 2013006470 W JP2013006470 W JP 2013006470W WO 2014091665 A1 WO2014091665 A1 WO 2014091665A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
heat insulating
silica
weight
particles
Prior art date
Application number
PCT/JP2013/006470
Other languages
English (en)
French (fr)
Inventor
正年 坂倉
寿文 大貫
壮二郎 福代
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2014091665A1 publication Critical patent/WO2014091665A1/ja
Priority to US14/734,438 priority Critical patent/US10253917B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a heat insulating material and a method for producing the same, and more particularly to an improvement in heat resistance of the heat insulating material.
  • a heat insulating material made of a pressure-molded body including silica particles or alumina particles, a radiation scattering material, and reinforcing fibers is known (for example, Patent Document 1).
  • a heat insulating material made of silica particles has a large shrinkage when used in an environment exceeding 1100 ° C., and a heat insulating material having heat resistance at a temperature exceeding 1100 ° C. has been demanded. Furthermore, it is desired to have the same strength and thermal conductivity as the heat insulating material containing silica particles.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a heat insulating material having improved heat resistance at high temperatures and a method for producing the same.
  • the present inventors used alumina particles instead of silica particles.
  • a heat insulating material mainly composed of alumina particles is superior in heat resistance to a heat insulating material mainly composed of silica particles, but when it exceeds 1150 ° C., the shrinkage is large and the heat resistance is insufficient.
  • the present inventors have found that the cause of shrinkage is corundumation (crystal transition) of alumina, and have searched for compounds that can suppress the corundumization rate, thereby completing the present invention.
  • the following heat insulating materials and its manufacturing method are provided.
  • Radiant scattering material 0-40% by weight, 1-20% by weight of fiber,
  • the fiber is one or more selected from the group consisting of glass fiber, silica-alumina fiber, silica-alumina-magnesia fiber, silica fiber, alumina fiber, zirconia fiber, biosoluble inorganic fiber, rock wool and basalt fiber.
  • the heat insulating material according to any one of 1 to 5. 7).
  • Alumina particles having an average particle size of 100 nm or less, One or more crystal transition inhibitors and fibers selected from silica particles, silica, talc, mullite, silicon nitride, silica fume, wollastonite, bentonite, kaolin, sepiolite and mica particles, and optionally a radiation scattering material are mixed.
  • a step of pressure-molding the mixture to obtain a pressure-molded body A step of pressure-molding the mixture to obtain a pressure-molded body;
  • the heat insulating material of the present invention includes alumina particles, a material for suppressing corundumization of alumina (referred to as a crystal transition suppressing material or a transition suppressing material) and fibers.
  • the alumina particles are particles containing alumina (Al 2 O 3 ) other than ⁇ -alumina (corundum) as a main component (for example, particles containing 95 wt% or more of the alumina), and are used as a heat insulating material. If it is a thing, it will not be restricted in particular.
  • the alumina particles may not contain ⁇ -alumina (for example, no corundum peak is detected in XRD measurement).
  • the alumina particles have, for example, an average primary particle size of 100 nm or less.
  • the average particle diameter of primary particles of alumina particles may be 50 nm or less, or 30 nm or less.
  • the lower limit of the average particle diameter of the primary particles of alumina particles is not particularly limited, for example, it is 2 nm or more.
  • TEM transmission electron microscope
  • FE-SEM Field Emission Scanning Electron Microscope
  • the alumina particles are produced by, for example, a gas phase method and / or a wet method. That is, the alumina particles may be, for example, dry alumina particles manufactured by a gas phase method or wet alumina particles manufactured by a wet method. More specifically, the alumina particles are, for example, fumed alumina particles produced by a gas phase method.
  • the crystal transition inhibitor is at least one selected from silica particles, silica, talc, mullite, silicon nitride, silica fume, wollastonite, bentonite, kaolin, sepiolite, and mica particles.
  • Silica particles are preferable, and silica particles having an average particle size of 100 nm or less are more preferable.
  • the average particle diameter of primary particles of silica particles may be 50 nm or less, or 30 nm or less. Although the lower limit of the average particle diameter of the primary particles of silica particles is not particularly limited, for example, it is 2 nm or more.
  • the silica particles are produced, for example, by a gas phase method and / or a wet method. That is, the silica particles may be, for example, dry silica particles produced by a gas phase method or wet silica particles produced by a wet method. More specifically, the silica particles are, for example, fumed silica particles produced by a gas phase method.
  • the amount of alumina particles contained in the raw material of the heat insulating material is not particularly limited as long as the desired characteristics are achieved.
  • the heat insulating material contains, for example, 52 to 93 wt%, 53 to 92 wt%, 56 to 90 wt%, preferably 60 to 80 wt%, more preferably 65 to 75 wt% alumina particles.
  • the amount of the crystal transition suppressing material contained in the raw material of the heat insulating material is not particularly limited as long as desired characteristics are achieved.
  • the amount of the transition inhibitor in the heat insulating material is, for example, 0.5 to 45% by weight, preferably 1 to 35% by weight, more preferably 2 to 25% by weight, and further preferably 3 to 10% by weight. If the amount of the crystal transition inhibiting material is too small, the effect may not be sufficiently exhibited. If the amount of the crystal transition inhibiting material is too large, shrinkage may increase or the heat insulating property may be lowered. When silica particles are used, the most preferred amount is 5 to 8% by weight.
  • the transition suppressing material used in the present invention contains a silica element, but the ratio of Si to Al and Si / Al can be adjusted within a range where the effects of the present invention are exhibited. For example, it can be 0.008 to 1.0, 0.01 to 0.9, or 0.02 to 0.8.
  • the heat insulating material preferably contains inorganic fibers as fibers.
  • the fiber is not particularly limited as long as it can reinforce the molded body.
  • organic fibers are not included. This is because the heat insulating material of the present invention is manufactured or used at a high temperature, so that the organic fibers are burned away.
  • the inorganic fiber is, for example, one selected from the group consisting of glass fiber, silica-alumina fiber, silica-alumina-magnesia fiber, silica fiber, alumina fiber, zirconia fiber, biosoluble inorganic fiber, rock wool and basalt fiber. That's it. Silica-alumina-magnesia fiber and alumina fiber are preferred.
  • the biosoluble fiber include inorganic fibers having a composition in which the total of SiO 2 , Al 2 O 3 and ZrO 2 is 50 to 82% by weight, and the total of CaO and MgO is 18 to 50% by weight. Further, an inorganic fiber having a composition of 50 to 82% by weight of SiO 2 and 10 to 43% by weight of the total of CaO and MgO can be exemplified.
  • the average fiber length of the fibers may be, for example, 0.5 mm or more and 20 mm or less, and is 1 mm or more and 10 mm or less.
  • the average fiber diameter of the fibers may be, for example, 1 ⁇ m or more and 20 ⁇ m or less, and is 2 ⁇ m or more and 15 ⁇ m or less.
  • the amount of fiber is, for example, 1 to 20% by weight, preferably 1.5 to 10% by weight, and more preferably 2 to 9% by weight.
  • the heat insulating material can include a radiation scattering material.
  • the radiation scattering material is not particularly limited as long as it reduces heat transfer by radiation.
  • the radiation scattering material is at least one selected from the group consisting of silicon carbide, zirconia, zirconium silicate, titania, iron oxide, chromium oxide, zinc sulfide, and barium titanate, for example.
  • the average particle diameter of the radiation scattering material may be, for example, 1 ⁇ m or more and 50 ⁇ m or less, and is 1 ⁇ m or more and 20 ⁇ m or less.
  • the radiation scattering material is preferably a far-infrared reflective material, for example, a material having a relative refractive index of 1.25 or more for light having a wavelength of 1 ⁇ m or more.
  • the amount of the radiation scattering material is, for example, 1 to 40% by weight, preferably 5 to 35% by weight, and more preferably 10 to 30% by weight.
  • the heat insulating material may or may not contain other metal oxide particles.
  • the heat insulating material may not contain a binder (for example, an inorganic binder such as a water glass adhesive or an organic binder such as a resin).
  • a binder for example, an inorganic binder such as a water glass adhesive or an organic binder such as a resin.
  • the raw material for the heat insulating material can be 95% by weight or more, 98% by weight or more, or 99% by weight or more in total of alumina particles, crystal transition suppressing material, fiber, and radiation scattering material. Moreover, an inevitable impurity may be included and it is good also as 100 weight%.
  • the heat insulating material of the present invention can be obtained by molding a mixed powder containing alumina particles, a transition inhibitor, and the like. More specifically, a mixed powder prepared containing the above components is filled in a predetermined mold and dry press molded to produce a dry pressure molded body having a shape corresponding to the mold. .
  • the shape of the molded body is not particularly limited, and is, for example, a board shape, a plate shape, or a cylindrical shape.
  • the temperature at which dry press molding is performed is not particularly limited.
  • the temperature may be 0 ° C. or more and 100 ° C. or less, or may be 0 ° C. or more and 50 ° C. or less.
  • the molded body thus obtained may be used as it is as a heat insulating material or as a part of the heat insulating material (in combination with other heat insulating materials).
  • the said heat insulating material is good also as having the said molded object and 1 or more other heat insulating members from which the heat resistance differs from the said molded object, for example.
  • the heat insulating material is, for example, a molded body, a heat insulating member with higher heat resistance laminated on the high temperature side of the molded body, and / or a lower price laminated on the low temperature side of the molded body. It is good also as having a heat insulation member with lower heat resistance.
  • the method of this invention heats mixed powder at the temperature of 700 degreeC or more, for example. Heating of the mixed powder may be performed before the molded body is molded or after the molded body is molded.
  • the heating temperature is preferably more than 900 ° C. and not more than 1300 ° C., more preferably 1000 to 1200 ° C., and still more preferably 1050 to 1150 ° C.
  • the inventors of the present invention have a temperature exceeding 1100 ° C.
  • properties such as heat resistance and heat insulation are impaired, whereas the molded body containing the transition suppressing material effectively maintains its properties even when heated at temperatures exceeding 1100 ° C. I found it to be my own.
  • the inventors of the present invention firstly generate a corundum (crystal transition) when a molded body that contains alumina particles and does not contain a transition inhibitor is heated at a temperature higher than 1100 ° C. And it discovered that the reduction
  • the inventors of the present invention as a result of intensive studies on the technical means for suppressing the deterioration of the molded article at such a high temperature, resulted in mixing prepared by mixing alumina particles and a transition inhibitor.
  • the compact obtained by dry press molding of the mixed powder is effective in generating corundum and reducing the pore volume and specific surface area even when heated at temperatures exceeding 1100 ° C. It was found that the heat shrinkage rate is small even at high temperatures (eg, 1200 ° C.).
  • the mechanism by which the deterioration of the molded body due to heating at a temperature higher than 1100 ° C. is prevented by adding a transition inhibitor to the alumina particles is not clear, but one of them is, for example, alumina and the transition inhibitor It is considered that a composite compound is formed by reaction, and this suppresses the crystal transition of alumina (corundum generation).
  • the mixed powder containing alumina particles and a transition inhibitor is heated at the heating temperature described above, whereby the reaction product of the aluminum and the transition inhibitor or the transition inhibitor is converted into the alumina particles. It may be formed on the surface. In this case, the reaction product of the aluminum and the transition inhibitor or the transition inhibitor can function like a film on the surface of the alumina particles.
  • the heat insulating material of the present invention has excellent heat insulating properties.
  • the thermal conductivity at 1000 ° C. of the heat insulating material is 0.20 W / (m ⁇ K) or less, 0.15 W / (m ⁇ K) or less, 0.13 W / (m ⁇ K) or less, 0.10 W / (M ⁇ K) or less, or 0.04 W / (m ⁇ K) or less.
  • the heat conductivity of the heat insulating material at 25 ° C. is 0.045 W / (m ⁇ K) or less, or 0.040 W / (m ⁇ K) or less.
  • the heating linear shrinkage is preferably 15% or less. More preferably, it is 10% or less, 8% or less, 6% or less, or 5% or less.
  • the specific surface area by the BET method of a heat insulating material is 20 m ⁇ 2 > / g or more, or 30 m ⁇ 2 > / g or more.
  • the pore volume measured by the BJH method of the heat insulating material is 0.3 cm 3 / g or more, or 0.5 cm 3 / g or more.
  • the bulk density of the heat insulating material is not particularly limited, but may be, for example, 100 to 800 kg / m 3 or 200 to 500 kg / m 3 .
  • the heat insulating material of the present invention can be used in an environment where heat resistance at high temperature is required by utilizing its excellent heat resistance. That is, the heat insulating material of the present invention is, for example, a heat insulating material that is used in an environment where heat resistance exceeding 1100 ° C. (for example, 1200 ° C. or higher) is required (for example, the maximum use temperature exceeds 1100 ° C. (for example, 1200 ° C. It can be used as a heat insulating material).
  • Example 1 [Manufacture of insulation materials] A mixed powder containing alumina particles, a transition inhibitor shown in Tables 1 to 4 and S2 fibers (silica-alumina-magnesia fibers, manufactured by AGY) was molded to produce a molded body.
  • alumina particles alumina particles (fumed alumina particles, manufactured by Nippon Aerosil Co., Ltd.) having an average primary particle size of about 13 nm were used.
  • the blending amount was 95% by weight of the alumina particles and the transition inhibitor, and S2 fiber was 5% by weight.
  • Tables 1 to 4 show the blending amounts of the transition inhibitor.
  • mixed powder was prepared by putting alumina particles, a transition inhibitor, and fibers into a mixing apparatus and dry-mixing them.
  • the mixed powder was filled into a mold having a predetermined deaeration mechanism. Then, dry press molding was performed by adjusting the press pressure so that the bulk density of the produced dry pressure molded body was 270 kg / m 3 . Thereafter, the molded plate-like dry pressure-formed body was taken out of the mold.
  • the dry pressure molded body was fired. That is, the dry pressure molded body was heated at 1200 ° C. for 24 hours.
  • the XRD measurement was performed on the dry pressure-molded body after heating, and the corundum strength was measured.
  • Comparative Example 1 A heat insulating material was manufactured and evaluated in the same manner as in Example 1 except that a mixed powder containing 95% by weight of alumina particles and 5% by weight of fibers was used without including a transition inhibitor. The results are shown in Table 5.
  • Example 2 [Manufacture of insulation materials] A blended powder containing alumina particles, silica particles (transition suppressing material), zircon (radiation scattering material) and S2 fibers at the blending amount (% by weight) shown in Table 6 is molded in the same manner as in Example 1 to form a molded body. Manufactured. As the silica particles, silica particles having an average primary particle size of about 12 nm (fumed silica particles, manufactured by Tokuyama Corporation) were used. Furthermore, the obtained molded body was heated at 1100 ° C. for 24 hours.
  • Experimental Example A powder material (a powder material made of alumina particles) containing 100% by weight of alumina particles without using a transition inhibitor was used. That is, this powder material was heated for 24 hours at five kinds of temperatures (800 ° C., 1000 ° C., 1100 ° C., 1150 ° C. or 1200 ° C.) within the range of 800 ° C. to 1200 ° C.
  • the specific surface area was measured by the BET method.
  • the pore volume was measured by the BJH method. That is, a desorption isotherm showing the correlation between the relative pressure and the amount of adsorption is obtained by a gas adsorption method using a dry pressure molded body after heating as a test body, and the dry pressure molded body of the dry pressure molded body is obtained from the desorption isotherm. The pore diameter was determined, and the pore volume of the dry pressure molded product was calculated from the pore diameter.
  • the specific surface area is 100 to 119 (m 2 / g) and the pore volume is 0.51 to 0.70 (cm 3). / G), and no corundum peak was detected in the XRD chart.
  • the powder material heated at 1150 ° C. has a specific surface area of 69 (m 2 / g) and a pore volume of 0.49 (cm 3 / g), which is a corundum peak in the XRD chart. Was slightly detected.
  • the powder material heated at 1200 ° C. has a specific surface area of 13 (m 2 / g), a pore volume of 0.05 (cm 3 / g), and only corundum is detected on the XRD chart. It was.
  • the powder material made of alumina particles loses its characteristics when heated at a temperature exceeding 1100 ° C., and the generation of corundum (crystal transition) occurs in the deterioration of such characteristics.
  • the possibility of involvement was shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

平均粒径100nm以下のアルミナ粒子52~93重量%と、シリカ粒子、珪石、タルク、ムライト、窒化珪素、シリカフューム、ウォラストナイト、ベントナイト、カオリン、セピオライト及びマイカ粒子から選択される1以上の結晶転移抑制材1~45重量%と、輻射散乱材0~40重量%と、繊維1~20重量%と、を含む原料を焼結して得られた断熱材。

Description

断熱材及びその製造方法
 本発明は、断熱材及びその製造方法に関し、特に、断熱材の耐熱性の向上に関する。
 従来、シリカ粒子又はアルミナ粒子、輻射散乱材、補強繊維を含む加圧成形体からなる断熱材が知られている(例えば、特許文献1)。シリカ粒子からなる断熱材は、1100℃を超える環境で用いると収縮が大きく、1100℃を超える温度で耐熱性を有する断熱材が求められていた。さらに、シリカ粒子を含む断熱材と同等の強度、熱伝導率を備えることが望まれる。
特開2012-149658号公報
 本発明は、上記課題に鑑みて為されたものであって、高温での耐熱性が向上した断熱材及びその製造方法を提供することをその目的の一つとする。
 上記課題を解決するために、本発明者らは、シリカ粒子ではなくアルミナ粒子を用いた。しかしながら、アルミナ粒子を主体とする断熱材であっても、シリカ粒子を主体とする断熱材よりは耐熱性に優れるが、1150℃を超えると収縮が大きく、耐熱性が不十分であった。本発明者らは、収縮の一因が、アルミナのコランダム化(結晶転移)であることを見出し、コランダム化率を抑制できる化合物を探求し、本発明を完成させた。
 本発明によれば、以下の断熱材及びその製造方法が提供される。
1.平均粒径100nm以下のアルミナ粒子52~93重量%と、
 シリカ粒子、珪石、タルク、ムライト、窒化珪素、シリカフューム、ウォラストナイト、ベントナイト、カオリン、セピオライト及びマイカ粒子から選択される1以上の結晶転移抑制材1~45重量%と、
 輻射散乱材0~40重量%と、
 繊維1~20重量%と、
 を含む原料を焼結して得られた断熱材。
2.前記アルミナ粒子、前記結晶転移抑制材、前記繊維、前記輻射散乱材の合計が95重量%以上である1記載の断熱材。
3.前記結晶転移抑制材が、平均粒径100nm以下のシリカ粒子である1又は2記載の断熱材。
4.前記アルミナ粒子60~80重量%と、
 前記結晶転移抑制材4~10重量%と、
 前記輻射散乱材10~30重量%と、
 前記繊維2~10重量%と、
 を含む1~3のいずれか記載の断熱材。
5.前記輻射散乱材が、炭化珪素、ジルコニア、珪酸ジルコニウム、チタニア、酸化鉄、酸化クロム、硫化亜鉛及びチタン酸バリウムからなる群より選択される1種以上である1~4のいずれかに記載の断熱材。
6.前記繊維が、ガラス繊維、シリカ-アルミナ繊維、シリカ-アルミナ-マグネシア繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、生体溶解性無機繊維、ロックウール及びバサルト繊維からなる群より選択される1種以上である1~5のいずれかに記載の断熱材。
7.平均粒径100nm以下のアルミナ粒子、
 シリカ粒子、珪石、タルク、ムライト、窒化珪素、シリカフューム、ウォラストナイト、ベントナイト、カオリン、セピオライト及びマイカ粒子から選択される1以上の結晶転移抑制材及び
 繊維と、任意に輻射散乱材とを混合して混合物を得る工程と、
 前記混合物を加圧成形して加圧成形体を得る工程と、
 前記加圧成形体を焼結する工程とを
 備える1に記載の断熱材の製造方法。
8.前記焼結工程の加熱温度が1000℃を超える7に記載の断熱材の製造方法。
 本発明によれば、高温での耐熱性が向上した断熱材及びその製造方法を提供することができる。
 本発明の断熱材は、アルミナ粒子と、アルミナのコランダム化の抑制材(結晶転移抑制材又は転移抑制材という)及び繊維とを含む。
 アルミナ粒子は、α-アルミナ(コランダム)以外のアルミナ(Al)を主成分として含む粒子(例えば、当該アルミナを95重量%以上含む粒子)であって、断熱材の原料として使用されるものであれば特に限られない。なお、このアルミナ粒子は、α-アルミナを含まない(例えば、XRD測定において、コランダムのピークが検出されない)こととしてもよい。
 アルミナ粒子は、例えば、一次粒子の平均粒径が100nm以下である。アルミナ粒子の一次粒子の平均粒径は、50nm以下でよく、30nm以下でもよい。アルミナ粒子の一次粒子の平均粒径の下限値は、特に限られないが、例えば、2nm以上である。
 平均粒径は、ランダムに約100個の粒子について、透過型電子顕微鏡(Transmission Electron Microscope;TEM)又は電界放出形走査電子顕微鏡(Field Emission Scanning Electron Microscope;FE-SEM)で粒子径を観察して求める。
 アルミナ粒子は、例えば、気相法で製造されたもの及び/又は湿式法で製造されたものである。すなわち、アルミナ粒子は、例えば、気相法で製造された乾式アルミナ粒子でよく、湿式法で製造された湿式アルミナ粒子でもよい。より具体的に、アルミナ粒子は、例えば、気相法で製造されたフュームドアルミナ粒子である。
 結晶転移抑制材は、シリカ粒子、珪石、タルク、ムライト、窒化珪素、シリカフューム、ウォラストナイト、ベントナイト、カオリン、セピオライト、マイカ粒子から選択される1以上を使用する。好ましくは、シリカ粒子であり、より好ましくは、平均粒径100nm以下のシリカ粒子である。
 シリカ粒子の一次粒子の平均粒径は、50nm以下でよく、30nm以下でもよい。シリカ粒子の一次粒子の平均粒径の下限値は、特に限られないが、例えば、2nm以上である。
 シリカ粒子は、例えば、気相法で製造されたもの及び/又は湿式法で製造されたものである。すなわち、シリカ粒子は、例えば、気相法で製造された乾式シリカ粒子でよく、湿式法で製造された湿式シリカ粒子でもよい。より具体的に、シリカ粒子は、例えば、気相法で製造されたフュームドシリカ粒子である。
 断熱材の原料に含まれるアルミナ粒子の量は、所望の特性を実現する範囲であれば特に限られない。断熱材は、例えば、52~93重量%、53~92重量%、56~90重量%、好ましくは60~80重量%、より好ましくは65~75重量%のアルミナ粒子を含む。
 断熱材の原料に含まれる結晶転移抑制材の量は、所望の特性を実現する範囲であれば特に限られない。断熱材に占める転移抑制材の量は、例えば、0.5~45重量%、好ましくは1~35重量%、より好ましくは2~25重量%、さらに好ましくは3~10重量%である。結晶転移抑制材の量が少なすぎると効果を十分に発揮できない恐れがある。結晶転移抑制材の量が多すぎると収縮が大きくなったり断熱性が低下する恐れがある。シリカ粒子を用いるとき、最も好ましい量は5~8重量%である。
 また、本発明で用いる転移抑制材は、シリカ元素を含むが、Alに対するSiの比、Si/Alは、本発明の効果を奏する範囲で調整できる。例えば、0.008~1.0、0.01~0.9又は0.02~0.8とすることができる。
 断熱材は、繊維として好ましくは無機繊維を含む。繊維は、成形体を補強できるものであれば特に限られない。尚、本発明では、有機繊維は含まない。本発明の断熱材は、高温で製造又は使用されるため、有機繊維は焼失してしまうためである。
 無機繊維は、例えば、ガラス繊維、シリカ-アルミナ繊維、シリカ-アルミナ-マグネシア繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、生体溶解性無機繊維、ロックウール及びバサルト繊維からなる群より選択される1種以上である。好ましくはシリカ-アルミナ-マグネシア繊維、アルミナ繊維である。
 生体溶解性繊維として、SiO、AlとZrOとの合計が50~82重量%、CaOとMgOとの合計が18~50重量%の組成の無機繊維を例示できる。また、SiOが50~82重量%、CaOとMgOとの合計が10~43重量%の組成の無機繊維も例示できる。
 繊維の平均繊維長は、例えば、0.5mm以上、20mm以下でよく、1mm以上、10mm以下である。繊維の平均繊維径は、例えば、1μm以上、20μm以下でよく、2μm以上、15μm以下である。
 繊維の量は、例えば、1~20重量%、好ましくは1.5~10重量%、より好ましくは2~9重量%である。
 また、断熱材は、輻射散乱材を含むことができる。輻射散乱材は、輻射による伝熱を低減するものであれば特に限られない。輻射散乱材は、例えば、炭化珪素、ジルコニア、珪酸ジルコニウム、チタニア、酸化鉄、酸化クロム、硫化亜鉛、チタン酸バリウムからなる群より選択される1種以上である。
 輻射散乱材の平均粒径は、例えば、1μm以上、50μm以下でよく、1μm以上、20μm以下である。輻射散乱材は、遠赤外線反射性のものが好ましく、例えば、1μm以上の波長の光に対する比屈折率が1.25以上であるものが好ましい。
 輻射散乱材の量は、例えば、1~40重量%、好ましくは5~35重量%、より好ましくは10~30重量%である。
 また、断熱材は、他の金属酸化物粒子をさらに含んでもよいし、含まなくてもよい。
 また、断熱材は、結合剤(例えば、水ガラス接着剤等の無機結合剤や、樹脂等の有機結合剤)を含まないとしてもよい。
 断熱材の原料は、アルミナ粒子、結晶転移抑制材、繊維、輻射散乱材の合計を95重量%以上、98重量%以上、又は99重量%以上とすることができる。また、不可避不純物を含んでもよく、100重量%としてもよい。
 本発明の断熱材は、アルミナ粒子、転移抑制材等を含む混合粉体を成形することにより得られる。より具体的には、上記の成分を含んで調製された混合粉体を所定の成形型に充填し、乾式プレス成形することにより、当該成形型に対応する形状の乾式加圧成形体を製造する。
 成形体の形状は、特に限られないが、例えば、ボード状、板状又は円筒状である。乾式プレス成形を行う温度は、特に限られないが、例えば、0℃以上、100℃以下の温度で行うこととしてもよく、0℃以上、50℃以下の温度で行うこととしてもよい。
 こうして得られる成形体は、そのまま断熱材として、又は断熱材の一部として(他の断熱材と組み合わせて)使用してもよい。成形体が断熱材の一部として使用される場合、当該断熱材は、例えば、当該成形体と、耐熱性が当該成形体とは異なる1つ以上の他の断熱部材とを有することとしてもよい。すなわち、この場合、断熱材は、例えば、成形体と、当該成形体の高温側に積層された、より耐熱性の高い断熱部材、及び/又は当該成形体の低温側に積層された、より安価でより耐熱性の低い断熱部材と、を有することとしてもよい。
 また、本発明の方法は、混合粉体を例えば700℃以上の温度で加熱する。混合粉体の加熱は、成形体の成形前に行ってもよく、成形体の成形後に行ってもよい。
 加熱温度は、好ましくは900℃超1300℃以下、より好ましくは1000~1200℃、さらに好ましくは1050~1150℃である。
 ここで、本発明の発明者らは、アルミナ粒子を含む成形体の耐熱性を向上させる技術的手段について鋭意検討を重ねた結果、転移抑制材を含まない当該成形体は、1100℃超の温度で加熱されると、その耐熱性や断熱性等の特性が損なわれるのに対し、転移抑制材を含む当該成形体は、1100℃超の温度で加熱されても、その特性を効果的に維持することを独自に見出した。
 より具体的に、本発明の発明者らは、まず、アルミナ粒子を含み転移抑制材を含まない成形体を1100℃超の温度で加熱すると、コランダム(corundum)の生成(結晶の転移)が起こり、且つ当該成形体を1100℃以下の温度で加熱する場合に比べて、細孔容積の減少及び比表面積の減少が顕著に起こることを見出した。
 そこで、本発明の発明者らは、このような高温下での成形体の劣化を抑制する技術的手段について鋭意検討を重ねた結果、アルミナ粒子と転移抑制材とを混合して調製された混合粉体を使用することにより、当該混合粉体の乾式プレス成形により得られた成形体は、1100℃超の温度で加熱されても、コランダムの生成や、細孔容積及び比表面積の減少が効果的に抑制され、高温(例えば、1200℃)においても小さい加熱線収縮率を示すことを見出した。
 アルミナ粒子に転移抑制材を添加することによって1100℃超の温度での加熱による成形体の劣化が防止されるメカニズムは、明らかではないが、その一つとしては、例えば、アルミナと転移抑制材が反応して複合化合物が生成し、これがアルミナの結晶転移(コランダムの生成)を抑制することが考えられる。
 また、本発明の方法においては、アルミナ粒子と転移抑制材とを含む混合粉体を上述した加熱温度で加熱することにより、上記アルミニウム及び転移抑制材の反応物又は転移抑制材を、当該アルミナ粒子の表面に形成するようにしてもよい。この場合、アルミナ粒子の表面において、アルミニウム及び転移抑制材の反応物又は転移抑制材が被膜のように機能し得る。
 本発明の断熱材は、優れた断熱性を有する。例えば、断熱材の1000℃における熱伝導率は、0.20W/(m・K)以下、0.15W/(m・K)以下、0.13W/(m・K)以下、0.10W/(m・K)以下、又は0.04W/(m・K)以下である。また、例えば、断熱材の25℃における熱伝導率は、0.045W/(m・K)以下、又は0.040W/(m・K)以下である。
 断熱材を1200℃で24時間加熱した場合における加熱線収縮率は、好ましくは15%以下である。より好ましくは、10%以下、8%以下、6%以下、又は5%以下である。加熱線収縮率は、加熱前の成形体の長さ(X)及び1200℃で24時間加熱後の当該成形体の長さ(Y)に基づき次の式により算出される:加熱線収縮率(%)={(X-Y)/X}×100。
 断熱材のBET法による比表面積は、20m/g以上、又は30m/g以上である。断熱材のBJH法により測定される細孔容積は、0.3cm/g以上、又は0.5cm/g以上である。断熱材の嵩密度は、特に限られないが、例えば、100~800kg/m、又は200~500kg/mとしてもよい。
 本発明の断熱材は、その優れた耐熱性を利用して、高温での耐熱性が要求される環境で使用できる。すなわち、本発明の断熱材は、例えば、1100℃超(例えば、1200℃以上)の耐熱性が要求される環境で使用される断熱材(例えば、最高使用温度が1100℃超(例えば、1200℃以上)の断熱材)として使用できる。
 以下に、本発明の実施例について説明するが、本発明は、これら実施例に限られるものではない。
実施例1
[断熱材の製造]
 アルミナ粒子、表1~4に示す転移抑制材及びS2繊維(シリカ-アルミナ-マグネシア繊維、AGY社製)を含む混合粉末を、成形して成形体を製造した。アルミナ粒子としては、一次粒子の平均粒径が約13nmのアルミナ粒子(フュームドアルミナ粒子、日本アエロジル株式会社製)を使用した。配合量は、アルミナ粒子と転移抑制材を合わせて95重量%として、S2繊維は5重量%とした。転移抑制材の配合量を表1~4に示す。
 具体的には、アルミナ粒子、転移抑制材、繊維を混合装置に投入し、乾式混合することにより、混合粉末を調製した。
 次いで、この混合粉末を所定の脱気機構が付属した成形型に充填した。そして、製造される乾式加圧成形体の嵩密度が270kg/mとなるようにプレス圧を調節して、乾式プレス成形を行った。その後、成形された板状の乾式加圧成形体を型から取り出した。
 さらに、乾式加圧成形体を焼成した。すなわち、乾式加圧成形体を1200℃で24時間加熱した。
[断熱材の評価]
 加熱の前後で測定した乾式加圧成形体の長さの変化に基づき、1200℃で24時間加熱した場合における当該乾式加圧成形体の加熱線収縮率を算出した。すなわち、各乾式加圧成形体から、長さ100mm、幅30mm、厚さ15mmの板状の試験体を作製した。次いで、この試験体を電気炉中1200℃で所定時間加熱した。なお、1200℃までの昇温速度は200℃/時間であった。さらに、加熱後の試験体の長さを測定した。そして、次式により加熱線収縮率を算出した。
   加熱線収縮率(%)={(X-Y)/X}×100
(式中、Xは加熱前の試験体の長さ(mm)であり、Yは加熱後の当該試験体の長さ(mm)である。)
 また、加熱後の乾式加圧成形体について、XRD測定を行い、コランダム化強度を測定した。
 測定結果を表1~4に示す。
比較例1
 転移抑制材を含まず、アルミナ粒子95重量%と繊維5重量%とを含む混合粉末を使用した以外は実施例1と同様にして、断熱材を製造し、評価した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
実施例2
[断熱材の製造]
 表6に示す配合量(重量%)で、アルミナ粒子、シリカ粒子(転移抑制材)、ジルコン(輻射散乱材)及びS2繊維を含む混合粉末を、実施例1と同様に成形して成形体を製造した。シリカ粒子としては、一次粒子の平均粒径が約12nmのシリカ粒子(フュームドシリカ粒子、株式会社トクヤマ製)を使用した。
 さらに、得られた成形体を、1100℃で24時間加熱した。
[断熱材の評価]
 実施例1と同様にして、1200℃で48時間、120時間及び192時間加熱した場合における加熱線収縮率(%)を算出した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
実験例
 転移抑制材を含まず、アルミナ粒子100重量%を含む粉末材料(アルミナ粒子からなる粉末材料)を使用した。すなわち、この粉末材料を、800℃~1200℃の範囲内の5種類の温度(800℃、1000℃、1100℃、1150℃又は1200℃)で24時間加熱した。
 異なる温度で加熱した5種類の粉末材料、及び加熱していない粉末材料の各々について、細孔容積及び比表面積の測定と、XRD測定とを行った。
 尚、比表面積はBET法により測定した。細孔容積はBJH法により測定した。すなわち、加熱後の乾式加圧成形体を試験体として使用するガス吸着法により、相対圧と吸着量との相関関係を示す脱着等温線を取得し、当該脱着等温線から乾式加圧成形体の細孔径を求め、当該細孔径から当該乾式加圧成形体の細孔容積を算出した。
 その結果、未加熱の粉末材料及び800℃~1100℃で加熱された粉末材料については、比表面積が100~119(m/g)、細孔容積が0.51~0.70(cm/g)であり、XRDチャートにおいてコランダムのピークは検出されなかった。
 これに対し、1150℃で加熱された粉末材料については、比表面積が69(m/g)であり、細孔容積が0.49(cm/g)であり、XRDチャートではコランダムのピークが僅かに検出された。
 さらに、1200℃で加熱された粉末材料については、比表面積が13(m/g)であり、細孔容積が0.05(cm/g)であり、XRDチャートではコランダムのみが検出された。
 すなわち、アルミナ粒子からなる粉末材料は、1100℃超の温度で加熱されることにより、その特性が損なわれることが確認されるとともに、このような特性の劣化にはコランダムの生成(結晶転移)が関与している可能性が示された。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (8)

  1.  平均粒径100nm以下のアルミナ粒子52~93重量%と、
     シリカ粒子、珪石、タルク、ムライト、窒化珪素、シリカフューム、ウォラストナイト、ベントナイト、カオリン、セピオライト及びマイカ粒子から選択される1以上の結晶転移抑制材1~45重量%と、
     輻射散乱材0~40重量%と、
     繊維1~20重量%と、
     を含む原料を焼結して得られた断熱材。
  2.  前記原料における前記アルミナ粒子、前記結晶転移抑制材、前記繊維、及び前記輻射散乱材の合計が95重量%以上である請求項1記載の断熱材。
  3.  前記結晶転移抑制材が、平均粒径100nm以下のシリカ粒子である請求項1又は2記載の断熱材。
  4.  前記アルミナ粒子60~80重量%と、
     前記結晶転移抑制材4~10重量%と、
     前記輻射散乱材10~30重量%と、
     前記繊維2~10重量%と、
     を含む請求項1~3のいずれか記載の断熱材。
  5.  前記輻射散乱材が、炭化珪素、ジルコニア、珪酸ジルコニウム、チタニア、酸化鉄、酸化クロム、硫化亜鉛及びチタン酸バリウムからなる群より選択される1種以上である請求項1~4のいずれか記載の断熱材。
  6.  前記繊維が、ガラス繊維、シリカ-アルミナ繊維、シリカ-アルミナ-マグネシア繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、生体溶解性無機繊維、ロックウール及びバサルト繊維からなる群より選択される1種以上である請求項1~5のいずれか記載の断熱材。
  7.  平均粒径100nm以下のアルミナ粒子、
     シリカ粒子、珪石、タルク、ムライト、窒化珪素、シリカフューム、ウォラストナイト、ベントナイト、カオリン、セピオライト及びマイカ粒子から選択される1以上の結晶転移抑制材及び
     繊維と、任意に輻射散乱材とを混合して混合物を得る工程と、
     前記混合物を加圧成形して加圧成形体を得る工程と、
     前記加圧成形体を焼結する工程とを
     備える請求項1記載の断熱材の製造方法。
  8.  前記焼結工程の加熱温度が1000℃を超える請求項7記載の断熱材の製造方法。
PCT/JP2013/006470 2012-12-11 2013-10-31 断熱材及びその製造方法 WO2014091665A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/734,438 US10253917B2 (en) 2012-12-11 2015-06-09 Insulation material and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-270329 2012-12-11
JP2012270329 2012-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/734,438 Continuation-In-Part US10253917B2 (en) 2012-12-11 2015-06-09 Insulation material and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2014091665A1 true WO2014091665A1 (ja) 2014-06-19

Family

ID=50933974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006470 WO2014091665A1 (ja) 2012-12-11 2013-10-31 断熱材及びその製造方法

Country Status (3)

Country Link
US (1) US10253917B2 (ja)
TW (1) TWI652335B (ja)
WO (1) WO2014091665A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478440A (zh) * 2014-11-21 2015-04-01 柳州创宇科技有限公司 一种轴承用陶瓷材料及其制备方法
JP2015143532A (ja) * 2014-01-31 2015-08-06 ニチアス株式会社 断熱材及びその製造方法
JP2016088819A (ja) * 2014-11-07 2016-05-23 旭化成ケミカルズ株式会社 粉体、その成形体及び被包体
WO2017073115A1 (ja) * 2015-10-27 2017-05-04 株式会社Inui コーティング液、コーティング液用組成物及びコーティング層を有する耐火物
CN113387673A (zh) * 2021-07-06 2021-09-14 南京苏夏设计集团股份有限公司 一种复合铝镁质膏料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107879761B (zh) * 2017-12-08 2020-01-07 中国矿业大学 一种纳米二氧化硅颗粒堆积床超级绝热材料及其制备方法
JP7546365B2 (ja) * 2020-02-25 2024-09-06 イソライト工業株式会社 軽量窯道具及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170525A (ja) * 1991-10-25 1993-07-09 Toshiba Monofrax Co Ltd 耐熱性繊維組成物
JPH09100171A (ja) * 1995-10-05 1997-04-15 Toshiba Monofrax Co Ltd βアルミナ質電鋳耐火物
JPH11302954A (ja) * 1998-04-20 1999-11-02 Toshiba Monofrax Co Ltd 3層構造の無機繊維成形品
JP2001330375A (ja) * 2000-05-23 2001-11-30 Toshiba Monofrax Co Ltd 耐火断熱材
JP2008162852A (ja) * 2006-12-28 2008-07-17 Nichias Corp 無機繊維質成形体、無機繊維質焼成体、不定形無機繊維質組成物及び不定形無機繊維質焼成体
WO2012090566A1 (ja) * 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 断熱材及びその製造方法
JP2012149658A (ja) * 2011-01-14 2012-08-09 Nichias Corp 断熱材及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532939B2 (ja) * 1989-03-09 1996-09-11 日本マイクロサーム株式会社 超微粒子状アルミナ組成物を用いたオリフィス用断熱成形体
JP2590433B2 (ja) 1994-03-24 1997-03-12 工業技術院長 触媒燃焼用耐熱性アルミナ担体の製造法
GB0323054D0 (en) * 2003-10-02 2003-11-05 Microtherm Int Ltd Microporous thermal insulation material
JP4860005B1 (ja) * 2010-12-22 2012-01-25 ニチアス株式会社 断熱材及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170525A (ja) * 1991-10-25 1993-07-09 Toshiba Monofrax Co Ltd 耐熱性繊維組成物
JPH09100171A (ja) * 1995-10-05 1997-04-15 Toshiba Monofrax Co Ltd βアルミナ質電鋳耐火物
JPH11302954A (ja) * 1998-04-20 1999-11-02 Toshiba Monofrax Co Ltd 3層構造の無機繊維成形品
JP2001330375A (ja) * 2000-05-23 2001-11-30 Toshiba Monofrax Co Ltd 耐火断熱材
JP2008162852A (ja) * 2006-12-28 2008-07-17 Nichias Corp 無機繊維質成形体、無機繊維質焼成体、不定形無機繊維質組成物及び不定形無機繊維質焼成体
WO2012090566A1 (ja) * 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 断熱材及びその製造方法
JP2012149658A (ja) * 2011-01-14 2012-08-09 Nichias Corp 断熱材及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143532A (ja) * 2014-01-31 2015-08-06 ニチアス株式会社 断熱材及びその製造方法
JP2016088819A (ja) * 2014-11-07 2016-05-23 旭化成ケミカルズ株式会社 粉体、その成形体及び被包体
CN104478440A (zh) * 2014-11-21 2015-04-01 柳州创宇科技有限公司 一种轴承用陶瓷材料及其制备方法
WO2017073115A1 (ja) * 2015-10-27 2017-05-04 株式会社Inui コーティング液、コーティング液用組成物及びコーティング層を有する耐火物
JPWO2017073115A1 (ja) * 2015-10-27 2017-12-14 株式会社Inui コーティング液、及びコーティング層を有する耐火物の製造方法
CN113387673A (zh) * 2021-07-06 2021-09-14 南京苏夏设计集团股份有限公司 一种复合铝镁质膏料及其制备方法

Also Published As

Publication number Publication date
TW201435068A (zh) 2014-09-16
TWI652335B (zh) 2019-03-01
US20150345690A1 (en) 2015-12-03
US10253917B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2014091665A1 (ja) 断熱材及びその製造方法
JP5833152B2 (ja) 断熱材及びその製造方法
JP5591514B2 (ja) 断熱材及びその製造方法
JP6602827B2 (ja) 断熱材及びその製造方法
JP5927287B2 (ja) 定形または不定形の耐火物用または窯道具用の組成物
EP3024799A1 (fr) Produit a haute teneur en alumine
JP2007211963A (ja) 無機繊維体
JP4469391B2 (ja) 低膨張、高強度、耐クラック伸展性を有する不定形耐火物
JP2014228035A (ja) 耐火断熱材及びその製造方法
TW200918205A (en) Cast bodies, castable compositions, and methods for their production
Bernardo et al. Sintering behaviour and mechanical properties of Al2O3 platelet-reinforced glass matrix composites obtained by powder technology
JP2013203566A (ja) けい酸カルシウム成形体およびその製造方法
JP2012188307A (ja) 調湿建材及びその製造方法
Hong et al. Densification, Crystallization, and Dielectric Properties of AlN, BN, and Si 3 N 4 Filler‐Containing LTCC Materials
JP6823042B2 (ja) コークス炉用プレキャストブロック耐火物
WO2011115353A1 (en) Alumina bonded unshaped refractory and manufacturing method thereof
US9416056B2 (en) Isolated pseudobrookite phase composites and methods of making
JP2008247720A (ja) 不定形耐火物成形材料および不定形耐火物成形体
KR20170077972A (ko) 고강도 도자기의 제조방법
JP2014129873A (ja) 断熱材及びその製造方法
JP6214514B2 (ja) 断熱材
JP2004299960A (ja) 繊維質成形体、耐熱構造体及びこれらの製造方法
JP2006327842A (ja) マイクロ波焼成炉用の耐火断熱材
JP2020001942A (ja) 断熱材及びその製造方法
JP4319866B2 (ja) 無機繊維質耐火断熱材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP