WO2017069336A1 - 방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피막의 형성방법, 및 절연피막이 형성된 방향성 전기강판 - Google Patents

방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피막의 형성방법, 및 절연피막이 형성된 방향성 전기강판 Download PDF

Info

Publication number
WO2017069336A1
WO2017069336A1 PCT/KR2015/014108 KR2015014108W WO2017069336A1 WO 2017069336 A1 WO2017069336 A1 WO 2017069336A1 KR 2015014108 W KR2015014108 W KR 2015014108W WO 2017069336 A1 WO2017069336 A1 WO 2017069336A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
electrical steel
oriented electrical
grain
weight
Prior art date
Application number
PCT/KR2015/014108
Other languages
English (en)
French (fr)
Inventor
한민수
주형돈
박형기
신재근
김창수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP15906787.5A priority Critical patent/EP3366810B1/en
Priority to CN201580084032.7A priority patent/CN108138324B/zh
Priority to US15/770,098 priority patent/US11667985B2/en
Priority to MX2018004905A priority patent/MX2018004905A/es
Priority to JP2018520421A priority patent/JP7269007B2/ja
Publication of WO2017069336A1 publication Critical patent/WO2017069336A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Definitions

  • composition for forming insulating film of oriented electrical steel sheet Composition for forming insulating film of oriented electrical steel sheet, method of forming insulating film using same, and oriented electrical steel sheet with insulating coating
  • the present invention relates to a composition for forming an insulating coating of a grain-oriented electrical steel sheet, a method of forming an insulating coating using the same, and a grain-oriented electrical steel sheet having an insulating coating.
  • a grain-oriented electrical steel sheet is an electrical steel sheet having a Si content of 3. 1% by weight in general, and has an aggregate structure in which grain orientations are aligned in the [alpha] direction.
  • Such magnetic properties are known to be improved when the iron loss of the grain-oriented electrical steel sheet is reduced to improve insulation.
  • a method of reducing the iron loss of the grain-oriented electrical steel sheet a method of applying an insulating film of high tensile strength to the surface has been actively studied.
  • the problem pointed out above that is, the problem of reducing the tension of the insulating film after SRA, can be solved, the composition for insulating film of a grain-oriented electrical steel sheet, a method of forming an insulating film using the same, and Provided is a grain-oriented electrical steel sheet formed with an insulating coating.
  • the composite metal phosphate, derivatives thereof, or Crab component (A) which contains a mixture; And two components (B) comprising two or more colloidal silicas having different average particle diameters, wherein the second component is 50 to 250 parts by weight based on 100 parts by weight of the first component (A).
  • A the composite metal phosphate, derivatives thereof, or Crab component
  • B two components comprising two or more colloidal silicas having different average particle diameters, wherein the second component is 50 to 250 parts by weight based on 100 parts by weight of the first component (A).
  • the weight ratio (second component / first component) of the second component to the crab first component (A) may be in the range of from 1.3 to 1.8.
  • the second component (B) may include a first colloidal silica having an average particle diameter of 12 nm, and a second colloidal silica having an average particle diameter of 5 nm.
  • the weight ratio of the second colloidal silica to the first colloidal silica may be 1: 9 to 9: 1.
  • the second component (B), the total solid content may be 20% by weight or more and 30% by weight or less.
  • the crab bicomponent (B) may be inevitably less than 0.60% by weight of sodium contained as impurities (except 0% by weight).
  • the first component (A) is a composite metal phosphate selected from mono magnesium phosphate (Mg (H 3 P0 4 ) 2 ) and monoaluminum phosphate (A1 (3 ⁇ 4P0 4 ) 3 ), its It may be a derivative, or a combination thereof.
  • the composite metal phosphate is a mixture of the first magnesium phosphate (Mg (3 ⁇ 4P0 4 ) 2 ) and the first aluminum phosphate (AK3 ⁇ 4P0 4 ) 3 ), and the first aluminum phosphate (A1 (3 ⁇ 4P0 4 ) 3 ) may be less than 70% by weight (except 0% by weight).
  • the composite metal phosphate may have a total solid content of more than 58 wt% and less than 63 wt%.
  • the derivative of the complex metal phosphate may be represented by the following Chemical Structural Formula (1) or (2).
  • the insulating film-forming composition may further comprise chromium oxide, solid silica, or a mixture thereof.
  • the composition for forming an insulating coating on one or both surfaces of the grain-oriented electrical steel sheet 0.5 to 6.0 g / m 2 of the composition for forming the insulating film per one side (m 2 ) of the grain-oriented electrical steel sheet -Can be applied. Thereafter, drying the coated insulating film forming composition to form an insulating film; may be performed in a temperature range of 550 to 900 ° C, such as 10 to 50 seconds.
  • a composition for forming an insulating coating on one or both sides of the grain-oriented electrical steel sheet Previously, the step of manufacturing the grain-oriented electrical steel sheet; further comprising the step of manufacturing the grain-oriented electrical steel sheet; The step of preparing a steel slab; Hot rolling the steel slab to produce a hot rolled sheet; Cold rolling the hot rolled sheet to produce a quenched sheet; Decarburizing annealing the bispanpanol; And applying an annealing separator to the surface of the decarburized annealing steel sheet and finishing annealing to obtain a directional electrical steel sheet including a primary coating.
  • the composition of the steel slab is silicon (Si): 2.7 to 4.2% by weight and antimony (Sb): 0.02 to 0.06% by weight, tin (Sn): 0.02 to 0.08% by weight, cr (Cr): 0.01 to 0.30% by weight ⁇ acid-soluble aluminum (A1): 0.02 To 0.04 weight%, manganese (Mn): 0.05 to 0.20 weight%, carbon (C): 0.04 to 0.07 weight%, and sulfur (S): 0.001 to 0.005 weight%, nitrogen (N): 10 to 50 ppm, and the balance may consist of Fe and other unavoidable impurities.
  • a grain-oriented electrical steel sheet In another embodiment of the present invention, a grain-oriented electrical steel sheet; And an insulating coating disposed on one or both surfaces of the grain-oriented electrical steel sheet, wherein the insulating coating comprises a first component (A) comprising a composite metal phosphate, a derivative thereof, or a mixture thereof, and an average particle diameter It comprises two components (B) comprising two or more different colloidal silica, and based on 100 parts by weight of the first component (A), the second component is 50 to 250 parts by weight It provides a grain-oriented electrical steel sheet with an insulating coating.
  • the insulating coating comprises a first component (A) comprising a composite metal phosphate, a derivative thereof, or a mixture thereof, and an average particle diameter It comprises two components (B) comprising two or more different colloidal silica, and based on 100 parts by weight of the first component (A), the second component is 50 to 250 parts by weight It provides a grain-oriented electrical steel sheet with an insulating coating.
  • the grain-oriented electrical steel sheet formed with the insulating film, Ps / P b is 3.0 or less (except 0) during the stress relief annealing (SRA) at 800 ° C, when the stress removal annealing at 840 ° C Ps / P b is 6.0 or less (except for 0), and when annealing the annealing at 880 ° C, Ps / P b may be 8.0 or less (except 0).
  • the electrical steel sheet contains silicon (Si): 2.7 to 4.2 weight 3 ⁇ 4> and antimony (Sb): 0.02 to 0.06 weight%, tin (Sn): 0.02 to 0.08 weight%, chromium (Cr): 0.01 to 0.01 0.30 weight Acid soluble aluminum (A1): 0.02 to 0.04 weight 3 ⁇ 4>, manganese (Mn): 0.05 to 0.20 weight%, carbon (C): 0.04 to 0.07 weight%, and sulfur (S): 0.001 to 0.0,05 It comprises a weight percent, nitrogen (N): 10 to 50 ppm, the balance may be a oriented electrical steel sheet
  • FIG. 1 shows the crystallinity of the film by synchrotron X-rays before and after SRA treatment (SRA treatment at 800, 840, and 880 V temperatures, respectively) for Example 1 and Comparative Example 1 of the present invention.
  • SRA treatment at 800, 840, and 880 V temperatures, respectively
  • FIG. 2 is a graph showing iron loss change according to SRA treatment time and temperature in a commercially available grain-oriented electrical steel sample.
  • a composition for forming an insulating film of a grain-oriented electrical steel sheet a method of forming an insulating film using the same, and a direction in which the insulating film is formed.
  • Each of the electrical steel sheets is provided.
  • the first component (A) comprising a complex metal phosphate, derivatives thereof, or mixtures thereof; And two components (B) comprising two or more colloidal silicas having different average particle diameters, wherein the second component is 50 to 250 parts by weight based on 100 parts by weight of the first component (A).
  • the composition for forming an insulating film includes a complex metal acrylate, a derivative thereof, or a mixture thereof.
  • Component (A), and two components (B) comprising two or more colloidal silicas having different average particle diameters; and based on 100 parts by weight of the first component (A), the second component Provided is an insulation film forming method of a grain-oriented electrical steel sheet, which will be included in the 50 to 250 increase.
  • a grain-oriented electrical steel sheet In another embodiment of the present invention, a grain-oriented electrical steel sheet; And an insulating coating disposed on one or both surfaces of the grain-oriented electrical steel sheet, wherein the insulating coating comprises a first component (A) comprising a composite metal phosphate, a derivative thereof, or a mixture thereof, and an average particle diameter. And a second component (B) comprising two or more different colloidal silicas, wherein the second component comprises 50 to 250 parts by weight based on 100 parts by weight of the first component (A). It provides a grain-oriented electrical steel sheet formed with an insulating coating.
  • M x (H 3 P0 4 ) being represented by the formula of y, M x (P0 4) y to the metal phosphate (metal phosphate) and distinguish represented by the formula used in the implementation of the present invention; For this purpose, it is defined as "composite metal phosphate".
  • the "composite metal phosphate”' can be prepared using the reaction of phosphoric acid (H 3 P0 4 ), metal hydroxide (M x (0H) y ) or metal oxide (M x 0), specific examples thereof First cobalt phosphate (Co (3 ⁇ 4P0 4 ) 2 , including first aluminum phosphate (A1 (3 ⁇ 4P0 4 ) 3 ) and first magnetite phosphate (Mg (H 3 P0 4 ) 2 ) used in the following examples. ), Monobasic calcium phosphate (Ca (H 3 P0 4 ) 2 ), monobasic zinc phosphate (Zn (H 3 P0 4 ) 2 ), and the like.
  • First cobalt phosphate Co (3 ⁇ 4P0 4 ) 2 , including first aluminum phosphate (A1 (3 ⁇ 4P0 4 ) 3 ) and first magnetite phosphate (Mg (H 3 P0 4 ) 2 ) used in the following examples.
  • Monobasic calcium phosphate Ca (
  • composition for forming an insulating film of the grain-oriented electrical steel sheet according to 1) the one component So basically, while giving the adhesive force between the insulating film and the steel sheet, 2) the second component can maintain a good tension even after SRA at high temperatures, thereby minimizing the problem of increased iron loss and reduced insulation.
  • the composite metal phosphate included as the first component, as an inorganic material, imparts adhesion between the insulating film and the steel sheet, and after SRA, excellent basic performance as an insulating film such as corrosion resistance and insulating adhesion is excellent. Contributes to.
  • the colloidal silica contained in the second component serves to improve the tension of the insulating coating.
  • the average particle diameters are the same. Compared to the case of using the same, it is possible to minimize the phenomenon that the silica component is crystallized after the stress relief annealing (SRA) of the high temperature.
  • the said 2nd component uses 2 or more types of colloidal silica from which an average particle diameter differs. More specifically, it was intended to solve the crystallization problem according to SRA by using colloidal silica having a smaller average particle diameter than conventionally used.
  • colloidal silica having a smaller average particle diameter in the case of forming an excessively uniform network structure using only colloidal silica having a small average particle diameter, crystallization according to SRA may be induced, and colloidal silica having an average particle diameter commonly used is appropriately blended.
  • commonly used colloidal silica inevitably contains sodium component (Na + ) in its manufacturing process .
  • the reaction property of the Roydal silica becomes high, there exists a tendency for glass transition temperature to fall and the performance of an insulating film after SRA can be reduced.
  • the colloidal silica used as the second component has a lower sodium content than that normally used. You can choose to adjust to have.
  • composition for forming an insulating film of the grain-oriented electrical steel sheet is derived according to the following consideration process.
  • a grain-oriented electrical steel sheet is manufactured in the form of a coil after a secondary coating (i.e., formation of an insulating coating) is applied to provide the coating tension and insulation.
  • the coil thus manufactured is reworked in the form of a hoop of a suitable size according to the use and size of the transformer in the final product manufacture.
  • a forming process is performed to apply a slight force to a core cut in a hoop form, and to remove the stress applied to the material after such a forming process.
  • SRA high temperature treatment
  • the purpose of SRA can be seen as a process of recovering the iron loss which was damaged during forming.
  • an increase in iron loss was observed after stress relief annealing, and when the product was manufactured as a transformer, transformer no-load iron loss increased, which adversely affects the performance of the transformer.
  • the cause of the increase in iron loss after SRA was examined in terms of the material itself (ie, the grain-oriented electrical steel sheet itself) and the surface thereof.
  • the insulating film located on the outermost surface of the SRA omni-directional electrical steel sheet In general, during the preparation of the insulating film-forming composition, a variety of materials are added to the functional insulating film.
  • the colloidal silica as one of the main components It was selected, and which serves to impart a tensile force to the insulating film, a conventional insulating film formation (i.e., dried) at a temperature of 800 ° C, the condensation reaction due to fly up chain banung of silica.
  • This reaction can be represented by the following Chemical Scheme 1. Specifically, different silicas (ie, A and B) may be condensed with each other in series to produce a silica condensation polymer (ie, C).
  • the silica condensation polymer (C) forms a strong network structure, which is known to be very stable thermally and less thermal damage.
  • the network structure of a silica condensation polymer (C) has the point which grows into crystal
  • the baseline peak (Pb) of the silica crystallization peak (P S ) to) is 8. 0 or more, and the crystallinity is very high.
  • the characteristics of the insulating film for oriented electrical steel sheet can be divided into the characteristics immediately after the formation of the insulating film and the properties after the SRA.
  • the tensile and insulating properties should be excellent immediately after forming the insulating film. After that, it is judged that excellent characteristics (eg, transformer efficiency) can be expressed when manufacturing the product only when the tension decrease is minimized. .
  • SRA is formed while forming a network structure of silica condensation polymer (C) for tension and insulation immediately after the formation of the insulating film.
  • C silica condensation polymer
  • colloidal silica increases reactivity as the average particle diameter is small.
  • semi-ungsungol enhancement to form a network structure of the silica condensation polymer (C)
  • the tension immediately after formation of the insulating film And to improve insulation.
  • the colloidal silica of the average particle diameter commonly used is appropriately blended so as not to form an excessively uniform network structure, and the reaction properties are controlled and the uniformity is excessive. Do not form a network structure.
  • colloidal silica is produced by treating a sodium silicate solution with an ion exchange resin, and is known to inevitably contain a trace amount of sodium component.
  • the (average) particle diameter but also the sodium component inevitably contained as an impurity may be involved in the reaction properties of colloidal silica.
  • the glass transition temperature tends to decrease, and the glass transition temperature is generally lower than 900 ° C.
  • the method of improving the heat resistance by increasing the glass transition temperature by enjoying the amount of sodium in the colloidal silica was also considered.
  • the composition for forming an insulating film of the grain-oriented electrical steel sheet 1) By the first component containing the polymetal phosphate, while basically giving the adhesive force between the insulating film and the steel sheet, 2) Insulation by the second component containing two or more kinds of colloidal silica having different average particle diameters It improves tension and insulation immediately after film formation and maintains excellent tension even after SRA at high temperature, thereby minimizing the problem of increased iron loss and reduced insulation.
  • one kind of composite metal phosphate selected from the first magnesium phosphate (Mg (H 3 P0 4 ) 2 ) and the system monoaluminum phosphate (AK3 ⁇ 4P0 4 ) 3 ) may be used alone. However, you can use them in combination.
  • the content of the first aluminum phosphate (A1 (H 3 P0 4 ) 3) is limited to not more than 70.% by weight, based on 100 weight 3 ⁇ 4 of the total amount of the first component (A), In the above range, the aluminum component (A1 + ) in the aluminum monophosphate (AK3 ⁇ 4PO 4 ) 3 ) increases the crystallization of the colloidal silica included in the second component.
  • the solid content is limited to 58 to 63% by weight based on 100% by weight of the total amount of the first component (A), and the free phosphoric acid in the first component (P0 4) is less than 58% by weight. ),
  • the surface moisture absorption is increased when the insulating film is formed, and if it is 63% by weight or more, it is feared that the excess solid content compared to pure phosphoric acid (H 3 P0 4 ).
  • the complex metal phosphate salt included as the first component (A) may be prepared by using a reaction of a metal hydroxide (M x (0H) y ) or a metal oxide (M x 0) and phosphoric acid (3 ⁇ 4P0 4 ).
  • the metal hydroxide (M x (0H) y ) or metal oxide (M x 0) is added and, when reacted at 80 ° C. or more, each of the composite metal phosphate can be obtained.
  • the amount of the metal hydroxide (M x (0H) y ) or metal oxide (M x 0) is 1 to 40 parts by weight of aluminum hydroxide (A1 (0H) 3), cobalt hydroxide (Co (0H) 1 to 10 parts by weight for 2 , 1 to 15 parts by weight for CaO, 1 to 20 parts for Zinc Oxide (ZnO) and 1 to 10 parts by weight for MgO, respectively.
  • the aqueous solution of phosphoric acid is based on 100 parts by weight.
  • the aforementioned "derivatives of complex metal phosphates” means the products of condensation reactions of the complex metal phosphates and boric acid.
  • the added boric acid is limited to 5 to 7 parts by weight based on 100 parts by weight of the composite metal phosphate, and in the case of a small amount of 3 parts by weight or less, it contributes little to the improvement of adhesion, and in the case of an excess amount of more than 7 parts by weight This is because it precipitates and causes the surface of the insulating film to be rough.
  • the derivative of the complex metal phosphate is represented by the following chemical structural formula (1) or (2).
  • the colloidal silica included as the second component has a solid content of 30% by weight and an average particle diameter of 12 nm (first colloidal silica), and has a solid content of 20 weight 3 ⁇ 4 and an average particle size of 5 nm (second colloidal silica) can be used in combination.
  • the second colloidal silica having a small average particle diameter is used to improve the characteristics immediately after the formation of the insulating film, and to prevent excessive crystallization after SRA, the average particle diameter is a normal size.
  • the crab is a mixture of 1 colloidal silica.
  • the weight ratio of the second colloidal silica to the first colloidal silica may be blended so that 1: 9 to 9: 1, specifically 1: 3 to 3: 1. This is a concern that the crystallinity increases after SRA when the content of the first colloidal silica in the second component is 10 weight 3 ⁇ 4 or less, and when it is 90 weight% or more, the semi-permanence decreases, so that the ⁇ force immediately after the insulation film is formed. Is concerned.
  • the second component is 50 to 50 parts by weight based on 100 parts by weight of the first component (A).
  • 250 parts by weight may be included, but less than 50 parts by weight is difficult to expect the effect of increasing the tension of the insulating film, when more than 250 parts by weight of the relatively low content of the first component may reduce the adhesion of the insulating film. Because there is.
  • the weight ratio of the two crab components to the one crab component (A) may be 1.3 to 1.8, and the critical significance of this range may be supported by contrasting the examples and comparative examples described below.
  • composition for forming an insulating film for the purpose of reinforcing functionality, chromium oxide, solid silica, or a mixture thereof; may be further included.
  • the oxidation cream is based on 100 parts by weight of the first component (A). Specifically, based on 100 parts by weight of the first component (A), the oxidation cream is
  • the solid silica may be used in 5 to 15 parts by weight, respectively.
  • the coating amount per one surface is applied so that 0.5 to 6.0 g / m 2, 550 to 900 ° C. Drying by heat treatment for 10 to 50 seconds in the temperature range can form an insulating film.
  • the temperature of the grain-oriented electrical steel sheet composition in case, Oh coating amount per one side of 4.0 to 5.0 g / m 2 to be controlled to 20 ⁇ 5 ° C, the viscosity is increased if below 20 ° C This is because it is difficult to realize a constant coating amount, and the gelation phenomenon of colloidal silica in the composition may be accelerated at 20 ° C or higher, which may lower the surface quality of the insulating film.
  • the grain-oriented electrical steel sheet which is made up to the finish annealing to have a primary film, containing silicon (Si): 2.7 to 4.2% by weight and antimony (Sb): 0.02 to 0.06% by weight, tin (Sn) : 0.02 to 0.08 weight Chromium (Cr): 0.01 to 0.30 weight%, acid-soluble aluminum (A1): 0.02 to 0.04 weight%, manganese (Mn): 0.05 to 0.20 weight%, carbon (C): 0.04 to 0.07 weight% And, sulfur (S): 0.001 to 0.005% by weight, nitrogen (N): 10 to 50 ppm, the balance comprising a oriented electrical steel sheet composed of Fe and other unavoidable impurities, and a primary coating You can choose to.
  • the Ps / P b is 3.0 or less during stress relief annealing (SRA) at 800 ° C. 2.5 or less (except 0), Ps / P b is less than or equal to 6.0 at 840 ° C, and less than 5.4, specifically 5.4 or less (except at 0), Ps is stress-annealed at 880 ° C. / Pb may be 8.0 or less, specifically 7.1 or less (but not 0).
  • Ps / P b is, after ungryeok relief annealing in the temperature of each, synchrotron exciter switch-rays (synchrotron X-ray) to be the base line peak on the results of measuring the crystallinity of the insulating film
  • P b Means the ratio of silica crystallization peak (Ps) to More specifically, when measuring the degree of crystallinity of the insulating film, limited to the power Co Ka (6.93keV), grazing angle 1 degree, step 0.02 degrees, the baseline peak (P b ) is average intensity at 14 to 22 degrees Or the average intensity per second, and the crystallization peak (Ps) of silica can be determined as the average intensity at 24.5 to 26 degrees or the average strength per second.
  • the Ps / P b value at SRA at each temperature is supported by the embodiments described below.
  • preferred examples of the present invention, comparative examples, and evaluation examples thereof are described. However, the following examples are only preferred examples of the present invention and the present invention is not limited to the following examples.
  • the mixed form and the composite metal phosphate such that the first aluminum phosphate: weight ratio of the first magnesium phosphate is 5: 5 were commonly used for all samples. At this time,
  • colloidal silica Different colloidal silicas of A to C were selected as follows.
  • X an average particle diameter of 5 nm,.
  • X is a colloidal silica, the total amount 100 '% by weight based, high solids content is 20% by weight, is 0.45% by weight sodium content colloidal silica
  • Y Colloidal silica having an average particle diameter of 12 nm, solid content of 30 wt%, and sodium content of 0.29 wt%, based on 100 wt% of the total amount of Y colloidal silica.
  • Z Colloidal silica having an average particle diameter of 12 nm and a solid content of 30 wt% and sodium content of 0.60 wt% based on 100 wt% of the total amount of Z colloidal silica.
  • each sample the prepared composite metal phosphate, and selected based on 100 parts by weight of the composite metal phosphate, to meet the composition of Table 2, colloidal silica, chromium oxide, solid silica (average particle diameter: 500 to 1000 nm) Formulated, each sample was prepared.
  • Each sample was used to apply a coating amount of 4 g / m 2 per side of the grain-oriented electrical steel sheet, dried at 850 ° C. for 30 seconds, to form an insulating film of 2 im thickness each.
  • Iron loss A specimen of 300 mm in length and 60 mm in width was measured using a single-plate magnetic measuring device and the change of specimen loss after the product and SRA at 1.7 T of the approved field length and 50 Hz frequency.
  • Insulation This is expressed as the received current value when the input is 0.5V, 1.0A through 300PSI pressure through the Franklin tester.
  • Crystallinity The crystallinity was measured using a synchrotron X-ray, and the conditions were fixed at beam power Co Ka (6.93 keV), grazing angle 1 degree, and step 0.02 degree.
  • the baseline peak P b is determined by the average intensity at 14 to 22 degrees or the counter per second
  • the crystallization peak Ps is determined by the average intensity at 24.5 to 26 degrees or the average intensity per second. (counter per second).
  • Sample 1 As the SRA temperature increases, the crystallinity value also increases. In particular, at a high temperature of 880 ° C., the crystallinity is increased to 12.5. On the other hand, in the case of samples 3 to 7, it was possible to control the crystallinity after SRA to 8.0 or less, it was possible to suppress up to 3.0. In addition, Sample 1 tends to increase iron loss after SRA compared to before SRA, which is also related to the change in insulation value. In general, as the crystallinity increases in SRA, the electrical conductivity is increased, the insulation is lowered, and Sample 1 is disproved. However, the sample
  • the lower reaction properties of colloidal silica means that it is difficult to form a solid insulating film, and there is a possibility that iron loss may increase after SRA. However, this concern may be caused by appropriate control of the flat particle size of colloidal silica. Can be solved.
  • the reaction surface area was increased by appropriately blending a commonly used average particle diameter of 12 ran clodal silica and a smaller average particle diameter of 5 nm colloidal silica.
  • samples 4 to 6 have a weight ratio of colloidal silica / complex metal phosphate
  • composition ratio of X / Y does not satisfy the range of 1/9 to 9/1
  • weight ratio of black colloidal silica / composite metal phosphate does not satisfy the range of 0.5 to 2.7
  • iron loss or insulation In terms of inferior properties appeared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

복합 금속 인산염, 이의 유도체, 또는 이들의 혼합물을 포함하는 제 1 성분 (A); 평균 입경이 서로 다른 2종 이상의 콜로이달 실리카를 포함하는 제 2 성분 (B);을 포함하는 방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피막의 형성 방법, 및 절연피막이 형성된 방향성 전기강판에 관한 것이다.

Description

TITLE OF THE INVENTION
방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피막의 형성 방법, 및 절연피막이 형성된 방향성 전기강판
BACKGROUND OF ΤΉΕ INVENTION
(a) Field of the Invent ion
방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피막의 형성 - 방법, 및 절연피막이 형성된 방향성 전기강판에 관한 것이다.
(b) Descript ion of the Related Art
방향성 전기강판은, 일반적으로 Si 성분의 함량이 3. 1 증량 %인 전기 강판으 로, 결정립의 방위가 αιο) [οοι]방향으로 정렬된 집합 조직을 가지고 있어, 압연
' 방향으로 우수한 자기적 특성을 나타낸다.
이러한 자기적 특성은, 방향성 전기강판의 철손을 감소시켜 절연성을 개선하 면, 보다 향상되는 것으로 알려져 있다. 이와 관련하여, 방향성 전기강판의 철손을 감소시키는 방법 중 하나로, 표면에 고장력의 절연피막을 하는 방법이 활발히 연구 되고 있다.
한편, 방향성 전기강판의 제품화를 위해, 표면에 절연피막을 형성한 후 적절 한 형태로 가공하고, 가공에 의한 응력을 제거하기 위해 웅력 제거 소둔 (Stress Re l i ef Anneal ing , SRA)를 실시하는 것이 일반적이나, 이러한 SRA 공정에서 고열에 의해 다시금 절연피막의 장력이 감소하여, 철손이 증가하며 절연성이 감소하는 문 제가 잇따라 발생한다.
SUMMARY OF THE INVENTION
본 발명의 구현예들에서는, 앞서 지적된 문제, 즉 SRA 후 절연피막의 장력이 감소함에 따른 문제를 해소할 수 있는, 방향성 전기강판의 절연피막용 조성물, 이 를 이용한 절연피막의 형성 방법, 및 절연피막이 형성된 방향성 전기강판을 제공한 다.
본 발명의 일 구현예에서는, 복합 금속 인산염, 이의 유도체, 또는 이들의 흔합물을 포함하는 게 1 성분 (A) ; 및 평균 입경이 서로 다른 2종 이상의 콜로이달 실리카를 포함하는 게 2 성분 (B) ;을 포함하고, 상기 제 1 성분 (A) 100 중량부 기준으 로, 상기 제 2 성분은 50 내지 250 중량부 포함되는 것인,방향성 전기강판의 절연피 막 형성용 조성물을 제공한다.
구체적으로, 상기 게 1 성분 (A)에 대한 상기 제 2 성분의 중량비 (제 2 성분 /제 1 성분)는, 1 .3 내지 1.8인 것일 수 있다.
상기 제 2 성분 (B)은, 평균 입경이 12 nm인 제 1 콜로이달 실리카, 및 평균 입 경이 5 nm인 게 2 콜로이달 실리카를 포함하는 것일 수 있다.
보다 구체적으로, 상기 제 1 콜로이달 실리카에 대한 상기 제 2 콜로이달 실리 카의 중량 비율이 1 : 9 내지 9 : 1인 것일 수 있다.
이때, 상기 제 2 성분 (B)은, 전체 고형분 함량이 20 중량 % 이상 30 중량 % 이 하인 것일 수 있다.
또한, 상기 게 2 성분 (B)은, 불가피하게 불순물로 포함되는 나트륨 함량이 0.60 중량 % 미만 (단, 0 중량 % 제외)인 것일 수 있다.
한편, 상기 제 1 성분 (A)은, 제 1인산 마그네슘 (Mg(H3P04)2) 및 제 1인산 알루미 늄 (A1 (¾P04)3) 중에서 선택되는 1종의 복합 금속 인산염, 이의 유도체, 또는 이들 의 흔합물인 것일 수 있다.
구체적으로, 상기 복합 금속 인산염은, 상기 제 1인산 마그네슘 (Mg(¾P04)2) 및 상기 제 1인산 알루미늄 (AK¾P04)3)의 흔합물이며, 상기 제 1인산 알루미늄 (A1 (¾P04)3)의 함량이 70 중량 % 미만 (단, 0 증량 % 제외)인 것일 수 있다.
상기 복합 금속 인산염은, 전체 고형분 함량이 58 중량 % 초과 63 중량 % 미만 인 것일 수 있다.
상기 복합 금속 인산염의 유도체는, 하기 화학 구조식 1 또는 2로 표시되는 것일 수 있다.
[화학 구조식 1] B
OH
[화학 구조식 2]
H2 P04
Al
H 2 0, 0
B
Figure imgf000005_0001
다른 한편, 상기 절연피막 형성용 조성물은, 산화 크롬, 고체 실리카, 또는 이들의 흔합물;을 더 포함할 수 있다.
본 발명의 다른 일 구현예에서는, 방향성 전기강판 일면 또는 양면에, 절연 피막 형성용 조성물을 도포하는 단계; 및 상기 도포된 절연피막 형성용 조성물을 건조하여, 절연피막을 형성하는 단계;를 포함하고, 상기 절연피막 형성용 조성물은, 복합 금속 인산염, 이의 유도체, 또는 이들의 흔합물을 포함하는 제 1 성분 (A) , 및 평균 입경이 서로 다른 2종 이상의 콜로이달 실리카를 포함하는 제 2 성분 (B) ;을 포 함하고, 상기 제 1 성분 (A) 100 중량부 기준으로, 상기 제 2 성분은 50 내지 250 중 량부 포함되는 것인,방향성 전기강판의 절연피막 형성 방법을 제공한다.
구체적으로, 상기 방향성 전기강판 일면 또는 양면에, 절연피막 형성용 조성 물을 도포하는 단계;에서, 상기 방향성 전기강판의 편면 (m2) 당 상기 절연피막 형성 용 조성물을 0.5 내지 6.0 g/m2 도포하는 것일 수 있다- . 이후, 상기 도포된 절연피막 형성용 조성물을 건조하여 절연피막을 형성하 는 단계;는, 550 내지 900 °C의 온도 범위에서, 10 내지 50 초 등안 수행되는 것일 수 있다.
한편, 상기 방향성 전기강판 일면 또는 양면에, 절연피막 형성용 조성물을 도포하는 단계 ; 이전에, 상기 방향성 전기강판을 제조하는 단계 ;를 더 포함하고, 상기 방향성 전기강판올 제조하는 단계;는, 강 슬라브를 준비하는 단계; 상기 강 슬라브를 열간 압연하여, 열연판을 제조하는 단계; 상기 열연판을 냉간 압연하여ᅳ 넁연판을 제조하는 단계 ; 상기 넁연판올 탈탄 소둔하는 단계; 및 상기 탈탄 소둔된 강판의 표면에 소둔 분리제를 도포하고, 마무리 소둔하여 1차 피막을 포함하는 방 향성 전기강판을 수득하는 단계;를 포함하고, 상기 강 슬라브의 조성은, 규소 (Si): 2.7 내지 4.2 중량 % 및 안티몬 (Sb): 0.02 내지 0.06 중량 %를 함유하고, 주석 (Sn): 0.02 내지 0.08 중량 %, 크름 (Cr): 0.01 내지 0.30 중량 %ᅳ 산가용성 알루미늄 (A1): 0.02 내지 0.04 중량 %, 망간 (Mn): 0.05 내지 0.20 중량 %, 탄소 (C): 0.04 내지 0.07 중량 %, 및 황 (S): 0.001 내지 0.005 중량 %를 포함하고, 질소 (N): 10 내지 50 ppm를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 것일 수 있다.
본 발명의 또 다른 일 구현예에서는, 방향성 전기강판; 및 상기 방향성 전기 강판의 일면 또는 양면에 위치하는 절연피막;을 포함하고, 상기 절연피막은, 복합 금속 인산염, 이의 유도체, 또는 이들의 흔합물을 포함하는 계 1 성분 (A), 및 평균 입경이 서로 다른 2종 이상의 콜로이달 실리카를 포함하는 게 2 성분 (B);을 포함하 고, 상기 거1 성분 (A) 100 중량부 기준으로, 상기 제 2 성분은 50 내지 250 중량부 포함되는 것인, 절연피막이 형성된 방향성 전기강판을 제공한다.
구체적으로, 상기 절연피막이 형성된 방향성 전기강판은, 800 °C에서 웅력 제거 소둔 (Stress Relief Annealing, SRA) 시 Ps/Pb가 3.0 이하 (단, 0 제외)이고, 840 °C에서 웅력 제거 소둔 시 Ps/Pb가 6.0 이하 (단, 0 제외)이고, 880 °C에서 웅 력 제거 소둔 시, Ps/Pb가 8.0 이하 (단, 0 제외)인 것일 수 있다.
(단, 상기 Ps/Pb는, 상기 각각의 온도에서 응력 제거 소둔 후, 싱크로트론 엑스 -레이 ( synchrot ron X_ray)로 상기 절연피막의 결정화도를 측정한 결과값에 관 한 것으로, 베아스 라인 피크 (Pb)쎄 대한 실리카 결정화 피크 (Ps)의 비를 의미함) 한편, 상기 방향성 전기강판은, 규소 (Si ) : 2.7 내지 4.2 중량 ¾> 및 안티몬 (Sb) : 0 .02 내지 0.06 중량 %를 함유하고, 주석 (Sn) : 0.02 내지 0.08 중량 %, 크롬 (Cr ) : 0.01 내지 0.30 중량 산가용성 알루미늄 (A1 ) : 0.02 내지 0.04 중량 ¾>, 망간 (Mn) : 0.05 내지 0.20 중량 % , 탄소 (C) : 0.04 내지 0.07 중량 % , 및 황 (S) : 0.001 내 지 0.0,05 중량 %를 포함하고, 질소 (N) : 10 내지 50 ppm를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 방향성 전기강판, 및 1차 피막을 포함하는 것일 수 있다.
본 발명의 구현예들에 따르면, 고열에서의 SRA 후에도 우수한 장력을 유지하 여, 철손 증가 및 절연성 감소의 문제를 최소화할 수 있다.
BRIEF DESCRIPTION OF THE DRAWINGS
도 1은, 본 발명의 실시예 1 및 비교예 1에 대해, SRA 처리 전, 그리고 SRA 처리 후 (800, 840 , 및 880 V 온도에서 각각 SRA 처리), 싱크로트론 X-레이로 피막 의 결정화도를 측정한 그래프이다.
도 2는, 시판되는 방향성 전기강판 샘플에서, SRA 처리 시간과 온도에 따른 철손 변화를 보여주는 그래프이다.
DETAILED DESCRIPTION OF THE EMBODIMENTS
본 발명의 구현예들
본 발명의 구현예들에서는, 방향성 전기강판의 절연피막 형성용 조성물, 이 를 이용한 절연피막의 형성 방법, 및 절연피막이 형성된 방향성. 전기강판을 각각 제공한다.
본 발명의 일 구현예에서는, 복합 금속 인산염, 이의 유도체, 또는 이들의 혼합물을 포함하는 제 1 성분 (A) ; 및 평균 입경이 서로 다른 2종 이상의 콜로이달 실리카를 포함하는 게 2 성분 (B) ;을 포함하고, 상기 제 1 성분 (A) 100 중량부 기준으 로, 상기 제 2 성분은 50 내지 250 중량부 포함되는 것인, 방향성 전기강판의 절연 피막 형성용 조성물을 제공한다.
본 발명의 다른 일 구현예에서는, 방향성 전기강판 일면 또는 양면에, 절연 피막 형성용 조성물을 도포하는 단계; 및 상기 도포된 절연피막 형성용 조성물을 건조하여, 절연피막올 형성하는 단계;를 포함하고, 상기 절연피막 형성용 조성물은, 복합 금속 안산염 , 이의 유도체, 또는 이들의 흔합물을 포함하는 게 1 성분 (A) , 및 평균 입경이 서로 다른 2종 이상의 콜로이달 실리카를 포함하는 게 2 성분 (B) ;을 포 함하고, 상기 제 1 성분 (A) 100 중량부 기준으로, 상기 제 2 성분은 50 내지 250 증 량부 포함되는 것인, 방향성 전기강판의 절연피막 형성 방법을 제공한다.
본 발명의 또 다른 일 구현예에서는, 방향성 전기강판; 및 상기 방향성 전기 강판의 일면 또는 양면에 위치하는 절연피막;을 포함하고, 상기 절연피막은, 복합 금속 인산염, 이의 유도체, 또는 이들의 흔합물을 포함하는 제 1 성분 (A) , 및 평균 입경이 서로 다른 2종 이상의 콜로이달 실리카를 포함하는 제 2 성분 (B) ;을 포함하 고, 상기 제 1 성분 (A) 100 중량부 기준으로, 상기 제 2 성분은 50 내지 250 중량부 포함되는 것인, 절연피막이 형성된 방향성 전기강판을 제공한다.
본 발명의 구현예들에서 사용되는 인산염은, Mx(H3P04)y 의 화학식으로 표시 되는 것으로, Mx(P04)y의 화학식으로 표시되는 금속 인산염 (metal phosphate) 과 구 별하기 위해, "복합 금속 인산염' '으로 정의하기로 한다.
상기 "복합 금속 인산염' '은 인산 (H3P04)과, 금속 수산화물 (Mx(0H)y) 또는 금 속 산화물 (Mx0)의 반응을 이용하여 제조될 수 있고, 그 구체적인 예로는, 후술되는 실시예에서 사용되는 제 1인산 알루미늄 (A1 (¾P04)3) 및 제 1인산 마그네슴 (Mg(H3P04)2) 을 비롯하여, 제 1인산 코발트 (Co(¾P04)2) , 제 1인산 칼슘 (Ca(H3P04)2) , 제 1인산 아연 (Zn(H3P04)2) 등이 있다.
이하, 본 발명의 구현예들을 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구 범위의 범주에 의해 정의될 뿐이다.
상기 방향성 전기강판의 절연피막 형성용 조성물은, 1) 상기 게 1 성분에 의 해 기본적으로 절연피막과 강판 사이에 접착력을 부여하면서도 2) 상기 제 2 성분 에 의해 고열에서의 SRA 후에도 우수한 장력을 유지하여, 철손 증가 및 절연성 감 소의 문제를 최소화할 수 있다.
구체적으로, 1) 상기 제 1 성분으로 포함되는 복합 금속 인산염은, 무기 물질 로서, 절연피막과 강판 사이에 접착력을 부여하며, SRA 후에도 내식성, 절연성 밀 착성 등 절연피막으로서의 기본적인 성능이 우수하게 발현되는 데 기여한다.
또한, 2) 상기 제 2 성분으로 포함되는 콜로이달 실리카는, 절연피막의 장력 을 향상시키는 기능을 하는 것이다ᅳ 이때, 평균 입경이 서로 다른 2 종 이상의 콜 로이달 실리카를 사용함으로써, 평균 입경이 동일한 것을 사용하는 경우에 비하여, 고온의 응력 제거 소둔 (Stress Rel i ef Anneal ing , SRA) 후 실리카 성분이 결정화되 는 현상올 최소화할 수 있다.
구체적으로, 고열에서 장시간 동안 SRA를 수행할 경우, 통상적으로 콜로이달 실리카 성분의 결정화가 진행되어, 절연피막의 장력이 급격히 저하된다고 알려져 있다. 이처럼 절연피막의 장력이 저하되면, 철손이 증가하고, 자기적 특성이 증가 하여 , 방향성 전기강판의 상품성이 저하될 수 있다.
이러한 문제를 해소하기 위해, 상기 제 2 성분에서는, 평균 입경이 서로 다른 2 종 이상의 콜로이달 실리카를 사용한 것이다. 보다 구체적으로, 통상적으로 사용 되는 것보다 평균 입경이 작은 콜로이달 실리카를 사용하여 SRA에 따른 결정화 문 제를 해소하고자 하였다. 다만, 평균 입경이 작은 콜로이달 실리카만으로 지나치게 균일한 네트워크 구조를 형성할 경우에는, 오히려 SRA에 따른 결정화를 유도할 수 있어, 통상적으로 사용되는 평균 입경의 콜로이달 실리카를 적절히 배합하였다. 나아가, 통상적으로 사용되는 콜로이달 실리카는 그 제조 과정 상 나트륨 성 분 (Na+)를 불가피하게 포함하고 있는데, 이러한 나트륨 성분의 함량이 많을수록 콜. 로이달 실리카의 반웅성은 높아지지만, 유리 전이 온도가 저하하는 경향이 있어, SRA 후 절연피막의 성능을 저하시킬 수 있다. 이점 또한 고려하여, 상기 제 2 성분 으로 사용되는 콜로이달 실리카는, 통상적으로 사용되는 것보다 낮은 나트륨 함량 을 갖도록 조절한 것을 선택할 수 있다.
보다 구체적으로, 상기 방향성 전기강판의 절연피막 형성용 조성물은, 다음 과 같은 고찰 과정에 따라 도출된 것이다.
I . 웅력 제거 소둔 (Stress Rel ief Anneal ing, SRA) 후 철손 증가의 원인 고 찰
일반적으로 방향성 전기강판은 피막장력과 절연을 부여하는 2차 코팅 (즉 , 절 연피막의 형성)이 행하여진 후 코일형태로 제조된다. 이렇게 제조된 코일은 최종제 품 제조시 변압기의 용도 및 크기에 따라 적당한 크기의 후프 (hoop) 형태로 재가공 되어 사용된다.
예를 들어, 주상용 배전 변압기에 사용되는 권철심 변압기의 경우, 후프 형 태로 잘려진 철심을 약간의 웅력을 가해서 가공하는 포밍 ( forming) 과정이 필요하 며 이와 같은 포밍 과정 후에 재료에 가해진 응력을 제거하기 위해 고온에서 열처 리, 즉 SRA하는 과정을 거친다.
따라서 SRA의 목적은 포밍시 손상되었던 철손을 다시 회복하는 공정으로 볼 수 있다. 그러나 종래의 제품의 경우 응력 제거 소둔 뒤 오히려 철손이 증가하는 현상이 관찰되었고 이러한 제품으로 변압기로 제조되었을 경우 변압기 무부하 철손 이 증가하게 되어 변압기의 성능에 나쁜 영향을 주게 된다.
이와 관련하여, SRA 후 철손이 증가하는 원인을, 소재 자체 (즉, 방향성 전기 강판 그 자체)의 측면과, 그 표면의 측면에서 , 각각 검토해보았다.
우선, 소재적인 측면에서, 시판되는 방향성 전기강판 샘플을 2 개 준비하여, 인위적으로 두 가지 형태의 웅력, 구체적으로 영구적인 변형 (Twin) 및 일시적인 변형 (Sl ip)을 각각 가한 뒤, 통상적인 조건으로 850 °C의 온도에서 2 시간 동안 SRA를 수행하였다. 그 결과, 2 개의 샘플 모두 철손이 증가하는 현상을 관찰할 수 있었다. 이에 따라, SRA 후 철손이 증가하는 현상은, 소재 및 소재에 가해지는 응 력의 종류와 관계없이 발생하는 것으로 판단하였다.
한편, 표면적인 측면에서, SRA 수행 온도, 시간, 및 기체 분위기의 영향을 알아보고자, 하기 표 1 조건으로 SRA 시험을 수행하고, 그 결과 역시 표 1에 기록 하였다. 또한, SRA 처리시간과 온도에 따른 철손 변화를 그래프로 표현하여, 도 2 에 나타내었다.
구체적으로, 표 1 및 도 2에서, SRA 수행 온도가 높아질수록, 철손의 증가 정도가 심화되며, 특히 875 °C 에서는 급격히 증가하는 것으로 확인된다. 이와 독 립적으로, 800 °C에서는 SRA 수행 시간에 길어져도 철손 증가 정도가 양호한 편이 나, 820 °C이상에서 SRA 수행 시간이 길어질수록 철손 증가 정도가 심화된 것으로 확인되었다. 또한, SRA 수행 시 기체 분위기에 따라서는, 수소 기체가 포함된 경우 철손 증가 정도가 심화되는 것으로 확인되었다.
【표 1】
Figure imgf000011_0001
위와 같은 결과로부터, SRA 후 소재 자체에 결함이 발생하기 보다는, 표면에 결함이 발생하는 것이, 철손 증가의 보다 직접적인 원인이라고 판단할 수 있다.
Π . 웅력.제거 소둔 (Stress Rel ief Anneal ing, SRA) 후 표면 결함 발생의 원인 고찰
보다 구체적으로, SRA 후 표면에 결함이 발생하는 원인을 고찰하기 위해서는, SRA 전 방향성 전기강판의 최표면에 위치하는 절연피막에 대한 고찰이 선행될 필요 가 있다. 통상적으로ᅳ 절연피막 형성용 조성물의 제조 시, 목적하는 절연피막을 기 능성을 여러 가지 물질을 배합하게 된다.
우선, 본 발명의 일 구현예에서는, 주요 성분 중 하나로 콜로이달 실리카를 선택하였으며, 이는 절연피막에 장력을 부여하는 역할을 하고, 통상적인 절연피막 형성 (즉, 건조) 온도인 800 °C에서, 실리카의 연쇄 반웅에 의한 축합 반응이 일어 난다.
이러한 반응은, 하기 화학반응식 1로 표시될 수 있다. 구체적으로, 서로 다 른 실리카 (즉, A 및 B)가 연쇄적으로 축합 반응하여, 실리카 축합 중합체 (즉, C)가 생성될 수 있다.
[화학반응식 1]
—(HO-Si -OH— )n (A) + -(H0-Si -0H-)n (B)→ -(H0-Si -0-Si )-n ( c ) + H20
이때, 실리카 축합 중합체 (C)는 강력한 네트워크 구조를 이루며, 이는 열적 으로 매우 안정하며, 열에 의한 손상이 적은 것으로 알려져 있다. 그러나, 이는 어 디까지나 평탄화 소둔 공정의 열처리 온도까지 그 안정성이 유지됨을 의미하는 것 이고, SRA 공정의 고열 (즉, 앞서 언급한, 850 °C의 온도)에서는 그 안정성이 유지 되기는.어렵다.
그 이유로, 실리카 축합 중합체 (C)의 네트워크 구조는, SRA 공정의 고열에서 결정으로 성장하는 점을 들 수 있다. 후술하겠지만ᅳ 도 1에서 나타나는 바와 같이, 콜로이달 실리카를 포함하는 조성물로 절연피막을 형성하고, 880 °C에서 SRA 수행 후, 싱크로트론 X-레이로 피막의 결정화도를 측정했을 때, 베이스라인 피크 (Pb) 대비 실리카 결정화 피크 (PS )의 비 (Ps/Pb)가 8. 0 이상으로, 결정화도가 매우 높아 진 것이 확인된다.
이처럼 확인된 사실로부터, 방향성 전기강판용 절연피막의 특성을, 절연피막 형성 직후의 특성 및 SRA까지 마친 이후의 특성으로 구분할 수 있고, 절연피막 형 성 직후에는 장력 및 절연성이 우수하여야 하며, SRA까지 마친 이후에는 장력 감소 가 최소화 되어야만 제품으로의 제조 시 우수한 특성 (예를 들어, 변압기의 효율 등) 이 발현될 수 있다고 판단된다. .
이러한 판단으로부터ᅳ 본 발명의 일 구현예에서는, 절연피막 형성 직후의 장 력 및 절연성을 위해 실리카 축합 중합체 (C)의 네트워크 구조를 형성하면서도, SRA 까지 마친 이후의 장력 감소를 최소화하기 위해서는 지나치게 균일한 네트워크 구 조의 형성을 방지하는 방안을 고려하기로 하였다.
I II . 콜로이달 실리카의 입경 및 나트륨 성분 함량에 따른 고찰
통상적으로, 콜로이달 실리카는, 그 평균 입경이 작을수록, 반응성이 증가한 다고 알려져 있다. 이에, 본 발명의 일 구현예에서는, 통상적으로 사용되는 콜로이 달 실리카보다 작은 평균 입경의 것을 선택하여, 반웅성올 향상시켜 실리카 축합 중합체 (C)의 네트워크 구조를 형성하며, 절연피막 형성 직후의 장력 및 절연성을 개선하기로 하였다.
다만, SRA까지 마친 이후의 장력 감소를 최소화하기 위해, 지나치게 균일한 네트워크 구조가 형성되지 않게끔, 통상적으로 사용되는 평균 입경의 콜로이달 실 리카를 적절히 배합하여, 그 반웅성을 조절하고, 지나치게 균일한 네트워크 구조를 형성하지 않도록 하였다.
한편, 콜로이달 실리카는, 규산 나트륨 용액을 이온 교환 수지로 처리하여 제조되며, 불가피하게 극미량의 나트륨 성분을 포함하는 것으로 알려져 있다. 이와 관련하여, 콜로이달 실리카의 반웅성에는, 그 (평균) 입경뿐만 아니라, 불가피하게 불순물로 포함되는 나트륨 성분 또한 관여할 수 있다.
*96구체적으로, 콜로이달 실리카의 평균 입경이 작을수록, 그리고 불가피하 게 불순물로 포함되는 나트륨 성분의 함량이 높을수록, 반응성이 증가하는 것이다. 그러나, 콜로이드형 실리카 내 나트륨 성분의 함량이 증가할수록 유리 전이 온도가 저하하는 경향이 있고, 유리 전이 온도가 900 °C보다 낮은 것이 일반적이다.
따라서, 본 발명의 일 구현예에서는, 콜로이달 실리카내 나트륨 양을 즐임으 로써 유리 전이 온도를 높여 내열성을 향상시키는 방안 또한 고려하였다.
IV. 일련의 고찰에 따라 도출된 본 발명의 구현예들
위와 같은 일련의 고찰에 따라, 앞서 제시한 본 발명의 구현예들이 도출되었 다.
구체적으로, 상기 방향성 전기강판의 절연피막 형성용 조성물은, 1) 상기 복 합 금속 인산염을 포함하는 제 1 성분에 의해, 기본적으로 절연피막과 강판 사이에 접착력을 부여하면서도, 2) 상기 평균 입경이 서로 다른 2 종 이상의 콜로이달 실 리카를 포함하는 제 2 성분에 의해, 절연피막 형성 직후의 장력 및 절연성을 개선하 며, 고열에서의 SRA 후에도 우수한 장력을 유지하여, 철손 증가 및 절연성 감소의 문제를 최소화할 수 있는 것이다.
이하, 상기 방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피 막의 형성 방법, 및 절연피막이 형성된 방향성 전기강판에 대해, 보다 구체적으로 설명하기로 한다.
방향성 전기강판의 절연피막 형성용 조성물
우선, 게 1 성분 (A)으로, 제 1 인산 마그네슘 (Mg(H3P04)2) 및 계 1 인산 알루미 늄 (AK¾P04)3) 중에서 선택되는 1종의 복합 금속 인산염을 단독으로 사용할 수도 있지만, 이들을 흔합하여 사용할 수도 있다,
후자의 경우, 상기 제 1 성분 (A)의 총량 100 중량¾에 대해, 상기 제 1 인산 알 루미늄 (A1 (H3P04 )3 )의 함량이 70.중량 % 이상이 되지 않도록 제한한다 이는, 상기 범 위 이상에서, 상기 게 1 인산 알루미늄 (AK¾P04)3) 내 알루미늄 성분 (A1+)이 상기 제 2 성분에 포함되는 콜로이달 실리카의 결정화를 증가시키 때문이다.
다만, 그 어느 경우라도, 제 1 성분 (A)의 총량 100 중량 %에 대해, 고형분 함 량은 58 내지 63 중량%로 한정하는데, 58 중량 % 이하인 경우 상기 제 1 성분 내 자 유인산 ( P04)이 증가하여, 절연피막 형성 시 표면 흡습도가 증가할 것이 우려되며, 63 중량 % 이상인 경우 순수 인산 (H3P04) 대비 과잉 고형분이 석출될 것이 우려되기 때문이다.
앞서 간단히 언급하였지만, 상기 제 1 성분 (A)으로 포함되는 복합 금속 인산 염은, 금속 수산화물 (Mx(0H)y) 또는 금속 산화물 (Mx0)과 인산 (¾P04)의 반웅을 이용 하여 제조될 수 있다. . 예를 들어, 85 중량 %의 자유인산 인산 (¾P04)을 포함하는 인산 수용액을 100 중량부 기준으로 하고, 금속 수산화물 (Mx(0H)y) 또는 금속 산화물 (Mx0)을 각각 투입 하고, 80 °C 이상에서 반응시키면, 각각의 복합 금속 인산염을 수득할 수 있다. 이때, 상기 금속 수산화물 (Mx(0H)y)또는 금속 산화물 (Mx0)의 투입량은, 수산 화 알루미늄 (A1 (0H)3 )일 경우 1 내지 40 중량부, 수산화 코발트 (Co(0H)2 일 경우 1 내지 10 중량부, 산화 칼슴 (CaO)일 경우 1 내지 15 중량부, 산화 아연 (ZnO) 일 경 우 1 내지 20 중량부, 산화 마그네슘 (MgO) 일 경우 1 내지 10 중량부로, 각각 상기 인산 수용액을 100 중량부 기준으로 한 것이다.
이때, 상기 복합 금속 인산염에 의한 절연피막의 밀착성을 향상시키기 위해, 그 제조 과정에서 붕산을 첨가하고, 3시간 이상 유지함으로써, 상기 복합 금속 인 산염 및 붕산의 축합 반응을 유도할 수 있다. 즉, 앞서 언급한 "복합 금속 인산염 의 유도체 "는, 상기 복합 금속 인산염 및 붕산의 축합 반웅의 생성물을 의미한다. 다만, 상기 첨가되는 붕산은, 상기 복합 금속 인산염 100 중량부 대비 5 내 지 7 중량부로 한정하며, 3 중량부 이하의 적은 첨가량의 경우 밀착성 향상에 기여 하는 바가 적고, 7 증량부 이상의 과잉 첨가량의 경우 석출되어 절연피막의 표면올 거칠게 만드는 원인이 되기 때문이다.
구체적으로, 상기 복합 금속 인산염의 유도체는, 하기 화학 구조식 1 또는 2 로 표시되는 것알 수 있다.
[화학 구조식 1]
Figure imgf000015_0001
H2 P04 0
Figure imgf000015_0002
OH
[화학 구조식 2] H2 P0,
Figure imgf000016_0001
H2 P04 0
B
OH OH
한편, 상기 제 2 성분으로 포함되는 콜로이달 실리카는, 고형분 함량이 30 중 량%이고 평균 입경이 12 nm인 것 (제 1 콜로이달 실리카)과 함께, 고형분 함량이 20 중량 ¾이며 평균 입경이 5 nm인 것 (제 2 콜로이달 실리카)을 흔합하여 사용할 수 있 다.
이는, 앞서 고찰된 내용을 고려하여, 평균 입경이 작은 상기 제 2 콜로이달 실리카를 사용하여 절연피막 형성 직후의 특성을 개선함과 동시에, SRA 후 지나친 결정화를 방지하기 위해 평균 입경이 통상적인 크기인 상기 게 1 콜로이달 실리카를 배합한 것이다.
이때, 상기 제 1 콜로이달 실리카에 대한 상기 게 2 콜로이달 실리카의 중량 비율이 1 : 9 내지 9 : 1 , 구체적으로 1 : 3 내지 3 : 1이 되도록 배합할 수 있다. 이는, 상기 제 2 성분 내 상기 제 1 콜로이달 실리카의 함량이 10 중량 ¾ 이하일 경우 SRA 후 결정성이 높아질 것이 우려되고, 90 중량 %이상인 경우 반웅성 낮아져 절연피막 형성 직후의 †력이 낮아지는 문제가 우려됨을 고려한 것이다.
나아가, 상기 제 2 성분은, 상기 제 1 성분 (A) 100 중량부 기준으로, 50 내지
250 중량부 포함되도록 조성할 수 있는데, 50 중량부 이하인 경우 절연피막의 장력 증가 효과를 기대하기 어렵고, 250 중량부 이상일 경우 상대적으로 상기 제 1 성분 의 함량이 적어져 절연피막의 밀착성이 저하될 수 있기 때문이다.
보다 구체적으로, 상기 게 1 성분 (A)에 대한 상기 게 2 성분의 중량비 (제 2 성 분 /제 1 성분)는, 1.3 내지 1.8일 수 있고, 이러한 범위의 임계적 의의는 후술되는 실시예들 및 비교예들을 대비함으로써 뒷받침될 수 있다.
다른 한편, 상기 절연피막 형성용 조성물에는, 기능성을 보강할 용도로, 산 화 크롬, 고체 실리카, 또는 이들의 흔합물;이 더 포함될 수 있다.
구체적으로, 상기 상기 제 1 성분 (A) 100 중량부 기준으로, 상기 산화 크름은
5 내지 15 중량부, 상기 고체 실리카는 5 내지 15 중량부로 각각사용할 수 있다.
방향성 전기강판의 절연피막 형성 방법
상기 방향성 전기강판 조성물을 사용하여, 방향성 전기강판의 일면 또는 양 면에, 편면 당 도포량이 0.5 내지 6.0 g/m2 이 되도록 도포한 후, 550 내지 900 °C 의.온도 범위에서 10 내지 50 초 동안 가열 처리함으로써 건조하여, 절연피막을 형 성할 수 있다.
이때, 상기 방향성 전기강판 조성물의 도포 시 온도를 20±5°C로 제어할 경 우, 편면 당 도포량아 4.0 내지 5.0 g/m2 로 구현될 수 있고, 20 °C 이하에서 경우 점도가 증가하여 일정한 도포량을 구현하기 어렵고, 20 °C 이상에서는 조성물 내 콜로이달 실리카의 겔화 현상이 가속화되여 절연피막의 표면 품질이 저하될 수 있 기 때문이다.
한편, 상기 방향성 전기강판로는, 마무리 소둔까지 이루어져 1차 피막을 가 지는 것으로, 규소 (Si): 2.7 내지 4.2 중량 % 및 안티몬 (Sb): 0.02 내지 0.06 중량 % 를 함유하고, 주석 (Sn): 0.02 내지 0.08 중량 크롬 (Cr): 0.01 내지 0.30 중량 %, 산가용성 알루미늄 (A1): 0.02 내지 0.04 중량 %, 망간 (Mn): 0.05 내지 0.20 중량 %, 탄소 (C): 0.04 내지 0.07 중량 %, 및 황 (S): 0.001 내지 0.005 중량 %를 포함하고, 질소 (N): 10 내지 50 ppm를 포함하며, 잔부는 Fe 및 기타 불가피한 블순물로 이루 어진 방향성 전기강판, 및 1차 피막을 포함하는 것을 선택할 수 있다.
절연피막이 형성된 방향성 전기강판
위와 같은 방법에 따라, 절연피막이 형성된 방향성 전기강판은, 800 °C에서 응력 제거 소둔 (Stress Relief Annealing, SRA) 시 Ps/Pb가 3.0.이하ᅳ 구체적으로 2.5 이하 (단, 0 제외)이고, 840 °C에서 웅력 제거 소둔 시 Ps/Pb가 6.0 이하, 구체 적으로 5.4 이하 (단., 0 제외)이고, 880 °C에서 응력 제거 소둔 시, Ps/Pb가 8.0 이 하, 구체적으로 7.1 이하 (단, 0 제외)인 것일 수 있다.
여기서, Ps/Pb는, 상기 각각의 온도에서 웅력 제거 소둔 후, 싱크로트론 엑 스 -레이 (synchrotron X-ray)로 상기 절연피막의 결정화도를 측정한 결과값에 관한 것으로, 베이스 라인 피크 (Pb)에 대한 실리카 결정화 피크 (Ps)의 비를 의미한다. 보다 구체적으로, 상기 절연피막의 결정화도를 측정할 때, 범 파워 Co Ka (6.93keV), 스침각 1도, step 0.02도로 한정하며, 베이스라인 피크 (Pb)는 14 내지22도에서의 평균 강도 또는 초당 평균 강도 (counter per second)로 결정하며, 실 리카의 결정화 피크 (Ps)는 24.5 내지 26도에서의 평균 강도 또는 초당 평균 강도 (counter per second)로 결정할 수 있다.
상기 각 온도에서 SRA 시 Ps/Pb값은, 후술되는 실시예에 의해 뒷받침된다. 이하 본 발명의 바람직한 실시예, 이에 대비되는 비교예, 및 이들의 평가예 를 기재한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.
구체적으로, (1) 동일한 물성의 방향성 전기 강판 (300*60讓)을 공 시편으로 하고, (2) 서로 다른 절연피막 형성용 조성물을 제조하고, (3) 각각 절연피막올 형 성하여, (4) SRA 전후의 특성을 비교 평가하였고, 실시예 및 비교예 여부를 결정하 였다.
(1) 방향성 전기강판의 선택
C: 0.055 중량? fc, Si: 3.1 증량 %, P: 0.033 중량 %, S: 0.004 ) 중량 %, Mn: 0.1 중량 %, A1: 0.029 중량 N: 0.0048 중량 %, Sb; 0.03 증량 %, Mg: 0.0005 중량 %, 를 포함하고, 잔부는 Fe 및 기타 불가피하게 첨가되는 불순물로 이루어진 것으로 두께 0.23 ra이며, 마무리 소둔까지 되어 1차 피막을 가진 방향성 전기강 판 (30O60画)을 공 시편으로 선택하였다.
(2) 절연피막 형성용 조성물의 제조 복합 금속 인산염: 본 실시예에 사용된 복합 금속 인산염은, 앞서 설명한 바 와 같이 , 금속 산화물 및 정인산 ( P04)를 반웅시켜, 제 1 알루미늄 인산염 및 거 U 마그네슘 인산염을 각각 제조하였다.
이때, 각각의 복합 금속 인산염 ( 100 중량 % 기준)의 고형분은 62.5 증량 ¾ 였 다.
상기 제 1 알루미늄 인산염 : 상기 제 1 마그네슘 인산염의 중량 비율이 5 : 5가 되도록 혼합한 형태와 복합 금속 인산염을, 모든 샘플에 공통적으로 사용하였다. 이때,
*151콜로이달 실리카: 다음과 같은 A 내지 C의 서로 다른 콜로이달 실리카를 선택하였다.
X: 평균 입경이 5 nm이고,. X 콜로이달 실리카 총량 100 '중량 % 기준으로, 고 형분 함량은 20 중량 % 이고, 나트륨 함량은 0.45 중량 %인 콜로이달 실리카
Y : 평균 입경이 12nm이고, Y 콜로이달 실리카 총량 100 중량 % 기준으로, 고 형분 함량은 30 중량 % 이고, 나트륨 함량은 0.29 중량 %인 콜로이달 실리카
Z : 평균 입경이 12nm이고, Z 콜로이달 실리카 총량 100 중량 % 기준으로, 고 형분 함량은 30 중량 % 이고, 나트륨 함량은 0.60 중량 %인 콜로이달 실리카
각 샘플의 제조: 상기 제조된 복합 금속 인산염 선택하고, 상기 복합 금속 인산염 100 중량부 기준으로, 하기 표 2의 조성을 만족하도록, 콜로이달 실리카, 산화크롬, 고체 실리카 (평균 입경: 500 내지 1000 nm )를 배합하여, 각 샘플을 제조 하였다.
【표 2】
ᄆ 보한 콜로이달 실리카 콜로이달 산화 고체 번호 소 실리카 / 실리카
인산염 복합 금속 (중량 (중량부)
( 100 중 인산염 부)
량부 기 주)
X Y C X/Y
(중량 (중량 (중량부)
부) 부)
1 1.00 - - 129 1 .3 9 6
2 100 162 107 - 50/50 2.7 9 6
3 100 10 122 一 5/95 1 .9 9 6
4 100 49 97 - 25/75 1 .8 9 6
5 100 97 65 - 50/50 1 .6 9 6
6 100 145 32 - 75/25 1 .5 9 6
7 100 184 6 - 95/5 1 .3 9 6
8 100 32 22 - 50/50 0 .46 9 6 상기 표 2에서, 샘플 2 및 8을 제외하고, 샘플 1 대비 객관적인 성능 평가를 위해, 전체 조성물 내 고형분 함량은 동일하게 제조하였다. 한편, 샘플 2 및 8의 경우, 상기 복합 금속 인산염 및 상기 콜로이달 실리카의 함량비를 다른 샘플들과 크게 달리하여, 다른 샘플들과 구별되는 물성의 변화가 있는지 확인하기로 하였다.
(3) 절연피막의 형성
상기 각 샘플을 사용하여ᅳ 상기 방향성 전기강판의 편면 당 4 g/m2의 도포량 으로 도포하고, 850 °C에서 30초 동안 건조시켜, 각각 2 im 두께로 절연 피막을 형 성하였다.
(4) SRA 전후의 특성 비교 평가
상기 각 샘플로 절연피막이 형성된 강판에 대해, 하기 표 3에 나타낸 바와 같이, 100 부피 % N2 , 또는 95 부피 % N2 및 5 부피 % ¾의 흔합 기체 분위기에서, 각 각 800, 840 , 또는 875 °C로 은도를 달리 하고, 2 시간 이상 열처리 (SRA)하였다. 각 SRA 전후의 샘플에 대해, 다음과 같은 기준으로 철손, 절연성, 및 결정화 도를 측정하고, 그 결과 또 한 하기 표 3에 기록하였다.
또한, 샘플 4 및 샘플 1에 대해, SRA 처리 전, 그리고 SRA 처리 후 (800, 840, 및 880 °C 온도에서 각각 SRA 처리), 싱크로트론 X-레이로 피막의 결정화도를 측정하여, 도 1의 그래프로 나타내었다.
철손: 길이 300 隨, 폭 60 mm의 시편을 단판자성 측정기를 이용하여 인가자 장 1.7 T, 주파수 50Hz에서 제품 및 SRA 후 시편 철손 변화를 측정하였다.
절연성: 플랭클린 테스터를 통해 300PSI 압력하에서 입력 0.5V, 1.0A의 전류 를 통하였을 때의 수납 전류 값으로 나타내었다.
결정화도: 싱크로트론 X-레이를 이용하여 결정화도를 측정하였으며, 이 때 조건은 빔 파워 Co Ka (6.93keV), 스침각 1도, step 0.02도로 고정하였다. 또한, 베이스라인 피크 (Pb)는 14 내지 22도에서의 평균 강도 또는 초당 평균 강도 (counter per second)로 결정하며, 결정화 피크 (Ps)는 24.5 ~26도에서의 평균 강 도 또는 초당 평균 강도 (counter per second)로 결정하였다.
【표 3】
Figure imgf000021_0001
예 2
3 0.81 120 1. 1 0.80 154 3.0 0.81 567 6.0 0.81 553 8.0 비교 예 3
4 0.80 52 1. 1 0.78 83 2.8 0.79 234 5.4 0.80 350 7. 1 실시 예 1
5 0.80 38 1. 1 0.79 72 2.5 0.78 212 5.0 0.79 332 6.0 실시 예 2
6 0.79 23 . 1.2 0.76 53 1.4 0.77 150 2.0 0.78 308 3.0 실시 예 3
7 0.82 198 1 . 1 0.81 223 5.5 0.83 579 6.3 0.84 659 8.2 비교 예 1
8 0.82 225 1.5 0.83 279 3.2 0.85 605 4.8 0.86 728 5.5 비교 예 1
- 콜로이달 실리카의 평균 입경에 따른 평가
우선, 상기 표 3 및 도 1의 결과와 관련하여, 동일한 평균 입경의 콜로이달 실리카만 사용한 샘플 1과 달리, 서로 다른 평균 입경의 콜로이달 실리카를 사용한 샘플 3 내지 7의 경우, 각 온도에서의 SRA 전후의 철손 및 절연성 측면에서 우수한 특성이 나타난다. 이러한 특성은, 상기 표 3의 결정화도에 의해 뒷받침된다.
샘플 1의 경우, SRA 온도가 높아질수록 결정화도 값도 증가하고, 특히, 880 °C 의 고열에서 결정화도가 12.5까지 증가된다. 그에 반면, 샘플 3 내지 7의 경우, SRA 후 결정화도를 8.0 이하로 제어할 수 있었고, 최대 3.0까지 억제할 수 있었다. 또한, 샘플 1은 SRA 전 대비 SRA 후 철손이 증가되는 경향을 보이는데, 이러 한 경향은 절연값 변화와도 관계된다. 일반적으로 SRA 시 결정화도가 증가하면, 전 기 전도성이 증가하며, 절연성은 낮아지며, 이를 샘플 1가 반증한다. 그러나, 샘플
3 내지 7의 경우, SRA 수행 중 실리카의 결정 성장을 최소화한 결과로서, SRA 후 절연성이 저하되는 것을 최대한 방지할 수 있었다.
-콜로이달실리카내 나트륨 함량에 따른평가
한편, 샘플 1 및 샘플 4 내지 7의 철손을 비교할 때, 샘플 4 내지 7에서 SRA 전후의 철손 증가율이 적거나, 오히려 감소하는 것으로 확인된다.
이는, 샘플 4 내지 7에서 사용된 콜로이달 실리카의 경우, 샘플 1 대비 나트 륨 성분 (Na+) 함량이 낮아, 반응성이 조금 낮아지는 대신, 유리 전이 온도가 높아 져, 내열성이 향상된 것에 기인하는 것이다.
여기서, 콜로이달 실리카의 반웅성이 낮아지는 것은, 그 만큼 공고한 절연피 막 형성이 어렵다는 의미가 되어 SRA 후 철손이 증가할 염려가 있으나, 이러한 염 려는 콜로이달 실리카의 평^ 입경을 적절히 제어함으로써 해소될 수 있었다.
즉, 샘플 4 내지 7에서는, 통상적으로 사용되는 평균 입경인 12 ran 클로이달 실리카와, 그보다 작은 평균 입경인 5 nm 콜로이달 실리카를 적절히 배합함으로써, 반응 표면적을 증가시켰다.
이에 따라, 콜로이달 실리카 내 나트륨 성분 (Na+) 함량 감소에 따른 반웅성 저하 문제를 상쇄하였을 뿐만 아니라, 오히려 샘플 1에 대바하여 장력을 향상시킬 수 있었다.
이러한 사실은, 상기 표 3의 SRA 전 철손 측정값을 비교했을 때, 샘플 4 내 지 7의 가장 낮은 것을 것으로부테 입증될 수 있다.
- 배합비에 따른 평가
한편 , 샘플 4 내지 6은, 콜로이달 실리카 /복합 금속 인산염의 중량 비율이
1 .3 내지 1 . 8 범위로 제조된 것이다. 샘플 7은, 이러한 범위를 만족하지 못하고, 샘플 4 내지 6에 비해 모든 평가 결과가 나쁜 것으로 확인된다. 이에, 콜로이달 실 리카 및 복합 금속 인산염의 배합비 (콜로이달 실리카 /복합 금속 인산염 )를 상기 범 위로 적절히 제어할 필요가 있다고 평가된다.
이와 동시에 , 서로 다른 평균 입경의 콜로이달 실리카의 배합비 (X/Y)를 최적 의 범위로 도출하기 위해, 각 배합비를 극단으로 제어한 샘플 2, 7, 및 8의 특성을 확인해볼 수 있다.
구체적으로, X/Y의 구성비가 1/9 내지 9/1 의 범위를 만족하지 못할 경우, 흑은 콜로이달 실리카 /복합 금속 인산염의 중량 비율이 0.5 내지 2.7 범위를 만족 하지 못할 경우, 철손이나 절연성 측면에서 열위한 특성이 나타났다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발 명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실 시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들 은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
* 194

Claims

WHAT IS CLAIMED IS:
【청구항 1】
복합 금속 인산염 , 이의 유도체, 또는 이들의 흔합물을 포함하는 제 1 성분
(A); 및
평균 입경이 서로 다른 2종 이상의 콜로이달 실리카를 포함하는 게 2 성분 (B); 을 포함하고,
상기 제 1 성분 (A) 100 중량부 기준으로, 상기 거] 2 성분은 50 내지 250 중량 부 포함되는 것인,
방향성 전기강판의 절연피막 형성용 조성물.
【청구항 2】
제 1항에 있어서,
상기 제 1 성분 (A)어) 대한 상기 제 2 성분의 중량비 (제 2 성분 /제 1 성분)는, 1.3 내지 1.8인 것인,
방향성 전기강관의 절연피막 형성용 조성물.
【청구항 3】
제 1항에 있어서,
상기 제 2 성분 (B)은,
평균 입경이 12 nm인 게 1 콜로이달 실리카, 및
평균 입경이 5 ran인 게 2 콜로이달 실리카를 포함하는 것인,
방향성 전기강판의 절연피막 형성용 조성물.
【청구항 4】
제 3항에 있어서,
상기 제 1 콜로이달 실리카에 대한 상기 제 2 콜로이달 실리카의 중량 비율이 1:9 내지 9:1인 것인,
방향성 전기강판의 절연피막 형성용 조성물 .
【청구항 5】 저 u항에 있어서,
상기 제 2 성분 (B)은ᅳ
전체 고형분 함량이 20 중량 % 이상 30 중량 % 이하인 것인,
방향성 전기강판의 절연피막 형성용 조성물.
【청구항 6】 '
제 1항에 있어서,
상기 제 2 성분 (B)은,
불가피하게 블순물로 포함되는 나트륨 함량이 0.60 중량 % 미만 (단, 0 중량 % 제외)인 것인,
방향성 전기강판의 절연피막 형성용 조성물.
【청구항 7】
저 U항에 있어서,
상기 제 1 성분 (A)은,
제 1인산 마그네슴 (Mg(H3P04)2) 및 제 1인산 알루미늄 (A1 (¾P04)3) 중에서 선택 되는 1종의 복합 금속 인산염, 이의 유도체, 또는 이들의 흔합물인 것인,
방향성 전기강판의 절연피막 형성용 조성물.
【청구항 8】
제 7항에 있어서,
상기 복합 금속 인산염은,
상기 저 11인산 마그네슴 (Mg(H3P04)2) 및 상기 제 1인산 알루미늄 (AK¾P04)3)의 흔합물이며, 상기 제 1인산 알루미늄 (AKH3P04)3)의 함량이 70 중량 ¾ 미만 (단, 0 증 량% 제외)인 것인,
방향성 전기강판의 절연피막 형성용 조성물.
【청구항 9】
제 8항에 있어서,
a y I i Ή σ i ᄂ ᄂ Γ口 ! _ , 전체 고형분 함량이 58 중량 % 초과 63 중량 % 미만인 것인, 방향성 전기강판의 절연피막 형성용 조성물.
【청구항 10】
제 7항에 있어서, ·
상기 복합 금속 인산염의 유도체는,
하기 화학 구조식 1 또는 2로 표시되는 것인,
방향성 전기강판의 절연피막 형성용 조성물.
[화학 구조식 1]
Mg
Figure imgf000027_0001
Β
OH OH
[화학 구조식 2]
H2 P0, 4
Al
H ? P0, 0
6
Figure imgf000027_0002
【청구항 11】
거 U항에 있어서,
산화 크롬, 고체 실리카, 또는 이들의 흔합물;을 더 포함하는 것인 방향성 전기강판의 절연피막 형성용 조성물.
【청구항 12】
방향성 전기강판 일면 또는 양면에, 절연피막 형성용 조성물을 도포하는 단 겨) ; 및
상기 도포된 절연피막 형성용 조성물을 건조하여, 절연피막을 형성하는 단계; 를 포함하고,
상기 절연피막 형성용 조성물은, 복합 금속 인산염, 이의 유도체, 또는 이들 의 흔합물을 포함하는 제 1 성분 (A) , 및 평균 입경이 서로 다른 2종 이상의 콜로이 달 실리카를 포함하는 제 2 성분 (B) ;을 포함하고, 상기 제 1 성분 (A) 100 중량부 기 준으로, 상기 제 2 성분은 50 내지 250 중량부 포함되는 것인,
방향성 전기강판의 절연피막 형성 방법 .
【청구항 13】
제 12항에 있어서,
상기 방향성 전기강판 일면 또는 양면에, 절연피막 형성용 조성물을 도포하 는 단계;는,
상기 절연피막 형성용 조성물의 온도를 20 ± 5 °C 범위로 제어하며 도포하는 것인,
방향성 전기강판의 절연피막 형성 방법 .
【청구항 14】
제 12항에 있어서,
상기 방향성 전기강판 일면 또는 양면에, 절연피막 형성용 조성물을 도포하 는 단계;에서,
상기 방향성 전기강판의 편면 (m2) 당 상기 절연피막 형성용 조성물을 0.5 내 지 6.0 g/m2 도포하는 것인,
방향성 전기강판의 절연피막 형성 방법.
【청구항 15】
제 12항에 있어서, 상기 도포된 절연피막 형성용 조성물을 건조하여, 절연피막을 형성하는 단계;
550 내지 900 °C의 온도 범위에서 수행되는 것인,
방향성 전기강판의 절연피막 형성 방법.
【청구항 16】
제 12항에 있어서,
상기 도포된 절연피막 형성용 조성물을 건조하여, 절연피막을 형성하는 단겨);
10 내지 50 초 동안 수행되는 것인,
방향성 전기강판의 절연피막 형성 방법 .
【청구항 17]
제 12항에 있어서,
상기 방향성 전기강판 일면 또는 양면에, 절연피막 형성용 조성물을 도포하 는 단계 ; 이전에,
상기 방향성 전기강판을 제조하는 단계 ;를 더 포함하고,
상기 방향성 전기강판을 제조하는 단계 ;는,
강 슬라브를 준비하는 단계 ;
상기 강 슬라브를 열간 압연하여, 열연판을 제조하는 단계;
상기 열연판을 냉간 압연하여 , 넁연판을 제조하는 단계;
상기 넁연판을 탈탄 소둔하는 단계 ; 및
상기 탈탄 소둔된 강판의 표면에 소둔 분리제를 도포하고, 마무리 소둔하여 1차 피막을 포함하는 방향성 전기강판을 수득하는 단계;를 포함하고,
상기 강 슬라브의 조성은, 규소 (Si): 2.7 내지 4.2 중량 % 및 안되몬 (Sb): 0.02 내지 0.06 중량 %를 함유하고, 주석 (Sn): 0.02 내지 0.08 증량 ¾>, 크름 (Cr): 0.01 내지 0.30 중량 %, 산가용성 알루미늄 (A1): 0.02 내지 0.04 증량 %, 망간 (Mn): 0.05 내지 0.20 중량 %, 탄소 (C): 0.04 내지 0.07 중량 %, 및 황 (S): 0.001 내지
0.005 중량? ¾를 포함하고ᅳ 질소 (N) : 10 내지 50 ppm를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 것인,
방향성 전기강관의 절연피막 형성 방법.
【청구항 18】
방향성 전기강판; 및
상기 방향성 전기강판의 일면 또는 양면에 위치하는 절연피막;을 포함하고, 상기 절연피막은, 복합 금속 인산염, 이의 유도체, 또는 이들의 흔합물을 포 함하는 게 1 성분 (A) , 및 평균 입경이 서로 다른 2종 이상의 콜로이달 실리카를 포 함하는 제 2 성분 (B) ;을 포함하고, 상기 제 1 성분 (A) 100 중량부 기준으로, 상기 제 2 성분은 50 내지 250 중량부 포함되는 것인,
절연피막이 형성된 방향성 전기강판.
【청구항 19】
제 18항에 있어서, - 상기 절연피막이 형성된 방향성 전기강판은,
800 °C에서 응력 제거 소둔 (Stress Re l i ef Anneal ing , SRA) 시, Ps/Pb가 3.0 이하 (단, 0 제외)인 것인,
절연피막이 형성된 방향성 전기강판.
(단, 상기 Ps/Pb는, 상기 온도에서 응력 제거 소둔 후, 싱크로트론 액스-레 이 ( synchrot ron X-ray)로 상기 절연피막의 결정화도를 측정한 결과값에 관한 것으 로, 베이스 라인 피크 (Pb)에 대한 실리카 결정화 피크 (Ps )의 비를 의미함) 【청구항 20]
제 18항에 있어서,
상기 절연피막이 형성된 방향성 전기강판은
840 °C에서 옹력 제거 소둔 (Stress Rel ief Anneal ing , SRA) 시, Ps/Pb가 6.0 이하 (단, 0 제외)인 것인,
절연피막이 형성된 방향성 전기강판. (단, 상기 Ps/Pb는, 상기 온도에서 웅력 제거 소둔 후, 싱크로트론 엑스-레 이 (synchrotron X-ray)로 상기 절연피막의 결정화도를 측정한 결과값에 관한 것으 로, 베이스 라인 피크 (Pb)에 대한 실리카 결정화 피크 (Ps)의 비를 의미함) 【청구항 21]
제 18항에 있어서,
상기 절연피막이 형성된 방향성 전기강판은,
880 °C에서 응력 제거 소둔 (Stress Relief Annealing, SRA) 시, Ps/Pb가 8.0 이하 (단, 0 제외)인 것인,
절연피막이 형성된 방향성 전기강판.
(단, 상기 Ps/Pb는, 상기 은도에서 응력 제거 소둔 후, 싱크로트론 엑스-레 이 (synchrotron X— ray)로 상기 절연피막의 결정화도를 측정한 결과값에 관한 것으 로, 베이스 라인 피크 (Pb)에 대한 실리카 결정화괴크 (Ps)의 비를 의미함) 【청구항 22】
제 18항에 있어서,
상기 방향성 전기강판은,
규소 (Si): 2.7 내지 4.2 중량 % 및 안티몬 (Sb): 0.02 내지 0.06 중량 %를 함유 하고, 주석 (Sn): 0.02 내지 0.08 중량 %, 크롬 (Cr): 0.01 내지 0.30 중량 %, 산가용 성 알루미늄 (A1): 0.02 내지 0.04 중량 %, 망간 (Mn): 0.05 내지 0.20 증량 %, 탄소 (C): 0.04 내지 0.07 중량 %, 및 황 (S): 0.001 내지 0.005 증량 %를 포함하고, 질소 (N): 10 내지 50 ppm를 포함하며, 잔부는 Fe 및 기타 불가피한 불순물로 이루어진 방향성 전기강판, 및 1차 피막을 포함하는 것인,
절연피막이 형성된 방향성 전기강판.
PCT/KR2015/014108 2015-10-20 2015-12-22 방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피막의 형성방법, 및 절연피막이 형성된 방향성 전기강판 WO2017069336A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15906787.5A EP3366810B1 (en) 2015-10-20 2015-12-22 Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein
CN201580084032.7A CN108138324B (zh) 2015-10-20 2015-12-22 用于形成取向电工钢板绝缘覆膜的组合物、利用它的绝缘覆膜形成方法及形成有绝缘覆膜的取向电工钢板
US15/770,098 US11667985B2 (en) 2015-10-20 2015-12-22 Composition for forming insulation film of oriented electrical steel sheet, method for forming insulation film by using same, and oriented electrical steel sheet having insulation film formed therein
MX2018004905A MX2018004905A (es) 2015-10-20 2015-12-22 Composición para formar película de aislamiento de lámina de acero eléctrico orientado, método para formar película de aislamiento usando la misma, y lámina de acero eléctrico orientado que tiene película de aislamiento formada en la misma.
JP2018520421A JP7269007B2 (ja) 2015-10-20 2015-12-22 方向性電磁鋼板の絶縁被膜形成用組成物、これを用いた絶縁被膜の形成方法、および絶縁被膜が形成された方向性電磁鋼板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150146105A KR101701193B1 (ko) 2015-10-20 2015-10-20 방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피막의 형성 방법, 및 절연피막이 형성된 방향성 전기강판
KR10-2015-0146105 2015-10-20

Publications (1)

Publication Number Publication Date
WO2017069336A1 true WO2017069336A1 (ko) 2017-04-27

Family

ID=58109560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014108 WO2017069336A1 (ko) 2015-10-20 2015-12-22 방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피막의 형성방법, 및 절연피막이 형성된 방향성 전기강판

Country Status (7)

Country Link
US (1) US11667985B2 (ko)
EP (1) EP3366810B1 (ko)
JP (1) JP7269007B2 (ko)
KR (1) KR101701193B1 (ko)
CN (1) CN108138324B (ko)
MX (1) MX2018004905A (ko)
WO (1) WO2017069336A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111005046B (zh) * 2019-12-24 2021-03-23 联泓(江苏)新材料研究院有限公司 一种石墨烯基镀镍封闭剂及其制备方法与应用
KR20240096116A (ko) * 2022-12-19 2024-06-26 주식회사 포스코 절연 피막 조성물, 이를 포함하는 방향성 전기강판, 및 방향성 전기강판의 제조 방법
KR20240098459A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 전기강판의 절연피막 형성용 조성물, 전기강판 및 전기강판의 제조방법
KR20240098717A (ko) * 2022-12-21 2024-06-28 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 이의 제조 방법, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060074664A (ko) * 2004-12-28 2006-07-03 주식회사 포스코 피막 밀착성이 우수하고 장력부여능이 뛰어난 방향성전기강판의 절연피막 조성물
KR20130055912A (ko) * 2011-11-21 2013-05-29 주식회사 포스코 광택과 절연성이 우수한 방향성 전기강판용 장력코팅제 조성물 및 이를 이용한 절연피막 형성방법, 그 방법에 의해 형성된 절연피막을 갖는 방향성 전기강판
KR20140058249A (ko) * 2012-11-06 2014-05-14 주식회사 포스코 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR20140135833A (ko) * 2012-04-26 2014-11-26 제이에프이 스틸 가부시키가이샤 방향성 전기 강판 및 그 제조 방법
KR20150073851A (ko) * 2013-12-23 2015-07-01 주식회사 포스코 전기강판용 코팅제, 이의 제조방법 및 이를 사용한 전기강판 코팅방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709515B2 (ja) 1989-07-05 1998-02-04 新日本製鐵株式会社 鉄心の加工性および耐熱性の優れる方向性電磁鋼板の絶縁皮膜形成方法
JP2791812B2 (ja) * 1989-12-30 1998-08-27 新日本製鐵株式会社 鉄心加工性、耐熱性および張力付与性の優れた方向性電磁鋼板の絶縁皮膜形成方法及び方向性電磁鋼板
JP3207868B2 (ja) 1991-05-08 2001-09-10 本田技研工業株式会社 船外機及びエンジン
JP2698526B2 (ja) 1992-06-30 1998-01-19 川崎製鉄株式会社 磁気特性と表面性状の優れた方向性電磁鋼板の製造方法
JP3071663B2 (ja) 1995-04-06 2000-07-31 新日本製鐵株式会社 ぬれ性の優れた一方向性電磁鋼板の絶縁被膜形成方法
JP3379061B2 (ja) 1997-08-28 2003-02-17 新日本製鐵株式会社 高張力絶縁被膜を有する方向性電磁鋼板とその処理方法
JP3482374B2 (ja) 1999-09-14 2003-12-22 新日本製鐵株式会社 被膜特性に優れた方向性電磁鋼板およびその製造方法
KR100733344B1 (ko) 2005-12-27 2007-06-29 주식회사 포스코 피막밀착성과 장력부여능이 우수한 방향성 전기강판용절연코팅제 및 그 제조방법
KR101283702B1 (ko) 2011-11-21 2013-07-05 주식회사 포스코 건조속도 및 절연성이 우수한 비크롬계 방향성 전기강판용 장력코팅제 조성물 및 이를 이용한 절연피막 형성방법, 이 방법에 의해 형성된 절연피막을 갖는 방향성 전기강판
WO2015099355A1 (ko) 2013-12-23 2015-07-02 주식회사 포스코 전기강판용 코팅제, 이의 제조방법 및 이를 사용한 전기강판 코팅방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060074664A (ko) * 2004-12-28 2006-07-03 주식회사 포스코 피막 밀착성이 우수하고 장력부여능이 뛰어난 방향성전기강판의 절연피막 조성물
KR20130055912A (ko) * 2011-11-21 2013-05-29 주식회사 포스코 광택과 절연성이 우수한 방향성 전기강판용 장력코팅제 조성물 및 이를 이용한 절연피막 형성방법, 그 방법에 의해 형성된 절연피막을 갖는 방향성 전기강판
KR20140135833A (ko) * 2012-04-26 2014-11-26 제이에프이 스틸 가부시키가이샤 방향성 전기 강판 및 그 제조 방법
KR20140058249A (ko) * 2012-11-06 2014-05-14 주식회사 포스코 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR20150073851A (ko) * 2013-12-23 2015-07-01 주식회사 포스코 전기강판용 코팅제, 이의 제조방법 및 이를 사용한 전기강판 코팅방법

Also Published As

Publication number Publication date
EP3366810B1 (en) 2022-02-09
CN108138324A (zh) 2018-06-08
JP2019501278A (ja) 2019-01-17
EP3366810A1 (en) 2018-08-29
US11667985B2 (en) 2023-06-06
JP7269007B2 (ja) 2023-05-08
EP3366810A4 (en) 2018-12-05
KR101701193B1 (ko) 2017-02-01
CN108138324B (zh) 2020-10-09
MX2018004905A (es) 2018-08-01
US20180312936A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP5194641B2 (ja) 方向性電磁鋼板用絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP5181571B2 (ja) 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
EP2843069B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP6031951B2 (ja) 方向性電磁鋼板およびその製造方法
WO2017069336A1 (ko) 방향성 전기강판의 절연피막 형성용 조성물, 이를 이용한 절연피막의 형성방법, 및 절연피막이 형성된 방향성 전기강판
JP6682888B2 (ja) 方向性電磁鋼板の絶縁被膜用処理剤、方向性電磁鋼板、及び、方向性電磁鋼板の絶縁被膜処理方法
US20170263357A1 (en) Method of manufacturing grain-oriented electrical steel sheet
CN111684106B (zh) 带有绝缘被膜的电磁钢板及其制造方法
JP3379061B2 (ja) 高張力絶縁被膜を有する方向性電磁鋼板とその処理方法
RU2758423C1 (ru) Жидкость для получения изолирующего покрытия, текстурированный лист из электротехнической стали с нанесенным изолирующим покрытием и способ его производства
EP0163388B1 (en) Insulative coating composition for electrical steels
JP3276567B2 (ja) 皮膜特性の優れる絶縁皮膜剤及びそれを用いた方向性電磁鋼板の製造方法
EP3808872A1 (en) Treating agent for use in formation of chromium-free insulating coating film, and oriented electromagnetic steel sheet having insulating coating film attached thereto and method for manufacturing same
CN114555860B (zh) 带有绝缘覆膜的电磁钢板
EP4095284A1 (en) Insulating-coated oriented electromagnetic steel sheet and method for producing same
WO2022158541A1 (ja) 方向性電磁鋼板の製造方法
CN114555246B (zh) 覆膜形成方法和带有绝缘覆膜的电磁钢板的制造方法
WO2021084793A1 (ja) 絶縁被膜付き電磁鋼板
JPH024924A (ja) 鉄心加工性が優れ、磁気特性が優れた方向性電磁鋼板の絶縁皮膜形成方法
JP2020125537A (ja) クロムフリー絶縁被膜形成用処理剤、絶縁被膜付き方向性電磁鋼板およびその製造方法
EP3808871A1 (en) Electromagnetic steel sheet having insulation coating film attached thereto, and method for producing same
JPH04337079A (ja) 鉄心加工性に優れた低温焼付けの方向性電磁鋼板の絶縁被膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906787

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770098

Country of ref document: US

Ref document number: MX/A/2018/004905

Country of ref document: MX

Ref document number: 2018520421

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015906787

Country of ref document: EP