CN111684106B - 带有绝缘被膜的电磁钢板及其制造方法 - Google Patents

带有绝缘被膜的电磁钢板及其制造方法 Download PDF

Info

Publication number
CN111684106B
CN111684106B CN201980012105.XA CN201980012105A CN111684106B CN 111684106 B CN111684106 B CN 111684106B CN 201980012105 A CN201980012105 A CN 201980012105A CN 111684106 B CN111684106 B CN 111684106B
Authority
CN
China
Prior art keywords
insulating
tension
coating
steel sheet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980012105.XA
Other languages
English (en)
Other versions
CN111684106A (zh
Inventor
寺岛敬
末宗圣启
国府花梨
高宫俊人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN111684106A publication Critical patent/CN111684106A/zh
Application granted granted Critical
Publication of CN111684106B publication Critical patent/CN111684106B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • C23C20/06Coating with inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/188Orthophosphates containing manganese cations containing also magnesium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/083Iron or steel solutions containing H3PO4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供绝缘被膜的被膜密合性优异的带有绝缘被膜的电磁钢板及其制造方法。本发明的带有绝缘被膜的电磁钢板,其在至少一面具有包含绝缘张力被膜层A的绝缘被膜,其中,将所述绝缘张力被膜层A的单位面积重量设为M,并将所述绝缘张力被膜层A对钢板施加的张力设为σA时,所述绝缘张力被膜层A中从表面起单位面积重量M/2的绝缘张力被膜层对钢板施加的张力为0.80×σA以上。本发明的带有绝缘被膜的电磁钢板的制造方法包括:将被膜形成用处理液涂布于电磁钢板的至少一个表面,在所述涂布后,在600℃以上且700℃以下的温度范围以100℃/秒以上的加热速度进行加热,然后于800℃以上进行烧结,形成所述绝缘张力被膜层A,所述被膜形成用处理液包含选自磷酸、硼酸及硅酸的Mg、Al、Ca、Ba、Sr、Zn、Ti、Nd、Mo、Cr、Ta、Cu、Mn盐中的至少一种、和胶态二氧化硅。

Description

带有绝缘被膜的电磁钢板及其制造方法
技术领域
本发明涉及带有绝缘被膜的电磁钢板及其制造方法。其中,本发明涉及绝缘被膜的被膜密合性优异且被膜张力大的带有绝缘被膜的电磁钢板,特别涉及带绝缘被膜的定向性电磁钢板。
背景技术
电磁钢板是已被广泛用作旋转机、静止器的铁芯材料的软磁性材料。特别是定向性电磁钢板,在被用作变压器、发电机的铁芯材料的软磁性材料中,是具有作为铁的易磁化轴的<001>方位与钢板的轧制方向高度一致的晶体组织的材料。这样的集合组织是在定向性电磁钢板的制造工序中通过在二次再结晶退火时使被称为所谓的高斯(Goss)方位的(110)[001]方位的晶粒优先巨大生长的二次再结晶而形成的。
一般而言,定向性电磁钢板被施加了绝缘被膜,该绝缘被膜从与钢板接触的一侧起由以镁橄榄石为主体的层(镁橄榄石被膜层)、以磷硅酸盐玻璃为主体的层(绝缘张力被膜层)这两层构成。磷硅酸盐玻璃被膜具有赋予绝缘性、加工性及防锈性等的目的,但玻璃与金属的密合性低,因此通常将以镁橄榄石为主体的陶瓷层形成在绝缘张力被膜层与钢板之间。这样结构的绝缘被膜在高温下形成,而且与钢板相比具有较低的热膨胀系数,因此,具有可利用降至室温时的钢板与绝缘被膜的热膨胀系数的差异而对钢板赋予张力、降低铁损的效果。另外,对于无定向性电磁钢板而言,也出于缓和由压缩应力引起的特性的劣化的目的而优选对钢板施加拉伸应力。因此,在电磁钢板的领域、特别是定向性电磁钢板的领域,例如专利文献1那样,期望为钢板赋予8MPa以上这样的尽可能高的张力。
为了满足这样的要求,以往已提出了各种玻璃质被膜。例如,专利文献2中提出了以磷酸镁、胶态二氧化硅及铬酸酐为主体的被膜,另外,专利文献3中提出了以磷酸铝、胶态二氧化硅及铬酸酐为主体的被膜。另外,专利文献4中公开了去应力退火时的烧结防止和被膜密合性的劣化防止的技术。另外,作为形成更高张力的被膜从而提高磁特性的技术,在专利文献5中公开了使玻璃结晶化的技术。
现有技术文献
专利文献
专利文献1:日本特开平8-67913号公报
专利文献2:日本特开昭50-79442号公报
专利文献3:日本特开昭48-39338号公报
专利文献4:日本特开昭63-111604号公报
专利文献5:日本特开2007-217758号公报
发明内容
发明所要解决的问题
通过选择适当的晶相(也就是热膨胀系数小的晶体),能够得到高张力的绝缘被膜,具有磁特性提高的优点。另一方面,已知会由于钢板与绝缘被膜的热膨胀系数差过大而导致在绝缘被膜与钢板的界面或绝缘张力被膜层与镁橄榄石被膜层的界面产生较大的剪切应力,特别是在制造卷芯时容易发生被膜在最内卷绕部剥离的问题。
本发明的目的在于提供绝缘被膜的被膜密合性优异的带有绝缘被膜的电磁钢板及其制造方法。
解决问题的方法
发明人等对形成有利用结晶化而提高了张力的绝缘被膜的定向性电磁钢板进行弯曲加工,并详细考察了被膜发生了剥离的部位,结果发现,被膜剥离是在绝缘张力被膜层(以下,也称为绝缘张力被膜层A)与镁橄榄石被膜层(以下,也称为绝缘被膜层B)的界面发生的。基于这一考察结果,申请人针对防止被膜剥离的方法进行了深入研究,结果发现,通过降低在绝缘张力被膜层A与绝缘被膜层B的界面(以下称为被膜层A/B界面)产生的剪切应力,能够避免剥离。作为其方法,考虑了在被膜层A/B间新夹入中间层C的方法,但在该情况下,由于要增加一个用于绝缘被膜形成的工序,因此,在制造成本方面是不利的。因此,发明人等针对在不增加用于绝缘被膜形成的工序而降低了被膜层A/B界面的剪切应力的状态下提高由绝缘张力被膜层A对钢板赋予的张力的方法进行了深入研究,结果,通过使绝缘张力被膜层A内的结晶化相的分布在被膜厚度方向上形成浓度梯度,成功地实现了使表层侧为超低热膨胀、使被膜层A/B界面侧为现有被膜程度的低热膨胀,进而完成了本发明。
即,本发明包括以下的技术方案。
[1]一种带有绝缘被膜的电磁钢板,其在至少一面具有包含绝缘张力被膜层A的绝缘被膜,其中,
将所述绝缘张力被膜层A的单位面积重量设为M,并将所述绝缘张力被膜层A对钢板施加的张力设为σA时,
所述绝缘张力被膜层A中从表面起单位面积重量M/2的绝缘张力被膜层对钢板施加的张力为0.80×σA以上。
[2]根据[1]所述的带有绝缘被膜的电磁钢板,其中,所述绝缘张力被膜层A以玻璃或玻璃陶瓷为主体。
[3]根据[1]或[2]所述的带有绝缘被膜的电磁钢板,其中,所述绝缘张力被膜层A为包含选自Mg、Al、Ca、Ba、Sr、Zn、Ti、Nd、Mo、Cr、B、Ta、Cu及Mn中的一种以上元素的磷硅酸盐玻璃或磷硅酸盐玻璃陶瓷。
[4]一种带有绝缘被膜的电磁钢板的制造方法,所述带有绝缘被膜的电磁钢板在至少一面具有包含绝缘张力被膜层A的绝缘被膜,该方法包括:
将被膜形成用处理液涂布于电磁钢板的至少一个表面,在所述涂布后,在600℃以上且700℃以下的温度范围以100℃/秒以上的加热速度进行加热,然后以800℃以上进行烧结,形成所述绝缘张力被膜层A,所述被膜形成用处理液包含选自磷酸、硼酸及硅酸的Mg、Al、Ca、Ba、Sr、Zn、Ti、Nd、Mo、Cr、Ta、Cu、Mn盐中的至少一种、和胶态二氧化硅,
其中,将所述绝缘张力被膜层A的单位面积重量设为M,并将所述绝缘张力被膜层A对钢板施加的张力设为σA时,
所述绝缘张力被膜层A中从表面起单位面积重量M/2的绝缘张力被膜层对钢板施加的张力为0.80×σA以上。
[5]一种带有绝缘被膜的电磁钢板的制造方法,所述带有绝缘被膜的电磁钢板在至少一面具有包含绝缘张力被膜层A的绝缘被膜,该方法包括:
将被膜形成用处理液涂布于电磁钢板的至少一个表面,在所述涂布后,在600℃以上且700℃以下的温度范围以100℃/秒以上的加热速度进行加热,然后以800℃以上进行烧结,形成所述绝缘张力被膜层A,所述被膜形成用处理液包含选自磷酸的Mg、Al、Ca、Ba、Sr、Zn、Cr、Mn盐中的至少一种、胶态二氧化硅、以及含有选自Ti、Nd、Mo、B、Ta、Cu中的一种或两种以上的化合物,
其中,将所述绝缘张力被膜层A的单位面积重量设为M,并将所述绝缘张力被膜层A对钢板施加的张力设为σA时,
所述绝缘张力被膜层A中从表面起单位面积重量M/2的绝缘张力被膜层对钢板施加的张力为0.80×σA以上。
[6]根据[4]或[5]に记载的带有绝缘被膜的电磁钢板的制造方法,其中,将700℃以上的温度范围的气体氛围设为水蒸气露点为-20℃以上且10℃以下的气体氛围。
发明的效果
根据本发明,可得到绝缘被膜的被膜密合性优异的带有绝缘被膜的电磁钢板。
根据本发明,可得到绝缘被膜的被膜密合性优异、且被膜张力大的带有绝缘被膜的电磁钢板。根据本发明,在形成低热膨胀的绝缘张力被膜层时,能够提高绝缘被膜对钢板赋予的张力,可得到在进行卷芯加工时在最内卷绕部的被膜密合性也优异的带有绝缘被膜的电磁钢板。
附图说明
图1是示出了现有例1、现有例2、发明例的绝缘张力被膜层A的剥离量与赋予张力的关系的坐标图。
具体实施方式
以下,对成为本发明的基础的实验结果进行说明。
首先,如下所述地制作了试样。
将通过公知的方法制造的板厚:0.23mm的完成了成品退火的定向性电磁钢板剪切成300mm×100mm的大小,除去未反应的退火分离剂之后,实施了去应力退火(800℃,2小时,N2气体氛围)。在去应力退火后的上述钢板的表面形成了以镁橄榄石为主体的被膜(绝缘被膜层B)。接着,利用5质量%磷酸水溶液进行轻酸洗。然后,对上述轻酸洗后的钢板,如下所述地形成绝缘被膜。
(现有例1)如上述专利文献5记载的那样施加专利文献5的本发明4的绝缘张力被膜,在绝缘被膜层B(镁橄榄石被膜)上形成了上述绝缘张力被膜(绝缘张力被膜层A)。
(现有例2)如上述专利文献4记载的那样施加作为专利文献4的发明例的实施例1第2表的No.3的绝缘张力被膜,在绝缘被膜层B(镁橄榄石被膜)上形成了上述绝缘张力被膜(绝缘张力被膜层A)。
(发明例)将混合了以固体成分换算为100质量份的第一磷酸镁水溶液、以固体成分换算为50质量份的胶态二氧化硅、50质量份的硝酸镁六水合物的水溶液利用纯水稀释而调整成比重1.20的被膜形成用处理液利用辊涂机进行涂布、并使干燥后单位面积重量以两面计为9.00g/m2(以单面计为4.50g/m2)。接着,装入干燥炉(300℃,1分钟),然后,在600℃~700℃的温度范围以150℃/秒的加热速度进行加热之后,以850℃、30秒钟、N2:100%、水蒸气露点:-10℃的条件实施烧结,在绝缘被膜层B(镁橄榄石被膜)上形成了绝缘张力被膜层A。
需要说明的是,现有例1、现有例2、发明例的试样均调整为使得绝缘张力被膜层A的干燥后单位面积重量以单面计为4.50g/m2
对于这样得到的试样,通过从试样的单面以各种除去率除去绝缘张力被膜层A,并测定所除去的绝缘张力被膜层A的剥离量和此时的赋予张力,从而求出了绝缘张力被膜层A对钢板施加的张力在绝缘张力被膜层A中的分布。作为仅从试样的单面以各种除去率除去绝缘张力被膜层A的方法,通过如下方法进行:利用粘合带进行遮蔽以使得另一面的绝缘被膜不会被除去之后,调整在110℃、25质量%的NaOH水溶液中的浸渍时间。
绝缘张力被膜层A的剥离量(g/m2)根据被膜剥离前后的试样的质量差(g)和试样的单面的表面积(m2)而算出。
对钢板的赋予张力设为轧制方向的张力,将由从上述单面以各种除去率除去了绝缘张力被膜层A后的试样制作的试验片(轧制方向280mm×轧制直角方向30mm)的一端30mm固定,将试验片250mm的部分作为测定长度而测定翘曲量,并利用下述式(I)算出。
对钢板的赋予张力[MPa]=钢板杨氏模量[GPa]×板厚[mm]×翘曲量[mm]÷(测定长度[mm])2×103···式(I)
其中,钢板杨氏模量设为132GPa。
另外,就各试样的绝缘被膜的密合性而言,将轧制方向280mm×轧制直角方向30mm的试验材料卷绕成直径为10mm的圆棒,并将弯折180°时存在被膜剥离的试样设为不良,将没有被膜剥离的试样设为良好。
表1中示出了绝缘张力被膜层A的剥离量和此时测定的赋予张力。另外,各试样的被膜密合性的评价结果也一并记载。
[表1]
Figure BDA0002620972770000061
如表1所示,就绝缘张力被膜层A的剥离量为0.50g/m2时的赋予张力而言,现有例1中为1.4MPa,现有例2中为0.9MPa,发明例中为3.8MPa。这相当于绝缘张力被膜层A中、从表面起单位面积重量为0.50g/m2的绝缘张力被膜层对钢板赋予的张力(即,相当于在将绝缘张力被膜层A的一面的单位面积重量设为M的情况下,从表面起单位面积重量为M/9的绝缘张力被膜层对钢板赋予的张力)。
绝缘张力被膜层A的剥离量为1.00、1.50、2.00、2.25、3.00、4.50g/m2时,也采用与上述绝缘张力被膜层A的剥离量为0.50g/m2时同样的观点。
例如,就绝缘张力被膜层A的剥离量为2.25g/m2时的赋予张力而言,现有例1中为5.3MPa,现有例2中为3.9MPa,发明例中为10.5MPa,这相当于绝缘张力被膜层A中、从表面起单位面积重量为2.25g/m2的绝缘张力被膜层对钢板赋予的张力(即,相当于在将即绝缘张力被膜层A的单面的单位面积重量设为M的情况下,从表面起单位面积重量M/2的绝缘张力被膜层对钢板赋予的张力)。
另外,就绝缘张力被膜层A的剥离量为4.50g/m2时的赋予张力而言,现有例1中为10.5MPa,现有例2中为7.8MPa,发明例中为11.3MPa,这相当于绝缘张力被膜层A中、从表面起单位面积重量为4.50g/m2的绝缘张力被膜层、也就是绝缘张力被膜层A整体对钢板赋予的张力。
图1中,将上述表1的数据,以绝缘张力被膜层A的剥离量为横轴、以上述剥离量时的赋予张力为纵轴,针对发明例、现有例1、现有例2、发明例的各例,示出了绝缘张力被膜层A的剥离量与赋予张力的关系。
如表1、图1所示可知,发明例中,在绝缘张力被膜层A中,赋予张力存在倾斜,绝缘张力被膜层A中的赋予张力的分布与现有例相比差异较大。即,在现有例中,绝缘张力被膜层A的剥离量和赋予张力基本成比例关系,而与之相对,在发明例中,绝缘张力被膜层A的剥离量和赋予张力不成比例关系,绝缘张力被膜层A的膜厚方向上的赋予张力存在偏离。
另外可知,在像这样地在绝缘张力被膜层A内对钢板的赋予张力存在倾斜的发明例中,在绝缘张力被膜层A整体显示出了11.3MPa这样的与现有例(现有例1:10.5MPa,现有例2:7.8MPa)相比更好的张力,并且被膜密合性也良好。
接着,对本发明的各构成要件的限定理由进行叙述。
本发明中使用的电磁钢板可使用通过公知的方法制造的定向性电磁钢板、无定向性电磁钢板中的任意电磁钢板。作为一例,定向性电磁钢板优选通过如下所示的方法制造。
首先,对优选的钢的成分组成进行说明。以下,只要没有特别说明,作为各元素的含量的单位的%是指质量%。
C:0.001~0.10%
C为对于高斯方位晶粒的产生而言有用的成分,为了有效地发挥出所述作用,优选含有0.001%以上的C。另一方面,当C含量超过0.10%时,由于脱碳退火,也可能引发脱碳不良。因此,C含量优选为0.001~0.10%的范围。
Si:1.0~5.0%
Si是为了提高电阻而降低铁损、并且使铁的BCC组织稳定化从而使高温的热处理能够进行所必要的成分,优选至少含有1.0%。另一方面,当Si的含量超过5.0%时,冷轧可能变得困难。因此,Si含量优选为1.0~5.0%的范围。Si含量更优选为2.0~5.0%的范围。
Mn:0.01~1.0%
Mn不仅会有效地有助于钢的高温脆性的改善,而且在S、Se混合存在的情况下,会形成MnS、MnSe等的析出物从而发挥出作为晶粒生长的抑制剂的功能。Mn的含量比0.01%少时,上述的效果不充分,另一方面,当超过1.0%时,存在MnSe等的析出物的粒径变得粗大而导致丧失作为阻化剂的效果的隐患。因此,Mn含量优选为0.01~1.0%的范围。
sol.Al:0.003~0.050%
Al是在钢中形成AlN从而作为分散第二相发挥出阻化剂的作用的有用成分,但当添加量不足0.003%时,存在无法充分确保析出量的隐患,另一方面,当超过0.050%添加时,存在AlN粗大地析出而导致丧失作为阻化剂的作用的隐患。因此,Al含量以sol.Al计优选为0.003~0.050%的范围。
N:0.001~0.020%
N也与Al一样,是对于形成AlN而言必要的成分。当添加量低于0.001%时,存在导致AlN的析出变得不充分的隐患,当超过0.020%添加时,可能导致在钢坯加热时产生鼓起等。因此,N含量优选为0.001~0.020%的范围。
选自S及Se中的1种或2种的合计:0.001~0.05%
S或Se是与Mn、Cu结合而形成MnSe、MnS、Cu2-xSe、Cu2-xS从而作为钢中的分散第二相发挥出阻化剂的作用的有用成分。当这些S、Se的合计的含量不足0.001%时,其添加效果不足,另一方面,在超过0.05%的情况下,不仅钢坯加热时的固溶变得不完全,而且还可能成为产品表面缺陷的原因。因此,选自S及Se中的1种或2种的含量在S或Se单独添加、复合添加(并用S和Se)的任意情况下,均优选以总量计为0.001~0.05%的范围。
优选将以上成分作为钢的基本成分。另外,上述以外的余量可以设为Fe及不可避免的杂质的组成。
另外,上述组成中可以进一步添加选自Cu:0.01~0.2%、Ni:0.01~0.5%、Cr:0.01~0.5%、Sb:0.01~0.1%、Sn:0.01~0.5%、Mo:0.01~0.5%、Bi:0.001~0.1%中的1种以上。通过添加具有作为辅助性的阻化剂的作用的元素,可进一步提高磁性。作为这样的元素,可列举容易在结晶粒径、表面发生偏析的上述元素。无论何种情况,在不满足上述添加量时,均得不到其效果。另外,当超过上述添加量时,容易发生被膜外观的不良、二次再结晶不良,因此,优选为上述范围。
进一步,除了上述成分之外,还可以向钢中添加选自B:0.001~0.01%、Ge:0.001~0.1%、As:0.005~0.1%、P:0.005~0.1%、Te:0.005~0.1%、Nb:0.005~0.1%、Ti:0.005~0.1%、V:0.005~0.1%中的1种或2种以上。通过添加这些中的1种或2种以上,能够使晶粒生长的抑制力进一步强化从而稳定地获得更高的磁通密度。
接着,对带有绝缘被膜的电磁钢板的制造方法进行说明。
通过现有公知的精炼工艺对具有上述中说明的成分组成的钢进行熔炼,使用连续铸造法或铸锭-开坯轧制法得到钢原材料(钢坯),然后,对上述钢坯进行热轧而制成热延板,根据需要实施热延板退火之后,实施一次或夹着中间退火的两次以上的冷轧而制成最终板厚的冷延板。然后,实施一次再结晶退火和脱碳退火之后,涂布以MgO为主成分的退火分离剂并实施最终成品退火,在形成作为绝缘被膜层B的以镁橄榄石为主体的被膜层(镁橄榄石被膜层)后,形成绝缘张力被膜层(绝缘张力被膜层A),通过由以上一系列的工序构成的制造方法,能够制造带有绝缘被膜的电磁钢板。需要说明的是,也可以向上述那样制造的带有绝缘被膜的电磁钢板的表面涂布清漆等而适当设置被膜。
另外,也可以通过在上述脱碳退火后涂布以Al2O3等为主体的退火分离剂,从而在最终成品退火后不形成镁橄榄石被膜层,而是在其后通过CVD、PVD、溶胶凝胶法、钢板氧化等方法形成另外的基底被膜层,并在其上形成绝缘张力被膜层(绝缘张力被膜层A)。
另外,也可以如后所述地通过使用CVD、PVD法将Al、Cr、Ti、V、Mn、Nb、Hf、Ta、W、或它们的氮化物、氧化物、氮氧化物、碳氮化物一边在膜厚方向上改变组成、浓度一边制膜,从而形成具有在膜厚方向上不同的热膨胀系数的陶瓷层、组成连续改变的陶瓷层等的绝缘张力被膜层(绝缘张力被膜层A)。这样形成的绝缘张力被膜层A与钢基的密合性优异,因此,能够不形成上述那样的基底被膜层,而直接在钢基表面形成绝缘张力被膜层A。
如上所述,本发明的绝缘张力被膜层A的赋予张力在绝缘张力被膜层A中的膜厚方向上存在倾斜。本发明的带有绝缘被膜的电磁钢板在电磁钢板的表面具备包含上述绝缘张力被膜层A的绝缘被膜。上述绝缘被膜可以仅由上述绝缘张力被膜层A构成,也可以在上述绝缘张力被膜层A与钢板之间设置镁橄榄石被膜层等基底被膜。另外,本发明的带有绝缘被膜的电磁钢板可以直接制成产品,也可以进一步在其上设置涂布清漆等而形成的被膜而制成产品。需要说明的是,上述的基底被膜、涂布清漆等而形成的被膜并不是像本发明的绝缘张力被膜层A那样的赋予张力在膜厚方向上存在倾斜的膜。
如上所述,本发明的带有绝缘被膜的电磁钢板至少在电磁钢板的单面形成有包含绝缘张力被膜层A的绝缘被膜。并且,在将绝缘张力被膜层A的单位面积重量设为M、将绝缘张力被膜层A对钢板赋予的张力设为σA时,绝缘张力被膜层A中从表面起的单位面积重量为M/2的绝缘被膜层对钢板赋予的张力为0.80×σA以上。
本发明中,绝缘张力被膜层A相对于钢板赋予的张力设为轧制方向的张力,其如下地算出:将由带有绝缘被膜的电磁钢板制作的试验片(轧制方向280mm×轧制直角方向30mm)的一面利用粘合带遮蔽后,将另一面的绝缘张力被膜层A利用碱、酸等除去,接着将上述试验片的一端30mm固定并将试验片250mm的部分作为测定长度而测定翘曲量,使用下述式(I)进行计算。
对钢板的赋予张力[MPa]=钢板杨氏模量[GPa]×板厚[mm]×翘曲量[mm]÷(测定长度[mm])2×103···式(I)
其中,钢板杨氏模量设为132GPa。
此时,通过从试样的单面以各种除去率除去绝缘张力被膜层A并测定此时的赋予张力,可以求出绝缘张力被膜层A对钢板施加的张力在绝缘张力被膜层A中的分布。上述除去率可通过例如在从试验片的单面剥离绝缘张力被膜层A时调整试验片的单面在剥离液中的浸渍条件(例如在110℃、25质量%的NaOH水溶液中的浸渍时间)而任意地调节。
进而,将试验片的单面的绝缘张力被膜层A的单位面积重量设为M时,例如,将达到M/3的单位面积重量的绝缘张力被膜层从试验片的单面剥离而进行测定时的赋予张力,相当于绝缘张力被膜层A中从表面起单位面积重量为M/3的绝缘张力被膜层对钢板所施加的张力,将达到M/2的单位面积重量的绝缘张力被膜层剥离而进行测定时的赋予张力,相当于绝缘张力被膜层A中从表面起单位面积重量为M/2的绝缘被膜层对钢板所施加的张力。需要说明的是,M的单位面积重量、即从试验片的单面将绝缘张力被膜层A完全剥离而进行测定时的赋予张力,相当于绝缘张力被膜层A整体对钢板施加的张力σA
另外,单位面积重量M(g/m2)可根据绝缘张力被膜层A的剥离前后的质量差(g)和钢板的单面表面积(m2)算出。
本发明中,将绝缘张力被膜层A的单位面积重量设为M、且将上述绝缘张力被膜层A对钢板施加的张力设为σA时,绝缘张力被膜层A中从表面起单位面积重量为M/2的绝缘张力被膜层对钢板所施加的张力(σA/2)需要为σA的0.80倍以上。在σA/2低于0.80倍的情况下,绝缘张力被膜层A的钢板侧一半对钢板所施加的张力(σAA/2)依然很高,因此,在被膜界面(绝缘张力被膜层A与镁橄榄石被膜层等基底被膜的界面,或绝缘张力被膜层A与钢基的界面)的剪切应力变大,弯曲加工时被膜容易剥离,密合性差。更优选σA/2为σA的0.85倍以上。另外,关于上限,σA/2直至σA的1.00倍为止不会产生特别的问题,但考虑到金属的热膨胀系数与作为非金属的绝缘被膜的热膨胀系数之差时,作为可实现的上限值,可考虑σA/2为σA的0.98倍程度。
另外,优选尽可能在绝缘张力被膜层A的表层侧赋予更多的钢板赋予张力。因此,绝缘张力被膜层A中从表面起单位面积重量为M/3的绝缘张力被膜层对钢板施加的张力(σA/3)优选为σA的0.50倍以上,更优选为0.60倍以上。
作为构成绝缘张力被膜层A的材料,只要是可确保电绝缘性且可赋予张力的物质,则为氮化物、硫化物、氧化物、无机物、有机物的任意物质均没有问题。采用CVD、PVD法时,能够比较容易地制膜Al、Cr、Ti、V、Mn、Nb、Hf、Ta、W、或它们的氮化物、氧化物、氮氧化物、碳氮化物等。
考虑到去应力退火、常压、大气中的使用等时,绝缘张力被膜层A优选以氧化物为主体,更优选以无机氧化物为主体,特别优选以玻璃或玻璃陶瓷为主体。需要说明的是,本发明中的为主体是指,包含于绝缘张力被膜层A中的比例相对于绝缘张力被膜层A的总质量为50质量%以上。
作为氧化物,可举出磷酸盐、硼酸盐、硅酸盐等,但优选使用目前已通常被用作绝缘张力被膜的磷硅酸盐玻璃。磷硅酸盐玻璃具有在大气中吸湿的性质,因此,为了防止该现象,优选含有选自Mg、Al、Ca、Ba、Sr、Zn、Ti、Nd、Mo、Cr、B、Ta、Cu及Mn中的1种以上元素。另外,也可以除了上述元素之外,还含有任意的元素。例如,为了提高表面的平滑度,优选含有选自Li、K中的1种以上元素。
作为像本发明中这样在绝缘张力被膜层A内使对钢板的赋予张力产生倾斜的方法,例如可举出利用赋予张力不同的多个磷硅酸盐玻璃层形成绝缘张力被膜层A的方法。在该情况下,绝缘张力被膜层A以玻璃为主体而形成。
在绝缘张力被膜层A内使对钢板的赋予张力产生倾斜的最简单的方法,是在玻璃质的张力被膜内使具有不同热膨胀系数的陶瓷的相析出(也就是以玻璃陶瓷为主体),并控制此时的陶瓷相的分布的方法。作为控制的方法,可考虑使热膨胀系数较大的陶瓷相在绝缘张力被膜层A的钢板侧析出的方法或低热膨胀的陶瓷相在绝缘张力被膜层A的表层侧析出的方法,但考虑到绝缘张力被膜层A整体对钢板施加的张力时,优选为使低热膨胀的陶瓷相在表层侧析出的方法。
玻璃的结晶化包括从玻璃内产生的情况和从玻璃表面产生的情况。在本发明的情况下,最优选采用使得结晶化从玻璃表面发生、并向玻璃内侧(也就是钢板侧)生长的方法。
另外,作为形成上述那样的玻璃陶瓷作为绝缘张力被膜层A的方法,例如可举出如下方法:将包含胶态二氧化硅和选自磷酸、硼酸及硅酸的Mg、Al、Ca、Ba、Sr、Zn、Ti、Nd、Mo、Cr、Ta、Cu、Mn的盐中的至少1种的被膜形成用处理液涂布于电磁钢板的至少一个表面,并在上述涂布后,通过后述的方法进行烧结。需要说明的是,在上述被膜形成用处理液中可以进一步添加磷酸、硼酸及硅酸的任意盐,例如选自磷酸、硼酸及硅酸的Li、K盐中的1种以上。另外,在上述被膜形成用处理液中可以进一步添加任意的化合物,例如包含选自Li、K、Mg中的1种以上的化合物。作为上述任意的化合物,优选为无机化合物。
作为形成上述那样的玻璃陶瓷的另一方法,可举出如下方法:将包含选自磷酸的Mg、Al、Ca、Ba、Sr、Zn、Cr、Mn的盐中的至少1种、胶态二氧化硅、以及包含选自Ti、Nd、Mo、B、Ta、Cu中的1种或2种以上的化合物的被膜形成用处理液涂布于电磁钢板的至少一个表面,并在上述涂布后,通过后述的方法进行烧结,形成以磷硅酸盐玻璃陶瓷为主体的绝缘张力被膜层。需要说明的是,作为上述化合物,优选为无机化合物。另外,在上述被膜形成用处理液中可以进一步添加任意的化合物,例如包含选自Li、K、Mg中的1种以上的化合物。作为上述任意的化合物,优选为无机化合物。
就绝缘张力被膜层A的烧结温度而言,在使烧结时产生结晶化的情况下,优选为800℃以上,越高温越优选。但是,当温度过高时,钢板本身在烧结时会发生蠕变变形,因此,烧结温度优选为1100℃以下,更优选为1050℃以下。另外,为了在800℃以上发生结晶化,需要对涂布液(被膜形成用处理液)的组成进行调整、使得晶核生成温度达到600℃~700℃左右。另一方面,在晶核过量生成了的情况下,在玻璃内发生结晶化的比例过高,因此,难以如本发明那样在绝缘张力被膜层内使对钢板的赋予张力产生倾斜。为了避免该情况,优选将600℃以上且700℃以下的温度范围设为100℃/秒以上的加热速度。更优选为150℃/秒以上。对600℃以上且700℃以下的温度范围内的加热速度的上限没有特别限定,但实用方面优选为400℃/秒以下,更优选为300℃/秒以下。
另外,作为进一步促进从表面的结晶化的方法,可举出利用水的方法。当水浸入玻璃中时,会切断玻璃网络,因此,玻璃的粘度降低。由此,原子的迁移变得容易,结晶化速度得到。为了通过800℃以上的烧结而进行利用水的自玻璃表面的结晶化促进,优选将700℃以上的温度范围内的气体氛围设为水蒸气露点为-20℃以上的气体氛围。优选为水蒸气露点为-15℃以上的气体氛围。另一方面,当使水蒸气露点过高时,在钢板表面产生锈的风险变高,因此,700℃以上的温度范围内的气体氛围优选为水蒸气露点为10℃以下的气体氛围,进一步优选为水蒸气露点为0℃以下的气体氛围。
进一步,作为形成在对钢板的赋予张力上存在倾斜的绝缘张力被膜层A的其它方法,例如还可举出:通过PVD法、CVD法对Al、Cr、Ti、V、Mn、Nb、Hf、Ta、W、它们的氮化物、氧化物、氮氧化物、碳氮化物一边在膜厚方向上改变组成、浓度一边进行制膜,将具有不同的热膨胀系数的陶瓷形成为层结构的方法、在陶瓷层中连续地变更组成的方法等。这样形成的陶瓷层(绝缘张力被膜层A)与钢基的密合性优异,因此,无需形成基底被膜层、可直接在钢基表面上形成绝缘张力被膜层A。
绝缘张力被膜层A对钢板施加的张力优选为10MPa以上,更优选为12MPa以上。其理由在于,通过提高上述张力,能够减少铁损、或进一步降低制成变压器时的噪音。
绝缘张力被膜层A的单位面积重量以单面计优选为2.0g/m2以上。另外,绝缘张力被膜层A的单位面积重量以单面计优选为12.0g/m2以下。单位面积重量低于2.0g/m2时,层间绝缘性会稍有降低。另一方面,当单位面积重量超过12.0g/m2时,占空系数降低。需要说明的是,占空系数是JIS C 2550中定义的值。更优选绝缘张力被膜层A的单位面积重量以单面计为3.0g/m2以上。另外,更优选为绝缘张力被膜层A的单位面积重量以单面计为8.0g/m2以下。
实施例
(实施例1)
将以质量%计含有Si:3.25%、C:0.04%、Mn:0.08%、S:0.002%、sol.Al:0.015%、N:0.006%、Cu:0.05%、Sb:0.01%的硅钢板钢坯于1150℃加热20分钟后,进行热轧而得到2.4mm板厚的热延板,于1000℃实施1分钟的退火之后,通过冷轧得到0.27mm的最终板厚,从得到的冷轧线圈的中央部取100mm×400mm尺寸的试样,以加热速度80℃/s从室温升温到820℃,在湿润气体氛围中进行了820℃、60秒钟的一次再结晶退火。接着,将相对于MgO:100质量份混合5质量份的TiO2而成的退火分离剂制成水浆状后进行了涂布、干燥。花费100小时使该钢板从300℃到800℃间升温后,以50℃/hr升温至1200℃,并进行于1200℃进行5小时退火的最终成品退火,准备了具有以镁橄榄石为主体的基底被膜的钢板。
接着,准备表2所记载的被膜形成用处理液,通过表3所记载的烧结条件制成了绝缘张力被膜(绝缘张力被膜层A)。即,本实施例在镁橄榄石基底被膜层上形成了绝缘张力被膜层A。被膜形成用处理液的比重使用纯水调整到了1.20。上述处理液使用辊涂机进行涂布,使各绝缘张力被膜层A的单位面积重量以单面计为4.50g/m2。烧结气体氛围设为N2:100%气体氛围,700℃以上的温度范围内的气体氛围露点(水蒸气露点)如表3所示。
对于这样得到的各试样,通过上述的方法测定了绝缘张力被膜层A对钢板施加的张力在绝缘张力被膜层A中的分布。其中,绝缘张力被膜层A的剥离量通过调整在110℃、25质量%的NaOH水溶液(剥离液)中浸渍的时间而进行了调节。另外,绝缘被膜的密合性通过圆棒卷绕法进行了评价。具体而言,将试验片(轧制方向280mm×轧制直角方向30mm)卷绕成直径为5mm的圆棒,进行180°弯折时,通过目测来考察被膜剥离的发生的有无,以下,将圆棒的直径以5mm间隔逐渐提高的同时进行同样的评价,并以通过目测未发生被膜剥离的最小直径(弯曲剥离直径)进行了评价。该评价中,上述弯曲剥离直径越小,则可判断其被膜密合性越优异。将结果合并记载于表3。
如表3所记载的那样,在σA/2为σA的0.80倍以上(σA/2A为0.80以上)的本发明中,具有弯曲剥离直径达15mm以下这样的优异的被膜密合性。进一步可知,如果σA/2为σA的0.85倍以上,则具有弯曲剥离直径达5mm以下这样的更进一步良好的被膜密合性。可知,在烧结条件的影响下,如果600℃以上且700℃以下的温度范围的加热速度为100℃/s以上、且烧结温度满足800℃以上的条件,则能够得到σA/2A为0.80以上的绝缘被膜。
Figure BDA0002620972770000161
Figure BDA0002620972770000171
(实施例2)
将以质量%计含有Si:3.25%、C:0.04%、Mn:0.08%、S:0.002%、sol.Al:0.015%、N:0.006%、Cu:0.05%、Sb:0.01%的硅钢板钢坯于1150℃加热20分钟后,进行热轧而得到2.2mm的板厚的热延板,于1000℃实施1分钟的退火之后,通过冷轧得到0.23mm的最终板厚,接着,以加热速度50℃/s从室温升温到820℃,在湿润气体氛围中进行820℃、60秒的一次再结晶退火。然后,将相对于MgO:50质量份混合150质量份的Al2O3、1质量份的Na2B4O7·10H2O而成的退火分离剂制成水浆状后进行了涂布、干燥。花费100小时使该钢板从300℃到800℃间升温后,以50℃/hr升温至1200℃,并进行于1200℃进行5小时退火的最终成品退火,准备了具有以堇青石(2MgO·2Al2O3·5SiO2)为主体的结晶质的被膜的钢板。
利用硫酸和氢氟酸的混酸从上述钢板(轧制方向400mm×轧制直角方向100mm)剥离堇青石被膜,通过PVD法在钢板表面形成了使钢基侧为100%TiN、表面侧为100%AlN,且其中间为AlTiN的连续固溶体的绝缘张力被膜(绝缘张力被膜层A)。即,本实施例在钢基表面直接形成了绝缘张力被膜层A。此时,变更对Ti靶、Al靶的偏电压进行ON/OFF的时机,制作了包含具有各种浓度倾斜(Al/Ti比)的绝缘被膜的试样。具体而言,以表4中的No.31为例时,将使Ti靶的偏电压为ON的时机设为0秒,对于Ti靶,从0秒到400秒施加电压,对于Al靶,在使Ti靶的偏电压为ON的时刻起的300秒后施加电压,并从300秒到600秒施加电压,形成绝缘张力被膜层A,由此,在绝缘张力被膜层A中形成了具有浓度倾斜(Al/Ti比)的绝缘被膜。
对于这样得到的各试样,通过上述的方法测定了绝缘张力被膜层A对钢板施加的张力在绝缘张力被膜层A中的分布。其中,绝缘张力被膜层A的剥离量通过调整在35质量%的过氧化氢(剥离液)中浸渍的时间而进行了调节。另外,与实施例1同样地对绝缘被膜的密合性进行了评价。将结果合并记载于表4。
如表4所记载的那样,如果σA/2A为0.80以上,则具有弯曲剥离直径达10mm以下这样的优异的被膜密合性。进一步可知,如果σA/2A为0.85以上,则具有弯曲剥离直径达5mm以下这样的更进一步良好的被膜密合性。
[表4]
Figure BDA0002620972770000191
下划线表示不在本发明的范围内。

Claims (7)

1.一种带有绝缘被膜的电磁钢板,其在至少一面具有包含绝缘张力被膜层A的绝缘被膜,其中,
将所述绝缘张力被膜层A的单位面积重量设为M,并将所述绝缘张力被膜层A对钢板施加的张力设为σA时,
所述绝缘张力被膜层A中从表面起单位面积重量M/2的绝缘张力被膜层对钢板施加的张力为0.80×σA以上,
所述带有绝缘被膜的电磁钢板的制造方法包括:
将被膜形成用处理液涂布于电磁钢板的至少一个表面,在所述涂布后,在600℃以上且700℃以下的温度范围以120℃/秒以上的加热速度进行加热,然后于800℃以上进行烧结,形成所述绝缘张力被膜层A,所述被膜形成用处理液包含选自磷酸、硼酸及硅酸的Mg、Al、Ca、Ba、Sr、Zn、Ti、Nd、Mo、Cr、Ta、Cu、Mn盐中的至少一种、和胶态二氧化硅。
2.一种带有绝缘被膜的电磁钢板,其在至少一面具有包含绝缘张力被膜层A的绝缘被膜,其中,
将所述绝缘张力被膜层A的单位面积重量设为M,并将所述绝缘张力被膜层A对钢板施加的张力设为σA时,
所述绝缘张力被膜层A中从表面起单位面积重量M/2的绝缘张力被膜层对钢板施加的张力为0.80×σA以上,
所述带有绝缘被膜的电磁钢板的制造方法包括:将被膜形成用处理液涂布于电磁钢板的至少一个表面,在所述涂布后,在600℃以上且700℃以下的温度范围以120℃/秒以上的加热速度进行加热,然后于800℃以上进行烧结,形成所述绝缘张力被膜层A,所述被膜形成用处理液包含选自磷酸的Mg、Al、Ca、Ba、Sr、Zn、Cr、Mn盐中的至少一种、胶态二氧化硅、以及含有选自Ti、Nd、Mo、B、Ta、Cu中的一种或两种以上的化合物。
3.根据权利要求1或2所述的带有绝缘被膜的电磁钢板,其中,
所述绝缘张力被膜层A以玻璃或玻璃陶瓷为主体。
4.根据权利要求1或2所述的带有绝缘被膜的电磁钢板,其中,
所述绝缘张力被膜层A为包含选自Mg、Al、Ca、Ba、Sr、Zn、Ti、Nd、Mo、Cr、B、Ta、Cu及Mn中的一种以上元素的磷硅酸盐玻璃或磷硅酸盐玻璃陶瓷。
5.一种带有绝缘被膜的电磁钢板的制造方法,所述带有绝缘被膜的电磁钢板在至少一面具有包含绝缘张力被膜层A的绝缘被膜,该方法包括:
将被膜形成用处理液涂布于电磁钢板的至少一个表面,在所述涂布后,在600℃以上且700℃以下的温度范围以120℃/秒以上的加热速度进行加热,然后于800℃以上进行烧结,形成所述绝缘张力被膜层A,所述被膜形成用处理液包含选自磷酸、硼酸及硅酸的Mg、Al、Ca、Ba、Sr、Zn、Ti、Nd、Mo、Cr、Ta、Cu、Mn盐中的至少一种、和胶态二氧化硅,
其中,将所述绝缘张力被膜层A的单位面积重量设为M,并将所述绝缘张力被膜层A对钢板施加的张力设为σA时,
所述绝缘张力被膜层A中从表面起单位面积重量M/2的绝缘张力被膜层对钢板施加的张力为0.80×σA以上。
6.一种带有绝缘被膜的电磁钢板的制造方法,所述带有绝缘被膜的电磁钢板在至少一面具有包含绝缘张力被膜层A的绝缘被膜,该方法包括:
将被膜形成用处理液涂布于电磁钢板的至少一个表面,在所述涂布后,在600℃以上且700℃以下的温度范围以120℃/秒以上的加热速度进行加热,然后于800℃以上进行烧结,形成所述绝缘张力被膜层A,所述被膜形成用处理液包含选自磷酸的Mg、Al、Ca、Ba、Sr、Zn、Cr、Mn盐中的至少一种、胶态二氧化硅、以及含有选自Ti、Nd、Mo、B、Ta、Cu中的一种或两种以上的化合物,
其中,将所述绝缘张力被膜层A的单位面积重量设为M,并将所述绝缘张力被膜层A对钢板施加的张力设为σA时,
所述绝缘张力被膜层A中从表面起单位面积重量M/2的绝缘张力被膜层对钢板施加的张力为0.80×σA以上。
7.根据权利要求5或6所述的带有绝缘被膜的电磁钢板的制造方法,其中,
将700℃以上的温度范围的气体氛围设为水蒸气露点为-20℃以上且10℃以下的气体氛围。
CN201980012105.XA 2018-02-06 2019-01-21 带有绝缘被膜的电磁钢板及其制造方法 Active CN111684106B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018018756 2018-02-06
JP2018-018756 2018-02-06
PCT/JP2019/001690 WO2019155858A1 (ja) 2018-02-06 2019-01-21 絶縁被膜付き電磁鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
CN111684106A CN111684106A (zh) 2020-09-18
CN111684106B true CN111684106B (zh) 2022-06-07

Family

ID=67547977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980012105.XA Active CN111684106B (zh) 2018-02-06 2019-01-21 带有绝缘被膜的电磁钢板及其制造方法

Country Status (7)

Country Link
US (1) US11923115B2 (zh)
EP (1) EP3722460A4 (zh)
JP (2) JP7016358B2 (zh)
KR (1) KR102483593B1 (zh)
CN (1) CN111684106B (zh)
RU (1) RU2749507C1 (zh)
WO (1) WO2019155858A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102348508B1 (ko) * 2019-12-19 2022-01-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법
WO2023195518A1 (ja) * 2022-04-06 2023-10-12 日本製鉄株式会社 方向性電磁鋼板及び絶縁被膜の形成方法
WO2023195517A1 (ja) * 2022-04-06 2023-10-12 日本製鉄株式会社 方向性電磁鋼板及び絶縁被膜の形成方法
CN115874232B (zh) * 2023-02-27 2023-05-02 北京科技大学 一种熔盐电解制备梯度高硅钢的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299366A (ja) * 1993-04-12 1994-10-25 Nippon Steel Corp 低鉄損方向性電磁鋼板の製造方法
CN101443479A (zh) * 2006-05-19 2009-05-27 新日本制铁株式会社 具有高张力绝缘覆膜的方向性电磁钢板及其绝缘覆膜处理方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS5652117B2 (zh) 1973-11-17 1981-12-10
JPH0744097B2 (ja) 1986-10-30 1995-05-15 新日本製鐵株式会社 歪取焼鈍時に鋼板の焼付きのない電磁鋼板用絶縁皮膜の形成方法
JPH0867913A (ja) 1994-08-24 1996-03-12 Nippon Steel Corp 鉄損の小さい珪素鋼板及びその製造法及び使用法
JP3272210B2 (ja) * 1995-09-13 2002-04-08 新日本製鐵株式会社 一方向性珪素鋼板の絶縁皮膜形成方法
JP3397289B2 (ja) * 1997-06-04 2003-04-14 新日本製鐵株式会社 方向性電磁鋼板の絶縁被膜処理方法
JP3280279B2 (ja) 1997-06-24 2002-04-30 川崎製鉄株式会社 超低鉄損方向性電磁鋼板
JP4042202B2 (ja) 1998-04-17 2008-02-06 Jfeスチール株式会社 一方向性珪素鋼板
JP2002060957A (ja) 2000-08-24 2002-02-28 Nippon Steel Corp ダイレクトイグニッションに適した方向性電磁鋼板
JP3895943B2 (ja) 2001-04-13 2007-03-22 新日本製鐵株式会社 方向性電磁鋼板の絶縁皮膜形成方法
WO2002088424A1 (fr) * 2001-04-23 2002-11-07 Nippon Steel Corporation Tole d'acier au silicium unidirectionnel presentant une excellente adhesivite d'une couche de revetement isolant imprimant une force de traction
JP4015875B2 (ja) 2002-04-11 2007-11-28 新日本製鐵株式会社 低鉄損方向性電磁鋼板の製造方法
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same
JP5063902B2 (ja) * 2006-02-17 2012-10-31 新日本製鐵株式会社 方向性電磁鋼板とその絶縁被膜処理方法
EP2096185B1 (en) 2006-11-22 2014-08-13 Nippon Steel & Sumitomo Metal Corporation Unidirectionally grain oriented electromagnetic steel sheet having excellent film adhesion, and method for manufacturing the same
CN102782185B (zh) * 2010-02-18 2014-05-28 新日铁住金株式会社 无方向性电磁钢板及其制造方法
BR112013004050B1 (pt) * 2010-08-06 2019-07-02 Jfe Steel Corporation CHAPA de aço para fins elétricos com grão orientado
CN104024443B (zh) * 2011-11-04 2016-01-20 塔塔钢铁英国有限公司 涂覆的晶粒取向钢
JP5884944B2 (ja) 2013-09-19 2016-03-15 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6156646B2 (ja) 2013-10-30 2017-07-05 Jfeスチール株式会社 磁気特性および被膜密着性に優れる方向性電磁鋼板
EP3276043B1 (en) 2015-03-27 2021-12-15 JFE Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same
JP6323423B2 (ja) * 2015-09-25 2018-05-16 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
EP3358041B1 (en) * 2015-09-29 2021-03-24 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299366A (ja) * 1993-04-12 1994-10-25 Nippon Steel Corp 低鉄損方向性電磁鋼板の製造方法
CN101443479A (zh) * 2006-05-19 2009-05-27 新日本制铁株式会社 具有高张力绝缘覆膜的方向性电磁钢板及其绝缘覆膜处理方法

Also Published As

Publication number Publication date
US20210035718A1 (en) 2021-02-04
EP3722460A1 (en) 2020-10-14
JPWO2019155858A1 (ja) 2020-02-27
JP7016358B2 (ja) 2022-02-04
KR20200105907A (ko) 2020-09-09
JP2021073368A (ja) 2021-05-13
RU2749507C1 (ru) 2021-06-11
KR102483593B1 (ko) 2022-12-30
EP3722460A4 (en) 2020-11-11
CN111684106A (zh) 2020-09-18
WO2019155858A1 (ja) 2019-08-15
US11923115B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
CN111684106B (zh) 带有绝缘被膜的电磁钢板及其制造方法
RU2639178C2 (ru) Лист из текстурированной электротехнической стали с превосходными магнитными свойствами и адгезией покрытия
KR101620763B1 (ko) 방향성 전기 강판 및 그 제조 방법
JP7010305B2 (ja) 方向性電磁鋼板
KR101736627B1 (ko) 철손이 낮고 절연특성이 우수한 방향성 전기강판 및 그 제조방법
JP6624180B2 (ja) 方向性電磁鋼板およびその製造方法
CN113631734B (zh) 方向性电磁钢板及其制造方法
JP6624028B2 (ja) 方向性電磁鋼板の製造方法
RU2758423C1 (ru) Жидкость для получения изолирующего покрытия, текстурированный лист из электротехнической стали с нанесенным изолирующим покрытием и способ его производства
CN111406126B (zh) 取向性电磁钢板及其制造方法
JP6981510B2 (ja) 絶縁被膜付き方向性電磁鋼板
JP7299512B2 (ja) 方向性電磁鋼板の製造方法
JP6645632B1 (ja) 絶縁被膜付き電磁鋼板およびその製造方法、前記電磁鋼板を用いてなる変圧器の鉄心、変圧器ならびに変圧器の誘電損失の低減方法
JP6904499B1 (ja) 被膜形成方法および絶縁被膜付き電磁鋼板の製造方法
JP7131693B2 (ja) 絶縁被膜付き方向性電磁鋼板およびその製造方法
JP7255761B1 (ja) 方向性電磁鋼板の製造方法
JP7226677B1 (ja) 方向性電磁鋼板の製造方法
JP7340045B2 (ja) 方向性電磁鋼板およびその製造方法
WO2020149323A1 (ja) 方向性電磁鋼板の製造方法
CN114555860A (zh) 带有绝缘覆膜的电磁钢板
JP2004315915A (ja) 一方向性電磁鋼板の絶縁被膜形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant