WO2017067333A1 - Substrat à motifs, procédé de préparation, et diode électroluminescente - Google Patents

Substrat à motifs, procédé de préparation, et diode électroluminescente Download PDF

Info

Publication number
WO2017067333A1
WO2017067333A1 PCT/CN2016/097799 CN2016097799W WO2017067333A1 WO 2017067333 A1 WO2017067333 A1 WO 2017067333A1 CN 2016097799 W CN2016097799 W CN 2016097799W WO 2017067333 A1 WO2017067333 A1 WO 2017067333A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
dielectric layer
aluminum nitride
patterned substrate
gap
Prior art date
Application number
PCT/CN2016/097799
Other languages
English (en)
Chinese (zh)
Inventor
徐志波
李政鸿
谢翔麟
王肖
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2017067333A1 publication Critical patent/WO2017067333A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • the present invention belongs to the technical field of semiconductor manufacturing, and in particular, to a patterned substrate for reducing crystal defects, a preparation method, and a light emitting diode.
  • mainstream LEDs use a patterned substrate for epitaxial growth.
  • the surface pattern provides a choice of various growth crystal phases for the growth of the late gallium nitride epitaxial layer, so that the gallium nitride epitaxial layer is conventional.
  • the two-dimensional growth becomes three-dimensional growth, thereby effectively reducing the dislocation density in the gallium nitride-based LED material, avoiding the generation of cracks, thereby improving the internal quantum luminous efficiency of the LED; on the other hand, the light is increased due to the array pattern structure.
  • the scattering changes the optical line of the LED to form a diffuse reflection, which in turn improves the light extraction efficiency.
  • a gap surface the same side covering the convex side surface and the top surface platform, and then placing the substrate in the chemical vapor deposition chamber to grow a gallium nitride based buffer layer, an N type semiconductor layer, a light emitting layer, and
  • the P-type semiconductor layer forms a semiconductor element ⁇ , and the surface of the bump and the surface of the gap exhibit a serious epitaxial layer to compete for growth, thereby causing unevenness of the surface of the buffer layer, and the dislocation defect increases the force port; and the dislocation line along the crystal growth direction Extending to the illuminating area affects the performance of the device.
  • the present invention provides a patterned substrate, a preparation method, and a light emitting diode, by depositing a dielectric layer on a surface of a substrate having a plurality of uniformly distributed bumps, utilizing the amorphous characteristics of the dielectric layer,
  • the aluminum nitride layer deposited by the PVD method on the convex surface is amorphous, and the aluminum nitride layer covering the adjacent convex gap surface is a polycrystalline state composed of minute crystal grains.
  • the substrate is applied to the epitaxial layer deposited by MOCVD to form an LED, and the gallium nitride-based epitaxial layer is more easily grown by the polycrystalline aluminum nitride layer on the surface of the bump gap, and the amorphous aluminum nitride layer is not easy to grow.
  • the characteristic is that the epitaxial layer is selectively grown on the surface of the aluminum nitride layer on the surface of the convex gap, and the convex surface is difficult to grow, the growth probability of the gallium nitride-based epitaxial layer on the side of the substrate pattern is reduced, and the lateral growth of the gallium nitride base is reduced.
  • the epitaxial layer and the planar surface are positively grown with a gallium nitride-based epitaxial layer combined with a lattice defect density, which improves the performance of the finally formed semiconductor device; meanwhile, since the growth of the lateral gallium nitride-based epitaxial layer is suppressed, The grown gallium nitride-based epitaxial layers are more easily combined into a flat surface to enhance the crystal quality of the epitaxial layer.
  • the technical solution provided by the present invention is: a patterned substrate having opposite first and second surfaces, wherein the first surface is uniformly distributed with a plurality of protrusions, and each of the protrusions has a gap therebetween.
  • a surface of the protruding gap is not covered by the dielectric layer;
  • a surface of the dielectric layer and a surface of the protruding gap are deposited with an aluminum nitride layer, the surface of the dielectric layer
  • the aluminum nitride layer inhibits lateral epitaxial growth of the patterned substrate surface.
  • the aluminum nitride layer of the convex gap surface is more likely to grow a gallium nitride based material than the aluminum nitride layer on the surface of the dielectric layer.
  • the aluminum nitride layer on the convex surface is an amorphous layer
  • the aluminum nitride layer on the surface of the convex gap is a polycrystalline layer composed of minute crystal grains.
  • the adjacent protrusions have a pitch of 50 nm to 5000 nm.
  • the dielectric layer has a thickness of 1 nm to 200 nm.
  • the aluminum nitride layer has a thickness of 1 nm to 200 nm.
  • the present invention provides a method for preparing a patterned substrate, comprising the steps of: Sl, providing a substrate having a flat surface, and preparing a plurality of uniformly distributed protrusions on the flat surface, each convex Having a gap therebetween; S2, forming a dielectric layer on the surface of the substrate subjected to the above treatment, covering only the surface of the protrusion, not covering the surface of the convex gap; S3, the dielectric layer Surface and Depositing an aluminum nitride layer on the surface of the raised gap to form a patterned substrate, the aluminum nitride layer on the surface of the dielectric layer suppresses lateral epitaxial growth of the patterned substrate surface, and reduces the positive growth of the epitaxial layer Crystal defects.
  • the step S2 is formed by the following method: forming a dielectric layer covering the surface of the protrusion and the surface of the convex gap on the surface of the substrate processed through the step S1; Coating a photoresist, removing the photoresist and the dielectric layer of the convex gap surface by an etching technique, retaining the photoresist and the dielectric layer of the convex surface; removing the photoresist of the convex surface to form a convex surface A substrate having a dielectric layer and a raised gap surface without a dielectric layer.
  • the dielectric layer has a thickness of 1 nm to 200 nm.
  • the aluminum nitride layer has a thickness of 1 nm to 200 nm.
  • the present invention provides a light emitting diode comprising a patterned substrate and a light emitting epitaxial stack formed on the patterned substrate, the patterned substrate having opposing first and second surfaces, Wherein the first surface is uniformly distributed with a plurality of protrusions, and each of the protrusions has a gap therebetween, and the surface of the protrusion is deposited with a dielectric layer, the surface of the protrusion gap is free of the dielectric layer; An aluminum nitride layer is deposited on the surface and the surface of the raised gap, and the aluminum nitride layer on the surface of the dielectric layer inhibits lateral epitaxial growth of the surface of the patterned substrate.
  • the aluminum nitride layer on the convex surface is an amorphous layer
  • the aluminum nitride layer on the surface of the convex gap is a polycrystalline layer composed of minute crystal grains.
  • the luminescent epitaxial stack selectively grows an aluminum nitride layer on the surface of the bump gap.
  • the present invention deposits a dielectric layer on the convex surface of the patterned substrate without depositing a dielectric layer on the surface of the convex gap, and the aluminum nitride deposited on the convex surface by the PVD method due to the amorphous nature of the dielectric layer
  • the layer is amorphous, and the aluminum nitride layer covering the surface of the non-dielectric layer of the raised gap is a polycrystalline state composed of minute crystal grains.
  • the substrate is applied to the epitaxial layer deposited by MOCVD, and the gallium nitride-based epitaxial layer is more easily grown by the polycrystalline aluminum nitride layer on the surface of the convex gap, and the amorphous aluminum nitride layer on the convex surface is not easy to grow.
  • the characteristics are such that the epitaxial layer is selectively grown on the surface of the aluminum nitride layer on the surface of the bump gap, and the raised surface is less likely to grow the epitaxial layer, reducing the growth probability of the side gallium nitride-based epitaxial layer, and reducing the lateral growth of the gallium nitride based layer.
  • Epitaxial layer The gallium nitride-based epitaxial layer whose surface is grown forward is combined with the lattice defect density of germanium to enhance the performance of the finally formed semiconductor device; meanwhile, the growth of the lateral gallium nitride-based epitaxial layer is suppressed, and the growth is positive.
  • the gallium nitride based epitaxial layer is more easily combined into a flat surface to enhance the crystal quality of the epitaxial layer.
  • FIG. 1 is a schematic structural view of a patterned substrate according to Embodiment 1 of the present invention.
  • FIG. 2a is a schematic view of a substrate having a flat surface according to Embodiment 1 of the present invention.
  • FIG. 2b is a schematic view of a patterned substrate having a plurality of bumps according to Embodiment 1 of the present invention.
  • FIG 3 is a schematic structural view of a substrate after depositing a dielectric layer according to Embodiment 1 of the present invention.
  • FIG. 4a is a schematic structural view of a substrate after coating a photoresist according to Embodiment 1 of the present invention.
  • FIG. 4b is a schematic structural view of a substrate after removing a bump gap dielectric layer according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural view of a substrate after removing a mask layer according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural view of a substrate after depositing an aluminum nitride layer according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of an external structure according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a patterned substrate according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural view of a substrate after depositing an aluminum nitride layer according to Embodiment 2 of the present invention.
  • a patterned substrate 10 is provided.
  • the patterned substrate 10 has opposing first and second surfaces, wherein the first surface is uniformly distributed with a plurality of protrusions on the surface thereof. 11.
  • the phase of the protrusions 11 is 50 n m to 5000 nm, and the top end of the protrusions 11 has no platform structure, which is preferably a triangular pyramid structure.
  • the side surface 112 of the bump 11 is deposited with a dielectric layer 22 having a thickness of 1 nm to 200 nm, and the bump gap surface 111 has no dielectric layer, and the dielectric layer 22 is any one of a silicon dioxide layer or a silicon nitride layer.
  • the surface of the substrate having the dielectric layer 22 is deposited with an aluminum nitride layer 40 having a thickness of 1 nm to 200 nm.
  • the aluminum nitride layer 40 covers the surface of the dielectric layer 22 of the protrusion 11 and the adjacent convex gap surface 111 to form a convex portion, respectively.
  • the surface 111 has no dielectric layer and is a crystalline surface, and the deposited convex gap surface of the aluminum nitride layer 41 is a polycrystalline state composed of minute crystal grains; an amorphous convex side surface of the surface of the dielectric layer 22
  • the aluminum nitride layer 42 and the polycrystalline aluminum nitride layer 41 are more likely to grow the subsequent gallium nitride-based epitaxial layer; thereby causing the amorphous state on the surface of the dielectric layer 22 to suppress lateral epitaxial growth of the surface of the patterned substrate 10, thereby reducing
  • the epitaxial layer grows forward and combines the crystal defect density of the germanium to improve the crystal quality of the epitaxial layer.
  • the present invention provides a method for preparing a patterned substrate, the steps of which are as follows:
  • Sl providing a substrate 10' having a flat surface (as shown in FIG. 2a), and preparing a plurality of uniformly distributed protrusions 11 on the surface of the flat substrate 10' (as shown in FIG. 2b);
  • the substrate 10' is selected from any one of a sapphire substrate, a silicon substrate, and a silicon carbide substrate;
  • a dielectric layer 20 is deposited on the convex side surface 111, and the dielectric layer 20 covers the gap surface 111 between the convex side surface 112 and the adjacent protrusion 11 to form a convex surface.
  • the photoresist 31 and the dielectric layer 21 of the raised gap surface 111 are removed by photolithography and etching techniques, and the photoresist 32 and the dielectric layer 22 of the raised side 112 are retained (as shown in FIG. 4b).
  • Cleaning) removing the photoresist 32 of the convex side 111, and finally forming a substrate having a convex surface having a dielectric layer 22 and a convex gap surface 111 having no dielectric layer (as shown in FIG. 5);
  • a gallium nitride based light emitting epitaxial stack is grown on the patterned substrate 10 to form a light emitting diode structure.
  • the patterned substrate 10 is provided with an opposite first surface and a second surface, wherein the first surface is uniformly distributed with a plurality of protrusions 11 , and the surface of the protrusion 11 is deposited with a dielectric layer 22 , the dielectric layer
  • the surface and raised gap surface 111 is deposited with an aluminum nitride layer 40.
  • the gallium nitride-based epitaxial layer is more easily grown by the polycrystalline aluminum nitride layer 41 on the surface of the non-dielectric layer at the adjacent convex gap surface 111, and the convex side 112 is not
  • the crystalline aluminum nitride layer 42 is not easy to grow, so that the gallium nitride based epitaxial layer is selectively grown on the surface of the polycrystalline aluminum nitride layer 41; and the convex side surface 112 is not easy to grow, and the side gallium nitride based epitaxy is reduced.
  • the growth probability of the layer is reduced, and the lattice defect density of the gallium nitride-based epitaxial layer in which the lateral growth of the gallium nitride-based epitaxial layer and the convex gap surface 111 are grown is reduced, and the performance of the finally formed semiconductor element is improved; Since the growth of the lateral gallium nitride-based epitaxial layer is suppressed, the forward-grown gallium nitride-based epitaxial layers are more easily merged into a flat surface, and then the first semiconductor layer 60, the light-emitting layer 70, and the second surface are continuously deposited on the flat surface.
  • the second semiconductor layer 80 obtains a semiconductor element excellent in crystal quality.
  • the protrusion of the patterned substrate 10 in this embodiment further has a top platform 113 structure, and the protrusion 11 is a truncated cone structure.
  • the dielectric layer 20 is deposited not only on the convex side surface 112 but also on the convex top surface platform 113, and the aluminum nitride layer 40 in the subsequent process is also deposited on the convex layer in turn.
  • the crystalline state and the crystalline state of the aluminum nitride layer 41 of the convex gap surface 112 suppress the phenomenon of the surface layer and the gap surface of the epitaxial layer, thereby improving the crystal quality of the semiconductor element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

La présente invention concerne un substrat à motifs (10), un procédé de préparation, et une diode électroluminescente. Une couche diélectrique (22) est déposée sur la surface d'un substrat avec une pluralité de saillies (11), et grâce à l'utilisation des caractéristiques de corps amorphe de la couche diélectrique (22), des couches de nitrure d'aluminium (42) déposées sur des plateformes de surface latérale (112) et de surface supérieure (113) des saillies au moyen d'un procédé de dépôt physique en phase vapeur sont amorphes, tandis que le nitrure d'aluminium (41) recouvrant des surfaces lisses (111) des intervalles de saillies est un polycristal constitué de particules microcristallines. Ensuite, lorsque le substrat (10) est soumis à un procédé de dépôt chimique en phase vapeur par composés organométalliques (MOCVD ) pour le dépôt de couches épitaxiales à base de nitrure de gallium (50, 60, 70, 80) pour former une diode électroluminescente, grâce à l'utilisation des caractéristiques de croissance plus facile de nitrure d'aluminium polycristallin (41) sur les surfaces lisses et du nitrure d'aluminium amorphe (42) et de dépôt moins facile des couches épitaxiales à base de nitrure de gallium, la croissance des couches de nitrure d'aluminium (41) sur les surfaces lisses (111) des intervalles de saillies est sélective, et leur croissance est moins facile sur les plateformes des surfaces latérales (112) et de la surface supérieure (113) des saillies, de sorte que la croissance des couches épitaxiales à base de nitrure de gallium sur des surfaces latérales est réduite, la quantité de défauts lors de la fusion de couches épitaxiales à base de nitrure de gallium en croissance latérale et des couches épitaxiales à base de nitrure de gallium en croissance positive sur les surfaces lisses (111) est réduite, et la performance de l'élément semi-conducteur formé comme produit final est améliorée. En outre, la croissance des couches épitaxiales latérales à base de nitrure de gallium est interdite, de sorte que les couches épitaxiales à base de nitrure de gallium en croissance positive sont fusionnées en une surface lisse plus facilement.
PCT/CN2016/097799 2015-10-23 2016-09-01 Substrat à motifs, procédé de préparation, et diode électroluminescente WO2017067333A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510691884.4A CN105355739A (zh) 2015-10-23 2015-10-23 图形化衬底、制备方法及发光二极管
CN201510691884.4 2015-10-23

Publications (1)

Publication Number Publication Date
WO2017067333A1 true WO2017067333A1 (fr) 2017-04-27

Family

ID=55331667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097799 WO2017067333A1 (fr) 2015-10-23 2016-09-01 Substrat à motifs, procédé de préparation, et diode électroluminescente

Country Status (2)

Country Link
CN (1) CN105355739A (fr)
WO (1) WO2017067333A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021126445A1 (fr) * 2019-12-19 2021-06-24 Lumileds Llc Dispositif à diode électroluminescente à texture haute densité
US11081622B2 (en) 2017-12-22 2021-08-03 Lumileds Llc III-nitride multi-wavelength LED for visible light communication
US11264530B2 (en) 2019-12-19 2022-03-01 Lumileds Llc Light emitting diode (LED) devices with nucleation layer
CN115132754A (zh) * 2022-06-30 2022-09-30 惠科股份有限公司 背光模组及其制备方法、显示面板

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355739A (zh) * 2015-10-23 2016-02-24 安徽三安光电有限公司 图形化衬底、制备方法及发光二极管
TWI621219B (zh) * 2017-03-07 2018-04-11 環球晶圓股份有限公司 磊晶用碳化矽基板及半導體晶片
CN107452839B (zh) * 2017-07-11 2019-05-14 华灿光电(浙江)有限公司 一种发光二极管外延片及其制作方法
CN107731978B (zh) 2017-09-30 2019-03-08 厦门乾照光电股份有限公司 一种led的外延结构及其制作方法
CN108615798A (zh) * 2018-04-27 2018-10-02 福建兆元光电有限公司 氮化物led外延层结构及制造方法
CN109599468B (zh) * 2018-11-20 2020-09-11 华中科技大学鄂州工业技术研究院 超宽禁带氮化铝材料外延片及其制备方法
CN110112266B (zh) * 2019-05-22 2020-04-28 湘能华磊光电股份有限公司 Led外延片衬底结构及制作方法
CN111206213B (zh) * 2020-02-25 2021-08-13 西安交通大学 一种AlN非晶薄膜及其制备方法
CN114864774B (zh) * 2022-06-07 2023-10-20 淮安澳洋顺昌光电技术有限公司 图形化衬底的制备方法及具有空气隙的led外延结构
CN117613663B (zh) * 2024-01-19 2024-05-10 武汉云岭光电股份有限公司 激光器及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169936A (zh) * 2011-02-16 2011-08-31 亚威朗光电(中国)有限公司 图形衬底和led芯片
CN102447023A (zh) * 2010-09-30 2012-05-09 丰田合成株式会社 生产iii族氮化物半导体发光器件的方法
CN102576663A (zh) * 2009-07-17 2012-07-11 应用材料公司 在图案化基材上藉由氢化物气相外延法(hvpe)形成三族氮化物结晶膜的方法
CN103022291A (zh) * 2011-09-24 2013-04-03 山东浪潮华光光电子有限公司 一种具有全方位反射镜的图形衬底及其制备方法
CN103227258A (zh) * 2012-01-30 2013-07-31 隆达电子股份有限公司 图案化基板及堆栈发光二极管结构
CN105355739A (zh) * 2015-10-23 2016-02-24 安徽三安光电有限公司 图形化衬底、制备方法及发光二极管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232067B (zh) * 2005-05-16 2013-05-15 索尼株式会社 发光二极管及其制造方法、集成发光二极管、以及显示器
JP4637781B2 (ja) * 2006-03-31 2011-02-23 昭和電工株式会社 GaN系半導体発光素子の製造方法
CN104364917B (zh) * 2012-06-13 2017-03-15 夏普株式会社 氮化物半导体发光元件及其制造方法
US9099381B2 (en) * 2012-11-15 2015-08-04 International Business Machines Corporation Selective gallium nitride regrowth on (100) silicon
CN104576845A (zh) * 2014-12-16 2015-04-29 深圳市德上光电有限公司 一种图形化的蓝宝石衬底的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576663A (zh) * 2009-07-17 2012-07-11 应用材料公司 在图案化基材上藉由氢化物气相外延法(hvpe)形成三族氮化物结晶膜的方法
CN102447023A (zh) * 2010-09-30 2012-05-09 丰田合成株式会社 生产iii族氮化物半导体发光器件的方法
CN102169936A (zh) * 2011-02-16 2011-08-31 亚威朗光电(中国)有限公司 图形衬底和led芯片
CN103022291A (zh) * 2011-09-24 2013-04-03 山东浪潮华光光电子有限公司 一种具有全方位反射镜的图形衬底及其制备方法
CN103227258A (zh) * 2012-01-30 2013-07-31 隆达电子股份有限公司 图案化基板及堆栈发光二极管结构
CN105355739A (zh) * 2015-10-23 2016-02-24 安徽三安光电有限公司 图形化衬底、制备方法及发光二极管

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11081622B2 (en) 2017-12-22 2021-08-03 Lumileds Llc III-nitride multi-wavelength LED for visible light communication
US11594572B2 (en) 2017-12-22 2023-02-28 Lumileds Llc III-nitride multi-wavelength LED for visible light communication
WO2021126445A1 (fr) * 2019-12-19 2021-06-24 Lumileds Llc Dispositif à diode électroluminescente à texture haute densité
US11211527B2 (en) 2019-12-19 2021-12-28 Lumileds Llc Light emitting diode (LED) devices with high density textures
US11264530B2 (en) 2019-12-19 2022-03-01 Lumileds Llc Light emitting diode (LED) devices with nucleation layer
KR20220107068A (ko) * 2019-12-19 2022-08-01 루미레즈 엘엘씨 고밀도 텍스처들을 갖는 발광 다이오드(led) 디바이스들
JP2022551340A (ja) * 2019-12-19 2022-12-08 ルミレッズ リミテッド ライアビリティ カンパニー 高密度テクスチャを有する発光ダイオード(led)装置
KR102497403B1 (ko) 2019-12-19 2023-02-10 루미레즈 엘엘씨 고밀도 텍스처들을 갖는 발광 다이오드(led) 디바이스들
JP7325641B2 (ja) 2019-12-19 2023-08-14 ルミレッズ リミテッド ライアビリティ カンパニー 高密度テクスチャを有する発光ダイオード(led)装置
CN115132754A (zh) * 2022-06-30 2022-09-30 惠科股份有限公司 背光模组及其制备方法、显示面板

Also Published As

Publication number Publication date
CN105355739A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
WO2017067333A1 (fr) Substrat à motifs, procédé de préparation, et diode électroluminescente
TWI574434B (zh) A substrate for the growth of Group III-V nitride and a preparation method thereof
JP5117596B2 (ja) 半導体発光素子、ウェーハ、および窒化物半導体結晶層の製造方法
CN104037287B (zh) 生长在Si衬底上的LED外延片及其制备方法
JP5105621B2 (ja) シリコン基板上にInGaAlN膜および発光デバイスを形成する方法
TWI464903B (zh) 外延襯底及其製備方法、外延襯底作為生長外延層的應用
JP2009123717A5 (fr)
US20140191243A1 (en) Patterned articles and light emitting devices therefrom
CN110783167B (zh) 一种半导体材料图形衬底、材料薄膜及器件的制备方法
JP2008047860A (ja) 表面凹凸の形成方法及びそれを利用した窒化ガリウム系発光ダイオード素子の製造方法
JP5612516B2 (ja) 半導体素子の製造方法
TWI598288B (zh) 外延結構體
JP2012516049A (ja) 半導体素子、発光素子及びこれの製造方法
WO2017041661A1 (fr) Élément à semi-conducteur et son procédé de préparation
CN114122210A (zh) 复合衬底led外延结构及其制备方法
TWI725418B (zh) 磊晶於異質基板之結構及其製備方法
FR3031834A1 (fr) Fabrication d'un support semi-conducteur a base de nitrures d'elements iii
TWI736962B (zh) 複合式基板及其製造方法
CN111525012B (zh) 一种发光二极管及其制作方法
JP2015129057A (ja) 凹凸構造を有する結晶基板
CN104701137B (zh) AlN缓冲层及具有该缓冲层的芯片的制备方法
WO2017076119A1 (fr) Substrat de saphir à motifs, diode électroluminescente et leurs procédés de fabrication
KR100765236B1 (ko) 패터닝된 발광다이오드용 기판 제조방법 및 그것을채택하는 발광 다이오드 제조방법
TWI395847B (zh) 針對藍寶石基板之蝕刻方法及圖案化藍寶石基板
WO2016173359A1 (fr) Structure de del et son procédé de préparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16856767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16856767

Country of ref document: EP

Kind code of ref document: A1