WO2017063360A1 - 车联网中的车辆距离确定方法和装置 - Google Patents

车联网中的车辆距离确定方法和装置 Download PDF

Info

Publication number
WO2017063360A1
WO2017063360A1 PCT/CN2016/081746 CN2016081746W WO2017063360A1 WO 2017063360 A1 WO2017063360 A1 WO 2017063360A1 CN 2016081746 W CN2016081746 W CN 2016081746W WO 2017063360 A1 WO2017063360 A1 WO 2017063360A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
directional antenna
assistance information
positioning assistance
information
Prior art date
Application number
PCT/CN2016/081746
Other languages
English (en)
French (fr)
Inventor
徐勇
陈昆盛
李文锐
刘鹏
林伟
Original Assignee
乐视控股(北京)有限公司
乐卡汽车智能科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐视控股(北京)有限公司, 乐卡汽车智能科技(北京)有限公司 filed Critical 乐视控股(北京)有限公司
Priority to RU2016130698A priority Critical patent/RU2016130698A/ru
Priority to EP16757541.4A priority patent/EP3176602A4/en
Publication of WO2017063360A1 publication Critical patent/WO2017063360A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/04Details
    • G01S3/12Means for determining sense of direction, e.g. by combining signals from directional antenna or goniometer search coil with those from non-directional antenna
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • the present invention relates to the field of vehicle networking technologies, and in particular, to a vehicle distance determining method and apparatus in a vehicle networking.
  • IEEE 802.11p also known as WAVE, Wireless Access in the Vehicular Environment
  • IEEE 802.11p is a communication protocol extended by the IEEE 802.11 standard, mainly used for in-vehicle electronic wireless communication.
  • In-vehicle electronic wireless communication can be carried out between vehicles or between a vehicle and a roadside infrastructure network.
  • IEEE 802.11p specifies the physical layer and data link layer information of the car networking communication network.
  • the physical layer defines parameters such as communication frequency, transmission power, signal modulation mode, and channel division.
  • the data link layer specifies that the 802.11p protocol uses CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) to access the network.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • satellite positioning technology or satellite satellite positioning technology is usually used to realize the positioning of the vehicle on the ground.
  • the positioning accuracy of the satellite positioning method is relatively high, and its positioning accuracy can reach 1 meter or even higher.
  • the vehicle needs to transmit its own position information to the front and rear vehicles, and the rear vehicle can determine the distance between itself and the preceding vehicle according to the precise position information sent by the preceding vehicle to ensure safe driving. distance.
  • emergency braking of the front car sudden collapse of the road surface, dangerous objects in the front car, etc., causing emergency braking of the vehicle ahead, and the rear vehicle can take corresponding measures according to the distance between itself and the vehicle in front.
  • satellite positioning technology has some limitations. For example, in rainy and snowy weather, water vapor has a great attenuation to satellite signals, or in an occluded area such as a tunnel, the vehicle cannot receive satellite signals. In this case, the satellite positioning will be invalid and the precise position of the vehicle cannot be provided. information.
  • the positioning method based on other technologies has lower positioning accuracy, if in some emergency situations, the rear If the vehicle cannot know the precise position information of the vehicle in front, it is impossible to determine the distance between the vehicle and the vehicle in front, so that it is impossible to take corresponding braking measures when the vehicle is in emergency braking, which poses a safety hazard to the rear vehicle.
  • Embodiments of the present invention provide a method and apparatus for determining a vehicle distance in a vehicle network, for determining a distance between vehicles in a vehicle network when satellite positioning fails.
  • An embodiment of the present invention provides a vehicle distance determining method in a vehicle network, in which a directional antenna is installed, and the directional antenna is connected to an in-vehicle communication module of the vehicle;
  • the method includes:
  • the first vehicle receives, by the first directional antenna, vehicle positioning assistance information transmitted by the second vehicle through the second directional antenna, the vehicle positioning assistance information including direction indication information of the second directional antenna and the vehicle positioning assistance information Transmitting power
  • the first vehicle determines a distance between the second vehicle and itself according to the transmission power and the received power of the vehicle positioning assistance information.
  • An embodiment of the present invention provides a vehicle distance determining apparatus in a vehicle networking, including an in-vehicle communication module and a directional antenna connected to the in-vehicle communication module, wherein:
  • the directional antenna is configured to receive vehicle positioning assistance information sent by the second vehicle through a directional antenna of the second vehicle, where the vehicle positioning assistance information includes direction indication information of the second directional antenna and the vehicle The transmission power of the positioning auxiliary information;
  • the in-vehicle communication module is configured to determine, according to the direction indication information, a direction of the second vehicle relative to a vehicle in which the vehicle is located; and determine, according to the transmission power and the received power of the vehicle positioning assistance information The distance between the second vehicle and the vehicle in which it is located.
  • An embodiment of the present invention provides a vehicle distance determining device in a vehicle networking, including a memory and a processor, wherein the processor can be used to read a program in the memory, and perform the following process: the first vehicle receives through the first directional antenna Vehicle positioning assistance information transmitted by the second vehicle through the second directional antenna, the vehicle positioning assistance information including direction indication information of the second directional antenna and the vehicle The transmission power of the positioning assistance information; the first vehicle determines a direction of the second vehicle relative to itself according to the direction indication information; and the first vehicle receives the vehicle positioning according to the transmission power and itself The received power of the auxiliary information determines the distance between the second vehicle and itself.
  • the processor can be used to read a program in the memory, and perform the following process: the first vehicle receives through the first directional antenna Vehicle positioning assistance information transmitted by the second vehicle through the second directional antenna, the vehicle positioning assistance information including direction indication information of the second directional antenna and the vehicle The transmission power of the positioning assistance information; the first vehicle determines a direction of the second vehicle relative to itself according
  • the method and device for determining a vehicle distance in a vehicle network receives vehicle positioning assistance information transmitted by other vehicles through a directional antenna, and uses the directional antenna direction indication information therein to determine directions of other vehicles relative to themselves, and utilizes the The transmission power of the vehicle positioning assistance information is combined with its own received power to determine the distance of other vehicles from itself, thereby determining the distance between the vehicles and the relative direction between the vehicles.
  • FIG. 1 is a schematic diagram of a connection structure between a directional antenna and an in-vehicle communication module according to the present invention
  • FIG. 2 is a schematic view of a vehicle in which a directional antenna is mounted in the present invention
  • FIG. 3 is a flow chart of an embodiment of a method for determining a distance of a vehicle in a vehicle network according to the present invention
  • FIG. 4 is a schematic diagram showing a frame structure of an extended 802.11p data frame according to the present invention.
  • FIG. 5 is a schematic structural view of an embodiment of a vehicle distance determining device in a vehicle network according to the present invention.
  • a directional antenna is an antenna that emits and receives electromagnetic waves in one or more specific directions and is particularly strong in transmitting and receiving electromagnetic waves in other directions. With this characteristic of the directional antenna, in the embodiment of the present invention, information transmitted by a nearby vehicle can be received by installing a directional antenna on the vehicle.
  • the vehicle Since the vehicle mainly needs to collect the information of the vehicles before and after it, in the specific implementation, it can be A directional antenna for collecting information of the preceding vehicle and a directional antenna for collecting information of the rear vehicle are respectively installed on the vehicle.
  • the embodiment of the present invention is referred to as a forward antenna and a backward antenna, respectively. Both the forward antenna and the backward antenna are connected to the in-vehicle communication module for transmitting the received information to the in-vehicle communication module; and transmitting the vehicle information collected by the in-vehicle communication module to the front and rear vehicles.
  • the forward antenna can only transmit and receive radio waves to the front, and the backward antenna can only transmit and receive radio waves to the rear.
  • the forward antenna is configured to receive information transmitted by the preceding vehicle through the backward antenna, and to transmit the vehicle information to the backward antenna of the preceding vehicle;
  • the backward antenna is configured to receive information transmitted by the rear vehicle through the forward antenna; and the vehicle Information is sent to the forward antenna of the rear vehicle.
  • FIG. 1 it is a schematic diagram of a connection structure between a forward antenna and a backward antenna and an in-vehicle communication module.
  • FIG. 2 it is a schematic diagram of a vehicle in which a forward antenna and a backward antenna are installed.
  • the directional antenna involved in the embodiments of the present invention may be, but is not limited to, a parabolic antenna, a Cassegrain antenna, or a Yagi antenna.
  • the in-vehicle communication module involved in the embodiment of the present invention may be, but is not limited to, an in-vehicle communication module supporting the 802.11p protocol, which may be a T-box (Telematics box), a front loading machine, and an OBD (On-Board Diagnostic). , on-board diagnostic system) or after-loading machine, or even a dedicated WAVE BOX (Wireless Access in the Vehicular Environment Telematics Box).
  • an embodiment of the present invention provides a method for determining a vehicle distance by using a directional antenna. As shown in FIG. 3, the following steps may be included:
  • the first vehicle receives the vehicle positioning assistance information sent by the second vehicle through the second directional antenna through the first directional antenna.
  • the vehicle positioning assistance information includes direction indication information of the second directional antenna and transmission power of the vehicle positioning assistance information.
  • the first directional antenna is a forward antenna
  • the second directional antenna is a backward antenna
  • the first directional antenna is backward
  • the first directional antenna is a forward antenna.
  • the first vehicle is taken as an example behind the second vehicle, and the embodiment of the first vehicle in front of the second vehicle is similar to the embodiment in which the first vehicle is behind the second vehicle.
  • the in-vehicle communication module of the second vehicle may encapsulate the information according to a certain communication protocol, and the communication protocol may be, but not limited to, 802.11p.
  • the forward antenna and the backward antenna need to be forwarded forward and backward respectively.
  • the vehicle transmits the vehicle positioning assistance information. Therefore, when the data packet is packaged, the vehicle positioning assistance information needs to be encapsulated into two data packets, one for transmitting to the front vehicle through the forward antenna and one for transmitting through the backward antenna.
  • the rear vehicle is sent.
  • 802.11p is taken as an example for description.
  • the 802.11p data frame needs to be extended in the embodiment of the present invention, because the existing 802.11p data frame does not support the transmission of the vehicle positioning assistance information.
  • FIG. 4 it is a schematic diagram of an extended 802.11p data frame structure. Two bytes are added to the frame entity field of the 802.11p data frame for transmitting vehicle positioning assistance information. Specifically, as shown in Table 1, the structure of the two bytes is increased:
  • ON/OFF is used to indicate that the vehicle distance method is turned on by the directional antenna, and when the value is 1, the method for determining the vehicle distance by using the directional antenna is turned on; when the value is 0, the directional antenna is used.
  • the vehicle distance method is determined to be closed; the GPS indicates the state of the satellite positioning system. When the value is 1, the current GPS information is valid; when the value is 0, the current GPS information is invalid; Front indicates the state of the vehicle's forward antenna, and the value is 1 When the value is 0, it indicates that the forward antenna is off; Back indicates the state of the vehicle's forward antenna. When the value is 1, it indicates that the forward antenna is open; when the value is 0, it indicates the forward direction. The antenna is turned off; P/S indicates the data processing mode. When the value is 1, the data processing mode is the parallel data processing state; when the value is 0, the data processing mode is the serial data processing state; N/A is the reserved bit. .
  • P:7-P:0 is used to store the binary value of the integer value of the vehicle positioning auxiliary information transmission power, and the corresponding decimal number range is 0 dBm-50 dBm.
  • the Front value in the first byte is 1 and the Back value is 0;
  • the Front value in the first byte is 0, and the Back value is 1.
  • the first vehicle receiving the vehicle positioning assistance information may determine the direction of the second vehicle transmitting the data packet relative to itself based on the values of Front and Back. If Front is 1, and Back is 0, that is, the second vehicle transmits a data packet through the forward antenna, it indicates that the second vehicle is located in the first vehicle. Rear, if Front is 0 and Back is 1, that is, the second vehicle transmits a data packet through the rear antenna, indicating that the second vehicle is located in front of the first vehicle.
  • the second vehicle transmits the vehicle positioning assistance information to the first vehicle through the extended 802.11p data frame, where the direction indication information of the directional antenna transmitting the information is included (through the Front and Back of the first byte in Table 1) The value indicates) and the transmit power to send the message (indicated by the second byte in Table 1).
  • the first vehicle determines a direction of the second vehicle relative to itself according to the direction indication information in the vehicle-assisted positioning information.
  • the first vehicle can obtain the information in Table 1 above by parsing the data packet sent by the second vehicle. For example, if the information sent by the second vehicle has a Front value of 0 and a Back value of 1, the second vehicle is in front of the first vehicle.
  • the first vehicle determines a distance between the second vehicle and itself according to the transmission power in the vehicle-assisted positioning information and the received power of the vehicle positioning assistance information.
  • the first vehicle may acquire, from its own physical layer chip, the receiving power of receiving the second vehicle transmitting vehicle positioning auxiliary information.
  • the F value may be 5900 MHz, and the R value may be 32.4 dB.
  • the vehicle distance determining method provided by the embodiment of the present invention may be used in an auxiliary determining method in a satellite positioning failure scenario, that is, when the first vehicle detects that its own satellite positioning system fails, the first embodiment of the present invention may be started.
  • the vehicle distance determining method is to transmit or receive the vehicle-assisted positioning information by the directional antenna forward and backward.
  • the second vehicle starts the vehicle distance determining method provided by the embodiment of the present invention, that is, the directional antenna transmits or receives the vehicle-assisted positioning information to the vehicle.
  • Step 1 The first vehicle detects whether its own satellite positioning system is invalid.
  • Step 2 When detecting that its own satellite positioning system fails, the first vehicle turns on the directional antenna for receiving vehicle positioning assistance information.
  • the second vehicle can indicate whether the satellite positioning system is invalid by the GPS value in Table 1, so that the first vehicle can determine whether the GPS of the second vehicle is invalid according to the value of the GPS in the received data packet, if In case of failure, the first vehicle determines the direction of the second vehicle relative to itself according to the Front and Back values in the received data packet, and determines the transmission power of the second vehicle according to the second byte in Table 1, and accordingly Determine the distance between the second vehicle and itself.
  • the in-vehicle communication module needs to process two channels of data from the forward antenna and the backward antenna, for the in-vehicle communication module supporting parallel data processing, the two channels of data can be processed simultaneously without interference; but for the data is not supported For the in-vehicle communication module to be processed, it can only process the received two-way data through serial data processing.
  • the vehicle-mounted communication module can only process one channel of data at the same time, if the vehicle-mounted communication module is simultaneously After receiving another data, the data can only be processed after the previous data processing is finished. If the previous data processing timeout or other reasons, the waiting data may be discarded.
  • the data processing mode indication information may be included in the vehicle positioning assistance information (ie, the P/S indication in Table 1). If the value is P, the data sending end is used. The second vehicle) supports the parallel data processing mode. If the value is S, the data sender supports the serial processing mode. In order to avoid the success of data reception in the serial processing mode, in the embodiment of the present invention, if the first vehicle determines that the data processing mode of the second vehicle is the serial processing mode according to the vehicle positioning assistance information sent by the second vehicle, When the first vehicle transmits its own vehicle location assistance information to the second vehicle, the retransmission mechanism may be turned on to transmit its own vehicle location assistance information to the second vehicle.
  • the first vehicle determines, according to the received vehicle positioning assistance information, that the second vehicle satellite positioning system is restored to an active state (determined according to GPS in Table 1), the second vehicle position determined by the satellite positioning system is determined. Information determines its distance from itself.
  • a vehicle-vehicle communication mechanism has been established between the two vehicles to jointly enter a tunnel of 10KM in length, and the satellite positioning system fails.
  • the A car found a worn tire in the middle of the road ahead, and the A car braked urgently. Since the satellite signal could not be received, the method of determining the vehicle distance using the directional antenna was immediately turned on immediately after the two cars entered the tunnel.
  • the A car found a tire in the middle of the road ahead, and the A car braked urgently, and sent emergency braking information and vehicle positioning assistance information to the B car through the rear antenna.
  • the B-vehicle forward antenna receives emergency braking information and vehicle positioning assistance information. It is determined that there is an emergency brake 300 meters ahead, and then the B car also makes an emergency brake operation to ensure the safety of the two vehicles.
  • the embodiment of the present invention further provides a vehicle distance determining device in a vehicle network. Since the principle of solving the problem in the device is similar to the method for determining the distance of the vehicle in the car network, the implementation of the device and the system may be implemented. See the implementation of the method, and the repetition will not be repeated.
  • FIG. 5 is a schematic structural diagram of a vehicle distance determining apparatus in a vehicle network according to an embodiment of the present invention, including an in-vehicle communication module and a directional antenna connected to the in-vehicle communication module, wherein:
  • the directional antenna 51 is configured to receive vehicle positioning assistance information sent by the second vehicle through the directional antenna of the second vehicle, where the vehicle positioning assistance information includes direction indication information of the second directional antenna and transmission power of the vehicle positioning assistance information;
  • the vehicle communication module 52 is configured to determine, according to the direction indication information, a direction of the second vehicle relative to the vehicle in which the vehicle is located; and determine, between the second vehicle and the vehicle in which the vehicle is located, according to the transmission power and the received power of the vehicle positioning assistance information. distance.
  • the vehicle distance determining device in the vehicle network may further include:
  • the detecting module 53 is configured to detect whether the satellite positioning system of the vehicle in which it is located is invalid;
  • the directional antenna opening module 54 is configured to turn on the directional antenna for receiving the vehicle positioning assistance information when the detecting module 53 detects that the satellite positioning system of the vehicle in which it is located fails.
  • the vehicle positioning assistance information further includes data processing mode indication information of the second vehicle;
  • the in-vehicle communication module 52 is further configured to: when transmitting the vehicle positioning assistance information of the vehicle in which the vehicle is located by the directional antenna to the directional antenna of the second vehicle, if the data processing mode indication information is used, determining that the data processing mode of the second vehicle is serial processing In the manner, the retransmission mechanism is turned on to transmit its own vehicle positioning assistance information to the second vehicle.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located One place, or it can be distributed to multiple networks On the unit. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Navigation (AREA)

Abstract

一种车联网中的车辆距离确定方法和装置,用以在卫星定位失效时,确定车联网中车辆之间的距离。所述车辆中安装有定向天线(51),所述定向天线(51)与所述车辆的车载通信模块(52)连接;所述车联网中的车辆距离确定方法中,包括:第一车辆通过第一定向天线接收第二车辆通过第二定向天线发送的车辆定位辅助信息(S31),所述车辆定位辅助信息包括所述第二定向天线的方向指示信息和所述车辆定位辅助信息的发送功率;所述第一车辆根据所述方向指示信息,确定所述第二车辆相对于自身的方向(S32);以及所述第一车辆根据所述发送功率和自身接收所述车辆定位辅助信息的接收功率,确定所述第二车辆与自身的距离(S33)。

Description

车联网中的车辆距离确定方法和装置
本申请要求在2015年10月16日提交中国专利局、申请号为201510673639.0、发明名称为“车联网中的车辆距离确认方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及车联网技术领域,特别涉及车联网中的车辆距离确定方法和装置。
背景技术
车联网中使用的通信标准为IEEE 802.11p协议。IEEE 802.11p(又称WAVE,Wireless Access in the Vehicular Environment)是一个由IEEE 802.11标准扩充的通信协议,主要用于车载电子无线通信。车载电子无线通信可以在车辆之间进行,也可以是车辆与路边基础设施网络之间进行。
IEEE 802.11p规定了车联网通信网络的物理层和数据链路层信息。其中物理层规定的是通信频率、发射功率、信号调制方式、信道划分等参数。数据链路层规定了802.11p协议采用CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance,载波侦听多路访问/冲突避免)方式接入网络。
在车联中通常采用卫星定位技术,或者辅助卫星定位技术实现车辆在地面的定位。卫星定位方式的定位精度较高,其定位精度可达到1米以内甚至更高。在车辆与车辆通信的过程中,根据802.11p标准,车辆需要将自身的位置信息发送给前后的车辆,后方车辆可以根据前方车辆发送的精确位置信息确定自身与前方车辆的距离,以保证安全行驶距离。特别是在一些特殊情况下,比如前车紧急刹车,路面突然出现塌陷,前车遗撒危险物体等造成前方车辆紧急制动,后方车辆可以根据自身与前方车辆之间的距离采取相应的处理措施。
但是卫星定位技术存在一些限制场景。例如,雨雪天气,水汽对卫星信号造成的衰减很大,或者,在有遮挡区域如隧道内部等,车辆无法接收到卫星信号,这种情况下将导致卫星定位失效,无法提供车辆的精确位置信息。但是基于其他技术的定位方式定位精度较低,如果在一些紧急情况下,后方 车辆无法获知前方车辆的精确位置信息,则无法确定其与前方车辆之间的距离,从而无法在前方车辆紧急制动时采取相应的制动措施,给后方车辆造成行驶的安全隐患。
由此可见,如何在卫星定位系统失效时,准确确定车辆之间的距离成为现有技术亟待解决的技术问题之一。
发明内容
本发明实施例提供一种车联网中的车辆距离确定方法和装置,用以在卫星定位失效时,确定车联网中车辆之间的距离。
本发明实施例提供一种车联网中的车辆距离确定方法,所述车辆中安装有定向天线,所述定向天线与所述车辆的车载通信模块连接;以及
所述方法,包括:
第一车辆通过第一定向天线接收第二车辆通过第二定向天线发送的车辆定位辅助信息,所述车辆定位辅助信息包括所述第二定向天线的方向指示信息和所述车辆定位辅助信息的发送功率;
所述第一车辆根据所述方向指示信息,确定所述第二车辆相对于自身的方向;以及
所述第一车辆根据所述发送功率和自身接收所述车辆定位辅助信息的接收功率,确定所述第二车辆与自身的距离。
本发明实施例提供一种车联网中的车辆距离确定装置,包括车载通信模块和与所述车载通信模块连接的定向天线,其中:
所述定向天线,用于接收所述第二车辆通过所述第二车辆的定向天线发送的车辆定位辅助信息,所述车辆定位辅助信息包括所述第二定向天线的方向指示信息和所述车辆定位辅助信息的发送功率;
所述车载通信模块,用于根据所述方向指示信息,确定所述第二车辆相对于自身所在车辆的方向;以及根据所述发送功率和自身接收所述车辆定位辅助信息的接收功率,确定所述第二车辆与自身所在车辆之间的距离。
本发明实施例提供一种车联网中的车辆距离确定设备,包括存储器和处理器,其中,处理器可以用于读取存储器中的程序,执行下列过程:第一车辆通过第一定向天线接收第二车辆通过第二定向天线发送的车辆定位辅助信息,所述车辆定位辅助信息包括所述第二定向天线的方向指示信息和所述车 辆定位辅助信息的发送功率;所述第一车辆根据所述方向指示信息,确定所述第二车辆相对于自身的方向;以及所述第一车辆根据所述发送功率和自身接收所述车辆定位辅助信息的接收功率,确定所述第二车辆与自身的距离。
本发明实施例提供的车联网中的车辆距离确定方法和装置,通过定向天线接收其它车辆发送的车辆定位辅助信息,利用其中的定向天线方向指示信息确定其它车辆相对于自身的方向,利用其中的车辆定位辅助信息的发送功率结合自身的接收功率来确定其它车辆与自身的距离,由此确定出了车辆之间的距离以及车辆之间的相对方向。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中定向天线与车载通信模块之间的连接结构示意图;
图2为本发明中安装定向天线的车辆示意图;
图3为本发明中车联网中车辆距离确定方法实施例流程图;
图4为本发明中扩展的802.11p数据帧的帧结构示意图;
图5为本发明中车联网中车辆距离确定装置实施例结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
定向天线(Directional antenna)是指在某一个或某几个特定方向上发射及接收电磁波特别强,而在其他的方向上发射及接收电磁波则为零或极小的一种天线。利用定向天线的这一特性,本发明实施例中,可以通过在车辆上安装定向天线接收附近车辆发送的信息。
由于车辆主要需要收集其前后车辆的信息,因此,具体实施时,可以在 车辆上分别安装一个用于收集前方车辆信息的定向天线和一个用于收集后方车辆信息的定向天线,为了便于描述,本发明实施例中分别称之为前向天线和后向天线。前向天线和后向天线均与车载通信模块连接,用于将接收到的信息传输给车载通信模块;以及将车载通信模块收集的本车信息发送给前后车辆。
其中,前向天线只能向前方发送、接收无线电波,后向天线只能向后方发送、接收无线电波。前向天线用于接收前方车辆通过后向天线发送的信息,以及将本车信息发送给前方车辆的后向天线;后向天线用于接收后方车辆通过前向天线发送的信息;以及将本车信息发送给后方车辆的前向天线。如图1所示,为前向天线和后向天线与车载通信模块连接结构示意图。如图2所示,为安装了前向天线和后向天线的车辆示意图。
需要说明的是,本发明实施例中涉及的定向天线可以但不限于为抛物面天线、卡塞格伦天线或者八木天线等。本发明实施例中涉及的车载通信模块可以但不限于为支持802.11p协议的车载通信模块,其可以为T-box(Telematics box,车载微软系统)或前装车机,OBD(On-Board Diagnostic,车载诊断系统)或者后装车机,甚至可以是专用WAVE BOX(Wireless Access in the Vehicular Environment Telematics Box,车载电控盒子)。
基于此,本发明实施例提供了一种利用定向天线确定车辆距离的方法,如图3所示,可以包括以下步骤:
S31、第一车辆通过第一定向天线接收第二车辆通过第二定向天线发送的车辆定位辅助信息。
较佳的,车辆定位辅助信息包括第二定向天线的方向指示信息和所述车辆定位辅助信息的发送功率。
如果第一车辆在第二车辆后方,第一定向天线为前向天线,第二定向天线为后向天线,反之,如果第一车辆在第二车辆前方,则第一定向天线为后向天线,第二定向天线为前向天线。为了便于描述,本发明实施例中以第一车辆在第二车辆后方为例进行说明,第一车辆在第二车辆前面的实施方式与第一车辆在第二车辆后方的实施方式类似。
具体实施时,第二车辆的车载通信模块在收集到第二车辆的车辆定位辅助信息后,可以遵循一定的通信协议封装该信息,该通信协议可以但不限于为802.11p。由于本发明实施例中,需要分别通过前向天线和后向天线向前后 车辆发送车辆定位辅助信息,因此,在进行数据包封装时,需要将该车辆定位辅助信息封装为两个数据包,一个用于通过前向天线向前方车辆发送,一个用于通过后向天线向后方车辆发送。为了便于理解,本发明实施例中以802.11p为例进行说明。
由于现有的802.11p数据帧不支持车辆定位辅助信息的传输,为了向前后车辆传输车辆定位辅助信息,本发明实施例中需要对802.11p数据帧进行扩展。如图4所示,为扩展后的802.11p数据帧结构示意图。在802.11p数据帧的帧实体字段中增加两个字节,用于传输车辆定位辅助信息。具体的,如表1所示,为增加的两个字节的结构:
表1
Figure PCTCN2016081746-appb-000001
其中,第一字节中,ON/OFF用于表示利用定向天线确定车辆距离方法开启状态,取值为1时,表示利用定向天线确定车辆距离方法开启;取值为0时,表示利用定向天线确定车辆距离方法关闭;GPS表示卫星定位系统状态,取值为1时,表示当前GPS信息有效;取值为0时,表示当前GPS信息失效;Front表示车辆前向天线的状态,取值为1时,表示前向天线打开;取值为0时,表示前向天线关闭;Back表示车辆前向天线的状态,取值为1时,表示前向天线打开;取值为0时,表示前向天线关闭;P/S表示数据处理方式,取值为1时,表示数据处理方式为并行数据处理状态;取值为0时,表示数据处理方式为串行数据处理状态;N/A为保留位。
第二字节中,P:7—P:0用于存放车辆定位辅助信息发送功率的整数值的二进制数值,所对应的十进制数范围是0dBm-50dBm。
需要说明的是,在进行数据包封装过程中,针对不同方向封装的数据包中,对于通过前向天线发送的数据包,第一字节中的Front取值为1,Back取值为0;对于通过后向天线发送的数据包,第一字节中的Front取值为0,Back取值为1。接收到包含车辆定位辅助信息的第一车辆可以根据Front和Back的取值确定发送该数据包的第二车辆相对于自身的方向。如果Front为1,Back为0,即第二车辆通过前向天线发送数据包,则说明第二车辆位于第一车辆的 后方,如果Front为0,Back为1,即第二车辆通过后向天线发送数据包,则说明第二车辆位于第一车辆的前方。
由此,第二车辆通过扩展的802.11p数据帧将车辆定位辅助信息发送给第一车辆,其中包含发送该信息的定向天线的方向指示信息(通过表1中第一字节的Front和Back取值指示)和发送该信息的发送功率(通过表1中的第二字节指示)。
S32、第一车辆根据车载辅助定位信息中的方向指示信息,确定第二车辆相对于自身的方向。
具体实施时,第一车辆通过解析第二车辆发送的数据包便可以获取上述表1中的信息。例如,第二车辆发送的信息中Front取值为0,Back取值为1,则说明第二车辆在第一车辆的前方。
S33、第一车辆根据车载辅助定位信息中的发送功率和自身接收车辆定位辅助信息的接收功率,确定第二车辆与自身的距离。
其中,第一车辆可以从自身的物理层芯片中获取自身接收第二车辆发送车辆定位辅助信息的接收功率。
具体的,第一车辆可以根据无线信号自由空间损耗确定第二车辆与自身的距离,具体的,自由空间损耗=P1-P2,且自由空间损耗=20lg(F)+20lg(D)+R,其中,P1为第二车辆发送车载辅助定位信息的发送功率;P2为第一车辆接收车载辅助定位信息的接收功率;F为预设的通信频率;D为第二车辆与第一车辆的距离;R为预设值。其中,如果第一车辆和第二车辆之间遵循802.11p协议,则F取值可以为5900MHz,R取值可以为32.4dB。
具体实施时,本发明实施例提供的车辆距离确定方法可以用于在卫星定位失效场景下的辅助确定方法,即第一车辆在检测到自身的卫星定位系统失效时,可以启动本发明实施例提供的车辆距离确定方法,即通过定向天线向前后车辆发送或者接收车载辅助定位信息。同样,第二车辆在检测到自身的卫星定位系统失效时,启动本发明实施例提供的车辆距离确定方法,即通过定向天线向前后车辆发送或者接收车载辅助定位信息。
即本发明实施例中,在实施步骤S31之前,还可以包括以下步骤:
步骤一、第一车辆检测自身的卫星定位系统是否失效。
步骤二、在检测到自身的卫星定位系统失效时,第一车辆开启定向天线用于接收车辆定位辅助信息。
其中,第二车辆可以通过表1中的GPS取值指示其卫星定位系统是否失效,这样,第一车辆根据接收到的数据包中GPS的取值可以判断出第二车辆的GPS是否失效,如果失效,则第一车辆根据接收到的数据包中的Front和Back取值确定第二车辆相对于自身的方向,以及根据表1中的第二字节确定第二车辆的发送功率,并据此确定出第二车辆与自身的距离。
具体实施时,由于车载通信模块需要处理来自前向天线和后向天线的两路数据,对于支持并行数据处理的车载通信模块来说,两路数据互不干扰可以同时处理;但是对于不支持数据处理的车载通信模块来说,其只能通过串行数据处理方式处理接收到的两路数据,这种情况下,由于车载通信模块在同一时刻只能处理一路数据,如果此时车载通信模块同时接收到另一路数据,该路数据只能等待前一路数据处理结束才能被处理,如果前一路数据处理超时或者其他原因等,等待的一路数据可能会被丢弃。为了解决这个问题,本发明实施例中,在车辆定位辅助信息中可以包含数据处理方式指示信息(即通过表1中的P/S指示),如果取值为P,说明数据发送端(本例中第二车辆)支持并行数据处理方式,如果其取值为S,则说明数据发送端支持串行处理方式。为了避免串行处理方式中,数据接收的成功性,本发明实施例中,如果第一车辆根据第二车辆发送的车辆定位辅助信息确定第二车辆的数据处理方式为串行处理方式时,则第一车辆向第二车辆发送自身的车辆定位辅助信息时,可以开启重传机制向第二车辆发送自身的车辆定位辅助信息。
具体实施时,如果第一车辆根据接收到的车辆定位辅助信息确定第二车辆卫星定位系统重新恢复有效状态(根据表1中的GPS确定)时,则利用卫星定位系统确定出的第二车辆位置信息确定其与自身的距离。
为了更好的理解本发明实施例,以下结合具体的实施例对本发明的实施过程进行说明。
假设安装有定向天线的两辆汽车A和B,间隔300米,A在B的前方。两车之间已经建立车车通信机制,共同驶入一段长度为10KM的隧道,卫星定位系统失效。在隧道转弯处,A车发现前方道路中间出现一个废旧轮胎,A车紧急刹车。因为无法接收到卫星信号,两车进入隧道之后就立刻开启了利用定向天线确定车辆距离的方法。在隧道转弯处,A车发现前方道路中间出现一个轮胎,A车紧急刹车,并且通过后向天线向B车发送紧急制动信息和车辆定位辅助信息。B车前向天线接收到紧急制动信息和车辆定位辅助信息, 确定出前方300米处出现紧急刹车,随后B车也做出紧急刹车的操作,保证的两辆车辆的行驶安全。
基于同一发明构思,本发明实施例中还提供了一种车联网中的车辆距离确定装置,由于上述装置解决问题的原理与车联网中的车辆距离确定方法相似,因此上述装置和系统的实施可以参见方法的实施,重复之处不再赘述。
如图5所示,为本发明实施例提供的车联网中的车辆距离确定装置的结构示意图,包括车载通信模块和与所述车载通信模块连接的定向天线,其中:
定向天线51,用于接收第二车辆通过第二车辆的定向天线发送的车辆定位辅助信息,车辆定位辅助信息包括第二定向天线的方向指示信息和车辆定位辅助信息的发送功率;
车载通信模块52,用于根据方向指示信息,确定第二车辆相对于自身所在车辆的方向;以及根据发送功率和自身接收车辆定位辅助信息的接收功率,确定第二车辆与自身所在车辆之间的距离。
较佳的,车载通信模块52,具体用于按照以下公式确定所述第二车辆与自身所在车辆之间的距离:P1-P2=20lg(F)+20lg(D)+R,其中:P1为发送功率;P2为接收功率;F为预设的通信频率;D为第二车辆与第一车辆的距离;R为预设值。
具体实施时,本发明实施例提供的车联网中的车辆距离确定装置,还可以包括:
检测模块53,用于检测自身所在车辆的卫星定位系统是否失效;
定向天线开启模块54,用于在检测模块53检测到自身所在车辆的卫星定位系统失效时,开启定向天线用于接收车辆定位辅助信息。
较佳的,车辆定位辅助信息中还包括第二车辆的数据处理方式指示信息;以及
车载通信模块52,还用于在通过定向天线向第二车辆的定向天线发送自身所在车辆的车辆定位辅助信息时,如果根据数据处理方式指示信息,确定第二车辆的数据处理方式为串行处理方式,则开启重传机制向第二车辆发送自身的车辆定位辅助信息。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种车联网中的车辆距离确定方法,其特征在于,所述车辆中安装有定向天线,所述定向天线与所述车辆的车载通信模块连接;以及
    所述方法,包括:
    第一车辆通过第一定向天线接收第二车辆通过第二定向天线发送的车辆定位辅助信息,所述车辆定位辅助信息包括所述第二定向天线的方向指示信息和所述车辆定位辅助信息的发送功率;
    所述第一车辆根据所述方向指示信息,确定所述第二车辆相对于自身的方向;以及
    所述第一车辆根据所述发送功率和自身接收所述车辆定位辅助信息的接收功率,确定所述第二车辆与自身的距离。
  2. 根据权利要求1所述的方法,其特征在于,所述第一车辆根据所述发送功率和自身接收所述车辆定位辅助信息的接收功率,确定所述第二车辆与自身的距离,具体包括:
    所述第一车辆按照以下公式确定所述第二车辆与自身的距离:P1-P2=20lg(F)+20lg(D)+R,其中:
    P1为所述发送功率;
    P2为所述接收功率;
    F为预设的通信频率;
    D为所述第二车辆与所述第一车辆的距离;
    R为预设值。
  3. 根据权利要求1所述的方法,其特征在于,在第一车辆通过第一定向天线接收第二车辆通过第二定向天线发送的车辆定位辅助信息之前,还包括:
    所述第一车辆检测自身的卫星定位系统是否失效;以及
    在检测到自身的卫星定位系统失效时,所述第一车辆开启所述定向天线用于接收所述车辆定位辅助信息。
  4. 根据权利要求1所述的方法,其特征在于,所述车辆定位辅助信息为所述第二车辆利用扩展的802.11p数据帧发送的,所述扩展的802.11p数据帧中设置有用于传输所述车辆定位辅助信息的字段。
  5. 根据权利要求1所述的方法,其特征在于,所述车辆定位辅助信息中还包括所述第二车辆的数据处理方式指示信息;以及
    所述方法,还包括:
    所述第一车辆在通过所述第一定向天线向所述第二车辆的第二定向天线发送自身的车辆定位辅助信息时,如果所述第一车辆根据所述数据处理方式指示信息,确定所述第二车辆的数据处理方式为串行处理方式,则所述第一车辆开启重传机制向所述第二车辆发送自身的车辆定位辅助信息。
  6. 根据权利要求1所述的方法,其特征在于,所述接收功率为所述第一车辆从自身的物理层芯片获取的。
  7. 一种车联网中的车辆距离确定装置,其特征在于,包括车载通信模块和与所述车载通信模块连接的定向天线,其中:
    所述定向天线,用于接收所述第二车辆通过所述第二车辆的定向天线发送的车辆定位辅助信息,所述车辆定位辅助信息包括所述第二定向天线的方向指示信息和所述车辆定位辅助信息的发送功率;
    所述车载通信模块,用于根据所述方向指示信息,确定所述第二车辆相对于自身所在车辆的方向;以及根据所述发送功率和自身接收所述车辆定位辅助信息的接收功率,确定所述第二车辆与自身所在车辆之间的距离。
  8. 根据权利要求7所述的装置,其特征在于,
    所述车载通信模块,具体用于按照以下公式确定所述第二车辆与自身所在车辆之间的距离:P1-P2=20lg(F)+20lg(D)+R,其中:P1为所述发送功率;P2为所述接收功率;F为预设的通信频率;D为所述第二车辆与所述第一车辆的距离;R为预设值。
  9. 根据权利要求7所述的装置,其特征在于,还包括:
    检测模块,用于检测自身所在车辆的卫星定位系统是否失效;
    定向天线开启模块,用于在所述检测模块检测到自身所在车辆的卫星定位系统失效时,开启所述定向天线用于接收所述车辆定位辅助信息。
  10. 根据权利要求7所述的装置,其特征在于,所述车辆定位辅助信息中还包括所述第二车辆的数据处理方式指示信息;以及
    所述车载通信模块,还用于在通过所述定向天线向所述第二车辆的定向天线发送自身所在车辆的车辆定位辅助信息时,如果根据所述数据处理方式指示信息,确定所述第二车辆的数据处理方式为串行处理方式,则开启重传机制向所述第二车辆发送自身的车辆定位辅助信息。
PCT/CN2016/081746 2015-10-16 2016-05-11 车联网中的车辆距离确定方法和装置 WO2017063360A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2016130698A RU2016130698A (ru) 2015-10-16 2016-05-11 Способ и устройство определения расстояния между транспортными средствами в интернете транспортных средств
EP16757541.4A EP3176602A4 (en) 2015-10-16 2016-05-11 Method and device for determining vehicle distance in internet of vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510673639.0 2015-10-16
CN201510673639.0A CN105891811A (zh) 2015-10-16 2015-10-16 车联网中的车辆距离确定方法和装置

Publications (1)

Publication Number Publication Date
WO2017063360A1 true WO2017063360A1 (zh) 2017-04-20

Family

ID=57002013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081746 WO2017063360A1 (zh) 2015-10-16 2016-05-11 车联网中的车辆距离确定方法和装置

Country Status (5)

Country Link
US (1) US20170108576A1 (zh)
EP (1) EP3176602A4 (zh)
CN (1) CN105891811A (zh)
RU (1) RU2016130698A (zh)
WO (1) WO2017063360A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3371791A1 (en) * 2015-11-04 2018-09-12 Telefonaktiebolaget LM Ericsson (publ) Method of providing traffic related information and device, computer program and computer program product
CN109212470A (zh) * 2017-06-30 2019-01-15 沈阳新松机器人自动化股份有限公司 一种基于uwb阵列模块的位姿估计方法、系统及机器人
CN109307861B (zh) * 2017-07-28 2021-09-03 比亚迪股份有限公司 车辆、车辆定位方法及车载设备
CN107891851A (zh) * 2017-10-31 2018-04-10 北京新能源汽车股份有限公司 一种车辆的控制方法、装置及控制器
CN108345020B (zh) * 2018-02-09 2020-08-18 长沙智能驾驶研究院有限公司 车辆定位方法、系统和计算机可读存储介质
CN108830159A (zh) * 2018-05-17 2018-11-16 武汉理工大学 一种前方车辆单目视觉测距系统及方法
CN110632630B (zh) * 2019-09-23 2023-07-04 四川中电昆辰科技有限公司 车载gnss信号补偿装置、定位系统及方法
CN110632631B (zh) * 2019-09-23 2023-07-04 四川中电昆辰科技有限公司 专享车载gnss信号补偿装置、定位系统及方法
CN112788519B (zh) * 2019-11-11 2022-07-22 大唐移动通信设备有限公司 一种进行定位的方法、终端及网络侧设备
CN114095520B (zh) * 2020-07-21 2024-01-19 中信科智联科技有限公司 一种定位数据的确定方法、车联网设备及装置
CN112615141B (zh) * 2020-12-08 2023-05-26 大陆汽车电子(长春)有限公司 用于车辆的被动进入系统
CN112550285B (zh) 2020-12-09 2022-09-09 东软集团股份有限公司 确定碰撞距离的方法、装置、存储介质及电子设备
CN114506331B (zh) * 2022-03-15 2024-06-21 东风汽车有限公司东风日产乘用车公司 碰撞风险预警方法、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741204B2 (en) * 2002-03-19 2004-05-25 Denso Corporation Signal process apparatus for an on-vehicle radar and method thereof
CN2793745Y (zh) * 2005-06-02 2006-07-05 刘智 一种交通安全警报器
CN101160553A (zh) * 2005-01-05 2008-04-09 通用汽车公司 交通工具之间相对空间信息的确定
CN102097013A (zh) * 2010-12-27 2011-06-15 北京握奇数据系统有限公司 一种etc系统中车载单元的定位装置和方法
CN102879762A (zh) * 2012-09-27 2013-01-16 东南大学 基于射频接收信号强度值的隧道内车辆的动态定位方法
CN102891722A (zh) * 2011-07-21 2013-01-23 中兴通讯股份有限公司 一种纵向定位的方法及装置
CN104180813A (zh) * 2013-05-24 2014-12-03 恩智浦有限公司 车辆定位系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249643C (zh) * 2004-05-10 2006-04-05 中国科学院计算技术研究所 利用无线自组织网络技术实现高速公路上的汽车防撞方法
JP4844548B2 (ja) * 2007-12-03 2011-12-28 株式会社デンソー 運転支援装置
CN102468864A (zh) * 2010-11-18 2012-05-23 上海启电信息科技有限公司 一种提高行车安全的车载无线通信系统
EP2769235B1 (en) * 2011-10-19 2023-11-29 Balu Subramanya Directional speed and distance sensor
CN104200688A (zh) * 2014-09-19 2014-12-10 杜东平 一种双向广播式车辆间通信系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741204B2 (en) * 2002-03-19 2004-05-25 Denso Corporation Signal process apparatus for an on-vehicle radar and method thereof
CN101160553A (zh) * 2005-01-05 2008-04-09 通用汽车公司 交通工具之间相对空间信息的确定
CN2793745Y (zh) * 2005-06-02 2006-07-05 刘智 一种交通安全警报器
CN102097013A (zh) * 2010-12-27 2011-06-15 北京握奇数据系统有限公司 一种etc系统中车载单元的定位装置和方法
CN102891722A (zh) * 2011-07-21 2013-01-23 中兴通讯股份有限公司 一种纵向定位的方法及装置
CN102879762A (zh) * 2012-09-27 2013-01-16 东南大学 基于射频接收信号强度值的隧道内车辆的动态定位方法
CN104180813A (zh) * 2013-05-24 2014-12-03 恩智浦有限公司 车辆定位系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176602A4 *

Also Published As

Publication number Publication date
EP3176602A4 (en) 2017-07-19
CN105891811A (zh) 2016-08-24
EP3176602A1 (en) 2017-06-07
RU2016130698A (ru) 2018-02-01
US20170108576A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2017063360A1 (zh) 车联网中的车辆距离确定方法和装置
US11057497B2 (en) Vehicular millimeter wave communication for non-line of sight scenarios
Temel et al. Vehicle-to-barrier communication during real-world vehicle crash tests
KR102291306B1 (ko) 차량 대 차량 통신을 위한 방법
US9293044B2 (en) Cooperative vehicle collision warning system
US7979198B1 (en) Vehicular traffic congestion monitoring through inter-vehicle communication and traffic chain counter
US10375545B2 (en) Communication control device
EP3726866B1 (en) Method and apparatus for selecting communication mode, and vehicle
US20180097637A1 (en) Cryptographic Security Verification of Incoming Messages
US10616733B2 (en) Communication control device
US11758379B2 (en) Automated assessment of a towed object dimensions
WO2016202234A1 (zh) 通讯方法和终端
US20220068120A1 (en) Method and apparatus for providing road user alerts
CN109979201B (zh) 用于检测关于车辆位置的伪造信息的系统和方法
CN112583872B (zh) 一种通信方法及装置
WO2022001921A1 (zh) 定位方法、装置及电子设备
JP2010171692A (ja) 路側通信システム
CN115380546A (zh) 具有传感器数据过滤条件的针对传感器数据的车辆请求
US20220225168A1 (en) Telematics communication unit and server for controlling same in next generation mobile communication system
KR101996225B1 (ko) Dsrc 기반 v2v 통신을 이용한 차량 간 교통상황영상 송수신 시스템
Kang et al. Performance analysis of WAVE communication under high-speed driving
EP1879150B1 (en) Method and protocol for transmitting information within an enforcement system of a monitoring or road charging system, enforcement unit and mobile device
CN115515086B (zh) 一种车载通信系统、方法、设备及存储介质
US11516668B2 (en) Out-of-band authentication for vehicular communications using joint automotive radar communications
WO2022206671A1 (zh) 一种消息传输方法、终端及芯片系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016130698

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016757541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016757541

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16757541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE