WO2017061276A1 - 接合体、流体圧シリンダ、及び接合体の製造方法 - Google Patents

接合体、流体圧シリンダ、及び接合体の製造方法 Download PDF

Info

Publication number
WO2017061276A1
WO2017061276A1 PCT/JP2016/077845 JP2016077845W WO2017061276A1 WO 2017061276 A1 WO2017061276 A1 WO 2017061276A1 JP 2016077845 W JP2016077845 W JP 2016077845W WO 2017061276 A1 WO2017061276 A1 WO 2017061276A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
protrusion
cylinder
hollow portion
outer peripheral
Prior art date
Application number
PCT/JP2016/077845
Other languages
English (en)
French (fr)
Inventor
小林 信行
康行 永井
真二 佐藤
Original Assignee
Kyb-Ys株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb-Ys株式会社 filed Critical Kyb-Ys株式会社
Priority to US15/765,583 priority Critical patent/US10907662B2/en
Priority to KR1020187009737A priority patent/KR102093049B1/ko
Priority to CN201680058515.4A priority patent/CN108138821B/zh
Priority to EP16853430.3A priority patent/EP3361107A4/en
Publication of WO2017061276A1 publication Critical patent/WO2017061276A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B4/00Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings
    • F16B4/004Press fits, force fits, interference fits, i.e. fits without heat or chemical treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1438Cylinder to end cap assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B11/00Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding
    • F16B11/002Connecting constructional elements or machine parts by sticking or pressing them together, e.g. cold pressure welding by pressing the elements together so as to obtain plastic deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B4/00Shrinkage connections, e.g. assembled with the parts at different temperature; Force fits; Non-releasable friction-grip fastenings

Definitions

  • the present invention relates to a joined body, a fluid pressure cylinder including the joined body, and a method for manufacturing the joined body.
  • JP 2007-229719A discloses a method of sealing an end of a tube by joining a lid to the end of the tube by friction welding.
  • the lid used in this method is provided with an annular protrusion that abuts on the end surface of the tube, a boss formed inside the annular protrusion, and a flange formed at the tip of the boss.
  • the outer diameter of the boss portion and the flange portion is smaller than the inner diameter of the tube body, and is between the outer peripheral surface of the boss portion and the flange portion and the inner peripheral surface of the tube body. A gap is formed. Therefore, when an axial pressing force is applied to the lid body and the tube body, the lid body tends to be displaced in the radial direction with respect to the tube body.
  • An object of the present invention is to prevent displacement between the first member and the second member during joining.
  • a joined body formed by friction welding.
  • a joined body includes a first member having an end surface and a hollow portion that opens to the end surface, a main body portion joined to the end surface, and a protrusion that protrudes from the main body portion and is accommodated in the hollow portion. And at least one of the inner peripheral surface of the hollow portion and the outer peripheral surface of the protrusion has an inclined portion inclined with respect to the radial direction of the opening, and the other is in contact with the inclined portion.
  • the present invention provides a method for manufacturing a joined body formed by joining a first member having a hollow portion opening on an end surface and a second member having a protrusion protruding from the main body portion by friction welding.
  • the manufacturing method includes a step of inserting a protrusion into the hollow portion and abutting the main body portion of the second member against the end surface of the first member, and the first member and the second member relative to each other. The process of rotating and generating heat at the end face and the main body, and until the inclined portion formed on at least one of the inner peripheral surface of the hollow portion and the outer peripheral surface of the protrusion is inclined with respect to the radial direction of the opening contacts the other. And a step of pressing the first member and the second member together.
  • FIG. 1 is a partial cross-sectional view of a hydraulic cylinder according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view around the cylinder bottom.
  • FIG. 3 is a partial cross-sectional view of the cylinder tube and the cylinder bottom before joining.
  • FIG. 4 is a partial cross-sectional view of the cylinder tube and the cylinder bottom before joining, and shows an enlarged periphery of one end face of the cylinder tube.
  • FIG. 5 is a partial cross-sectional view for explaining the manufacturing method of the joined body, and shows a state in which the cylinder bottom is abutted against the cylinder tube.
  • FIG. 6 is a partial cross-sectional view for explaining the manufacturing method of the joined body, and shows a state in which the cylinder bottom and the cylinder tube are pressed against each other.
  • FIG. 7 is a partial cross-sectional view of a hydraulic cylinder according to another embodiment of the present invention, showing a form in which an inclined portion is formed only on the inner peripheral surface of the hollow portion.
  • FIG. 8 is a partial cross-sectional view of a hydraulic cylinder according to another embodiment of the present invention, showing a form in which an inclined portion is formed only on the outer peripheral surface of the protrusion.
  • FIG. 9 is a partial cross-sectional view of a hydraulic cylinder according to another embodiment of the present invention, showing a form in which no depression is formed on the outer peripheral surface of the protrusion.
  • the hydraulic cylinder 100 is used as an actuator mounted on a machine such as a construction machine or an industrial machine.
  • the hydraulic cylinder 100 is used as an arm cylinder mounted on a hydraulic excavator.
  • a hydraulic cylinder 100 includes a joined body 1 formed by joining a cylinder tube (first member) 10 and a cylinder bottom (second member) 50 by friction welding.
  • the cylinder tube 10 has a hollow portion 13 that opens to both end faces 11 and 12, and one end face 11 is closed by a cylinder bottom 50.
  • the hydraulic cylinder 100 includes a piston 20 that is slidably accommodated in the hollow portion 13 of the cylinder tube 10 and a piston rod 30 that is slidably inserted into the cylinder tube 10.
  • One end of the piston rod 30 is connected to the piston 20, and the other end of the piston rod 30 extends from the cylinder tube 10 through the opening of the other end surface 12 of the cylinder tube 10.
  • the opening of the other end surface 12 of the cylinder tube 10 is closed by the cylinder head 40.
  • the cylinder head 40 is formed in an annular shape and slidably supports the piston rod 30.
  • the hydraulic cylinder 100 is mounted on a machine such as a construction machine or an industrial machine using a connecting portion 31 provided on the other end of the piston rod 30 and a connecting portion 51 provided on the cylinder bottom 50.
  • the piston 20 partitions the inside of the cylinder tube 10 into a rod side chamber 14 and an anti-rod side chamber 15.
  • the rod side chamber 14 is defined by the cylinder tube 10
  • the anti-rod side chamber 15 is defined by the cylinder tube 10, the piston 20 and the cylinder bottom 50.
  • the cylinder tube 10 is provided with a head side port 16 communicating with the rod side chamber 14 and a bottom side port 17 communicating with the non-rod side chamber 15.
  • the head side port 16 and the bottom side port 17 are selectively connected to a hydraulic pump (not shown) or a tank (not shown) through a switching valve (not shown).
  • a hydraulic pump not shown
  • a tank not shown
  • a switching valve not shown
  • FIG. 2 is a partial cross-sectional view around the cylinder bottom 50.
  • an annular inclined portion 18 is formed on the inner peripheral surface of the hollow portion 13.
  • the inclined portion 18 is arranged in the radial direction of the opening of the hollow portion 13 (in the radial direction of the cylinder tube 10) so that the radially outer edge 18a of the inclined portion 18 is positioned closer to the end face 11 than the radially inner edge 18b. It is inclined with respect to it.
  • the inclined portion 18 may be formed in a taper shape (planar shape) or a curved surface shape.
  • the cylinder tube 10 is formed with an inner beam 19a that protrudes radially inward from the opening edge of the end surface 11.
  • the inner beam 19a is formed by the flow of the base material of the cylinder tube 10 when the cylinder tube 10 and the cylinder bottom 50 are joined by friction welding.
  • the cylinder bottom 50 has a main body portion 52 joined to the end surface 11 of the cylinder tube 10 and a protrusion 53 protruding from the main body portion 52.
  • the protrusion 53 is accommodated in the hollow portion 13 of the cylinder tube 10.
  • An annular chamfered portion 54 as an inclined portion is formed at the tip of the outer peripheral surface of the protrusion 53.
  • the chamfered portion 54 is configured so that the radially outer edge 54a of the chamfered portion 54 is positioned closer to the main body portion 52 than the radially inner edge 54b (the radial direction of the cylinder tube 10). ).
  • the chamfered portion 54 may be formed in a tapered shape (planar shape) or a curved surface shape.
  • the inclined portion 18 of the cylinder tube 10 and the chamfered portion 54 of the cylinder bottom 50 are in contact with each other over the entire circumference. That is, the boundary of the anti-rod side chamber 15 is demarcated by the contact portion formed by contacting the inclined portion 18 and the chamfered portion 54 with each other.
  • a depression 55 is formed on the outer peripheral surface of the protrusion 53.
  • the recess 55 is located between the main body portion 52 and the chamfered portion 54. More specifically, the recess 55 is formed such that its side surface continues from the end surface of the main body 52 without a step. Therefore, the end portion of the cylinder tube 10 that is plastically flowed by being pressed against the end surface of the main body portion 52 at the time of friction welding is guided into the recess 55 as the inner beam 19a. Therefore, it is possible to prevent the inner beam 19a from being sandwiched between the inclined portion 18 and the chamfered portion 54 at the time of joining, and the displacement between the cylinder tube 10 and the cylinder bottom 50 can be more reliably prevented.
  • An annular gap 56 is formed between the inner peripheral surface of the hollow portion 13 and the outer peripheral surface of the protrusion 53. Since the inclined portion 18 and the chamfered portion 54 are in contact with each other over the entire circumference, the gap 56 is formed as a sealed space. Accordingly, it is possible to prevent foreign matters in the gap 56 (for example, oxide scale generated on the surface of the inner beam 19 a during friction welding) from flowing out to the anti-rod side chamber 15.
  • FIG. 3 is a partial cross-sectional view of the cylinder tube 10 and the cylinder bottom 50 before joining
  • FIG. 4 is an enlarged view of the periphery of one end surface of the cylinder tube shown in FIG.
  • the base material of the cylinder tube 10 is a cylindrical large-diameter portion 10 a having an end surface 11, and a cylindrical small-diameter having an inner diameter smaller than the inner diameter of the large-diameter portion 10 a.
  • the small diameter portion 10b is provided continuously with the large diameter portion 10a, and an inclined portion 18 is formed between the large diameter portion 10a and the small diameter portion 10b.
  • a chamfered portion 54 and a recess 55 are formed in advance on the outer peripheral surface of the protrusion 53 of the cylinder bottom 50.
  • the outer diameter R1 of the protrusion 53 is smaller than the inner diameter R2 of the large diameter part 10a and larger than the inner diameter of the small diameter part 10b.
  • the dimension L1 from the main body 52 to the chamfered portion 54 in the protrusion 53 is smaller than the dimension L2 from the end surface 11 to the inclined portion 18 in the large diameter portion 10a.
  • the protrusion 53 of the cylinder bottom 50 is inserted into the hollow portion 13 of the cylinder tube 10, and the main body 52 of the cylinder bottom 50 is connected to the end surface 11 of the cylinder tube 10. Hit it. At this time, flash is generated in the main body 52 and the large-diameter portion 10a due to heat generated in the contact portion between the main-body portion 52 and the large-diameter portion 10a.
  • a gap is formed between the chamfered portion 54 and the inclined portion 18 when the main body 52 is abutted against the end surface 11. Further, since the outer diameter R1 is smaller than the inner diameter R2, a gap is formed between the outer peripheral surface of the protrusion 53 and the inner peripheral surface of the large diameter portion 10a.
  • the cylinder tube 10 and the cylinder bottom 50 are relatively rotated. As a result, frictional heat is generated on the contact surfaces of the end surface 11 of the cylinder tube 10 and the main body portion 52 of the cylinder bottom 50, and the main body portion 52 and the large diameter portion 10a are heated. At this time, the flash generated in the main body 52 and the large diameter portion 10a grows.
  • the inner beam 19 a is guided to the depression 55 of the protrusion 53. Therefore, when the cylinder tube 10 and the cylinder bottom 50 are pressed against each other, the inner beam 19a can be prevented from being sandwiched between the inclined portion 18 and the chamfered portion 54.
  • the inclined portion 18 and the chamfered portion 54 are formed to be inclined with respect to the radial direction of the opening of the hollow portion 13 (the radial direction of the cylinder tube 10). Therefore, the cylinder bottom 50 is guided to a desired position in the radial direction with respect to the cylinder tube 10 by the contact between the inclined portion 18 and the chamfered portion 54. Accordingly, the displacement between the cylinder tube 10 and the cylinder bottom 50 can be prevented.
  • the cylinder tube 10 and the cylinder bottom 50 are joined by cooling the large diameter portion 10a and the main body portion 52. Thereafter, the outer beams 19b and 52a are removed by cutting or the like, whereby the joined body 1 is completed.
  • the inner peripheral surface of the hollow portion 13 and the outer peripheral surface of the protrusion 53 have the inclined portion 18 and the chamfered portion 54 that are inclined with respect to the radial direction, respectively, but this embodiment is not limited thereto. .
  • FIG. 7 is a partial cross-sectional view of the joined body 1 according to another embodiment.
  • the inclined portion 18 is formed on the inner peripheral surface of the cylinder tube 10, but the chamfered portion (inclined portion) 54 as shown in FIG. 2 is formed on the outer peripheral surface of the protrusion 53.
  • the cylinder bottom 50 is guided to a desired position in the radial direction with respect to the cylinder tube 10 by the contact between the inclined portion 18 and the outer peripheral surface of the projection 53 during joining. Accordingly, the displacement between the cylinder tube 10 and the cylinder bottom 50 can be prevented.
  • FIG. 8 is a partial cross-sectional view of the joined body 1 according to still another embodiment.
  • a chamfered portion (inclined portion) 54 is formed on the outer peripheral surface of the protrusion 53, but the inner peripheral surface of the cylinder tube 10 is replaced with the inclined portion 18 as shown in FIG. 2.
  • a step portion 18 ' is formed. Even in this configuration, the cylinder bottom 50 is guided to a desired position in the radial direction with respect to the cylinder tube 10 by the contact between the step portion 18 ′ and the chamfered portion 54 at the time of joining. Accordingly, the displacement between the cylinder tube 10 and the cylinder bottom 50 can be prevented.
  • At least one of the inner peripheral surface of the hollow portion 13 and the outer peripheral surface of the protrusion 53 has the inclined portions 18 and 54 that are inclined with respect to the radial direction of the opening of the hollow portion 13,
  • the other of the inner peripheral surface of the hollow portion 13 and the outer peripheral surface of the protrusion 53 may be in contact with the inclined portions 18 and 54.
  • both the inner peripheral surface of the hollow portion 13 and the outer peripheral surface of the protrusion 53 have inclined portions, the surface and the surface come into contact with each other. Therefore, compared with the case where only one has the inclined portion, the centering accuracy is increased, and the displacement between the cylinder tube 10 and the cylinder bottom 50 can be further prevented.
  • the cylinder tube 10 or the cylinder bottom 50 can be easily formed as compared with the case where both have inclined portions.
  • the joined body 1 includes a first member 10 having an end surface 11 and a hollow portion 13 that opens to the end surface 11, a main body portion 52 joined to the end surface 11, and a protrusion 53 that protrudes from the main body portion 52 and is accommodated in the hollow portion 13.
  • the 2nd member 50 which has these.
  • the joined body 1 has an inclined portion 18 in which the inner peripheral surface of the hollow portion 13 is inclined with respect to the radial direction of the opening of the hollow portion 13, and the outer peripheral surface of the protrusion 53 is in contact with the inclined portion 18.
  • the joined body 1 has the chamfered portion 54 in which the outer peripheral surface of the protrusion 53 is inclined with respect to the radial direction of the opening of the hollow portion 13, and the inner peripheral surface of the hollow portion 13 is in contact with the chamfered portion 54.
  • the inner peripheral surface of the hollow portion 13 has the inclined portion 18, and the outer peripheral surface of the protrusion 53 is in contact with the inclined portion 18.
  • the outer peripheral surface of the protrusion 53 has a chamfered portion 54, and the inner peripheral surface of the hollow portion 13 is in contact with the chamfered portion 54. Therefore, when the protrusion 53 is inserted into the hollow portion 13 to join the first member 10 and the second member 50, the second contact is caused by the contact between the inner peripheral surface of the hollow portion 13 and the outer peripheral surface of the protrusion 53.
  • the member 50 is guided to a desired position in the radial direction with respect to the first member 10. Therefore, the shift
  • the second member 50 further includes a recess 55 on the outer peripheral surface of the protrusion 53, and the recess 55 includes the inner peripheral surface of the hollow portion 13 and the outer peripheral surface of the protrusion 53. Between the contact portion and the main body portion 52.
  • the recess 55 on the outer peripheral surface of the protrusion 53 is located between the main body 52 and the contact portion, the inner beam 19a generated by plastic flow during friction welding is guided to the recess 55. Therefore, the inner beam 19a can be prevented from being sandwiched between the inclined portion 18 and the chamfered portion 54 at the time of joining, and the displacement between the first member 10 and the second member 50 can be more reliably prevented.
  • the joined body 1 is characterized in that the inclined portion 18 is formed in an annular shape, and the outer peripheral surface of the protrusion 53 is in contact with the inclined portion 18 over the entire circumference.
  • the chamfered portion 54 is formed in an annular shape, and the inner peripheral surface of the hollow portion 13 is in contact with the chamfered portion 54 over the entire circumference.
  • the outer peripheral surface of the protrusion 53 is in contact with the inclined portion 18 over the entire periphery.
  • the inner peripheral surface of the hollow portion 13 is in contact with the chamfered portion 54 over the entire periphery. Therefore, the gap 56 between the main body portion 52 and the contact portion is formed as a sealed space. Therefore, it is possible to prevent foreign matter in the gap 56 from flowing into the anti-rod side chamber 15.
  • the hydraulic cylinder 100 includes the above-described joined body 1, the first member 10 is the cylinder tube 10, and the second member 50 is the cylinder bottom 50 that closes the opening of the hollow portion 13.
  • the first member 10 is the cylinder tube 10 and the second member 50 is the cylinder bottom 50
  • the cylinder bottom 50 is not attached to the cylinder tube 10. It is guided to a desired position in the radial direction. Therefore, the displacement between the cylinder tube 10 and the cylinder bottom 50 at the time of joining can be prevented.
  • the first member 10 having the hollow portion 13 that opens to the end surface 11 and the second member 50 having the protruding portion 53 protruding from the main body portion 52 are joined by friction welding.
  • the present invention relates to a method of manufacturing the joined body 1.
  • the method of manufacturing the joined body 1 includes a step of inserting the protrusion 53 into the hollow portion 13 and abutting the main body 52 of the second member 50 against the end surface 11 of the first member 10, and the first member 10 and the second member 50. And generating heat at the end face 11 and the main body 52.
  • the first member 10 and the second member 50 are formed until the inclined portion 18 formed on the inner peripheral surface of the hollow portion 13 and inclined with respect to the radial direction of the opening of the hollow portion 13 contacts the outer peripheral surface of the protrusion 53.
  • the method further includes a step of pressing the two members 50 against each other.
  • the recess 55 may not be provided in the outer peripheral portion of the protrusion 53.
  • the inner peripheral surface of the hollow portion 13 and the outer peripheral surface of the protrusion 53 may be brought into contact with each other by increasing the thickness of the small diameter portion 10 b so as to overlap the protrusion 53 of the cylinder bottom 50. . Since there is no need to form a recess in the protrusion 53, the processing cost of the cylinder bottom 50 can be reduced.
  • the inclined portion 18 and the chamfered portion 54 do not have to be in contact with the entire circumference. A part of the inclined part 18 and a part of the chamfered part 54 may be in contact with each other. A part of the inclined part 18 and a part of the chamfered part 54 may not be formed in an annular shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Actuator (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)
  • Catching Or Destruction (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

接合体1は、端面11に開口する中空部13を有する第1部材10と、本体部52から突出し中空部13に収容された突部53を有する第2部材50と、を備える。中空部13の内周面は、中空部13の開口の径方向に対して傾斜した傾斜部18を有し、突部53の外周面が傾斜部18に接している。又は、突部53の外周面は、中空部13の開口の径方向に対して傾斜した面取り部54を有し、中空部13の内周面が面取り部54に接している。

Description

接合体、流体圧シリンダ、及び接合体の製造方法
 本発明は、接合体、この接合体を備える流体圧シリンダ、及びこの接合体の製造方法に関する。
 JP2007-229719Aには、管体の端部に蓋体を摩擦圧接により接合して管体の端部を封口する方法が開示されている。この方法で用いられる蓋体には、管体の端面に突合わせられる環状突起と、環状突起の内側に形成されるボス部と、ボス部の先端に形成されるフランジ部と、が設けられる。
 JP2007-229719Aに開示される方法では、まず、フランジ部及びボス部が管体に挿入され、環状突起が管体の端面に突き合わされる。この状態で管体と蓋体とを相対回転させることにより、両者の突き合わせ面に摩擦熱が発生し、管体の端部と蓋体の環状突起とが加熱される。その後、蓋体と管体に軸方向の押圧力が加えられ、蓋体が管体に接合される。
 しかしながら、JP2007-229719Aに開示される蓋体では、ボス部及びフランジ部の外径は管体の内径と比較して小さく、ボス部及びフランジ部の外周面と管体の内周面との間に隙間が形成される。そのため、蓋体と管体とに軸方向の押圧力を加える際に、蓋体が管体に対して径方向にずれやすい。
 本発明は、接合時における第1部材と第2部材とのずれを防止することを目的とする。
 本発明は、摩擦圧接によって形成される接合体に係る。本発明のある態様によれば、接合体は、端面と端面に開口する中空部とを有する第1部材と、端面に接合された本体部と本体部から突出し中空部に収容された突部とを有する第2部材と、を備え、中空部の内周面及び突部の外周面の少なくとも一方は、開口の径方向に対して傾斜した傾斜部を有し、他方が傾斜部に接している。
 また、本発明は、端面に開口する中空部を有する第1部材と、本体部から突出する突部を有する第2部材と、を摩擦圧接によって接合して形成される接合体を製造する方法に係る。本発明のある態様によれば、製造方法は、中空部に突部を挿入して第2部材の本体部を第1部材の端面に突き当てる工程と、第1部材と第2部材とを相対回転させて端面と本体部とに熱を生じさせる工程と、中空部の内周面及び突部の外周面の少なくとも一方に形成され開口の径方向に対して傾斜した傾斜部が他方に接するまで第1部材と第2部材とを互いに押し付ける工程と、を備える。
図1は、本発明の実施形態に係る油圧シリンダの一部断面図である。 図2は、シリンダボトムの周辺の一部断面図である。 図3は、接合前のシリンダチューブ及びシリンダボトムの一部断面図である。 図4は、接合前のシリンダチューブ及びシリンダボトムの一部断面図であり、シリンダチューブの一方の端面の周辺を拡大して示す。 図5は、接合体の製造方法を説明するための一部断面図であり、シリンダボトムをシリンダチューブに突き当てた状態を示す。 図6は、接合体の製造方法を説明するための一部断面図であり、シリンダボトムとシリンダチューブとを互いに押し付けた状態を示す。 図7は、本発明の他の実施形態に係る油圧シリンダの一部断面図であり、中空部の内周面にのみ傾斜部が形成された形態を示す。 図8は、本発明の他の実施形態に係る油圧シリンダの一部断面図であり、突部の外周面にのみ傾斜部が形成された形態を示す。 図9は、本発明の他の実施形態に係る油圧シリンダの一部断面図であり、突部の外周面に窪みが形成されていない形態を示す。
 以下、図面を参照して、本発明の実施形態について説明する。ここでは、作動流体として作動油が用いられる油圧シリンダ100について述べるが、作動水等の他の流体が作動流体として用いられてもよい。
 油圧シリンダ100は、建設機械及び産業機械といった機械に搭載されるアクチュエータとして用いられる。例えば、油圧シリンダ100は、油圧ショベルに搭載されるアームシリンダとして用いられる。
 まず、油圧シリンダ100の構造について、図1及び図2を参照して説明する。
 図1に示すように、油圧シリンダ100は、シリンダチューブ(第1部材)10とシリンダボトム(第2部材)50とを摩擦圧接によって接合することにより形成される接合体1を備える。シリンダチューブ10は両端面11,12に開口する中空部13を有し、一方の端面11は、シリンダボトム50により閉塞されている。
 また、油圧シリンダ100は、シリンダチューブ10の中空部13に摺動自在に収容されるピストン20と、シリンダチューブ10に進退自在に挿入されるピストンロッド30と、を備える。ピストンロッド30の一端はピストン20に連結され、ピストンロッド30の他端はシリンダチューブ10の他方の端面12の開口を通じてシリンダチューブ10から延出する。
 シリンダチューブ10の他方の端面12の開口は、シリンダヘッド40によって閉塞される。シリンダヘッド40は環状に形成されており、ピストンロッド30を摺動自在に支持する。
 油圧シリンダ100は、ピストンロッド30の他端に設けられる連結部31と、シリンダボトム50に設けられる連結部51と、を用いて建設機械及び産業機械といった機械に搭載される。
 ピストン20は、シリンダチューブ10の内部をロッド側室14と反ロッド側室15とに区画する。具体的には、ロッド側室14は、シリンダチューブ10、ピストン20及びシリンダヘッド40により画定され、反ロッド側室15は、シリンダチューブ10、ピストン20及びシリンダボトム50により画定される。
 シリンダチューブ10には、ロッド側室14に連通するヘッド側ポート16と、反ロッド側室15に連通するボトム側ポート17と、が設けられる。
 ヘッド側ポート16及びボトム側ポート17は、切換弁(不図示)を通じて油圧ポンプ(不図示)又はタンク(不図示)に選択的に接続される。切換弁によりヘッド側ポート16及びボトム側ポート17の一方が油圧ポンプに連通した場合には、他方がタンクに連通する。
 油圧ポンプからの作動油がヘッド側ポート16を通じてロッド側室14に供給されると、ピストン20及びピストンロッド30が反ロッド側室15を縮小する方向に移動し、油圧シリンダ100が収縮する。このとき、反ロッド側室15内の作動油は、ボトム側ポート17を通じて排出される。
 油圧ポンプからの作動油がボトム側ポート17を通じて反ロッド側室15に供給されると、ピストン20及びピストンロッド30がロッド側室14を縮小する方向に移動し、油圧シリンダ100が伸長する。このとき、ロッド側室14内の作動油は、ヘッド側ポート16を通じて排出される。
 図2は、シリンダボトム50の周辺の一部断面図である。図2に示すように、中空部13の内周面には、環状の傾斜部18が形成される。傾斜部18は、傾斜部18の径方向外側の縁18aが径方向内側の縁18bよりも端面11側に位置するように、中空部13の開口の径方向(シリンダチューブ10の径方向)に対して傾斜している。傾斜部18は、テーパ状(平面状)に形成されていてもよいし、曲面状に形成されていてもよい。
 また、シリンダチューブ10には、端面11の開口縁から径方向内側に突出する内ばり19aが形成されている。内ばり19aは、シリンダチューブ10とシリンダボトム50とを摩擦圧接により接合する際に、シリンダチューブ10の母材の流動により形成される。
 シリンダボトム50は、シリンダチューブ10の端面11に接合された本体部52と、本体部52から突出する突部53と、を有する。突部53は、シリンダチューブ10の中空部13に収容されている。
 突部53の外周面の先端には、傾斜部としての環状の面取り部54が形成される。面取り部54は、面取り部54の径方向外側の縁54aが径方向内側の縁54bよりも本体部52の側に位置するように、中空部13の開口の径方向(シリンダチューブ10の径方向)に対して傾斜している。面取り部54は、テーパ状(平面状)に形成されていてもよいし、曲面状に形成されていてもよい。
 シリンダチューブ10の傾斜部18とシリンダボトム50の面取り部54とは、全周に渡って互いに接している。つまり、傾斜部18と面取り部54とが互いに接して形成される接触部により、反ロッド側室15の境界が画定されている。
 傾斜部18及び面取り部54が傾斜しているので、シリンダチューブ10とシリンダボトム50とが接合される際に、傾斜部18と面取り部54との接触によりシリンダボトム50がシリンダチューブ10に対して径方向における所望の位置に案内される。したがって、接合時におけるシリンダチューブ10とシリンダボトム50とのずれを防止することができる。
 突部53の外周面には、窪み55が形成されている。窪み55は、本体部52と面取り部54との間に位置している。より具体的には、窪み55は、その側面が本体部52の端面から段差なく連続するように形成されている。そのため、摩擦圧接時に本体部52の端面に押圧されて塑性流動するシリンダチューブ10の端部は、内ばり19aとして窪み55内に導かれる。したがって、接合時に内ばり19aが傾斜部18と面取り部54との間に挟まれるのを防ぐことができ、シリンダチューブ10とシリンダボトム50とのずれをより確実に防止することができる。
 中空部13の内周面と突部53の外周面との間には、環状の隙間56が形成される。傾斜部18と面取り部54とが全周に渡って接しているので、隙間56は密閉空間として形成される。したがって、隙間56内の異物(例えば、摩擦圧接時に内ばり19aの表面に生じる酸化スケール)が反ロッド側室15に流出するのを防ぐことができる。
 次に、油圧シリンダ100の製造方法について、図3から図6を参照して説明する。ここでは、シリンダチューブ10とシリンダボトム50とを接合して形成される接合体1の製造方法を主に説明する。
 図3は、接合前のシリンダチューブ10及びシリンダボトム50の一部断面図であり、図4は、図3に示されるシリンダチューブの一方の端面の周辺を拡大して示す。
 図3及び図4に示されるように、シリンダチューブ10の母材は、端面11を有する筒状の大径部10aと、大径部10aの内径と比較して小さい内径を有する筒状の小径部10bと、を有する。小径部10bは大径部10aに連続して設けられ、大径部10aと小径部10bとの間に傾斜部18が形成されている。
 シリンダボトム50の突部53の外周面には面取り部54及び窪み55が予め形成されている。突部53の外径R1は、大径部10aの内径R2よりも小さく、小径部10bの内径よりも大きい。また、突部53における本体部52から面取り部54までの寸法L1は、大径部10aにおける端面11から傾斜部18の寸法L2よりも小さい。
 接合体1の製造方法では、まず、図5に示すように、シリンダチューブ10の中空部13にシリンダボトム50の突部53を挿入し、シリンダボトム50の本体部52をシリンダチューブ10の端面11に突き当てる。このとき、本体部52と大径部10aとの間の接触部に発生する熱により、本体部52と大径部10aにばりが発生する。
 寸法L1が寸法L2よりも小さいので、本体部52が端面11に突き当てられた状態では、面取り部54と傾斜部18との間には隙間が形成される。また、外径R1が内径R2よりも小さいので、突部53の外周面と大径部10aの内周面との間には隙間が形成される。
 次に、シリンダチューブ10とシリンダボトム50とを相対回転させる。その結果、シリンダチューブ10の端面11とシリンダボトム50の本体部52との互いの当接面に摩擦熱が生じ、本体部52と大径部10aとが加熱される。このとき、本体部52と大径部10aとに発生したばりが成長する。
 突部53の外周面と大径部10aの内周面との間には隙間が形成されているので、シリンダチューブ10とシリンダボトム50とを相対回転させても、突部53の外周面と大径部10aの内周面とには摩擦熱が生じない。
 次に、シリンダチューブ10とシリンダボトム50との相対回転を停止し、シリンダチューブ10の傾斜部18と面取り部54とが接するまでシリンダチューブ10とシリンダボトム50とを互いに押し付ける(図6参照)。このとき、シリンダチューブ10の大径部10aの一部がシリンダチューブ10の内側と外側とに押し出されるため、大径部10aに既に形成されているばりがに更に成長する(内ばり19a及び外ばり19bを参照)。また、シリンダボトム50の本体部52の一部が外側に押し出されるため、本体部52に既に形成されているばりが更に成長する(外ばり52aを参照)。
 内ばり19aは、突部53の窪み55に導かれる。したがって、シリンダチューブ10とシリンダボトム50とを互いに押し付ける際に内ばり19aが傾斜部18と面取り部54との間に挟まれるのを防ぐことができる。
 傾斜部18及び面取り部54は、中空部13の開口の径方向(シリンダチューブ10の径方向)に対して傾斜して形成されている。そのため、傾斜部18と面取り部54との接触により、シリンダボトム50がシリンダチューブ10に対して径方向における所望の位置に案内される。したがって、シリンダチューブ10とシリンダボトム50とのずれを防止することができる。
 大径部10aと本体部52とを冷却することにより、シリンダチューブ10とシリンダボトム50とが接合される。その後、外ばり19b,52aを切削等により除去することによって、接合体1が完成する。
 以上の説明では、中空部13の内周面及び突部53の外周面が、それぞれ、径方向に対して傾斜する傾斜部18及び面取り部54を有するが、本実施形態はこれに限られない。
 図7は、別の実施形態に係る接合体1の一部断面図である。図7に示す形態では、シリンダチューブ10の内周面に傾斜部18が形成されているが、突部53の外周面には、図2に示すような面取り部(傾斜部)54が形成されていない。この形態であっても、接合時に、傾斜部18と突部53の外周面との接触により、シリンダボトム50がシリンダチューブ10に対して径方向における所望の位置に案内される。したがって、シリンダチューブ10とシリンダボトム50とのずれを防止することができる。
 図8は、さらに別の実施形態に係る接合体1の一部断面図である。図8に示す形態では、突部53の外周面に面取り部(傾斜部)54が形成されているが、シリンダチューブ10の内周面には、図2に示すような傾斜部18に代えて、段部18’が形成されている。この形態であっても、接合時に、段部18’と面取り部54との接触により、シリンダボトム50がシリンダチューブ10に対して径方向における所望の位置に案内される。したがって、シリンダチューブ10とシリンダボトム50とのずれを防止することができる。
 このように、本実施形態では、中空部13の内周面及び突部53の外周面の少なくとも一方が、中空部13の開口の径方向に対して傾斜した傾斜部18,54を有し、中空部13の内周面及び突部53の外周面の他方が傾斜部18,54に接していればよい。
 中空部13の内周面と突部53の外周面の両方が傾斜部を有する場合には、面と面とが接触する。そのため、一方のみが傾斜部を有する場合と比較して、芯出しの精度が高まり、シリンダチューブ10とシリンダボトム50とのずれを一層防止できる。
 中空部13の内周面と突部53の外周面の一方のみが傾斜部を有する場合には、他方に傾斜部を形成する必要がない。そのため、両方が傾斜部を有する場合と比較して、シリンダチューブ10又はシリンダボトム50を容易に形成することができる。
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
 本実施形態は、摩擦圧接によって形成される接合体1に係る。接合体1は、端面11と端面11に開口する中空部13とを有する第1部材10と、端面11に接合された本体部52と本体部52から突出し中空部13に収容された突部53とを有する第2部材50と、を備える。接合体1は、中空部13の内周面が中空部13の開口の径方向に対して傾斜した傾斜部18を有し、突部53の外周面が傾斜部18に接していることを特徴とする。又は、接合体1は、突部53の外周面が中空部13の開口の径方向に対して傾斜した面取り部54を有し、中空部13の内周面が面取り部54に接している。
 この構成では、中空部13の内周面が傾斜部18を有し、突部53の外周面が傾斜部18に接している。又は、突部53の外周面が面取り部54を有し、中空部13の内周面が面取り部54に接している。そのため、突部53を中空部13に挿入して第1部材10と第2部材50とを接合する際に、中空部13の内周面と突部53の外周面との接触により、第2部材50が第1部材10に対して径方向における所望の位置に案内される。したがって、接合時における第1部材10と第2部材50とのずれを防止することができる。
 また、本実施形態では、接合体1は、第2部材50が、突部53の外周面に窪み55を更に有し、窪み55が、中空部13の内周面と突部53の外周面の接触部と、本体部52と、の間に位置している。
 この構成では、突部53の外周面の窪み55が本体部52と接触部との間に位置しているので、摩擦圧接時に塑性流動によって生じる内ばり19aは窪み55に導かれる。したがって、接合時に内ばり19aが傾斜部18と面取り部54との間に挟まれるのを防ぐことができ、第1部材10と第2部材50とのずれをより確実に防止することができる。
 また、本実施形態では、接合体1は、傾斜部18が環状に形成されており、突部53の外周面が全周に渡って傾斜部18と接していることを特徴とする。又は、接合体1は、面取り部54が環状に形成されており、中空部13の内周面が全周に渡って面取り部54と接している。
 この構成では、突部53の外周面が全周に渡って傾斜部18と接している。又は、中空部13の内周面が全周に渡って面取り部54と接している。そのため、本体部52と接触部との間の隙間56は密閉空間として形成される。したがって、隙間56内の異物が反ロッド側室15に流出するのを防ぐことができる。
 また、本実施形態では、油圧シリンダ100は、前述の接合体1を備え、第1部材10がシリンダチューブ10であり、第2部材50が中空部13の開口を閉塞するシリンダボトム50である。
 この構成では、第1部材10がシリンダチューブ10であり第2部材50がシリンダボトム50であるので、シリンダチューブ10とシリンダボトム50とを接合する際に、シリンダボトム50がシリンダチューブ10に対して径方向における所望の位置に案内される。したがって、接合時におけるシリンダチューブ10とシリンダボトム50とのずれを防止することができる。
 また、本実施形態は、端面11に開口する中空部13を有する第1部材10と、本体部52から突出する突部53を有する第2部材50と、を摩擦圧接によって接合して形成される接合体1を製造する方法に係る。接合体1の製造方法は、中空部13に突部53を挿入して第2部材50の本体部52を第1部材10の端面11に突き当てる工程と、第1部材10と第2部材50とを相対回転させて端面11と本体部52とに熱を生じさせる工程と、を含む。この製造方法は、中空部13の内周面に形成され中空部13の開口の径方向に対して傾斜した傾斜部18が突部53の外周面に接するまで第1部材10と第2部材50とを互いに押し付ける工程、又は、突部53の外周面に形成され中空部13の開口の径方向に対して傾斜した面取り部54が中空部13の内周面に接するまで第1部材10と第2部材50とを互いに押し付ける工程を更に備える。
 この構成では、第1部材10と第2部材50とを摩擦圧接により接合する際に、突部53の外周面が傾斜部18に接するまで、又は中空部13の内周面が面取り部54に接するまで、第1部材10と第2部材50とが互いに押し付けられる。そのため、第1部材10と第2部材50とを接合する際に、第2部材50が第1部材10に対して径方向における所望の位置に案内される。したがって、接合時における第1部材10と第2部材50とのずれを防止することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、突部53の外周部に窪み55が設けられていなくてもよい。図9に示すように小径部10bの厚みを、シリンダボトム50の突部53と重なるように厚くすることによって、中空部13の内周面と突部53の外周面とを接触させてもよい。突部53に窪みを形成する必要がないので、シリンダボトム50の加工コストを低減することができる。
 傾斜部18と面取り部54とは全周に渡って接触していなくてもよい。傾斜部18の一部と面取り部54の一部とが接触していてもよい。傾斜部18の一部と面取り部54の一部とが環状に形成されていなくてもよい。
 本願は2015年10月5日に日本国特許庁に出願された特願2015-197869に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  摩擦圧接によって形成される接合体であって、
     端面と、前記端面に開口する中空部と、を有する第1部材と、
     前記端面に接合された本体部と、前記本体部から突出し前記中空部に収容された突部と、を有する第2部材と、を備え、
     前記中空部の内周面及び前記突部の外周面の少なくとも一方は、前記開口の径方向に対して傾斜した傾斜部を有し、他方が前記傾斜部に接している、
    接合体。
  2.  請求項1に記載の接合体であって、
     前記第2部材は、前記突部の外周面に窪みを更に有し、前記窪みは、前記中空部の内周面と前記突部の外周面の接触部と、前記本体部と、の間に位置している、
    接合体。
  3.  請求項1に記載の接合体であって、
     前記傾斜部は環状に形成されており、前記傾斜部の全周において前記中空部の内周面と前記突部の外周面とが接している、
    接合体。
  4.  請求項1に記載の接合体を備える流体圧シリンダであって、
     前記第1部材がシリンダチューブであり、前記第2部材が前記中空部の前記開口を閉塞するシリンダボトムである、
    流体圧シリンダ。
  5.  端面に開口する中空部を有する第1部材と、本体部から突出する突部を有する第2部材と、を摩擦圧接によって接合して形成される接合体を製造する方法であって、
     前記中空部に前記突部を挿入して前記第2部材の前記本体部を前記第1部材の前記端面に突き当てる工程と、
     前記第1部材と前記第2部材とを相対回転させて前記端面と前記本体部とに熱を生じさせる工程と、
     前記中空部の内周面及び前記突部の外周面の少なくとも一方に形成され前記開口の径方向に対して傾斜した傾斜部が他方に接するまで前記第1部材と前記第2部材とを互いに押し付ける工程と、を備える、
    接合体の製造方法。
PCT/JP2016/077845 2015-10-05 2016-09-21 接合体、流体圧シリンダ、及び接合体の製造方法 WO2017061276A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/765,583 US10907662B2 (en) 2015-10-05 2016-09-21 Bonded body, fluid pressure cylinder, and manufacturing method of bonded body
KR1020187009737A KR102093049B1 (ko) 2015-10-05 2016-09-21 접합체, 유체압 실린더 및 접합체의 제조 방법
CN201680058515.4A CN108138821B (zh) 2015-10-05 2016-09-21 接合体、流体压缸、以及接合体的制造方法
EP16853430.3A EP3361107A4 (en) 2015-10-05 2016-09-21 SEAL BODY, FLUID PRESSURE GAUGE AND METHOD FOR MANUFACTURING JOINT BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-197869 2015-10-05
JP2015197869A JP6611544B2 (ja) 2015-10-05 2015-10-05 接合体、流体圧シリンダ、及び接合体の製造方法

Publications (1)

Publication Number Publication Date
WO2017061276A1 true WO2017061276A1 (ja) 2017-04-13

Family

ID=58487553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077845 WO2017061276A1 (ja) 2015-10-05 2016-09-21 接合体、流体圧シリンダ、及び接合体の製造方法

Country Status (6)

Country Link
US (1) US10907662B2 (ja)
EP (1) EP3361107A4 (ja)
JP (1) JP6611544B2 (ja)
KR (1) KR102093049B1 (ja)
CN (1) CN108138821B (ja)
WO (1) WO2017061276A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168645A (ja) * 2019-04-03 2020-10-15 マツダ株式会社 電気抵抗圧入接合構造

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506791B2 (ja) * 2017-03-29 2019-04-24 Kyb−Ys株式会社 接合体の製造方法及び接合体
JP6924122B2 (ja) * 2017-11-10 2021-08-25 Kyb株式会社 耐圧機器、流体圧シリンダ、及び耐圧機器の製造方法
JP7054375B2 (ja) * 2018-09-27 2022-04-13 Kyb-Ys株式会社 接合体の製造方法
JP7054374B2 (ja) * 2018-09-27 2022-04-13 Kyb-Ys株式会社 接合体の製造方法
DE112019004864T5 (de) * 2018-09-27 2021-06-10 Kyb-Ys Co., Ltd. Herstellungsverfahren eines Verbindungskörpers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213551A (ja) * 1999-01-27 2000-08-02 Nippon Piston Ring Co Ltd エンドピ―ス圧接型の中空カムシャフト
JP2002161741A (ja) * 2000-11-29 2002-06-07 Hitachi Metals Ltd 排気系部品
JP2007229719A (ja) * 2006-02-27 2007-09-13 Hitachi Ltd 管端封口方法
JP2010019384A (ja) * 2008-07-12 2010-01-28 Sumitomo Light Metal Ind Ltd ショックアブゾーバーと該ショックアブゾーバーの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2784758A (en) * 1955-07-28 1957-03-12 Frederick W Rohe Weld nut with welding flange and spacer shoulder
US4187766A (en) * 1978-06-16 1980-02-12 Clark Equipment Company Fluid device and method for making
FR2544806A1 (fr) * 1983-04-20 1984-10-26 Studer Norbert Procede d'assemblage de deux pieces de revolution coaxiales, de meme diametre
US4832769A (en) * 1987-05-19 1989-05-23 A. R. D. Industries Ltd. Friction welding flash trap seal and method of producing same
JP3781099B2 (ja) * 2000-06-02 2006-05-31 トヨタ自動車株式会社 中空製品、流体処理システム、および中空部材の接合方法
JP3538378B2 (ja) * 2000-10-27 2004-06-14 株式会社日立製作所 摩擦攪拌接合方法
US6637315B2 (en) * 2001-12-26 2003-10-28 Case Corporation Welded hydraulic cylinder for work vehicles
RU2366552C2 (ru) * 2006-05-29 2009-09-10 Открытое акционерное общество "Специальное конструкторское бюро по геологоразведочной технике "(ОАО СКБ "Геотехника") Соединение трубчатых деталей сваркой трением и способ сварки трением соединения трубчатых деталей
JP2009121282A (ja) * 2007-11-13 2009-06-04 Toyota Motor Corp カムシャフト構造およびカムシャフト構造の組立方法
CN201180731Y (zh) * 2008-04-18 2009-01-14 吴玉郎 机具滚轴的结构改良
KR101376164B1 (ko) * 2009-10-02 2014-03-19 가부시키가이샤 닛폰아레프 근접 센서, 근접 센서의 장착 구조 및 근접 센서의 제조 방법
JP2014155991A (ja) * 2013-02-15 2014-08-28 Nikkeikin Aluminium Core Technology Co Ltd 二部材の接合構造、二部材の接合方法およびこれを利用した自動車のステアリングシャフトのシャフト部と継手部を構成するヨーク間の接合構造
JP6071132B2 (ja) * 2013-03-28 2017-02-01 Kyb株式会社 接合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213551A (ja) * 1999-01-27 2000-08-02 Nippon Piston Ring Co Ltd エンドピ―ス圧接型の中空カムシャフト
JP2002161741A (ja) * 2000-11-29 2002-06-07 Hitachi Metals Ltd 排気系部品
JP2007229719A (ja) * 2006-02-27 2007-09-13 Hitachi Ltd 管端封口方法
JP2010019384A (ja) * 2008-07-12 2010-01-28 Sumitomo Light Metal Ind Ltd ショックアブゾーバーと該ショックアブゾーバーの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3361107A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168645A (ja) * 2019-04-03 2020-10-15 マツダ株式会社 電気抵抗圧入接合構造
JP7259493B2 (ja) 2019-04-03 2023-04-18 マツダ株式会社 電気抵抗圧入接合構造

Also Published As

Publication number Publication date
US20180291934A1 (en) 2018-10-11
JP6611544B2 (ja) 2019-11-27
CN108138821A (zh) 2018-06-08
EP3361107A1 (en) 2018-08-15
CN108138821B (zh) 2019-09-10
JP2017072160A (ja) 2017-04-13
KR20180049055A (ko) 2018-05-10
EP3361107A4 (en) 2019-07-17
KR102093049B1 (ko) 2020-03-24
US10907662B2 (en) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2017061276A1 (ja) 接合体、流体圧シリンダ、及び接合体の製造方法
WO2020066756A1 (ja) 接合体の製造方法
CN110430963B (zh) 接合体的制造方法、接合体、缸筒和活塞杆
JP2007229719A (ja) 管端封口方法
JP2017194087A (ja) 耐圧機器及び流体圧シリンダ
JP2024512877A (ja) 作動シリンダ及びその製造方法
JP4852599B2 (ja) 圧力流体用フランジ連結
JP6530800B2 (ja) 耐圧機器及び流体圧シリンダ
JP7054374B2 (ja) 接合体の製造方法
JP6774210B2 (ja) 耐圧機器及び流体圧シリンダ
JP6069125B2 (ja) 流体圧シリンダ
JP7054375B2 (ja) 接合体の製造方法
JP6924122B2 (ja) 耐圧機器、流体圧シリンダ、及び耐圧機器の製造方法
JP2017053477A (ja) トルクコンバータ
JP2007078069A (ja) 樹脂管継手構造及び樹脂管継手の組立方法
JP7530217B2 (ja) 耐圧機器及び流体圧シリンダ
WO2016098619A1 (ja) 耐圧機器
JP7123916B2 (ja) メカニカルシール
JP2016068127A (ja) 接合方法及び接合体
JP2007239921A (ja) 配管継手装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853430

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15765583

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187009737

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016853430

Country of ref document: EP