WO2017057745A1 - 誘電体薄膜、容量素子および電子部品 - Google Patents

誘電体薄膜、容量素子および電子部品 Download PDF

Info

Publication number
WO2017057745A1
WO2017057745A1 PCT/JP2016/079151 JP2016079151W WO2017057745A1 WO 2017057745 A1 WO2017057745 A1 WO 2017057745A1 JP 2016079151 W JP2016079151 W JP 2016079151W WO 2017057745 A1 WO2017057745 A1 WO 2017057745A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
perovskite structure
dielectric
dielectric thin
perovskite
Prior art date
Application number
PCT/JP2016/079151
Other languages
English (en)
French (fr)
Inventor
久美子 山▲崎▼
功 中畑
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US15/765,150 priority Critical patent/US10329200B2/en
Priority to EP16851914.8A priority patent/EP3358039A4/en
Priority to CN201680057466.2A priority patent/CN108138307A/zh
Priority to JP2017514710A priority patent/JP6296207B2/ja
Publication of WO2017057745A1 publication Critical patent/WO2017057745A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a dielectric thin film, a capacitive element including the dielectric thin film, and an electronic component.
  • metal oxide materials have been used as dielectric materials for thin film capacitors, and material properties have been improved for many years in order to make thin film electronic components with higher functions.
  • the improvement in the characteristics of electronic components by metal oxides is reaching its limit, and new materials with higher characteristics are strongly demanded.
  • materials having high dielectric properties other than metal oxides include metal oxynitride materials in which part of oxygen atoms in the oxygen octahedron of the perovskite crystal structure is replaced with nitrogen atoms.
  • the perovskite structure is a structure generally represented by ABX 3 (X; O, N, C, F).
  • Patent Document 1 discloses a technique related to metal oxynitrides having a relative dielectric constant of 11000, which exceeds the relative dielectric constant obtained with conventional barium titanate.
  • the relative dielectric constant is calculated from a pellet obtained by CIP molding of a metal oxynitride powder.
  • the relative dielectric constant is obtained from a bulk sintered body in which metal oxynitride particles are sintered. It is not calculated. With such a powder compact, it has been difficult to obtain sufficient insulation.
  • Patent Document 2 evaluates the relative dielectric constant of a sintered metal oxynitride having a perovskite structure and states that its frequency dependence is small. However, the value of the relative dielectric constant is clearly described. It has not been. Further, it has not been verified whether the manufactured oxynitride sintered body has sufficient insulating properties.
  • Non-Patent Document 1 describes an oxide ferroelectric having a perovskite layered structure different from the above perovskite structure.
  • substances having a perovskite layered structure are mainly classified into three groups.
  • the first is a substance called a Ruddlesden-Popper type and represented by the general formula A m + 1 B m O 3m + 1 .
  • La 2-x Sr x CuO 4 which is a high-temperature superconducting oxide is exemplified.
  • the second is a substance called the Aurevilleus type and represented by the general formula A m-1 Bi 2 B m O 3m + 3 .
  • a specific material is SrBi 2 Ta 2 O 9 which is a Bi-based ferroelectric material that is expected to be applied to ferroelectric thin film memories.
  • the third is a substance represented by a general formula A n B n O 3n + 2 called a perovskite slab structure.
  • Typical examples of such a material include Sr 2 Ta 2 O 7 and La 2 Ti 2 O 7 .
  • Non-Patent Document 2 describes that a metal oxynitride raw material powder and carbon powder are fired at a high temperature to obtain a metal oxynitride as a sintered body.
  • Patent Document 2 a sintered body of a solid solution of metal oxynitrides having a perovskite structure, in which oxygen and nitrogen are represented by a composition formula ABO 2 N or ABON 2 in a stoichiometric ratio, is obtained. It is stated that the rate is realized.
  • Patent Document 2 in a region where the content of nitrogen is less than the stoichiometric ratio, a solid solution having an intermediate composition between a metal oxide and a metal oxynitride is formed. No mention is made of compatibility between high dielectric constants.
  • the thin film obtained by a vapor phase growth method etc. has a structure different from the sintered compact as described in patent document 2 due to the difference in the formation method.
  • a thin film of a metal oxynitride for example, a substance having a perovskite structure represented by the composition formula ABO 2 N
  • ABO 2 N a substance having a perovskite structure represented by the composition formula ABO 2 N
  • the present invention has been made in view of the above-described conventional problems, and even if the amount of nitrogen contained in the metal oxynitride is controlled to be low, the dielectric can achieve both high dielectric constant and high insulation.
  • An object of the present invention is to provide a thin film and a capacitive element including the dielectric thin film.
  • the present inventors have found that a metal oxynitride having a perovskite structure can be stably formed as a solid solution by forming a dielectric thin film having a predetermined composition, and to complete the present invention. It came.
  • a dielectric thin film comprising a dielectric composition containing a dielectric having a perovskite structure
  • the dielectric composition has a chemical formula Ma z MbO x N y (Ma is one or more elements selected from Sr, Ba, Ca, La, Ce, Pr, Nd, Na, Mb is Ta, Nb, Ti, W One or more elements selected from the group consisting of: O is oxygen, and N is nitrogen)
  • a represents the ionic valence indicated when the Ma occupies the A site in the perovskite structure
  • b represents the ionic valence indicated when the Mb occupies the B site in the perovskite structure
  • the a and b are 6.7 ⁇ a + b ⁇ 7.3 is satisfied
  • X, y and z in the chemical formula are 0.8 ⁇ z ⁇ 1.2. 2.450 ⁇ x ⁇ 3.493 0.005
  • a dielectric thin film comprising a dielectric composition containing a dielectric having a perovskite structure
  • the dielectric composition has a chemical formula Ma z MbO x N y (Ma is one or more elements selected from Sr, Ba, Ca, La, Ce, Pr, Nd, Na, Mb is Ta, Nb, Ti, W One or more elements selected from the group consisting of: O is oxygen, and N is nitrogen)
  • a represents the ionic valence indicated when the Ma occupies the A site in the perovskite structure
  • b represents the ionic valence indicated when the Mb occupies the B site in the perovskite structure
  • the a and b are 6.7 ⁇ a + b ⁇ 7.3 is satisfied
  • X, y and z in the chemical formula are 0.8 ⁇ z ⁇ 1.2.
  • the peak intensity of the diffracted X-rays not belonging to the perovskite structure is 100 when the peak intensity indicating the maximum intensity among the peak intensities of the diffracted X-rays belonging to the perovskite structure is 100.
  • the dielectric thin film is characterized in that the peak intensity indicating the maximum intensity is 0 or more and 10 or less.
  • a metal oxynitride dielectric thin film having the above characteristics By using a metal oxynitride dielectric thin film having the above characteristics, a high dielectric constant can be obtained even when the amount of nitrogen contained in the metal oxynitride is controlled to be low. And a high relative dielectric constant.
  • a metal oxynitride dielectric thin film having the above characteristics By using a metal oxynitride dielectric thin film having the above characteristics, a high dielectric constant can be obtained even when the amount of nitrogen contained in the metal oxynitride is controlled to be low. And a high relative dielectric constant.
  • a peak having a maximum intensity derived from a metal oxynitride composed of Ma and Mb existing at 2 ⁇ 30 ° to 35 ° when XRD analysis is performed with CuK ⁇ 1 radiation (wavelength of 1.54056 mm).
  • Ma is one or more elements selected from Sr, Ba, Ca, La, Ce, Pr, Nd, and Na
  • Mb is one or more elements selected from Ta, Nb, Ti, and W. Preferably there is.
  • a capacitive element having the dielectric thin film is preferable.
  • the dielectric composition according to the present invention it is possible to provide a capacitive element such as a thin film capacitor having a high capacitance which has not been obtained conventionally.
  • both high dielectric constant (for example, 1000 or more) and high insulation (for example, 10 10 ⁇ cm or more) can be achieved.
  • a dielectric thin film and a capacitor can be provided.
  • X-ray diffraction pattern of the produced metal oxynitride SrTaO 2 N (Comparative Example 1 of the present invention) X-ray diffraction pattern of the produced metal oxide Sr 2 Ta 2 O 7 (normal temperature and normal pressure) (Comparative Example 5 of the present invention) An X-ray diffraction pattern of a mixed crystal of the produced metal oxynitride and metal oxide is shown (Comparative Example 3 of the present invention).
  • X-ray diffraction pattern of solid solution of produced metal oxide Sr 2 Ta 2 O 7 (when stress is applied) and metal oxynitride SrTaO 2 N (Example 2 of the present invention) Schematic diagram of thin film capacitor
  • the dielectric thin film according to the first aspect of the present invention is a dielectric thin film made of a dielectric composition having a perovskite structure.
  • This dielectric composition has a chemical formula Ma z MbO x N y (Ma is one or more elements selected from Sr, Ba, Ca, La, Ce, Pr, Nd, Na, and Mb is Ta, Nb, Ti, W At least one element selected from the group consisting of O, oxygen, and N.
  • the dielectric having a perovskite structure is a solid solution of oxide and nitride in which part of oxygen in an octahedron formed of oxygen is replaced by nitrogen.
  • the content of nitrogen in Ma z MbO 2 N is large. Therefore, in the present embodiment, in the metal oxynitride solid solution having such a perovskite structure, the nitrogen content (y) is made smaller than 1.
  • y is 0.005 or more, preferably 0.300 or more, and more preferably 0.500 or more.
  • y is 0.700 or less, and preferably 0.600 or less.
  • y is a high relative dielectric constant obtained from crystal distortion caused by the covalent bond of N. Even when “y” is within the above range, the dielectric thin film according to the present embodiment exists as a metal oxynitride solid solution in which the perovskite structure is maintained.
  • the x is 2.450 or more, and preferably 2.600 or more.
  • x is 3.493 or less, preferably 3.050 or less, and more preferably 2.750 or less.
  • insulation is not obtained, and when x> 3.493, the effect obtained by being a metal oxynitride solid solution is not sufficiently obtained.
  • the effect is a high relative dielectric constant obtained from crystal distortion caused by the covalent bond of N.
  • z indicates the abundance ratio of Ma and Mb in the dielectric composition.
  • z is 0.8 or more, and preferably 0.9 or more.
  • z is 1.2 or less, and preferably 1.1 or less. Note that when z ⁇ 0.8, the insulating property is deteriorated.
  • z> 1.2 for example, when Ma is Sr, segregation such as SrO occurs, and the relative permittivity tends to decrease. .
  • y described above is preferably in the range of 0.500 to 0.700.
  • the ion valence a and the ion valence b are each expressed as an average valence.
  • the average valence is a value obtained by averaging the valences of ions present at the A site or the B site according to the abundance ratio. For example, a case where Sr and La exist at a ratio of 4: 1 at the A site will be described.
  • the valence of Sr ions in the perovskite structure is 2, and the valence of La ions in the perovskite structure is 3. Therefore, the average valence a of the A site is calculated by the following (formula 1), and a is 2.2.
  • the element of Ma is one or more elements selected from Sr, Ba, Ca, La, Ce, Pr, Nd, and Na.
  • the Mb element is one or more elements selected from Ta, Nb, Ti, and W.
  • Ma is preferably Sr and Mb is preferably Ta.
  • a solid solution of a metal oxynitride having a perovskite structure can be easily obtained by using the above combination.
  • the dielectric thin film which concerns on the 2nd viewpoint of this invention is a dielectric thin film which consists of a dielectric composition containing the dielectric material which has a perovskite structure.
  • This dielectric composition has a chemical formula Ma z MbO x N y (Ma is one or more elements selected from Sr, Ba, Ca, La, Ce, Pr, Nd, Na, and Mb is Ta, Nb, Ti, W At least one element selected from the group consisting of O, oxygen and N represents nitrogen), and “x”, “y” and “z” in the chemical formula are Since it overlaps with the description in the dielectric thin film concerning a viewpoint, it abbreviate
  • the ionic valence a, the ionic valence b, and their sum (a + b) are also omitted because they overlap with the description of the dielectric thin film according to the first aspect.
  • the diffraction X-ray peak attributed to the perovskite structure appears in the X-ray diffraction pattern.
  • This is a peak attributed to a dielectric contained in the dielectric thin film, and in this embodiment, a peak attributed to a metal oxynitride having a perovskite structure. Therefore, since the dielectric thin film has a metal oxynitride having a predetermined composition having a perovskite structure, the dielectric thin film containing the metal oxynitride can achieve both a high dielectric constant and a high insulating property.
  • the X-ray diffraction pattern of the dielectric thin film may have a diffraction X-ray peak that does not belong to the perovskite structure as long as both a high relative dielectric constant and a high insulating property can be achieved.
  • the peak intensity indicating the maximum intensity among the peak intensities of the diffracted X-rays belonging to the perovskite structure is 100
  • the peak intensity indicating the maximum intensity among the peak intensities of the diffracted X-rays not belonging to the perovskite structure is 0 or more and 10 or less.
  • the peak intensity is greater than 0, in such a dielectric thin film, a phase having a perovskite structure and a phase not having a perovskite structure coexist and are a so-called mixed crystal.
  • the existence ratio of the substance having no perovskite structure is very small as compared with the existence ratio of the substance having the perovskite structure, it is possible to achieve both high dielectric constant and high insulation.
  • the structure other than the perovskite structure is not particularly limited, but the substance having a perovskite structure in a mixed crystal state is preferably a substance capable of maintaining the perovskite structure.
  • the structure other than the perovskite structure is preferably a perovskite slab structure.
  • a material having a perovskite slab structure is suitable as a raw material (for example, a film formation target) for forming a dielectric thin film, and in addition, a perovskite within the composition range represented by the above chemical formula
  • the structure and the perovskite slab structure can coexist as mixed crystals in the thin film.
  • a compound having a perovskite slab structure does not exhibit a high relative dielectric constant, if the peak intensity of the perovskite slab structure is within the above range, both a high relative dielectric constant and high insulation can be achieved.
  • the pyrochlore structure is represented by the same composition formula as the perovskite slab structure.
  • the substance having the perovskite structure must maintain the perovskite structure. Therefore, a substance having a pyrochlore structure and a substance having a perovskite structure tend not to coexist. Therefore, when the dielectric thin film contains a substance having a pyrochlore structure, high dielectric constant and high insulation cannot be obtained.
  • a solid solution of metal oxynitride containing Ma and Mb can be obtained by using such a metal oxide as a raw material.
  • a solid solution of metal oxynitride containing Ma and Mb can be obtained by using such a metal oxide as a raw material.
  • Easy to maintain perovskite structure Specifically, Sr 2 Ta 2 O 7 , Sr 2 Nb 2 O 7 , Ca 2 Nb 2 O 7 , Na 2 W 2 O 7 , La 2 Ti 2 O 7 , Ce 2 Ti 2 O 7 , Pr 2 Ti 2 O 7 and Nd 2 Ti 2 O 7 have a perovskite slab structure.
  • Ba 2 Ta 2 O 7 is not present, (SrBa) 2 Ta 2 O 7 has a perovskite slab structure.
  • Pb 2 Ta 2 O 7 , Cd 2 Ta 2 O 7 , Y 2 Si 2 O 7 , Cr 2 Ti 2 O 7 , and Tb 2 Ge which are combinations of elements other than those exemplified as Ma and Mb above.
  • 2 O 7 , Sc 2 Si 2 O 7 and the like have a pyrochlore structure. Therefore, even if an attempt is made to form a metal oxynitride solid solution using these metal oxides, a perovskite structure is not obtained.
  • the peak showing the maximum intensity among the peak intensities of the diffracted X-rays belonging to the perovskite structure and the peak showing the maximum intensity among the peak intensities of the diffracted X-rays not belonging to the perovskite structure are both 2 ⁇ of 30 to It preferably exists within a range of 35 °.
  • the dielectric thin film according to the third aspect of the present invention has a chemical formula Ma z MbO x N y (Ma is a metal ion located at the A site of the perovskite structure, Mb is a metal ion located at the B site of the perovskite structure, and O is A dielectric thin film having a perovskite structure represented by oxygen ions, N represents nitrogen ions).
  • x, y, and z are 0.8 ⁇ z ⁇ 1.2, 2.450 ⁇ x ⁇ 3.493, 0.005, similarly to the dielectric thin film according to the first and second aspects.
  • Preferred ranges of “x”, “y” and “z” are the same as those of the dielectric thin film according to the first and second aspects.
  • the average valences of Ma and Mb are a and b
  • the average valence a and the average valence b can be obtained in the same manner as the dielectric thin film according to the first and second aspects.
  • the dielectric thin film according to the third aspect is characterized by being composed of a solid solution of a metal oxide composed of Ma and Mb and a metal oxynitride composed of Ma and Mb.
  • a solid solution of a metal oxide composed of Ma and Mb and a metal oxynitride composed of Ma and Mb is composed of a metal oxide composed of Ma and Mb and a metal oxynitride composed of Ma and Mb.
  • prescribed ratio is shown.
  • a solid solution of a metal oxide composed of Ma and Mb and a metal oxynitride composed of Ma and Mb is composed of a metal oxide composed of Ma and Mb and a metal oxynitride composed of Ma and Mb.
  • An intermediate composition is shown.
  • a metal oxide composed of Ma and Mb is represented by Ma 2 Mb 2 O 7 and a metal oxynitride composed of Ma and Mb is represented by MaMbO 2 N
  • a metal oxide composed of Ma and Mb The composition of the solid solution of the product and the metal oxynitride composed of Ma and Mb ”is expressed by Ma z MbO x N y , and“ x ”indicating the content of“ O ”is 2.450 to 3.493. Within range. Further, “y” indicating the content of “N” is in the range of 0.005 to 0.700.
  • a “solid solution of a metal oxide composed of Ma and Mb and a metal oxynitride composed of Ma and Mb” having a predetermined composition a pyrochlore structure or a perovskite type layer structure having a low relative dielectric constant as described above. It is possible to suppress the formation of a metal oxide phase having a structure and the dielectric composition to be a mixture of a metal oxynitride and a metal oxide, thereby achieving both a high dielectric constant and a high insulating property. It becomes possible.
  • the metal oxynitride existing at 2 ⁇ 30 ° to 35 ° when XRD analysis is performed with CuK ⁇ 1 radiation (wavelength of 1.54056 ⁇ )
  • the intensity of the peak derived from the metal oxide existing within 2 ⁇ 30 ° to 35 ° as shown in FIG. It is preferably 0 or more and 10 or less.
  • the peak derived from a metal oxide means a peak resulting from the structure of the raw material used when forming the thin film.
  • the dielectric thin film according to the present embodiment is a dielectric deposited film formed by depositing elements constituting the dielectric thin film using a thin film forming method or the like.
  • a dielectric deposited film unlike a sintered body obtained by firing powder, it is affected by stress when formed on a substrate, or oxygen defects are present. By making it less likely to occur, even in a region where the content of nitrogen is less than the composition of the metal oxynitride having a perovskite structure, both high insulating properties and high relative dielectric constant can be achieved.
  • the thickness of the dielectric thin film is preferably 10 nm to 2 ⁇ m. If the thickness is less than 10 nm, dielectric breakdown is likely to occur, and if it exceeds 2 ⁇ m, the industrial superiority over a cheaper metal oxide dielectric thin film such as BaTiO 3 is weakened.
  • Capacitance elements mentioned here are elements using dielectric properties, such as capacitors, thermistors, filters, diplexers, resonators, oscillators, antennas, piezoelectric elements, transistors (using a dielectric insulating film for the gate), Includes ferroelectric memory.
  • the dielectric thin film of the present invention may contain other elements within a range not impairing the effects of the present invention. Moreover, you may contain the other element inevitably introduced in a manufacturing process and a storage condition.
  • Thin-film capacitors do not have a clear definition of their structure, but generally have fewer or one dielectric layer compared to multilayer capacitors, and require smaller and lower profile Used for. Since the number of layers is limited, a thin film capacitor is often required to have a higher relative dielectric constant, and it can be said that the present invention is a particularly suitable device.
  • FIG. 5 shows a schematic diagram of a thin film capacitor which is an example of a capacitive element according to the present embodiment.
  • the thin film capacitor shown in FIG. 5 includes a lower electrode 12 and a dielectric film 13 formed in this order on a support substrate 11, and an upper electrode 14 that functions as the other electrode of the thin film capacitor on the surface of the dielectric film 13.
  • the material for forming the upper electrode 14 is not particularly limited as long as it has conductivity, and the upper electrode 14 can be formed of the same material as that of the lower electrode 12.
  • each layer may be adjusted according to the application, and each layer need not be limited to one layer.
  • the film thickness of the upper electrode 14 may function as an electrode, and is preferably 0.01 ⁇ m or more. A film thickness of 0.01 ⁇ m or less is not preferable as the upper electrode 14 because the conductivity deteriorates.
  • the film forming method that can be used for forming the metal oxynitride to which the composition of the present invention is applied is not particularly limited as long as a film satisfying the above chemical formula can be obtained, and vacuum deposition, sputtering, PLD (pulse Various thin film forming methods such as laser vapor deposition method, MO-CVD (metal organic chemical vapor deposition method), MOD (metal organic decomposition method), sol-gel method, CSD (chemical solution deposition method) and the like are exemplified.
  • known vapor phase growth methods such as sputtering, chemical vapor deposition, and PLD are preferable.
  • the raw materials (evaporation material, various target materials, organometallic materials, etc.) used when forming the dielectric thin film may contain minute impurities and subcomponents, but greatly reduce the insulation. If it is not an impurity, there is no particular problem.
  • the PLD method which is an example of a film forming method that can be used for forming the dielectric film 13 is a method in which a target containing a constituent element of a target film is placed in a film forming chamber, and a pulse laser is irradiated on the target surface.
  • the plume is generated by instantly evaporating the surface of the target with the strong energy, and the evaporated material is deposited on the substrate arranged to face the target to form a thin film.
  • a target in addition to a metal oxide sintered body containing a film constituent element, an alloy, a nitride sintered body, a metal oxynitride sintered body, etc. can be used as long as it contains a film constituent element. . Further, in the target, it is preferable that each element is distributed on the average of the scale of the pulse laser diameter to be used, but it is not necessary to be particularly uniform as long as the quality of the obtained metal oxynitride film is not affected. .
  • the number of targets is not necessarily one, and a plurality of targets including a part of the film constituent elements can be prepared and used for film formation. The target shape may be appropriately selected in accordance with the film forming apparatus to be used.
  • a metal oxide sintered body containing a film constituent element produced using a general solid phase method can be used as a target.
  • a method of introducing nitrogen radicals into the deposition chamber during the formation of the metal oxide film a method using reactive sputtering using nitrogen gas, etc., a plasma treatment using nitrogen activated by plasma nitriding Etc. can be used.
  • nitrogen can be introduced into the crystal structure of the metal oxide thin film without using a toxic gas.
  • the metal oxynitride can be directly formed on the substrate without going through the metal oxide thin film.
  • a partial oxidation treatment of a nitride film can also be used.
  • a method of forming a dielectric thin film having a composition of SrTaO 3.2 N 0.2 as a more examples detailed below embodiments.
  • a sintered body target of Sr 2 Ta 2 O 7 can be used.
  • a dielectric film may be formed on the Pt lower electrode by the PLD method so as to have a thickness of 200 nm, for example.
  • a metal mask is used to form a region where a dielectric film is not partially formed on the lower electrode.
  • the film in order to crystallize the film, it is preferable to form the film at 600 ° C. to 800 ° C. by heating the substrate with an infrared laser at the time of film formation. At this time, if the substrate temperature is too low, crystallization does not occur, and if the temperature is too high, it is necessary to be careful because a crack or the like due to a difference in thermal expansion between the substrate and the film occurs during cooling.
  • the optimum conditions may be selected accordingly, and the temperature range is not limited to the above range.
  • the Curie temperature of metal oxynitrides is high, and generally the film formation temperature is equal to or lower than the Curie temperature. Therefore, no structural phase transition occurs when the temperature is lowered from the film formation temperature to room temperature after film formation. Therefore, compared with a barium titanate thin film having a Curie temperature of around 100 ° C., a metal oxynitride thin film is less susceptible to cracking.
  • various gas types and gas pressures can be used during film formation.
  • the state of the film thus obtained also depends on the size of the film forming chamber and the position of the gas introduction pipe. That is, even if the same partial pressure is used, the same film is not necessarily obtained. Therefore, attention should be paid to the ratio of Sr ions, that is, Ma and Ta ions, that is, Mb. Since this ratio varies depending on the gas pressure, the gas pressure may be adjusted according to the apparatus so as to obtain a desired composition ratio. In particular, since metal oxynitride contains O and N in its composition, attention should be paid to the ratio of oxygen partial pressure and nitrogen partial pressure. Also here, the partial pressure ratio and the total pressure may be adjusted according to the apparatus so that a desired composition can be obtained.
  • nitrogen radicals are introduced into the metal oxide film.
  • nitriding treatment may be performed.
  • the amount of nitrogen in the deposited sample can be confirmed by X-ray photoelectron spectroscopy.
  • an internal standard of an X-ray photoelectron spectrometer can be used, but it is preferable to calculate a sensitivity factor from a nitride single crystal wafer such as AlN and correct the quantification value. Since the progress of oxidation or nitridation varies depending on the constituent elements, the amount of nitrogen radicals introduced may be adjusted as appropriate depending on the selected element group.
  • the SrTaO 3.2 N 0.2 oxynitride film formed as described above is used as a dielectric film layer, and Pt is formed as an upper electrode on the upper surface by a sputtering method.
  • a thin film capacitor can be obtained.
  • the capacitance of the thin film capacitor is measured using an impedance analyzer by connecting a lead wire to the upper electrode and the lower electrode via a probe. After the measurement of the capacitance, the cross section of the metal oxynitride film is observed using a scanning electron microscope, and the thickness d of the metal oxynitride film is measured from the observed image.
  • ⁇ 0 is the dielectric constant of vacuum.
  • a higher relative dielectric constant is preferable.
  • the present invention is not limited to the embodiment and the examples described later.
  • the constituent elements in the embodiments and examples include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples may be appropriately combined or may be appropriately selected and used.
  • the capacitive element of the present invention refers to an element that positively utilizes its dielectric characteristics, or an element whose dielectric characteristics are indispensable in terms of configuration for function expression, and other electronic devices that have a capacitive component accidentally Is not included.
  • Example 1 to Example 7, Comparative Example 1 to Comparative Example 5 In Examples 1 to 7 and Comparative Example 4, thinning was performed. SrCO 3 , Ta 2 O 5 , La 2 O 3 , TiO 2 , Na 2 CO 3 , and WO 3 were used as raw materials for the sintered body used as the film formation target. Each was weighed to be Sr 2 Ta 2 O 7 , La 2 Ti 2 O 7 , Na 2 W 2 O 7 and mixed for 16 hours in a wet ball mill using ethanol as a solvent. The obtained mixed slurry was dried with a constant temperature dryer at 80 ° C. for 12 hours. The obtained mixture was lightly crushed in a mortar, placed in a ceramic crucible and heat-treated in an electric furnace at 1000 ° C. in an air atmosphere for 2 hours to obtain a calcined product.
  • the obtained calcined product was pulverized again with a wet ball mill using ethanol as a solvent for 16 hours, and the pulverized slurry was dried at 80 ° C. for 12 hours with a constant temperature dryer to obtain a pulverized product.
  • a polyvinyl alcohol solution as a binder was added in an amount of 0.6% by weight in terms of solid matter in the solution and mixed to obtain a granulated product.
  • the granulated product was molded into a cylindrical shape having a diameter of about 23 mm and a height of about 9 mm to obtain a molded product.
  • the molded product was fired in an electric furnace at 1400 ° C.
  • the film-forming target obtained as described above was placed in a film-forming apparatus, and a Si substrate having a Pt film as a lower electrode on the surface was placed so as to face the target.
  • films were formed to a thickness of 200 nm by the PLD method in which nitrogen radicals were introduced.
  • the desired structure shown in Table 1 was obtained by controlling the gas pressures of oxygen and nitrogen. From the X-ray diffraction pattern of the obtained sample, it was confirmed that the thin film was crystallized.
  • N (nitrogen) was doped.
  • Comparative Examples 1 to 3 and Comparative Example 5 first, metal oxides Sr 2 Ta 2 O 7 , La 2 Ti 2 O 7 , and Na 2 W 2 O 7 were synthesized in the same manner as the procedure for synthesizing the target. Thereafter, nitriding was performed by a carbothermal reduction method as described in Non-Patent Document 2. Although nitriding is possible even in a normal ammonia atmosphere, according to the carbothermal reduction method, the amount of N to be introduced can be controlled by the amount of the corresponding C added.
  • Metal oxide powder kneaded with carbon was pelletized and heat-treated. Heat treatment was performed in a batch furnace capable of reducing the pressure, and after the pressure in the furnace was sufficiently reduced, the furnace was filled with an N 2 atmosphere at atmospheric pressure at 1400 ° C. to obtain a sintered body. No C remained after nitriding. A Pt electrode was formed on the obtained sample by sputtering, and electrical characteristics were evaluated. In Comparative Example 5, the metal oxide powder was pelletized without kneading carbon, and the heat treatment was performed.
  • N and O amounts of the samples of Examples 1 to 7 and Comparative Examples 1 to 5 were quantified by an impulse heating melt extraction method (infrared absorption method) using TC600 manufactured by LECO. Moreover, although the valence of the metal ion was determined from the chemical shift of XPS, there was no change in the valence compared with the raw material.
  • Table 1 shows the crystal structure, insulating properties, and relative dielectric constant ( ⁇ ) of Examples 1 to 7 and Comparative Examples 1 to 5.
  • the relative dielectric constant ( ⁇ ) is a value evaluated at a voltage of 1 Vrms / ⁇ m and a frequency of 1 kHz.
  • the upper electrode for evaluating the relative dielectric constant was formed by vapor-depositing Ag with a diameter of 100 ⁇ m.
  • the relative dielectric constant ( ⁇ ) is shown in Table 1 only when the tan ⁇ is lower than 100%, and the dielectric constant cannot be evaluated if the tan ⁇ is 100% or more. It was assumed that ⁇ ) was x (not observed).
  • the XRD pattern was measured with CuK ⁇ 1 radiation (wavelength of 1.54056 mm).
  • the insulation was evaluated by measuring the resistance value.
  • the resistance value was measured using ADVANTEST R8340A and applying a voltage of 1 V / ⁇ m.
  • Table 1 when the resistance value is 10 10 ⁇ cm or more, the insulation property is ⁇ (good), and when the resistance value is smaller than that, ⁇ (bad).
  • “*” Means the intensity ratio of the main peak of the metal oxide when the intensity of the main peak of the metal oxynitride is set to 100 only when the metal oxide has a perovskite slab structure.
  • the metal oxide strength ratio of 0 or more and 10 or less was marked as “O” (satisfied).
  • the metal oxide strength ratio was greater than 10
  • the perovskite structure derived from the metal oxynitride appeared on the pattern, but it was determined that it was not a solid solution with the oxide. satisfied).
  • Comparative Example 1 is a sintered body of metal oxynitride SrTaO 2.000 N 1.000 , which was also shown by composition analysis and XRD analysis. Although Comparative Example 1 having a clear X-ray peak shown in FIG. 1 had a perovskite structure, it was confirmed that insulation could not be ensured because of the large amount of N. Further, Comparative Example 2 is a sintered body, and even when the intensity ratio of the main peak of the metal oxide is 12 when the intensity of the main peak of the metal oxynitride is 100, insulation can be ensured. It was confirmed that it was not possible.
  • Comparative Example 5 is a sintered body of the metal oxide Sr 2 Ta 2 O 7 having a perovskite slab structure, and it was shown from the composition analysis and XRD analysis. The clear XRD pattern obtained is shown in FIG. In Comparative Example 5, sufficient insulation was obtained, but ⁇ was a low value of 50.
  • Comparative Example 3 is a sintered body having an intermediate composition between the metal oxynitride SrTaO 2.000 N 1.000 and the metal oxide Sr 2 Ta 2 O 7 . Comparative Example 3 was not a solid solution, and therefore sufficient insulation was not obtained.
  • the XRD pattern is shown in FIG. FIG. 3 shows that there is a perovskite structure peak derived from metal oxynitride and a perovskite slab structure peak derived from metal oxide, which is a mixed crystal state of these phases.
  • black circles ⁇ are peaks derived from metal oxynitrides, and white circles ⁇ are peaks derived from metal oxides. The intensity ratio was calculated using these two peaks.
  • Comparative Example 4 was a thin film doped with N after forming Sr 2 Ta 2 O 7 having a perovskite slab structure.
  • a solid solution of metal oxynitride having a perovskite structure was hardly formed, and the existence ratio of the perovskite slab structure remained high.
  • the electrical characteristics were evaluated in the same shape as in the example, but insulation was not obtained.
  • Example 1 a metal oxynitride solid solution having a perovskite structure was sufficiently formed, and sufficient insulation was obtained.
  • the relative dielectric constant ⁇ was also a high value of 2100.
  • Example 2 showed a high relative dielectric constant ⁇ of 2200.
  • the XRD pattern of Example 2 is shown in FIG. It was confirmed that a perovskite structure was obtained with the same composition ratio as that of Comparative Example 3 shown in FIG.
  • Example 5 if the thin film is a mixed crystal state of a phase having a perovskite structure with a strength ratio controlled to 10 and a phase having a perovskite slab structure, high insulation and a high dielectric constant ⁇ are secured. I was able to confirm that it was possible. Thereby, when the intensity ratio of the main peak of the metal oxynitride is 100 or less when the intensity of the main peak of the metal oxynitride is set to 100, it is possible to achieve both high dielectric constant and high insulation. I found out that
  • Example 8 to 15 Comparative Examples 6 to 7
  • a metal oxide target was prepared and then thinned (nitrided when thinned) to synthesize.
  • Each target was adjusted so that the composition of the thin film was as shown in Table 2.
  • the mixing ratio is 80% and 20% in order from the left.
  • the ratio of SrCO 3 and BaCO 3 as raw materials is adjusted so that Sr is 80% and Ba is 20% at the A site, and the target (Sr 0.8 Ba 0.2 ) to prepare a 2 Ta 2 O 7.
  • is a value evaluated at a voltage of 1 Vrms / ⁇ m and a frequency of 1 kHz. In all of Examples 8 to 15, ⁇ showed a high value of 1000 or more.
  • Comparative Example 6 and Comparative Example 7 were synthesized using a composition outside the present invention to produce a film-forming target.
  • Each of the obtained metal oxide targets had a pyrochlore structure.
  • An attempt was made to form a metal oxynitride solid solution having a perovskite structure, but the obtained thin film did not have a perovskite structure, and insulation was not obtained.
  • “*” Means the intensity ratio of the main peak of the metal oxide when the intensity of the main peak of the metal oxynitride is set to 100 only when the metal oxide has a perovskite slab structure.
  • Example 16 to 19 and Comparative Examples 8 to 9 In Examples 16 to 19 and Comparative Examples 8 to 9, the same method as in Example 1 was used, and a metal oxide target was prepared and then thinned (nitrided when thinned) and synthesized. Each target was adjusted so that the composition of the thin film was as shown in Table 3. The obtained sample was evaluated for electrical characteristics. The results are summarized in Table 3. ⁇ is a value evaluated at a voltage of 1 Vrms / ⁇ m and a frequency of 1 kHz.
  • “*” Means the intensity ratio of the main peak of the metal oxide when the intensity of the main peak of the metal oxynitride is set to 100 only when the metal oxide has a perovskite slab structure.
  • Comparative Example 9 Although insulation was obtained, the dielectric constant was a relatively low value. When the microstructure of Comparative Example 9 was observed, segregation of SrO was observed.
  • Example 20 to 21 and Comparative Examples 10 to 11 In Examples 20 to 21 and Comparative Examples 10 to 11, the same method as in Example 1 was used, and a metal oxide target was prepared and then thinned (nitrided when thinned) and synthesized. Each target was adjusted so that the composition of the thin film was as shown in Table 4. The obtained sample was evaluated for electrical characteristics. The results are summarized in Table 4.
  • “*” Means the intensity ratio of the main peak of the metal oxide when the intensity of the main peak of the metal oxynitride is set to 100 only when the metal oxide has a perovskite slab structure.
  • the dielectric thin film since the dielectric thin film has a crystal structure similar to the crystal structure in which N is the stoichiometric ratio, even in a region where N is less than the stoichiometric ratio, the dielectric thin film exhibits high resistance and high dielectric constant.
  • a dielectric element can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Insulating Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Semiconductor Memories (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】金属酸窒化物に含有されている窒素量を低く制御しても、高い比誘電率と高い絶縁性とを両立できる誘電体薄膜を提供する。 【解決手段】ペロブスカイト構造を有する誘電体組成物からなる誘電体薄膜であって、誘電体組成物は、化学式MaMbO(MaはSr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種以上の元素、MbはTa、Nb、Ti、Wから選ばれる1種以上の元素、Oは酸素、Nは窒素)で表される組成を有し、Maがペロブスカイト構造におけるAサイトを占めた場合に示すイオン価数をa、Mbがペロブスカイト構造におけるBサイトを占めた場合に示すイオン価数をbとした場合、aおよびbが6.7≦a+b≦7.3であり、x、y、zが0.8≦z≦1.2、2.450≦x≦3.493、0.005≦y≦0.700であり、MaとMbを含む金属酸窒化物固溶体である誘電体薄膜。

Description

誘電体薄膜、容量素子および電子部品
 本発明は、誘電体薄膜、誘電体薄膜を備える容量素子、および電子部品に関する。
 近年の電子機器の多機能化に伴い電子回路基板に実装される電子部品の個数は増大傾向にある。電子機器ではまた小型化も進んでおり、機器の多機能化と小型化の両立のため、電子部品の実装密度を向上させることが強く望まれている。実装密度向上のためには、各種電子部品の高性能化、小型化が必要であり、電子部品の一つである薄膜キャパシタにおいても小型化、高性能化に対する要求がますます強くなっている。
 従来、薄膜キャパシタ用途の誘電体材料としては金属酸化物材料が多く用いられてきており、より高い機能を持つ薄膜電子部品とするため材料特性の改善が長年進められてきた。しかしながら、金属酸化物による電子部品の特性向上は限界を迎えつつあり、より高い特性を持つ新しい材料が強く求められている。
 薄膜キャパシタの更なる特性向上のため、金属酸化物以外で高い誘電特性を持つ材料に関して近年開発が進められている。金属酸化物以外で高い誘電特性を持つ材料としては、ペロブスカイト結晶構造の酸素8面体中の酸素原子の一部を窒素原子に置換した金属酸窒化物材料が挙げられる。なお、ペロブスカイト構造とは一般にABX(X;O,N,C,F)で表される構造体である。
 特許文献1には、比誘電率が11000と従来のチタン酸バリウムで得られていた比誘電率を凌駕する金属酸窒化物に関する技術が開示されている。しかしながら、その比誘電率は金属酸窒化物の粉末をCIP成形したペレットから算出したものであり、通常の誘電体の様に、金属酸窒化物の粒子が焼結したバルク状の焼結体から算出されたものではない。このような粉末の成形体では、十分な絶縁性を得ることは困難であった。
 そこで、特許文献2では、ペロブスカイト構造を有する金属酸窒化物の焼結体の比誘電率を評価し、その周波数依存性が少ないことを述べているが、比誘電率の値については明確に記されていない。また、作製した酸窒化物の焼結体が、十分な絶縁性が確保されているか検証されていない。
 ところで、非特許文献1には、上記のペロブスカイト構造とは異なるペロブスカイト層状構造を有する酸化物強誘電体が記載されている。非特許文献1では、ペロブスカイト層状構造を有する物質は、主に3つのグループに分類されている。1つめは、Ruddlesden-Popper型と呼ばれ一般式Am+13m+1で表される物質である。具体的な物質としては、高温超電導酸化物であるLa2-xSrCuOなどが例示される。2つめは、Aurevilleus型と呼ばれ一般式Am-1Bi3m+3で表される物質である。具体的な物質としては、強誘電体薄膜メモリへの応用が期待されているBi系強誘電体であるSrBiTaが挙げられる。3つめは、ペロブスカイトスラブ構造と呼ばれる一般式A3n+2で表される物質である。一般式A3n+2においてn=4の場合には、Aの組成式で表される物質となる。このような物質としては、SrTaやLaTiが代表例として挙げられる。
 一方、同じAの組成式で表される構造体としてパイロクロア構造を有する物質がある。具体的には、磁性体であるDyTiが挙げられる。なお、パイロクロア構造はペロブスカイト構造とは、組成式は同じであるものの、結晶構造も誘電性も大きく異なることが一般に知られている。
 また、非特許文献2には、金属酸窒化物の原料粉末と炭素粉末とを高温で焼成し、焼結体としての金属酸窒化物を得ることが記載されている。
特開2013-1625号公報 特開昭61-122108号公報
島根大学教育学部紀要(自然科学)第36巻 65頁~69頁 平成14年12月 「ペロブスカイト型関連層状構造を持つA2B2O7型酸化物強誘電体の結晶化学」秋重幸邦、釜田美紗子 Wenbin Dai et al.,Journal of the Ceramic Society of Japan, 115, 1, 42-46 (2007)
 特許文献2では、酸素と窒素とが化学量論比である組成式ABONまたはABONで表され、ペロブスカイト構造を有する金属酸窒化物同士の固溶体の焼結体を得て、高い比誘電率を実現していることについては述べられている。
 これは、金属酸窒化物のペロブスカイト構造の酸素イオンのサイトに共有結合性が強い窒素イオンを導入することで、結晶がより歪みやすくなり、その結果として、高い比誘電率が発現していると考えられる。
 しかしながら、窒素イオンが導入されることにより、特許文献2に開示されている材料(ABONまたはABON)のように、金属酸窒化物に含まれる窒素の含有量が多くなると、誘電体組成物として機能を果たす上で必要な絶縁性が低下するという問題が生じてしまう。
 よって、特許文献2で開示されているような窒素の含有量が多い材料では、絶縁性が低下しやすく、正確な比誘電率が測定されていない可能性が高い。
 一方、絶縁性を向上させるためには、導入する窒素イオン量を低減するという対策が考えられるが、導入する窒素イオン量が少なくなると、金属酸窒化物のペロブスカイト構造を維持することが困難となり、パイロクロア構造や、ペロブスカイト型層状構造といった比誘電率が低い金属酸化物相を生成してしまう。したがって、導入する窒素イオン量が少ない場合は、金属酸化物と金属酸窒化物の混合体になってしまい、ペロブスカイト構造を有する金属酸窒化物の特徴であった高い比誘電率を得ることが困難であり、高い比誘電率と高い絶縁性との両立が困難であるという問題があった。
 さらに、特許文献2では、化学量論比よりも少ない窒素の含有量が少ない領域において、金属酸化物と金属酸窒化物との中間的な組成を有する固溶体を形成することにより、高い絶縁性と高い比誘電率を両立出来ることについては述べられていない。
 また、気相成長法等により得られる薄膜は、その形成方法の違いに起因して、特許文献2に記載されているような焼結体とは異なる構造を有している。しかしながら、窒素の含有量が多い金属酸窒化物(たとえば、組成式ABONで表されるペロブスカイト構造を有する物質)の薄膜も、高い比誘電率を示すことが知られているものの、焼結体と同様の理由により、窒素の含有量が少ない領域では、高い比誘電率と高い絶縁性との両立が困難であった。
 そこで本発明は、上記従来の課題に鑑みてなされたものであり、金属酸窒化物に含有されている窒素量を低く制御しても、高い比誘電率と高い絶縁性とを両立できる誘電体薄膜及びその誘電体薄膜を備えている容量素子を提供することを目的としている。
 本発明者らは、所定の組成を有する誘電体薄膜とすることにより、ペロブスカイト構造を有する金属酸窒化物を固溶体として安定して形成させることが可能であることを見出し、本発明を完成させるに至った。
 上記課題を解決するために成された本発明に係る誘電体薄膜は、以下の態様を含む。
[1]ペロブスカイト構造を有する誘電体を含む誘電体組成物からなる誘電体薄膜であって、
 前記誘電体組成物は、化学式MaMbO(MaはSr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種以上の元素、MbはTa、Nb、Ti、Wから選ばれる1種以上の元素、Oは酸素、Nは窒素を示す)で表される組成を有し、
 前記Maが前記ペロブスカイト構造におけるAサイトを占めた場合に示すイオン価数をa、前記Mbが前記ペロブスカイト構造におけるBサイトを占めた場合に示すイオン価数をbとした場合、前記aおよびbが6.7≦a+b≦7.3である関係を満足し、
 前記化学式のx、y、zが
0.8≦z≦1.2
2.450≦x≦3.493
0.005≦y≦0.700
であり、
 MaとMbを含む金属酸窒化物固溶体であることを特徴とする誘電体薄膜である。
 [2]ペロブスカイト構造を有する誘電体を含む誘電体組成物からなる誘電体薄膜であって、
 前記誘電体組成物は、化学式MaMbO(MaはSr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種以上の元素、MbはTa、Nb、Ti、Wから選ばれる1種以上の元素、Oは酸素、Nは窒素を示す)で表される組成を有し、
 前記Maが前記ペロブスカイト構造におけるAサイトを占めた場合に示すイオン価数をa、前記Mbが前記ペロブスカイト構造におけるBサイトを占めた場合に示すイオン価数をbとした場合、前記aおよびbが6.7≦a+b≦7.3である関係を満足し、
 前記化学式のx、y、zが
0.8≦z≦1.2
2.450≦x≦3.493
0.005≦y≦0.700
であり、
 前記誘電体薄膜のX線回折パターンにおいて、前記ペロブスカイト構造に帰属する回折X線のピーク強度のうち最大強度を示すピーク強度を100とした時に、前記ペロブスカイト構造に帰属しない回折X線のピーク強度のうち最大強度を示すピーク強度が0以上10以下であることを特徴とする誘電体薄膜である。
 上記のような特徴を有する金属酸窒化物の誘電体薄膜にすることにより、金属酸窒化物に含有されている窒素量を低く制御しても、高い比誘電率が得られるため、高い絶縁性と高い比誘電率とを両立することが可能となる。
 [3]前記ペロブスカイト構造に帰属する回折X線のピークのうち最大強度を示すピークおよび前記ペロブスカイト構造に帰属しない回折X線のピークのうち最大強度を示すピークが2θ=30~35°の範囲内に存在することを特徴とする[2]に記載の誘電体薄膜である。
 [4]ペロブスカイト構造に帰属しない回折X線は、ペロブスカイトスラブ構造に帰属する回折X線であることを特徴とする[2]または[3]に記載の誘電体薄膜である。
 [5]化学式MaMbO(Maはペロブスカイト構造のAサイトに位置する金属イオン、Mbはペロブスカイト構造のBサイトに位置する金属イオン、Oは酸素イオン、Nは窒素イオンを示す)で表されるペロブスカイト構造を有する誘電体薄膜において、
前記MaとMbのそれぞれの平均価数をa、bとした場合、前記aとbとの関係が
a+b=7.0を満足し、
前記化学式のx、y、zが
0.8≦z≦1.2
2.450≦x≦3.493
0.005≦y≦0.700であり、
MaとMbからなる金属酸化物とMaとMbからなる金属酸窒化物との固溶体で構成されていることを特徴とする。
 上記のような特徴を有する金属酸窒化物の誘電体薄膜にすることにより、金属酸窒化物に含有されている窒素量を低く制御しても、高い比誘電率が得られるため、高い絶縁性と高い比誘電率とを両立することが可能となる。
 [6]前記ペロブスカイト構造において、CuKα1放射線(1.54056Åの波長)によりXRD分析した際の2θ=30°~35°に存在するMaとMbからなる金属酸窒化物由来の最大強度を有するピークの強度を100とした時、2θ=30°~35°内に存在するMaとMbからなる金属酸化物由来のピークの強度が0以上10以下であることが好ましい。
 上記の範囲に制御することにより、絶縁性を高める作用を強めることが出来る。その結果、高い比誘電率と更に高い絶縁性とを両立することが可能となる。
 [7]前記MaがSr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種類以上の元素であり、MbがTa、Nb、Ti、Wから選ばれる1種類以上の元素であることが好ましい。
 上記の元素を選定することにより、ペロブスカイト構造を有する金属酸化物と金属酸窒化物との固溶体を安定的に形成する作用を強めることが出来る。その結果、一層高い比誘電率と高い絶縁性とを両立することが可能となる。
 また、本発明の望ましい態様としては、前記誘電体薄膜を有する容量素子であることが好ましい。本発明に係る誘電体組成物を用いることによって、従来得られなかった高い静電容量を有する薄膜キャパシタ等の容量素子を提供することが可能となる。
 本発明によれば、金属酸窒化物に含有されている窒素量を低く制御しても、高い比誘電率(たとえば、1000以上)と高い絶縁性(たとえば、1010Ωcm以上)とを両立できる誘電体薄膜及び容量素子を提供することが出来る。
作製した金属酸窒化物SrTaONのX線回折パターン(本発明の比較例1) 作製した金属酸化物SrTa(常温常圧)のX線回折パターン(本発明の比較例5) 作製した金属酸窒化物と金属酸化物との混晶のX線回折パターンを示す(本発明の比較例3) 作製した金属酸化物SrTa(応力印加時)と金属酸窒化物SrTaONとの固溶体のX線回折パターン(本発明の実施例2) 薄膜キャパシタの模式図
 以下、本発明の実施の形態について説明する。本発明の第1の観点に係る誘電体薄膜は、ペロブスカイト構造を有する誘電体組成物からなる誘電体薄膜である。この誘電体組成物は、化学式MaMbO(MaはSr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種以上の元素、MbはTa、Nb、Ti、Wから選ばれる1種以上の元素、Oは酸素、Nは窒素を示す)で表される組成を有している。また、ペロブスカイト構造を有する誘電体は、酸素により形成される八面体の一部の酸素が窒素により置換された酸化物と窒化物との固溶体である。
 ところで、上記の化学式において、x=2、y=1の場合には、誘電体組成物は、酸素と窒素とが化学量論比で含有されるMaMbONと表され、ペロブスカイト構造が安定な金属酸窒化物固溶体として存在する。しかしながら、ペロブスカイト構造を有する金属酸窒化物の絶縁性を確保する観点からは、MaMbONにおける窒素の含有量は多い。そこで、本実施形態では、このようなペロブスカイト構造を有する金属酸窒化物固溶体において、窒素の含有量(y)を1よりも小さくしている。
 具体的には、前記yは、0.005以上であり、0.300以上であることが好ましく、0.500以上であることがより好ましい。一方、yは、0.700以下であり、0.600以下であることが好ましい。なお、y<0.005では金属酸窒化物固溶体であることにより得られる効果が十分得られず、y>0.700では絶縁性が得られない。前記効果とはNの共有結合性に起因する結晶歪から得られる高い比誘電率のことである。「y」を上記の範囲内にした場合であっても、本実施形態に係る誘電体薄膜は、ペロブスカイト構造が維持された金属酸窒化物固溶体として存在している。
 また、上記の化学式において、電荷を補償するために、窒素(価数が-3)の含有量(y)が少なくなることに対応して、本実施形態では、酸素(価数が-2)の含有量(x)は2よりも多くなる。
 具体的には、前記xは、2.450以上であり、2.600以上であることが好ましい。一方、xは、3.493以下であり、3.050以下であることが好ましく、2.750以下であることがより好ましい。なお、x<2.450では絶縁性が得られず、x>3.493では金属酸窒化物固溶体であることにより得られる効果が十分には得られない。前記効果とはNの共有結合性に起因する結晶歪から得られる高い比誘電率のことである。
 上記の化学式において、zは、誘電体組成物におけるMaとMbとの存在比を示している。本実施形態では、zは0.8以上であり、0.9以上であることが好ましい。一方、zは1.2以下であり、1.1以下であることが好ましい。なお、z<0.8では絶縁性が悪くなり、z>1.2では、たとえば、MaがSrである場合、SrO等の偏析が生じてしまい、比誘電率が低下してしまう傾向となる。
 また、z>1.0の場合には、上述したyは、0.500以上0.700以下の範囲であることが好ましい。
 また、Maがペロブスカイト構造におけるAサイトを占めた場合に示すイオン価数をa、Mbがペロブスカイト構造におけるBサイトを占めた場合に示すイオン価数をbとした場合、aおよびbが6.7≦a+b≦7.3である関係を満足する。
 本実施形態では、上記のイオン価数aとイオン価数bとは、それぞれ、平均価数として表される。平均価数は、Aサイト、または、Bサイトに存在するイオンの価数をその存在比に応じて平均化した値とする。例えば、AサイトにSrとLaが4:1の比で存在する場合について述べる。ペロブスカイト構造におけるSrイオンの価数は2であり、ペロブスカイト構造におけるLaイオンの価数は3である。よって、Aサイトの平均価数aは下記の(式1)により算出され、aは2.2価となる。
(式1)
(上記の場合の平均価数a)
=2(Srイオンの価数)×4/5(Srイオンの存在比)+3(Laイオンの価数)×1/5(Laイオンの存在比)
=8/5+3/5
=11/5
=2.2 … (1)
 同様に、BサイトにTaとTiが4:1の比で存在する場合について述べる。ペロブスカイト構造におけるTaイオンの価数は5であり、ペロブスカイト構造におけるTiイオンの価数は4である。よって、Bサイトの平均価数bは下記の(式2)により算出され、bは4.8価となる。
(式2)
(上記の場合の平均価数b)
=5(Taイオンの価数)×4/5(Taイオンの存在比)+4(Tiイオンの価数)×1/5(Tiイオンの存在比)
=20/5+4/5
=24/5=4.8 … (2)
 なお、本願の平均価数の合計の計算においては、AサイトリッチまたはBサイトリッチである場合、すなわち、z≠1である場合でも、z=1として取り扱う。例えば、上記の場合において、z=1.2の場合であっても、平均価数の合計(a+b)は2.2+4.8=7.0である。
 本実施形態では、平均価数として表されるイオン価数aとイオン価数bとの和「a+b」を、6.7~7.3の範囲内とすることで、MaMbONが常温常圧で形成するペロブスカイト構造が安定化するため、MaMbONよりも窒素含有量が少ないMaMbOもペロブスカイト構造を形成しやすくなる。たとえば、a+b=6.0の場合、上記MaMbONのペロブスカイト構造が安定化されないため均一な固溶体が得られない。一方、a+b=8.0の場合はMaMbONのペロブスカイト構造が安定化される。MaMbONのペロブスカイト構造はMaMbONのペロブスカイト構造と比較してより多くのNを必要とするため、絶縁性を得ることはより難しくなる。
 Maの元素は、Sr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種類以上の元素である。また、Mbの元素は、Ta、Nb、Ti、Wから選ばれる1種類以上の元素である。特に、MaがSr、MbがTaであることが好ましい。
 上記のような組み合わせとすることによりペロブスカイト構造を有する金属酸窒化物の固溶体が得られやすい。
 本発明の第2の観点に係る誘電体薄膜は、ペロブスカイト構造を有する誘電体を含む誘電体組成物からなる誘電体薄膜である。この誘電体組成物は、化学式MaMbO(MaはSr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種以上の元素、MbはTa、Nb、Ti、Wから選ばれる1種以上の元素、Oは酸素、Nは窒素を示す)で表される組成を有しており、化学式中の「x」、「y」および「z」については、第1の観点に係る誘電体薄膜における説明と重複するので省略する。さらに、イオン価数a、イオン価数b、およびそれらの和(a+b)についても、第1の観点に係る誘電体薄膜における説明と重複するので省略する。
 第2の観点に係る誘電体薄膜では、そのX線回折パターンにおいて、ペロブスカイト構造に帰属する回折X線のピークが現れる。これは、当該誘電体薄膜に含まれる誘電体に帰属するピークであり、本実施形態では、ペロブスカイト構造を有する金属酸窒化物に帰属するピークである。したがって、誘電体薄膜が、ペロブスカイト構造を有する所定の組成の金属酸窒化物を有することにより、この金属酸窒化物を含む誘電体薄膜は、高い比誘電率と高い絶縁性とを両立できる。また、誘電体薄膜のX線回折パターンには、高い比誘電率と高い絶縁性とを両立できる範囲において、ペロブスカイト構造に帰属しない回折X線のピークが存在していてもよい。
 具体的には、ペロブスカイト構造に帰属する回折X線のピーク強度のうち最大強度を示すピーク強度を100とした時に、ペロブスカイト構造に帰属しない回折X線のピーク強度のうち最大強度を示すピーク強度が0以上10以下である。当該ピーク強度が0よりも大きい場合、このような誘電体薄膜では、ペロブスカイト構造を有する相と、ペロブスカイト構造を有さない相とが共存しており、いわゆる混晶となっている。しかしながら、ペロブスカイト構造を有さない物質の存在割合が、ペロブスカイト構造を有する物質の存在割合に比べて非常に小さいため、高い比誘電率と高い絶縁性とを両立できる。
 ペロブスカイト構造以外の構造としては特に制限されないが、混晶状態においてペロブスカイト構造を有する物質が、当該ペロブスカイト構造を維持できる物質であることが好ましい。本実施形態では、ペロブスカイト構造以外の構造は、ペロブスカイトスラブ構造であることが好ましい。後述するが、誘電体薄膜を形成するための原料(たとえば、成膜用ターゲット)として、ペロブスカイトスラブ構造を有する物質が好適であることに加えて、上記の化学式で表される組成範囲内においてペロブスカイト構造とペロブスカイトスラブ構造とは薄膜中において混晶として共存できる。ペロブスカイトスラブ構造を有する化合物は、高い比誘電率を示さないものの、ペロブスカイトスラブ構造のピーク強度が上記の範囲内であれば、高い比誘電率と高い絶縁性とを両立できる。
 なお、パイロクロア構造は、上述したように、ペロブスカイトスラブ構造と同じ組成式で表されるが、パイロクロア構造を有する物質が存在する場合には、ペロブスカイト構造を有する物質は、当該ペロブスカイト構造を維持することが困難となり、パイロクロア構造を有する物質とペロブスカイト構造を有する物質は共存できない傾向にある。そのため、誘電体薄膜が、パイロクロア構造を有する物質を含む場合には、高い比誘電率と高い絶縁性とが得られない。
 たとえば、窒素が導入されていない金属酸化物MaMbがペロブスカイトスラブ構造を有する場合、このような金属酸化物を原料とすることにより、MaおよびMbを含む金属酸窒化物の固溶体がペロブスカイト構造を維持しやすい。具体的には、SrTa、SrNb、CaNb、Na、LaTi、CeTi、PrTi、NdTiはペロブスカイトスラブ構造を有する。BaTaは存在しないとされているが、(SrBa)Taはペロブスカイトスラブ構造を有する。
 一方、上記のMaおよびMbとして例示された元素以外の元素の組み合わせであるPbTa、CdTa、YSi、CrTi、TbGe、ScSiなどはパイロクロア構造を有する。よって、これらの金属酸化物を用いて金属酸窒化物の固溶体を形成しようとしてもペロブスカイト構造にはならない。
 また、ペロブスカイト構造に帰属する回折X線のピーク強度のうち最大強度を示すピークと、ペロブスカイト構造に帰属しない回折X線のピーク強度のうち最大強度を示すピークとが、どちらも、2θが30~35°の範囲内に存在することが好ましい。
 本発明の第3の観点に係る誘電体薄膜は、化学式MaMbO(Maはペロブスカイト構造のAサイトに位置する金属イオン、Mbはペロブスカイト構造のBサイトに位置する金属イオン、Oは酸素イオン、Nは窒素イオンを示す)で表されるペロブスカイト構造を有する誘電体薄膜である。上記の化学式のx、y、zは、第1および第2の観点に係る誘電体薄膜と同様に、0.8≦z≦1.2、2.450≦x≦3.493、0.005≦y≦0.700である。「x」、「y」および「z」の好ましい範囲も第1および第2の観点に係る誘電体薄膜と同様である。
 また、MaとMbのそれぞれの平均価数をa、bとした場合、前記aとbとの関係がa+b=7.0を満足する。なお、平均価数aおよび平均価数bは、第1および第2の観点に係る誘電体薄膜と同様に求めることができる。前記a+b=7.0とすることで、MaMbONが常温常圧で形成するペロブスカイト構造が安定化するため、MaMbONよりも窒素含有量が少ないMaMbOもペロブスカイト構造を形成しやすくなる。a+b=6.0の場合、上記MaMbONのペロブスカイト構造が安定化されないため均一な固溶体が得られない。一方、a+b=8.0の場合はMaMbONのペロブスカイト構造が安定化される。MaMbONのペロブスカイト構造はMaMbONのペロブスカイト構造と比較してより多くのNを必要とするため、絶縁性を得ることはより難しくなる。
 さらに、第3の観点に係る誘電体薄膜は、MaとMbからなる金属酸化物とMaとMbからなる金属酸窒化物との固溶体で構成されていることを特徴とする。ここで、「MaとMbからなる金属酸化物とMaとMbからなる金属酸窒化物との固溶体」は、MaとMbからなる金属酸化物と、MaとMbからなる金属酸窒化物とが、所定の割合で混合された組成を有する固溶体を示す。
 換言すれば、「MaとMbからなる金属酸化物とMaとMbからなる金属酸窒化物との固溶体」は、MaとMbからなる金属酸化物と、MaとMbからなる金属酸窒化物との中間的な組成を示している。
 たとえば、MaとMbからなる金属酸化物が、MaMbで表され、MaとMbからなる金属酸窒化物が、MaMbONで表される場合、「MaとMbからなる金属酸化物とMaとMbからなる金属酸窒化物との固溶体」の組成は、MaMbOで表され、「O」の含有量を示す「x」は、2.450~3.493の範囲内である。また、「N」の含有量を示す「y」は、0.005~0.700の範囲内である。
 これに対して、固溶体ではなく、金属酸化物と金属酸窒化物とが単に混合状態になっている場合は、低誘電率の前記金属酸化物の比誘電率の影響が強まるため、誘電体組成物として高い比誘電率を得ることが困難となる。
 したがって、所定の組成を有する「MaとMbからなる金属酸化物とMaとMbからなる金属酸窒化物との固溶体」とすることにより、上記のような比誘電率が低いパイロクロア構造やペロブスカイト型層状構造を有する金属酸化物相が生成し、誘電体組成物が金属酸窒化物と金属酸化物の混合体になることを抑制することが可能となり、高い比誘電率と高い絶縁性とを両立させることが可能となる。
 また、上記の金属酸化物と金属酸窒化物との固溶体が有するペロブスカイト構造において、CuKα1放射線(1.54056Åの波長)によりXRD分析した際の2θ=30°~35°に存在する金属酸窒化物MaMbON由来の最大強度を有するピークの強度を100とした時、図4のように2θ=30°~35°内に存在する金属酸化物由来のピークの強度は、0に近い程望ましく、0以上10以下であることが好ましい。ここで、金属酸化物由来のピークとは、薄膜を形成する際に用いた原料の構造に起因するピークであることを意味している。
 このような誘電体薄膜とすることにより、より高い比誘電率と絶縁性とを得ることが出来る。なお、図3のように金属酸化物由来の強度が10より大きい場合は、絶縁性を高める効果が少ない。また、図1~4中に記載の黒丸●は金属酸窒化物由来のピーク(ペロブスカイト構造)であり、白丸○は金属酸化物由来のピーク(ペロブスカイトスラブ構造)である。
 本実施形態に係る誘電体薄膜は、薄膜形成法等を用いて、誘電体薄膜を構成する元素が堆積されて形成される誘電体堆積膜である。このような誘電体堆積膜として形成される場合には、粉体を焼成して得られる焼結体とは異なり、基板上に形成される際に応力の影響を受けたり、あるいは、酸素欠陥が生じにくくなったりすることにより、ペロブスカイト構造を有する金属酸窒化物の組成よりも窒素の含有量が少ない領域であっても、高い絶縁性と高い比誘電率とを両立することができる。
 また、誘電体薄膜の厚さは、好ましくは10nm~2μmである。10nm未満では絶縁破壊が生じやすく、2μmを超える場合においては、より安価なBaTiOなどの金属酸化物誘電体薄膜に対する工業的な優位性が弱くなる。
 次に、本実施形態に係る容量素子について説明する。ここで言う容量素子とは、誘電性を利用した素子のことであり、コンデンサ、サーミスタ、フィルター、ダイプレクサ、共振器、発信子、アンテナ、圧電素子、トランジスタ(ゲートに誘電体絶縁膜を使用)、強誘電体メモリ等を含む。
 なお、本発明の誘電体薄膜には、本発明の効果を損なわない範囲内で他の元素を含有しても良い。また、製造工程および保管状況において不可避的に導入される他の元素を含有しても良い。
 以下では、容量素子として、上述した誘電体薄膜を含み、上記コンデンサに含まれる薄膜キャパシタについて具体的に説明する。薄膜キャパシタはその構造の明確な定義が存在するわけではないが、一般に積層型コンデンサと比較してその誘電体層数が少ないかもしくは1層であり、より小型化・低背化が必要な場合に用いられる。層数が限られるため、薄膜キャパシタには、より高い比誘電率が要求される場合が多く、本発明が特に好適であるデバイスであると言える。
 本実施形態に係る容量素子の一例である薄膜キャパシタの模式図を図5に示す。図5に示す薄膜キャパシタは、支持基板11上に下部電極12、誘電体膜13の順に形成され、誘電体膜13の表面に薄膜キャパシタの他方の電極として機能する上部電極14を備えている。上部電極14を形成するための材料は、導電性を有していれば特に限定されるものではなく、下部電極12と同様の材料によって、上部電極14を形成することが出来る。
 ここで各々の層の厚み、形状等は用途に合わせ調整すれば良く、また各々の層が一層に限られる必要もない。たとえば、上部電極14の膜厚は電極として機能すれば良く、0.01μm以上が好ましい。膜厚が0.01μm以下の場合、導電性が悪化するため上部電極14として好ましくない。
 以下、本実施形態に係る誘電体薄膜の製造方法について説明する。
 まず、金属酸窒化物を薄膜として成膜する方法について説明する。本発明の組成を適用した金属酸窒化物の成膜に用いうる成膜方法としては上記化学式を満足する膜が得られるものであれば特に制限はなく、真空蒸着法、スパッタリング法、PLD(パルスレーザー蒸着法)、MO-CVD(有機金属化学気相成長法)、MOD(有機金属分解法)やゾル・ゲル法、CSD(化学溶液堆積法)、などの各種薄膜形成法が例示される。薄膜形成法の中でも、スパッタリング法、化学気相蒸着法、PLD等の公知の気相成長法が好ましい。
 また、誘電体薄膜を形成する際に使用する原料(蒸着材料、各種ターゲット材料、有機金属材料等)には微少な不純物や副成分が含まれている場合があるが、絶縁性を大きく低下させる不純物でなければ、特に問題はない。
 本実施形態では、成膜手法の一つであるPLD法について説明する。誘電体膜13の成膜に用いることが出来る成膜法の一例であるPLD法は、目的とする膜の構成元素を含むターゲットを成膜室内に設置し、そのターゲット表面上にパルスレーザーを照射し、その強いエネルギーによりターゲット表面を瞬時に蒸発させることによりプルームを生成し、ターゲットと対向するように配置した基板上に蒸発物を堆積させ薄膜とする方法である。
 ターゲットとしては、膜構成元素を含む金属酸化物焼結体のほかに、膜構成元素を含むものであれば、合金、窒化物焼結体、金属酸窒化物焼結体なども用いることが出来る。またターゲットにおいては各元素が、使用するパルスレーザー径のスケールで平均的に分布していることが好ましいが、得られる金属酸窒化物膜の品質に影響がない範囲では特に均一である必要はない。ターゲットは必ずしも一つである必要はなく、膜構成元素の一部を含むターゲットを複数用意して成膜に用いることも出来る。ターゲットの形状は使用する成膜装置に合わせ適宜最適な形状を選択すれば良い。
 本実施形態では、ターゲットとして、一般的な固相法を用いて作製された膜構成元素を含む金属酸化物焼結体などを用いることが出来る。
 さらに、本実施形態では、金属酸窒化物膜を得るために膜の酸窒化を行う必要がある。酸窒化方法としては、金属酸化物膜の成膜中に窒素ラジカルを成膜室に導入する手法、窒素ガスなどを用いる反応性スパッタを用いる方法、プラズマ窒化により活性化された窒素を用いるプラズマ処理など用いることが可能である。このような方法によれば、毒性のある気体を使用せずに金属酸化物薄膜の結晶構造内に窒素を導入することが出来る。もしくは金属酸化物薄膜を経由せず、直接金属酸窒化物を基板上に構成することが出来る。また窒化膜の部分酸化処理なども用いることが可能である。本実施形態では、金属酸化物の原料を用いて成膜する際に、窒化に用いる窒素を導入して、金属酸窒化物を得ることが好ましい。
 以下実施形態のより詳細な一例としてSrTaO3.20.2の組成を有する誘電体薄膜を成膜する方法について説明する。ターゲットとしてはSrTaの焼結体ターゲットを使用することができる。本実施の形態では、基板として、入手が容易であり安価であるSi単結晶基板を用いることが好ましい。Si単結晶基板上にSiO、TiO、Ptの順に成膜を行い、Pt下部電極を形成する。続いて、このPt下部電極上に、たとえば、200nmの厚さとなるようにPLD法で誘電体膜を形成すればよい。また、下部電極の一部を露出させるために、メタルマスクを使用して、下部電極上に誘電体膜が一部成膜されない領域を形成する。
 本実施の形態においては、膜を結晶化させるために、成膜時に基板を赤外線レーザーにより加熱し600℃~800℃とし成膜を行うことが好ましい。この時基板温度が低すぎると結晶化せず、温度が高すぎると冷却時に基板と膜の熱膨張差による割れ等発生するため注意が必要である。ただし、成膜時の基板の温度の最適値は構成元素、組成により異なるため、それに応じて最適な条件を選べば良く、温度範囲は上記範囲に限られるものではない。
 金属酸窒化物のキュリー温度は高いことが知られており、一般に成膜温度はキュリー温度以下となるため、成膜後に成膜温度から室温に降温する際に構造相転移が生じない。そのため、キュリー温度が100℃前後のチタン酸バリウムの薄膜と比較して、金属酸窒化物の薄膜はクラックが生じ難い特徴がある。
 また、成膜時には様々なガス種およびガス圧を使用することが出来る。これにより得られる膜の状態は、成膜室の大きさやガス導入管の位置にも依存する。すなわち同じ分圧を用いても必ずしも同じ膜が得られるわけではない。そこで注意すべきはSrイオン、すなわちMaとTaイオン、すなわちMbの比であり、この比はガス圧によって変化するため、所望の組成比になるようにガス圧を装置に応じて調整すると良い。特に金属酸窒化物では組成にOとNを含むため酸素分圧と窒素分圧との比についても注意が必要である。こちらも所望の組成が得られるように分圧比および全圧を装置に応じて調整すると良い。
 SrTaO3.20.2のような窒素の含有量が少ない領域では、上記ターゲットを使用して形成される金属酸化物薄膜を成膜したのちに、窒素ラジカルを導入し金属酸化物膜に対し窒化処理を行ってもよい。成膜した試料中の窒素量はX線光電子分光法により確認することができる。窒素の定量に関しては、X線光電子分光装置の内部標準を使用することも出来るが、AlNなどの窒化物単結晶ウェハから感度因子を算出して定量値を補正した方が好ましい。構成元素により酸化もしくは窒化の進行度合は異なるため窒素ラジカル導入量は選択した元素群により適宜調整すれば良い。
 このようにして、本実施の形態では上記のように成膜したSrTaO3.20.2酸窒化物膜を誘電体膜層として用い、その上面に上部電極としてPtをスパッタ法により形成し薄膜キャパシタを得ることができる。
 前記薄膜キャパシタの静電容量は上部電極および下部電極にプローブを介して導線を接続し、インピーダンスアナライザを用いて測定される。上記静電容量の測定後、金属酸窒化物膜断面が走査型電子顕微鏡を用いて観察され、その観察像から金属酸窒化物膜の厚みdが測定される。上記のように得られた静電容量C、金属酸窒化物膜の厚みd、上部電極および下部電極の重なり面積Sから下の関係式(3)を用いて金属酸窒化物膜の比誘電率(ε)は算出される。
(式3)
C=εε(S/d) … (3)
 ここでεは真空の誘電率である。薄膜キャパシタにおいて高い静電容量を得るためには,比誘電率はより高い方が好ましい。
 なお、上記実施形態及び後述する実施例により本発明が限定されるものではない。また、実施形態及び実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、実施形態及び実施例で開示した構成要素は適宜組み合わせても良いし、適宜選択して用いても良い。
 近年、高周波への対応、小型化への対応により容量素子の形態は多岐に渡り、その全てを記述することは出来ない。本発明の容量素子とはその誘電特性を積極的に利用した素子、もしくはその誘電特性が機能発現のための構成上必須である素子のことを指し、偶発的に容量成分を有する他の電子デバイスは含まない。
 以下本発明の実施例、比較例を示す。
 [実施例1~実施例7、比較例1~比較例5]
 実施例1~実施例7および比較例4は薄膜化を行った。成膜用ターゲットとして用いる焼結体の原料として、SrCO、Ta、La、TiO、NaCO、WOを用いた。各々をSrTa、LaTi、Naとなるよう秤量し、エタノールを溶媒として用いた湿式ボールミルにて16時間混合を行った。得られた混合スラリーを恒温乾燥機にて80℃で12時間乾燥した。得られた混合物を乳鉢にて軽く解砕し、セラミック製のるつぼにいれ電気炉で1000℃、大気雰囲気中で2時間熱処理し、仮焼物を得た。
 得られた仮焼物を再びエタノールを溶媒として用いた湿式ボールミルにて16時間粉砕を行い、粉砕後スラリーを恒温乾燥機にて80℃で12時間乾燥し粉砕物を得た。得られた粉砕物に対し、バインダーとしてポリビニールアルコール溶液を溶液中固形物換算で0.6重量%添加、混合し造粒物を得た。造粒物を直径約23mm、高さ約9mmの円柱形状に成形し成型物を得た。成型物を電気炉にて、大気雰囲気中1400℃で2時間焼成し、この焼結物の上面および下面を鏡面研磨し高さ5mmとし成膜用ターゲットを得た。このとき得られたターゲットはいずれもペロブスカイトスラブ構造を有しており、その相対密度は96~98%であった。
 上記のように得られた成膜用ターゲットを成膜装置に設置し、ターゲットに対向するよう表面に下部電極としてPt膜を有するSi基板を設置した。実施例1~実施例7は窒素ラジカルを導入したPLD法で厚さ200nmとなるように成膜した。この時、酸素および窒素のガス圧を制御することで、表1に示す所望の構造が得られるようにした。得られたサンプルのX線回折パターンから薄膜が結晶化していることが確認された。一方、比較例4は酸化物ターゲットの結晶構造がそのまま反映される様に真空に近い条件で成膜を行った後、N(窒素)をドープした。
 比較例1~比較例3および比較例5は上記ターゲットを合成する手順と同様に、まず金属酸化物SrTa、LaTi、Naを合成した。その後、非特許文献2に記載されているような炭素熱還元法により窒化を行った。通常のアンモニア雰囲気によっても窒化は可能であるが、炭素熱還元法によれば、導入するN量を相当するCの添加量によって制御することができる。
 炭素を混練した金属酸化物粉末をペレット化し、熱処理を行った。熱処理は減圧の出来るバッチ炉にて、一度炉内の圧力を十分に減じた後に炉内を大気圧のN雰囲気で満たし、1400℃にて行い、焼結体を得た。窒化後にCの残存は確認されなかった。得られたサンプルにスパッタを用いてPt電極を形成し、電気特性の評価を行った。なお、比較例5では、炭素を混練せずに金属酸化物粉末をペレット化して上記の熱処理を行った。
 実施例1~実施例7および比較例1~比較例5の試料のNおよびO量はLECO社製TC600を用いてインパルス加熱溶融抽出法(赤外線吸収法)によって定量した。また、金属イオンの価数をXPSのケミカルシフトから判定したが、原料と比較して価数の変化はなかった。
 実施例1~実施例7および比較例1~比較例5について、その結晶構造と絶縁性および比誘電率(ε)を表1にまとめた。
 比誘電率(ε)は電圧1Vrms/μm、周波数1kHzにおいて評価した値を記載した。なお、比誘電率を評価するための上部電極は直径100μmのサイズにてAgを蒸着することにより形成した。また、比誘電率(ε)はtanδが100%より低いもののみ表1にその数値を記載し、tanδが100%以上であったものは誘電性が評価出来ていないものとし、比誘電率(ε)が×(not observed)であるとした。
 また、CuKα1放射線(1.54056Åの波長)によりXRDパターンを測定した。
 絶縁性は抵抗値を測定することにより評価した。抵抗値の測定にはADVANTEST R8340Aを使用し、電圧1V/μmを印加して測定した。表1において、抵抗値が1010Ωcm以上のものを絶縁性が〇(good)であるとし、それよりも小さいものは×(bad)とした。
Figure JPOXMLDOC01-appb-T000001
「*」は、金属酸化物がペロブスカイトスラブ構造をもつ場合に限り、金属酸窒化物のメインピークの強度を100とした時の金属酸化物のメインピークの強度比を意味する。
 表1中の「ペロブスカイト固溶体」と記載した列において、上記金属酸化物強度比が0以上10以下であったものについて〇(satisfied)と記した。一方、金属酸化物強度比が10より大きかったものは、金属酸窒化物に由来するペロブスカイト構造がパターン上に現れているが、それが酸化物との固溶体となっていないと判断し×(not satisfied)と記した。
 比較例1は金属酸窒化物SrTaO2.0001.000の焼結体であり、組成分析とXRD分析からもそのことが示された。図1に示す明瞭なX線ピークを有する比較例1は、ペロブスカイト構造を有していたが、Nの量が多いため、絶縁性を確保できないことが確認できた。また、比較例2は焼結体であり、金属酸窒化物のメインピークの強度を100とした時の金属酸化物のメインピークの強度比が12の場合においても、絶縁性を確保することが出来ないことが確認できた。
 比較例5は、ペロブスカイトスラブ構造を有する金属酸化物SrTaの焼結体であり、組成分析とXRD分析からもそのことが示された。得られた明瞭なXRDパターンを図2に示す。比較例5は十分な絶縁性が得られたものの、εは50と低い値であった。
 また、比較例3は金属酸窒化物SrTaO2.0001.000と金属酸化物SrTaとの中間的な組成を有する焼結体である。比較例3は固溶体になっておらず、したがって十分な絶縁性も得られなかった。そのXRDパターンを図3に示す。図3から金属酸窒化物由来のペロブスカイト構造のピークと金属酸化物由来のペロブスカイトスラブ構造のピークとが存在しており、これらの相の混晶状態であることが分かる。図3中に示した黒丸●は金属酸窒化物由来のピークであり、白丸○は金属酸化物由来のピークである。強度比はこの2点のピークを用いて算出した。
 比較例4は、ペロブスカイトスラブ構造を有するSrTaを成膜した後にNをドープさせた薄膜であった。比較例4では、ペロブスカイト構造を有する金属酸窒化物の固溶体がほとんど形成されず、ペロブスカイトスラブ構造の存在割合が高いままであった。その結果、実施例と同じ形状で電気特性の評価を行ったが、絶縁性は得られなかった。
 これに対し、実施例1では、ペロブスカイト構造を有する金属酸窒化物固溶体が十分に形成され、十分な絶縁性が得られた。比誘電率εも2100と高い値であった。
 同様に、実施例2~7においてもペロブスカイト構造を有する金属酸窒化物固溶体が形成され十分な絶縁性と高い誘電性が得られた。特に、実施例2は2200と高い比誘電率εを示した。実施例2のXRDパターンを図4に示す。図3に示す比較例3と同一の組成比でありながら、ペロブスカイト構造が得られていることが確認できた。
 なお、実施例5のように強度比を10に制御したペロブスカイト構造を有する相とペロブスカイトスラブ構造を有する相との混晶状態の薄膜であれば、高い絶縁性と高い比誘電率εとを確保できることが確認できた。これにより、金属酸窒化物のメインピークの強度を100とした時の金属酸化物のメインピークの強度比は10以下とすることで、高い比誘電率と高い絶縁性を両立することが可能となることが分かった。
 [実施例8~実施例15、比較例6~比較例7]
 実施例8~15も実施例1と同様な方法を用いて、金属酸化物のターゲットを作製した後に薄膜化(薄膜時に窒化)して合成を行った。なお、それぞれのターゲットは、薄膜の組成が表2のものになるように調整した。なお、表2中のMaおよびMb欄に2種類の元素が記入してあるものは、左から順に80%、20%の混合比となっている。例えば、実施例8の場合はAサイトにSrが80%、Baが20%となるように原料であるSrCOとBaCOとの比を調整して、ターゲット(Sr0.8Ba0.2Taを作製した。この時、SrイオンもBaイオンも2価であるためa=2である。また、実施例15の場合も実施例8と同様に作製した。実施例15の場合はAサイトにLaが80%、Naが20%、BサイトにTiが80%、Wが20%となるように原料であるSrCO、NaCO、TiO、WOの比を調整して、ターゲット(La0.8Na0.2(Ti0.80.2を作製した。この時、Laイオンは3価、Naイオンは1価、Tiイオンは4価、Wイオンは6価であるため、aおよびbは以下のようになる。
a=3×0.8+1×0.2=2.4+0.2=2.6
b=4×0.8+6×0.2=3.2+1.2=4.4
 作製したターゲットを用いて薄膜を作製した。得られたサンプルについて電気特性評価を行った。結果は表2にまとめた。εは電圧1Vrms/μm、周波数1kHzにおいて評価した値を記載した。実施例8~実施例15はいずれもεが1000以上と高い値を示した。
 一方、比較例6および比較例7は本発明外の組成を使用して合成を行い、成膜用ターゲットを作製した。得られた金属酸化物のターゲットはいずれもパイロクロア構造であった。ペロブスカイト構造を有する金属酸窒化物固溶体となるように成膜を試みたが、得られた薄膜はペロブスカイト構造を有しておらず、絶縁性は得られなかった。
Figure JPOXMLDOC01-appb-T000002
「*」は、金属酸化物がペロブスカイトスラブ構造をもつ場合に限り、金属酸窒化物のメインピークの強度を100とした時の金属酸化物のメインピークの強度比を意味する。
 [実施例16~実施例19、比較例8~比較例9]
 実施例16~実施例19、比較例8~比較例9も実施例1と同様な方法を用いて、金属酸化物のターゲットを作製した後に薄膜化(薄膜時に窒化)して合成を行った。それぞれのターゲットは、薄膜の組成が表3のものになるように調整した。得られたサンプルについて電気特性評価を行った。結果は表3にまとめた。εは電圧1Vrms/μm、周波数1kHzにおいて評価した値を記載した。
Figure JPOXMLDOC01-appb-T000003
「*」は、金属酸化物がペロブスカイトスラブ構造をもつ場合に限り、金属酸窒化物のメインピークの強度を100とした時の金属酸化物のメインピークの強度比を意味する。
 表3より、比較例8では絶縁性が得られなかった。一方、比較例9では絶縁性は得られたものの、誘電率は比較的低い値となった。比較例9の微細構造を観察したところ、SrOの偏析が見られた。
 [実施例20~21および比較例10~比較例11]
 実施例20~実施例21、比較例10~比較例11も実施例1と同様な方法を用いて、金属酸化物のターゲットを作製した後に薄膜化(薄膜時に窒化)して合成を行った。それぞれのターゲットは、薄膜の組成が表4のものになるように調整した。得られたサンプルについて電気特性評価を行った。結果は表4にまとめた。
Figure JPOXMLDOC01-appb-T000004
「*」は、金属酸化物がペロブスカイトスラブ構造をもつ場合に限り、金属酸窒化物のメインピークの強度を100とした時の金属酸化物のメインピークの強度比を意味する。
 表4より、比較例10および11では絶縁性が得られず、誘電性も評価できないことが確認できた。
 本発明によれば、誘電体薄膜が、Nが化学量論比より少ない領域でも、Nが化学量論比である結晶構造と同様な結晶構造を有するため、高い抵抗と、高い誘電率を示す誘電体素子を提供することが出来る。特に小型・高温対応・高周波数選択性が求められる製品に好適な誘電体薄膜、および容量素子を提供することが出来る。
11… 支持基板
12… 下部電極
13… 誘電体膜
14… 上部電極

Claims (10)

  1.  ペロブスカイト構造を有する誘電体組成物からなる誘電体薄膜であって、
     前記誘電体組成物は、化学式MaMbO(MaはSr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種以上の元素、MbはTa、Nb、Ti、Wから選ばれる1種以上の元素、Oは酸素、Nは窒素を示す)で表される組成を有し、
     前記Maが前記ペロブスカイト構造におけるAサイトを占めた場合に示すイオン価数をa、前記Mbが前記ペロブスカイト構造におけるBサイトを占めた場合に示すイオン価数をbとした場合、前記aおよびbが6.7≦a+b≦7.3である関係を満足し、
     前記化学式のx、y、zが
    0.8≦z≦1.2
    2.450≦x≦3.493
    0.005≦y≦0.700
    であり、
     MaとMbを含む金属酸窒化物固溶体であることを特徴とする誘電体薄膜。
  2.  ペロブスカイト構造を有する誘電体を含む誘電体組成物からなる誘電体薄膜であって、
     前記誘電体組成物は、化学式MaMbO(MaはSr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種以上の元素、MbはTa、Nb、Ti、Wから選ばれる1種以上の元素、Oは酸素、Nは窒素を示す)で表される組成を有し、
     前記Maが前記ペロブスカイト構造におけるAサイトを占めた場合に示すイオン価数をa、前記Mbが前記ペロブスカイト構造におけるBサイトを占めた場合に示すイオン価数をbとした場合、前記aおよびbが6.7≦a+b≦7.3である関係を満足し、
     前記化学式のx、y、zが
    0.8≦z≦1.2
    2.450≦x≦3.493
    0.005≦y≦0.700
    であり、
     前記誘電体薄膜のX線回折パターンにおいて、前記ペロブスカイト構造に帰属する回折X線のピーク強度のうち最大強度を示すピーク強度を100とした時に、前記ペロブスカイト構造に帰属しない回折X線のピーク強度のうち最大強度を示すピーク強度が0以上10以下であることを特徴とする誘電体薄膜。
  3.  前記ペロブスカイト構造に帰属する回折X線のピークのうち最大強度を示すピークおよび前記ペロブスカイト構造に帰属しない回折X線のピークのうち最大強度を示すピークが2θ=30~35°の範囲内に存在することを特徴とする請求項2に記載の誘電体薄膜。
  4.  前記ペロブスカイト構造に帰属しない回折X線は、ペロブスカイトスラブ構造に帰属する回折X線であることを特徴とする請求項2または3に記載の誘電体薄膜。
  5. 化学式MazMbOxNy(Maはペロブスカイト構造のAサイトに位置する金属イオン、Mbはペロブスカイト構造のBサイトに位置する金属イオン、Oは酸素イオン、Nは窒素イオンを示す)で表されるペロブスカイト構造を有する誘電体薄膜において、
    前記MaとMbのそれぞれの平均価数をa、bとした場合、前記aとbとの関係が
    a+b=7.0を満足し、
    前記化学式のx、y、zが
    0.8≦z≦1.2
    2.450≦x≦3.493
    0.005≦y≦0.700であり、
    MaとMbからなる金属酸化物とMaとMbからなる金属酸窒化物との固溶体で構成されていることを特徴とする誘電体薄膜。
  6. 前記ペロブスカイト構造において、CuKα1放射線(1.54056Åの波長)によりXRD分析した際の2θ=30°~35°に存在するMaとMbからなる金属酸窒化物由来の最大強度を有するピークの強度を100とした時、2θ=30°~35°内に存在するMaとMbからなる金属酸化物由来のピークの強度が0以上10以下であることを特徴とする請求項5に記載の誘電体薄膜。
  7. 前記MaがSr、Ba、Ca、La、Ce、Pr、Nd、Naから選ばれる1種以上の元素であり、MbがTa、Nb、Ti、Wから選ばれる1種以上の元素であることを特徴とする請求項5または6に記載の誘電体薄膜。
  8.  請求項1から7のいずれかに記載の誘電体薄膜を有する容量素子。
  9.  請求項1から7のいずれかに記載の誘電体薄膜を有する電子部品。
  10.  請求項8に記載の容量素子を有する電子部品。
PCT/JP2016/079151 2015-10-02 2016-09-30 誘電体薄膜、容量素子および電子部品 WO2017057745A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/765,150 US10329200B2 (en) 2015-10-02 2016-09-30 Dielectric thin film, capacitor element, and electronic component
EP16851914.8A EP3358039A4 (en) 2015-10-02 2016-09-30 DIELECTRIC THIN FILM, CAPACITOR ELEMENT, AND ELECTRONIC COMPONENT
CN201680057466.2A CN108138307A (zh) 2015-10-02 2016-09-30 电介质薄膜、电容元件及电子部件
JP2017514710A JP6296207B2 (ja) 2015-10-02 2016-09-30 誘電体薄膜、容量素子および電子部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-197035 2015-10-02
JP2015197035 2015-10-02

Publications (1)

Publication Number Publication Date
WO2017057745A1 true WO2017057745A1 (ja) 2017-04-06

Family

ID=58423693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079151 WO2017057745A1 (ja) 2015-10-02 2016-09-30 誘電体薄膜、容量素子および電子部品

Country Status (6)

Country Link
US (1) US10329200B2 (ja)
EP (1) EP3358039A4 (ja)
JP (1) JP6296207B2 (ja)
CN (1) CN108138307A (ja)
TW (1) TWI598290B (ja)
WO (1) WO2017057745A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091888A (ja) * 2017-11-10 2019-06-13 Tdk株式会社 金属酸窒化物薄膜および金属酸窒化物薄膜の製造方法、並びに、容量素子
US11078123B2 (en) 2017-11-10 2021-08-03 Tdk Corporation Metal oxynitride thin film, process for producing metal oxynitride thin film, and capacitor element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024939A (ja) * 2016-07-28 2018-02-15 パナソニック株式会社 小さいキャリア密度を有するストロンチウムニオブ酸窒化物膜の製法およびその用途
CN114423722B (zh) * 2019-09-12 2023-11-24 国立大学法人北海道大学 烧结体和其制造方法以及电介质组合物
JP2022111642A (ja) * 2021-01-20 2022-08-01 Tdk株式会社 誘電体組成物および電子部品
JP2022111644A (ja) * 2021-01-20 2022-08-01 Tdk株式会社 誘電体組成物および電子部品
JP2022122132A (ja) * 2021-02-09 2022-08-22 Tdk株式会社 誘電体組成物、電子部品および積層電子部品

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128073A (ja) * 2011-12-19 2013-06-27 Canon Inc 圧電材料、圧電素子、液体吐出ヘッド、超音波モータおよび塵埃除去装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2573060B1 (fr) 1984-11-13 1987-02-20 Centre Nat Rech Scient Composes azotes ou oxyazotes a structure perovskite, leur preparation et leur application a la fabrication de composants dielectriques
KR20010030023A (ko) * 1999-08-20 2001-04-16 마츠시타 덴끼 산교 가부시키가이샤 유전체막 및 그 제조방법
JP5807861B2 (ja) 2011-06-21 2015-11-10 昭和電工株式会社 誘電体組成物及びその製造方法
CN102872727A (zh) * 2012-09-28 2013-01-16 中国科学院大连化学物理研究所 一种钙钛矿型含钡铁系列中低温稳定的混合导体透氧膜
WO2017135294A1 (ja) * 2016-02-01 2017-08-10 Tdk株式会社 多結晶誘電体薄膜および容量素子
CN108603276B (zh) * 2016-02-01 2020-07-03 Tdk株式会社 多晶介电体薄膜及电容元件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128073A (ja) * 2011-12-19 2013-06-27 Canon Inc 圧電材料、圧電素子、液体吐出ヘッド、超音波モータおよび塵埃除去装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
I.MAROZAU ET AL.: "Pulsed laser deposition and characterisation of perovskite-type LaTiO3-xNx thin films", ACTA MATERIALIA, vol. 59, 2011, pages 7145 - 7154, XP028310061 *
MIRABBOS HOJAMBERDIEV ET AL.: "Fabrication of La2Ti207 Crystals Using an Alkali-Metal Molybdate Flux Growth Method and Their Nitridability To Form LaTiO2N Crystals under a High-Temperature NH3 Atmosphere", INORGANIC CHEMISTRY, vol. 54, 19 March 2015 (2015-03-19), pages 3237 - 3244, XP055386496 *
See also references of EP3358039A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091888A (ja) * 2017-11-10 2019-06-13 Tdk株式会社 金属酸窒化物薄膜および金属酸窒化物薄膜の製造方法、並びに、容量素子
US11078123B2 (en) 2017-11-10 2021-08-03 Tdk Corporation Metal oxynitride thin film, process for producing metal oxynitride thin film, and capacitor element
JP7192383B2 (ja) 2017-11-10 2022-12-20 Tdk株式会社 金属酸窒化物薄膜および金属酸窒化物薄膜の製造方法、並びに、容量素子

Also Published As

Publication number Publication date
CN108138307A (zh) 2018-06-08
TW201716317A (zh) 2017-05-16
JPWO2017057745A1 (ja) 2017-10-05
JP6296207B2 (ja) 2018-03-20
TWI598290B (zh) 2017-09-11
EP3358039A1 (en) 2018-08-08
EP3358039A4 (en) 2019-05-15
US20180282229A1 (en) 2018-10-04
US10329200B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
JP6296207B2 (ja) 誘電体薄膜、容量素子および電子部品
US9643890B2 (en) Dielectric composition and electronic component
Muhsen et al. Structure refinement and impedance analysis of Ba 0.85 Ca 0.15 Zr 0.10 Ti 0.90 O 3 ceramics sintered in air and nitrogen
US20230253154A1 (en) Dielectric composition and electronic component
WO2017135294A1 (ja) 多結晶誘電体薄膜および容量素子
KR102033058B1 (ko) 산질화물 박막 및 용량 소자
CN114388693A (zh) 电介质材料以及包括其的器件和存储设备
US10707018B2 (en) Polycrystalline dielectric thin film and capacitor element
JP6981280B2 (ja) 多結晶誘電体薄膜および容量素子
US20230085744A1 (en) Dielectric composition and electronic component
JP7000882B2 (ja) 酸窒化物薄膜および容量素子
CN108695063B (zh) 氧氮化物薄膜及电容元件
JP2022111642A (ja) 誘電体組成物および電子部品
Phatungthane et al. Dielectric properties of Sr1-xBaxFe0. 5Nb0. 5O3;(x= 0.0, 0.1 and 0.2) ceramics prepared by the molten salt technique and their electrode effects
Wang et al. Effects of Bi 3+ substitution on microwave dielectric properties of (Ce 1− x Bi x) 0.2 Sr 0.7 TiO 3 ceramics
CN104637675B (zh) 介电组合物、介电膜和电子部件
CN109767915B (zh) 金属氮氧化物薄膜及金属氮氧化物薄膜的制造方法、以及电容元件
CN108695062B (zh) 多晶电介质薄膜及电容元件
JP7000883B2 (ja) 酸窒化物薄膜および容量素子
JP7324458B2 (ja) 金属酸窒化物粉末および金属酸窒化物焼成体
JP2023045881A (ja) 誘電体組成物および電子部品
WO2020045447A1 (ja) 誘電体薄膜、容量素子および電子回路基板
JP2021123799A (ja) 金属酸窒化物薄膜および容量素子
JP2023046256A (ja) 誘電体組成物および電子部品
Kuo et al. Ferroelectric In3+-added Bi4Ti3O12 films obtained by magnetron sputtering with two series of In3+-and Bi3+-varied targets

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017514710

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15765150

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851914

Country of ref document: EP