WO2020045447A1 - 誘電体薄膜、容量素子および電子回路基板 - Google Patents
誘電体薄膜、容量素子および電子回路基板 Download PDFInfo
- Publication number
- WO2020045447A1 WO2020045447A1 PCT/JP2019/033545 JP2019033545W WO2020045447A1 WO 2020045447 A1 WO2020045447 A1 WO 2020045447A1 JP 2019033545 W JP2019033545 W JP 2019033545W WO 2020045447 A1 WO2020045447 A1 WO 2020045447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- dielectric thin
- dielectric
- film
- examples
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 159
- 239000000758 substrate Substances 0.000 title description 29
- 239000000203 mixture Substances 0.000 claims description 28
- 239000003990 capacitor Substances 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 26
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010408 film Substances 0.000 description 39
- 230000000052 comparative effect Effects 0.000 description 36
- 238000000034 method Methods 0.000 description 30
- 229910052760 oxygen Inorganic materials 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 239000001301 oxygen Substances 0.000 description 23
- 229910044991 metal oxide Inorganic materials 0.000 description 22
- 150000004706 metal oxides Chemical class 0.000 description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 230000007547 defect Effects 0.000 description 13
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 239000011247 coating layer Substances 0.000 description 9
- 239000003822 epoxy resin Substances 0.000 description 9
- 150000002831 nitrogen free-radicals Chemical class 0.000 description 9
- 230000010287 polarization Effects 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000005121 nitriding Methods 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 3
- 238000000224 chemical solution deposition Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011268 mixed slurry Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910001427 strontium ion Inorganic materials 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/082—Compounds containing nitrogen and non-metals and optionally metals
- C01B21/0821—Oxynitrides of metals, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G35/00—Compounds of tantalum
- C01G35/006—Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0676—Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
- C23C14/586—Nitriding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/12—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1254—Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
- H01G4/306—Stacked capacitors made by thin film techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/162—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/20—Two-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/42—Magnetic properties
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/182—Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
- H05K1/185—Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10015—Non-printed capacitor
Definitions
- the present invention relates to a dielectric thin film, a capacitor, and an electronic circuit board.
- Patent Literature 1 describes a dielectric composition in which an additive is added to barium titanate powder to introduce defects into the crystal lattice of barium titanate to improve the relative dielectric constant.
- the present invention has been made in view of such circumstances, and has as its object to provide a dielectric thin film, a capacitor, and an electronic circuit board having a large relative dielectric constant at a low frequency and a small dielectric loss.
- the dielectric thin film according to the present invention is a dielectric thin film having an ABON-type oxynitride,
- the ABON type oxynitride is represented by a composition formula A a B b O o N n , (O + n) / a ⁇ 3.00 Is satisfied.
- the dielectric thin film according to the present invention has the above characteristics, so that the dielectric constant can be increased and the dielectric loss can be reduced particularly at a low frequency of about 1 kHz.
- the dielectric thin film according to the present invention may satisfy (o + n) / a ⁇ 2.95.
- the dielectric thin film according to the present invention may satisfy n / a ⁇ 0.05.
- A may be one or more elements selected from Sr, Ba, Ca, La, Nd, Na and K, and B may be selected from Ta, Nb, Ti and W. One or more elements may be used.
- the crystal structure of the ABON-type oxynitride may be a non-perovskite structure.
- a capacitive element according to the present invention has the above dielectric thin film.
- An electronic circuit board according to the present invention has a thin film capacitor having the above-mentioned dielectric thin film.
- FIG. 1 is a schematic view of a thin film capacitor according to one embodiment of the present invention.
- 4 is a graph showing XRD measurement results of Examples 1 to 3 and Comparative Example 1.
- 6 is a graph showing the relationship between the oxygen partial pressure during film formation and tan ⁇ . It is a schematic diagram of an electronic circuit board concerning one embodiment of the present invention.
- FIG. 1 is a schematic view of a thin film capacitor having a dielectric thin film according to the present embodiment.
- the thin film capacitor 1 shown in FIG. 1 is formed on a substrate 11 in the order of a first electrode 12 and a dielectric thin film 13, and includes a second electrode 14 on the surface of the dielectric thin film 13.
- the material of the substrate 11 is not particularly limited, but using a single crystal Si substrate as the substrate 11 is excellent in availability and cost. When flexibility is important, a Ni foil can be used as a substrate.
- the thickness of the first electrode 12 is preferably 0.01 to 10 ⁇ m.
- the thickness of the second electrode 14 is preferably 0.01 to 10 ⁇ m.
- the dielectric thin film 13 is a polycrystalline dielectric thin film having an ABON-type oxynitride.
- the dielectric constant of the dielectric thin film at a frequency of about 1 kHz can be increased, and the dielectric loss (tan ⁇ ) can be reduced.
- the dielectric thin film 13 is preferably a polycrystalline dielectric thin film, and is preferably a thin film of a type different from the epitaxial film. Whether the dielectric thin film 13 is a polycrystalline dielectric thin film and is a thin film of a type different from an epitaxial film can be confirmed by, for example, an XRD pattern.
- the type of A and the type of B are arbitrary, the type is an ABO oxide having a perovskite structure, that is, an oxide having an ABO 3- type crystal structure.
- A is preferably one or more elements selected from Sr, Ba, Ca, La, Nd, Na and K, and B is one or more elements selected from Ta, Nb, Ti and W. It is preferred that A is most preferably Sr, and B is most preferably Ta.
- the composition of the ABON type oxynitride can be represented by the composition formula A a B b O o N n in atomic ratio.
- a a B b O o N n in atomic ratio.
- composition formula A a B b O o N n satisfies the (o + n) / a ⁇ 3.00.
- the relative dielectric constant at a frequency of about 1 kHz can be improved.
- n / a ⁇ 0.05 may be satisfied.
- the method of measuring the composition of the ABON-type oxynitride contained in the dielectric thin film 13 is arbitrary. For example, it can be measured by a method such as X-ray photoelectron spectroscopy or impulse heating melting extraction method (infrared absorption method).
- the composition of the ABON-type oxynitride on the surface of the dielectric thin film 13 may be different from the composition of the ABON-type oxynitride inside the dielectric thin film 13. Good.
- the surface portion of the dielectric thin film 13 refers to a portion whose depth from the surface of the dielectric thin film 13 is 10 nm or less.
- the inside of the dielectric thin film 13 refers to a portion whose depth from the surface of the dielectric thin film 13 is 30 nm or more.
- the composition formula of the ABON-type oxynitride on the surface of the dielectric thin film is A a1 B b1 O o1 N n1 in atomic ratio.
- (o1 + n1) / a1 ⁇ 2.95 be satisfied.
- n1 / a1 ⁇ 0.500 may be satisfied.
- the method of measuring the composition of the ABON-type oxynitride on the surface of the dielectric thin film is arbitrary. For example, it can be measured by a method such as X-ray photoelectron spectroscopy or impulse heating melting extraction method (infrared absorption method).
- the thickness of the dielectric thin film 13 is arbitrary, but is preferably from 10 nm to 1 ⁇ m.
- the crystal structure of the ABON-type oxynitride contained on the surface and / or inside of the dielectric thin film 13 is arbitrary, but is preferably a non-perovskite structure.
- the non-perovskite structure With the non-perovskite structure, the relative dielectric constant at a frequency of about 1 kHz can be further improved.
- the non-perovskite structure refers to a structure other than the perovskite structure. In ABON-type oxynitride, it refers to a crystal structure that is not an ABO 2 N-type structure.
- a method of confirming whether the ABON-type oxynitride contained on the surface and / or inside of the dielectric thin film 13 has a perovskite structure or a non-perovskite structure is arbitrary. For example, by measuring the XRD pattern, it is possible to confirm whether the ABON-type oxynitride has a perovskite structure or a non-perovskite structure.
- an electronic circuit board 100 includes an epoxy resin substrate 10, a resin layer 20 formed on the epoxy resin substrate 10, and a thin film capacitor provided on the resin layer 20. 1, an insulating coating layer 30 formed on the resin layer 20 on which the thin film capacitor 1 is installed, an electronic component 40 installed on the insulating coating layer 30, and connected to the thin film capacitor 1 or the electronic component 40.
- the thin film capacitor 1 may be in a state where the substrate 11 is removed or in a state where the substrate 11 is not removed.
- the type of the metal wiring 50 is not particularly limited. For example, Cu and the like can be mentioned.
- the thin film capacitor 1 is embedded in the electronic circuit board 100.
- vacuum deposition, sputtering, PLD (pulse laser deposition), MO-CVD (metal organic chemical vapor deposition), MOD (metal organic decomposition), sol-gel method, CSD (chemical solution deposition) are exemplified.
- the raw material used at the time of film formation may contain minute impurities or subcomponents, but there is no particular problem as long as the amount does not significantly impair the performance of the thin film.
- the dielectric thin film 13 according to the present embodiment may also contain minute impurities and subcomponents to such an extent that the performance is not significantly impaired.
- a film forming method by the PLD method when a film is formed by a method such as a PLD method, a sputtering method and a CSD method, a thin film finally obtained tends to be a polycrystalline film.
- a film forming method by the PLD method will be described.
- an Si single crystal substrate is prepared as the substrate 11.
- a film is formed on the Si single crystal substrate in the order of SiO 2 , TiO x , and Pt, and the first electrode 12 made of Pt is formed.
- the method for forming the first electrode 12 is not particularly limited. For example, a sputtering method, a CVD method, or the like can be given.
- a metal oxide thin film is formed on the first electrode 12 by the PLD method. Further, a region where a thin film is not partially formed may be formed by using a metal mask in order to expose a part of the first electrode 12 according to an application.
- a target containing a constituent element (Sr and / or Ta) of a target polycrystalline dielectric thin film is set in a film formation chamber.
- a pulse laser is irradiated on the surface of the target.
- the surface of the target is instantaneously evaporated by the strong energy of the pulse laser.
- an evaporant is deposited on the substrate arranged to face the target to form a metal oxide thin film.
- the composition formula of the metal oxide thin film is SrTaO x.
- the type of the target is not particularly limited, and a metal oxide sintered body containing a constituent element (Sr and / or Ta) of the polycrystalline dielectric thin film to be produced, a simple metal of the constituent element, an alloy of the constituent element, or the like may be used. it can.
- the respective elements are distributed on average, but the distribution may be varied within a range that does not affect the quality of the obtained polycrystalline dielectric thin film.
- the number of targets is not necessarily one, and a plurality of targets containing some of the constituent elements of the polycrystalline dielectric thin film can be prepared and used for film formation.
- the shape of the target is not limited, and may be a shape suitable for a film forming apparatus to be used.
- x of the obtained metal oxide thin film can be controlled by adjusting film forming conditions, for example, gas pressure of oxygen and the like.
- film forming conditions for example, gas pressure of oxygen and the like.
- oxygen partial pressure film formation oxygen partial pressure
- x becomes smaller, and defects (sites containing nothing) in the crystal lattice increase.
- the oxygen partial pressure (film formation oxygen partial pressure) in the atmosphere during film formation increases, x increases, and defects in the crystal lattice decrease.
- a sintered body containing Sr 2 Ta 2 O 7 may be used as a target.
- the film formation conditions for example, the gas pressure of oxygen and the like, the above-mentioned x finally obtained can be controlled.
- the metal oxide of the metal oxide thin film preferably satisfies SrTaO x , where 3.2 ⁇ x ⁇ 3.8.
- the substrate 11 it is preferable to heat the substrate 11 with an infrared laser during the film formation in order to crystallize the metal oxide thin film to be formed.
- the heating temperature of the substrate 11 varies depending on the metal oxide thin film, the constituent elements and the composition of the substrate 11, and the like.
- the film is formed by heating to 600 to 800 ° C.
- nitrogen is introduced into at least the surface of the metal oxide thin film in the metal oxide thin film, and the dielectric thin film 13 of the present embodiment is formed. Can be obtained.
- Nitrogen treatment may be performed by introducing nitrogen radicals during film formation.However, in order to control the amount of introduced nitrogen to be not excessive, the metal oxide thin film after film formation is irradiated with nitrogen radicals. It is easier and preferable to perform the nitriding treatment. In the case where the nitriding treatment is performed by irradiating the formed metal oxide thin film with nitrogen radicals, the nitrogen content inside the dielectric thin film 13 is larger than the nitrogen content on the surface of the dielectric thin film 13.
- the inside of the dielectric thin film 13 is substantially uniform. Therefore, when the composition inside the dielectric thin film 13 is measured by a method such as X-ray photoelectron spectroscopy or impulse heating melting extraction (infrared absorption method), the composition is measured by setting one measurement point. The obtained composition may be used as the composition inside the dielectric thin film 13.
- the composition of the surface of the dielectric thin film 13 is preferably measured at three or more measurement points and averaged.
- the thin film capacitor 1 can be manufactured.
- the material of the second electrode 14 is not particularly limited, and Ag, Au, Cu, or the like can be used. There is no particular limitation on the method of forming the second electrode 14. For example, it can be formed by a sputtering method.
- the reason why the relative dielectric constant of the dielectric thin film 13 of the present embodiment is particularly improved at a frequency of about 1 kHz is considered as follows.
- SrTaO x N y which is a typical ABON-type oxynitride, tends to have a larger crystal lattice as the N content (y) increases. This is considered to be due to the fact that the N atom is larger than the O atom when comparing the N atom and the O atom.
- SrTaO x which is a typical ABO type oxide, has a tendency in which the crystal lattice becomes smaller as the O content (x) decreases, which has been obtained by the present inventors. This is considered to be due to the fact that O atoms are larger than defects when O atoms are compared with defects.
- N is introduced into a metal oxide thin film made of SrTaO x .
- the distortion of the crystal lattice after the introduction of N increases as x decreases, the number of defects increases, and the crystal lattice decreases. This is because, since N atoms are larger than defects or O atoms, the smaller the crystal lattice before introducing N, the greater the distortion of the crystal lattice after introducing N.
- the relative dielectric constant of the polycrystalline dielectric thin film mainly comes from ionic polarization and space charge polarization.
- the polarization due to N atoms and defects is polarization classified as space charge polarization.
- the ionic polarization has a large effect at a high frequency of about 1 MHz.
- the dielectric thin film 13 according to this embodiment has a large relative dielectric constant particularly at a low frequency of about 1 kHz, and has a small dielectric loss (tan ⁇ ).
- the electronic circuit board 100 is manufactured by, for example, the following method, but the manufacturing method of the electronic circuit board 100 is not limited to the following method.
- an uncured resin layer which is a precursor of the resin layer 20 is formed on the epoxy resin substrate 10.
- the thin film capacitor 1 is mounted on the uncured resin layer such that the first electrode 11 of the thin film capacitor 1 faces the uncured resin layer.
- the thin film capacitor 1 may be in a state where the substrate 11 has been removed or in a state where the substrate 11 has not been removed.
- the insulating coating layer 30 is formed on the uncured resin layer on which the thin film capacitor 1 is mounted, and the thin film capacitor 1 is sandwiched between the epoxy resin substrate 10 and the insulating coating layer 30.
- the uncured resin layer is thermally cured to form the resin layer 20, and the epoxy resin substrate 10 and the insulating coating layer 30 are pressed.
- the method of crimping For example, there is a method using a hot press.
- the electronic component 40 is mounted on the insulating coating layer 30. Thereby, the electronic circuit board 100 in which the thin film capacitor 1 is embedded is obtained.
- the uncured resin layer is in an uncured state at room temperature, and may be formed of a B-stage epoxy resin having a property of being thermoset by heating.
- the insulating coating layer 30 may be formed of a resin such as an epoxy resin, a Teflon (registered trademark) resin, or a polyimide resin.
- the present invention is not limited to these embodiments at all, and it is a matter of course that the present invention can be implemented in various modes without departing from the gist of the present invention.
- the thin film capacitor 1 in the electronic circuit board 100 may be mounted by surface mounting.
- the capacitance element according to the present invention is an element using dielectric properties, and includes a capacitor, a thermistor, a filter, a diplexer, a resonator, an oscillator, an antenna, a piezoelectric element, a transistor, a ferroelectric memory, and the like.
- the polycrystalline dielectric thin film according to the present embodiment is suitably used particularly for a capacitor element required to have a high relative dielectric constant at a frequency of about 1 kHz and a small dielectric loss.
- Examples 1 to 4, Comparative Examples 1 to 5 First, SrCO 3 powder and Ta 2 O 5 powder were prepared as raw materials of a Sr 2 Ta 2 O 7 sintered body used as a film formation target. The SrCO 3 powder and the Ta 2 O 5 powder were weighed so that the Sr / Ta molar ratio was 1.
- the SrCO 3 powder and the Ta 2 O 5 powder were mixed for 16 hours by a wet ball mill using an ethanol solvent to obtain a mixed slurry.
- the mixed slurry was dried at 80 ° C. for 12 hours using a thermostatic drier to obtain a mixture.
- the mixture was lightly crushed in a mortar and placed in a ceramic crucible. And it heat-processed at 1000 degreeC in air
- the calcined product was mixed again for 16 hours in a wet ball mill using an ethanol solvent to obtain a calcined slurry.
- the obtained calcined slurry was dried at 80 ° C. for 12 hours with a constant temperature drier to obtain a calcined mixture.
- a polyvinyl alcohol solution was added as a binder to the calcined mixture and mixed to obtain a granulated product.
- the addition amount of the polyvinyl alcohol solution was 0.6% by weight based on 100% by weight of the pulverized material.
- the granulated product was formed into a cylindrical shape having a diameter of about 23 mm and a height of about 9 mm to obtain a molded product.
- the molding method was CIP molding.
- the molded product was fired in an air atmosphere at 1400 ° C. for 2 hours using an electric furnace to obtain a sintered product. Further, the upper and lower surfaces of the sintered product were mirror-polished to obtain a film-forming target having a height of 5 mm. In addition, it was confirmed that the relative density of the obtained film formation target was 96 to 98%.
- the film-forming target obtained as described above was set in a film-forming apparatus, and a Si substrate was set so as to face the film-forming target.
- a Si substrate a substrate having a Pt film as a first electrode on the surface was used.
- a metal oxide thin film was formed to a thickness of 400 nm by the PLD method.
- the oxygen partial pressure in the atmosphere at the time of film formation was changed for each Example and Comparative Example. Specifically, the film forming oxygen partial pressure was set to the magnitude shown in Table 1.
- the temperature at the time of film formation was 700 ° C., and nitrogen was not introduced into the atmosphere at the stage of forming the metal oxide thin film.
- Example 4 oxygen was not intentionally introduced into the atmosphere. However, due to the performance of the vacuum device, it is estimated that oxygen having a maximum of about 0.001 Pa exists in the atmosphere.
- Examples 1 to 3 and Comparative Example 1 a radical nitriding treatment was performed by irradiating the surface of the metal oxide thin film with nitrogen radicals for 10 minutes to obtain a dielectric material having an ABON-type oxynitride. A thin film was obtained.
- Example 3 The values of (o + n) / a, o / a and n / a inside the dielectric thin film were calculated from the values quantified by X-ray photoelectron spectroscopy. Further, the results are shown in Table 2.
- Example 3 and Comparative Example 1 since a considerable amount of N was present at least on the surface of the dielectric thin film, the diffusion of N from the surface to the inside of the dielectric thin film caused It can be estimated that the content of N inside is 0.0001 mol% or more.
- Comparative Examples 2 to 5 in which the radical nitriding treatment was not performed were metal oxide thin films having SrTaO x , the N content was less than 0.0001 mol%, and the relative dielectric constant or tan ⁇ was inferior to Examples 1 to 4. It became.
- the relative dielectric constant of each of the dielectric thin films of Examples 1 to 4 and Comparative Example 1 was measured at a frequency of 1 MHz.
- the relative dielectric constant of each of the dielectric thin films of Examples 1 to 4 was greatly attenuated as the frequency increased to 1 MHz.
- the relative dielectric constant of the dielectric thin film of Comparative Example 1 did not greatly attenuate even when the frequency was increased to 1 MHz.
- the relative dielectric constant of the dielectric thin film of Comparative Example 1 was larger than the relative dielectric constant of each of the dielectric thin films of Examples 1 to 4.
- Comparative Example 1 formed at a partial pressure of oxygen of 10 Pa showed a pattern having a peak 21 very similar to the peak of SrTaO 2 N having a perovskite structure.
- Examples 1 to 3 in which a film was formed at an oxygen partial pressure of 0.01 to 1 Pa showed a pattern having a peak different from the peak of SrTaO 2 N having a perovskite structure.
- the peak common to only Examples 1 to 3 was shifted to a higher angle side as the oxygen partial pressure during film formation was smaller. That is, the smaller the oxygen partial pressure during film formation, the smaller the crystal lattice contained in the dielectric thin film. It is considered that the reason why the crystal lattice included in a dielectric thin film having a lower oxygen partial pressure during film formation becomes smaller is that the number of O defects caused by insufficient O during film formation increases. It is considered that the lower the oxygen partial pressure during film formation, the more the radicalized nitrogen is forcibly introduced into the smaller crystal lattice, so that the crystal strain in the obtained dielectric thin film increases and the relative dielectric constant increases. Can be
- Example 5 to 7 Example 5 to 7 were carried out under the same conditions as in Example 2 except that the irradiation time of the radical nitridation was increased. Table 3 shows the results.
- the relative dielectric constant of each of the dielectric thin films of Examples 5 to 7 and Comparative Example 1 was measured at a frequency of 1 MHz.
- the relative dielectric constant of each of the dielectric thin films of Examples 5 to 7 was greatly attenuated as the frequency increased to 1 MHz.
- the relative dielectric constant of the dielectric thin film of Comparative Example 1 did not greatly attenuate even when the frequency was increased to 1 MHz.
- the dielectric constant of the dielectric thin film of Comparative Example 1 was larger than the dielectric constant of each of the dielectric thin films of Examples 5 to 7.
- Example 8 shows the same tendency even when the type of the film-forming target was changed. Note that the crystal structure of the dielectric thin film of Example 8 was a perovskite structure different from the crystal structures of the dielectric thin films of the other examples. The dielectric thin film of Example 8 had good relative dielectric constant and tan ⁇ .
- the relative dielectric constant of each of the dielectric thin films of Examples 8 to 9 and Comparative Example 1 was measured at a frequency of 1 MHz.
- the relative dielectric constant of each of the dielectric thin films of Examples 8 and 9 was greatly attenuated as the frequency increased to 1 MHz.
- the relative dielectric constant of the dielectric thin film of Comparative Example 1 did not greatly attenuate even when the frequency was increased to 1 MHz.
- the relative dielectric constant of the dielectric thin film of Comparative Example 1 was larger than the relative dielectric constant of each of the dielectric thin films of Examples 8 and 9.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Hardware Design (AREA)
- Structural Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Inorganic Insulating Materials (AREA)
- Ceramic Capacitors (AREA)
Abstract
【課題】 特に低周波数での比誘電率が大きく、誘電損失が小さい誘電体薄膜および容量素子を提供することを目的とする。 【解決手段】 A-B-O-N型酸窒化物を有する誘電体薄膜である。A-B-O-N型酸窒化物を組成式AaBbOoNnで表す場合に、(o+n)/a<3.00を満たす。
Description
本発明は、誘電体薄膜、容量素子および電子回路基板に関する。
近年、デジタル機器の高性能化に伴い、高性能な誘電体組成物が求められている。そして、ペロブスカイト型酸化物に対して欠陥を導入した誘電体組成物が研究されている。
例えば、特許文献1では、チタン酸バリウム粉末に対して添加物を加えることでチタン酸バリウムの結晶格子に欠陥を導入し、比誘電率を向上させた誘電体組成物について記載されている。
しかし、現在ではさらに多様な組成の誘電体組成物が求められており、添加物の有無に関わらず比誘電率を向上させた誘電体組成物が求められている。
本発明は、このような実状に鑑みてなされ、特に低周波数での比誘電率が大きく、誘電損失が小さい誘電体薄膜、容量素子および電子回路基板を提供することを目的とする。
本発明に係る誘電体薄膜は、A-B-O-N型酸窒化物を有する誘電体薄膜であって、
前記A-B-O-N型酸窒化物を組成式AaBbOoNnで表す場合に、
(o+n)/a<3.00
を満たすことを特徴とする。
前記A-B-O-N型酸窒化物を組成式AaBbOoNnで表す場合に、
(o+n)/a<3.00
を満たすことを特徴とする。
本発明に係る誘電体薄膜は、上記の特徴を有することで、特に周波数1kHz程度の低周波数での比誘電率を大きくし、誘電損失を小さくすることができる。
本発明に係る誘電体薄膜は、(o+n)/a<2.95を満たしてもよい。
本発明に係る誘電体薄膜は、n/a<0.050を満たしてもよい。
本発明に係る誘電体薄膜は、AはSr、Ba、Ca、La、Nd、NaおよびKから選択される1種以上の元素であってもよく、BはTa、Nb、TiおよびWから選択される1種以上の元素であってもよい。
本発明に係る誘電体薄膜は、前記A-B-O-N型酸窒化物の結晶構造が非ペロブスカイト構造であってもよい。
本発明に係る容量素子は、上記の誘電体薄膜を有する。
本発明に係る電子回路基板は上記の誘電体薄膜を有する薄膜キャパシタを有する。
以下、本発明を実施形態に基づき説明する。
本実施形態に係る誘電体薄膜を有する薄膜キャパシタの模式図を図1に示す。図1に示す薄膜キャパシタ1は、基板11上に第1電極12、誘電体薄膜13の順に形成され、誘電体薄膜13の表面に第2電極14を備える。
基板11の材質には特に制限はないが、基板11としてSi単結晶基板を用いることが入手容易性およびコスト性に優れている。フレキシビリティを重視する場合にはNi箔を基板として使用することも出来る。
第1電極12および第2電極14の材質に特に制限はなく、電極として機能すればよい。例えば、Pt,Ag,Ni等が挙げられる。第1電極12の厚みは0.01~10μmが好ましい。第2電極14の厚みは0.01~10μmが好ましい。
誘電体薄膜13は、A-B-O-N型酸窒化物を有する多結晶誘電体薄膜である。A-B-O-N型酸窒化物を有することにより、誘電体薄膜の周波数1kHz程度での比誘電率を大きくし、誘電損失(tanδ)を小さくすることができる。また、誘電体薄膜13は多結晶誘電体薄膜であることが好ましく、エピタキシャル膜とは異なる種類の薄膜であることが好ましい。誘電体薄膜13が多結晶誘電体薄膜であり、エピタキシャル膜とは異なる種類の薄膜であることは、例えばXRDパターンにより確認することができる。
Aの種類およびBの種類は任意であるが、ペロブスカイト構造であるA-B-O型酸化物、すなわち、結晶構造がABO3型構造である酸化物を形成可能な種類とする。また、AはSr、Ba、Ca、La、Nd、NaおよびKから選択される1種以上の元素であることが好ましく、BはTa、Nb、TiおよびWから選択される1種以上の元素であることが好ましい。また、AはSrであることが最も好ましく、BはTaであることが最も好ましい。
A-B-O-N型酸窒化物の組成は原子数比で組成式AaBbOoNnと表すことができる。また、A-B-O-N型酸窒化物に含まれる全ての元素の含有量の合計を100mol%として、Nの含有量が0.0001mol%以上である場合に誘電体薄膜13にA-B-O-N型酸窒化物が含まれているとする。また、A,B,Oの各元素の含有量も同様に0.0001mol%以上である。
本実施形態にかかる誘電体薄膜13の組成を組成式AaBbOoNnで表す場合に、(o+n)/a<3.00を満たす。(o+n)/a<3.00を満たすことにより、周波数1kHz程度での比誘電率を向上させることができる。
また、a/bについては任意であり、必ずしもa/b=1.0である必要は無い。具体的には、0.7≦a/b≦1.3であってもよい。
また、(o+n)/a<2.95を満たすことがさらに好ましく、(o+n)/a<2.85を満たすことがさらに好ましい。なお、(o+n)/aの下限には特に制限はない。例えば(o+n)/a≧2.00である。
また、n/a≦0.050を満たしてもよい。
誘電体薄膜13に含まれるA-B-O-N型酸窒化物の組成を測定する方法は任意である。例えばX線光電子分光法やインパルス加熱溶融抽出法(赤外線吸収法)などの方法によって測定することができる。
誘電体薄膜13の表面部におけるA-B-O-N型酸窒化物の組成については、誘電体薄膜13の内部におけるA-B-O-N型酸窒化物の組成とは異なっていてもよい。誘電体薄膜13の表面部とは、誘電体薄膜13の表面からの深さが10nm以下である部分を指す。誘電体薄膜13の内部とは、誘電体薄膜13の表面からの深さが30nm以上である部分を指す。本実施形態では、誘電体薄膜の表面部におけるA-B-O-N型酸窒化物の組成式を原子数比でAa1Bb1Oo1Nn1とする。
(o1+n1)/a1<3.00を満たしていてもよい。(o1+n1)/a1<3.00を満たすことにより、周波数1kHz程度での比誘電率を向上させることができる。
また、a1/b1については任意であり、必ずしもa1/b1=1.0である必要は無い。具体的には、0.7≦a1/b1≦1.3であってもよい。
また、(o1+n1)/a1<2.95を満たすことがさらに好ましい。なお、(o1+n1)/a1の下限には特に制限はない。例えば(o1+n1)/a1≧2.00である。
また、n1/a1≦0.500を満たしてもよい。
誘電体薄膜の表面部におけるA-B-O-N型酸窒化物の組成を測定する方法は任意である。例えばX線光電子分光法やインパルス加熱溶融抽出法(赤外線吸収法)などの方法によって測定することができる。
誘電体薄膜13の厚さは任意であるが、好ましくは10nm~1μmである。
誘電体薄膜13の表面および/または内部に含まれるA-B-O-N型酸窒化物の結晶構造は任意であるが、非ペロブスカイト構造であることが好ましい。非ペロブスカイト構造であることにより、周波数1kHz程度での比誘電率をさらに向上させることができる。ここで、非ペロブスカイト構造とは、ペロブスカイト構造以外の構造を指す。A-B-O-N型酸窒化物においては、ABO2N型構造ではない結晶構造を指す。
誘電体薄膜13の表面および/または内部に含まれるA-B-O-N型酸窒化物がペロブスカイト構造であるか非ペロブスカイト構造であるかを確認する方法は任意である。例えば、XRDパターンを測定することでA-B-O-N型酸窒化物がペロブスカイト構造であるか非ペロブスカイト構造であるかを確認できる。
図4に示すように、本実施形態に係る電子回路基板100は、エポキシ系樹脂基板10と、エポキシ系樹脂基板10上に形成された樹脂層20と、樹脂層20上に設置された薄膜キャパシタ1と、薄膜キャパシタ1が設置された樹脂層20上に形成された絶縁性被覆層30と、絶縁性被覆層30上に設置された電子部品40と、薄膜キャパシタ1または電子部品40に接続され、エポキシ系樹脂基板10の表面または絶縁性被覆層30の表面に引き出された金属配線50と、を備える。薄膜キャパシタ1は、基板11を除去された状態であってもよく、基板11を除去されていない状態であってもよい。金属配線50の一部は、エポキシ系樹脂基板10の表面と、絶縁性被覆層30の表面と、の間を導通させるために、電子回路基板100を貫通している。金属配線50の種類には特に制限はない。例えばCu等が挙げられる。図4に示す実施形態では、薄膜キャパシタ1が電子回路基板100内に埋め込まれている。
薄膜キャパシタ1の製造方法
次に、容量素子の一種である薄膜キャパシタ1の製造方法について説明する。以下、AをSr、BをTaとする場合について説明するが、他の元素を用いる場合でも同様である。
次に、容量素子の一種である薄膜キャパシタ1の製造方法について説明する。以下、AをSr、BをTaとする場合について説明するが、他の元素を用いる場合でも同様である。
最終的に誘電体薄膜13となる薄膜の成膜方法に特に制限はない。例えば、真空蒸着法、スパッタリング法、PLD法(パルスレーザー蒸着法)、MO-CVD(有機金属化学気相成長法)、MOD(有機金属分解法)、ゾル・ゲル法、CSD(化学溶液堆積法)などが例示される。また、成膜時に使用する原料には微少な不純物や副成分が含まれている場合があるが、薄膜の性能を大きく損なわない程度の量であれば特に問題はない。また、本実施形態に係る誘電体薄膜13も、性能を大きく損なわない程度に微少な不純物や副成分を含んでいてもよい。
上記の成膜方法のうち、PLD法、スパッタリング法およびCSD法などの方法で成膜すると、最終的に得られる薄膜が多結晶膜となりやすい。本実施形態ではPLD法による成膜方法について説明する。
まず、基板11としてSi単結晶基板を準備する。次に、Si単結晶基板上にSiO2、TiOx、Ptの順に成膜し、Ptからなる第1電極12を形成する。第1電極12を形成する方法には特に制限はない。例えば、スパッタリング法やCVDなどが挙げられる。
次に、第1電極12上にPLD法で金属酸化物薄膜を成膜する。また、用途に応じて第1電極12の一部を露出させるためにメタルマスクを使用して薄膜が一部成膜されない領域を形成してもよい。
PLD法では、まず、目的とする多結晶誘電体薄膜の構成元素(Srおよび/またはTa)を含むターゲットを成膜室内に設置する。次に、ターゲットの表面上にパルスレーザーを照射する。パルスレーザーの強いエネルギーによりターゲットの表面を瞬時に蒸発させる。そして、ターゲットと対向するように配置した基板上に蒸発物を堆積させて金属酸化物薄膜を成膜する。なお、金属酸化物薄膜の組成式はSrTaOxである。
ターゲットの種類に特に制限はなく、作製する多結晶誘電体薄膜の構成元素(Srおよび/またはTa)を含む金属酸化物焼結体、構成元素の単体金属または構成元素の合金などを用いることができる。また、ターゲットにおいては各元素が平均的に分布していることが好ましいが、得られる多結晶誘電体薄膜の品質に影響がない範囲で分布にばらつきがあってもよい。さらに、ターゲットは必ずしも一つである必要はなく、多結晶誘電体薄膜の構成元素の一部を含むターゲットを複数用意して成膜に用いることも可能である。ターゲットの形状にも制限はなく、使用する成膜装置に適した形状とすればよい。また、成膜条件、例えば酸素のガス圧等を調整することで、得られる金属酸化物薄膜のxを制御することができる。例えば、酸素のガス圧を制御し、成膜時の雰囲気における酸素分圧(成膜酸素分圧)を小さくするほどxが小さくなり、結晶格子に欠陥(何も入っていないサイト)が多くなる。逆に、成膜時の雰囲気における酸素分圧(成膜酸素分圧)を大きくするほどxが大きくなり、結晶格子に欠陥が少なくなる。
本実施形態では、例えば、ターゲットとしてSr2Ta2O7を含む焼結体を用いてもよい。そして、成膜条件、例えば酸素のガス圧等を調整することで、最終的に得られる上記のxを制御することができる。なお、本実施形態では、当該金属酸化物薄膜の金属酸化物はSrTaOx、3.2≦x≦3.8であることが好ましい。
また、PLD法の際には、成膜する金属酸化物薄膜を結晶化させるために成膜時に基板11を赤外線レーザーで加熱することが好ましい。基板11の加熱温度は金属酸化物薄膜および基板11の構成元素および組成等により変化するが、例えば、600~800℃となるように加熱して成膜を行う。基板11の温度を適温とすることで、金属酸化物薄膜が結晶化しやすくなるとともに冷却時に生じる割れの発生を防止することができる。
成膜中に、窒素ラジカルを金属酸化物薄膜に照射して窒化処理を行うことで、金属酸化物薄膜中、少なくとも金属酸化物薄膜の表面に窒素を導入し、本実施形態の誘電体薄膜13を得ることができる。成膜中に窒素ラジカルを導入して窒化処理を行ってもよいが、窒素の導入量が過剰にならないように制御するためには、成膜後の金属酸化物薄膜に窒素ラジカルを照射して窒化処理を行う方が容易であり好ましい。なお、成膜後の金属酸化物薄膜に窒素ラジカルを照射して窒化処理を行う場合には、誘電体薄膜13の内部における窒素の含有量が誘電体薄膜13の表面における窒素の含有量よりも少なくなることが通常である。また、窒素ラジカルを金属酸化物薄膜に照射する時間が短いほど、誘電体薄膜13の比誘電率が向上しやすい。窒素ラジカルを金属酸化物薄膜に照射する時間が長いほど、誘電体薄膜13が窒素ラジカルによるダメージを受けるためであると考えられる。
上記の方法で誘電体薄膜13を得る場合には、誘電体薄膜13の内部は実質的に均一である。したがって、X線光電子分光法やインパルス加熱溶融抽出法(赤外線吸収法)などの方法で誘電体薄膜13の内部の組成を測定する場合には、測定点を1か所設定して組成を測定し、得られた組成を誘電体薄膜13の内部の組成としてもよい。また、誘電体薄膜13の表面の組成については、好ましくは3点以上の測定点で組成を測定し、平均する。
最後に、誘電体薄膜13上に第2電極14を形成することで、薄膜キャパシタ1を製造することができる。なお、第2電極14の材質に特に制限はなく、Ag,Au,Cu等を用いることができる。また、第2電極14の形成方法にも特に制限はない。例えば、スパッタリング法により形成することができる。
本実施形態の誘電体薄膜13において、特に周波数1kHz程度の比誘電率が向上する理由は以下に示す通りであると考える。
代表的なA-B-O-N型酸窒化物であるSrTaOxNyはNの含有量(y)が増えるに従って結晶格子が大きくなる傾向が本発明者らの研究により得られている。これは、N原子とO原子とを比較した場合に、N原子がO原子よりも大きいことに起因していると考えられる。
一方、代表的なA-B-O型酸化物であるSrTaOxはOの含有量(x)が減るに従って結晶格子が小さくなる傾向が本発明者らの研究において得られている。これは、O原子と欠陥とを比較した場合に、O原子が欠陥よりも大きいことに起因していると考えられる。
ここで、SrTaOxからなる金属酸化物薄膜にNを導入する場合において、xが小さく欠陥が多く結晶格子が小さいほど、Nを導入した後の結晶格子の歪みが大きくなると考えられる。これは、欠陥またはO原子に対してN原子が大きいため、Nを導入する前の結晶格子が小さいほどNを導入した後の結晶格子の歪みが大きくなるためである。
一方、xが大きく、欠陥が少なく、結晶格子が大きい場合には、Nを導入した後の結晶格子の歪みが小さくなると考えられる。また、xが大きい場合やNの導入量が過剰な場合では、OとNとの合計含有量が増加し、欠陥が減少し、結晶格子の歪みが小さくなると考えられる。
ここで、多結晶誘電体薄膜の比誘電率は、主にイオン分極および空間電荷分極に由来する。また、N原子および欠陥による分極は空間電荷分極に分類される分極である。ここで、イオン分極と空間電荷分極とを比較すると、1MHz程度の高周波数ではイオン分極の影響が大きい。これに対し、1kHz程度の低周波数では空間電荷分極の影響が大きい。したがって、本実施形態に係る誘電体薄膜13は特に1kHz程度の低周波数での比誘電率が大きくなり誘電損失(tanδ)が小さくなる。
電子回路基板100は例えば以下の方法により製造されるが、電子回路基板100の製造方法は下記の方法に限定されない。まず、樹脂層20の前駆体である未硬化樹脂層をエポキシ系樹脂基板10に形成する。そして、薄膜キャパシタ1の第1電極11と未硬化樹脂層とが面するように、薄膜キャパシタ1を未硬化樹脂層上に搭載する。なお、薄膜キャパシタ1は、基板11を除去された状態であってもよく、基板11を除去されていない状態であってもよい。次に、薄膜キャパシタ1が搭載された未硬化樹脂層上に絶縁性被覆層30を形成し、薄膜キャパシタ1をエポキシ系樹脂基板10と絶縁性被覆層30との間に挟み込む。次に、未硬化樹脂層を熱硬化させて樹脂層20を形成すると共に、エポキシ系樹脂基板10と絶縁性被覆層30とを圧着させる。圧着の方法には特に制限はない。例えば熱プレスによる方法が挙げられる。次に、スルーホールを形成し、スルーホール内に金属配線50を形成した後に、絶縁性被覆層30上に電子部品40を搭載する。これにより、薄膜コンデンサ1が内部に埋め込まれた電子回路基板100が得られる。なお、未硬化樹脂層は、室温では未硬化の状態であり、加熱により熱硬化する性質を有するBステージのエポキシ樹脂等から形成すればよい。また、絶縁性被覆層30は、エポキシ系樹脂、テフロン(登録商標)系樹脂またはポリイミド系樹脂等の樹脂から形成すればよい。
以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々異なる態様で実施し得ることは勿論である。例えば、電子回路基板100における薄膜コンデンサ1は、表面実装により実装されていてもよい。
なお、本発明に係る容量素子とは、誘電性を利用した素子のことであり、コンデンサ、サーミスタ、フィルター、ダイプレクサ、共振器、発信子、アンテナ、圧電素子、トランジスタ、強誘電体メモリ等を含む。本実施形態に係る多結晶誘電体薄膜は、特に周波数1kHz程度での比誘電率が高く誘電損失が小さいことが求められる容量素子に好適に用いられる。
以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
(実施例1~4、比較例1~5)
まず、成膜用ターゲットとして用いるSr2Ta2O7焼結体の原料として、SrCO3粉末およびTa2O5粉末を準備した。Sr/Taのモル比が1となるようにSrCO3粉末およびTa2O5粉末を秤量した。
まず、成膜用ターゲットとして用いるSr2Ta2O7焼結体の原料として、SrCO3粉末およびTa2O5粉末を準備した。Sr/Taのモル比が1となるようにSrCO3粉末およびTa2O5粉末を秤量した。
次に、SrCO3粉末およびTa2O5粉末に対して、エタノール溶媒を用いた湿式ボールミルにて16時間混合して混合スラリーを得た。
次に、前記混合スラリーを恒温乾燥機にて80℃で12時間乾燥し、混合物を得た。
次に、前記混合物を乳鉢にて軽く解砕し、セラミック製のるつぼに入れた。そして、電気炉を用いて大気雰囲気中、1000℃で2時間熱処理し、仮焼物を得た。
次に、前記仮焼物に対して、再びエタノール溶媒を用いた湿式ボールミルにて16時間混合して仮焼後スラリーを得た。
得られた仮焼後スラリーを恒温乾燥機にて80℃で12時間乾燥し、仮焼後混合物を得た。
前記仮焼後混合物に対し、バインダーとしてポリビニルアルコール溶液を添加し、混合して造粒物を得た。ポリビニルアルコール溶液の添加量は、粉砕物100重量%に対して0.6重量%とした。
前記造粒物を直径約23mm、高さ約9mmの円柱形状に成形して成型物を得た。成形方法はCIP成形とした。
前記成型物に対し、電気炉を用いて大気雰囲気中、1400℃で2時間焼成して焼結物を得た。さらに、前記焼結物の上面および下面を鏡面研磨して高さ5mmの成膜ターゲットを得た。なお、得られた成膜ターゲットの相対密度が96~98%であることを確認した。
上記のようにして得られた成膜用ターゲットを成膜装置に設置し、成膜用ターゲットと対向するように、Si基板を設置した。当該Si基板としては表面に第1電極としてPt膜を有するものを用いた。
次に、PLD法で厚さ400nmとなるように金属酸化物薄膜を成膜した。成膜時の雰囲気中の酸素分圧(成膜酸素分圧)を各実施例および比較例ごとに変化させた。具体的には、成膜酸素分圧を表1に示す大きさとした。また、成膜時の温度は700℃とし、金属酸化物薄膜を成膜する段階では雰囲気中に窒素を導入しなかった。
なお、実施例4では、雰囲気中に意図的に酸素を導入しなかった。ただし、真空装置の性能上、最大0.001Pa程度の酸素が雰囲気中に存在すると推定される。
次に、実施例1~3および比較例1では、窒素ラジカルを金属酸化物薄膜の表面に10分間照射してラジカル窒化処理を行い、A-B-O-N型酸窒化物を有する誘電体薄膜を得た。
得られた実施例1~3および比較例1の誘電体薄膜について、ULVAC―PHI, Inc.製PHI Quantera IITMを用いたX線光電子分光法によって、当該誘電体薄膜の表面におけるSr、NおよびOの含有率と、当該誘電体薄膜の内部におけるSr、NおよびOの含有率と、を定量した。また、SrイオンおよびTaイオンの価数をXPSのケミカルシフトから判定し、原料から価数の変化がないことを確認した。具体的には、Srイオンの価数は2で、Taイオンの価数は5であった。また、誘電体薄膜の内部における(o+n)/a、o/aおよびn/aの値はX線光電子分光法で定量した値から算出した。さらに、結果を表2に示す。なお、実施例3および比較例1は誘電体薄膜の少なくとも表面部には相当量のNが存在していることから、誘電体薄膜の表面部から内部へのNの拡散により、誘電体薄膜の内部におけるNの含有量が0.0001mol%以上になっていると推定できる。
さらに、誘電体薄膜の表面における(o1+n1)/a1、o1/a1およびn1/a1の値はX線光電子分光法で定量した値から算出した。
また、実験例1~3および比較例1の誘電体薄膜のXRDパターンから、実施例1~3および比較例1の誘電体薄膜は全て多結晶膜であることを確認した。すなわち、薄膜が結晶化し、多結晶薄膜となっていることを確認した。
また、実施例1~4および比較例1~5の誘電体薄膜のXRDパターンから、各誘電体薄膜の結晶構造がペロブスカイト構造であるか、非ペロブスカイト構造であるかを特定した。結果を表1に示す。
続いて、実施例1~4および比較例1~5の各誘電体薄膜に対して蒸着を用いてAg電極を形成し、比誘電率および誘電損失(tanδ)を測定した。比誘電率およびtanδの測定はインピーダンスアナライザー(アジレントテクノロジー社製)4294Aにて、測定電圧:100mV、測定周波数:1kHzで行った。比誘電率が800以上である場合を良好とし、tanδが1未満(100%未満)である場合を良好とし、0.1以下(10%以下)である場合をさらに良好とした。結果を表1に示す。
表1および表2より、実施例1~3および比較例1では、少なくとも誘電体薄膜の表面においてA-B-O-N型酸窒化物が生成していた。そして、誘電体薄膜の内部における(o+n)/aが3.00より小さかった実施例1~3は比誘電率およびtanδが良好な結果となった。これに対し、(o+n)/aが3.00以上であった比較例1は比誘電率が低下した。
ラジカル窒化処理を行わなかった比較例2~5はSrTaOxを有する金属酸化物薄膜となり、Nの含有量が0.0001mol%未満であり、比誘電率またはtanδが実施例1~4より劣る結果となった。
また、実施例1~4および比較例1の各誘電体薄膜について周波数1MHzで比誘電率を測定した。実施例1~4の各誘電体薄膜の比誘電率は周波数が1MHzに上昇することで大きく減衰した。一方、比較例1の誘電体薄膜の比誘電率は周波数を1MHzに上昇させても大きく減衰しなかった。その結果、周波数1MHzでは比較例1の誘電体薄膜の比誘電率が実施例1~4の各誘電体薄膜の比誘電率よりも大きくなった。
また、実施例1~3および比較例1のXRDプロファイルを図2に示す。なお、図2のαは実施例1~3のみに概ね共通するピーク位置を示し、図2のβは実施例1~3と比較例1とで概ね共通するピーク位置を示す。なお、βのうち2θ=65deg近傍にあるピークはAg第2電極のピークである。
酸素分圧10Paで成膜した比較例1はペロブスカイト構造を有するSrTaO2Nのピークに酷似したピーク21を有するパターンを示した。これに対し、酸素分圧0.01~1Paで成膜した実施例1~3はペロブスカイト構造を有するSrTaO2Nのピークとは異なるピークを有するパターンを示した。
また、実施例1~3のみに共通するピークに関しては、成膜時の酸素分圧が小さいほど高角度側にシフトしていた。すなわち、成膜時の酸素分圧が小さい誘電体薄膜ほど含まれる結晶格子が小さくなった。成膜時の酸素分圧が小さい誘電体薄膜ほど含まれる結晶格子が小さくなるのは、成膜時にOが不足することで生じるO欠陥が多くなるためであると考えられる。そして、成膜時の酸素分圧が低いほど小さい結晶格子にラジカル化した窒素を強制的に導入することになるため、得られる誘電体薄膜における結晶歪が大きくなり、比誘電率が大きくなると考えられる。
また、表1の実施例1~3および比較例1(誘電体薄膜が酸窒化物(oxynitride)からなる場合)と、比較例2、4、5(誘電体薄膜が酸化物(oxide)からなる場合)と、について、横軸に酸素分圧(PO2)、縦軸にtanδを記載したグラフを作成した。結果を図3に示す。
図3より、誘電体薄膜が酸化物からなる場合には成膜時の酸素分圧が低いほど誘電体薄膜のtanδが悪化する。これは、成膜時の酸素分圧が低いほど雰囲気中のOが少なくなり誘電体薄膜にO欠陥が生じやすくなるためである。一方、誘電体薄膜が酸窒化物からなる場合には、同じ酸素分圧で成膜した酸化物からなる誘電体薄膜と比較して、特に酸素分圧が1Pa以下である場合にtanδが著しく改善することがわかる。
(実施例5~7)
実施例5~7は、実施例2からラジカル窒化照射時間を長くした点以外は実施例2と同条件で実施した。結果を表3に示す。
実施例5~7は、実施例2からラジカル窒化照射時間を長くした点以外は実施例2と同条件で実施した。結果を表3に示す。
表3より、ラジカル窒化照射時間が長いほど比誘電率が低下した。ラジカル窒化照射時間が長いほど、得られる誘電体薄膜が窒素ラジカルによるダメージを受けるためであると考えられる。
また、実施例5~7および比較例1の各誘電体薄膜について周波数1MHzで比誘電率を測定した。実施例5~7の各誘電体薄膜の比誘電率は周波数が1MHzに上昇することで大きく減衰した。一方、比較例1の誘電体薄膜の比誘電率は周波数を1MHzに上昇させても大きく減衰しなかった。その結果、周波数1MHzでは比較例1の誘電体薄膜の比誘電率が実施例5~7の各誘電体薄膜の比誘電率よりも大きくなった。
(実施例8~9、比較例6~9)
実施例8、比較例6、比較例7は、成膜用ターゲットとして用いる焼結体をLa2Ti2O7焼結体とした点以外は実施例2、比較例3、比較例5と同条件で実施した。また、実施例9、比較例8、比較例9は、成膜ターゲットとして用いる焼結体をBa2Ta2O7相当の焼結体とした点以外は実施例2、比較例3、比較例5と同条件で実施した。Ba2Ta2O7相当の焼結体は、Ba:Ta:O=2:2:7となるようにBaCO3粉末とTa2O5粉末とを秤量して作製した。「Ba2Ta2O7相当の焼結体」と記載するのは、Ba2Ta2O7の化合物は実在せず、焼結後にBa2Ta2O7の化合物とはなっていないためである。結果を表4に示す。
実施例8、比較例6、比較例7は、成膜用ターゲットとして用いる焼結体をLa2Ti2O7焼結体とした点以外は実施例2、比較例3、比較例5と同条件で実施した。また、実施例9、比較例8、比較例9は、成膜ターゲットとして用いる焼結体をBa2Ta2O7相当の焼結体とした点以外は実施例2、比較例3、比較例5と同条件で実施した。Ba2Ta2O7相当の焼結体は、Ba:Ta:O=2:2:7となるようにBaCO3粉末とTa2O5粉末とを秤量して作製した。「Ba2Ta2O7相当の焼結体」と記載するのは、Ba2Ta2O7の化合物は実在せず、焼結後にBa2Ta2O7の化合物とはなっていないためである。結果を表4に示す。
表4より、成膜用ターゲットの種類を変化させても同様の傾向を示した。なお、実施例8の誘電体薄膜の結晶構造は、他の実施例の誘電体薄膜の結晶構造とは異なりペロブスカイト構造であった。そして、実施例8の誘電体薄膜は比誘電率およびtanδが良好であった。
また、実施例8~9および比較例1の各誘電体薄膜について周波数1MHzで比誘電率を測定した。実施例8~9の各誘電体薄膜の比誘電率は周波数が1MHzに上昇することで大きく減衰した。一方、比較例1の誘電体薄膜の比誘電率は周波数を1MHzに上昇させても大きく減衰しなかった。その結果、周波数1MHzでは比較例1の誘電体薄膜の比誘電率が実施例8~9の各誘電体薄膜の比誘電率よりも大きくなった。
1・・・薄膜キャパシタ
11・・・基板
12・・・第1電極
13・・・誘電体薄膜
14・・・第2電極
21・・・SrTaO2Nのピークに酷似したピーク
11・・・基板
12・・・第1電極
13・・・誘電体薄膜
14・・・第2電極
21・・・SrTaO2Nのピークに酷似したピーク
Claims (7)
- A-B-O-N型酸窒化物を有する誘電体薄膜であって、
前記A-B-O-N型酸窒化物を組成式AaBbOoNnで表す場合に、
(o+n)/a<3.00
を満たすことを特徴とする誘電体薄膜。 - (o+n)/a<2.95を満たす請求項1に記載の誘電体薄膜。
- n/a≦0.050を満たす請求項1または2に記載の誘電体薄膜。
- AはSr、Ba、Ca、La、Nd、NaおよびKから選択される1種以上の元素であり、BはTa、Nb、TiおよびWから選択される1種以上の元素である請求項1~3のいずれかに記載の誘電体薄膜。
- 前記A-B-O-N型酸窒化物の結晶構造が非ペロブスカイト構造である請求項1~4のいずれかに記載の誘電体薄膜。
- 請求項1~5のいずれかに記載の誘電体薄膜を有する容量素子。
- 請求項1~5のいずれかに記載の誘電体薄膜を有する薄膜キャパシタを有する電子回路基板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020539510A JP7351304B2 (ja) | 2018-08-31 | 2019-08-27 | 誘電体薄膜、容量素子および電子回路基板 |
US17/269,698 US11999616B2 (en) | 2018-08-31 | 2019-08-27 | Dielectric thin film, capacitor element, and electronic circuit board |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-163799 | 2018-08-31 | ||
JP2018163799 | 2018-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020045447A1 true WO2020045447A1 (ja) | 2020-03-05 |
Family
ID=69644292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/033545 WO2020045447A1 (ja) | 2018-08-31 | 2019-08-27 | 誘電体薄膜、容量素子および電子回路基板 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11999616B2 (ja) |
JP (1) | JP7351304B2 (ja) |
WO (1) | WO2020045447A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017135296A1 (ja) * | 2016-02-01 | 2017-08-10 | Tdk株式会社 | 多結晶誘電体薄膜および容量素子 |
WO2017135298A1 (ja) * | 2016-02-01 | 2017-08-10 | Tdk株式会社 | 誘電体磁器組成物および電子部品 |
WO2017135294A1 (ja) * | 2016-02-01 | 2017-08-10 | Tdk株式会社 | 多結晶誘電体薄膜および容量素子 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100691437B1 (ko) | 2005-11-02 | 2007-03-09 | 삼성전기주식회사 | 폴리머-세라믹의 유전체 조성물, 이를 이용하는 내장형캐패시터와 인쇄회로기판 |
EP3358039A4 (en) * | 2015-10-02 | 2019-05-15 | TDK Corporation | DIELECTRIC THIN FILM, CAPACITOR ELEMENT, AND ELECTRONIC COMPONENT |
-
2019
- 2019-08-27 WO PCT/JP2019/033545 patent/WO2020045447A1/ja active Application Filing
- 2019-08-27 JP JP2020539510A patent/JP7351304B2/ja active Active
- 2019-08-27 US US17/269,698 patent/US11999616B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017135296A1 (ja) * | 2016-02-01 | 2017-08-10 | Tdk株式会社 | 多結晶誘電体薄膜および容量素子 |
WO2017135298A1 (ja) * | 2016-02-01 | 2017-08-10 | Tdk株式会社 | 誘電体磁器組成物および電子部品 |
WO2017135294A1 (ja) * | 2016-02-01 | 2017-08-10 | Tdk株式会社 | 多結晶誘電体薄膜および容量素子 |
Also Published As
Publication number | Publication date |
---|---|
US11999616B2 (en) | 2024-06-04 |
US20210238037A1 (en) | 2021-08-05 |
JP7351304B2 (ja) | 2023-09-27 |
JPWO2020045447A1 (ja) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6296207B2 (ja) | 誘電体薄膜、容量素子および電子部品 | |
US9643890B2 (en) | Dielectric composition and electronic component | |
TWI692438B (zh) | 多結晶介電體薄膜及電容元件 | |
JP7388253B2 (ja) | 誘電体組成物、誘電体薄膜、誘電体素子および電子回路基板 | |
KR102033058B1 (ko) | 산질화물 박막 및 용량 소자 | |
JP6981280B2 (ja) | 多結晶誘電体薄膜および容量素子 | |
JP6822419B2 (ja) | 多結晶誘電体薄膜および容量素子 | |
CN108695063B (zh) | 氧氮化物薄膜及电容元件 | |
JP7000883B2 (ja) | 酸窒化物薄膜および容量素子 | |
JP7351304B2 (ja) | 誘電体薄膜、容量素子および電子回路基板 | |
US11551867B2 (en) | Dielectric composition, dielectric thin film, dielectric element, and electronic circuit board | |
JP7569695B2 (ja) | 誘電体組成物および電子部品 | |
JP7000882B2 (ja) | 酸窒化物薄膜および容量素子 | |
Cole et al. | Novel tunable acceptor doped BST thin films for high quality tunable microwave devices | |
WO2020045446A1 (ja) | 薄膜キャパシタおよび電子回路基板 | |
JP7342752B2 (ja) | 誘電体薄膜、誘電体素子および電子回路基板 | |
KR102103482B1 (ko) | 다결정 유전체 박막 및 용량 소자 | |
JP2023045881A (ja) | 誘電体組成物および電子部品 | |
Kim et al. | Fabrication and dielectric properties of SCT thin film by RF sputtering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19855418 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020539510 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19855418 Country of ref document: EP Kind code of ref document: A1 |