WO2017057529A1 - 光学基材、半導体発光素子用基板、及び半導体発光素子 - Google Patents

光学基材、半導体発光素子用基板、及び半導体発光素子 Download PDF

Info

Publication number
WO2017057529A1
WO2017057529A1 PCT/JP2016/078748 JP2016078748W WO2017057529A1 WO 2017057529 A1 WO2017057529 A1 WO 2017057529A1 JP 2016078748 W JP2016078748 W JP 2016078748W WO 2017057529 A1 WO2017057529 A1 WO 2017057529A1
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial growth
substrate
convex
light emitting
semiconductor light
Prior art date
Application number
PCT/JP2016/078748
Other languages
English (en)
French (fr)
Inventor
洋行 室尾
布士人 山口
朋紀 木山
潤 古池
前川 知文
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201680054272.7A priority Critical patent/CN108028299A/zh
Priority to EP16851700.1A priority patent/EP3358632A4/en
Priority to KR1020187006446A priority patent/KR20180037038A/ko
Priority to JP2017543534A priority patent/JPWO2017057529A1/ja
Priority to US15/760,024 priority patent/US20180254380A1/en
Publication of WO2017057529A1 publication Critical patent/WO2017057529A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Definitions

  • the present invention relates to an optical base material having a concavo-convex structure, a semiconductor light emitting device substrate for epitaxially growing a semi-conductor crystal on the surface thereof, and a semiconductor light emitting device obtained from these substrates.
  • LEDs Light emitting diodes
  • LEDs which are semiconductor light emitting devices using semiconductor layers, have characteristics such as small size, high power efficiency, and fast on / off response compared to conventional light emitting devices such as conventional fluorescent lamps and incandescent bulbs.
  • LEDs since it is made of a solid material, it has many advantages such as being strong against vibration and having a long device life.
  • GaN-based semiconductor light-emitting devices represented by blue LEDs are manufactured by laminating an n layer, a light-emitting layer, and a p-layer by epitaxial growth on a single crystal substrate.
  • sapphire single crystal substrates and SiC single crystal substrates are used as substrates. Used.
  • a crystal dislocation defect occurs due to this lattice mismatch (see, for example, Patent Document 1).
  • the density of the dislocation defects reaches 1 ⁇ 10 9 pieces / cm 2 . Due to this crystal dislocation defect, the internal quantum efficiency inside the LED decreases, and as a result, the luminous efficiency of the LED decreases.
  • the refractive index of the GaN-based semiconductor layer is larger than that of the sapphire substrate, the light generated in the semiconductor light-emitting layer is not emitted from the interface with the sapphire substrate at an angle greater than the critical angle. As a result, the external quantum efficiency is reduced.
  • the factors that determine the external quantum efficiency EQE (External Quantum Efficiency), which indicates the light emission efficiency of the LED, are the electron injection efficiency EIE (Electron Injection Efficiency), the internal quantum efficiency IQE (Internal Quantitative Efficiency), and the light extraction efficiency. Is mentioned.
  • the internal quantum efficiency IQE depends on the crystal dislocation defect density caused by the crystal lattice mismatch of the GaN-based semiconductor crystal.
  • the light extraction efficiency LEE is improved by breaking the waveguide mode inside the GaN-based semiconductor crystal layer due to light scattering by the concavo-convex structure provided on the substrate.
  • the planar density of the valley portion that is the starting point of crystal growth in the concavo-convex structure on the substrate surface is set. It needs to be reduced. However, if the planar density is reduced too much, the area of the substrate surface (for example, the C-plane of the sapphire substrate) that matches the lattice plane necessary for epitaxial growth decreases, so the crystal plane of the epitaxial film at the initial stage of crystal growth is not stable, On the contrary, there is a problem that crystal dislocation defects due to lattice mismatch increase.
  • the light extraction efficiency can be improved by densely arranging the convex portions formed on the substrate surface.
  • the gap between the convex portions is eliminated, the lattice plane that is the starting point of epitaxial growth is reduced.
  • a suitable substrate surface for example, the C-plane of the sapphire substrate
  • crystal dislocation defects due to lattice mismatch increase, crystal quality is deteriorated, and the luminous efficiency of the resulting LED is not improved.
  • the crystal nuclei cannot be sufficiently large at the initial stage of crystal growth, resulting in a collection of minute crystal nuclei, and the orientation is difficult to be aligned.
  • D cannot be brought close to P0.
  • the width c of the flat portion is smaller than a certain value, when the semiconductor layer is formed, the nuclei cannot be associated with each other, the number of transitions penetrating to the light emitting layer increases, and the internal quantum efficiency decreases. That is, the conventional concavo-convex structure has a trade-off relationship that the crystallinity is lowered when the light extraction efficiency is improved.
  • the crystal transition defect density is reduced by making the convex surface pattern of the substrate surface (for example, the C surface of the sapphire substrate) suitable for the lattice plane that is the starting point of epitaxial growth into a specific pattern.
  • the convex pattern because of the convex pattern, voids are likely to be generated in the obtained semiconductor crystal film, and the generated voids reduce the light extraction efficiency, resulting in a problem that the luminous efficiency of the resulting LED is not improved. .
  • the reason why voids are likely to occur is not clear, but because the crystal growth rate at the upper part of the convex surface is fast, the upper surface is blocked before the crystal growth film fills the valleys between the convex parts. Conceivable.
  • Patent Document 4 an increase in the forward voltage of the obtained semiconductor light-emitting element can be suppressed by a substrate having a convex portion of a specific arrangement.
  • this technique it is caused by lattice mismatch of the obtained semiconductor crystal layer.
  • the density of crystal dislocation defects increases and the crystal quality of the semiconductor crystal layer deteriorates.
  • the increase in forward voltage is suppressed and the efficiency is improved, but the leakage current through the crystal dislocation defect due to the lattice mismatch is increased, and the efficiency of the LED is lowered. There is also a problem.
  • the semiconductor layer is easily formed and the light extraction efficiency is improved by a substrate on which large-diameter convex portions having small convex portions are arranged.
  • the size and arrangement of the convex portions are not constant and are indefinite, the uniformity within the substrate surface is inferior.
  • the performance fluctuation of the semiconductor light emitting device is large, and since the leakage current increases, there is also a problem that the production yield of the entire substrate is difficult to increase, which is not necessarily useful in industrial production.
  • the substrate having a certain inter-convex area or lattice plane is suitable.
  • a surface for example, the C surface of a sapphire substrate
  • an LED exhibiting good light emission characteristics may not always be obtained.
  • One cause is estimated to be a residual compressive stress inside the semiconductor layer. That is, it is necessary to improve the residual compressive stress on the semiconductor. Thereby, the luminous efficiency of the LED is further improved, and further, it is considered that the LED exhibits excellent luminous characteristics even in a high current density state.
  • the present invention has been made in view of the above points, and while improving the internal quantum efficiency IQE by reducing crystal dislocation defects in the semiconductor layer, the waveguide mode is eliminated by light scattering and the light extraction efficiency LEE is increased.
  • An optical base material having a surface structure that improves the light emission efficiency of the LED by enhancing the semiconductor substrate, a semiconductor light emitting device substrate for epitaxially growing a semiconductor crystal on the surface, and a semiconductor light emitting device obtained by using these substrates The purpose is to provide.
  • the present invention is an optical base material in which a concavo-convex structure is formed on a main surface or a part of the entire surface, and the concavo-convex structure has a regular tooth missing portion.
  • the concavo-convex structure is composed of a convex portion, a bottom portion between the convex portions, and a concave portion having a flat surface at a position lower than a main surface formed by the bottom portion between the convex portions, and a tooth.
  • the missing part is preferably the concave part.
  • the convex portions are arranged at an average pitch P0, and the tooth missing portions are arranged on the vertices of a regular polygon or on the sides of the regular polygon connecting the vertices,
  • the side length of the regular polygon is preferably longer than the average pitch P0.
  • the side length of the regular polygon is 2 to 5 times the average pitch P0.
  • the plurality of tooth missing portions constituting the concavo-convex structure are set as new unit lattices of regular hexagons on the arrangement positions set at the lattice points of the equilateral triangular lattice.
  • it is preferably provided at a position corresponding to a vertex or a side of the regular hexagon.
  • the plurality of tooth missing portions constituting the concavo-convex structure are set as new equilateral triangle lattices on the arrangement positions set at the lattice points of the equilateral triangle lattice.
  • it is preferably provided at a position corresponding to the vertex of the newly set equilateral triangle.
  • a straight line connecting the tooth missing portions is associated with the crystal growth of the semiconductor layer formed on the optical substrate at the initial stage of crystal growth. It is preferable to be arranged so as to be orthogonal to the crystal plane.
  • the substrate for a semiconductor light emitting device in the present invention is a substrate for a semiconductor light emitting device for epitaxially growing a semiconductor crystal on a main surface.
  • the main surface includes a plurality of epitaxial growth promoting portions and a plurality of epitaxial growth inhibiting portions, and the epitaxial growth promoting portion surrounds the epitaxial growth inhibiting portion.
  • the epitaxial growth suppression portion is composed of at least a plurality of the convex portions and the bottom portion between the convex portions, and the epitaxial growth promoting portion is the tooth-missing portion, and has a plane parallel to the main surface. It is preferable to have.
  • the epitaxial growth promoting portion is a concave portion having a flat surface at a position lower than a main surface formed by the bottom portion between the convex portions, and is a plane parallel to the main surface. It is preferable that it is a recessed part which uses as a bottom part.
  • the plurality of epitaxial growth promoting portions closest to each other have the same distance Pe between the plurality of epitaxial growth promoting portions that are closest to each other.
  • the distance Pe between the epitaxial growth promoting portions closest to the epitaxial growth promoting portion and the distance Pn between the plurality of convex portions constituting the epitaxial growth suppressing portion satisfy the following formula (1).
  • the area ratio of the epitaxial growth promoting portion to the main surface is preferably 0.001 or more and 0.2 or less.
  • the main surface includes a plurality of epitaxial growth promoting portions and a plurality of epitaxial growth suppressing portions, and the epitaxial growth suppressing portion surrounds the epitaxial growth promoting portion.
  • the epitaxial growth suppression part is sandwiched between the epitaxial growth promotion parts, the epitaxial growth suppression part is composed of at least a plurality of the convex parts and the bottom part between the convex parts, the epitaxial growth promotion part is
  • the recess is a recess having a bottom parallel to a plane parallel to the main surface.
  • the plurality of epitaxial growth promoting portions that are closest to each other have the same distance Pe between the plurality of epitaxial growth promoting portions that are closest to each other.
  • the distance Pe between the epitaxial growth promoting portions closest to the epitaxial growth promoting portion and the period Pn of the plurality of convex portions constituting the epitaxial growth suppressing portion satisfy the following formula (1).
  • the area ratio of the epitaxial growth promoting portion to the main surface is preferably 0.001 or more and 0.2 or less.
  • the said epitaxial growth promotion part is a tooth-missing part, and has a plane parallel to the said main surface.
  • the area ratio of the epitaxial growth suppressing portion to the main surface is preferably 0.80 or more and 0.999 or less.
  • the epitaxial growth suppressing portion is composed of at least a plurality of the convex portions arranged periodically.
  • the main surface includes a plurality of epitaxial growth promoting portions and a plurality of epitaxial growth suppressing portions, and the epitaxial growth suppressing portion has the period of the epitaxial growth.
  • the epitaxial growth suppressing portion Surrounded by an accelerating portion, or the epitaxial growth suppressing portion is sandwiched between the epitaxial growth accelerating portions, and the epitaxial growth suppressing portion is composed of at least a plurality of convex portions and a bottom portion between the convex portions, and promotes the epitaxial growth.
  • the portion is the tooth missing portion, and has a plane parallel to the main surface.
  • the epitaxial growth promoting portion is preferably a recess having a flat surface at a position lower than a main surface formed by the bottom between the protrusions, and a recess having a bottom parallel to the main surface.
  • an area ratio of the epitaxial growth suppressing portion to the main surface is 0.80 or more and 0.999 or less.
  • the epitaxial growth suppression portion is composed of at least a plurality of convex portions arranged periodically.
  • the semiconductor light emitting device substrate of the present invention is a single crystal substrate having a hexagonal crystal structure, and the closest direction of the plurality of epitaxial growth suppressing portions that are closest to each other and m of the crystal structure of the semiconductor light emitting device substrate.
  • the plane is preferably not parallel.
  • the substrate for a semiconductor light emitting device includes at least a first main surface, and the first main surface includes an epitaxial growth promoting portion and an epitaxial growth suppressing portion, and the epitaxial growth promoting portion and the epitaxial growth suppressing portion. Is characterized in that the following requirements A to C are satisfied.
  • the epitaxial growth suppression unit is configured to have a plurality of concavo-convex structures, and the concavo-convex structure preferably has a duty of 0.85 or more, or the epitaxial growth promotion unit is preferably disposed periodically. .
  • the substrate for a semiconductor light-emitting device of the present invention includes at least a first main surface, and the first main surface includes an epitaxial growth promoting portion and an epitaxial growth suppressing portion, and the epitaxial growth promoting portion and the The epitaxial growth suppressing portion is characterized in that the following requirements A to D are satisfied at the same time.
  • the epitaxial growth suppressing portion is constituted by a plurality of uneven structures;
  • the epitaxial growth suppressing portion and the epitaxial growth promoting portion are periodically arranged.
  • the matching ratio according to the projection area of the concavo-convex structure SA and the concavo-convex structure SB including the periodic unit B with respect to the first main surface is 0.60 or more and 0.99 or less.
  • the optical substrate described above or the substrate for a semiconductor light-emitting device described above, and at least two or more semiconductor layers stacked on the main surface side and a light-emitting layer are stacked. And a laminated semiconductor layer configured as described above.
  • the semiconductor light emitting device of the present invention at least a first semiconductor layer, a light emitting semiconductor layer, a second semiconductor layer, and a transparent conductive film are formed on a growth substrate having a concavo-convex structure formed on a part or the whole of one main surface.
  • the concavo-convex structure is configured to include an epitaxial growth promoting portion and an epitaxial growth suppressing portion, and the concavo-convex structure is arranged around the plurality of scattered epitaxial growth promoting portions as the epitaxial growth suppressing portion.
  • the thickness (T_TE) of the transparent conductive film is 30 nm or more and 100 n That it is preferably less.
  • the optical base material or semiconductor light emitting device substrate of the present invention crystal quality is improved by reducing crystal dislocation defects in the semiconductor layer formed on the base material or substrate surface, and internal quantum efficiency IQE is improved.
  • the waveguide mode can be eliminated by light scattering, and the light extraction efficiency LEE can be increased.
  • the light emission efficiency of the LED can be improved, and a semiconductor light emitting device having excellent light emission efficiency can be manufactured with a high yield.
  • the present invention it is possible to provide a semiconductor light emitting device that has high luminous efficiency, suppresses leakage current, and can improve the emission wavelength distribution, and further can reduce residual compressive stress on the semiconductor light emitting device.
  • FIG. 7 is a cross-sectional view taken along line AA in FIG.
  • FIG. 16 is a schematic cross-sectional view of the XX plane in FIG. 15. It is a plane schematic diagram of the substrate for semiconductor light emitting elements of the present embodiment. It is a plane schematic diagram of the board
  • FIG. 39 is a schematic plan view of a resist layer according to an embodiment different from that in FIG. 38. It is a cross-sectional schematic diagram of the semiconductor light emitting device according to the present embodiment. It is an electron micrograph which compares the board
  • optical substrate (Optical substrate)
  • the optical substrate according to the present embodiment will be described in detail.
  • the optical base material according to the present embodiment is an optical base material in which a concavo-convex structure is formed on a part or the whole of the main surface, and the concavo-convex structure has a regular missing portion.
  • the optical substrate has the following characteristic configuration. (1) An uneven structure is formed on a part or the whole of the main surface, (2) The concavo-convex structure is configured to have a regular missing portion.
  • the concavo-convex structure includes a convex portion, a bottom portion between the convex portions, and a concave portion having a flat surface at a position lower than a main surface formed by the bottom portion between the convex portions, and the tooth missing portion is a concave portion.
  • the convex portions are arranged with an average pitch P0.
  • the tooth missing portion is arranged on the vertex of the regular polygon or on the side of the regular polygon connecting the vertices.
  • the length L of the side of the regular polygon is longer than the average pitch P0.
  • FIG. 1 and 2 are schematic cross-sectional views showing a partial vertical cross section of the optical substrate of the present embodiment.
  • FIG. 3 is a schematic plan view of the optical substrate of the present embodiment.
  • the flat portion 4 includes a narrow flat portion 4 b having a narrow interval positioned between the convex portions 3 and a wide flat portion 4 a having a wide interval positioned between the convex portions 3.
  • the wide flat part 4a in the configuration of FIG. 1 has a width in which only one convex part 3 is thinned out.
  • the thinned portion of the convex portion is configured as a tooth missing portion 5. “Thinning” and “tooth loss” here do not mean that the convex portions 3 that were actually formed are removed in a later step, but are formed at intervals that are thinned out. It means that the shape is thinned out.
  • the missing part 5 shows the concave bottom face shape of the position of the thinned convex part 3. Therefore, as shown in FIG. 3 and subsequent figures, the tooth missing portion 5 is shown in the same plane as the convex portion 3.
  • the height positions of the missing tooth portion 5 (wide flat portion 4a) and the narrow flat portion 4b are the same.
  • the missing portion 5 may be configured to include a concave bottom surface lower than the narrow flat portion 4b.
  • the concavo-convex structure 20 includes a convex portion 21, a concave portion 23 (corresponding to the tooth-missing portion 5 in FIG. 1), and a flat portion (convex portion) located between the convex portion 21 and the concave portion 23. 1 (corresponding to the narrow flat portion 4b in FIG. 1) 22 (the above (1) (2) (3)).
  • the flat portion 22 is a flat portion that spreads out at the bottom of the convex portion 21, and is provided at a height position between the apex of the convex portion 21 and the bottom surface of the concave portion 23.
  • the concave portion 23 is hatched to distinguish the convex portion 21 from the concave portion 23.
  • the recesses 23 are arranged independently, but the recesses 23 may be arranged continuously as shown in FIG.
  • the convex portions 21 constituting the concavo-convex structure 20 are arranged with an average pitch P0 (the above (4)).
  • the recesses 23 are arranged at the positions of the vertices of the regular hexagon (the above (5)).
  • the length L of one side of the regular hexagon is three times the average pitch P0 ((6) above).
  • the name of the array is determined according to the following rules.
  • the arrangement of the recesses 23 is a hexagonal apex position, and the length L of one side is three times the average pitch P0.
  • the arrangement is called a triple hexagonal array.
  • the arrangement of the continuous recesses 23 is hexagonal, and the length L of one side is three times the average pitch P0. This is called a hexagonal array.
  • the length L corresponds to the length of one side when the center line of the strip-shaped recess 23 is drawn in a hexagonal shape.
  • the optical substrate 10 has a concavo-convex structure 20 on its main surface, and the concavo-convex structure 20 is a convex portion 21, a concave portion 23, and a flat portion (between the convex portion 21 and the concave portion 23 ( (Bottom part between convex parts) 22 is comprised.
  • the “main surface” is a surface on the optical substrate 10 on which the concavo-convex structure 20 is formed, and the main surface in each layer formed on the optical substrate 10 is the optical substrate 10 facing downward. The surface on the upper surface side when disposed (surface opposite to the surface facing the optical base material 10) is indicated.
  • the external quantum efficiency EQE of the LED is represented by the product of the internal quantum efficiency IQE and the light extraction efficiency LEE.
  • it is effective to reduce the ratio of the flat portion 22 in order to break the waveguide mode.
  • the area of the flat portion is reduced, particularly when the width of the flat portion is smaller than a certain length that determines the initial crystallinity, defect association does not effectively occur at the initial stage during crystal growth, and a threading transition is likely to occur.
  • individual nuclei are likely to be influenced by minute fluctuations in the surrounding concavo-convex structure, resulting in an in-plane distribution of defect density.
  • the leakage current is an amount representing the electrical characteristics of the diode. If the current value is a predetermined amount or more, the performance as a light emitting element is adversely affected. That is, if the flat portion 22 is reduced in order to increase the efficiency, there is a problem that the chip yield per wafer is lowered as a result.
  • the present inventors have provided the concavo-convex structure 20 having the convex portion 21, the flat portion 22, and the concave portion 23 on the optical substrate 10, so that the internal quantum efficiency IQE and the light extraction efficiency LEE are high. It has been found that semiconductor light emitting devices can be manufactured with good yield.
  • the concave-convex structure 20 is intentionally provided with a tooth missing portion.
  • This tooth missing portion has a flat area corresponding to at least one convex portion and becomes an easily growing portion.
  • the tooth missing part becomes an easily growing part and is selectively selected from the easily growing part. It is possible to proceed with crystal growth.
  • “missing teeth” does not mean that the convex portions 21 that were actually formed are removed in a later step, but that thinned intervals are formed, It means that the shape is drawn.
  • the recessed portion 23 that is lower than the flat portion 22 is formed with respect to the missing portion, not simply a flat region.
  • the recessed part 23 functions as an easy growth part which can aim at the further improvement of crystallinity.
  • the easy-growing portion is the recess 23
  • the nucleation from the very narrow flat portion 22 between the protrusions 21 is further suppressed, and the selectivity of the initial defect position is increased. Therefore, it is possible to further improve the crystallinity.
  • FIG. 6 is a plan view illustrating an edge defect of the first semiconductor layer formed on the optical base material having the concavo-convex structure.
  • FIG. 7 shows a cross section taken along the line AA in FIG.
  • the crystal defect starting points of the first semiconductor layer 30 are also concentrated in the recesses 23 of the optical substrate. Thereafter, as shown in FIG. 7, the first semiconductor layer 30 grows in the lateral direction, that is, toward the center of each unit cell (see FIG. 6), so that the defects in the first semiconductor layer 30 are formed.
  • the film formation of the first semiconductor layer 30 proceeds in a shape bent in the center direction of each unit cell, and the main surface is eventually flattened.
  • the in-plane distribution of the defect density is reduced, and the crystal can be uniformly grown while suppressing the rough surface of the main surface and the formation of pits. Therefore, in addition to the improvement in internal quantum efficiency resulting from the improvement in crystallinity, the number of semiconductor light emitting elements (chip yield per wafer) obtained from the wafer can be effectively increased.
  • the easy-growing portion is the recess 23
  • the side area of the concavo-convex structure is increased and the light extraction efficiency is improved as compared with the case where the easy-growing portion is flat.
  • the recess 23 as the easy-growing portion, it is possible to manufacture a semiconductor light emitting device having high internal quantum efficiency IQE and light extraction efficiency LEE with high yield.
  • the “regular” polygon described in the present application includes a polygon whose variation in the length L ′ of each side is within ⁇ 10% with respect to the side length L (average) constituting the polygon. Is included. For example, when the average side length L is 2100 nm, a polygon having a side length L ′ of 1890 nm to 2310 nm is defined as a regular polygon.
  • the average pitch P0 shown in FIG. 5 is defined as an arithmetic average of the distances between the closest apexes of the convex portion 21.
  • the local range used for measurement is defined as a range of about 5 to 50 times the average pitch P0 of the concavo-convex structure. For example, if the average pitch P0 is 700 nm, the measurement is performed within the measurement range of 3500 nm to 35000 nm. Therefore, for example, a field image of 7500 nm is picked up at, for example, a central position in a region having a concavo-convex structure, and an arithmetic average is obtained using the picked up image. For example, a scanning electron microscope (SEM) or an atomic force microscope (AFM) can be used to capture the field image.
  • SEM scanning electron microscope
  • AFM atomic force microscope
  • the sample score N when calculating the arithmetic mean is defined as 20.
  • the reason is set to 20 in order to obtain a sufficient statistical average when individual concavo-convex structures are arbitrarily selected within the following local range.
  • the average pitch P0 is preferably 500 nm or more, and more preferably 700 nm or more.
  • the average pitch P0 is preferably 2000 nm or less, and more preferably 1800 nm or less.
  • the convex part height H is defined as the difference in height between the convex part top part and the convex part bottom part in the flat part (FIG. 8).
  • the height H of the convex portion is high, the film thickness required for flattening with the first semiconductor layer 30 increases, and warpage is likely to occur during film formation. For this reason, the height H is preferably 1300 nm or less, and more preferably 1200 nm or less.
  • the convex bottom is a position where the convex 21 and the flat portion 22 contact each other, and the convex height H is not a height from the bottom surface position of the concave 23 but is defined as a height from the flat portion 22.
  • the convex part bottom diameter D is defined as the diameter of the circumscribed circle of the convex part bottom part in plan view.
  • the diameter is uniquely determined as shown in FIG. 9A.
  • the bottom of the convex portion is distorted from a perfect circle.
  • the circular bottom is close to a hexagon.
  • the circumscribed circle diameter at the bottom of the convex portion is defined as the bottom diameter (FIG. 9B).
  • the duty is defined by a ratio (D / P0) between the convex portion bottom diameter D and the average pitch P0. This is an amount representing the degree of filling of the uneven structure.
  • D / P0 the rate at which the flat portion 22 is exposed becomes high.
  • crystal growth also proceeds from the flat portion 22, and the position selectivity of selectively growing from the concave portion (easy-growing portion) 23 is lowered. Therefore, in order to suppress defects in the semiconductor layer and improve the internal quantum efficiency IQE, it is preferable to suppress initial crystal growth from the flat portion of the optical substrate.
  • the duty is preferably 0.85 or more, and more preferably 0.9 or more.
  • the shape of the bottom of the convex portion 21 is distorted due to the presence of the adjacent convex portion. If the shape is distorted, voids are likely to occur during crystal growth. As a result, the light is scattered by the voids, and the light extraction efficiency decreases.
  • the duty is preferably 1.1 or less, and more preferably 1.05 or less.
  • the convex portion aspect ratio A is defined by the ratio (H / D) between the convex portion height H and the convex portion bottom diameter D.
  • the convex portion aspect ratio A is preferably 0.3 or more, and more preferably 0.4 or more.
  • the convex portion aspect ratio A is preferably 1 or less, and more preferably 0.85 or less.
  • the recess depth lo_d is defined as a difference in height between the bottom of the projection and the bottom of the recess in the flat portion (FIG. 8). Accordingly, the height H from the flat portion 22 to the top of the convex portion 21 is not included in the concave portion depth lo_d.
  • the recess opening width lo_w is the opening diameter of the recess 23 when the recess 23 is independent as shown in FIG. 9A. As shown in FIG. 9B, it is defined as an inscribed circle with respect to the bottom of the convex portion surrounding the periphery.
  • the recess opening width lo_w is the width of the line formed by the continuous recesses, and as shown in FIG. Defined as distance.
  • the recess depth lo_d is preferably 20 nm or more, and more preferably 25 nm or more.
  • the ratio between the recess depth lo_d and the recess opening width lo_w ( (Lo_d) / (lo_w)) is preferably 1 or less, and more preferably 0.85 or less.
  • the recess opening width lo_w is preferably 100 nm or more, more preferably 200 nm or more, and preferably 300 nm or more because the flatness during crystal growth is improved, 2 times or less of the diameter of the adjacent convex part bottom part is preferable.
  • the bottoms of the recesses 23 have a substantially uniform width, are uniform within the optical substrate plane, and the projections are substantially uniform in the region surrounded by the recesses 23. Because of its shape, in-plane uniformity is increased and flatness during crystal growth is improved. When the flatness during crystal growth is improved, the leakage current of the obtained semiconductor light emitting device is reduced.
  • the side part from the bottom part of the recessed part 23 shown to FIG. 9C to the side surface of the recessed part 23, the side part from the side surface of the convex part 21 to the top part of the convex part 21 is a continuous slope part, and the side surface of the convex part 21 is the recessed part 23. It is the shape extended
  • the uneven structure 20 is formed on one main surface of the optical substrate 10.
  • the concavo-convex structure 20 can be provided on the entire main surface or part of the main surface.
  • Examples of the shape of the dot include structures such as a cone, a cylinder, a quadrangular pyramid, a quadrangular column, a hexagonal pyramid, a hexagonal column, a polygonal pyramid, a polygonal column, a double ring shape, and a multiple ring shape. These shapes include a shape in which the outer diameter of the bottom surface is distorted and a shape in which the side surface is curved.
  • the arrangement of the recesses 23 can be changed as appropriate from the length L of one side of the unit cell formed by the recesses 23, the thickness of the semiconductor layer required for lateral growth and planarization, and the like. For example, when the length L is extremely large, the thickness of the semiconductor layer required for planarization becomes remarkably thick and is likely to warp. This makes process handling difficult.
  • the concave portion 23 has a new regular hexagonal unit cell 7 set on the arrangement position set at each lattice point of the equilateral triangular lattice 9, and the arrangement position corresponding to the vertex of the regular hexagon. (Hexagonal point arrangement) may be provided.
  • the recesses 23 are set as new equilateral triangle lattices on the arrangement positions set at the lattice points of the equilateral triangle lattice, and at the apexes of the newly set equilateral triangles. It may be provided at a corresponding position.
  • the concave portion 23 is provided at an arrangement position (three-way point array) corresponding to the apex of the triangle. Furthermore, the arrangement
  • positioned may be sufficient as the new grating
  • the length L of one side of the newly set lattice can be changed as appropriate, and is not limited to the one shown in the figure. When the length of one side is short, the density of the recesses 23 is relatively increased, and the effect of controlling the initial defect occurrence location by introducing the recesses 23 as a whole crystal is not sufficiently exhibited.
  • the length of one side of the grating is preferably 1.5 times or more of the average pitch PO, more preferably 2 times or more, and more preferably 2 ⁇ 3 times or more.
  • the length L is preferably 4 ⁇ 3 times or less of the average pitch PO.
  • the arrangement of the recesses 23 is more preferable if the planes of crystal nuclei growing from the recesses 23 are associated with each other.
  • the crystal nuclei are associated with each other at the side indicating the boundary of the crystal plane (shown as a point P in FIG. 13) as shown in FIG. 13.
  • An arrangement where the surfaces F meet is more preferable for reducing defects.
  • the arrangement of the recesses 23 is adjusted so that a straight line M connecting the recesses 23 is orthogonal to the crystal plane F that meets at the initial stage of crystal growth. Therefore, the arrangement of the recesses 23 is determined by reflecting the crystal symmetry of the first semiconductor layer 30.
  • association refers to a state in which each crystal nucleus is bonded.
  • the recesses 23 are preferably arranged in a trigonal lattice or hexagonal arrangement, and if the first semiconductor layer 30 is cubic, a tetragonal arrangement is preferred.
  • the substrate is rotated so as to be orthogonal to the crystal plane F that meets at the initial stage of crystal growth with respect to the mold having the tooth missing portion having crystal symmetry. Is formed by.
  • the regions surrounded by the recesses 23 are periodically arranged at equal intervals, so that in-plane uniformity is improved.
  • the flatness during crystal growth is improved. It is preferable that the flatness during crystal growth is improved because the leakage current of the obtained semiconductor light emitting device is reduced. It is more preferable that the region surrounded by the recesses 23 is close-packed.
  • the substrate for a semiconductor light emitting device in the present invention is a substrate for a semiconductor light emitting device for epitaxially growing a semiconductor crystal on the main surface, and it is preferable to apply the above-described optical base material.
  • the substrate for a semiconductor light emitting element has at least one main surface, and is a substrate for epitaxially growing a semiconductor crystal on the first main surface, and the first main surface includes a plurality of the main surfaces.
  • An epitaxial growth promoting portion and a plurality of epitaxial growth suppressing portions are included.
  • FIG. 15 is a schematic plan view of the substrate for a semiconductor light emitting device of the present embodiment.
  • the semiconductor light emitting device substrate 100 includes an epitaxial growth promoting portion 101 and an epitaxial growth suppressing portion 104 surrounding the periphery thereof.
  • the epitaxial growth suppressing portion 104 is composed of a plurality of convex portions 102 periodically arranged in a hexagonal close packed arrangement with a period Pn.
  • the convex portions 102 indicated by dotted lines are arranged in a hexagonal close packed arrangement to constitute the epitaxial growth suppressing portion 104.
  • all the regions of the convex portions 102 shown in FIG. 15 correspond to the epitaxial growth suppressing portion 104, and for convenience of explanation, only some of the convex portions 102 are indicated by dotted lines. The same applies to FIGS. 17, 22, 23, 24, 25, 26, and 27.
  • the epitaxial growth promoting unit 101 is located at a position where the two-dimensional hexagonal lattice 103 is formed with six epitaxial growth promoting units 101b, 101c, 101d, 101e, 101f, and 101g having the same distance Pe to the closest epitaxial growth promoting unit 101a.
  • the two-dimensional hexagonal lattices 103 are periodically arranged.
  • FIG. 15 illustrates an example in which the epitaxial growth suppression unit 104 is configured by a plurality of convex portions 102, the present invention is not limited thereto, and the epitaxial growth suppression unit 104 may be configured by a plurality of concave portions.
  • the epitaxial growth promoting portion will be described in a form composed of a plurality of convex portions.
  • the convex portion in the following description is replaced with a concave portion. It can be read as a form.
  • the maximum gap portion 105 between the convex portions 102 is sufficiently slow in epitaxial growth compared to the epitaxial growth promoting portion 101, has an epitaxial growth rate equivalent to the slope portion of the convex portion 102, and is substantially epitaxially grown.
  • the maximum gap portion 105 does not have a plane parallel to the main surface of the semiconductor light emitting element substrate 100. Further, even when the maximum gap portion 105 has a plane parallel to the main surface of the semiconductor light emitting element substrate 100, the area of the plane parallel to the main surface in each maximum gap portion 105 is 0.05 ⁇ m 2 or less.
  • the epitaxial growth rate from the plane portion is substantially equal to or less than that of the convex portion 102.
  • the area of the plane parallel to the main surface of the maximum gap portion 105 can be calculated by measuring the cross-sectional shape and the planar shape with, for example, an electron microscope or an AFM (interatomic distance microscope).
  • the convex portions 102 constituting the epitaxial growth suppressing portion 104 are periodically arranged with a period Pn, the area of the maximum gap portion 105 can be made smaller and uniform on the first main surface of the substrate 100 for semiconductor light emitting device. It is preferable because the effect of reducing crystal dislocation defects in the epitaxial growth described later works effectively.
  • the epitaxial growth suppression unit 104 is composed of the convex portions 102, even if the epitaxial growth promoting portion 101 exists between the convex portions 102, the epitaxial growth promoting portion 101 is relative to the entire convex portion 102 occupying the epitaxial growth suppressing portion 104. Since the area is small, the scattering effect on the LED light emitted by the convex portion 102 can be maintained. Furthermore, the inventors of the present application have examined that the presence of the epitaxial growth suppressing portion 104 periodically increases the scattering effect and increases the LEE than when the convex portion 102 exists uniformly on the entire surface. It became.
  • the distance Pe between the epitaxial growth promoting portions can be arbitrarily set without depending on the diameter of the convex portion 102, the effect of reducing the crystal dislocation defects described later is increased while maintaining the scattering effect on the LED emission light. Can do.
  • each epitaxial growth promoting portion 101 is preferably 0.1 ⁇ m 2 or more, more preferably 0.2 ⁇ m 2 or more, and further preferably 0.3 ⁇ m 2 or more. Thereby, the epitaxial speed difference with the epitaxial growth suppression part 104 becomes large, and the crystal dislocation reduction effect acts effectively. Furthermore, the area of each epitaxial growth promoting portion 101 is preferably 10 ⁇ m 2 or less, more preferably 7 ⁇ m 2 or less, and even more preferably 5 ⁇ m 2 or less. As a result, crystal dislocation defects are easily bent during lateral growth during epitaxial growth, which will be described later.
  • FIG. 16 is a schematic cross-sectional view of the XX plane in FIG.
  • the epitaxial growth promoting unit 101 has a plane parallel to the main surface of the semiconductor light emitting device substrate 100.
  • the epitaxial growth promoting unit 101 is configured by the C surface. It becomes a flat surface.
  • the epitaxial growth suppression unit 104 includes a plurality of convex portions 102 and divides the epitaxial growth promotion unit 101 at equal intervals.
  • the distance between the epitaxial growth promoting portions 101 in FIG. 16 is equal to the lattice constant Pe of the two-dimensional hexagonal lattice 103 in FIG.
  • the convex portion 102 constituting the epitaxial growth suppressing portion 104 has a bottom surface diameter ⁇ 1 of preferably 85% or more of the arrangement period Pn of the convex portion 102, more preferably 90% or more, and 95%.
  • the above is more preferable, and the period Pn or more is preferable because the gap between the protrusions is reduced and the epitaxial growth from the gap between the protrusions is hindered.
  • the diameter ⁇ 1 of the bottom surface of the convex portion 102 is equal to or greater than the period Pn, there is no gap between the convex portions 102, and the convex bottom portion has a polygonal shape.
  • the bottom surface width (maximum width) ⁇ of the plurality of convex portions 202 constituting the epitaxial growth suppressing portion 204 is 115% of the period Pn in the same arrangement as FIG. 15, and the gap between the convex portions 202 is There is no state.
  • the epitaxial growth promoting unit 201 is located at a position where six epitaxial growth promoting units 201b, 201c, 201d, 201e, 201f, and 201g having the same distance Pe from the closest neighboring epitaxial growth unit 201a and the two-dimensional hexagonal lattice 203 are formed.
  • the two-dimensional hexagonal lattice 203 is periodically arranged.
  • the ratio between the period Pn of the convex portion 102 (202) constituting the epitaxial growth suppressing portion 104 (204) and the distance Pe between epitaxial growth promoting portions is 3.46.
  • the area ratio of the epitaxial growth promoting portion 101 in FIG. 15 to the first main surface is 0.076
  • the area ratio of the epitaxial growth promoting portion 201 in FIG. 17 to the first main surface is 0.066.
  • the crystal quality is improved by reducing.
  • a mechanism for reducing crystal transition defects in the semiconductor layer in the semiconductor light emitting device substrate of this embodiment will be described.
  • FIG. 18 is a schematic plan view of a semiconductor light emitting device substrate 300 having a convex portion formed on the surface in the prior art.
  • the substrate 300 for a semiconductor light emitting element in the prior art convex portions 302 are formed on the main surface 301 at regular intervals.
  • the substrate surface for example, C surface of a sapphire substrate
  • the lattice plane matched the semiconductor crystal layer epitaxially grown on the substrate surface is exposed.
  • the epitaxial growth promoting portion capable of epitaxially growing the semiconductor crystal layer is continuous over the entire surface between the convex portions 302, and the maximum gap portion 305 between the convex portions and the valley connected thereto. Part 306.
  • the convex portion 302 in the semiconductor light emitting device substrate 300 also has an effect of scattering the light emitted from the obtained LED and improving the light extraction efficiency.
  • the light extraction efficiency increases according to the size of the convex portion 302 (bottom diameter, convex height)
  • the convex portion 302 is made large in order to obtain high light extraction efficiency, as described above, the valley The plane area of the portion 305 is too small, the crystal dislocation defect density is increased, and as a result, the light emission efficiency of the obtained LED is lowered.
  • the improvement of the light emission efficiency due to the decrease of the crystal dislocation defect density and the improvement of the light emission efficiency due to the increase of the light extraction efficiency are in a trade-off relationship, and an improvement of the light emission efficiency beyond a certain level cannot be expected.
  • FIG. 19 is a schematic cross-sectional projection diagram illustrating a mechanism in which crystal dislocation defects are reduced by a conventional semiconductor light emitting element substrate.
  • FIG. 19 is a schematic Y1-Y1 sectional projection view shown in FIG.
  • the epitaxial growth When epitaxial growth is performed on the semiconductor light emitting device substrate 300 provided with the convex portions 302, there is a substrate surface (for example, the C surface of the sapphire substrate) having a lattice plane suitable for the gap portion 305 and the valley portion 306. As a result, the epitaxial growth starts from the gap portion 305 and the valley portion 306, and the epitaxial layers 310a and 320a are generated (FIG. 19A). At this time, since the gap 305 has a larger substrate surface area that matches the lattice plane, the epitaxial layer 310a grows larger.
  • crystal dislocation defects 311b and 321b based on lattice mismatch that are generated in the epitaxial layers 310b and 320b are bent in the lateral direction (FIG. 19B). Since the surface area of the epitaxial layer 310b is larger than that of the epitaxial layer 320b, diffusion and recrystallization of the epitaxial layer occur, the growth of the epitaxial layer 310b becomes faster, and the epitaxial layer 310b merges with the epitaxial layer 320.
  • a flat epitaxial layer 310c is obtained (FIG. 19C).
  • the epitaxial layer 320a grown from the valley portion 306 is united with the epitaxial layer 310a, but the crystal dislocation defects 311c are gathered immediately above the valley portion 306, and some transition defects disappear.
  • the transition defects 311c in the epitaxial layer 310c are reduced, but the defects directly above the troughs 306 have little room for lateral growth as described above, so that the effect of reducing the crystal transition is small.
  • crystal dislocation defects are concentrated in the region of the valley 306 between the convex portions 302, and the lattice defects 311c of the valley 306 between the convex portions 302 are hardly reduced.
  • FIG. 20 of the XX cross-sectional projection schematic diagram in FIG. 20 the convex portions 102 shown by hatching in FIG. 20 are convex portions on the XX line, but the convex portions on both sides thereof are not convex portions on the XX line but are located on the back side of the XX line.
  • the convex part to show is shown.
  • the epitaxial growth promoting portion 101 When epitaxial growth is performed on the semiconductor light emitting device substrate 100 of the present embodiment, the epitaxial growth promoting portion 101 has a substrate surface (for example, the C-plane of the sapphire substrate) whose lattice plane is matched. Starts from the epitaxial growth promoting portion 101, and the epitaxial layer 110a is generated (FIG. 20A).
  • the convex portions 102 are densely arranged, and the epitaxial growth rate of the maximum gap portion 105 (see FIG. 15) between the convex portions 102 is substantially the same as the slope portion of the convex portion 102. Virtually no epitaxial growth. Therefore, crystal lattice defects between convex portions as shown in FIG. 5 do not remain after epitaxial growth.
  • the crystal dislocation defects 111b based on lattice mismatch are bent in the lateral direction (FIG. 20B), and the epitaxial layers 110b grown from different epitaxial growth promoting portions 101 are united with each other. Furthermore, the flat epitaxial layer 110c is obtained by changing the conditions from the lateral growth to the vertical growth (FIG. 20C).
  • the epitaxial growth promoting portion 101 and the epitaxial growth suppressing portion 104 are clearly separated, and the lateral growth is sufficiently performed on all the epitaxial layers 110a grown from the epitaxial growth promoting portion 101. Since there is a space, the effect of reducing crystal dislocation by collision between crystal dislocation defects 111c (see FIG. 20C) due to lateral growth works effectively.
  • the bottom surface width ⁇ is determined so that the area of the convex portion 102 is maximized. Therefore, it is possible to maximize the scattering effect of the emitted light of the LED by the convex portion 102.
  • the epitaxial growth promoting portion 101 can be provided on the first main surface of the semiconductor light emitting device substrate 100 with an area ratio that does not reduce the scattering effect of the emitted light of the LED, and the first main surface of the epitaxial growth promoting portion 101 can be provided.
  • the area ratio to is preferably 0.001 or more and 0.2 or less.
  • the area ratio of the epitaxial growth promoting portion 101 to the first main surface is less than 0.001, it takes too much time to grow the epitaxial layer provided on the semiconductor light emitting device substrate 100, which is not preferable for industrial production.
  • the area ratio is preferably 0.002 or more, and more preferably 0.005 or more because the influence of the epitaxial growth rate on LED production is reduced in industrial production.
  • the effect of reducing the above-described crystal dislocation defects is not preferable, and is preferably 0.20 or less.
  • the following is more preferable, since the effect of reducing crystal dislocation defects sufficiently works, and at the same time, the scattered light scattering effect works more effectively, and particularly preferably 0.10 or less.
  • the epitaxial growth promoting portion 401 may be a recess having a plane parallel to the main surface of the semiconductor light emitting device substrate 400.
  • symbol 404 shown in FIG. 21 shows an epitaxial growth suppression part.
  • the concave portion is a state in which the concave portion is recessed in another main surface direction facing the first main surface rather than the plane connecting the valley portions of the convex portion 402, and the bottom surface width of the concave portion is 10 nm or more. And preferred.
  • the bottom surface width of the recess is more preferably 50 nm or more, and more preferably 100 nm or more, since the scattering effect on the emitted light of the obtained LED is further enhanced.
  • the upper limit of the depth of the recess is not particularly limited, but the bottom surface of the recess needs to have a plane parallel to the main surface of the semiconductor light emitting device substrate 400, and the area is 0.1 ⁇ m 2 or more. Therefore, it is designed and selected as appropriate so that the flat surface of the bottom surface of the recess is equal to or greater than this value. If the area of the bottom surface of the recess is less than 0.1 ⁇ m 2 , the growth rate of the epitaxial layer from the epitaxial growth promoting portion 401 becomes slow, and the above-described crystal dislocation reduction effect does not work sufficiently.
  • the distances Pe between the epitaxial growth promoting portions closest to the epitaxial growth promoting portion 101 (201) are preferably equal to each other. It is preferable that the distances Pe between the epitaxial growth promoting portions are equal to each other because the above-described effect of reducing crystal dislocation defects due to lateral growth in the epitaxial growth step occurs evenly and the crystal quality becomes uniform. If the crystal dislocation defects are uneven, the leakage current in the light emitting layer of the obtained LED increases, and the energy efficiency of the entire LED decreases.
  • the distances Pe between the epitaxial growth promoting portions are evenly arranged at equal intervals in the first main surface of the semiconductor light emitting device substrate of the present embodiment. It is preferable that they are equally arranged in the plane at equal intervals because the effect of reducing crystal dislocation defects is uniform in the plane and the crystal quality is uniform in the plane, so that a decrease in the luminous efficiency of the LED can be suppressed.
  • the substrate is preferably a single crystal substrate having a hexagonal crystal structure, the closest direction of the plurality of closest epitaxial growth suppressing portions described above, and the semiconductor light emitting device It is preferable that the m plane of the crystal structure of the substrate for use is not parallel. As shown in FIG. 17, the vector direction of Pn indicating the space between the epitaxial growth suppression portions is not parallel to the hexagonal m-plane constituting the semiconductor light emitting device substrate. It is preferable that the deviation in the vector direction of Pn with respect to the m-plane is greater than 0 degree and less than 30 degrees.
  • the closest direction of the epitaxial growth suppressing portion is deviated from the m-plane of the substrate crystal because the growth of the epitaxial layer grown from the epitaxial growth promoting portion is accelerated.
  • the substrate is hexagonal
  • the epitaxial crystal grown from the epitaxial growth promoting portion is also hexagonal.
  • the epitaxial growth suppression part exists at a position directly opposite to the growth direction of the epitaxial crystal grown from the epitaxial growth promotion part. Overall growth is hindered.
  • the closest direction of the epitaxial growth promoting portion and the m-plane of the substrate crystal are not parallel to each other, the growth of the epitaxial crystal described above is difficult to inhibit, which is preferable for industrial use. Furthermore, it is preferable because an obstructive factor of epitaxial growth in a specific direction is eliminated and the surface smoothness of the obtained epitaxial film is improved.
  • the nearest distance between the epitaxial growth promoting portions Pe and the period Pn of the convex portion or the concave portion constituting the epitaxial growth suppressing portion satisfy the following formula (1).
  • the ratio of Pe and Pn is in the range of the formula (1) because the effect of reducing crystal dislocation defects sufficiently works and the light scattering effect on the emitted light of the LED obtained functions effectively.
  • Pe / Pn is less than 1.5, the distance between the epitaxial growth promoting portions is too short, and the growth space for lateral growth in epitaxial growth is reduced, which is not preferable.
  • Pe / Pn exceeds 30, the number of convex portions of the epitaxial growth suppressing portion that can be overcome in the lateral growth of the epitaxial growth promoting portion increases, and it becomes difficult to obtain a flat epitaxial growth layer at the end of epitaxial growth.
  • Pe / Pn exceeds 30, it is difficult to flatten the upper surface of the epitaxial growth layer at the end of the epitaxial growth, thereby increasing the leakage current at the time of light emission of the obtained LED and reducing the light emission efficiency of the LED. Therefore, it is preferable that Pe / Pn is 30 or less.
  • Pe / Pn When Pe / Pn is 2 or more, crystal dislocation defects are reduced by the growth space of the distance between the epitaxial growth promoting portions, and it is more preferably 3.4 or more. Further, Pe / Pn is preferably 25 or less, and more preferably 21 or less, since a flat epitaxial layer can be easily obtained.
  • Pe / Pn is in the range of 2 or more and 4 or less, the effect of reducing crystal dislocation defects due to epitaxial lateral growth works sufficiently, and a flat epitaxial layer is formed on the entire surface of a large-diameter sapphire substrate having a diameter of 4 inches or more. And is most preferable in industrial production.
  • FIG. 22 is a schematic plan view of a substrate for a semiconductor light emitting device according to another embodiment.
  • the semiconductor light emitting device substrate 500 includes an epitaxial growth promoting portion 501 and an epitaxial growth suppressing portion 504 surrounding the periphery, and the epitaxial growth suppressing portion 504 has a plurality of convex portions 502 periodically arranged in a hexagonal close packed arrangement with a period Pn.
  • the epitaxial growth promoting portion 501 is a position that forms six-dimensional epitaxial promoting portions 501b, 501c, 501d, 501e, 501f, and 501g having the same distance Pe to the closest epitaxial growth promoting portion 501a and a two-dimensional hexagonal lattice 503.
  • the two-dimensional hexagonal lattice 503 is periodically arranged.
  • the bottom surface width ⁇ of the plurality of convex portions 502 constituting the epitaxial growth suppressing portion 504 is 115% of the period Pn, and there is no gap between the convex portions 502. .
  • the ratio of the period Pn of the convex portion 502 constituting the epitaxial growth suppressing portion 503 and the distance Pe between the epitaxial growth promoting portions is 3.0.
  • the area ratio with respect to the 1st main surface of the epitaxial growth promotion part 501 is 0.088.
  • FIG. 23 is a schematic plan view of a substrate for a semiconductor light emitting device according to another embodiment.
  • the semiconductor light emitting device substrate 600 has the same configuration as that shown in FIG. 22, and includes an epitaxial growth suppressing unit 604 including an epitaxial growth promoting unit 601 and a convex portion 602.
  • the epitaxial growth promoting portion 601 is a position where six epitaxial growth promoting portions 601b, 601c, 601d, 601e, 601f, and 601g having the same distance Pe from the closest epitaxial growth promoting portion 601a and the two-dimensional hexagonal lattice 603 are formed.
  • the two-dimensional hexagonal lattice 603 is periodically arranged.
  • the ratio between the period Pn of the convex portion 602 and the distance Pe between the epitaxial growth promoting portions is 4.0.
  • the area ratio with respect to the 1st main surface of the epitaxial growth promotion part 601 is 0.049.
  • FIG. 24 is a schematic plan view of a semiconductor light emitting device substrate according to another embodiment.
  • the semiconductor light emitting device substrate 650 includes an epitaxial growth suppressing unit 654 including an epitaxial growth promoting unit 651 and a convex portion 652. Further, the epitaxial growth promoting portion 651 is located at a position that forms two-dimensional hexagonal lattices 653 with six epitaxial growth promoting portions 651b, 651c, 651d, 651e, 651f, 651g that are equal in distance Pe to the closest epitaxial growth promoting portion 651a.
  • the two-dimensional hexagonal lattice 653 is periodically arranged.
  • the ratio between the period Pn of the convex portion 652 and the distance Pe between the epitaxial growth promoting portions is 2.0.
  • the area ratio with respect to the 1st main surface of the epitaxial growth promotion part 651 is 0.200.
  • FIG. 25 is a schematic plan view of a semiconductor light emitting device substrate according to another embodiment.
  • the semiconductor light emitting device substrate 700 is composed of an epitaxial growth promoting portion 701 and an epitaxial growth suppressing portion 704 surrounding the periphery thereof, and the epitaxial growth suppressing portion 704 is composed of a plurality of convex portions 702 periodically arranged with a period Pn.
  • the epitaxial growth promoting part 701 is arranged at a position where three epitaxial growth promoting parts 701b, 701c, 701d having the same distance Pe from the closest epitaxial growth promoting part 701a and a two-dimensional hexagonal lattice 703 are formed.
  • the dimensional hexagonal lattice 703 is periodically arranged.
  • the bottom surface width ⁇ of the plurality of convex portions 702 constituting the epitaxial growth suppressing portion 704 is 115% of the period Pn, and there is no planar portion between the convex portions 702.
  • the ratio between the period Pn of the convex portion 702 and the distance Pe between the epitaxial growth promoting portions is 2.0, and the area ratio of the epitaxial growth promoting portion 701 to the first main surface is 0.138.
  • FIG. 26 is a schematic plan view of a semiconductor light emitting device substrate according to another embodiment.
  • the semiconductor light emitting device substrate 800 includes a strip-shaped epitaxial growth promoting portion 801 and a strip-shaped epitaxial growth suppressing portion 804 surrounding the periphery, and the epitaxial growth suppressing portion 804 has a plurality of protrusions periodically arranged in a triangular lattice with a period Pn. Part 802. Furthermore, the epitaxial growth promoting portion 801 is repeatedly arranged on the first main surface at a distance Pe from the closest epitaxial growth promoting portion.
  • the vertical direction of the drawing (not shown) is similarly repeated in the in-plane direction of the first main surface, and the epitaxial growth promoting portion 801 is substantially the epitaxial growth suppressing portion. It is an arrangement sandwiched by 804.
  • the bottom surface width ⁇ of the plurality of convex portions 902 constituting the epitaxial growth suppressing portion 804 is 115% of the period Pn, and there is no planar portion between the convex portions 902. Yes.
  • the ratio between the epitaxial growth promoting portion distance Pe and the period Pn of the convex portion 902 is 5.2, and the area ratio of the epitaxial growth promoting portion 801 to the first main surface is 0.14.
  • FIG. 27 is a schematic plan view of a substrate for a semiconductor light emitting device according to another embodiment.
  • the semiconductor light emitting device substrate 900 includes a strip-shaped epitaxial growth promoting portion 901 and a strip-shaped epitaxial growth suppressing portion 904 surrounding the periphery, and the epitaxial growth suppressing portion 904 has a plurality of protrusions periodically arranged in a square lattice with a period Pn. Part 902. Further, the epitaxial growth promoting portion 901 is repeatedly arranged on the first main surface at a distance Pe from the closest epitaxial growth promoting portion.
  • the vertical direction of the drawing (not shown) is similarly repeated in the in-plane direction of the first main surface, and the epitaxial growth promoting portion 901 is substantially the epitaxial growth suppressing portion.
  • the arrangement is sandwiched between 904.
  • the bottom surface width ⁇ of the plurality of convex portions 902 constituting the epitaxial growth suppressing portion 904 is 141% of the period Pn, and there is no planar portion between the convex portions 902.
  • the ratio of the distance Pe between the epitaxial growth promoting portions and the period Pn of the convex portion 902 is 6.0, and the area ratio of the epitaxial growth promoting portion 901 to the first main surface is 0.17.
  • FIG. 28 is a schematic plan view of a semiconductor light emitting device substrate according to another embodiment.
  • the semiconductor light emitting device substrate 1000 includes an epitaxial growth promoting portion 1001 and an epitaxial growth suppressing portion 1004 surrounding the periphery, and the epitaxial growth suppressing portion 1004 includes a plurality of convex portions 1002 periodically arranged with a period Pn.
  • the epitaxial growth promoting part 1001 is arranged at a position where three epitaxial growth promoting parts 1001b, 1001c, 1001d having the same distance Pe from the closest epitaxial growth promoting part 1001a and a two-dimensional hexagonal lattice 1003 are formed.
  • the dimensional hexagonal lattice 1003 is periodically arranged.
  • the bottom face width ⁇ of the plurality of convex portions 1002 constituting the epitaxial growth suppressing portion 1004 is 100% of the period Pn.
  • the ratio between the period Pn of the convex portion 1002 and the distance Pe between the epitaxial growth promoting portions is 1.73, and the area ratio of the epitaxial growth promoting portion 1001 to the first main surface is 0.295.
  • FIG. 29 is a schematic plan view of a substrate for a semiconductor light emitting element according to another embodiment.
  • the semiconductor light emitting device substrate 1100 includes an epitaxial growth promotion unit 1101, an epitaxial growth suppression unit 1104 surrounding the epitaxial growth promotion unit 1101, an epitaxial growth connection unit 1105 between adjacent epitaxial growth promotion units 1101, and an epitaxial growth suppression unit 1106 in regions other than those described above.
  • the epitaxial growth suppressing portions 1104 and 1106 are composed of a plurality of convex portions 1102 that are periodically arranged with a period Pn.
  • the epitaxial growth promoting part 1101 is arranged at a position where six epitaxial growth promoting parts 1101b, 1101c, 1101d, 1101e, 1101f, 1101g having the same distance Pe to the closest epitaxial growth promoting part 1101a and the two-dimensional hexagonal lattice 1103 are formed.
  • the two-dimensional hexagonal lattice 1103 is periodically arranged.
  • the epitaxial growth connection portion 1105 is located between the closest epitaxial growth promotion portions, and the epitaxial growth connection portion 1105 is configured by the convex portion 1107 in which the bottom surface ⁇ of the convex portions 1102 periodically arranged with the period Pn is smaller than the convex portion 1102. Yes.
  • the ratio between the period Pn of the convex portion 1102 and the distance Pe between the epitaxial growth promoting portions is 3.46.
  • the area ratio with respect to the 1st main surface of the epitaxial growth promotion part 1101 is 0.076.
  • the convex portion 1107 in the epitaxial growth connecting portion 1105 in this embodiment has a bottom surface width ⁇ smaller than the convex portion 1102 constituting the epitaxial growth suppressing portion 1104, the area where the substrate plane that is the epitaxial growth surface is exposed is large. . Therefore, the epitaxial growth rate of the epitaxial growth connecting portion 1105 is higher than that of the epitaxial growth suppressing portions 1104 and 1106. On the other hand, since the area where the substrate plane which is the epitaxial growth surface is exposed is smaller than that of the epitaxial growth promoting portion 1101, the epitaxial growth rate is smaller than that of the epitaxial growth promoting portion 1101. That is, it has an intermediate epitaxial growth rate between the epitaxial growth suppressing portion and the epitaxial growth promoting portion.
  • the epitaxial growth connecting portion 1105 is between the closest epitaxial growth promoting portions 1101, the connection of epitaxial crystals grown from the epitaxial growth promoting portion 1101 is promoted, and an epitaxial film having a uniform thickness is easily obtained in the wafer surface.
  • the epitaxial growth promoting portion 1101 and the epitaxial growth suppressing portions 1104 and 1106 in the wafer surface an epitaxial growth rate difference is caused in the wafer surface, and the crystallinity of the resulting epitaxial film is obtained. Has the effect of improving.
  • the film thickness of the epitaxial film is likely to be nonuniform in the wafer surface. Therefore, by providing the epitaxial growth coupling portion 1105 between the epitaxial growth promoting portions 1101, the uniformity of the epitaxial film thickness within the wafer surface can be improved.
  • an epitaxial crystal formed on the substrate plane grows large as needed, and the crystals are connected to each other to become an epitaxial film.
  • epitaxial growth is a chemical reaction
  • the growth rate of an epitaxial crystal having a large surface area is faster than that of a crystal having a small surface area, and grows preferentially and increases. That is, a slight crystal size at the initial stage of crystal growth is amplified along with the growth of the epitaxial crystal.
  • the size of the epitaxial crystal becomes uneven, and the thickness of the epitaxial film obtained by connecting the respective crystals tends to be non-uniform.
  • the epitaxial growth connection portion 1105 is provided between the epitaxial growth promotion portions 1101, the connection between the crystals grown from the epitaxial growth promotion portion 1101 is promoted at the initial stage of crystal growth, so that one large epitaxial crystal is formed. Slight crystal size unevenness can be suppressed. As a result, film thickness non-uniformity in the wafer surface can be suppressed.
  • the epitaxial growth rate of the epitaxial growth connecting portion 1105 is smaller than that of the epitaxial growth promoting portion, a mechanism for suppressing crystal dislocation defects based on the above-described difference in epitaxial growth rate works, and the crystallinity improving effect of the obtained epitaxial crystal film is not impaired.
  • the convex portion 1107 of the epitaxial growth coupling portion 1105 needs to have a bottom surface width ⁇ smaller than the convex portion 1102 that constitutes the epitaxial growth suppression portions 1104 and 1106, and the convex portion 1102 that constitutes the epitaxial growth suppression portions 1104 and 1106. 90% or less of the bottom surface width ⁇ is preferable, more preferably 80% or less, and 60% or less is preferable because the connection with the epitaxial growth promoting portion easily occurs. Further, when the bottom surface width ⁇ is reduced, the difference from the epitaxial growth promoting portion 1101 is reduced, and the effect of suppressing the crystal dislocation defect based on the above-described difference in the epitaxial growth rate is reduced.
  • the epitaxial growth suppressing portions 1104 and 1106 are not preferable. 10% or more of the bottom surface width ⁇ of the projecting portion 1102 is preferable, more preferably 20% or more, and 40% or more is preferable because the effect of suppressing crystal dislocation defects by the epitaxial growth promoting portion 1101 is not impaired.
  • FIG. 30 is a schematic plan view of a substrate for a semiconductor light emitting device according to another embodiment.
  • the semiconductor light emitting device substrate 1200 includes an epitaxial growth promoting unit 1201, an epitaxial growth suppressing unit 1204 surrounding the epitaxial growth promoting unit 1201, an epitaxial growth connecting unit 1205 between adjacent epitaxial growth promoting units 1201, and an epitaxial growth suppressing unit 1206 in a region other than the above.
  • the epitaxial growth suppression units 1204 and 1206 are composed of a plurality of convex portions 1202 periodically arranged with a period Pn.
  • the epitaxial growth promoting unit 1201 is disposed at a position that forms six epitaxial growth promoting units 1201b, 1201c, 1201d, 1201e, 1201f, and 1201g having the same distance Pe from the closest epitaxial growth promoting unit 1201a and the two-dimensional hexagonal lattice 1203.
  • the two-dimensional hexagonal lattice 1203 is periodically arranged.
  • the epitaxial growth connecting portion 1205 is located between the epitaxial growth promoting portions 1201 that are closest to each other, and the epitaxial growth suppressing portion 1205 is constituted by a convex portion 1207 having a bottom surface width ⁇ smaller than the convex portions 1202 periodically arranged with a period Pn.
  • the ratio between the period Pn of the convex portion 1202 and the distance Pe between the epitaxial growth promoting portions is 3.46.
  • the area ratio with respect to the 1st main surface of the epitaxial growth promotion part 1201 is 0.076.
  • FIG. 31A is a schematic plan view of a substrate for a semiconductor light emitting element according to a second embodiment of the present invention.
  • the semiconductor light emitting device substrate 1300 includes an epitaxial growth suppressing unit 1304 and an epitaxial growth promoting unit 1301 surrounding the periphery.
  • the epitaxial growth suppressing unit 1304 includes a plurality of convex portions 1302 arranged periodically with a period Pn.
  • a convex portion 1307 having a bottom surface width ⁇ smaller than the convex portion 1302 constituting the epitaxial growth suppressing portion 1304 is provided.
  • the protrusions 1307 are provided in the epitaxial growth promoting portion 1301, an epitaxial crystal growth rate difference is partially generated also in the epitaxial growth promoting portion 1301, and the effect of suppressing the above-described crystal dislocation defect appears. Further, in the epitaxial growth suppressing portion 1304, since there is a difference in the crystal growth rate with the epitaxial growth promoting portion 1301, the crystal dislocation defects are suppressed and the crystal quality of the obtained epitaxial film is improved as in the above-described form.
  • the epitaxial growth promoting portion 1301 is continuous with the convex portion 1307 in between, the non-uniformity of the epitaxial film thickness in the wafer surface due to the deviation of the size of each crystal at the initial stage of epitaxial growth is suppressed. it can.
  • the area ratio of the epitaxial growth suppressing portion 1304 to the first main surface is preferably 0.8 or more and 0.999 or less. If the area ratio of the epitaxial growth suppressing portion 1304 to the first main surface is less than 0.7, the effect of reducing the above-described crystal dislocation defects is not preferable, and is preferably 0.80 or more, and more preferably 0.85 or more. Therefore, the effect of reducing crystal dislocation defects sufficiently works, and at the same time, the scattering effect of emitted light works more effectively, and particularly preferably 0.90 or more.
  • the area ratio of the epitaxial growth suppressing portion 1304 to the first main surface exceeds 0.999, it takes too much time to grow an epitaxial film on the semiconductor light emitting device substrate 1301, which is not preferable for industrial production.
  • the area ratio is preferably 0.998 or less, and more preferably 0.995 or less because the influence of the epitaxial growth rate on LED production is less due to factory production.
  • the area ratio of the epitaxial growth promoting portion 1301 to the first main surface is 0.705.
  • the epitaxial growth suppressing unit 1304 may be sandwiched between the epitaxial growth promoting units 1301.
  • the width of the epitaxial growth promotion portion is made wider than the convex pitch Pe of the epitaxial growth suppression portion as shown in FIG. 31B. It is also preferable.
  • the area ratio of the epitaxial growth suppressing portion to the first main surface can be increased, so that the effect of reducing crystal dislocation defects is sufficient as described above, and at the same time, the scattered light scattering effect is more effective. It is preferable because it works.
  • the epitaxial growth suppressing portion is surrounded by an epitaxial growth promoting portion.
  • the epitaxial growth promoting portion has at least a convex portion with a hexagonal bottom shape at the center thereof, and the periphery is similarly surrounded by a convex portion with a hexagonal bottom shape.
  • the bottom shape of the inner peripheral portion is surrounded by hexagonal convex portions.
  • the epitaxial growth suppressing portion is the hexagon, and the bottom hexagon of the convex portion at the center is rotated 90 degrees.
  • the width of the epitaxial growth promoting portion is preferably 20% or more of the protrusion pitch Pe of the epitaxial growth suppressing portion, more preferably 30% or more, and an effective crystal reduction effect of 35% or more. It works and is preferable. Moreover, it is 200% or less of convex part pitch Pe, it is preferable in it being 150% or less, and since LEE improvement effect acts, it is preferable in it being 130% or less.
  • the width of the bottom of the epitaxial growth promoting portion is preferably 100 nm or more, more preferably 200 nm or more, and more preferably 300 nm or more, since the flatness during crystal growth is improved. Furthermore, the width of the bottom of the epitaxial growth promoting portion is preferably 1000 nm or less, more preferably 800 nm or less, and if it is 600 nm or less, the area ratio of the epitaxial growth suppressing portion to the first main surface can be increased. The effect of reducing dislocation defects is sufficiently effective, and at the same time, the scattering effect of emitted light is more effective, which is further preferable.
  • the period Pn of the convex portion 1302 constituting the epitaxial growth suppressing portion 1304 is the same, it is not necessary to constitute the entire wafer surface in the above-described schematic plan view. As shown in FIG. 32, the arrangement of the epitaxial growth promoting portions may be mixed.
  • the repetition length of the region A having the same structure of the epitaxial growth suppressing portion is 0.5 times or more the coherence length of the wavelength of the emitted light of the semiconductor light emitting device to be used, the scattering effect of each region is effectively exhibited. Therefore, it is preferable. More preferably, it is 1 time or more of the coherence length of the emitted light, and 1.5 times or more is preferable because the light extraction efficiency due to the scattering effect is improved.
  • the shape of the convex portion and the concave portion constituting the epitaxial growth suppressing portion is not particularly limited as long as it is within the range in which the effect of the present invention can be obtained. It can be changed.
  • As the shape of the convex portion and the concave portion for example, a pillar shape or a hole shape, a conical shape, a pyramid shape, an elliptical cone shape, or the like can be used.
  • a substrate is formed on the surface of the convex portion and the concave portion. It is preferable not to have a plane parallel to the flat portion.
  • the epitaxial growth promoting portion and the epitaxial growth suppressing portion disposed on the first main surface preferably satisfy the following requirements A to C at the same time.
  • A. Surrounding the plurality of scattered epitaxial growth promotion portions with the epitaxial growth suppression portion, surrounding the plurality of epitaxial growth suppression portions with the epitaxial growth promotion portion, or the epitaxial growth suppression portion Is sandwiched between the epitaxial growth promoting portions, B.
  • Arithmetic mean roughness Ra corresponding to the epitaxial growth suppression portion is 5 nm or more
  • Arithmetic average roughness Ra corresponding to the epitaxial growth promoting portion is 1.5 nm or less.
  • the arithmetic average roughness corresponding to the epitaxial growth suppressing portion is sufficiently larger than that corresponding to the epitaxial growth promoting portion. From these relationships, the epitaxial growth promoting portion functions as a starting point for crystal growth. This is because the difference in lattice constant between the semiconductor layer and the growth substrate is smaller in the case of the epitaxial growth promoting portion than in the epitaxial growth suppressing portion. Accordingly, the epitaxial growth starts preferentially over the epitaxial growth promoting portion.
  • the epitaxial growth promoting portion is provided so as to surround the epitaxial growth suppressing portion or to sandwich the epitaxial growth suppressing portion so as to be scattered in the region of the epitaxial growth suppressing portion.
  • the epitaxial growth promoting portion which is the starting point of crystal growth has an arithmetic average roughness of 1.5 nm or less.
  • the epitaxial film formation is stable from the initial state. Therefore, stable epitaxial film formation that can withstand the LED manufacturing process can be realized.
  • the epitaxial growth suppression portion has a large arithmetic average roughness Ra.
  • an epitaxial growth promoting portion is provided around the periphery. In other words, it can be regarded as a state in which large areas of roughness are scattered. Therefore, the optical scattering property is strongly expressed, the waveguide mode is broken, and the LEE is improved.
  • FIG. 33 is a schematic plan view of an epitaxial growth promoting portion and an epitaxial growth suppressing portion formed on the growth substrate in the embodiment of the present invention.
  • an epitaxial growth promoting portion 101 and an epitaxial growth suppressing portion 104 are formed on the first main surface 100 a of the growth substrate (semiconductor light emitting element substrate) 100.
  • the epitaxial growth promoting unit 101 and the epitaxial growth suppressing unit 104 include any one of the following states A-1, A-2, and A-3.
  • State A-1 State in which the periphery of the plurality of scattered epitaxial growth promoting portions 101 is surrounded by the epitaxial growth suppressing portion 104
  • State A-2 A state in which the periphery of the plurality of epitaxial growth suppressing portions 104 is surrounded by the epitaxial growth promoting portion 101
  • State A-3 State in which the epitaxial growth suppressing unit 104 is sandwiched between the epitaxial growth promoting units 101.
  • FIG. 33A shows state A-1
  • FIG. 33B shows state A-2
  • FIG. 33C shows state A-3
  • the epitaxial growth promoting portion 101 is arranged at a lattice point (indicated by a dotted line) of a regular triangular lattice.
  • the epitaxial growth promoting portions 101 are arranged at lattice points and sides of a close-packed lattice in which regular hexagons share only sides (shown by dotted lines).
  • FIG. 33C it can be said that the epitaxial growth promoting portions 101 are arranged in parallel lines and spaces. The arrangement and shape of the epitaxial growth promoting unit 101 and the epitaxial growth suppressing unit 104 will be described later.
  • the epitaxial growth suppressing unit 104 satisfies the requirement B described above, and the epitaxial growth promoting unit 101 satisfies the requirement C described above. That is, the arithmetic average roughness Ra corresponding to the epitaxial growth suppressing unit 104 is 5 nm or more, and the arithmetic average roughness Ra corresponding to the epitaxial growth promoting unit 101 is 1.5 nm or less.
  • FIG. 34A shows a region in which the arithmetic average roughness Ra for the epitaxial growth promoting portion 101 is measured in a state where the epitaxial growth promoting portions 101 are scattered (state A-1).
  • a square in the epitaxial growth promoting portion 101 and having an area of 50% to 60% of the area of the circle S0 in contact with the epitaxial growth suppressing portion 104 is defined as a region A1 for measuring the arithmetic average roughness Ra.
  • the center of the circle S0 coincides with the center of the square.
  • an atomic force microscope is used for the square area A1, and the arithmetic average roughness Ra is measured with a dimension nm.
  • Arithmetic average roughness Ra is arbitrarily measured with respect to 10 points of area A1, and is defined as an arithmetic average value of the obtained values.
  • FIG. 34B shows a region in which the arithmetic average roughness Ra corresponding to the epitaxial growth promotion unit 101 is measured in a state where the epitaxial growth promotion unit 101 surrounds the epitaxial growth suppression unit 104 (state A-2).
  • a circle S1 in the epitaxial growth promoting unit 101 that is in contact with the epitaxial growth suppressing unit 104 is set, and a square having an area of 50% to 60% of the area of the circle S1 is set as a region A2 for measuring the arithmetic average roughness Ra. .
  • the center of the circle S1 coincides with the center of the square.
  • Arithmetic average roughness Ra is arbitrarily measured with respect to 10 points of area A1, and is defined as an arithmetic average value of the obtained values.
  • FIG. 34C shows a region in which the arithmetic average roughness Ra corresponding to the epitaxial growth promotion unit 101 is measured in a state where the epitaxial growth promotion unit 101 sandwiches the epitaxial growth suppression unit 104 (state A-3).
  • a region S3 in the epitaxial growth promoting unit 101 in which a circle S2 in contact with the epitaxial growth suppressing unit 104 is set, and a square having an area of, for example, 50% to 60% of the area of the circle S2 is measured. And Note that the center of the circle S2 coincides with the center of the square.
  • An atomic force microscope (AFM) is used for the square area A3, and the arithmetic average roughness Ra is measured with a dimension nm.
  • Arithmetic average roughness Ra is arbitrarily measured with respect to 10 points of area A1, and is defined as an arithmetic average value of the obtained values.
  • the arithmetic average roughness Ra for the epitaxial growth suppression unit 104 is measured as follows.
  • a square having an area of 50% to 60% of the area of the circle S3 in contact with the epitaxial growth promoting portion 101 in the epitaxial growth suppressing portion 104 is defined as a region A4 for measuring the arithmetic average roughness Ra.
  • the center of the circle S3 coincides with the center of the square.
  • FIG. 34B which is in the state A-2.
  • FIG. 34A and FIG. 34C which are the cases of the state A-1 and the state A-3, the area A4 is similarly set, and the arithmetic average roughness Ra is measured.
  • AFM atomic force microscope
  • the difference between the epitaxial growth promoting portion 101 and the epitaxial growth suppressing portion 104 is in the arithmetic average roughness Ra of the surface.
  • the arithmetic average roughness Ra is also simply referred to as “surface roughness Ra”.
  • the difference in surface roughness Ra between the epitaxial growth promoting portion 101 and the epitaxial growth suppressing portion 104 is a difference in surface flatness.
  • the surface roughness Ra of the epitaxial growth promoting portion 101 can be controlled to 1.5 nm or less by a method for manufacturing the growth substrate 100 described later. Thereby, the epitaxial growth promotion part 101 becomes easy to function as a starting point of crystal growth, and IQE improves. Further, in this case, the epitaxial growth promoting portion 101 has an extremely small surface roughness Ra. Therefore, variation in the nucleus growth, which is the initial stage of epitaxial growth, is reduced. As described above, stable epitaxial growth that can withstand the LED manufacturing process can be realized. When the arithmetic average roughness Ra of the epitaxial growth promoting portion 101 is 1.0 nm or less, the difference in lattice constant between the epitaxial growth promoting portion 101 and the crystal becomes small.
  • arithmetic average roughness Ra is 0.5 nm or less, diffusion on the surface of the epitaxial growth promoting portion 101 tends to be uniform. For this reason, the nucleus growth which is the initial stage of epitaxial growth is stabilized. Therefore, it is easier to realize stable epitaxial growth that can withstand the LED manufacturing process. If the thickness is 0.3 nm or less, the above-described IQE improvement effect and stable epitaxial growth effect are most exhibited.
  • a lower limit is not specifically limited, From a viewpoint of the measurement resolution by an atomic force microscope, it is 0.1 nm or more.
  • the surface roughness Ra of the epitaxial growth suppressing portion 104 can be easily controlled.
  • the method for forming the concavo-convex structure is also shown in the following manufacturing method. Thereby, the effect as the starting point of crystal growth in the epitaxial growth promoting portion 101 is enhanced. At the same time, the growth rate of epitaxial growth is higher than that of the epitaxial growth promoting portion 101. For this reason, before the crystal grows from the side wall of the concavo-convex structure of the epitaxial growth suppression unit 104, the epitaxial growth suppression unit 104 can be filled with the crystal grown from the epitaxial growth promotion unit 101.
  • the epitaxial growth property in the epitaxial growth suppression part 104 falls extremely. This is because if the surface roughness Ra is large, the types of crystal planes of the epitaxial growth suppressing portion 104 increase. In other words, as the surface roughness Ra increases, the difference in lattice constant between the semiconductor layer and the growth substrate increases. That is, the function of the epitaxial growth promoting portion 101 as a starting point of crystal growth is remarkably exhibited. Therefore, IQE is further improved.
  • the thickness is more preferably 50 nm or more. It is most preferable that the thickness is 80 nm or more because both the above-described effect as the crystal growth starting point for the epitaxial growth promoting portion 101 and the optical scattering effect in the epitaxial growth suppressing portion 104 are improved. On the other hand, if it is 800 nm or less, it can inhibit the crystal growth from the side wall of the concavo-convex structure of the epitaxial growth suppressing portion 104.
  • the thickness is more preferably 500 nm or less. If the thickness is 350 nm or less, it is possible to reduce the variation in the growth rate when the crystal that grows in the lateral direction from the epitaxial growth promoting portion 101 gets over the epitaxial growth suppressing portion 104. Therefore, the meeting point of the crystal is near the center of the epitaxial growth suppressing portion 104. Therefore, IQE is further improved. From the same viewpoint, the thickness is most preferably 250 nm or less.
  • the outer shape of the epitaxial growth promoting portion 101 is preferably a regular n-gon.
  • the outer shape of the epitaxial growth promoting portion 101 is depressed such that each corner portion is arced inward with respect to the regular n-gon, and each side is 0 to 10 inward. It may be a shape that draws a number of arcs.
  • the regular n-gon may have a strain (length variation) in which the length of each side is within ⁇ 10%.
  • the corner portion may be a corner portion having a radius of curvature exceeding 0 (rounded corner portion). In this case, stable epitaxial growth can be realized because it is easy to suppress epitaxial growth that becomes unstable at the corners.
  • the number m of arcs drawn inside each side is preferably 0 or more and 10 or less. This is because dislocation defects generated in the crystal grown from the epitaxial growth promoting portion 101 can be easily reduced and the IQE improvement effect is enhanced by being 0 or more and 10 or less.
  • FIG. 35 illustrates an example of a shape in which each corner portion is recessed so as to draw an arc inward with respect to the regular hexagon, and each side draws an arc of 0 to 10 inward.
  • the dotted line shown in FIG. 35 is a line indicating a regular hexagon.
  • the side that forms the epitaxial growth promoting unit 101 is a straight side or a side that has a deformation projecting outward, and the projection is lower. It is preferable that the side has a convex shape. It is assumed that the epitaxial growth promoting portion 101 is disposed on a predetermined lattice. As shown in FIG. 34B, in this case, the protrusions B face outward as viewed from the predetermined lattice. This protrusion has a convex shape in the direction of the predetermined lattice, that is, downward.
  • the epitaxial growth promoting portion 101 is positioned as a lattice in which regular hexagons share only sides and are closely packed. At this time, it can be seen that each regular hexagonal side has a protruding portion from the center toward the outside. And if this protrusion part takes the direction to protrude positively, it will be a convex shape below.
  • the number of protrusions is one above and below each side. The number of protrusions may be 0 or more and 10 or less in the vertical direction with respect to each side including the case of a straight line. By being 0 or more and 10 or less, it is easy to reduce the dislocation defect generated inside the crystal grown from the epitaxial growth promoting portion 101, and the IQE improvement effect can be enhanced.
  • the outer shape of the epitaxial growth promoting unit 101 is a straight side or a side having deformation projecting outward, and the projecting shape is convex downward. It should be a certain side. With these shapes, it is easy to achieve crystal epitaxial growth starting from the epitaxial growth promoting portion 101, and IQE improvement can be expected.
  • the epitaxial growth promoting portions 101 are arranged in a line-and-space lattice pattern. It turns out that it is the external shape which has the protrusion part toward the outer side from this lattice side (it shows with a dotted line). And if this protrusion part takes the direction to protrude positively, it will be a convex shape below.
  • the epitaxial growth promotion unit 101 may be arranged periodically. By periodically disposing the epitaxial growth promoting portion 101, the association of crystals occurring on the epitaxial growth suppressing portion 104 occurs near the center of the epitaxial growth suppressing portion 104. For this reason, crystal defects are extremely small, and IQE can be greatly improved.
  • the following sequence is more preferable. That is, regular triangular lattice points (see FIG. 33A), regular triangular lattice points and sides, regular hexagons share only sides and close packed lattice points, regular hexagons share only sides.
  • the lattice points and sides of the closely packed lattice and the hexagons of regular hexagons drawn in a uniaxial direction at a magnification of 110% to 5000% share only the sides and share the lattice points and sides of the closely packed lattice. Better when placed. This is because, in these cases, the function of the epitaxial growth promoting portion 101 that contributes to the improvement of IQE as a starting point of crystal growth and the association of crystals on the epitaxial growth suppressing portion 104 tend to be remarkably improved. In view of the physical phenomenon of epitaxial growth, the lattice strain of a regular n-gonal lattice is easily allowed up to ⁇ 10%.
  • the regular n-gon of the present application includes from the regular n-gon to the n-gon having a strain (variation in length) within ⁇ 10%.
  • Each area of the epitaxial growth promoting portion 101 is preferably 0.05 ⁇ m 2 or more. This facilitates the action of the epitaxial growth promoting portion 101 as a starting point for crystal growth.
  • 0.1 ⁇ m 2 or more is more preferable.
  • the epitaxial growth distribution in the epitaxial growth promoting portion 101 becomes small. Therefore, the nucleus growth that is the initial stage of the epitaxial growth is stabilized. That is, it is easy to realize stable epitaxial growth that can withstand the LED manufacturing process.
  • it is 0.2 ⁇ m 2 or more. In this case, the epitaxial growth rate in the epitaxial growth promoting portion 101 is increased, and it becomes easy to realize crystal association in the region of the epitaxial growth suppressing portion 104.
  • the upper limit of the area of the epitaxial growth promoting portion 101 is preferably 10 ⁇ m 2 or less. By this upper limit value, it becomes easy to suppress the generation of dislocations in the epitaxial growth promoting portion 101. From the same viewpoint, the area of the epitaxial growth promoting portion 101 is more preferably 7 ⁇ m 2 or less. If the area of the epitaxial growth promoting portion 101 is 5 ⁇ m 2 or less, the area of the epitaxial growth suppressing portion 104 becomes relatively large, and the optical scattering property is enhanced. Therefore, the effect of improving IQE and LEE at the same time is enhanced.
  • the area ratio of the epitaxial growth promoting portion 101 to the first main surface is preferably 0.001 or more and 0.2 or less.
  • the area ratio is 0.001 or more, the speed of epitaxial growth is improved and industrial production is maintained.
  • the area ratio is 0.002 or more, the area of the epitaxial growth promoting portion 101 can be increased, so that the function of the epitaxial growth promoting portion 101 as a starting point for crystal growth is enhanced and IQE is further improved. If the area ratio is 0.005 or more, in addition to the above-described improvement in IQE and LEE and stable epitaxial growth that can withstand the LED manufacturing process, industrial productivity is dramatically improved.
  • the area ratio is a value for a region of 10 ⁇ m ⁇ . That is, the area of the first main surface is 100 ⁇ m 2. And the value which remove
  • the epitaxial growth promoting portion and the epitaxial growth suppressing portion disposed on the first main surface satisfy the following requirements a to d at the same time.
  • a. Surrounding the plurality of scattered epitaxial growth promotion portions with the epitaxial growth suppression portion, surrounding the plurality of epitaxial growth suppression portions with the epitaxial growth promotion portion, or the epitaxial growth suppression portion Is sandwiched between the epitaxial growth promoting portions, b.
  • the epitaxial growth suppressing portion is constituted by a plurality of uneven structures; c.
  • the epitaxial growth suppressing portion and the epitaxial growth promoting portion are periodically arranged, d.
  • the matching ratio according to the projected area of the concavo-convex structure S- ⁇ and the concavo-convex structure S- ⁇ including the periodic unit ⁇ to the first main surface is 0.60 or more and 0.99 or less.
  • the epitaxial growth suppressing portion is composed of a plurality of uneven structures (the above requirement b). For this reason, the epitaxial growth rate with respect to the epitaxial growth suppressing portion becomes small. Therefore, the epitaxial growth promoting portion functions as a starting point for crystal growth.
  • the epitaxial growth promoting portion is provided so as to surround the epitaxial growth suppressing portion so as to be scattered in the region of the epitaxial growth suppressing portion or to sandwich the epitaxial growth suppressing portion (the above requirement a). For this reason, the association of crystals in the epitaxial growth tends to occur near the center of the epitaxial growth suppressing portion. That is, transition defects are extremely reduced. Therefore, IQE improves.
  • the cycle unit ⁇ is arbitrarily selected with respect to the cycle of the epitaxial growth suppressing unit and the epitaxial growth promoting unit.
  • This period unit ⁇ is appropriately moved and overlapped with another period unit ⁇ .
  • the conformity ratio of the area when the concavo-convex structure included in each periodic unit ⁇ , ⁇ is projected onto the first main surface is determined.
  • the precision is 0.60 or more and 0.99 or less (the above requirement d). As described above, since the matching ratio is in the predetermined range, it is easy to suppress the crystal from growing suddenly from the epitaxial growth suppressing portion during the epitaxial growth.
  • the epitaxial growth suppression unit is configured by a plurality of uneven structures, and the epitaxial growth suppression unit and the epitaxial growth promotion unit are periodically arranged. Therefore, optical scattering properties are exhibited, the waveguide mode is broken, and LEE is improved.
  • FIG. 36 is a schematic plan view of an epitaxial growth promoting part and an epitaxial growth inhibiting part for explaining a periodic unit composed of an epitaxial growth promoting part and the epitaxial growth inhibiting part.
  • the state A-1 described above is representative, but the state A-2 and the state A-3 can be considered similarly.
  • the equilateral triangular lattice which is the arrangement unit of the epitaxial growth promoting portion 101, is the arrangement unit of the epitaxial growth promoting portion and the epitaxial growth suppressing portion, and the epitaxial growth promoting portion 101 is located at the lattice point of the equilateral triangular lattice. It can be said that it is arranged.
  • the epitaxial growth suppressing portion 104 is composed of a plurality of concavo-convex structures, and the concavo-convex structures are located at lattice points of a regular triangular lattice.
  • the regular triangular lattice that determines the arrangement of the epitaxial growth promoting portion 101 and the regular triangular lattice that determines the arrangement of the concavo-convex structure of the epitaxial growth suppressing portion 104 are examples in which the directions are shifted by 30 °.
  • FIG. 36B is a diagram in which the cycle unit ⁇ and the cycle unit ⁇ are extracted.
  • the uneven structure S- ⁇ included in the cycle unit ⁇ and the uneven structure S- ⁇ included in the cycle unit ⁇ are overlapped as shown in FIG. 36C.
  • observation is carried out using a scanning electron microscope.
  • the observation position is a top view (surface image). That is, it is possible to obtain a projection image of the concavo-convex structure on the first main surface of the substrate.
  • the concavo-convex structure is a set of convex portions, the outline of the bottom of the convex portion is observed as one convex portion. If the concavo-convex structure is a set of concave portions, the outline of the opening of the concave portion is observed as one concave portion. That is, the concavo-convex structure indicated by the circle shown in FIG. 36 is the outline of the bottom of the convex portion.
  • the area of the bottom contour of the convex portion when the concavo-convex structure S- ⁇ included in the periodic unit ⁇ is projected onto the first main surface is obtained. The same applies to the uneven structure S- ⁇ included in the cycle unit ⁇ . Each area is an area of a portion included in the period unit.
  • the areas are calculated as shown in the table below for the convex portions a1 to a7 constituting the concavo-convex structure S- ⁇ and the convex portions b1 to b7 constituting the concavo-convex structure S- ⁇ . .
  • the precision is a ratio that is 1 or less.
  • the precision is b1 / a1.
  • the matching rate is a6 / b6.
  • the cycle unit ⁇ is compared with the cycle unit ⁇ , but in this embodiment, the cycle units ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 are arbitrarily selected. Then, the relevance ratios of the period units ⁇ with respect to the period units ⁇ , ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 are obtained, and values obtained by arithmetically averaging them are the relevance ratios of the present application (see Table 1 below).
  • the precision is 0.60 or more and 0.99 or less. Since such a matching rate is within a predetermined range, it is easy to suppress the sudden growth of crystals from the epitaxial growth suppressing portion during epitaxial growth. That is, it is possible to suppress the growth of the crystal grown from the epitaxial growth promoting portion from being suddenly grown by the crystal grown from the epitaxial growth inhibiting portion before associating near the center of the epitaxial growth inhibiting portion. Therefore, the transition is effectively reduced and the stability of the epitaxial growth is improved. In particular, if the relevance ratio is 0.95 or less, the difference in the micro uneven structure becomes strong with respect to the periodicity of the arrangement. Therefore, when viewed minutely, the optical scattering property is improved.
  • a slight change in the concavo-convex structure can be considered to have a function of relieving the compressive stress generated by epitaxial growth. Therefore, the strain on the crystal is reduced, so that IQE is further improved.
  • the relevance ratio is 0.65 or more, the frequency of crystals that grow unexpectedly from the epitaxial growth suppressing portion decreases. Therefore, the stability of epitaxial growth is greatly improved.
  • the matching rate is 0.70 or more.
  • the material of the base body in the optical base material or the semiconductor light emitting element substrate according to the present embodiment is not particularly limited as long as it can be used as the optical base material or the semiconductor light emitting element substrate.
  • Base materials such as neodymium gallium oxide, lanthanum strontium aluminum tantalum, strontium titanium oxide, titanium oxide, hafnium, tungsten, molybdenum, GaP, and GaAs can be used.
  • a sapphire substrate having a C plane (0001) as a main surface can be used as the optical base material.
  • it may be used alone, or may be a heterostructure base material in which another base material is provided on the substrate body using these, or a heterostructure in which the uneven portion is another base material.
  • the semiconductor light emitting element substrate is defined as an optical base material.
  • the method for producing a substrate for a semiconductor light emitting element as described above is not particularly limited, and examples thereof include a normal photolithography method, an imprint method, a nanoimprint method, and a nanoimprint lithography method.
  • a resist layer is formed on the surface of a predetermined substrate, and then transferred by the nanoimprint method using a reversal type of the required transfer pattern to form a necessary uneven pattern on the surface. Get a layer.
  • a dry film pattern sheet is formed by forming a dry film layer on the surface of the sheet on which the concave / convex reversing structure of the predetermined concave / convex pattern required in advance is formed, and then transferred to the substrate surface to form the concave / convex pattern on the surface.
  • a dry film imprint lithography method for obtaining a dry film resist layer can also be used.
  • the dry film imprint lithography method described above is preferable because it can form a concavo-convex pattern with a mask layer having high etching resistance and can easily form the concavo-convex pattern on the substrate surface. Moreover, it is only necessary to bond the dry film to the substrate, and a high-precision imprint apparatus and exposure apparatus are unnecessary, and production efficiency can be increased, which is advantageous for industrial production. From the above, it is preferable to use the dry film imprint lithography method.
  • the sapphire substrate will be further described as a representative.
  • the first main surface of the sapphire substrate is polished.
  • the surface roughness Ra of the first main surface can be controlled by controlling the type of abrasive grains, the number of abrasive grains, the polishing rate, and the pH.
  • polishing is preferably performed until the arithmetic average roughness becomes 1.5 nm or less. This is because the surface polishing accuracy correlates with the surface roughness Ra of the epitaxial growth promoting portion to be manufactured.
  • the arithmetic average roughness is 0.5 nm or less because the distribution of the growth promoting portion to be manufactured is small with respect to a sapphire substrate of 4 inches or 6 inches.
  • the arithmetic average roughness is 0.3 nm or less.
  • an off angle, a plane orientation, and the like of a substrate to be selected can be selected as appropriate to meet the required specifications of the semiconductor light emitting element.
  • the sapphire substrate having a surface roughness Ra within a predetermined range is cleaned with, for example, a mixed solution (SPM solution) of sulfuric acid and hydrogen peroxide solution.
  • a dry film pattern sheet is prepared that has positional information of the epitaxial growth promoting portion and the epitaxial growth suppressing portion with an accuracy of a correlation coefficient of 0.9 or more.
  • a pattern is formed by applying a thermal lithography method to a glass mother roll.
  • the positional information of the epitaxial growth promoting portion and the epitaxial growth suppressing portion can be formed on the glass mother roll by controlling the laser irradiation pulse.
  • a mold is manufactured from the mother roll by an optical nanoimprint method. Further, the mold may be transferred from the mold and duplicated.
  • the above-obtained mold is filled with a first resist having an inorganic or organic-inorganic hybrid composition.
  • a first resist having an inorganic or organic-inorganic hybrid composition.
  • an organic metal or metal oxide fine particles can be contained in the resist.
  • the filling state at this stage is a state in which the resist is not completely filled in the pattern of the mold and is not flattened by the resist, and even after applying the primary rest, A part of the pattern is exposed.
  • a second resist that is an organic resist is applied to the first resist filling mold.
  • the film is formed so as to be flattened.
  • the mold in which the first resist and the second resist are formed is called a dry film pattern sheet.
  • the organic resist may be a negative type or a positive type, and preferably includes at least a radical polymerization system or a chemical amplification system that exhibits an effect by ultraviolet rays.
  • the resist contains phenol novolak, cresol novolak, acrylic-modified epoxy novolak, methacryl-modified epoxy novolak, adamantane, fluorene, carbazole, polyvinyl carbazole, polyparahydroxystyrene, and the like because the processability of the substrate is improved.
  • a mixture containing an oligomer or polymer, a monomer, and a polymerization initiator is desirable because the function of maintaining the thin film state of the applied resist is improved.
  • the dry film pattern sheet is bonded to the sapphire substrate.
  • the resist is stabilized by light or heat, and then the mold is removed. Alternatively, after removing the mold, the resist is stabilized by light or heat.
  • the second resist layer and the first resist layer are transferred onto the main surface of the sapphire substrate.
  • the inversion structure of the mold is transferred to the surface of the resist, and this inversion structure has an arrangement of an epitaxial growth promoting portion and an epitaxial growth suppressing portion as position information.
  • the epitaxial growth promoting portion and the epitaxial growth suppressing portion can be formed on the substrate surface by etching using the resist layer formed on the substrate surface as a mask.
  • etching method wet etching, dry etching, or a combination of both can be applied.
  • anisotropic dry etching is preferable, and ICP-RIE and ECM-RIE are preferable.
  • the reactive gas used for dry etching is not particularly limited as long as it reacts with the material of the substrate, but BCl 3 , Cl 2 , CHF 3 , or a mixed gas thereof is preferable, and Ar, O 2, N2 etc. can be mixed.
  • the resist layer 11 shown in FIG. 8 is provided on an optical substrate (not shown) having a flat main surface (the uneven structure 20 is not formed).
  • a plurality of convex portions 12 are provided on the main surface of the resist layer 11, and the convex portions 12 are arranged in the position and thickness direction of the convex portions 21 formed on the optical substrate (Z Direction).
  • the narrow flat part 13 and the wide flat part 14 are provided between the convex parts 12, and the wide flat part 14 is the position and film thickness of the recessed part 23 formed in an optical base material. Opposing in the direction (Z). That is, the wide flat portion 14 provided in the resist layer 11 has a wide portion where a predetermined number of convex portions 12 are thinned out (one in FIG. 37) (hereinafter, referred to as a “tooth missing portion 14”). Configure.
  • the concavo-convex structure 20 having the convex portion 21, the flat portion 22, and the concave portion 23 can be formed.
  • the concavo-convex structure is formed by dry etching, by providing a difference between the etching rate of the wide flat portion 14 and the etching rate of the narrow flat portion 13 between the convex portions 12, the wide flat portion (teeth) of the resist layer 11 is formed.
  • a recess 23 can be provided in the (removal portion) 14. For this reason, the distance s between the convex bottoms (shown in FIGS.
  • 9A and 9B is 200 nm or less (in particular, 100 nm or less), and the ratio lo_w / s between the width lo_w of the concave opening and the distance s between the convex bottoms is 6 If it becomes above, the difference of an etching rate will become large and it will become easy to form a recessed part.
  • the reason for the difference in etching rate between the wide flat portion 14 and the narrow flat portion 13 between the convex portions 12 is the microloading effect in dry etching.
  • the narrow flat portion 13 between the convex portions 12 is narrow as described above, the etching rate of the narrow flat portion 13 is lowered, and the microloading effect is remarkably exerted.
  • a substrate for a semiconductor light emitting device according to the present invention is formed by the dry film resist method and the dry etching method described above.
  • the semiconductor light emitting device substrate in FIG. 39 having the independent recess 23 can be obtained.
  • the semiconductor light emitting device substrate in FIG. 4 having the continuous recesses 23 can be obtained.
  • semiconductor light emitting device semiconductor light emitting device to which the semiconductor light emitting device substrate according to the embodiment of the present invention is applied will be described.
  • substrate for semiconductor light-emitting devices it is the same also about the optical base material of this invention, and the board
  • the semiconductor light emitting device includes at least one semiconductor light emitting device substrate according to the present embodiment.
  • the semiconductor light emitting element substrate according to the present embodiment By incorporating the semiconductor light emitting element substrate according to the present embodiment into the configuration, it is possible to improve IQE and LEE.
  • the semiconductor light emitting device has a laminated semiconductor layer formed by laminating at least two semiconductor layers and a light emitting layer on the first main surface of the substrate for semiconductor light emitting device.
  • FIG. 41 is a schematic cross-sectional view of the semiconductor light emitting device according to the present embodiment.
  • the semiconductor light emitting device A00 the undoped semiconductor layer A51, the n-type semiconductor layer A52, and the light emitting semiconductor layer A53 are formed on the concavo-convex structure provided on one main surface of the semiconductor light emitting device substrate A01.
  • a p-type semiconductor layer A54 are sequentially stacked.
  • a transparent conductive film A55 is formed on the p-type semiconductor layer A54.
  • a cathode electrode A57 is formed on the surface of the n-type semiconductor layer A52, and an anode electrode A56 is formed on the surface of the transparent conductive film A55.
  • the n-type semiconductor layer A52, the light-emitting semiconductor layer A53, and the p-type semiconductor layer A54 that are sequentially stacked on the semiconductor light-emitting element substrate A01 are referred to as a stacked semiconductor layer A60.
  • the main surface of the undoped semiconductor layer A51 is preferably a flat surface.
  • the main surface of the undoped semiconductor layer A51 is a flat surface, so that the n-type semiconductor A52, the light-emitting semiconductor layer A53, and the p-type semiconductor layer are formed.
  • the performance of A54 can be made efficient, and the internal quantum efficiency IQE is improved.
  • a buffer layer (not shown) exists at the interface between the undoped semiconductor layer A51 and the semiconductor light emitting device substrate A01. Due to the presence of the buffer layer, nucleation and growth, which are initial conditions for crystal growth of the undoped semiconductor layer A51, are improved, and the performance of the stacked semiconductor layer A60 as a semiconductor is improved, so that the internal quantum efficiency IQE is improved.
  • the buffer layer may be formed so as to cover the entire surface of the concavo-convex structure, but can be partially provided on the surface of the concavo-convex structure, and in particular, preferentially to the epitaxial growth promoting portion on the surface of the semiconductor light emitting device substrate A01.
  • a buffer layer can be provided.
  • the thickness of the buffer layer is preferably 5 nm to 100 nm, and more preferably 10 nm to 50 nm.
  • the effect by the below-mentioned ratio (TexD / TDD) can be expressed more notably. This is because variation in the growth rate of the undoped semiconductor layer A51 is reduced and the meeting point can be controlled more easily than the thickness of the buffer layer.
  • the effect of the ratio (TexD / TDD) will be described later.
  • a GaN structure, an AlGaN structure, an AlN structure, an AlInN structure, an InGaN / GaN superlattice structure, an InGaN / GaN stacked structure, an AlInGaN / InGaN / GaN stacked structure, or the like can be employed.
  • the GaN structure, the AlGaN structure, and the AlN structure are most preferable.
  • the film formation temperature can be in the range of 350 ° C. to 600 ° C.
  • the buffer layer is preferably formed by a MOCVD (Metal Organic Chemical Deposition) method or a sputtering method.
  • MOCVD Metal Organic Chemical Deposition
  • the undoped semiconductor layer A51 and the buffer layer are collectively defined as an underlayer.
  • the undoped semiconductor layer A51 for example, an elemental semiconductor such as silicon or germanium, or a compound semiconductor such as III-V group, II-VI group, or IVI-IV group is used. Applicable.
  • an undoped nitride layer is preferable.
  • the undoped nitride layer can be formed by supplying NH 3 and TMGa at a growth temperature of 900 to 1500 ° C., for example.
  • the film thickness of the undoped semiconductor layer A51 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, but more preferably 1.3 ⁇ m or more and 8 ⁇ m or less from the viewpoint of residual stress on the undoped semiconductor layer A51.
  • the n type semiconductor layer is not particularly limited as long as it can be used as an n type semiconductor layer suitable for the semiconductor light emitting device.
  • elemental semiconductors such as silicon and germanium, compound semiconductors such as III-V, II-VI, and IV-IV can be appropriately doped with various elements.
  • an n-type cladding layer and a p-type cladding layer (not shown) can be appropriately provided in the n-type semiconductor layer and the p-type semiconductor layer.
  • NH 3 is 3 ⁇ 10 ⁇ 2 to 4.2 ⁇ 10 ⁇ 2 mol / min, trimethylgallium (TMGa) 0.8 ⁇ 10 ⁇ 4 to 1.8 ⁇ 10 ⁇ 4 mol.
  • Silane gas containing n-type dopants typified by / min and Si can be formed by supplying 5.8 ⁇ 10 ⁇ 9 to 6.9 ⁇ 10 ⁇ 9 mol / min.
  • the film thickness is preferably 800 nm or more, and more preferably 1500 nm or more, from the viewpoint of electron injection into the active layer.
  • the light emitting semiconductor layer is not particularly limited as long as it has a light emitting characteristic as a semiconductor light emitting element.
  • a semiconductor layer such as AsP, GaP, AlGaAs, InGaN, GaN, AlGaN, ZnSe, AlHaInP, or ZnO can be used as the light emitting semiconductor layer.
  • the light emitting semiconductor layer may be appropriately doped with various elements according to characteristics. Further, a single quantum well structure (SQW) or a multiple quantum well structure (MQW) is preferable.
  • an active layer made of INGaN / GaN is grown to a thickness of 100 to 1250 mm. be able to.
  • the concentration of In element can be changed with respect to InGaN constituting one layer.
  • an electron blocking layer (not shown) can be provided between the light emitting semiconductor layer A53 and the p-type semiconductor layer A54.
  • the electron block layer is made of, for example, p-AlGaN.
  • the material of the p-type semiconductor layer is not particularly limited as long as it can be used as a p-type semiconductor layer suitable for the semiconductor light emitting device.
  • elemental semiconductors such as silicon and germanium, and compound semiconductors such as III-V group, II-VI group, and IV-IV group, which are appropriately doped with various elements can be applied.
  • the growth temperature can be raised to 900 ° C. or higher, TMGa and CP2Mg can be supplied, and the film can be formed to a thickness of several hundreds to thousands of liters.
  • These laminated semiconductor layers can be formed on the surface of the substrate by a known technique.
  • a metal organic drafting method MOCVD
  • HVPE hydride vapor phase epitaxy method
  • MBE molecular beam epitaxy method
  • the material of the transparent conductive film is not particularly limited as long as it can be used as a transparent conductive film suitable for the semiconductor light emitting device.
  • a metal thin film such as a Ni / Au electrode or a conductive oxide film such as ITO, ZnO, In 2 O 3 , SnO 2 , IZO, or IGZO can be applied.
  • ITO is preferable from the viewpoints of transparency and conductivity.
  • the thickness of the transparent conductive film is preferably 30 nm or more and 100 nm or less.
  • the role of the transparent conductive film is to diffuse the current from the anode electrode A56 and inject it into the p-type semiconductor layer A54. Since the resistance of the transparent conductive film A55 decreases as the thickness increases, the thickness (T_TE) of the transparent conductive film A55 is preferably 30 nm or more, and more preferably 40 nm or more.
  • the thickness (T_TE) of the film A55 is preferably 100 nm or less, and more preferably 80 nm or less.
  • the thickness (T_TE) of the transparent conductive film A55 can be measured by, for example, a STEM (scanning transmission electron microscope).
  • STEM scanning transmission electron microscope
  • the measurement by STEM is preferable because the boundary with the stacked semiconductor layer can be clarified from the contrast of the image.
  • the height of the concavo-convex structure can be reduced to 1 ⁇ m or less as compared with the prior art.
  • the concavo-convex structure is particularly nano-order, the undoped semiconductor layer A51 is used to flatten the concavo-convex structure. The required thickness is reduced. For this reason, since the semiconductor layer that absorbs light from the light emitting semiconductor layer A53 is thinned, the light extraction efficiency LEE is expected to be further improved, and the n type semiconductor layer A52 and the light emitting semiconductor sequentially stacked thereon are also provided.
  • the thickness of the base layer A51 is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, further preferably 3.5 ⁇ m or less, still more preferably 2.5 ⁇ m or less, and most preferably 1.5 ⁇ m or less.
  • a reflective layer may be provided on the main surface on the back side of the main surface on which the laminated semiconductor layer of the substrate A01 is formed.
  • the material of the reflective layer is not particularly limited as long as the reflectance at the emission wavelength is high.
  • metals Ag, Al, or an alloy thereof is selected, for example, from the reflectivity and the adhesion to the substrate for semiconductor light emitting element A01.
  • a dielectric multilayer film may be formed in order to obtain a higher reflectance.
  • the film thickness and the number of layers are not particularly limited.
  • titanium oxide, zirconium oxide, niobium oxide, tantalum oxide, aluminum nitride, low refractive index layer as a high refractive index layer Silicon oxide can be used.
  • a metal may be formed after forming the dielectric multilayer film.
  • an adhesion layer may be provided between the semiconductor light emitting element substrate A01 and the reflective layer.
  • silicon oxide can be used for the adhesion layer.
  • dislocations penetrating the light emitting semiconductor layer A53 are defined as threading dislocations, and this density is defined as a dislocation density (Threading Dissociation Density: TDD (/ cm 2 )).
  • the semiconductor layer with reduced transition and improved crystal quality can be obtained.
  • a film can be formed.
  • the dislocation density (TDD) can be measured with a cross-sectional transmission electron microscope. In this case, since the measurement area becomes small and the variation becomes large, an arithmetic average value of 5 points is adopted.
  • the reverse pattern shape of the substrate for semiconductor light emitting device is obtained, so that they are separated from each other by continuous convex portions.
  • it has a texture of a hole structure composed of a plurality of recesses.
  • the defects are concentrated in the center of the epitaxial growth suppressing portion and are reduced. IQE is improved.
  • the base layer has the following preferable state. That is, the ratio (TexD /) of the dislocation density (TDD) of the dislocations having the main surface of the inverted pattern shape of the substrate for semiconductor light emitting device of the present embodiment and penetrating the light emitting layer and the texture density (TexD). TDD) is 0.3 or more.
  • the ratio (TexD / TDD) is the ratio of the density of the concavo-convex structure to the dislocation density TDD.
  • the ratio (TexD / TDD) ⁇ ⁇ the ratio (TexD / TDD) ⁇ 0 when the dislocation density TDD is infinitely large or the uneven structure is reduced to the atomic level.
  • the density D of the concavo-convex structure is the density of dot-like convex portions, and the dimension is (/ cm 2 ).
  • the density of the concavo-convex structure may be simply expressed as the number of the concavo-convex structure, but it is assumed that the number per unit area, that is, the density is shown. That is, the number of concavo-convex structures means the number (density) of convex portions if it is dot-like.
  • the dislocation density may be expressed as the number of dislocations, and this also indicates the number per unit area, that is, the density.
  • the ratio (TexD / TDD) can be restated as the balance between the number of concavo-convex structures and the number of dislocations.
  • the ratio (TexD / TDD) can be regarded as the number of dislocations that can be applied to one uneven structure.
  • the number of dislocations connected to the epitaxial growth promoting portion of the opposing semiconductor light emitting element substrate is larger than the dislocations connected to the epitaxial growth suppressing portion.
  • Such an underlayer is preferable because it can reduce the residual compressive stress during film formation on the semiconductor light emitting device.
  • the number of dislocations connected to the epitaxial growth promoting portion is twice or more than the number of dislocations connected to the epitaxial growth suppressing portion.
  • the epitaxial growth suppression part spreads two-dimensionally with respect to the main surface of the underlying layer, it is considered that the residual compressive stress on the underlying layer starting from the epitaxial growth suppression part is dispersed and reduced by the two-dimensional spreading. .
  • the epitaxial growth promoting portions are isolated from each other, the residual compressive stress cannot be dispersed.
  • the threading transition itself is a defect with respect to the crystal, but since the continuity of the crystal is interrupted, the residual stress inside the underlayer can be reduced. That is, in terms of form, the residual compressive stress can be reduced by forming many dislocations in the underlying layer in the epitaxial growth promoting portion that cannot reduce the residual compressive stress independently of each other.
  • the reduction of the residual compressive stress inside the semiconductor layer relaxes the internal polarization during current flow and improves the light emission characteristics. In particular, it is considered that the emission intensity at a high current density is improved.
  • the optical base material of the present embodiment is an optical base material in which a concavo-convex structure is formed on a part or the whole of the main surface, and the concavo-convex structure has a regular missing portion. It is characterized by.
  • the concavo-convex structure includes a convex portion, a bottom portion between the convex portions, and a concave portion having a flat surface at a position lower than a main surface formed by the bottom portion between the convex portions.
  • the tooth missing portion is the concave portion (see FIG. 2).
  • the convex portions are arranged at an average pitch P0, and the tooth missing portions are arranged on the vertices of a regular polygon or on the sides of the regular polygon connecting the vertices, and the regular polygon Is preferably longer than the average pitch P0 (see FIGS. 4 and 5).
  • the side length of the regular polygon is not less than 2 times and not more than 5 times the average pitch P0 (see FIGS. 4 and 5).
  • the plurality of tooth missing portions constituting the concavo-convex structure is set as a new unit cell of a regular hexagon on the arrangement position set at each lattice point of the regular triangle lattice, and the vertex of the regular hexagon Alternatively, it is preferably provided at a position corresponding to the side (see FIG. 5).
  • the plurality of tooth missing portions constituting the concavo-convex structure are set as new equilateral triangle lattices on the arrangement positions set at the lattice points of the equilateral triangle lattice, and the newly set regular triangles are formed. It is preferably provided at a position corresponding to the apex of the triangle (see FIG. 10).
  • the tooth missing portion is such that a straight line connecting the tooth missing portions is orthogonal to a crystal plane meeting in the initial stage of crystal growth, among crystal faces of a semiconductor layer formed on the optical substrate. It is preferably arranged (see FIG. 14).
  • the optical substrate in the present embodiment is an optical substrate in which a concavo-convex structure is formed on a part or the whole of the main surface, and the concavo-convex structure is arranged at each lattice point of an equilateral triangular lattice. And is formed having a convex portion, a bottom portion between the convex portions, and a concave portion having a flat surface at a position lower than a main surface formed by the bottom portion between the convex portions, They are arranged on the vertices of regular polygons connecting the vertices of convex portions or on the sides of the regular polygons (see FIGS. 2 and 5 etc.).
  • the generation positions (flat portions) of crystal nuclei are regularly formed at positions lower than the main surface, thereby suppressing the amount of threading transition by controlling the starting position of defects, and the area on the uneven structure side.
  • a semiconductor light emitting device having an excellent light emission efficiency is realized by realizing the increase, and eventually achieving both the internal quantum efficiency IQE and the light extraction efficiency LEE.
  • the substrate for a semiconductor light emitting element in the present embodiment is a substrate for a semiconductor light emitting element for epitaxially growing a semiconductor crystal on the main surface, using the optical base material described above, and the main surface Is configured to include a plurality of epitaxial growth promotion portions and a plurality of epitaxial growth suppression portions, the epitaxial growth promotion portion is surrounded by the epitaxial growth suppression portion, and the epitaxial growth suppression portion includes at least a plurality of the epitaxial growth suppression portions. It is comprised by the convex part and the bottom part between the said convex parts, and the said epitaxial growth promotion part is the said tooth
  • the distances Pe between the plurality of epitaxial growth promoting portions closest to each other are equal to each other (see FIGS. 15 and 17).
  • the distance Pe between the epitaxial growth promoting portions closest to the epitaxial growth promoting portion and the period Pn of the plurality of convex portions constituting the epitaxial growth suppressing portion satisfy the following formula (1) (FIGS. 15 and 17). Etc.). 1.5 Pe ⁇ Pe / Pn ⁇ 30 Formula (1)
  • the area ratio of the epitaxial growth promoting portion to the main surface is preferably 0.001 or more and 0.2 or less.
  • the substrate for semiconductor light emitting device in the present embodiment is a substrate for semiconductor light emitting device for epitaxially growing a semiconductor crystal on the main surface, using the optical base material described above, and the main surface Is configured to have a plurality of epitaxial growth promotion portions and a plurality of epitaxial growth suppression portions, and the epitaxial growth suppression portion is surrounded by the epitaxial growth promotion portion, or the epitaxial growth suppression portion is the epitaxial growth
  • the epitaxial growth suppressing portion is sandwiched between promotion portions, and is configured by at least a plurality of convex portions and a bottom portion between the convex portions, and the epitaxial growth promoting portion is the tooth-missing portion, and has a plane parallel to the main surface. It is characterized by having.
  • the epitaxial growth promoting portion is preferably a recess having a flat surface at a position lower than a main surface formed by the bottom between the protrusions, and a recess having a bottom parallel to the main surface.
  • the area ratio of the epitaxial growth suppressing portion to the main surface is preferably 0.80 or more and 0.999 or less.
  • the epitaxial growth suppressing portion is composed of at least a plurality of the convex portions arranged periodically (see FIG. 31).
  • the semiconductor light emitting device substrate is a single crystal substrate having a hexagonal crystal structure, and the closest direction of a plurality of closest epitaxial growth suppressing portions and the crystal structure of the semiconductor light emitting device substrate. It is preferable that the m-plane is not parallel.
  • the semiconductor light emitting device in the present embodiment includes the optical substrate described above or the substrate for a semiconductor light emitting device described above, and at least two or more semiconductor layers stacked on the main surface side. And a stacked semiconductor layer formed by stacking a light emitting layer (see FIG. 41).
  • the growth substrate in the present embodiment has at least a first main surface, and the first main surface has a growth promoting part (epitaxial growth promoting part) and a growth restraining part (epitaxial growth restraining part).
  • the growth promoting part and the growth suppressing part satisfy the following requirements A to C (see FIG. 33).
  • A. Surrounding a plurality of scattered growth promoting portions with the growth suppressing portion, surrounding the plurality of growth suppressing portions with the growth promoting portion, or the growth suppressing portion Is sandwiched in the growth promotion part, B.
  • Arithmetic average roughness Ra for the growth suppressing part is 5 nm or more,
  • Arithmetic mean roughness Ra for the growth promoting part is 1.5 nm or less.
  • the growth suppressing portion has a plurality of uneven structures, and the uneven structure has a duty of 0.85 or more.
  • the growth promoting portions are periodically arranged (see FIG. 33).
  • the growth substrate in the present embodiment includes at least a first main surface, and the first main surface includes a growth promotion unit and a growth suppression unit, and the growth promotion unit and the growth suppression are included. Is characterized in that the following requirements a to d are simultaneously satisfied (see FIG. 36).
  • a. Surrounding a plurality of scattered growth promoting portions with the growth suppressing portion, surrounding the plurality of growth suppressing portions with the growth promoting portion, or the growth suppressing portion Is sandwiched in the growth promotion part, b.
  • the growth suppressing part is composed of a plurality of uneven structures; c.
  • the growth suppressing unit and the growth promoting unit are periodically arranged; d.
  • the matching ratio according to the projected area of the concavo-convex structure S- ⁇ and the concavo-convex structure S- ⁇ including the periodic unit ⁇ to the first main surface is 0.60 or more and 0.99 or less.
  • the semiconductor light-emitting element in this embodiment includes at least a first semiconductor layer, a light-emitting semiconductor layer, a second semiconductor layer, and a transparent substrate on a growth substrate in which a concavo-convex structure is formed on a part of or the entire main surface.
  • the growth promotion part is surrounded by the growth suppression part, a plurality of growth suppression parts are surrounded by the growth promotion part, or the growth suppression part is the growth promotion.
  • the transparent conductive film has a thickness (T_TE) of 30 nm or more and 100 nm or less (see FIG. 41).
  • Example 1 to 3 First, an LED substrate (optical base material) was produced. The pattern of the board
  • the ultraviolet rays were irradiated from a UV-LED light source having a wavelength of 365 nm, and the integrated light amount was set to 1500 mJ / cm 2 .
  • the nano-processed sheet and sapphire were sandwiched between two parallel flat plates heated to 120 ° C.
  • the sandwiching pressure was 0.3 MPa and the time was 10 seconds.
  • it was cooled to room temperature by air cooling, and the nano-processed sheet was peeled from sapphire at a speed of 50 mm / second.
  • a two-layer resist layer was transferred onto the main surface of sapphire.
  • the main surface of the resist layer is provided with an uneven structure.
  • the pattern of the LED substrate was controlled by the shape and arrangement of the concavo-convex structure, the layer structure of the two-layer resist, and the dry etching conditions described below.
  • the nano-processed sheet is a molded body that can transfer and apply a processing mask onto the object to be processed by a bonding operation and a peeling operation.
  • the configuration includes a resin mold, a first resist layer, and a second resist layer.
  • the resin mold has a concavo-convex structure on the main surface, and the first resist layer is filled inside the concave portion of the concavo-convex structure. Then, the second resist layer is disposed so as to flatten the uneven structure of the resin mold and the first resist layer.
  • a resin mold was manufactured using a roll-to-roll optical nanoimprint method.
  • the width is 500 mm and the length is 180 m.
  • the layer structure is a structure in which a transfer layer having a thickness of 1.5 ⁇ m is provided on an easy-adhesion surface of a PET film having a thickness of 50 ⁇ m, and there is a concavo-convex structure transferred to the main surface of the transfer layer by an optical nanoimprint method.
  • the contact angle of water droplets with the concavo-convex structure surface of the resin mold was between 140 ° and 153 °.
  • the material of the transfer layer was the following mixture.
  • a first resist layer was formed on the uneven structure of the resin mold by a die coating method.
  • the 1st resist layer mixed the compound shown below, and prepared the titanium containing organic inorganic composite resist of a composition.
  • Titanium tetrabutoxide monomer manufactured by Wako Pure Chemical Industries
  • 3-acryloxypropyltrimethoxysilane manufactured by Shin-Etsu Silicone
  • phenyl-modified silicone manufactured by Dow Corning Toray
  • 1-hydroxy-cyclohexyl-phenyl-ketone Irgacure 184, manufactured by BASF
  • KF-945 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the molecular weight of KF-945 is estimated to be about 2500 and the molecular structure is represented by the following chemical formula (1).
  • the titanium-containing organic / inorganic composite resist was diluted with a mixed solvent in which a solvent A having a surface tension of 24.0 mN / m or less and a solvent B having a surface tension of 27.0 mN / m or more were mixed to obtain a coating solution. .
  • a mixed solvent in which a solvent A having a surface tension of 24.0 mN / m or less and a solvent B having a surface tension of 27.0 mN / m or more were mixed to obtain a coating solution.
  • the filling speed of the first resist layer was controlled by controlling the discharge rate at a coating speed of 10 m / min. After coating, air at 120 ° C. was blown and dried, and then wound up and collected.
  • the resin mold on which the first resist layer was formed was analyzed to grasp the state of the first resist layer.
  • the first resist layer was filled in the concave portion of the concave-convex structure of the resin mold.
  • a residue (aggregate) of the first resist layer on the order of several nanometers was sometimes observed on the upper surface of the convex portion of the concavo-convex structure of the resin mold, but the first resist layer was observed on the upper surface. A thick film was not formed. Further, regarding die coating, it was confirmed that the filling amount of the first resist layer was changed by changing the discharge amount of the coating liquid, and the filling diameter of the first resist layer was changed accordingly.
  • the film forming method was the same as that for the first resist layer.
  • the second resist layer was a mixture having the following composition and diluted with a solvent having a surface tension of 25.0 mN / m or less to obtain a coating solution.
  • Epoxy novolak resin having a acryloyl group modification rate of 100%, dipentaerythritol polyacrylate, and 2,2-dimethoxy-1,2-diphenylethane-1-one were mixed at a ratio of 80 g: 20 g: 4.5 g. material.
  • Drying was performed at 105 ° C. After drying, a PE / EVA protective film having a haze (turbidity) of 10% or less was bonded, wound and collected.
  • the manufactured nano-processed sheet was analyzed, and the states of the first resist layer and the second resist layer were grasped.
  • a scanning electron microscope, a transmission electron microscope, and energy dispersive X-ray spectroscopy were used in combination.
  • the first resist layer did not change before and after the second resist layer was formed.
  • the second resist layer could be formed so as to flatten the uneven structure of the resin mold and the first resist layer.
  • the film thickness can be controlled by changing the discharge amount of the die coat film formation. That is, the discharge amount of the die coat film formation was controlled to change the filling diameter of the first resist layer and the film thickness of the second resist layer.
  • a two-layer resist layer composed of a first resist layer and a second resist layer was transferred onto the main surface of sapphire.
  • etching for processing the resist layer and etching for processing sapphire were continuously performed in the same chamber.
  • Oxygen gas was used for etching the resist layer.
  • the first resist layer functions as an etching mask for the second resist layer, and the second resist layer is etched until the main surface of sapphire is partially exposed.
  • the etching conditions were a processing gas pressure of 1 Pa and a processing power of 300 W.
  • reactive ion etching using a mixed gas of BCl 3 gas and Cl 2 gas was performed to etch sapphire.
  • sapphire was etched using the second resist layer as an etching mask.
  • the processing conditions were appropriately changed according to the pattern.
  • the etched sapphire was taken out and washed with a solution in which sulfuric acid and hydrogen peroxide were mixed at a weight ratio of 2: 1. At this time, the temperature of the treatment liquid was controlled to 100 ° C. or higher.
  • a pattern was formed on the main surface of the manufactured sapphire.
  • the shape of the pattern (diameter ⁇ , height H of the convex bottom) can be arbitrarily adjusted depending on the filling diameter of the first resist layer and the thickness of the second resist layer of the nano-processed sheet, and the dry etching processing conditions. It was.
  • a low-temperature growth buffer layer of Al x Ga 1-x N (0 ⁇ x ⁇ 1) was formed as a buffer layer in a thickness of 100 mm.
  • undoped GaN was deposited as an undoped first semiconductor layer.
  • Si-doped GaN was formed as a doped first semiconductor layer on the obtained substrate.
  • the layers were alternately stacked so that there were 6 layers and 7 barrier layers.
  • Mg-doped AlGaN, undoped GaN, and Mg-doped GaN were laminated as a second semiconductor layer so as to include an electroblocking layer, to obtain a laminated semiconductor layer.
  • ITO ITO was formed as a transparent conductive film, and the leakage current was measured after the electrode forming step.
  • the sapphire substrate was polished to a thickness of 160 ⁇ m and a reflective layer was provided on the back surface.
  • a reflective layer was provided on the back surface.
  • an Ag—Pd—Cu alloy was formed.
  • a gold-plated TO can was joined with an Ag paste, and wire bonding was performed to pass a current between the p electrode pad and the n electrode pad, and the light emission output was measured.
  • the chip size was 350 ⁇ m square, the current was 20 mA, and the emission wavelength was 450 nm.
  • Evaluation was performed on the following four items. First, it is taken out when the first semiconductor layer is formed on the optical substrate, and the surface flatness of the obtained semiconductor layer is observed with a field of view of 200 ⁇ m by AFM, and the root mean square roughness (RMS) at that time is measured. It was measured. The case where RMS was 10 nm or less was considered good. Next, an X-ray rocking curve was obtained, and a half width (XRC-FWHM) for GaN (102) was obtained. Here, it is determined that 350 arcsec or less is good. Further, the leakage current in the substrate surface when -5 V was applied was measured and determined to be 0.01 mA or less. Finally, the light output of the obtained semiconductor light emitting device was measured with an integrating sphere.
  • RMS root mean square roughness
  • Comparative Example 1 is a hexagonal array with an average pitch of 700 nm. Since the distance between the bottoms of the protrusions (width of the flat part) is as narrow as 50 nm and there are no recesses as easy-growing parts, the crystallinity is poor, and the surface roughness after film formation is reduced as shown in Table 2 below. Was found to be large.
  • This is an optical base material substantially free from recesses, prepared by wet etching.
  • the missing part of the mask becomes a flat part on the optical substrate and becomes an easy-growing part, so that the crystallinity is improved with respect to Comparative Example 1, but the degree is small, and the main part after film formation is small. It was found that the surface was rough and the leakage current was large.
  • Example 1 is an optical substrate using a resist having the same tooth-missing arrangement as that of Comparative Example 1, but formed by dry etching and provided with a recess as an easy growth part. It turned out that crystallinity improves rather than the comparative example A because the recessed part as an easily-growth part has predetermined
  • Example 2 is an optical base material which is formed by dry etching using a resist provided with a tooth missing portion in a triple hexagonal array and provided with a concave portion as an easy growth portion. In this case, it has been found that the crystallinity is improved by providing the concave portion as the easy growth portion. Further, since the side surface of the concave portion has an angle different from that of the flat portion, it is estimated that the light extraction efficiency is improved and the output as the element is improved.
  • the flatness is high and the leakage current can be suppressed. It is estimated that the in-plane uniformity of the obtained semiconductor light emitting device is high.
  • Example 3 the length of one side is 2 ⁇ 3P0 in the arrangement of FIG.
  • the height of the convex portion formed on the lower surface of the semiconductor layer was 40 nm.
  • Table 2 it was found that by improving the light extraction efficiency LEE while keeping the crystallinity high, the light emission output was improved, the surface roughness was good, and the yield was high.
  • Example 4 The C surface is the main surface. Convex mask pattern by dry film resist imprint lithography using the nano-processed sheet described above on the C-plane main surface of a sapphire single crystal substrate having a single-side mirror finish and a diameter of 2 inches, as in Example 1. A dry film resist layer was formed.
  • the formed mask pattern is the same convex pattern as in FIG. 25.
  • the convex portions are arranged in a hexagonal lattice with a lattice constant of 0.70 ⁇ m pitch, and the flat portion on which no convex pattern is provided is 1.40 ⁇ m on a side. It is located repeatedly at each vertex of the regular hexagon.
  • Convex mask diameter 0.62 ⁇ m
  • Convex mask height 1.47 ⁇ m
  • reactive ion etching was performed with a mixed gas of BCl 3 gas and Cl 2 gas using an ICP dry etching apparatus using the mask pattern as a mask to etch the sapphire substrate.
  • the processing conditions were ICP: 150 W, BIAS: 50 W, and pressure 0.2 Pa.
  • the etched sapphire substrate was cleaned at 100 ° C. or higher with an SPM solution in which sulfuric acid and hydrogen peroxide solution were mixed at a weight ratio of 2: 1.
  • FIG. 43A is a schematic diagram showing a part of FIG. 42A.
  • Convex part diameter 0.66 ⁇ m
  • Convex height 0.38 ⁇ m
  • Plane part pitch (Pe) between convex parts 1.40 ⁇ m
  • Example 5 The sapphire substrate created in Example 4 was installed in an MOCVD apparatus to produce an LED. First, after heating in a hydrogen gas atmosphere and cleaning the surface, a low-temperature growth buffer layer of AlxGa1-xN (0 ⁇ x ⁇ 1) was formed in a thickness of 200 mm. Next, an undoped GaN layer was formed, the raw material composition ratio, the film formation temperature, and the film formation pressure were adjusted as appropriate to obtain a flat undoped GaN layer while filling the irregularities on the surface of the sapphire substrate with the GaN layer.
  • Si-doped GaN was deposited as an n-type GaN layer.
  • a strain absorption layer was provided.
  • an active layer of a multiple quantum well was formed as a light emitting layer.
  • the light emitting layer was composed of a well layer and a barrier layer composed of undoped InGaN and Si-doped GaN.
  • the thicknesses of the layers were 25 mm and 130 mm, respectively, and the layers were alternately stacked so that there were 6 well layers and 7 barrier layers.
  • Mg-doped AlGaN, undoped GaN, and Mg-doped GaN were laminated so as to include an electroblocking layer.
  • an ITO film was formed and etched, and then an electrode pad was attached to obtain an LED of this example.
  • Example 6 A dry film resist in which a convex mask pattern is formed by a dry film resist imprint lithography method on the surface of the C-plane main surface of a single-sided sapphire substrate having a single-side mirror finish and a diameter of 2 inches, with the C-plane as the main surface A layer was formed.
  • the formed mask pattern is the same convex pattern as in FIG. 25.
  • the convex portions are arranged in a hexagonal lattice with a lattice constant of a pitch of 1.20 ⁇ m, and the flat portion on which the convex pattern is not provided has a side of 2.40 ⁇ m. It is located repeatedly at each vertex of the regular hexagon.
  • Convex mask diameter 1.00 ⁇ m
  • Convex mask height 1.55 ⁇ m
  • the sapphire substrate was etched by the ICP dry etching apparatus as in Example 1 using the mask pattern as a mask and then washed.
  • a gold-plated TO can was joined with an Ag paste and wire-bonded to connect between the p-electrode pad and the n-electrode pad, and sealed in a hemisphere with a resin having a refractive index of 1.46.
  • a current was passed through the device, and the light emission output was measured.
  • the chip size was 350 ⁇ m square, the current was 20 mA, and the emission wavelength was 450 nm.
  • the crystal quality of the undoped GaN layer was evaluated by measuring the X-ray rocking curve half width (XRC-FWHM) of GaN (102). It is shown in Table 3 below.
  • Example 3 A sapphire single crystal substrate having a C-plane with a single-sided mirror finish similar to that in Example 4 as a main surface was prepared, and a dry film resist layer on which a convex mask pattern was formed was formed by a dry film resist imprint lithography method. .
  • the formed mask pattern was a simple hexagonal lattice convex pattern.
  • Convex mask diameter 0.62 ⁇ m
  • Convex mask height 1.47 ⁇ m
  • the sapphire substrate was etched by reactive ion etching with a mixed gas of BCl 3 gas and Cl 2 gas using the mask pattern as a mask by an ICP dry etching apparatus. At this time, the etching conditions were adjusted so that the diameter of the convex portion obtained on the sapphire substrate was smaller than that in Example 1.
  • the etched sapphire substrate was washed with an SPM solution in which sulfuric acid and hydrogen peroxide were mixed at a weight ratio of 2: 1.
  • the temperature of the treatment liquid was controlled to 100 ° C. or higher.
  • FIG. 43B is a schematic diagram illustrating a part of FIG. 42B.
  • Convex part diameter 0.60 ⁇ m
  • Convex height 0.34 ⁇ m
  • Example 5 a flat undoped GaN layer was formed on the surface of the sapphire substrate by the MOCVD apparatus on the surface of the sapphire substrate.
  • Table 3 shows the XRC0FWHM measurement results of the obtained undoped GaN layer.
  • Example 4 A sapphire single crystal substrate having a C-plane with a single-sided mirror finish similar to that in Example 4 as a main surface was prepared, and a dry film resist layer on which a convex mask pattern was formed was formed by a dry film resist imprint lithography method. .
  • the formed mask pattern is the same convex pattern as in Example 4.
  • the convex part is arranged in a hexagonal lattice with a pitch of 0.70 ⁇ m, and the flat part without the convex pattern is 1 side 1. It is located at each vertex of a 40 ⁇ m regular hexagon.
  • Convex mask diameter 0.62 ⁇ m
  • Convex mask height 1.47 ⁇ m
  • Example 4 reactive ion etching was performed with a mixed gas of BCl 3 gas and Cl 2 gas using an ICP dry etching apparatus with the mask pattern as a mask to etch the sapphire substrate. At this time, etching conditions were adjusted so that the diameter of the convex part formed on a sapphire substrate became smaller than Example 4.
  • the etched sapphire substrate was washed with an SPM solution in which sulfuric acid and hydrogen peroxide were mixed at a weight ratio of 2: 1.
  • the temperature of the treatment liquid was controlled to 100 ° C. or higher.
  • FIG. 43C is a schematic diagram illustrating a part of FIG. 42C.
  • Convex part diameter 0.60 ⁇ m
  • Convex height 0.34 ⁇ m
  • Plane part pitch (Pe) between convex parts 1.40 ⁇ m
  • Example 5 a flat undoped GaN layer was formed on the surface of the sapphire substrate by the MOCVD apparatus on the surface of the sapphire substrate.
  • Table 3 below shows the XRC-FWHM measurement results of the obtained undoped GaN layer.
  • Example 5 A sapphire single crystal substrate having a single-sided mirror-finished C-plane as the main surface similar to that in Example 1 was prepared, and a dry film resist layer on which a convex mask pattern was formed was formed by a dry film resist imprint lithography method. After that, a sapphire substrate having the next convex part and flat part was obtained by dry etching.
  • Convex diameter 1.19 ⁇ m
  • Convex height 0.65 ⁇ m
  • Example 6 20 of the semiconductor light-emitting elements obtained from the 2-inch substrate were mounted, and the average of the light output was obtained.
  • a gold-plated TO can was joined with an Ag paste and wire-bonded to connect between the p-electrode pad and the n-electrode pad, and sealed in a hemisphere with a resin having a refractive index of 1.46.
  • a current was passed through the device, and the light emission output was measured.
  • the chip size was 350 ⁇ m square, the current was 20 mA, and the emission wavelength was 450 nm.
  • the crystal quality of the undoped GaN layer was evaluated by measuring the X-ray rocking curve half width (XRC-FWHM) of GaN (102). It is shown in Table 3 below.
  • the XRC-FWHM of the obtained undoped GaN layer in the substrate for semiconductor light emitting device of this example is much smaller than the XRC-FWHM of the GaN layer obtained in the substrate for semiconductor light emitting device of the prior art.
  • the FWHM of GaN (102) obtained from XRC and the crystal dislocation defect density, and if the value is small, it can be said that the crystal dislocation defect density is low and the crystal quality is good and the crystal quality is good. Is a GaN layer having good crystal quality.
  • the laminated semiconductor layer formed on the undoped GaN layer has the same crystal lattice, the crystal dislocation defects present in the undoped GaN layer are not eliminated, and the crystal dislocation defect density is almost the same. That is, a laminated semiconductor layer having a good crystal quality can be obtained from an undoped GaN layer having a low crystal dislocation defect density, and the resulting LED can exhibit high internal quantum efficiency.
  • Example 7 to 9 and Comparative Examples 6 to 9 Similarly to Example 1, a pattern was formed on the main surface of the sapphire substrate.
  • the shape of the pattern (the diameter ⁇ of the bottom of the convex part, the height H) could be arbitrarily adjusted according to the filling diameter of the first resist layer of the nano-processed sheet, the film thickness of the second resist layer, and the dry etching processing conditions. .
  • a low-temperature growth buffer layer of Al x Ga 1-x N (0 ⁇ x ⁇ 1) was formed as a buffer layer in a thickness of 100 mm.
  • the subsequent film formation was performed including a commercially available patterned sapphire substrate.
  • undoped GaN was deposited as an undoped first semiconductor layer.
  • the substrate was taken out, and the surface flatness of the obtained semiconductor layer was observed with a field of view of 200 ⁇ m by AFM, and the mean square surface roughness (RMS) at that time was measured for comparative evaluation.
  • the RMS was 10 nm. The following cases were judged as good.
  • Si-doped GaN was formed as a doped first semiconductor layer on the obtained substrate.
  • a strain absorption layer is provided, and then a well layer (undoped InGaN) and a barrier layer (Si-doped GaN) constituting the active layer of the multiple quantum well (60 ⁇ ⁇ ⁇ , 250 ⁇ ) as the light emitting semiconductor layer, respectively.
  • the layers were alternately stacked so that there were 6 well layers and 7 barrier layers.
  • Mg-doped AlGaN, undoped GaN, and Mg-doped GaN were stacked as the second semiconductor layer so as to include the electroblocking layer to obtain a stacked semiconductor layer.
  • ITO ITO was formed as a transparent conductive film, and the leakage current was measured after the electrode forming step.
  • the internal quantum efficiency IQE greatly depends on the density of crystal defects. Therefore, crystallinity was evaluated by X-ray. That is, an X-ray rocking curve was acquired, and a half width (XRC-FWHM) for GaN (102) was acquired.
  • the sapphire substrate was polished to a thickness of 160 ⁇ m and a reflective layer was provided on the back surface.
  • a reflective layer was provided on the back surface.
  • an Ag—Pd—Cu alloy was formed.
  • a gold-plated TO can was joined with an Ag paste, and wire bonding was performed to pass a current between the p electrode pad and the n electrode pad, and the light emission output was measured.
  • the chip size was 350 ⁇ m square, the current was 20 mA, and the emission wavelength was 450 nm.
  • Comparative Example 6 is a semiconductor light emitting device made of a commercially available patterned sapphire substrate. The crystallinity and surface roughness were good, the leakage current was small, and the yield was 80%. As shown in Table 4 below, this light emission output was set to 1, and the light emission output of each sample was normalized.
  • Comparative Example 7 is the case where the average pitch is 700 nm and the hexagonal arrangement.
  • the bottom diameter D of the convex portion 3 having the concavo-convex structure was 450 nm, and the duty was 0.64. Since there are many flat portions, the association of nuclei effectively occurs during crystal growth, so that both crystallinity and surface roughness are good, the leakage current is small, and the yield is equivalent to a commercially available patterned sapphire substrate.
  • the improvement of the light extraction efficiency LEE is small, and as shown in Table 4 below, the light emission The output ratio was found to be lower than the commercially available patterned sapphire substrate.
  • Comparative Example 8 is the case where the average pitch is 700 nm and the hexagonal arrangement, but the bottom diameter is larger than that of Comparative Example 6. Specifically, the duty is increased to 0.94 by setting the bottom diameter to 660 nm.
  • the light extraction efficiency LEE is expected to be improved by reducing the number of flat portions on the main surface side of the optical base material, the inside of the optical base material is smaller than that of Comparative Example 7 due to a decrease in crystallinity when the semiconductor layer is formed. It was found that the quantum efficiency IQE was lowered and the light emission output ratio was lower than that of a commercially available patterned sapphire substrate as shown in Table 4 below.
  • Comparative Example 7 and Comparative Example 8 are not formed with a tooth missing portion in this example.
  • Example 7 based on the shape of Comparative Example 7, an uneven structure was formed with the arrangement shown in FIG. That is, as shown in FIG. The height of the convex portion formed on the lower surface of the semiconductor layer was 30 nm.
  • the repetition period L of the unit cell (see FIG. 5) was 3P0, which was 2100 nm.
  • Table 3 the light output is improved and the surface roughness is good by improving the light extraction efficiency LEE while maintaining high crystallinity as compared with Comparative Example 7 and Comparative Example 8. I found that the yield was high.
  • Example 8 a concavo-convex structure was formed in the arrangement shown in FIG. 25 based on the shape of Comparative Example 7. That is, as shown in FIG. 25, the missing portion was regularly formed.
  • the height of the convex portion formed on the lower surface of the semiconductor layer was 30 nm.
  • the repetition period L of the unit cell (see FIG. 5) was 2P0, which was 1400 nm.
  • the light output is improved and the surface roughness is good by improving the light extraction efficiency LEE while maintaining high crystallinity as compared with Comparative Example 7 and Comparative Example 8. I found that the yield was high.
  • Example 9 the length of one side is 2 ⁇ 3P0 in the arrangement of FIG.
  • the height of the convex portion formed on the lower surface of the semiconductor layer was 30 nm.
  • Table 4 it was found that by improving the light extraction efficiency LEE while keeping the crystallinity high, the light emission output was improved, the surface roughness was good, and the yield was high.
  • Comparative Example 9 is a case where the duty is reduced to 0.80 based on Example 7. At this time, crystal nuclei are likely to be formed on the narrow flat part between the convex parts of the normal part, so that the selective crystal growth from the tooth-missing part is not sufficiently exhibited, and the crystallinity is lowered. It is estimated that the quantum efficiency IQE is decreasing. Moreover, since the ratio which a narrow flat part occupies is large, it turns out that the improvement of light extraction efficiency LEE is also small.
  • Example 10 to 13 In the same manner as in Example 1, a growth substrate was prepared, a CVD film was formed on the substrate, and an underlayer was formed. Thereafter, a laminated semiconductor was formed to form an electrode to obtain a semiconductor light emitting device.
  • Table 5 shows the growth substrates that were created.
  • the substrate used in Example 10 is as follows. This is state A-1 in which the growth promoting portions are scattered around the growth suppressing portion.
  • the growth promoting part is located at a lattice point of a regular triangular lattice, and the period Pe of the growth promoting part which is the side of the lattice is 3118 nm. Further, the surface roughness Ra of the growth promoting portion was 0.17 nm.
  • the outer shape of the growth promoting portion is a shape that is shown in FIG. 35A, in which each corner portion is recessed so as to draw an arc on the inside with respect to the regular hexagon, and each side draws 0 arc on the inside. .
  • the growth suppression part was comprised from several convex part, and surface roughness Ra was 98 nm.
  • the duty of the concavo-convex structure constituting the growth suppressing part is 1.12, and the diameter of the convex part is larger than the period Pn of the concavo-convex structure.
  • the said convex part was located in the lattice point of a regular triangular lattice, and the external shape of the convex part bottom part was the hexagon which the corner
  • the shape of the cross section of the convex portion was such that the diameter became narrower from the bottom to the top, and the top of the convex portion was a rounded corner.
  • the direction of the equilateral triangle that defines the arrangement of the growth promoting portion was different from the orientation of the equilateral triangle that determines the arrangement of the convex portions of the growth suppressing portion by 30 °.
  • the ratio (Pe / Pn) between the growth promoting portion interval Pe and the convex portion interval Pn was 3.46.
  • the substrate used in Example 11 is different from the substrate of Example 10 described above only in the following contents. That is, the period Pe of the growth promoting part was 6235 nm. Further, the surface roughness Ra of the growth promoting portion was 0.15 nm. Further, the surface roughness Ra of the growth suppressing portion was 102 nm. The duty of the concavo-convex structure constituting the growth suppressing portion was 1.14. The ratio (Pe / Pn) was 6.93.
  • the substrate used in Example 12 is as follows.
  • the growth promoting part surrounds the growth suppressing part.
  • the growth promoting portions are located at lattice points and sides of a lattice in which regular hexagons share only sides and are closely packed.
  • the period Pe of the growth promoting part which is the side of the lattice was 1400 nm.
  • the surface roughness Ra of the growth promoting part was 0.19 nm.
  • each regular hexagonal side has a protruding portion that is convex downward from the center toward the outside, and this number is one each in the vertical direction and is the shape referenced in FIG. 33B. there were.
  • the growth suppression part was comprised from several convex part, and surface roughness Ra was 75 nm.
  • the duty of the concavo-convex structure constituting the growth suppressing portion was 0.97, and the diameter of the convex portion was smaller than the period Pn of the concavo-convex structure.
  • the said convex part was located in the lattice point of a regular triangular lattice, and the external shape of the convex part bottom part was an intermediate shape of a regular hexagon and a circle
  • the shape of the cross section of the convex portion was such that the diameter became narrower from the bottom to the top, and the top of the convex portion was a rounded corner.
  • the direction of the hexagon that defines the arrangement of the growth promoting portion was the same as the direction of the hexagon formed by the equilateral triangle that determines the arrangement of the convex portions of the growth suppressing portion.
  • the ratio (Pe / Pn) was 2.
  • the substrate used in Example 13 is as follows. This is state A-1 in which the growth promoting portions are scattered around the growth suppressing portion.
  • the growth promoting part is located at a lattice point of a lattice in which regular hexagons share only sides and are closely packed.
  • the period Pe of the growth promoting part which is the side of the lattice was 1400 nm.
  • the surface roughness Ra of the growth promoting portion was 0.17 nm.
  • the outer shape of the growth promoting portion is a shape that is shown in FIG. 35A, in which each corner portion is recessed so as to draw an arc on the inside with respect to the regular hexagon, and each side draws 0 arc on the inside. .
  • the growth suppression part was comprised from several convex part, and surface roughness Ra was 66 nm.
  • the duty of the concavo-convex structure constituting the growth suppressing portion was 1.06, and the diameter of the bulge was larger than the period Pn of the concavo-convex structure.
  • the convex portions were located at lattice points of a regular triangular lattice, and were regular hexagons with rounded corners.
  • the shape of the cross section of the convex portion was such that the diameter became narrower from the bottom to the top, and the top of the convex portion was a rounded corner.
  • the direction of the hexagon that defines the arrangement of the growth promoting portion was the same as the direction of the hexagon formed by the equilateral triangle that determines the arrangement of the convex portions of the growth suppressing portion.
  • the ratio (Pe / Pn) was 2.
  • the substrate used in Comparative Example 10 differs from the substrate of Example 10 described above only in the following contents. That is, the surface roughness Ra of the growth promoting portion was 1.60 nm. Further, the surface roughness Ra of the growth suppressing portion was 99 nm. In addition, the duty of the concavo-convex structure constituting the growth suppressing portion was 0.96.
  • the substrate used in Comparative Example 11 differs from the substrate of Example 10 described above only in the following contents. That is, the surface roughness Ra of the growth promoting part was 0.18 nm. Further, the surface roughness Ra of the growth suppressing portion was 4 nm. Further, the duty of the concavo-convex structure constituting the growth suppressing portion was 0.01.
  • a CVD process was applied to the growth substrate to produce an LED.
  • a 200 x low temperature growth buffer layer of Al x Ga 1-x N (0 ⁇ x ⁇ 1) was formed.
  • undoped GaN was deposited at a temperature of 1100 to 1200 ° C., a V / III ratio between 240 and 280, and an ammonia flow rate between 190 and 220 sccm.
  • the film formation pressure was switched from 400 to 600 Torr to 150 to 250 Torr during the film formation to improve the flatness of the underlayer.
  • the low temperature growth buffer layer and undoped GaN are also referred to as an underlayer.
  • Si-doped GaN was deposited as an n-type GaN layer.
  • a strain absorption layer was provided. Thereafter, an active layer of a multiple quantum well was formed as a light emitting layer.
  • the light emitting layer was composed of a well layer and a barrier layer composed of undoped InGaN and Si-doped GaN.
  • the thicknesses of the layers were 25 mm and 130 mm, respectively, and the layers were alternately stacked so that there were 6 well layers and 7 barrier layers.
  • Mg-doped AlGaN, undoped GaN, and Mg-doped GaN were laminated so as to include an electroblocking layer.
  • an ITO film was formed and etched, and then an electrode pad was attached.
  • Table 6 shows that, in the growth substrate of this example, the XRC-FWHM of the GaN layer is significantly reduced by suitably controlling the surface roughness Ra of the growth promoting portion and the growth suppressing portion.
  • the FWHM of GaN (102) obtained from XRC is a correlation between the FWHM of GaN (102) obtained from XRC and the dislocation density of the crystal. If the value is small, it can be said that the GaN layer has good crystal quality with few crystal defects.
  • GaN (102) is a GaN layer having a good crystal quality of 350 arcsec.
  • the stacked semiconductor layers formed on the undoped GaN layer have the same crystal lattice. Crystal defects present in the undoped GaN layer do not disappear, and the crystal defect density is almost the same. That is, a laminated semiconductor layer having a good crystal quality can be obtained from an undoped GaN layer with few crystal defects. Therefore, when the XRC-FWHM of GaN (102) is lower than 350 arcsec, high internal quantum efficiency can be expressed.
  • the epitaxial film formation was repeatedly performed using the growth substrates of Examples and Comparative Examples.
  • One criterion is that the XRC-FWHM of GaN (102) is lower than 350 arcsec from the above-described embodiment. In the case of the example, it was found that even if the standard deviation was taken into account, it was less than 250 arcsec. From the above, it can be seen that stable epitaxial growth that can withstand the LED manufacturing process is possible.
  • the turbidity increased as the surface roughness Ra of the growth suppressing portion increased as a tendency, although it depends on the arrangement of the growth promoting portions.
  • the surface roughness Ra of the growth suppressing portion started to saturate from the range of 70 to 100 nm with the turbidity curve rising from about 5 nm. Therefore, it was found that the growth substrate described in the examples has very strong optical scattering properties. That is, it can be said that the effect of eliminating the waveguide mode formed inside the light emitting diode is great.
  • Examples 14 to 17 and Comparative Examples 12 and 13 In the same manner as in Example 1, a growth substrate was prepared, a CVD film was formed on the growth substrate, and an underlayer was formed. Thereafter, a laminated structure was formed, electrodes were formed, and a semiconductor light emitting device was obtained.
  • the produced growth substrates are shown in Table 7.
  • the substrates used in Example 14 are as follows. This is state A-1 in which the growth promoting portions are scattered around the growth suppressing portion.
  • the growth promoting part is located at a lattice point of a regular triangular lattice, and the period Pe of the growth promoting part which is the side of the lattice is 3118 nm.
  • the growth suppressing part is composed of a plurality of convex parts having a pitch of 900 nm.
  • the duty is 0.99, and the diameter of the convex portion is larger than the period Pn of the concave-convex structure.
  • the said convex part was located in the lattice point of a regular triangular lattice, and was circular.
  • the shape of the cross section of the convex portion was such that the diameter became narrower from the bottom to the top, and the top of the convex portion was a rounded corner.
  • the direction of the equilateral triangle that defines the arrangement of the growth promoting portion was different from the orientation of the equilateral triangle that determines the arrangement of the convex portions of the growth suppressing portion by 30 °.
  • the conformity rate was 0.93.
  • the substrate used in Example 15 was different from the substrate of Example 14 described above only in the relevance rate, and the relevance rate was 0.79.
  • the substrate used in Example 16 is as follows.
  • the growth promoting part surrounds the growth suppressing part.
  • the growth promoting portions are located at lattice points and sides of a lattice in which regular hexagons share only sides and are closely packed.
  • the period Pe of the growth promoting portion which is the side of the lattice, is 1400 nm.
  • the growth suppressing portion is composed of a plurality of convex portions having a pitch of 700 nm.
  • the duty is 0.89, and the diameter of the protrusion is smaller than the period Pn of the uneven structure.
  • the said convex part was located in the lattice point of a regular triangular lattice, and the external shape of the convex part bottom part was circular.
  • the shape of the cross section of the convex portion was such that the diameter became narrower from the bottom to the top, and the top of the convex portion was a rounded corner.
  • the direction of the hexagon that defines the arrangement of the growth promoting portion was the same as the direction of the hexagon formed by the equilateral triangle that determines the arrangement of the convex portions of the growth suppressing portion.
  • the conformity rate was 0.97.
  • the substrate used in Example 17 was different from the substrate of Example 16 described above only in the precision, and the precision was 0.71.
  • the substrate used in Comparative Example 12 was different from the substrate of Example 14 described above only in the relevance rate, and the relevance rate was 0.43.
  • the substrate used in Comparative Example 13 was different from the substrate of Example 14 described above only in the precision, and the precision was 0.49.
  • Example 8 a CVD process was applied to each substrate in the same manner as in Example 1 to create a semiconductor light emitting device. Further, crystal defects in each substrate were evaluated by an X-ray rocking curve. The acquired data is the full width at half maximum XRC-FWHM for GaN (102). The results are shown in Table 8.
  • the stacked semiconductor layers formed on the undoped GaN layer have the same crystal lattice. Crystal defects present in the undoped GaN layer do not disappear, and the crystal defect density is almost the same. That is, a laminated semiconductor layer having a good crystal quality can be obtained from an undoped GaN layer with few crystal defects. Therefore, when the XRC-FWHM of GaN (102) is lower than 350 arcsec, high internal quantum efficiency can be expressed.
  • the epitaxial film formation was repeatedly performed using the growth substrates of Examples and Comparative Examples. From the above example, one criterion is that the XRC-FWHM of GaN (102) is less than 350 arcsec. In the case of the example, it was found that even if the standard deviation was taken into account, it was less than 350 arcsec. From the above, it can be seen that stable epitaxial growth that can withstand the LED manufacturing process is possible.
  • Example 18 to 21 and Comparative Examples 14 to 16 In the same manner as in Example 1, a growth substrate was prepared, a CVD film was formed on the growth substrate, and an underlayer was formed. Thereafter, a laminated structure was formed, electrodes were formed, and a semiconductor light emitting device was obtained.
  • the produced growth substrates are shown in Table 9.
  • Evaluation was performed on the following two items. First, it was taken out when the first semiconductor layer was formed on the growth substrate, an X-ray rocking curve was obtained, and a half width (XRC-FWHM) with respect to GaN (102) was obtained. Here, it is determined that 350 arcsec or less is good. Next, the light output of the obtained semiconductor light emitting device was measured with an integrating sphere.
  • Comparative Example 14 is a hexagonal array with an average pitch of 1200 nm. It was found that the distance between the bottoms of the protrusions (the width of the flat part) was as narrow as 50 nm and there was no growth promoting part, so that the crystallinity was poor and the performance as a semiconductor light emitting device was low.
  • Comparative Example 15 is an element in which a growth promoting portion is provided in the arrangement shown in FIG. 39, and the thickness of the transparent conductive film layer is 200 nm.
  • the light output in this case was set to 1. It can be seen that the presence of the growth promoting portion improves the crystallinity as compared with Comparative Example 14.
  • Comparative Example 16 has the same arrangement as Comparative Example 15 and the transparent conductive film layer has a thickness of 15 nm.
  • the light emission output ratio in this case was lower than that in Comparative Example 15. It is presumed that the current is not effectively injected because the transparent conductive film is thin.
  • Example 18 has the same arrangement of growth promoting portions as Comparative Example 15, but the thickness of the transparent conductive film is within a predetermined range. With the growth promoting part, the crystallinity is improved, and the thickness of the transparent conductive film is within a predetermined range, so that the light extraction efficiency is effectively improved, resulting in higher light output than the comparative example. It can be seen that
  • Example 19 is an array of growth promoting portions shown in FIG. 24, in which the thickness of the transparent conductive film is within a predetermined range. As in Example 18, it can be seen that high light output is obtained.
  • Examples 20 and 21 are the same arrangements of growth promoting portions as those of Examples 18 and 19, respectively, and the thickness of the transparent conductive film was changed. As in Examples 18 and 19, it can be seen that high light output is obtained.
  • the plurality of epitaxial growth promoting portions and the plurality of epitaxial growth suppressing portions provided on the surface of the semiconductor light emitting device substrate improve crystal quality by reducing crystal transition defects in the semiconductor layer formed on the substrate surface.
  • the internal quantum efficiency IQE can be improved, and the light extraction efficiency LEE can be increased by eliminating the waveguide mode by light scattering.
  • the luminous efficiency of the LED can be improved. Therefore, since the substrate for semiconductor light emitting device and the semiconductor light emitting device of the present invention have high luminous efficiency, it is possible to effectively use electric power and greatly contribute to energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

特に従来に比べて優れた発光効率を有する半導体発光素子を歩留りよく製造することが可能な半導体膜、及びそれを用いた半導体発光素子を提供すること。本発明は、主面の一部又は全面に凹凸構造(20)が形成された光学基材であって、前記凹凸構造が規則的な歯抜け部を有している。前記凹凸構造は、凸部(21)と凸部間底部(平坦部)(22)と、当該凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部(23)(歯抜け部)とで構成される。また、前記凸部は平均ピッチP0で配置され、前記歯抜け部は正多角形の頂点、又は、前記頂点間を結ぶ前記正多角形の辺上に配置され、前記正多角形の辺の長さは平均ピッチP0よりも長いことが好ましい。

Description

光学基材、半導体発光素子用基板、及び半導体発光素子
 本発明は、凹凸構造を有する光学基材、並びに半-導体結晶をその表面にエピタキシャル成長させるための半導体発光素子用基板、及び、これら基板から得られる半導体発光素子に関する。
 半導体層を利用した半導体発光素子である発光ダイオード(LED)は、従来の蛍光灯や白熱電球等の旧来の発光装置と比較し、小型で電力効率が高く、オンオフ応答性が速いなどの特性を有し、且つ、すべて固体で構成されているため、振動に強く機器寿命が長いなどの多くの利点を有している。
 中でも、青色LEDに代表されるGaN系半導体発光素子は、単結晶基板上にエピタキシャル成長でn層、発光層、p層を積層して製造され、基板として一般にサファイア単結晶基板やSiC単結晶基板が用いられる。しかしながら、例えば、サファイア結晶とGaN系半導体結晶との間には、格子不整合が存在するため、この格子不整合によって結晶転位欠陥が発生する(例えば、特許文献1参照)。この転位欠陥の密度は、1×10個/cmに達する。この結晶転位欠陥によって、LED内部での内部量子効率が下がり、結果として、LEDの発光効率が下がってしまう。
 また、GaN系半導体層の屈折率は、サファイア基材よりも大きいため、半導体発光層内で発生した光は、サファイア基材との界面から、臨界角以上の角度では出射せず、導光モードとなって減衰し、結果として外部量子効率が低下する問題があった。
 上記問題を解決するために、GaN系半導体層をエピタキシャル成長させるサファイア基板表面に、周期的な凹凸構造を設け、GaN系半導体層を、横方向成長モードを利用しエピタキシャル成長させる技術が報告されている(例えば特許文献1参照)。この技術によれば、半導体層のエピタキシャル成長の過程で、C面平面から成長した半導体層が凹凸構造を埋めるために、結晶転位欠陥(貫通転移欠陥)が減少し、得られる半導体層の結晶品質を向上させることができる。
 また、このように得られた半導体層とサファイア基板との界面には凹凸が存在するため、横方向に伝播する光が散乱され、それによって光取り出し効率が向上する(例えば特許文献2参照)。
 更に、上記した基板表面の凹凸構造による結晶品質向上のために、結晶成長の起点となる凸部を特定配列とする技術が報告されている(特許文献3参照)。
 また、規則配列された基板上の凸部の配置位置から、特定配置位置を取り除いた半導体発光素子基板が報告されている(特許文献4参照)。
 さらに、基板表面に小径凸部を有する大径凸部を配置した半導体発光素子用基板も報告されている(特許文献5参照)。
特開2006-352084号公報 特開2011-129718号公報 国際公開第2009/102033号パンフレット 特許第5707978号公報 国際公開第2015/053363号パンフレット
 LEDの発光効率を示す外部量子効率EQE(External Quantum Efficieney)を決定する要因として、電子注入効率EIE(Electron Injection Efficiency)、内部量子効率IQE(Internal Quantum Efficiency)及び光取り出し効率LEE(Light Extraction Efficiency)が挙げられる。このうち、内部量子効率IQEは、GaN系半導体結晶の結晶格子不整合に起因する結晶転位欠陥密度に依存する。光取り出し効率LEEは、基板に設けられた凹凸構造による光散乱により、GaN系半導体結晶層内部の導波モードを崩すことで改善される。
 そのため、LEDの発光効率を向上するためには、GaN系半導体結晶の結晶格子不整合に起因する結晶転位欠陥密度を減らし、かつ、基板に設けられた凹凸構造による光散乱の度合いを高めることが必要となる。
 しかしながら、特許文献1に記載の技術においては、半導体結晶の格子不整合に起因する結晶転位欠陥を減少させるためには、基板表面の凹凸構造における、結晶成長の起点となる谷部の平面密度を減少させる必要がある。しかしながら、平面密度を減少しすぎると、エピタキシャル成長に必要な格子面が適合した基板面(例えばサファイア基板のC面)の面積が減少するため、結晶成長初期のエピタキシャル膜の結晶面が安定せず、逆に、格子不整合に起因する結晶転位欠陥が増加する問題があった。
 特許文献2に記載の技術においても、基板表面に形成する凸部を密に配置することで、光取り出し効率を向上できるが、凸部間の隙間をなくすと、エピタキシャル成長の起点となる格子面が適合した基板面(例えばサファイア基板のC面)がなくなり、格子不整合に起因する結晶転位欠陥が増加し、結晶品質が低下し、結果として得られるLEDの発光効率が向上しない問題があった。
 凹凸構造の平均ピッチをP0、凹凸構造の底部径をDとすると、凸部間の平坦部の幅cは、c=P0-Dとなる。光取出し効率の向上は、屈折率が高い半導体層中の導波モードが凹凸構造によって崩されることで発現する。よって、光取出し効率の更なる向上には、全反射を抑制するために凸部間の平坦部の割合を減らすことが好ましい。即ちDを限りなくP0に近づけることになる。一方、半導体層は、成長面となる光学基材の平坦部から結晶成長を行う。平坦部の面積が小さいと、結晶成長初期に結晶核が十分に大きくなることができず、微小な結晶核の集合となり、配向が揃い難い。このようにcにはある程度の大きさが必要であるため、DをP0に近づけることはできない。平坦部の幅cがある程度の値よりも小さい領域では、半導体層の成膜を行うと核同士が上手く会合できず、発光層まで貫通する転移が多くなり、内部量子効率が低下してしまう。即ち、従来の凹凸構造では、光取出し効率を向上させようとすると、結晶性が低下する、というトレードオフの関係にあった。
 また、特許文献3に記載の技術においては、エピタキシャル成長の起点となる格子面が適合した基板面(例えばサファイア基板のC面)の凸面のパターンを特定パターンにすることで、結晶転移欠陥密度を減少させているが、凸面パターンのため、得られる半導体結晶膜中にボイドが発生しやすく、発生したボイドが光取り出し効率を低下させるため、結果として得られるLEDの発光効率が向上しない問題があった。この技術において、ボイドが発生しやすい理由は定かではないが、凸面上部の結晶成長速度が速いために、凸部間の谷部を結晶成長膜が埋める前に、上面がふさがれてしまうためと考えられる。
 更に、特許文献4においては、特定配置の凸部を有する基板により、得られる半導体発光素子の順電圧の増加を抑制できるとしているが、この技術では、得られる半導体結晶層の格子不整合に起因する結晶転位欠陥密度は増加し、半導体結晶層の結晶品質が低下する問題があった。一見、順電圧の増加を抑制し効率を向上できているようであるが、格子不整合に起因する結晶転位欠陥を通した漏れ電流が増加しているためであり、LEDの効率としては低下する問題もある。
 さらに、特許文献5に記載の技術においては、小凸部を表面に有する大径凸部を配置させた基板により、半導体層の製膜が行いやすく、光取り出し効率も向上するとしている。しかしながら、各々の凸部の大きさ、配置が一定でなく、不定値であるため、基板面内での均一性に劣り、特に、4”以上の大口径の半導体発光素子用基板においては、得られる半導体発光素子の性能変動が大きい問題があった。さらに、リーク電流が増加するため、基板全体の生産歩留まりが上がりにくい問題もあり、必ずしも工業生産上、有益ではなかった。
 以上のように、基板表面に凹凸構造を設け、半導体結晶の結晶格子不整合に起因する結晶転位欠陥密度を減少させるためには、ある程度以上の凸部間面積、あるいは、格子面が適合した基板面(例えばサファイア基板のC面)が必要となる。一方、光取り出し効率を向上させるためには、凹凸構造を密にし、できるだけ平面部がない構造が必要であり、両者はトレードオフの関係となり、必ずしも最適な基板表面の凹凸構造とは言えなかった。すなわち、従来の表面に凹凸構造を有する半導体発光素子用基板においては、LEDの発光効率を十分に向上できていない課題があった。
 さらに、本願発明者の検討によれば、上記内部量子効率IQEと光取り出し効率LEEとを改善しても、必ずしも良好な発光特性を示すLEDが得られないことがある。この1つの原因として、半導体層の内部の残留圧縮応力が原因と推定される。即ち、半導体に対する残留圧縮応力を改善する必要がある。これによりLEDの発光効率は更に改善され、さらには、LEDが高電流密度状態においても、優れた発光特性を示すと考えられる。
 本発明は、かかる点に鑑みてなされたものであり、半導体層中の結晶転位欠陥を減らすことにより内部量子効率IQEを改善しつつ、光散乱により導波モードを解消して光取り出し効率LEEを高めることにより、LEDの発光効率を向上させる表面構造を備えた光学基材、並びに半導体結晶をその表面にエピタキシャル成長させるための半導体発光素子用基板、及び、これら基板を使用して得られる半導体発光素子を提供することを目的とする。
 本発明は、主面に一部又は全面に凹凸構造が形成された光学基材であって、前記凹凸構造が規則的な歯抜け部を有していることを特徴とする。
 本発明の光学基材においては、前記凹凸構造は、凸部と凸部間底部と、当該凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部とで構成され、歯抜け部は、前記凹部であることが好ましい。
 本発明の光学基材においては、前記凸部は平均ピッチP0で配置され、前記歯抜け部は正多角形の頂点、又は、前記頂点間を結ぶ前記正多角形の辺上に配置され、前記正多角形の辺の長さは平均ピッチP0よりも長いことが好ましい。
 また本発明の光学基材においては、前記正多角形の辺の長さが、平均ピッチP0の2倍以上、5倍以下であることが好ましい。
 さらに本発明の光学基材においては、前記凹凸構造を構成する複数の前記歯抜け部は、正三角形格子の各格子点に設定された配置位置上に、正六角形の新たな単位格子として設定されるとともに、前記正六角形の頂点、または辺に相当する位置に設けられることが好ましい。
 またさらに、本発明の光学基材においては、前記凹凸構造を構成する複数の前記歯抜け部は、正三角形格子の各格子点に設定された配置位置上に、新たな正三角形格子として設定されるとともに、前記新たに設定される正三角形の頂点に相当する位置に設けられていることが好ましい。
 また本発明の光学基材においては、前記歯抜け部は、前記歯抜け部同士を結ぶ直線が、前記光学基材上に成膜される半導体層の結晶面のうち、結晶成長初期に会合する結晶面と直交するように、配置されることが好ましい。
 本発明における半導体発光素子用基板は、主面上に半導体結晶をエピタキシャル成長させるための半導体発光素子用基板である。
 本発明の半導体発光素子用基板においては、前記主面は複数のエピタキシャル成長促進部と、複数のエピタキシャル成長抑制部とを有して構成されており、前記エピタキシャル成長促進部は、その周囲を前記エピタキシャル成長抑制部で囲まれ、前記エピタキシャル成長抑制部は、少なくとも複数の前記凸部と前記凸部間底部とで構成されており、前記エピタキシャル成長促進部は、前記歯抜け部であり、前記主面と平行な平面を有することが好ましい。
 また、本発明の半導体発光素子用基板においては、前記エピタキシャル成長促進部は、前記凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部であり、前記主面と平行な平面を底部とする凹部であることが好ましい。
 さらに、複数の前記エピタキシャル成長促進部は、最近接する複数のエピタキシャル成長促進部間距離Peが、互いに等しいことが好ましい。
 さらに、前記エピタキシャル成長促進部の最近接するエピタキシャル成長促進部間距離Peと、前記エピタキシャル成長抑制部を構成する複数の前記凸部間の距離Pnは、下記式(1)を満たすことが好ましい。
 1.5≦Pe/Pn≦30 式(1)
 またさらには、前記エピタキシャル成長促進部の前記主面に対する面積比は、0.001以上0.2以下であることが好ましい。
 本発明の半導体発光素子用基板においては、前記主面は複数のエピタキシャル成長促進部と、複数のエピタキシャル成長抑制部とを有して構成されており、前記エピタキシャル成長抑制部は、その周囲を前記エピタキシャル成長促進部で囲まれ、あるいは、前記エピタキシャル成長抑制部は、前記エピタキシャル成長促進部で挟まれ、前記エピタキシャル成長抑制部は、少なくとも複数の前記凸部と前記凸部間底部とで構成されており、前記エピタキシャル成長促進部は、前記凹部であり、前記主面と平行な平面を底部とする凹部であることを特徴とする。
 本発明では、複数の前記エピタキシャル成長促進部は、最近接する複数のエピタキシャル成長促進部間距離Peが、互いに等しいことが好ましい。
 本発明では、前記エピタキシャル成長促進部の最近接するエピタキシャル成長促進部間距離Peと、前記エピタキシャル成長抑制部を構成する複数の前記凸部の周期Pnは、下記式(1)を満たすことが好ましい。
 1.5Pe≦Pe/Pn≦30 式(1)
 本発明では、前記エピタキシャル成長促進部の前記主面に対する面積比は、0.001以上0.2以下であることが好ましい。
 なお、前記エピタキシャル成長促進部は、歯抜け部であり、前記主面と平行な平面を有することが好ましい。
 ここで、前記エピタキシャル成長抑制部の、前記主面に対する面積比は、0.80以上0.999以下であることが好ましい。
 また、前記エピタキシャル成長抑制部は、少なくとも周期配置された複数の前記凸部で構成されていることが好ましい。
 また、本発明の半導体発光素子用基板においては、前記主面は複数のエピタキシャル成長促進部と、複数のエピタキシャル成長抑制部とを有して構成されており、前記エピタキシャル成長抑制部は、その周期を前記エピタキシャル成長促進部で囲まれ、あるいは、前記エピタキシャル成長抑制部は、前記エピタキシャル成長促進部で挟まれ、前記エピタキシャル成長抑制部は、少なくとも複数の前記凸部と前記凸部間底部とで構成されており、前記エピタキシャル成長促進部は、前記歯抜け部であり、前記主面と平行な平面を有することを特徴とする。
 また、前記エピタキシャル成長促進部は、前記凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部であり、前記主面と平行な平面を底部とする凹部であることが好ましい。
 本発明では、前記エピタキシャル成長抑制部の前記主面に対する面積比は、0.80以上0.999以下であることが好ましい。
 本発明では、前記エピタキシャル成長抑制部は、少なくとも周期配置された複数の前記凸部で構成されていることが好ましい。
 本発明の半導体発光素子基板においては、六方晶の結晶構造を有する単結晶基板であって、最近接する複数のエピタキシャル成長抑制部の最近接の方向と、前記半導体発光素子用基板の前記結晶構造のm面とが平行でないことが好ましい。
 本発明の半導体発光素子用基板においては、少なくとも第1主面を備えており、前記第1主面は、エピタキシャル成長促進部とエピタキシャル成長抑制部とを有しており、前記エピタキシャル成長促進部と前記エピタキシャル成長抑制部と、は下記要件A~Cを満たすことを特徴とする。
 A.点在する複数の前記エピタキシャル成長促進部の周囲を前記エピタキシャル成長抑制部にて囲んでいること、複数の前記エピタキシャル成長抑制部の周囲が前記エピタキシャル成長促進部にて囲まれていること、或いは、前記エピタキシャル成長抑制部が前記エピタキシャル成長促進部にて挟み込まれていること、
 B.前記エピタキシャル成長抑制部に対応する算術平均粗さRaが、5nm以上であること、
 C.前記エピタキシャル成長促進部に対応する算術平均粗さRaが、1.5nm以下であること。
 前記エピタキシャル成長抑制部は、複数の凹凸構造を有して構成され、前記凹凸構造はデューティが0.85以上であることが好ましく、あるいは、前記エピタキシャル成長促進部は、周期的に配置されることが好ましい。
 また、本発明の半導体発光素子用基板においては、少なくとも第1主面を備えており、前記第1主面は、エピタキシャル成長促進部とエピタキシャル成長抑制部とを有しており、前記エピタキシャル成長促進部と前記エピタキシャル成長抑制部と、は下記要件A~Dを同時に満たすことを特徴とする。
 A.点在する複数の前記エピタキシャル成長促進部の周囲を前記エピタキシャル成長抑制部にて囲んでいること、複数の前記エピタキシャル成長抑制部の周囲が前記エピタキシャル成長促進部にて囲まれていること、或いは、前記エピタキシャル成長抑制部が前記エピタキシャル成長促進部にて挟み込まれていること、
 B.前記エピタキシャル成長抑制部は、複数の凹凸構造により構成されること、
 C.前記エピタキシャル成長抑制部と前記エピタキシャル成長促進部と、は周期配列されること、
 D.前記エピタキシャル成長促進部と前記エピタキシャル成長抑制部とで構成される周期単位Aを任意に選択し、前記周期単位Aを任意に選択した他の周期単位Bに重ね合わせた時に、前記周期単位Aに含まれる凹凸構造S-Aと前記周期単位Bの含まれる凹凸構造S-Bと、の前記第1主面に対する投影面積による適合率が0.60以上0.99以下であること。
 本発明の半導体発光素子においては、前記記載の光学基材、あるいは、前記記載の半導体発光素子用基板と、前記主面側に積層された、少なくとも2層以上の半導体層と発光層とを積層して構成される積層半導体層、を有することを特徴とする。
 本発明の半導体発光素子においては、一方の主面の一部又は全面に凹凸構造が形成された成長基板の上に少なくとも第1半導体層、発光半導体層、第2半導体層、及び透明導電膜を積層した半導体発光素子であって、前記凹凸構造は、エピタキシャル成長促進部及びエピタキシャル成長抑制部を有して構成され、前記凹凸構造は、点在する複数の前記エピタキシャル成長促進部の周囲を前記エピタキシャル成長抑制部にて囲んでいること、複数の前記エピタキシャル成長抑制部の周囲が前記エピタキシャル成長促進部にて囲まれていること、或いは、前記エピタキシャル成長抑制部が前記エピタキシャル成長促進部にて挟み込まれていること、の何れかによって構成され、且つ前記透明導電膜の厚み(T_TE)が、30nm以上100nm以下であることが好ましい。
 本発明の光学基材、あるいは半導体発光素子用基板によれば、基材あるいは基板表面に形成される半導体層中の結晶転位欠陥を減らすことにより結晶品質が向上し、内部量子効率IQEを改善し、且つ、光散乱により導波モードを解消して光取り出し効率LEEを高めることができる。その結果、LEDの発光効率を向上させることができ、優れた発光効率を有する半導体発光素子を歩留りよく製造することが可能となる。
 また、本発明によれば、発光効率が高く、且つ、リーク電流を抑制し、発光波長分布を改善できる半導体発光素子を提供でき、さらには、半導体発光素子に対する残留圧縮応力を軽減できる。
本実施の形態の光学基材の部分縦断面を示す断面模式図である。 本実施の形態の光学基材の部分縦断面を示す断面模式図である。 本実施の形態の光学基材の平面模式図である。 図3とは別の実施の形態の光学基材の平面模式図である。 本実施の形態の光学基材の平面模式図であり、本実施の形態の構成要件を説明するための図である。 凹凸構造を具備した光学基材上に成膜された第1半導体層が有する刃状欠陥を図示した平面図である。 図6中のA-A断面を図示したものである。 本実施の形態の光学基材の部分縦断面を示す断面模式図であり、特にパラメータを説明するための説明図である。 本実施の形態の光学基材の平面模式図であり、特にパラメータを説明するための説明図である。 本実施の形態の光学基材の平面模式図であり、特に凹部の配列について説明するための説明図である。 本実施の形態の光学基材の平面模式図であり、特に凹部の配列について説明するための説明図である。 本実施の形態の光学基材の平面模式図であり、特に凹部の配列について説明するための説明図である。 凹部と半導体層の初期の結晶核との関係を示す説明図である。 凹部と半導体層の初期の結晶核との関係を示す説明図である。 本実施の形態の半導体発光素子用基板の平面模式図である。 図15におけるX-X面の断面模式図である。 本実施の形態の半導体発光素子用基板の平面模式図である。 従来技術における半導体発光素子用基板の平面模式図である。 従来技術における半導体発光素子基板により、結晶転位欠陥が減少するメカニズムを説明する断面模式図である。 本実施の形態の半導体発光素子用基板におけるエピタキシャル成長を説明する断面模式図である。 別の実施の形態の半導体発光素子用基板の断面模式図である。 別の実施の形態に係る半導体発光素子用基板の平面模式図である。 別の実施の形態の半導体発光素子用基板の平面模式図である。 別の実施の形態の半導体発光素子用基板の平面模式図である。 別の実施の形態の半導体発光素子用基板の平面模式図である。 別の実施の形態の半導体発光素子用基板の平面模式図である。 別の実施の形態の半導体発光素子用基板の平面模式図である。 別の実施の形態の半導体発光素子用基板の平面模式図である。 別の実施の形態の半導体発光素子用基板の平面模式図である。 別の実施の形態の半導体発光素子用基板の平面模式図である。 第2の実施の形態の半導体発光素子用基板の平面模式図である。 別の実施の形態の半導体発光素子用基板の平面模式図である。 本発明の別の実施の形態における成長基板に形成されたエピタキシャル成長促進部及びエピタキシャル成長抑制部の平面模式図である。 図33のエピタキシャル成長促進部及びエピタキシャル成長抑制部を拡大して示した平面模式図である。 エピタキシャル成長促進部の形状を説明するための平面模式図である。 エピタキシャル成長促進部とエピタキシャル成長抑制部とで構成される周期単位について説明するための、エピタキシャル成長促進部及びエピタキシャル成長抑制部の平面模式図である。 図8に示す光学基材を製造する際に用いられるレジスト層の断面模式図である。 本実施の形態のレジスト層の平面模式図である。 図38に示すレジスト層を用いて形成された光学基材の平面模式図である。 図38とは異なる実施の形態のレジスト層の平面模式図である。 本実施の形態に係る半導体発光素子の断面模式図である。 本実施例に係る半導体発光素子用基板と従来技術の半導体発光素子用基板を比較する電子顕微鏡写真である。 図42の各図の一部を示す模式図である。
 以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
(光学基材)
 以下、本実施の形態に係る光学基材について詳細に説明する。
 本実施の形態に係る光学基材は、主面の一部又は全面に凹凸構造が形成された光学基材であって、前記凹凸構造が規則的な歯抜け部を有している、ことを特徴とする。
 この構成により、エピタキシャル結晶の易成長部を設けることができ、内部量子効率IQEと光取出し効率LEEが高い半導体発光素子を歩留りよく製造することができる。
 光学基材は、以下の特徴的構成を備えている。
(1) 主面の一部又は全面に凹凸構造が形成され、
(2) 凹凸構造が規則的な歯抜け部を有して構成される。
 更に、好ましくは、以下の特徴的構成を含んでいる。すなわち、上記(1)(2)は、本実施の形態において必須の構成要件であるが、以下の(3)(4)(5)(6)は選択的な構成要件である。
(3) 凹凸構造は凸部と凸部間底部と、凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部と、で構成され、歯抜け部は凹部である。
(4) 凸部は平均ピッチP0で配置される。
(5) 歯抜け部は正多角形の頂点、又は、前記頂点間を結ぶ前記正多角形の辺上に配置される。
(6) 正多角形の辺の長さLが平均ピッチP0よりも長い。
 図1、図2は、本実施の形態の光学基材の部分縦断面を示す断面模式図である。図3は、本実施の形態の光学基材の平面模式図である。
 図1に示すように、平坦部4は、凸部3間に位置する間隔の狭い狭平坦部4bと、凸部3間に位置する間隔の広い広平坦部4aとを備えている。このうち、図1の構成での広平坦部4aは、凸部3が一個分だけ間引きされた幅を有している。そして、この広平坦部4aのうち、凸部の間引き部分が歯抜け部5として構成される。ここでいう「間引き」、「歯抜け」とは、実際には形成されていた凸部3を後の工程で除去したことを意味するものではなく、間引かれたような間隔で形成されていること、間引かれたような形状となっていることを意味する。よって、高平坦部4aと狭平坦部4bとを転写工程などで同時に形成した形態は本実施の形態の構成である。そして歯抜け部5は、間引かれた凸部3の位置の凹底面形状を示す。したがって、図3以降に示すように、歯抜け部5は、凸部3と同じ平面で図示している。
 図1に示す実施の形態では、歯抜け部5(広平坦部4a)と狭平坦部4bとの高さ位置は同一である。ただし後述するように歯抜け部5は、狭平坦部4bよりも低い凹底面を含む構成であってもよい。
 次に、歯抜け部5が、狭平坦部4bよりも低い凹底面を含む凹部である場合について説明するが、図1に示した実施の形態の平面図に関する説明においては、凹部を歯抜け部と読み替えて定義される。
 図2及び図3に示すように、凹凸構造20は、凸部21、凹部23(図1の歯抜け部5に相当)、及び凸部21と凹部23の間に位置する平坦部(凸部間底部;図1の狭平坦部4bに相当)22を有する(上記の(1)(2)(3))。平坦部22は、凸部21の裾部分に広がる平坦部であり、凸部21の頂点と凹部23の底面との間の高さ位置に設けられる。なお図3では凸部21と凹部23とを区別すべく凹部23には斜線を付した。
 図3では、凹部23は、夫々独立して配置されているが、図4に示すように、凹部23は連続して配置されていても良い。
 図5に示すように、凹凸構造20を構成する凸部21は平均ピッチP0で配置される(上記の(4))。
 図5に示すように、凹部23は正六角形の各頂点の位置で配置される(上記の(5))。
 また、図5では、前記正六角形の一辺の長さLは平均ピッチP0の3倍となっている(上記の(6))。
 以下では、配列の名称は下記のルールによって定める。図5に代表される独立した凹部23を有する場合、例えば、図5では凹部23の配置が六角形の頂点位置であり、一辺の長さLが平均ピッチP0の3倍であることから、この配置を三倍六方点配列と呼ぶ。
 一方、図4に代表される連続した凹部23を有する場合、連続した凹部23の配置が六角形であり、一辺の長さLが平均ピッチP0の3倍であることから、この配置を三倍六方辺配列と呼ぶ。なお長さLは、帯状の凹部23の中心線を六角形状に描いた際の一辺の長さに該当する。
 以下、図5に示した三倍六方点配列を基に、本実施の形態の光学基材が効果を奏する原理について説明する。
 本実施の形態では、光学基材10は、その主面に凹凸構造20を具備し、凹凸構造20は、凸部21、凹部23、及び凸部21と凹部23の間に位置する平坦部(凸部間底部)22を有して構成される。なお「主面」とは、光学基材10では、凹凸構造20が形成される面であり、光学基材10上に成膜される各層における主面とは、光学基材10を下側に配置したときの上面側の面(光学基材10と対向する側の面とは反対側の面)を指す。
 LEDの外部量子効率EQEは、内部量子効率IQEと光取出し効率LEEの積で表される。光取出し効率の更なる向上をするには、導波モードを崩すために、平坦部22の割合を減少させることが有効である。しかしながら、平坦部面積が小さくなると、特に初期の結晶性を決めるある程度の長さよりも平坦部幅が小さくなると、結晶成長時に初期に欠陥の会合が効果的に生じず、貫通転移となり易くなる。加えて、個々の核が周囲の凹凸構造の微小な変動に左右されやすくなり、欠陥密度に面内分布が生じる。欠陥が面内に偏在することで、均一な成膜が困難となり、主面の荒れやピットの形成につながり、リーク電流の増加を招く。リーク電流はダイオードの電気特性を表す量であり、所定の量以上の電流値であると、発光素子としての性能に悪影響を与える。つまり、高効率化を狙って平坦部22を減少させると、結果としてウェハあたりのチップ収率が低下してしまう、という課題があった。
 ここで、本発明者らは検討を重ねた結果、光学基材10に凸部21、平坦部22、凹部23を有する凹凸構造20を設けることで、内部量子効率IQEと光取出し効率LEEが高い半導体発光素子を歩留りよく製造することができることを見出した。
 本実施の形態では、凹凸構造20に意図的に、歯抜け部を設けている。この歯抜け部は少なくとも凸部1個に相当する平坦面積を有し、易成長部となる。つまり、光取出し効率の向上の為に、十分な平坦部面積が確保されない条件下でも、意図的に歯抜け部を配置すれば、その歯抜け部が易成長部となり、易成長部から選択的に結晶成長を進行させることが可能となる。ここでいう「歯抜け」とは、実際には形成されていた凸部21を後の工程で除去したことを意味するものではなく、間引かれたような間隔が形成されていること、間引かれたような形状となっていることを意味する。
 図2に示す実施の形態では、歯抜け部に関し、単に平坦領域とせず、平坦部22よりも一段低い凹部23を形成した。これにより凹部23は、更なる結晶性の向上を図ることが可能な易成長部として機能する。このように、本実施の形態では、易成長部が凹部23であることで、凸部21間の非常に狭い平坦部22からの核形成が更に抑制され、初期の欠陥位置の選択性が増すためと推測され、これにより、更なる結晶性の向上を図ることが可能である。
 図6は、凹凸構造を具備した光学基材上に成膜された第1半導体層が有する刃状欠陥を図示した平面図である。また、図7は図6中のA-A断面を図示したものである。
 図7に示すように、初期の結晶核は凹部23に集中する為、第1半導体層30の結晶欠陥の起点も光学基材の凹部23に集中する。この後、第1半導体層30は、図7に示すように、横方向に、すなわち各単位格子(図6参照)の中心方向に向かって結晶成長していき、第1半導体層30内の欠陥は各単位格子の中心方向に曲折された形で第1半導体層30の成膜が進行し、やがて主面が平坦化される。
 欠陥の起点が制御され、凹部23に集中することで、欠陥密度の面内分布が低減され、主面の荒れやピットの形成を抑えながら均一に結晶成長させることが可能となる。故に、結晶性向上に由来する内部量子効率の向上に加えて、ウェハから得られる半導体発光素子の個数(ウェハあたりのチップ収率)を効果的に高くすることが可能となる。
 また、前記易成長部が凹部23であることで、易成長部が平坦である場合と比べて凹凸構造の側面積が増加し、光取出し効率も向上する。以上より、易成長部としての凹部23を設けることで、内部量子効率IQEと光取出し効率LEEが高い半導体発光素子を歩留りよく製造することが可能となる。
 なお、上記は三倍六方点配列を用いて説明したが特に限定されるものではなく、連続した凹部の場合、或いは異なる繰り返し周期を有する構造についても同様である。
 なお、本願中に記載の「正」多角形とは、多角形を構成する辺長さL(平均)に対して、各辺の長さL’の変動が±10%以内のものを含むものが含まれる。例えば平均の辺長さLが2100nmのとき、辺の長さL’が1890nm~2310nmのものを正多角形とする。
 次に、凹凸構造20のパラメータについて説明する。
 図5に示す平均ピッチP0は、凸部21の最近接する頂点間の距離、の相加平均として定義される。
 測定に使用する局所的範囲は、凹凸構造の平均ピッチP0の5倍~50倍程度の範囲として定義する。例えば、平均ピッチP0が700nmであれば、3500nm~35000nmの測定範囲の中で測定を行う。そのため、例えば7500nmの視野像を、凹凸構造を有する領域内の、例えば中央の位置で撮像し、該撮像を使用して相加平均を求める。前記視野像の撮像には、例えば走査型電子顕微鏡(SEM)や原子間力顕微鏡(AFM)を用いることができる。
(相加平均)
 ある要素(変量)の分布のN個の測定値をx1、x2・・・、xnとした場合に、相加平均値は、以下の式(2)にて定義される。
Figure JPOXMLDOC01-appb-M000001
 相加平均を算出する際のサンプル点数Nは、20として定義する。20としたのは、下記局所的範囲内で任意に個々の凹凸構造を選んだ際、十分な統計平均を取るためである。
 光取出し効率の観点から、平均ピッチP0は500nm以上が好ましく、700nm以上がより好ましい。また、凹部で定まる単位格子の辺長さLが長くなりすぎると、平坦化に要する第1半導体層30の膜厚が厚くなり、スループットの低下を招き、加えて成膜時に反り易くなる。前記観点から、平均ピッチP0は2000nm以下が好ましく、1800nm以下がより好ましい。
(凸部高さH)
 凸部高さHは、凸部頂部と、平坦部における凸部底部と、の高さの差として定義される(図8)。凸部高さHが高いと第1半導体層30で平坦化する際に要する膜厚が厚くなり、成膜時に反り易くなる。このため、高さHは1300nm以下が好ましく、1200nm以下がより好ましい。なお凸部底部とは、凸部21と平坦部22とが接する位置であり、凸部高さHは、凹部23の底面位置からの高さでなく、平坦部22からの高さとして規定される。
(凸部底部径D)
 凸部底部径Dは、平面視において、凸部底部の外接円の直径として定義される。例えば、凸部底部が真円の場合は、図9Aにように直径が一意に定まる。しかしながら、実際の凹凸構造では凸部底部は真円から歪んだ形状になる。特に底部径を太らせるエッチング条件では、円状だった底部は、六角形に近づく。この場合、凸部底部の外接円直径を、底部径とする(図9B)。
(デューティ)
 デューティとは、凸部底部径Dと平均ピッチP0の比(D/P0)で定義される。凹凸構造の充填度を表す量である。デューティが小さい、即ち凸部底部径Dが平均ピッチP0に比して小さい場合、平坦部22が露出する割合が高くなる。この時、平坦部22からも結晶成長が進行し、凹部(易成長部)23から選択的に成長させるという、位置選択性が低下する。よって、半導体層の欠陥を抑制し内部量子効率IQEを向上させるには、光学基材の平坦部からの初期結晶成長を抑制することが好ましい。このためデューティは0.85以上が好ましく、0.9以上がより好ましい。一方、エッチングが進行するにつれて凸部21の底部の形状は、隣接した凸部の存在によって歪んでくる。形状が歪むと結晶成長時にボイドが発生しやすくなる。この結果、ボイドによって光が散乱されてしまい、光取出し効率が低下してしまう。この観点から、デューティは1.1以下が好ましく、1.05以下がより好ましい。
(凸部アスペクト比A)
 凸部アスペクト比Aは凸部高さHと凸部底部径Dの比(H/D)で定義される。導波モードを崩し、光取出し効率を向上させるために、凸部アスペクト比Aは、0.3以上が好ましく、0.4以上がより好ましい。凸部アスペクト比Aが大きいと、平坦化する際にボイドが発生しやすくなり、光取出し効率が低下してしまう。この観点から、凸部アスペクト比Aは1以下が好ましく、0.85以下がより好ましい。
(凹部深さlo_d、凹部開口幅lo_w)
 凹部深さlo_dは、平坦部における凸部底部と、凹部底部と、の高さの差として定義される(図8)。したがって、平坦部22から凸部21の頂部までの高さHは、凹部深さlo_dに含まれない。凹部開口幅lo_wは、図9Aのように凹部23が独立している場合には、凹部23の開口径となる。図9Bのように、周囲を囲む凸部底部に対する内接円として定義される。
 一方、図9Cに示すように凹部23が連続している場合は、凹部開口幅lo_wは連続している凹部がなす線の幅となり、図9Cのように、隣接する凸部底部への接線間距離として定義される。初期の結晶成長における位置選択性を向上させる観点から、凹部深さlo_dは20nm以上が好ましく、25nm以上がさらに好ましい。
 また、凹部深さlo_dは深すぎると、凸部底部から結晶成長した半導体層の基材全体の平坦性が悪化しやすくなるので、好ましくなく、凹部深さlo_dと凹部開口幅lo_wとの比((lo_d)/(lo_w))は、1以下が好ましく、0.85以下がより好ましい。
 また、初期結晶核の結晶性を向上させる観点から、凹部開口幅lo_wは100nm以上が好ましく、より好ましくは200nm以上であり、300nm以上であると、結晶成長時の平坦性が向上するため好ましく、隣接する凸部底部の直径の2倍以下が好ましい。
 図9Cに示した凹部23が連続している配置において、凹部23の底部が略均等な幅であり、光学基板面内で均一であり、凹部23で囲まれた領域において、凸部は略均一な形状であるため、面内均一性が高まり、結晶成長時の平坦性が向上する。結晶成長時の平坦性が向上すると、得られる半導体発光素子のリーク電流が減少する。
 さらに、図9Cに示した凹部23の底部から、凹部23の側面、凸部21の側面から凸部21の頂部に至る側面部は、連続した斜面部であり、凸部21の側面が凹部23の底部縁まで連続して延伸された形状である。
(形状)
 なお、凹凸構造20は、光学基材10の一方の主面に形成されている。凹凸構造20は主面の全面でも、主面の一部に設けることができる。また、ドットの形状は、例えば、円錐、円柱、四角錐、四角柱、六角錐、六角柱、多角錐、多角柱、二重リング状、多重リング状等の構造が挙げられる。なお、これらの形状は底面の外径が歪んだ形状や、側面が湾曲した形状を含む。
(凹部の配列)
 凹部23の配列は、凹部23が形成する単位格子の一辺の長さLと、横方向に成長させ平坦化する際に必要な半導体層の厚み、などから適宜変えることができる。例えば、極端に長さLが大きい場合、平坦化に要する半導体層の厚みが著しく厚くなり、反り易くなる。これはプロセス上のハンドリングを困難にする。
 例えば、図5のように、凹部23は正三角形格子9の各格子点に設定された配置位置上に、正六角形の新たな単位格子7を設定し、前記正六角形の頂点に対応する配置位置(六方点配列)に設けられていてもよい。また、図10のように、凹部23は、正三角形格子の各格子点に設定された配置位置上に、新たな正三角形格子として設定されるとともに、前記新たに設定される正三角形の頂点に相当する位置に設けられてもよい。すなわち凹部23は、前記三角形の頂点に対応する配置位置(三方点配列)に設けられる。更に、設定する新たな格子を、凸部が配置される正三角形格子に対して90度回転させた配置(図11、図12)でも良い。それぞれにおいて、新たに設定される格子の一辺の長さLは、適宜変えることができ、図で示したものに限定されない。一辺の長さが短いと、凹部23の密度が相対的に増加し、結晶全体として凹部23を導入して初期の欠陥発生個所を制御する効果が十分に発揮されない。この観点から、格子の一辺の長さは、平均ピッチPOの1.5倍以上が好ましく、また、2倍以上が好ましく、2√3倍以上がより好ましい。一方、極端に長さLが大きい場合、平坦化に要する半導体層の厚みが著しく厚くなり、反り易くなる。これはプロセス上のハンドリングを困難にする。この観点から格子の一辺の長さは平均ピッチPOの4√3倍以下が好ましい。
 凹部23の配置は、凹部23から成長する結晶核の面同士が会合するような配置であれば、より好ましい。例えば六方晶であれば、図13に示すように各結晶核が、結晶面の境界を指す辺(図13では点Pとして示される)で会合する場合よりも、図14で示すように、結晶面Fで会合する配置が、欠陥低減の為にはより好ましい。図14に示すように、結晶核を面同士で会合させるべく、凹部23同士を結ぶ直線Mが、結晶成長初期に会合する結晶面Fと直交するように、各凹部23の配置を調整する。したがって、凹部23の配置は、第1半導体層30の結晶対称性を反映して決定される。なお「会合」とは、各結晶核が結合する状態のことを指す。
 例えば、第1半導体層30が六方晶であれば、凹部23の位置は三方格子或いは六角形配置が好ましく、立方晶であれば四方配列が好ましい。また、例えば、インプリント法でレジスト層を形成する場合、前記結晶対称性を有する歯抜け部を有するモールドに対して、結晶成長初期に会合する結晶面Fと直交するように基板を回転させることによって、形成される。
 さらに凹部23の配置が、図4に示したような六方辺配列であると、凹部23で囲まれた領域が、等間隔に周期的に配列されることになるため、面内均一性が高まり、結晶成長時の平坦性が向上する。結晶成長時の平坦性が向上すると、得られる半導体発光素子のリーク電流が減少するので好ましい。凹部23で囲まれた領域が、最密充填であると、より好ましい。
(半導体発光素子用基板)
 本発明における半導体発光素子用基板は、主面上に半導体結晶をエピタキシャル成長させるための半導体発光素子用基板であり、前記した光学基材を適用することが好ましい。
 本実施の形態に係る半導体発光素子用基板は、少なくとも1つ以上の主面を有し、第1主面上に半導体結晶をエピタキシャル成長させるための基板であって、前記第1主面は複数のエピタキシャル成長促進部と、複数のエピタキシャル成長抑制部とを有して構成されている。
 図15は、本実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板100は、エピタキシャル成長促進部101とその周囲を囲むエピタキシャル成長抑制部104とを有して構成される。エピタキシャル成長抑制部104は、周期Pnで六方細密充填配置により、周期配列された複数の凸部102で構成されている。図15では、点線で示した凸部102が六方細密充填配置とされてエピタキシャル成長抑制部104を構成している。なお図15に示す凸部102の領域は全てエピタキシャル成長抑制部104に該当し、説明の便宜上、一部の凸部102のみを点線で示した。なお、図17、図22、図23、図24、図25、図26、図27においても同様である。
 更に、エピタキシャル成長促進部101は、最近接するエピタキシャル成長促進部101aとの距離Peが互いに等しい6個のエピタキシャル成長促進部101b、101c、101d、101e、101f、101gと、二次元六方格子103を構成する位置で配置されており、二次元六方格子103は、周期的に配置されている。
 なお、図15においては、エピタキシャル成長抑制部104が複数の凸部102で構成される例について示しているが、これに限られず、エピタキシャル成長抑制部104は、複数の凹部で構成されていてもよい。
 以下、エピタキシャル成長促進部を複数の凸部で構成されている形態で説明するが、エピタキシャル成長促進部が複数の凹部で構成されている形態については、以下の説明における凸部を凹部で置き換えた構成とした形態として読み替えることができる。
 半導体発光素子用基板100において、凸部102間の最大空隙部105は、エピタキシャル成長促進部101と比較して、エピタキシャル成長が十分に遅く、凸部102の斜面部と同等のエピタキシャル成長速度であり、実質エピタキシャル成長しないことが好ましい。最大空隙部105は、半導体発光素子用基板100の主面と平行な平面を有していないことが好ましい。また、最大空隙部105が半導体発光素子用基板100の主面と平行な平面を有している場合でも、各々の最大空隙部105において、主面と平行な平面の面積が、0.05μm2以下であると好ましく、より好ましくは、0.02μm2以下であり、0.01μm2以下であると、実質、平面部からのエピタキシャル成長速度が凸部102と同等以下となるので更に好ましい。最大空隙部105の主面と平行な平面の面積は、例えば、電子顕微鏡や、AFM(原子間距離顕微鏡)により断面形状と平面形状を測定し、算出することができる。
 エピタキシャル成長抑制部104を構成する凸部102は、周期Pnで周期配置されていると、最大空隙部105の面積をより少なく、かつ、半導体発光素子用基板100の第1主面上に均一にでき、後述するエピタキシャル成長における結晶転位欠陥の低減効果が効果的に働くため好ましい。
 エピタキシャル成長抑制部104が凸部102で構成されているために、エピタキシャル成長促進部101が、凸部102間に存在しても、エピタキシャル成長促進部101の、エピタキシャル成長抑制部104に占める凸部102全体に対する相対面積が少ないため、凸部102によるLED発光光に対する散乱効果を保持することができる。更に、本願発明者が検討したところ、エピタキシャル成長抑制部104が周期的に存在することで、凸部102が全面に均一に存在するときよりも、散乱効果が増加し、LEEが増加することが明らかとなった。エピタキシャル成長抑制部104が存在することで、LEEが増加する詳細な原理は不明であるが、凸部102のみが単調に存在するよりも、面内の対称性が規則的に乱れることで、あらたな回折構造が生じるためと考えられる。
 また、エピタキシャル成長促進部間距離Peを、凸部102の直径に依存せず、任意で設定できるため、よりLED発光光に対する散乱効果を保持したまま、後述する結晶転位欠陥の低減効果を増加させることができる。
 また、エピタキシャル成長促進部101の各々の面積は、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.3μm2以上であることが更に好ましい。これにより、エピタキシャル成長抑制部104とのエピタキシャル速度差が大きくなり、結晶転位低減効果が効果的に作用する。更に、エピタキシャル成長促進部101の各々の面積は、10μm以下が好ましく、より好ましくは7μm以下であり、5μm以下であることが更に好ましい。これにより、後述するエピタキシャル成長時の横方向成長時に、結晶転位欠陥が曲がりやすくなる。
 図16は、図15におけるX-X面の断面模式図である。エピタキシャル成長促進部101は、半導体発光素子用基板100の主面と平行な平面を有しており、例えば、C面を主面とするサファイア基板の場合、エピタキシャル成長促進部101は、C面で構成される平面となる。また、図16において、エピタキシャル成長抑制部104は、複数の凸部102で構成されており、エピタキシャル成長促進部101を等間隔で区切っている。図16におけるエピタキシャル成長促進部101間の距離は、図15における二次元六方格子103の格子定数Peに等しい。
 エピタキシャル成長抑制部104を構成している凸部102は、その底面の直径φ1が、凸部102の配置周期Pnの85%以上であると好ましく、さらに、90%以上であることが好ましく、95%以上であるとより好ましく、周期Pn以上であると、凸部間の隙間が少なくなり、凸部間空隙からのエピタキシャル成長が阻害されるため好ましい。凸部102の底面の直径φ1が周期Pn以上となると、凸部102間の隙間がなくなり、凸部底部は、多角形形状となる。
 図17は、図15と同様の配置で、エピタキシャル成長抑制部204を構成する複数の凸部202の底面幅(最大幅)φが周期Pnの115%となっており、凸部202間の隙間がない状態である。また、エピタキシャル成長促進部201は、最近接するピタキシャル成長部201aとの距離Peが互いに等しい6個のエピタキシャル成長促進部201b、201c、201d、201e、201f、201gと、二次元六方格子203を構成する位置で配置されており、二次元六方格子203は、周期的に配置されている。
 また、図15、及び図17においては、エピタキシャル成長抑制部104(204)を構成している凸部102(202)の周期Pnとエピタキシャル成長促進部間距離Peとの比は、3.46である。また、図15におけるエピタキシャル成長促進部101の第1主面に対する面積比は、0.076であり、図17におけるエピタキシャル成長促進部201の第1主面に対する面積比は、0.066である。
 本実施の形態の半導体発光素子用基板100(200)においては、上記したエピタキシャル成長抑制部104(204)、及びエピタキシャル成長促進部101(201)により、基板表面に形成される半導体層中の結晶転移欠陥を減らすことにより結晶品質が向上する。本実施の形態の半導体発光素子用基板において、半導体層中の結晶転移欠陥が減るメカニズムについて、次に説明する。
 図18は、従来技術における表面に凸部が形成された半導体発光素子用基板300の平面模式図である。従来技術における半導体発光素子用基板300は、主面301上に、凸部302が一定間隔で形成されている。凸部302が形成されていない主面301は、基板表面にエピタキシャル成長させる半導体結晶層と格子面が適合した基板面(例えばサファイア基板のC面)が露出している。そのため、半導体発光素子用基板300においては、半導体結晶層のエピタキシャル成長が可能なエピタキシャル成長促進部は、凸部302間の全面に連続しており、凸部間の最大空隙部305と、それと繋がった谷部306とで構成されている。
 この半導体発光素子用基板300に、エピタキシャル成長を行うと、凸部302間で囲まれた最大空隙部305と、谷部306の両方からエピタキシャル成長の核形成が起きる。そこで、後述する横方向成長モードによる、結晶転位欠陥の減少が可能である。
 更に半導体発光素子用基板300における、凸部302は、得られるLEDの発光光を散乱し、光取り出し効率を向上させる効果もある。しかしながら、光取り出し効率は、凸部302の大きさ(底面径、凸高さ)に応じて増加するため、高い光取り出し効率を得るために、凸部302を大きくすると、前記したように、谷部305の平面面積が少なくなりすぎ、結晶転位欠陥密度が増加し、結果として、得られるLEDの発光効率が低下する。つまり、結晶転位欠陥密度の減少による発光効率の向上と、光取り出し効率の増加による発光効率の向上は、トレードオフの関係となり、ある程度以上の発光効率向上は望めない。
 図19は、従来技術における半導体発光素子基板により、結晶転位欠陥が減少するメカニズムを説明する断面投影模式図である。図19は、図18に示すY1-Y1断面投影模式図である。
 凸部302が設けられた半導体発光素子用基板300に、エピタキシャル成長をおこなうと、空隙部305と谷部306に格子面が適合した基板面(例えばサファイア基板のC面)が存在するため、核成長が起き、エピタキシャル成長が空隙部305と谷部306から始まり、エピタキシャル層310a、320aが生成する(図19A)。この時、空隙部305の方が格子面に適合した基板面の面積が多いため、エピタキシャル層310aが大きく成長する。
 更に、横方向成長モードの条件で、エピタキシャル成長を行うと、エピタキシャル層310b、320b中に生成する、格子不整合に基づく結晶転位欠陥311b、321bが横方向に曲げられる(図19B)。エピタキシャル層320bよりエピタキシャル層310bの表面積が大きいため、エピタキシャル層の拡散、再結晶が起き、エピタキシャル層310bの成長がより速くなり、エピタキシャル層310bは、エピタキシャル層320と合一する。
 更に、横方向成長を進行させた後、最終的に、横方向成長から縦方向成長に条件を変え、平坦なエピタキシャル層310cが得られる(図19C)。このように、谷部306から成長したエピタキシャル層320aは、エピタキシャル層310aと合一するが、結晶転位欠陥311cは、谷部306直上に集まり、一部の転移欠陥は消失する。その結果、エピタキシャル層310c中の転移欠陥311cは減少するが、谷部306直上の欠陥は、上記した横方向成長する余地が少ないため、結晶転移減少の効果が少ない。結果として、結晶転位欠陥は、凸部302間の谷部306の領域に集中し、凸部間の谷部306の格子欠陥311cは、ほとんど減らない。
 このような結晶転位減少メカニズムにおいて、更に、結晶転位欠陥を減らすためには、空隙部305と谷部306の平面面積を減らすことが有効であるが、ある程度以下の平面面積となると、半導体結晶層のエピタキシャル成長速度が遅くなりすぎ、凸部302と同等の成長速度となるため、逆に、結晶転位欠陥が増加する問題があった。
 次に図15におけるX-X断面投影模式図の図20により、本実施の形態の半導体発光素子用基板100における結晶転位欠陥を抑制するメカニズムを説明する。なお図20において斜線で示した凸部102は、X-X線上の凸部であるが、その両側の凸部は、X-X線上の凸部でなく、X-X線の奥側に位置する凸部を示している。
 本実施の形態の半導体発光素子用基板100にエピタキシャル成長をおこなうと、エピタキシャル成長促進部101に格子面が適合した基板面(例えばサファイア基板のC面)が存在するため、ここで核成長が起き、エピタキシャル成長がエピタキシャル成長促進部101から始まり、エピタキシャル層110aが生成される(図20A)。
 エピタキシャル成長抑制部104は、凸部102が密に配置され、凸部102間の最大空隙部105(図15参照)のエピタキシャル成長速度は、凸部102の斜面部とほぼ同等なエピタキシャル成長速度であるため、実質的に、エピタキシャル成長しない。そのため、図5のような、凸部間の結晶格子欠陥が、エピタキシャル成長後も残存することはない。
 更に、横方向成長モードを進めると、格子不整合に基づく結晶転位欠陥111bが横方向に曲げられ(図20B)、異なるエピタキシャル成長促進部101から成長したエピタキシャル層110bは互いに合一する。更に、横方向成長から縦方向成長に条件を変え、平坦なエピタキシャル層110cが得られる(図20C)。
 本実施の形態の半導体発光素子用基板100においては、エピタキシャル成長促進部101とエピタキシャル成長抑制部104が明確に分離されており、エピタキシャル成長促進部101から成長する全てのエピタキシャル層110aに、十分に横成長するスペースがあるために、横方向成長による結晶転位欠陥111c(図20C参照)同士の衝突による結晶転位低減効果が効果的に働く。
 更に、本実施の形態の半導体発光素子用基板100においては、凸部102の面積は、最大になるようにその底面幅φが決定される。そのため、凸部102によるLEDの発光光の散乱効果を最大にすることが可能である。また、エピタキシャル成長促進部101は、LEDの発光光の散乱効果を減じない面積比で、半導体発光素子用基板100の第1主面上に設けることができ、エピタキシャル成長促進部101の前記第1主面に対する面積比は0.001以上0.2以下が好ましい。エピタキシャル成長促進部101の第1主面に対する面積比が0.001を下回ると、半導体発光素子用基板100上に設けるエピタキシャル層の成長に時間がかかりすぎ、工業生産上好ましくない。また、前記面積比は、0.002以上であると好ましく、0.005以上であれば、工業生産上、エピタキシャル成長速度のLED生産に与える影響がより少なくなるため、より好ましい。
 また、エピタキシャル成長促進部101の前記第1主面に対する面積比が0.3を上回ると、前記した結晶転位欠陥の低減効果が減ずるため好ましくなく、0.20以下であることが好ましく、0.15以下であると、結晶転位欠陥の低減効果が十分に働き、同時に発光光の散乱効果もより有効に働くのでより好ましく、特に好ましくは、0.10以下である。
 更に、図21に示すように、本実施の形態の半導体発光素子用基板400においては、エピタキシャル成長促進部401は、半導体発光素子用基板400の主面と平行な平面を有する凹部であってもよい。また図21に示す符号404は、エピタキシャル成長抑制部を示す。ここで、凹部とは、凸部402の谷部を結んだ平面よりも、第1主面と相対する別の主面方向に凹んでいる状態であり、凹部の底面幅は、10nm以上であると好ましい。また、凹部の底面幅は、50nm以上であるとより好ましく、100nm以上であると、得られるLEDの発光光に対する散乱効果がより増強されるため更に好ましい。また、凹部の深さの上限は特に限られるものではないが、凹部底面には、半導体発光素子用基板400の主面と平行な平面を有する必要があり、その面積は、0.1μm以上であることが好ましいため、凹部底面の平面がこの値以上になるよう、適宜設計、選択される。凹部底面の面積が0.1μmを下回ると、エピタキシャル成長促進部401からのエピタキシャル層の成長速度が遅くなり、前記した結晶転位低減効果が十分に働かないため好ましくない。
 図15、図17に示すように、本実施の形態の半導体発光素子用基板100(200)においては、エピタキシャル成長促進部101(201)の最近接するエピタキシャル成長促進部間距離Peは、互いに等しいことが好ましい。エピタキシャル成長促進部間距離Peが互いに等しいと、前記した、エピタキシャル成長工程における横方向成長による結晶転位欠陥低減の効果が均等に起き、結晶品質を均一にするため好ましい。仮に結晶転位欠陥にムラがあると、得られるLEDの発光層中におけるリーク電流が増加し、LED全体のエネルギー効率は低下する。
 同様の理由で、エピタキシャル成長促進部間距離Peは、本実施の形態の半導体発光素子用基板の第1主面面内に等間隔で均等配置されていることが好ましい。面内に等間隔で均等配置されていると、結晶転位欠陥の低減効果が面内で均等になり、結晶品質が面内で均等になるため、LEDの発光効率の低下を抑制できるため好ましい。
 また、本発明の半導体発光素子用基板においては、基板は六方晶系の結晶構造を有する単結晶基板が好ましく、上記した、最近接する複数のエピタキシャル成長抑制部の最近接の方向と、前記半導体発光素子用基板の前記結晶構造のm面とが平行でないことが好ましい。図17に示すように、半導体発光素子用基板を構成する六方晶系のm面に対して、エピタキシャル成長抑制部間を示すPnのベクトル方向とは、平行でなく、具体的には、六方晶系のm面に対するPnのベクトル方向のズレが、0度を超え30度未満であることが好ましい。
 エピタキシャル成長抑制部の最近接の方向と、基板結晶のm面とがずれていると、エピタキシャル成長促進部から成長するエピタキシャル層の成長が速くなり好ましい。なんとなれば、基板が六方晶系の場合、エピタキシャル成長促進部から成長するエピタキシャル結晶も六方晶となる。エピタキシャル成長抑制部の最近接の方向と、基板結晶のm面とが平行な場合、エピタキシャル成長促進部から成長するエピタキシャル結晶の成長方向に正対する位置に、エピタキシャル成長抑制部が存在することになり、エピタキシャル結晶全体の成長が阻害される。
 本実施の形態において、エピタキシャル成長促進部の最近接の方向と、基板結晶のm面とが平行でないと、上記したエピタキシャル結晶の成長が阻害されにくいため、エピタキシャル成長が促進され、工業利用上好ましい。更に、ある特定方向でのエピタキシャル成長の阻害要因が解消され、得られるエピタキシャル膜の表面平滑性が改善されるため、好ましい。
 本実施の形態の半導体発光素子用基板においては、最近接するエピタキシャル成長促進部間距離Peと、エピタキシャル成長抑制部を構成する凸部あるいは凹部の周期Pnは、下記式(1)を満たすことが好ましい。
  1.5≦Pe/Pn≦30  式(1)
 PeとPnの比が式(1)の範囲であると、結晶転位欠陥の低減効果が十分に働き、且つ、得られるLEDの発光光に対する光散乱効果が有効に機能するので好ましい。
 Pe/Pnが1.5を下回ると、エピタキシャル成長促進部間距離が近すぎ、エピタキシャル成長における横方向成長の成長スペースが少なくなるため、好ましくない。また、Pe/Pnが30を上回ると、エピタキシャル成長促進部の横方向成長において、乗り越えるエピタキシャル成長抑制部の凸部が多くなるため、エピタキシャル成長終了時における平坦なエピタキシャル成長層を得にくくなるため好ましくない。また、Pe/Pnが30を上回ると、エピタキシャル成長終了時に、エピタキシャル成長層の上面を平坦化しにくく、これにより、得られるLEDの発光時におけるリーク電流が増加し、LEDの発光効率が減少する。よって、Pe/Pnは30以下であることが好ましい。
 Pe/Pnは、2以上であると、エピタキシャル成長促進部間距離の成長スペースにより、結晶転位欠陥が減少するので好ましく、3.4以上であるとより好ましい。更に、Pe/Pnは25以下であると好ましく、21以下であると、平坦なエピタキシャル層を得やすいので、より好ましい。
 特に、Pe/Pnが2以上、4以下の範囲であると、エピタキシャル横方向成長による結晶転位欠陥の低減効果が十分に働き、直径4インチ以上の大径のサファイア基板全面で、平坦なエピタキシャル層を得やすくなり、工業生産上、最も好ましい。
 図22は、別の実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板500は、エピタキシャル成長促進部501と、その周囲を囲むエピタキシャル成長抑制部504とで構成され、エピタキシャル成長抑制部504は、周期Pnで六方細密充填配置により周期配列された複数の凸部502で構成されている。更に、エピタキシャル成長促進部501は、最近接するエピタキシャル成長促進部501aとの距離Peが互いに等しい6個のエピタキシャル成長促進部501b、501c、501d、501e、501f、501gと、二次元六方格子503を構成する位置で配置されており、二次元六方格子503は、周期的に配置されている。
 更に、図22においては、図17と同様にエピタキシャル成長抑制部504を構成する複数の凸部502の底面幅φが周期Pnの115%となっており、凸部502間の隙間がない状態である。
 また、図22においては、エピタキシャル成長抑制部503を構成している凸部502の周期Pnとエピタキシャル成長促進部間距離Peとの比は、3.0である。また、エピタキシャル成長促進部501の第1主面に対する面積比は、0.088である。
 図23は、別の実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板600は、図22と同様の構成であり、エピタキシャル成長促進部601、凸部602で構成されたエピタキシャル成長抑制部604で構成されている。更に、エピタキシャル成長促進部601は、最近接するエピタキシャル成長促進部601aとの距離Peが互いに等しい6個のエピタキシャル成長促進部601b、601c、601d、601e、601f、601gと、二次元六方格子603を構成する位置で配置されており、二次元六方格子603は、周期的に配置されている。図23において、凸部602の周期Pnとエピタキシャル成長促進部間距離Peとの比は4.0である。また、エピタキシャル成長促進部601の第1主面に対する面積比は、0.049である。
 図24は、別の実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板650は、エピタキシャル成長促進部651、凸部652で構成されたエピタキシャル成長抑制部654で構成されている。更に、エピタキシャル成長促進部651は、最近接するエピタキシャル成長促進部651aとの距離Peが互いに等しい6個のエピタキシャル成長促進部651b、651c、651d、651e、651f、651gと、二次元六方格子653を構成する位置で配置されており、二次元六方格子653は、周期的に配置されている。図24において、凸部652の周期Pnとエピタキシャル成長促進部間距離Peとの比は2.0である。また、エピタキシャル成長促進部651の第1主面に対する面積比は、0.200である。
 図25は、別の実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板700は、エピタキシャル成長促進部701とその周囲を囲むエピタキシャル成長抑制部704とで構成され、エピタキシャル成長抑制部704は、周期Pnで周期配列された複数の凸部702で構成されている。更に、エピタキシャル成長促進部701は、最近接するエピタキシャル成長促進部701aとの距離Peが互いに等しい3個のエピタキシャル成長促進部701b、701c、701dと、二次元六方格子703を構成する位置で配置されており、二次元六方格子703は周期的に配置されている。図25においても、図17と同様にエピタキシャル成長抑制部704を構成する複数の凸部702の底面幅φが周期Pnの115%となっており、凸部702間に平面部がない構造である。図25において、凸部702の周期Pnとエピタキシャル成長促進部間距離Peとの比は、2.0であり、エピタキシャル成長促進部701の第1主面に対する面積比は、0.138である。
 図26は、別の実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板800は、帯状のエピタキシャル成長促進部801と、その周囲を囲む帯状のエピタキシャル成長抑制部804とで構成され、エピタキシャル成長抑制部804は、周期Pnで三角格子に周期配列された複数の凸部802で構成されている。更に、エピタキシャル成長促進部801は、最近接するエピタキシャル成長促進部との距離Peで、第1主面上に繰り返し配置されている。半導体発光素子用基板800において、図示していない、図面上下方向は、第1主面の面内方向に同様に繰り返されている配置となっており、実質、エピタキシャル成長促進部801は、エピタキシャル成長抑制部804で挟まれている配置である。
 更に、図26においても、図17と同様にエピタキシャル成長抑制部804を構成する複数の凸部902の底面幅φが周期Pnの115%であり、凸部902間に平面部がない構造となっている。図26において、エピタキシャル成長促進部間距離Peと凸部902の周期Pnとの比は、5.2であり、エピタキシャル成長促進部801の第1主面に対する面積比は、0.14である。
 図27は、別の実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板900は、帯状のエピタキシャル成長促進部901と、その周囲を囲む帯状のエピタキシャル成長抑制部904とで構成され、エピタキシャル成長抑制部904は、周期Pnで正方格子に周期配列された複数の凸部902で構成されている。更に、エピタキシャル成長促進部901は、最近接するエピタキシャル成長促進部との距離Peで、第1主面上に繰り返し配置されている。半導体発光素子用基板900において、図示していない、図面上下方向は、第1主面の面内方向に同様に繰り返されている配置となっており、実質、エピタキシャル成長促進部901は、エピタキシャル成長抑制部904で挟まれている配置である。
 更に、図27においては、エピタキシャル成長抑制部904を構成する複数の凸部902の底面幅φが、周期Pnの141%であり、凸部902間に平面部がない構造となっている。図27において、エピタキシャル成長促進部間距離Peと凸部902の周期Pnとの比は、6.0であり、エピタキシャル成長促進部901の第1主面に対する面積比は、0.17である。
 図28は、別の実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板1000は、エピタキシャル成長促進部1001とその周囲を囲むエピタキシャル成長抑制部1004とで構成され、エピタキシャル成長抑制部1004は、周期Pnで周期配列された複数の凸部1002で構成されている。更に、エピタキシャル成長促進部1001は、最近接するエピタキシャル成長促進部1001aとの距離Peが互いに等しい3個のエピタキシャル成長促進部1001b、1001c、1001dと、二次元六方格子1003を構成する位置で配置されており、二次元六方格子1003は周期的に配置されている。図28において、エピタキシャル成長抑制部1004を構成する複数の凸部1002の底面幅φが周期Pnの100%となっている。図28において、凸部1002の周期Pnとエピタキシャル成長促進部間距離Peとの比は、1.73であり、エピタキシャル成長促進部1001の第1主面に対する面積比は、0.295である。
 図29は、別の実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板1100は、エピタキシャル成長促進部1101とその周囲を囲むエピタキシャル成長抑制部1104と、近接するエピタキシャル成長促進部1101間にあるエピタキシャル成長連結部1105、及び上記以外の領域のエピタキシャル成長抑制部1106とで構成され、エピタキシャル成長抑制部1104、1106は、周期Pnで周期配列された複数の凸部1102で構成されている。
 エピタキシャル成長促進部1101は、最近接するエピタキシャル成長促進部1101aとの距離Peが互いに等しい6個のエピタキシャル成長促進部1101b、1101c、1101d、1101e、1101f、1101gと、二次元六方格子1103を構成する位置で配置されており、二次元六方格子1103は、周期的に配置されている。
 さらに、エピタキシャル成長連結部1105は、最近接するエピタキシャル成長促進部間にあり、エピタキシャル成長連結部1105は、周期Pnで周期配列された凸部1102の底面Φが凸部1102よりも小さい凸部1107で構成されている。
 図29において、凸部1102の周期Pnとエピタキシャル成長促進部間距離Peとの比は3.46である。また、エピタキシャル成長促進部1101の第1主面に対する面積比は、0.076である。
 本実施に形態におけるエピタキシャル成長連結部1105における凸部1107は、エピタキシャル成長抑制部1104を構成している凸部1102よりも底面幅Φが小さいため、エピタキシャル成長面である基板平面が露出している面積が大きい。そのため、エピタキシャル成長連結部1105のエピタキシャル成長速度は、エピタキシャル成長抑制部1104、1106よりも大きい。また、一方で、エピタキシャル成長促進部1101よりもエピタキシャル成長面である基板平面が露出している面積が小さいため、エピタキシャル成長速度は、エピタキシャル成長促進部1101よりも小さい。つまり、エピタキシャル成長抑制部と、エピタキシャル成長促進部との中間のエピタキシャル成長速度を有することになる。
 エピタキシャル成長連結部1105が、最近接するエピタキシャル成長促進部1101間にあるため、エピタキシャル成長促進部1101から成長するエピタキシャル結晶の連結が促進され、ウェハ面内で均一な厚みのエピタキシャル膜が得られやすくなり好ましい。
 本実施の形態は、前記したように、ウェハ面内にエピタキシャル成長促進部1101とエピタキシャル成長抑制部1104、1106を設けることで、ウェハ面内に、エピタキシャル成長速度差を生じさせ、得られるエピタキシャル膜の結晶性を向上させる効果を有する。しかし、一方でウェハ面内でのエピタキシャル膜の膜厚不均一を生じやすくなる。そこで、エピタキシャル成長促進部1101間に、エピタキシャル成長連結部1105を設けることで、ウェハ面内でのエピタキシャル膜厚均一性を向上させることができる。
 エピタキシャル成長連結部1105がエピタキシャル成長促進部1101間に存在すると、膜厚不均一性を抑制できるメカニズムの詳細は不明であるが、つぎのように考えられる。
 エピタキシャル成長は、基板平面上に形成されたエピタキシャル結晶が随時大きく成長し、結晶同士が連結していき、エピタキシャル膜となる過程を経る。この過程において、エピタキシャル成長は、化学反応であるため、表面積が大きいエピタキシャル結晶の成長速度が表面積の小さい結晶よりも速くなり、優先的に成長し大きくなる。つまり、結晶成長初期のわずかな結晶の大きさが、エピタキシャル結晶の成長と共に、増幅されることになる。結果として、エピタキシャル結晶の大きさムラとなり、各々が連結して得られるエピタキシャル膜の膜厚は不均一となりやすい。
 ここで、エピタキシャル成長促進部1101間にエピタキシャル成長連結部1105を設けると、結晶成長初期に、エピタキシャル成長促進部1101から成長する結晶同士の連結が促進され、ひとつの大きなエピタキシャル結晶となり、上記した結晶成長初期のわずかな結晶の大きさムラを抑制できる。結果として、ウェハ面内での膜厚不均一性を抑制できる。
 エピタキシャル成長連結部1105のエピタキシャル成長速度は、エピタキシャル成長促進部よりも小さいため、前記したエピタキシャル成長速度差に基づく結晶転位欠陥を抑制するメカニズムが働き、得られるエピタキシャル結晶膜の結晶性向上効果は、損なわれない。
 エピタキシャル成長連結部1105の凸部1107は、エピタキシャル成長抑制部1104、1106を構成している凸部1102よりも底面幅Φは小さい必要があり、エピタキシャル成長抑制部1104、1106を構成している凸部1102の底面幅Φの90%以下が好ましく、より好ましくは80%以下であり、60%以下であると、エピタキシャル成長促進部との連結が起きやすくなり好ましい。また、底面幅Φが小さくなると、エピタキシャル成長促進部1101との差異が小さくなり、前記したエピタキシャル成長速度差に基づく結晶転位欠陥の抑制効果が小さくなるため、好ましくなく、エピタキシャル成長抑制部1104、1106を構成している凸部1102の底面幅Φの10%以上が好ましく、より好ましくは20%以上であり、40%以上であると、エピタキシャル成長促進部1101による結晶転位欠陥の抑制効果を損なわないため好ましい。
 図30は、別の実施の形態の半導体発光素子用基板の平面模式図である。半導体発光素子用基板1200は、エピタキシャル成長促進部1201とその周囲を囲むエピタキシャル成長抑制部1204と、近接するエピタキシャル成長促進部1201間にあるエピタキシャル成長連結部1205、及び上記以外の領域のエピタキシャル成長抑制部1206とで構成され、エピタキシャル成長抑制部1204、1206は、周期Pnで周期配列された複数の凸部1202で構成されている。
 エピタキシャル成長促進部1201は、最近接するエピタキシャル成長促進部1201aとの距離Peが互いに等しい6個のエピタキシャル成長促進部1201b、1201c、1201d、1201e、1201f、1201gと、二次元六方格子1203を構成する位置で配置されており、二次元六方格子1203は、周期的に配置されている。
 さらに、エピタキシャル成長連結部1205は、最近接するエピタキシャル成長促進部1201間にあり、エピタキシャル成長抑制部1205は、周期Pnで周期配列された凸部1202よりも底面幅Φ小さい凸部1207で構成されている。
 図30において、凸部1202の周期Pnとエピタキシャル成長促進部間距離Peとの比は3.46である。また、エピタキシャル成長促進部1201の第1主面に対する面積比は、0.076である。
 次に、本発明の第2の実施の形態に係る半導体発光素子用基板について説明する。図31Aは、本発明の第2の実施の形態に係る半導体発光素子用基板の平面模式図である。半導体発光素子用基板1300は、エピタキシャル成長抑制部1304とその周囲を囲むエピタキシャル成長促進部1301とで構成され、エピタキシャル成長抑制部1304は、周期Pnで周期配列された複数の凸部1302で構成されている。
 エピタキシャル成長促進部1301領域内には、エピタキシャル成長抑制部1304を構成する凸部1302よりも底面幅Φが小さい凸部1307を有する。
 エピタキシャル成長促進部1301内に凸部1307を有するため、エピタキシャル成長促進部1301内においても、部分的にエピタキシャル結晶成長速度差が生じ、前記した結晶転位欠陥の抑制効果が発現する。さらに、エピタキシャル成長抑制部1304においては、前記した形態と同様に、エピタキシャル成長促進部1301との結晶成長速度差があるために、結晶転位欠陥を抑制し、得られるエピタキシャル膜の結晶品位が向上する。
 さらに、エピタキシャル成長促進部1301が、凸部1307を挟んで連続しているために、エピタキシャル成長初期における、個々の結晶の大きさのズレに起因する、ウェハ面内のエピタキシャル膜厚の不均一性を抑制できる。
 エピタキシャル成長抑制部1304の第1主面に対する面積比は、0.8以上0.999以下が好ましい。エピタキシャル成長抑制部1304の第1主面に対する面積比が0.7を下回ると、前記した結晶転位欠陥の低減効果が減ずるため好ましくなく、0.80以上であることが好ましく、0.85以上であると、結晶転位欠陥の低減効果が十分に働き、同時に発光光の散乱効果もより有効に働くので好ましく、特に好ましくは、0.90以上である。
 また、エピタキシャル成長抑制部1304の第1主面に対する面積比が、0.999を上回ると、半導体発光素子用基板1301上におけるエピタキシャル膜の成長に時間がかかりすぎ、工業生産上好ましくない。また、面積比は、0.998以下であると好ましく、0.995以下であれば、工場生産上、エピタキシャル成長速度のLED生産に与える影響がより少なくなるため、より好ましい。
 図31Aにおいて、エピタキシャル成長促進部1301の第1主面に対する面積比は、0.705である。
 なお、エピタキシャル成長抑制部1304は、エピタキシャル成長促進部1301で挟まれた形態であってもよい。
 また、図4で示した、エピタキシャル成長抑制部が連続したエピタキシャル成長促進部で囲まれている場合、図31Bに示すように、エピタキシャル成長促進部の幅は、エピタキシャル成長抑制部の凸部ピッチPeよりも広くすることもまた好ましい。図31Bのような配置であると、エピタキシャル成長抑制部の第1主面に対する面積比を大きくでるため、前記と同様結晶転位欠陥の低減効果が十分に働き、同時に、発光光の散乱効果もより有効に働くので好ましい。
 図31Bにおいては、エピタキシャル成長抑制部は、周囲をエピタキシャル成長促進部で囲まれている。エピタキシャル成長促進部は、少なくとも、その中心に底面形状が六角形の凸部を有し、その周囲を同様に底面形状が六角形の凸部で囲まれ、さらにその周囲を外周部の底面形状が円弧で、内周部の底面形状が六角形の凸部で囲まれている。エピタキシャル成長抑制部は、該六角形であり、その中心の凸部の底面六角形が90度回転した向きである。
 図31Bにおいては、エピタキシャル成長促進部の幅は、エピタキシャル成長抑制部の凸部ピッチPeの20%以上であると好ましく、30%以上であるとより好ましく、35%以上であると、結晶低減効果が有効に働き好ましい。また、凸部ピッチPeの200%以下であり、150%以下であると好ましく、130%以下であると、LEE改善効果が働くため、好ましい。
 あるいは、図31Bにおいては、エピタキシャル成長促進部の底部の幅は、100nm以上が好ましく、より好ましくは200nm以上であり、300nm以上であると、結晶成長時の平坦性が向上するため更に好ましい。さらに、エピタキシャル成長促進部の底部の幅は、1000nm以下が好ましく、より好ましくは800nm以下であり、600nm以下であると、エピタキシャル成長抑制部の第1主面に対する面積比を大きくできるため、前記と同様結晶転位欠陥の低減効果が十分に働き、同時に、発光光の散乱効果もより有効に働くので更に好ましい。
 また、本実施の形態の半導体発光素子用基板においては、エピタキシャル成長抑制部1304を構成する凸部1302の周期Pnが同一であれば、前記、例示した平面模式図でウェハ全面を構成する必要はなく、図32に示すように、エピタキシャル成長促進部の配置が混在した構成としてもよい。
 エピタキシャル成長抑制部の構成が同一である領域Aの繰り返し長さは、使用する半導体発光素子の発光光の波長のコヒーレンス長の0.5倍以上であると、各領域の散乱効果が効果的に発現するため好ましい。さらに好ましくは発光光のコヒーレンス長の1倍以上であり、1.5倍以上であると、散乱効果による光取り出し効率が向上するため好ましい。
 ここで、コヒーレンス長Lcは、光の中心波長をλ、光の半値幅をΔλとすると、Lc=(λ2/Δλ)と定義される。
 本実施の形態の半導体発光素子用基板において、エピタキシャル成長抑制部を構成する凸部及び凹部の形状としては、本発明の効果が得られる範囲のものであれば特に制限されず、用途に応じて適宜変更可能である。凸部及び凹部の形状としては、例えば、ピラー形状又はホール形状や、円錐形状、角錐形状、楕円錐形状などを用いることができ、エピタキシャル成長を抑制する観点から、凸部及び凹部の表面に、基板平面部と平行な面を有しないことが好ましい。
 本発明の半導体発光素子用基板の別の形態として、第1主面に配置されるエピタキシャル成長促進部とエピタキシャル成長抑制部と、は下記要件A~Cを同時に満たすことが好ましい。
 A.点在する複数の前記エピタキシャル成長促進部の周囲を前記エピタキシャル成長抑制部にて囲んでいること、複数の前記エピタキシャル成長抑制部の周囲が前記エピタキシャル成長促進部にて囲まれていること、或いは、前記エピタキシャル成長抑制部が前記エピタキシャル成長促進部にて挟み込まれていること、
 B.前記エピタキシャル成長抑制部に対応する算術平均粗さRaが、5nm以上であること、
 C.前記エピタキシャル成長促進部に対応する算術平均粗さRaが、1.5nm以下であること。
 エピタキシャル成長抑制部に対応する算術平均粗さは、エピタキシャル成長促進部に対応するそれに比べて十二分に大きい。これらの関係から、エピタキシャル成長促進部が結晶成長の起点として機能する。これは、半導体層と成長基板との格子定数の差が、エピタキシャル成長抑制部に比べエピタキシャル成長促進部の場合に、より小さくなるためである。従って、エピタキシャル成長は、エピタキシャル成長促進部より優先的に開始する。ここで、エピタキシャル成長抑制部の領域に点在するように、エピタキシャル成長抑制部の周囲を取り囲むように、或いはエピタキシャル成長抑制部を挟み込むようにエピタキシャル成長促進部が設けられている。このため、エピタキシャル成長抑制部を横断するように、エピタキシャルな横方向の成長ができる。これにより、エピタキシャル成長抑制部上において、結晶の会合が起こる。したがって、転位欠陥は減少し、IQEが向上する。この時、結晶成長の起点であるエピタキシャル成長促進部は、算術平均粗さが1.5nm以下である。これにより、エピタキシャル成膜は、その初期状態から安定成膜となる。よって、LED製造プロセスにも耐えうる安定なエピタキシャル成膜を実現できる。一方で、エピタキシャル成長抑制部は、その算術平均粗さRaが大きい。同時に、その周囲にエピタキシャル成長促進部が設けられる。換言すれば、粗さの大きな領域が散在している状態、とみなすこともできる。よって、光学散乱性が強く発現され、導波モードが壊れて、LEEが向上する。
 図33は、本発明の実施の形態における成長基板に形成されたエピタキシャル成長促進部及びエピタキシャル成長抑制部の平面模式図である。
 図33に示すように、成長基板(半導体発光素子用基板)100の第1主面100aには、エピタキシャル成長促進部101及びエピタキシャル成長抑制部104が形成されている。エピタキシャル成長促進部101とエピタキシャル成長抑制部104と、は下記の状態A-1、状態A-2、及び状態A-3のいずれかを備えている。
 状態A-1:点在する複数のエピタキシャル成長促進部101の周囲をエピタキシャル成長抑制部104にて囲んでいる状態、
 状態A-2:複数のエピタキシャル成長抑制部104の周囲がエピタキシャル成長促進部101にて囲まれている状態、
 状態A-3:エピタキシャル成長抑制部104がエピタキシャル成長促進部101にて挟み込まれている状態。
 図33Aは、状態A-1、図33Bは、状態A-2、図33Cは、状態A-3を示す。図33Aでは、エピタキシャル成長促進部101は、正三角格子の格子点(点線で示す)に配置されているといえる。図33Bでは、エピタキシャル成長促進部101は、正六角形が互いに辺のみを共有した最密格子の格子点及び辺に配置されているといえる(点線で示す)。図33Cの場合、エピタキシャル成長促進部101は、互いに平行なラインアンドスペース状に配列しているといえる。エピタキシャル成長促進部101及びエピタキシャル成長抑制部104の、配列や形状については、後述する。
 更に、エピタキシャル成長抑制部104は、上記した要件Bを満たし、エピタキシャル成長促進部101は、上記した要件Cを満たしている。即ち、エピタキシャル成長抑制部104に対応する算術平均粗さRaは5nm以上であり、且つ、エピタキシャル成長促進部101に対応する算術平均粗さRaは1.5nm以下である。
 エピタキシャル成長促進部101が点在する状態(状態A-1)における、エピタキシャル成長促進部101に対する算術平均粗さRaを測定する領域が、図34Aに示されている。図34Aに示すように、エピタキシャル成長促進部101内にあって、エピタキシャル成長抑制部104に接する円S0の面積の50%~60%の面積を有する正方形を、算術平均粗さRaを測定する領域A1とする。なお、円S0の中心と前記正方形の中心と、は一致する。そして当該正方形の領域A1に対して、原子間力顕微鏡(AFM)を使用し、算術平均粗さRaを、ディメンジョンnmにて測定する。算術平均粗さRaは、任意に10点の領域A1に対して測定し、得られた値の相加平均値とする。
 またエピタキシャル成長促進部101がエピタキシャル成長抑制部104を取り囲む状態(状態A-2)における、エピタキシャル成長促進部101に対応する算術平均粗さRaを測定する領域が、図34Bに示されている。エピタキシャル成長促進部101内にあって、エピタキシャル成長抑制部104に接する円S1を設定し、円S1の面積の50%~60%の面積を有する正方形を、算術平均粗さRaを測定する領域A2とする。なお、円S1の中心と前記正方形の中心と、は一致する。そして、当該正方形の領域A2に対して、原子間力顕微鏡(AFM)を使用し、算術平均粗さRaを、ディメンジョンnmにて測定する。算術平均粗さRaは、任意に10点の領域A1に対して測定し、得られた値の相加平均値とする。
 エピタキシャル成長促進部101がエピタキシャル成長抑制部104を挟み込む状態(状態A-3)における、エピタキシャル成長促進部101に対応する算術平均粗さRaを測定する領域が、図34Cに示されている。エピタキシャル成長促進部101内にあって、エピタキシャル成長抑制部104に接する円S2を設定し、円S2の面積の例えば、50%~60%の面積を有する正方形を、算術平均粗さRaを測定する領域A3とする。なお、円S2の中心と前記正方形の中心と、は一致する。当該正方形の領域A3に対して、原子間力顕微鏡(AFM)を使用し、算術平均粗さRaを、ディメンジョンnmにて測定する。算術平均粗さRaは、任意に10点の領域A1に対して測定し、得られた値の相加平均値とする。
 エピタキシャル成長抑制部104に対する算術平均粗さRaは、次にように測定される。エピタキシャル成長抑制部104内にあって、エピタキシャル成長促進部101に接する円S3の面積の、50%~60%の面積を有する正方形を、算術平均粗さRaを測定する領域A4する。なお、円S3の中心と前記正方形の中心と、は一致する。状態A-2の場合である図34Bに一例を示した。なお、状態A-1及び状態A―3の場合である図34A及び図34Cの場合についても、同様に領域A4を設定し、算術平均粗さRaを測定する。当該正方形の領域A4に対して、原子間力顕微鏡(AFM)を使用し、算術平均粗さRaを、ディメンジョンnmにて測定する。算術平均粗さRaは、任意に10点の領域A1に対して測定し、得られた値の相加平均値とする。面積は、第1主面に平行な面の面積である。
 エピタキシャル成長促進部101とエピタキシャル成長抑制部104との違いは、その表面の算術平均粗さRaにある。以下の説明では、算術平均粗さRaを単に「表面粗さRa」とも記載する。エピタキシャル成長促進部101とエピタキシャル成長抑制部104との表面粗さRaの違いは、表面の平坦度の違いである。
 後述する成長基板100の製造方法により、エピタキシャル成長促進部101の表面粗さRaを1.5nm以下に制御できる。これにより、エピタキシャル成長促進部101が、結晶成長の起点として機能しやすくなり、IQEが改善する。更にこの場合、エピタキシャル成長促進部101はその表面粗さRaが限りなく小さい。よって、エピタキシャル成長の初期である核成長の、ばらつきが低減される。以上により、LED製造プロセスに耐える安定したエピタキシャル成長を実現できる。エピタキシャル成長促進部101の算術術平均粗さRaが1.0nm以下の場合、エピタキシャル成長促進部101と結晶との格子定数の差が小さくなる。このため、エピタキシャル成長促進部101内で発生する転位がより減少し、IQEがより改善する。算術平均粗さRaが、0.5nm以下であれば、エピタキシャル成長促進部101の表面における拡散が均等になりやすい。このため、エピタキシャル成長の初期である、核成長が安定化する。よって、LED製造プロセスに耐えうる安定なエピタキシャル成長をより実現しやすい。なお、0.3nm以下であれば、上記説明したIQE改善の効果と、安定なエピタキシャル成長の効果が最も発揮される。なお、下限値は特に限定されないが、原子間力顕微鏡による測定分解能の観点から0.1nm以上である。
 また、エピタキシャル成長抑制部104に対して、複数の凹凸構造を設けることで、エピタキシャル成長抑制部104の表面粗さRaを制御しやすい。凹凸構造の形成方法についても、下記の製造方法に示した。これにより、エピタキシャル成長促進部101における結晶成長の起点としての効果が高まる。同時に、エピタキシャル成長の成長速度は、エピタキシャル成長促進部101に対して早くなる。このため、エピタキシャル成長抑制部104の凹凸構造の側壁より結晶が成長する前に、エピタキシャル成長促進部101より成長する結晶によりエピタキシャル成長抑制部104を埋めることができる。即ち、エピタキシャル成長抑制部104の領域内にて、結晶の会合が生じやすくなる。よって、転位はより減少し、IQEが向上する。エピタキシャル成長抑制部104に対する算術平均粗さRaが5nm以上の場合、エピタキシャル成長抑制部104におけるエピタキシャル成長性が極端に低下する。これは表面粗さRaが大きければ、エピタキシャル成長抑制部104の有する結晶面の種類が多くなるためである。換言すれば、表面粗さRaが大きくなれば、半導体層と成長基板との格子定数差が大きくなる。即ち、エピタキシャル成長促進部101の、結晶成長の起点としての機能が顕著に発揮される。よって、IQEがより改善する。算術平均粗さRaが25nm以上であれば、LEDの発光光に対するエピタキシャル成長抑制部104の粗さが大きくなる。このため、光学散乱性がより向上し、LEEが改善する。この観点から50nm以上であるとより好ましい。なお、80nm以上であると、上記説明したエピタキシャル成長促進部101に対する結晶成長の起点としての効果と、エピタキシャル成長抑制部104における光学散乱性の効果が共に向上するため、最も好ましい。一方で、800nm以下であれば、エピタキシャル成長抑制部104の有する凹凸構造の側壁より、結晶が成長することを阻害できる。即ち、エピタキシャル成長促進部101より横方向に成長する結晶が、エピタキシャル成長抑制部104から成長した結晶により、その成長を阻害されることを防ぐことができる。よって、IQEが向上する。この観点から500nm以下であるとより好ましい。なお、350nm以下であれば、エピタキシャル成長促進部101より横方向に成長する結晶がエピタキシャル成長抑制部104を乗り越える際の、成長速度のばらつきを小さくできる。よって、結晶の会合点が、エピタキシャル成長抑制部104の中央近傍になる。ゆえに、IQEがより改善する。同様の観点から、250nm以下が最も好ましい。
 エピタキシャル成長促進部101の輪郭形状については、下記に説明する形状が好ましい。
(状態A-1)
 エピタキシャル成長促進部101が点在し、各エピタキシャル成長促進部101の周囲がエピタキシャル成長抑制部104にて囲まれている状態では、エピタキシャル成長促進部101の外形は、正n角形であることが好ましい。或いは、エピタキシャル成長促進部101の外形は、図33A、図34A等に示すように、正n角形に関し各角部が内側に弧を描くように陥没すると共に、各辺が内側に0以上10以下の個数の弧を描く形状であるとよい。これらの形状であることで、エピタキシャル成長促進部101を起点とした、結晶のエピタキシャル成長を実現しやすく、IQE改善を見込むことが出来る。なお、エピタキシャル成長の観点から、正n角形は、各辺の長さが±10%以内の歪(長さのばらつき)を有してもよい。また、エピタキシャル成長促進部101の外形に関し、正n角形の場合、角部は曲率半径が0超の角部(丸みを帯びた角部)であるとよい。この場合、角部にて不安定化するエピタキシャル成長を抑制しやすいので、安定なエピタキシャル成長を実現できる。「正n角形に関し各角部が内側に弧を描くように陥没すると共に、各辺が内側に0以上10以下の弧を描く形状」に関して、各辺が内側に描く弧の数をmとする。図33Aは、m=0の場合である。即ち、図33Aでは、正六角形の角部が内側に弧を描くように陥没した形状であり、正六角形の各辺において、内側に描く弧の数は0である。本実施の形態において、各辺の内側に描く弧の数mは0以上10以下であるとよい。0以上10以下であることで、エピタキシャル成長促進部101より成長する結晶の内部に発生する転位欠陥を低減しやすく、IQE改善効果が高まるためである。図35に、正六角形に関し各角部が内側に弧を描くように陥没すると共に、各辺が内側に0以上10以下の弧を描く形状の例を図示した。図35A、図35B、図35C、図35Dの順番に、m=0、m=1、m=2、m=4である。なお、図35に図示した点線は、正六角形を示す線である。
 エピタキシャル成長促進部101によりエピタキシャル成長抑制部104が囲まれた状態の場合、エピタキシャル成長促進部101を作る辺は、直線の辺か、或いは外側に突出する変形を有する辺であって、且つ、当該突出が下に凸の形状である辺であるとよい。エピタキシャル成長促進部101が、所定格子上に配置されるとする。図34Bに示すように、この場合、所定格子からみて、外側に向かった突出部Bを有する。この突出は、所定格子の方向に、即ち下に凸の形状である。これらの形状であることで、エピタキシャル成長促進部101を起点とした、結晶のエピタキシャル成長を実現しやすく、IQE改善が見込めるためである。図33Bの例では、正六角形が互いに辺のみを共有し最密充填した格子として、エピタキシャル成長促進部101が位置している。この時、各正六角形の辺は、中心から外側に向けた突出部を有することがわかる。そして、この突出部は、突出する方向を正にとれば、下に凸の形状である。突出部の数は、図33Bの場合、各辺に対して上下に1つずつある。突出部の数は、直線の場合も含めて、各辺に対して上下に0以上10以下ずつであると良い。0以上10以下であることで、エピタキシャル成長促進部101より成長する結晶の内部に発生する転位欠陥を低減しやすく、IQE改善効果を高めることができる。
(状態A-3)
 エピタキシャル成長促進部101がエピタキシャル成長抑制部104を挟み込む場合、エピタキシャル成長促進部101の外形は、直線の辺か、或いは外側に突出する変形を有する辺であって、且つ、当該突出が下に凸の形状である辺であるとよい。これらの形状であることで、エピタキシャル成長促進部101を起点とした、結晶のエピタキシャル成長を実現しやすく、IQE改善を見込むことができる。図33Cの例では、エピタキシャル成長促進部101は、ラインアンドスペース格子状に配置している。この格子辺(点線で示す)から外側に向けた突出部を有する外形であることがわかる。そして、この突出部は、突出する方向を正にとれば、下に凸の形状である。
 エピタキシャル成長促進部101は、周期的に配置されるとよい。周期的にエピタキシャル成長促進部101が配置されることで、エピタキシャル成長抑制部104上にて生じる結晶の会合は、エピタキシャル成長抑制部104の中心近傍にて生じることとなる。このため、結晶欠陥は限りなく小さくなり、IQEを極めて向上させることができる。特に、以下の配列であるとより好ましい。すなわち、正三角格子の格子点(図33A参照)、正三角格子の格子点及び辺、正六角形が互いに辺のみを共有し最密充填された格子の格子点、正六角形が互いに辺のみを共有し最密充填された格子の格子点及び辺、正六角形を一軸方向に110%以上5000%以内の倍率で延伸した六角形が互いに辺のみを共有し最密充填した格子の格子点及び辺に配置されるとよりよい。これらの場合、IQEの向上に寄与するエピタキシャル成長促進部101の結晶成長の起点としての機能及びエピタキシャル成長抑制部104上における結晶の会合がより顕著に改善する傾向にあるためである。なお、エピタキシャル成長という物理現象を鑑みた場合、正n角形格子の格子歪は±10%まで許容しやすい。よって、本願の正n角形は、正n角形から、±10%以内の歪(長さのばらつき)を有するn角形までを含むものとする。このような配列をとることで、エピタキシャル成長促進部101から優先的に成長する結晶が、エピタキシャル成長抑制部104の領域内で会合する際の、会合の規則性が飛躍的に向上する。よって、転位は限りなく小さくなり、IQEがより改善する。
 エピタキシャル成長促進部101の個々の面積は、0.05μm以上が好ましい。これにより、エピタキシャル成長促進部101を、結晶成長の起点として作用させやすくなる。特に、0.1μm以上がより好ましい。この場合、エピタキシャル成長促進部101におけるエピタキシャル成長の分布が小さくなる。よって、エピタキシャル成長の初期である核成長が安定化する。即ち、LED製造プロセスに耐えうる安定なエピタキシャル成長を実現しやすい。最も好ましくは、0.2μm以上である。この場合、エピタキシャル成長促進部101におけるエピタキシャル成長速度が速くなり、エピタキシャル成長抑制部104の領域内における結晶の会合を実現しやすくなる。よって、転位がより低減し、IQEが改善する。エピタキシャル成長促進部101の面積の上限値は、10μm以下が好ましい。この上限値により、エピタキシャル成長促進部101内での、転位の生成を抑制しやすくなる。同様の観点から、エピタキシャル成長促進部101の面積は、7μm以下がより好ましい。なお、エピタキシャル成長促進部101の面積が5μm以下であれば、エピタキシャル成長抑制部104の面積が相対的に大きくなり、光学的散乱性が高まる。よって、IQEとLEEを同時に改善する効果が高まる。
 エピタキシャル成長促進部101の第1主面に対する面積比(エピタキシャル成長促進部101の全面積/第1主面の面積)は0.001以上0.2以下が好ましい。面積比が0.001以上であることで、エピタキシャル成長の速度が向上し、工業生産が保たれる。特に、面積比が0.002以上であれば、エピタキシャル成長促進部101の面積を大きくできるので、エピタキシャル成長促進部101の、結晶成長の起点としての機能が高まり、IQEがより向上する。面積比が0.005以上であれば、上記にて示したIQE及びLEEの改善、及びLED製造プロセスに耐えうる安定なエピタキシャル成長に加えて、工業生産性が飛躍的に向上する。面積比が0.2以下であることで、エピタキシャル成長促進部101より成長する結晶の欠陥を低減できる。このため、IQEが向上しやすい。面積比が0.15以下であれば、エピタキシャル成長抑制部104の割合が大きくなり、光学散乱性が高まるので、LEEの改善が顕著となる。最も好ましくは、面積比は0.1以下である。この場合、工業生産性を確保した状態で、IQE及びLEEを効果的に改善し、LED製造プロセスに耐えうる安定なエピタキシャル成長を実現できる。なお、当該面積比は10μm□の領域に対する値である。即ち、第1主面の面積は100μm2である。そして、100μm□の領域に含まれるエピタキシャル成長促進部101の面積を、100μm2にて除した値が、上記面積比である。
 本発明の半導体発光素子用基板の別の形態として、 第1主面に配置されるエピタキシャル成長促進部とエピタキシャル成長抑制部と、は下記要件a~dを同時に満たすことが好ましい。
 a.点在する複数の前記エピタキシャル成長促進部の周囲を前記エピタキシャル成長抑制部にて囲んでいること、複数の前記エピタキシャル成長抑制部の周囲が前記エピタキシャル成長促進部にて囲まれていること、或いは、前記エピタキシャル成長抑制部が前記エピタキシャル成長促進部にて挟み込まれていること、
 b.前記エピタキシャル成長抑制部は、複数の凹凸構造により構成されること、
 c.前記エピタキシャル成長抑制部と前記エピタキシャル成長促進部と、は周期配列されるとこと、
 d.前記エピタキシャル成長促進部と前記エピタキシャル成長抑制部とで構成される周期単位αを任意に選択し、前記周期単位αを任意に選択した他の周期単位βに重ね合わせた時に、前記周期単位αに含まれる凹凸構造S-αと前記周期単位βの含まれる凹凸構造S-βと、の前記第1主面に対する投影面積による適合率が0.60以上0.99以下であること。
 エピタキシャル成長抑制部は、前記したように複数の凹凸構造により構成される(上記の要件b)。このためエピタキシャル成長抑制部に対するエピタキシャル成長速度は、小さくなる。よって、エピタキシャル成長促進部が結晶成長の起点として、機能する。ここで、エピタキシャル成長抑制部の領域に点在するように、エピタキシャル成長抑制部の周囲を取り囲むように、或いはエピタキシャル成長抑制部を挟み込むようにエピタキシャル成長促進部が設けられている(上記の要件a)。このためエピタキシャル成長の結晶の会合は、エピタキシャル成長抑制部の中央近傍にて生じやすい。即ち、転移欠陥は極度に低下する。よって、IQEが向上する。この時、エピタキシャル成長抑制部とエピタキシャル成長促進部との周期に関し、任意に周期単位αを選択する。この周期単位αを適当に動かして、他の周期単位βに重ねあわせる。各周期単位α、βに含まれる凹凸構造を第1主面に投影した際の、面積の適合率を判定する。適合率は、0.60以上0.99以下である(上記の要件d)。このように適合率が所定範囲にあるので、エピタキシャル成長中に、突発的に、エピタキシャル成長抑制部から結晶が成長することを抑制しやすい。即ち、エピタキシャル成長促進部より成長する結晶が、エピタキシャル成長抑制部の中央付近にて会合する前に、突発的にエピタキシャル成長抑制部より成長した結晶により成長を阻害されることを抑制できる。一方で、エピタキシャル成長抑制部は、複数の凹凸構造により構成され、エピタキシャル成長抑制部とエピタキシャル成長促進部とは周期的に配列する。よって、光学散乱性が発現され、導波モードが壊れて、LEEが向上する。
 さらに、上記の要件dについて、図面を参照し、説明する。図36は、エピタキシャル成長促進部と前記エピタキシャル成長抑制部とで構成される周期単位について説明するための、エピタキシャル成長促進部及びエピタキシャル成長抑制部の平面模式図である。
 図36では、前記した状態A-1を代表しているが、状態A-2、及び、状態A-3についても、同様に考えることができる。図36の形態では、エピタキシャル成長促進部101の配列単位である正三角格子が、エピタキシャル成長促進部とエピタキシャル成長抑制部と、の配列単位となっており、エピタキシャル成長促進部101は、正三角格子の格子点に配置されているといえる。同時にエピタキシャル成長抑制部104は複数の凹凸構造により構成されており、凹凸構造は、正三角格子の格子点に位置している。そして、エピタキシャル成長促進部101の配列を決める正三角格子と、エピタキシャル成長抑制部104の凹凸構造の配列を決める正三角格子と、はその方向が30°回転してずれている例である。
 さらに、ここで任意に当該単位を選択し、周期単位αとする。つぎに同じ単位格子であって、周期単位αと異なる周期単位を任意に選択する。これを周期単位βとする。周期単位α及び周期単位βをそれぞれ抜き出した図が、図36Bである。周期単位αに含まれる凹凸構造S-αと、周期単位βに含まれる凹凸構造S-βと、を図36Cのように重ねあわせる。ここで、観察は走査型電子顕微鏡を使用し実施する。観察位置は上面図(表面像)である。即ち、基板の第1主面に対する凹凸構造の投影像を得ることができる。凹凸構造が凸部の集合であれば、凸部の底部の輪郭が1つの凸部として観察される。凹凸構造が凹部の集合であれば、凹部の開口部の輪郭が1つの凹部として観察される。即ち図36に示した円により示される凹凸構造は、凸部の底部の輪郭である。周期単位αに含まれる凹凸構造S-αを第1主面に投影した際の、凸部の底部輪郭の面積を求める。周期単位βに含まれる凹凸構造S-βについても同様に実施する。各面積は、周期単位内に含まれる部分の面積とする。例えば、図36の場合、凹凸構造S-αを構成する凸部a1~a7と凹凸構造S-βを構成する凸部b1~b7に対して、下記に示す表のように面積が算出される。適合率は、1以下になる比である。凸部a1と凸部b1の例では、適合率は、b1/a1である。凸部a6と凸部b6の例では、適合率は、a6/b6である。最後に、適合率を全て平均化して0.83という数値が得られる。上記の例では、周期単位αに対して周期単位βのみを比較させたが、本実施の形態では任意に周期単位β2、β3、β4、β5、β6を選択する。そして、周期単位β、β2、β3、β4、β5、β6に対する周期単位αの適合率をそれぞれ求め、それらを相加平均した値が、本願の適合率である(下記の表1参照)
Figure JPOXMLDOC01-appb-T000002
 本実施の形態では、適合率(平均適合率)は、0.60以上0.99以下である。このような適合率が所定範囲であるので、エピタキシャル成長中に、突発的に、エピタキシャル成長抑制部から結晶が成長することを抑制しやすい。即ち、エピタキシャル成長促進部より成長する結晶が、エピタキシャル成長抑制部の中央付近にて会合する前に、突発的にエピタキシャル成長抑制部より成長した結晶により成長を阻害されることを抑制できる。よって、転移は効果的に減少するとともに、エピタキシャル成長の安定性が向上する。特に、適合率が0.95以下であれば、配置の周期性に対して、ミクロな凹凸構造の差異が強くなる。よって、微小にみると、光学散乱性が改善する。同時に、凹凸構造のわずかな変動は、エピタキシャル成長により生じる圧縮応力を緩和する機能があるとも考えることができる。よって、結晶に対する歪が低減するので、IQEがより改善する。一方で、適合率が0.65以上であれば、エピタキシャル成長抑制部から突発的に成長する結晶の頻度が低下する。よって、エピタキシャル成長の安定度が格段に向上する。もっとも好ましくは、適合率が0.70以上である。
 本実施の形態に係る光学基材、あるいは、半導体発光素子用基板における、基材本体の材質は、光学基材、あるいは、半導体発光素子用基板として使用できるものであれば特に制限はない。例えば、サファイア、SiC、SiN、GaN,シリコン、酸化亜鉛、酸化マグネシウム、酸化マンガン、酸化ジルコニウム、酸化マンガン亜鉛鉄、酸化マグネシウムアルミニウム、ホウ化ジルコニウム、酸化ガリウム、酸化インジウム、酸化リチウムガリウム、酸化リチウムアルミニウム、酸化ネオジウムガリウム、酸化ランタンストロンチウムアルミニウムタンタル、酸化ストロンチウムチタン、酸化チタン、ハフニウム、タングステン、モリブデン、GaP、GaAsなどの基材を用いることができる。なかでも半導体層との格子マッチングの観点から、サファイア、GaN、GaP、GaAs、SiC基材などを適用することが好ましい。例えば、光学基材に、C面(0001)を主面とするサファイア基板を用いることができる。更に、単体で用いてもよく、これらを用いた基板本体上に別の基材を設けたヘテロ構造の基材としてもよく、前記凹凸部を別の基材としたヘテロ構造としてもよい。
(製造方法)
 続いて、本実施の形態に係る光学基材、及び、半導体発光素子用基板の製造方法について説明する。ただし、以下に示す製造方法は一例であって、半導体発光素子用基板の製造方法はこれに限定されるものではない。
 以下は、半導体発光素子用基板の製造方法について記述するが、光学基材についても同様であり、以下の記述において、半導体発光素子用基板を光学基材と読み替えて定義される。
 上記したような半導体発光素子用基板の製造方法としては、特に制限されるものではなく、通常のフォトリソグラフィ法、インプリント法、ナノインプリント法、ナノインプリントリソグラフィ法などが挙げられる。例えば、ナノインプリントリソグラフィ法においては、所定の基板表面に、レジスト層を形成したのち、必要とする転写パターンの反転型を使い、ナノインプリント法により転写し、表面に必要とする凹凸パターンが形成されたレジスト層を得る。
 また、あらかじめ必要とする所定の凹凸パターンの凹凸反転構造が形成されたシート表面にドライフィルム層を形成したドライフィルムパターンシートを形成し、それを基板表面に転写し、表面に凹凸パターンが形成されたドライフィルムレジスト層を得る、ドライフィルムインプリントリソグラフィ法も利用できる。
 上記のドライフィルムインプリントリソグラフィ法によれば、エッチング耐性の高いマスク層で凹凸パターンを形成でき、基板表面への凹凸パターン形成が容易である利点があり好ましい。また、ドライフィルムを基板に貼合する工程のみでよく、高精度のインプリント装置や露光装置が不要であり、生産効率も高めることができるので、工業生産上有益である。以上から、ドライフィルムインプリントリソグラフィ法を用いることが好適である。
 ここで、サファイア基板を代表してさらに説明する。
 まず、サファイア基板の第1主面を研磨する。この時、研磨砥粒の種類、研磨砥粒の個数、研磨速度、そしてpHの制御等により、第1主面の表面粗さRaを制御できる。特に、算術平均粗さが1.5nm以下となるまで、研磨を実施するとよい。この表面研磨精度が、製造されるエピタキシャル成長促進部の表面粗さRaに相関するためである。中でも、算術平均粗さが0.5nm以下であると、4インチや6インチといったサファイア基板に対して、製造される成長促進部の分布が小さくなるため好ましい。最も好ましくはIQE改善と安定なエピタキシャル成長の観点から、算術平均粗さは0.3nm以下である。また、選択する基板のオフ角や面方位などをと適宜選択し、半導体発光素子の必要なスペックに合わせこむことができる。
 表面粗さRaが所定内のサファイア基板を、例えば、硫酸と過酸化水素水の混合液(SPM液)にて洗浄し、クリーニングする。一方で、エピタキシャル成長促進部とエピタキシャル成長抑制部の位置情報を相関係数0.9以上の精度で具備するドライフィルムパターンシートを準備する。例えば、ガラスのマザーロールに対して熱リソグラフィ法を適用してパターンを形成する。この時、レーザーの照射パルスを制御することで、エピタキシャル成長促進部と、エピタキシャル成長抑制部の位置情報を、ガラスのマザーロールに形成できる。当該マザーロールから光ナノインプリント法により、モールドを製造する。さらに、モールドからモールドを転写し、複製してもよい。
 つぎに上記得られたモールドに対して、無機又は有機無機ハイブリッド組成の第1レジストを充填する。例えば、有機金属や金属酸化物微粒子等をレジストに含有できる。この段階での充填状態は、モールドのパターン内に、レジストが完全には満たされておらず、レジストにより平坦化されていない状態であり、第1次次レストを塗布した後であっても、パターンの一部が露出している状態である。
 次に、第1レジスト充填モールドに対して、有機レジストである第2レジストを塗布する。ここでは、前段階とことなり、平坦化するように成膜する。第1レジスト及び第2レジストが成膜されたモールドをドライフィルムパターンシートと呼ぶ。ここで、2層として説明しているが、第2レジストのみを成膜した単層レジストや、更に第3レジストを有する多層ドライフィルムパターンシートを使用することもできる。有機レジストは、ネガ型でもポジ型でもよく、少なくとも、紫外線にて効果作用が発現するラジカル重合系、又は、化学増幅系を含むと好ましい。レジストに、フェノールノボラック、クレゾールノボラック、アクリル変性エポキシノボラック、メタクリル変性エポキシノボラック、アダマンタン、フルオレン、カルバゾール、ポリビニルカルバゾール、ポリパラヒドロキシスチレン等を含むと、基板の加工性が向上するため好ましい。特に、オリゴマー又はポリマー、モノマー及び重合開始剤を含む混合物とすると、塗布したレジストの薄膜状態を維持する機能が向上するため望ましい。
 次にドライフィルムパターンシートを、サファイア基板に貼り合わせる。貼り合わせた後に、光や熱によりレジストを安定化させ、その後、モールドを取り除く。又は、モールドを取り除いた後に、光や熱によりレジストを安定化させる。
 以上の操作により、サファイア基板の主面上に第2レジスト層と第1レジスト層を転写する。レジストの表面にはモールドの反転構造が転写されており、この反転構造は、位置情報として、エピタキシャル成長促進部とエピタキシャル成長抑制部の配列を有している。
 最後に、基板表面に形成されたレジスト層をマスクとしてエッチングすることで、基板表面にエピタキシャル成長促進部とエピタキシャル成長抑制部を形成できる。エッチング方法としては、ウェットエッチング、ドライエッチング、あるいは両者を組み合わせた方法などが適用できる。特に、エピタキシャル成長促進部の表面粗さRaの制御と、エピタキシャル成長抑制部の凸部の制御の観点から、ドライエッチング法を用いることが好ましい。ドライエッチング法の中でも、異方性ドライエッチングが好ましく、ICP-RIE、ECM-RIEが好ましく。ドライエッチングに使用する反応ガスとしては、基板の材質と反応すれば、特に限定されるものではないが、BCl、Cl、CHF、あるいはこれらの混合ガスが好ましく、適宜、Ar、O2、N2などを混合できる。
 本実施の形態において、図8に示すような、光学基材10に凸部21、平坦部22、及び、凹部23を有する凹凸構造20を設けるには、例えば図37に示すレジスト層11を、主面が平坦な(凹凸構造20が形成されていない)図示しない光学基材上に設ける。
 図37に示すように、レジスト層11の主面には複数の凸部12が設けられており、この凸部12は、光学基材上に形成される凸部21の位置と厚み方向(Z方向)で対向している。図37に示すように、凸部12間には狭平坦部13と、広平坦部14とが設けられており、広平坦部14は、光学基材に形成される凹部23の位置と膜厚方向(Z)で対向している。すなわち、レジスト層11に設けられた広平坦部14は、凸部12が所定数だけ(図37では一つ)間引かれた広い幅からなる歯抜け部(以下、歯抜け部14と称する)を構成する。
 図37のレジスト層11を用いてエッチングを行うことで、凸部21、平坦部22、及び、凹部23を有する凹凸構造20を形成することができる。例えば、ドライエッチングによって凹凸構造を形成する場合、広平坦部14のエッチングレートと、凸部12間の狭平坦部13とのエッチングレートに差を設けることで、レジスト層11の広平坦部(歯抜け部)14に凹部23を設けることができる。この為、凸部底部間距離s(図9A、図9Bに図示)が特に200nm以下(中でも100nm以下)、且つ凹部開口部の幅lo_wと凸部底部間距離sとの比lo_w/sが6以上となると、エッチングレートの差が大きくなり、凹部を形成しやすくなる。
 この場合、広平坦部14と、凸部12間の狭平坦部13とのエッチングレートに差が生じる理由としては、ドライエッチングにおけるマイクロローディング効果が挙げられる。特に、凸部12間の狭平坦部13が、上記したように狭いため狭平坦部13のエッチングレートが低下し、マイクロローディング効果が顕著に働く。
 上記したドライフィルムレジスト法とドライエッチング法により本願発明の実施に係る半導体発光素子用基板を形成する。
 例えば、図38の黒丸の位置に歯抜け部14を有するレジスト層11を用いることで、独立した凹部23を有する図39の半導体発光素子用基板を得ることができる。
 また、図40の黒丸の位置に歯抜け部14を有するレジスト層11を用いることで、連続した凹部23を有する図4の半導体発光素子用基板を得ることができる。
(半導体発光素子)
 次に、本発明の実施の形態に係る半導体発光素子用基板を適用した半導体発光素子について説明する。以下、半導体発光素子用基板について、記述するが、本発明の光学基材についても同様であり、半導体発光素子用基板を、光学基材と読み替えて定義する。
 本実施の形態に係る半導体発光素子においては、上述の本実施の形態に係る半導体発光素子用基板を少なくとも一つ以上、構成に含む。本実施の形態に係る半導体発光素子用基板を構成に入れることで、IQEの向上、LEEの向上を図ることができる。
 本実施の形態に係る半導体発光素子は、半導体発光素子用基板の第1主面上に、少なくとも2層以上の半導体層と発光層とを積層して構成される積層半導体層を有する。
 例えば、図41は、本実施の形態に係る半導体発光素子の断面模式図である。図41に示すように、半導体発光素子A00においては、半導体発光素子用基板A01の一主面上に設けられた凹凸構造上に、アンドープ型半導体層A51、n型半導体層A52、発光半導体層A53及びp型半導体層A54が順次積層されている。また、p型半導体層A54上には透明導電膜A55が形成されている。
 また、n型半導体層A52表面にカソード電極A57が、透明導電膜A55表面にアノード電極A56がそれぞれ形成されている。なお、半導体発光素子用基板A01上に順次積層されたn型半導体層A52、発光半導体層A53、p型半導体層A54を、積層半導体層A60と称する。
 ここで、アンドープ型半導体層A51の主面は平坦面であることが好ましい、アンドープ型半導体層A51の主面が平坦面であることにより、n型半導体A52、発光半導体層A53、p型半導体層A54の性能を効率化でき、内部量子効率IQEが向上する。
 さらにアンドープ型半導体層A51と半導体発光素子用基板A01との界面には、図示しないバッファ層が存在することが好ましい。バッファ層の存在により、アンドープ型半導体層A51の結晶成長の初期条件である核生成及び核成長が良好となり、積層半導体層A60の半導体としての性能が向上するため、内部量子効率IQEが改善する。
 バッファ層は、凹凸構造の表面全体を覆うように形成してもよいが、凹凸構造の表面に部分的に設けることができ、特に、半導体発光素子用基板A01表面のエピタキシャル成長促進部に優先的にバッファ層を設けることができる。
 バッファ層の厚さは5nm以上100nm以下がよく、10nm以上50nm以下がより好ましい。これにより後述の比(TexD/TDD)による効果を、より顕著に発現できる。これは、バッファ層の厚みより、アンドープ型半導体層A51の成長速度のバラツキを低減し、会合点を制御しやすいためである。なお、比(TexD/TDD)による効果については、後述する。
 バッファ層は、例えば、例えば、GaN構造、AlGaN構造、AlN構造、AlInN構造、InGaN/GaN超格子構造、InGaN/GaN積層構造、AlInGaN/InGaN/GaN積層構造等を採用することができる。中でも、GaN構造、AlGaN構造、AlN構造が最も好ましい。これにより、上述したアンドープ型半導体層A51の成長速度のバラツキがより低減するため、会合点の制御性が向上し、アンドープ型半導体層A51の表面ラフネスを低減しやすい。
 また、バッファ層の成膜については、成膜温度を350℃~600℃の範囲にできる。また、バッファ層は、MOCVD(Metal Organic Chemical Vapor Deposition)法又はスパッタリング法により成膜されることが好ましい。
 本実施の形態に係る半導体発光素子においては、前記アンドープ型半導体層A51と、前記バッファ層を併せて下地層と定義し記述する。
 本実施の形態に係る半導体発光素子において、アンドープ型半導体層A51としては、例えば、シリコンやゲルマニウム等の元素半導体、又は、III-V族やII-VI族やIVI-IV族等の化合物半導体を適用できる。特に、アンドープ窒化物層であることが好ましい。アンドープ窒化物層としては、例えば、900~1500℃の成長温度で、NH3とTMGaを供給することで成膜できる。
 アンドープ型半導体層A51の膜厚は、0.5μm以上10μm以下であることが好ましいが、アンドープ型半導体層A51に対する残留応力の観点から、1.3μm以上8μm以下がより好ましい。
 本実施の形態に係る半導体発光素子において、n型半導体層としては、半導体発光素子に適したn型半導体層として使用できるものであれば、特に制限はない。例えば、シリコン、ゲルマニウムなどの元素半導体、III-V族、II-VI族、IV-IV族などの化合物半導体などに適宜、種々の元素をドープしたものを適用できる。また、n型半導体層、p型半導体層には、適宜、図示しないn型クラッド層、p型クラッド層を設けることができる。
 n型GaN層としては、例えば、NHを3×10-2~4.2×10-2mol/min、トリメチルガリウム(TMGa)0.8×10-4~1.8×10-4mol/min及びSiに代表されるn型ドーパントを含むシランガスを5.8×10-9~6.9×10-9mol/min供給し、形成することができる。膜厚は、活性層への電子注入性の観点から、800nm以上であると好ましく、1500nm以上であることがより好ましい。
 発光半導体層としては、半導体発光素子として発光特性を有するものであれば、特に限定されない。例えば、発光半導体層として、AsP、GaP、AlGaAs、InGaN、GaN、AlGaN、ZnSe、AlHaInP、ZnOなどの半導体層を適用できる。また、発光半導体層には、適宜、特性に応じて種々の元素をドープしてもよい。
 また、単一量子井戸構造(SQW)又は多重量子井戸構造(MQW)とすることが好ましい。
 例えば、600~850℃の成長温度で、窒素をキャリアガスとして使い、NH、TMGa及びトリメチルインジウム(TMIn)を供給し、INGaN/GaNからなる活性層を、100~1250Åの厚さに成長させることができる。また、多重量子井戸構造の場合、1つの層を構成するInGaNに関し、In元素濃度を変化させることもできる。
 また、発光半導体層A53とp型半導体層A54との間に電子ブロック層(図示せず)を設けることができる。電子ブロック層は、例えば、p-AlGaNにて構成される。
 本実施の形態に係る半導体発光素子においては、p型半導体層の材質は、半導体発光素子に適したp型半導体層として使用できるものであれば、特に制限はない。例えば、シリコン、ゲルマニウムなどの元素半導体、及び、III-V族、II-VI族、IV-IV族などの化合物半導体に適宜、種々の元素をドープしたものを適用できる。例えば、p型GaN層の場合、成長温度を900℃以上に上昇させ、TMGa及びCP2Mgを供給し、数百~数千Åの厚さに成膜することができる。
 これらの積層半導体層(n型半導体層、発光半導体層、及びp型半導体層)は、基材表面に公知の技術により成膜できる。例えば、成膜方法としては、有機金属起草成長法(MOCVD)、ハイドライド気相成長法(HVPE)、分子線エピタキシャル成長法(MBE)などが適用できる。
 本実施の形態に係る半導体発光素子においては、透明導電膜の材質は、半導体発光素子に適した透明導電膜として使用できるものであれば、特に制限はない。例えば、Ni/Au電極などの金属薄膜や、ITO、ZnO、In、SnO、IZO、IGZOなどの導電性酸化物膜などを適用できる。特に、透明性、導電性の観点からITOが好ましい。
 本実施の形態に係る半導体発光素子において、透明導電膜の厚みは30nm以上100nm以下が好ましい。透明導電膜の役割は、アノード電極A56からの電流を拡散させ、p型半導体層A54に注入することである。透明導電膜A55の抵抗は厚みが厚いほど小さくなることから、透明導電膜A55の厚み(T_TE)は、30nm以上が好ましく、40nm以上がより好ましい。上限は、光吸収を抑えることに加えて、薄膜干渉を利用して、臨界角以下の入射角に対する透過率を著しく上げることができ、また臨界角以下の透過率分布を抑える観点から、透明導電膜A55の厚み(T_TE)は、100nm以下が好ましく、80nm以下がより好ましい。
 透明導電膜A55の厚み(T_TE)は、例えばSTEM(走査透過電子顕微鏡)によって測定することができる。STEMによる測定は、像のコントラストから積層半導体層との境界を明確化することができ、好ましい。
 また本実施の形態では、従来に比べて凹凸構造の高さを1μm以下にでき、このように、凹凸構造が特にナノオーダーであれば、アンドープ型半導体層A51で凹凸構造を平坦化するために必要な厚みが薄くなる。このため、発光半導体層A53からの光を吸収する半導体層が薄くなることで、光取り出し効率LEEの更なる向上が見込まれると共に、n型半導体層A52、並びにその上に順次積層される発光半導体層A53及びp型半導体層A54の反りを抑制することが可能となり、従来よりも大面積の半導体発光素子とすることができる。以上により、下地層A51の厚みは、5μm以下が好ましく、4μm以下がより好ましく、3.5μm以下が更に好ましく、2.5μm以下がより一層好ましく、1.5μm以下が最も好ましい。
(反射層)
 本発明の実施の形態に係る半導体発光素子において、基板A01の積層半導体層が形成されている主面の裏面側の主面に、図示しない反射層を設けてもよい。
 反射層の材質は発光波長での反射率が高ければ特に限定されない。例えば金属ではAg、Al又はその合金などが、例えば反射率や半導体発光素子用基板A01との密着性などから選択される。或いは、より高い反射率とするために、誘電体多層膜を形成しても良い。反射率が所望の範囲で有れば膜厚及び層数は特に限定されず、例えば高屈折率層としてチタン酸化物、ジルコニウム酸化物、ニオブ酸化物、タンタル酸化物、窒化アルミ、低屈折率層としてシリコン酸化物を用いることができる。また、誘電体多層膜を形成した後、金属を成膜しても良い。
 また、半導体発光素子用基板A01との密着性を改善するために、半導体発光素子用基板A01と反射層との間に密着層を設けても良い。密着層は例えばシリコン酸化物を用いることができる。
(半導体膜と転位密度の関係)
 本実施の形態の半導体発光素子において、発光半導体層A53を貫通する転位を貫通転移(Threading Dislocation)とし、この密度を転位密度(Threading Dislocation Density:TDD(/cm))と定義する。
 本実施の形態の半導体発光素子用基板によれば、基板のパターン密度と転位密度(TDD)との比率を所定範囲で制御することで、転移を減少させ、結晶品位を向上させた半導体層を成膜可能になる。転位密度(TDD)は、断面透過型電子顕微鏡により測定可能である。この場合、測定領域が小さくなり、バラつきが大きくなることから、5点の相加平均値を採用する。
 図41に示した本発明の半導体発光素子において、下地層の半導体発光素子用基板側の主面に着目すると、半導体発光素子用基板の反転パターン形状となるので、連続した凸部により互いに離間された複数の凹部から構成されるホール構造のテクスチャを有している。
 本実施の形態の半導体発光素子用基板によれば、図6、図7を用いて前記、説明したように、欠陥は、エピタキシャル成長抑制部の中心に集中し、減少するため得られる半導体発光素子のIQEが向上する。
 つまり、本実施の形態の半導体発光素子における、前記下地層においては、下記の好ましい状態となる。つまり、本実施の形態の半導体発光素子用基板の反転パターン形状の主面を有し、前記発光層を貫通する転位の転位密度(TDD)と前記テクスチャの密度(TexD)との比率(TexD/TDD)が0.3以上である。
 比(TexD/TDD)は、転位密度TDDに対する凹凸構造の密度の割合である。転位密度TDDが0に漸近した場合や、凹凸構造のスケールが無限大に発散した場合は、比(TexD/TDD)→∞となる。一方で、転位密度TDDが限りなく大きい場合や、凹凸構造が原子レベルに小さくなった場合、比(TexD/TDD)→0となる。
 凹凸構造の密度Dは、ドット状の凸部の密度あり、そのディメンジョンは(/cm)である。以下の説明においては、凹凸構造の密度を、単に、凹凸構造の数として表記することがあるが、単位面積当たりの数、即ち密度を示しているものとする。即ち、凹凸構造の数は、ドット状であれば凸部の数(密度)を意味する。同様に、転位密度についても、転位の数と表記することがあるが、これも単位面積当たりの数、即ち密度を示しているものとする。
 比(TexD/TDD)は、凹凸構造の数と転位の数とのバランスと言い換えることができる。特に、比(TexD/TDD)は凹凸構造1個にあてがうことができる転位の数としてとらえることができる。
 さらに、前記下地層においては、相対する半導体発光素子用基板の前記エピタキシャル成長促進部につながる転位は、前記エピタキシャル成長抑制部につながる転位よりも多いことが好ましい。このような下地層であると、半導体発光素子に対する成膜時の残留圧縮応力を軽減でき好ましい。さらには、前記エピタキシャル成長促進部につながる転位は、前記エピタキシャル成長抑制部につながる転位の2倍以上であることが好ましい。
 上記構成であると、成膜時の残留圧縮応力を軽減できる詳細なメカニズムは不明であるが、つぎのように推定される。
 エピタキシャル成長抑制部は、下地層主面に対し2次元的に広がっているため、エピタキシャル成長抑制部を起点とした下地層に対する残留圧縮応力は、2次元的に広がりにより分散され、軽減されると考えられる。一方、エピタキシャル成長促進部は互いに孤立しているため、残留圧縮応力を分散できない。ここで、貫通転移自体は、結晶に関しては欠陥であるが、結晶の連続性が途切れるので、下地層内部の残留応力を軽減することができる。つまり、形態的には、互いに独立して残留圧縮応力を軽減できないエピタキシャル成長促進部における下地層に転位を多く形成することで、残留圧縮応力を低減できることになる。
 半導体層内部の残留圧縮応力が低減されることで、電流通電時の内部分極が緩和し、発光特性が改善する。特に、高電流密度における発光強度が向上すると考えられる。
 以下、本実施の形態の特徴的部分について記載する。
 すなわち、本実施の形態の光学基材は、主面の一部又は全面に凹凸構造が形成された光学基材であって、前記凹凸構造が規則的な歯抜け部を有している、ことを特徴とする。
 また、本実施の形態の光学基材は、前記凹凸構造は、凸部と凸部間底部と、当該凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部とで構成され、前記歯抜け部は、前記凹部であることを特徴とする(図2参照)。
 本実施の形態では、前記凸部は平均ピッチP0で配置され、前記歯抜け部は正多角形の頂点、又は、前記頂点間を結ぶ前記正多角形の辺上に配置され、前記正多角形の辺の長さは平均ピッチP0よりも長いことが好ましい(図4、図5参照)。
 また、前記正多角形の辺の長さが、平均ピッチP0の2倍以上、5倍以下であることが好ましい(図4、図5参照)。
 また、前記凹凸構造を構成する複数の前記歯抜け部は、正三角形格子の各格子点に設定された配置位置上に、正六角形の新たな単位格子として設定されるとともに、前記正六角形の頂点、または辺に相当する位置に設けられることが好ましい(図5参照)。
 また、前記凹凸構造を構成する複数の前記歯抜け部は、正三角形格子の各格子点に設定された配置位置上に、新たな正三角形格子として設定されるとともに、前記新たに設定される正三角形の頂点に相当する位置に設けられていることが好ましい(図10参照)。
 また、前記歯抜け部は、前記歯抜け部同士を結ぶ直線が、前記光学基材上に成膜される半導体層の結晶面のうち、結晶成長初期に会合する結晶面と直交するように、配置されることが好ましい(図14参照)。
 特に、本実施の形態における光学基材は、主面の一部又は全面に凹凸構造が形成された光学基材であって、前記凹凸構造は、正三角形格子の各格子点に設定された配置位置に設定されると共に、凸部と、凸部間底部と、当該凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部とを有して形成され、前記凹部は、凸部頂点間を結ぶ正多角形の頂点又は前記正多角形の辺上に配置されることを特徴とする(図2、図5等参照)。
 上記の実施の形態では、結晶核の生成位置(平坦部)を規則的に、且つ主面よりも低い位置に形成することにより、欠陥の起点位置制御による貫通転移量抑制、及び凹凸構造側面積増加を実現し、ひいては内部量子効率IQE、及び光取り出し効率LEEの両立を通じて、優れた発光効率を有する半導体発光素子を実現する。
 また、本実施の形態における半導体発光素子用基板は、上記に記載された光学基材を用いた、前記主面上に半導体結晶をエピタキシャル成長させるための半導体発光素子用基板であって、前記主面は複数のエピタキシャル成長促進部と、複数のエピタキシャル成長抑制部とを有して構成されており、前記エピタキシャル成長促進部は、その周囲を前記エピタキシャル成長抑制部で囲まれ、前記エピタキシャル成長抑制部は、少なくとも複数の前記凸部と前記凸部間底部とで構成されており、前記エピタキシャル成長促進部は、前記歯抜け部であり、前記主面と平行な平面を有することを特徴とする(図15等参照)。
 本実施の形態では、複数の前記エピタキシャル成長促進部は、最近接する複数のエピタキシャル成長促進部間距離Peが、互いに等しいことが好ましい(図15、図17参照)。
 また、前記エピタキシャル成長促進部の最近接するエピタキシャル成長促進部間距離Peと、前記エピタキシャル成長抑制部を構成する複数の前記凸部の周期Pnは、下記式(1)を満たすことが好ましい(図15、図17等参照)。
 1.5Pe≦Pe/Pn≦30 式(1)
 また、前記エピタキシャル成長促進部の前記主面に対する面積比は、0.001以上0.2以下であることが好ましい。
 または、本実施の形態における半導体発光素子用基板は、上記に記載された光学基材を用いた、前記主面上に半導体結晶をエピタキシャル成長させるための半導体発光素子用基板であって、前記主面は複数のエピタキシャル成長促進部と、複数のエピタキシャル成長抑制部とを有して構成されており、前記エピタキシャル成長抑制部は、その周囲を前記エピタキシャル成長促進部で囲まれ、あるいは、前記エピタキシャル成長抑制部は、前記エピタキシャル成長促進部で挟まれ、前記エピタキシャル成長抑制部は、少なくとも複数の凸部と凸部間底部とで構成されており、前記エピタキシャル成長促進部は、前記歯抜け部であり、前記主面と平行な平面を有することを特徴とする。
 また、前記エピタキシャル成長促進部は、前記凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部であり、前記主面と平行な平面を底部とする凹部であることが好ましい。
 本実施の形態では、前記エピタキシャル成長抑制部の前記主面に対する面積比は、0.80以上0.999以下であることが好ましい。
 また、前記エピタキシャル成長抑制部は、少なくとも周期配置された複数の前記凸部で構成されていることが好ましい(図31参照)。
 また、前記半導体発光素子用基板が、六方晶系の結晶構造を有する単結晶基板であって、最近接する複数のエピタキシャル成長抑制部の最近接の方向と、前記半導体発光素子用基板の前記結晶構造のm面とが平行でないことが好ましい。
 また、本実施の形態における半導体発光素子は、上記に記載の光学基材、あるいは、上記に記載の半導体発光素子用基板と、前記主面側に積層された、少なくとも2層以上の半導体層と発光層とを積層して構成される積層半導体層と、を有することを特徴とする(図41参照)。
 また、本実施の形態における成長基板は、少なくとも第1主面を備えており、前記第1主面は、成長促進部(エピタキシャル成長促進部)と成長抑制部(エピタキシャル成長抑制部)とを有しており、前記成長促進部と前記成長抑制部と、は下記要件A~Cを満たすことを特徴とする(図33参照)。
 A.点在する複数の前記成長促進部の周囲を前記成長抑制部にて囲んでいること、複数の前記成長抑制部の周囲が前記成長促進部にて囲まれていること、或いは、前記成長抑制部が前記成長促進部にて挟み込まれていること、
 B.前記成長抑制部に対する算術平均粗さRaが、5nm以上であること、
 C.前記成長促進部に対する算術平均粗さRaが、1.5nm以下であること。
 また、前記成長抑制部は、複数の凹凸構造を有して構成され、前記凹凸構造はデューティが0.85以上であることが好ましい。
 また、前記成長促進部は、周期的に配置されることが好ましい(図33参照)。
 また、本実施の形態における成長基板は、少なくとも第1主面を備えており、前記第1主面は、成長促進部と成長抑制部とを有しており、前記成長促進部と前記成長抑制部と、は下記要件a~dを同時に満たすことを特徴とする(図36参照)。
 a.点在する複数の前記成長促進部の周囲を前記成長抑制部にて囲んでいること、複数の前記成長抑制部の周囲が前記成長促進部にて囲まれていること、或いは、前記成長抑制部が前記成長促進部にて挟み込まれていること、
 b.前記成長抑制部は、複数の凹凸構造により構成されること、
 c.前記成長抑制部と前記成長促進部と、は周期配列されること、
 d.前記成長促進部と前記成長抑制部とで構成される周期単位Aを任意に選択し、前記周期単位αを任意に選択した他の周期単位βに重ね合わせた時に、前記周期単位αに含まれる凹凸構造S-αと前記周期単位βの含まれる凹凸構造S-βと、の前記第1主面に対する投影面積による適合率が0.60以上0.99以下であること。
 また、本実施の形態における半導体発光素子は、一方の主面の一部又は全面に凹凸構造が形成された成長基板の上に少なくとも第1半導体層、発光半導体層、第2半導体層、及び透明導電膜を積層した半導体発光素子であって、前記凹凸構造は、成長促進部(エピタキシャル成長促進部)及び成長抑制部(エピタキシャル成長抑制部)を有して構成され、前記凹凸構造は、点在する複数の前記成長促進部の周囲を前記成長抑制部にて囲んでいること、複数の前記成長抑制部の周囲が前記成長促進部にて囲まれていること、或いは、前記成長抑制部が前記成長促進部にて挟み込まれていること、の何れかによって構成され、且つ前記透明導電膜の厚み(T_TE)が、30nm以上100nm以下であることを特徴とする(図41参照)。
 以下、本発明の効果を明確に行った実施例をもとに本発明をより詳細に説明する。なお、本発明は、以下の実施例によって何ら限定されるものではない。
[実施例1~実施例3]
 まず、LED用基板(光学基材)を作製した。LED用基板のパターンは、ナノ加工シートを使用して作成した。ナノ加工シートについては後述する。2インチの片面鏡面のc面サファイアを準備し、洗浄した。続いて、サファイアを120℃のホットプレート上に配置した。次に、ナノ加工シートを、120℃に加温したラミネートロールを使用して、サファイアに貼り合わせた。貼り合わせは、0.5MPaの圧力で、線速50mm/秒にて行った。ナノ加工シートの貼り合わせされたサファイアに対して、サファイア越しに紫外線を照射した。紫外線は、波長365nmのUV-LED光源より照射されたもので、積算光量が1500mJ/cmになるように設定した。次に、120℃に加熱した2枚の並行平板で、ナノ加工シートとサファイアを挟み込んだ。挟み込みの圧力は0.3MPaとし、時間は10秒とした。続いて、空冷にて室温まで冷却し、ナノ加工シートをサファイアより、50mm/秒の速度で剥離した。以上の操作により、サファイアの主面上に、2層レジスト層を転写付与した。レジスト層の主面には凹凸構造が設けられている。この凹凸構造の形状及び配列、2層レジストの層構成、そして以下に記載のドライエッチング条件によりLED用基板のパターンを制御した。
 ナノ加工シートは、貼合操作及び剥離操作で、被処理体上に加工マスクを転写付与できる成形体である。構成としては、樹脂製のモールド、第1レジスト層、及び第2レジスト層である。樹脂モールドは、主面に凹凸構造を有し、当該凹凸構造の凹部の内部に、第1レジスト層が充填される。そして、樹脂モールドの凹凸構造と第1レジスト層と、を平坦化するように第2レジスト層が配置される。
 まず、樹脂製のモールドを、ロール・ツー・ロールの光ナノインプリント法を使用して、製造した。幅は500mm、長さは180mである。層構成としては、厚み50μmのPETフィルムの易接着面上に厚み1.5μmの転写層がある構成であり、転写層の主面に光ナノインプリント法にて転写された凹凸構造がある。また、樹脂モールドの凹凸構造面に対する水滴の接触角は140°~153°の間であった。
 転写層の材料は、下記、混合物とした。
(転写層)
 フッ素含有ウレタン(メタ)アクリレート(OPTOOL DAC HP(ダイキン工業社製)):トリメチロールプロパン(EO変性)トリアクリレート(M350(東亞合成社製)):1-ヒドロキシシクロヘキシルフェニルケトン(Irgacure(登録商標)184(BASF社製)):2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(Irgacure(登録商標)369(BASF社製))=17.5g:100g:5.5g:2.0gにて混合した材料
 次に、樹脂モールドの凹凸構造に対して、第1レジスト層を、ダイコート法にて成膜した。第1レジスト層は、下記に示す化合物を混合し、組成のチタン含有有機無機複合レジストを調整した。
(第1レジスト層)
 チタニウムテトラブトキシドモノマ(和光純薬工業社製):3―アクリロキシプロピルトリメトキシシラン(信越シリコーン社製):フェニル変性シリコーン(東レ・ダウコーニング社製):1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(Irgacure184、BASF社製):2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(Irgacure369、BASF社製)=65.2g:34.8g:5.0g:1.9g:0.7gにて調合し、プロピレングリコールモノメチルエーテルにて希釈した材料。更に固形分に対して0.000625質量%となるように高分子界面活性剤KF-945(信越化学工業(株)製)を添加した。KF-945の分子量は約2500、分子構造は下記化学式(1)であると推定される。
Figure JPOXMLDOC01-appb-C000003
 チタン含有有機無機複合レジストは、表面張力が24.0mN/m以下の溶剤Aと、表面張力が27.0mN/m以上の溶剤Bと、を混合した混合溶剤にて希釈し、塗布液とした。ダイコート法にて塗布する際に、ダイリップの上流側を減圧した。塗布の速度は10m/分とし、吐出量を制御することで、第1レジスト層の充填量を制御した。塗布後、120℃のエアを吹き付け乾燥させ、その後、巻き取り回収した。ここで、第1レジスト層を成膜した樹脂モールドを解析し、第1レジスト層の状態を把握した。解析は、走査型電子顕微鏡、透過型電子顕微鏡、及びエネルギー分散型X線分光法を併用した。第1レジスト層は、樹脂モールドの凹凸構造の凹部の内部に充填されていた。一方で、樹脂モールドの凹凸構造の凸部の上面には、数ナノメートルオーダーの第1レジスト層の残渣(凝集物)が観察されることはあったが、当該上面に、第1レジスト層が厚く成膜されることはなかった。また、ダイコート成膜に関し、塗液の吐出量を変化させることで、第1レジスト層の充填量が変化し、これに伴い、第1レジスト層の充填径が変化することを確認した。
 次に、第1レジスト層の充填された樹脂モールドに対して、第2レジスト層を成膜した。成膜方法は、第1レジスト層の場合と同様に行った。第2レジスト層は、下記組成の混合物であり、表面張力が25.0mN/m以下の溶剤にて希釈し、塗液とした。
(第2レジスト層)
 アクリロイル基変性率が100%のエポキシノボラック樹脂、ジペンタエリスリトールポリアクリレート、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンと、を80g:20g:4.5gの比率にて混合した材料。
 乾燥は、105℃にて行った。乾燥後、ヘーズ(濁度)が10%以下のPE/EVA保護フィルムを貼り合わせ、巻き取り、回収した。ここで、製造したナノ加工シートを解析し、第1レジスト層及び第2レジスト層の状態を把握した。解析は、走査型電子顕微鏡、透過型電子顕微鏡、及びエネルギー分散型X線分光法を併用した。第1レジスト層については、第2レジスト層の成膜前後で変化はなかった。第2レジスト層は、樹脂モールドの凹凸構造及び第1レジスト層を平坦化するように成膜できていた。また、成膜厚は、ダイコート成膜の吐出量を変化させることで、制御可能であることを確認した。即ち、ダイコート成膜の吐出量を制御して、第1レジスト層の充填径及び第2レジスト層の膜厚を変化させた。
 製造したナノ加工シートを使用して、既に説明したように、サファイアの主面上に、第1レジスト層及び第2レジスト層からなる2層レジスト層を転写付与した。次に、レジスト層を加工するエッチングと、サファイアを加工するエッチングを同一チャンバー内で連続して行った。レジスト層のエッチングには、酸素ガスを使用した。ここでは、第1レジスト層が第2レジスト層のエッチングマスクとして機能し、第2レジスト層をサファイアの主面が部分的に露出するまでエッチングした。エッチング条件は、処理ガス圧1Pa、処理電力300Wの条件とした。続いて、BClガスとClガスと、の混合ガスを使用した反応性イオンエッチングを行い、サファイアをエッチングした。ここでは、第2レジスト層をエッチングマスクとして、サファイアをエッチングした。処理条件は、パターンに合わせて適宜変化させた。
 エッチング加工したサファイアを取り出し、硫酸及び過酸化水素水を2:1の重量比にて混合した溶液にて洗浄した。この時、処理液の温度は、100℃以上に制御した。
 製造したサファイアの主面には、パターンが形成されていた。このパターンの形状(凸部底部の径φ、高さH)は、ナノ加工シートの第1レジスト層の充填径及び第2レジスト層の膜厚、及びドライエッチングの処理条件により、任意に調整できた。
 得られたサファイア基材上に、バッファ層としてAlGa1-xN(0≦x≦1)の低温成長バッファ層を100Å成膜した。次に、非ドープ第1半導体層として、アンドープのGaNを成膜した。
 その後、得られた基板にドープ第1半導体層として、SiドープのGaNを成膜した。続いて歪吸収層を設け、その後、発光半導体層として、多重量子井戸の活性層(井戸層、障壁層=アンドープのInGaN、SiドープのGaN)をそれぞれの膜厚を(60Å、250Å)として井戸層が6層、障壁層が7層となるように交互に積層した。発光半導体層上に、第2半導体層として、エレクトロブロッキング層を含むようにMgドープのAlGaN、アンドープのGaN、MgドープのGaNを積層し、積層半導体層を得た。
 その後、透明導電膜としてITOを成膜し、電極形成工程の後、リーク電流の測定を行った。2インチのサファイア基板上に得られたLED素子3000個以上に対して、オートプローバを用いてp電極パッドとn電極パッドの間に―5V(逆バイアス)印加した際のリーク電流(Ir)を測定した。
 その後、実装工程を行った。サファイア基材を厚さ160μmまで研磨して裏面に反射層を設けた。反射層は、Ag-Pd-Cu系の合金を成膜した。その後、裁断工程を経て得られた半導体発光素子について、前記した3000個の半導体発光素子のうち、20個について実装を行い、平均を求めた。金メッキTO缶にAgペーストで接合し、ワイヤボンディングすることでp電極パッドとn電極パッドの間に電流を流し発光出力を測定した。なお、チップの大きさは350μm四方、電流は20mAとし、発光波長は450nmであった。
 評価は以下の4項目で行った。まず、光学基材に第1半導体層を成膜した段階で取出し、得られた半導体層の表面平坦性を、AFMによって200μmの視野で観察し、その際の自乗平均面粗さ(RMS)を測定した。RMSが10nm以下であった場合を良好とした。次に、X線ロッキングカーブを取得し、GaN(102)に対する半値幅(XRC-FWHM)を取得した。ここでは、350arcsec以下を良好と判定している。また、-5V印加した際の基板面内のリーク電流を測定し、0.01mA以下を良好とした。最後に、得られた半導体発光素子について、その光出力を積分球で測定した。
[比較例1]
 比較例1は平均ピッチ700nmの六方配列の場合である。凸部底部間距離(平坦部の幅)が50nmと狭く、易成長部としての凹部がないことから結晶性が悪く、また成膜後の表面荒れ、以下の表2に示すように、リーク電流が大きいことがわかった。
[比較例2]
 比較例2は、三倍六方点配列で歯抜け部を設けたマスク(ここでのマスクは、実施例や比較例1とは異なるレジストである)で、リン酸:硫酸=1:1の溶液でウェットエッチングにより作成した、凹部が実質的にない光学基材である。この場合、マスクの歯抜け部が光学基材上の平坦部となり、易成長部となることで、比較例1に対して結晶性は向上しているが、その程度は小さく、成膜後主面も荒れてリーク電流も大きいことがわかった。
 実施例1は、比較例1と同じ歯抜け配列を有するレジストを用いたが、ドライエッチングで作成され、易成長部としての凹部を設けた光学基材である。易成長部としての凹部が所定の深さを有することで、比較例Aよりも結晶性が向上することがわかった。そして凹部側面が平坦部と異なる角度を有する為、光取出し効率が向上し、素子としての出力が向上していると推定される。
 実施例2は、三倍六方辺配列で歯抜け部を設けたレジストを用い、ドライエッチングで作成され、易成長部としての凹部を設けた光学基材である。この場合、易成長部としての凹部を設けることで結晶性が向上することがわかった。また、凹部側面が平坦部と異なる角度を有することから、光取出し効率が向上し、素子としての出力が向上していると推定される。
 さらに、平坦性が高く、リーク電流を抑制できている。得られた半導体発光素子の面内均一性が高いためと推定される。
 実施例3では、図10の配列で一辺の長さが2√3P0の場合である。なお、半導体層の下面に形成される凸部の高さは40nmであった。表2に示すように、結晶性を高く保ったまま、光取り出し効率LEEを向上させることで、発光出力が向上しており、また表面粗さも良好で歩留りも高いことがわかった。
Figure JPOXMLDOC01-appb-T000004
[実施例4]
 C面を主面とする。片面鏡面仕上げ、直径2インチのサファイア単結晶基板の、C面主面表面に、実施例1と同様に、前記したナノ加工シートを使用したドライフィルムレジストインプリントリソグラフィ法により、凸形状のマスクパターンが形成されたドライフィルムレジスト層を形成した。
 形成されたマスクパターンは、図25と同様の凸パターンであり、ピッチ0.70μmの格子定数で凸部が六方格子に配置され、凸パターンが設けられていない平面部が、1辺1.40μmの正六角形の各頂点に位置し繰り返し配置されている。
 凸マスク直径:0.62μm
 凸マスク高さ:1.47μm
 凸マスクピッチ(Pn):0.70μm
 凸マスク間の平面部ピッチ(Pe):1.40μm
 次に、ICPドライエッチング装置により、マスクパターンをマスクとして、BClガスとClガスの混合ガスにより、反応性イオンエッチングを行い、サファイア基板をエッチングした。処理条件としては、ICP:150W、BIAS:50W、圧力0.2Paとした。
 エッチング加工したサファイア基板を、硫酸及び過酸化水素水を2:1の重量比にて混合したSPM溶液にて、100℃以上に制御し洗浄した。
 上記操作で得られたサファイア基板表面を電子顕微鏡で観察すると、凸マスクパターンと同一配置の凸部と平面部を有していた(図42A)。なお図43Aは、図42Aの一部を示す模式図である。
 凸部直径:0.66μm
 凸部高さ:0.38μm
 凸部ピッチ(Pn):0.70μm
 凸部間の平面部ピッチ(Pe):1.40μm
(電子顕微鏡)
 装置;HITACHI s-5500
 加速電圧;10kV
 MODE;Normal
[実施例5]
 実施例4で作成したサファイア基板をMOCVD装置内に設置しLEDを作成した。まず、水素ガス雰囲気中で加熱し、表面クリーニング後、続いて、AlxGa1-xN(0≦x≦1)の低温成長バッファ層を、200Å成膜した。次に、アンドープのGaN層を成膜し、原料組成比、成膜温度、及び成膜圧力を適宜調整し、サファイア基板表面の凹凸をGaN層で埋めつつ、平坦なアンドープGaN層を得た。
 このアンドープGaN層の結晶品質を、GaN(102)のX線ロッキングカーブ半値幅(XRC-FWHM)を測定し、評価した。
(XRC)
 装置:X-Ray diffractometer_SmartLab
  (Rigaku製)
 管電圧:45keV
 管電流:200mA
 続いて、n型GaN層として、SiドープのGaNを成膜した。続いて、歪吸収層を設けた。その後、発光層として、多重量子井戸の活性層を成膜した。発光層は、井戸層とアンドープのInGaN及びSiドープのGaNより構成される障壁層と、から構成した。また、それぞれの膜厚を25Å及び130Åとし、井戸層が6層、障壁層が7層となるように交互に積層した。発光層の上に、エレクトロブロッキング層を含むようにMgドープのAlGaN、アンドープのGaN、MgドープのGaNを積層した。続いて、ITOを成膜し、エッチング加工した後に電極パッドを取り付け、本実施例のLEDを得た。
[実施例6]
 C面を主面とする、片面鏡面仕上げ、直径2インチのサファイア単結晶基板の、C面主面表面に、ドライフィルムレジストインプリントリソグラフィ法により、凸形状のマスクパターンが形成されたドライフィルムレジスト層を形成した。
 形成されたマスクパターンは、図25と同様の凸パターンであり、ピッチ1.20μmの格子定数で凸部が六方格子に配置され、凸パターンが設けられていない平面部が、1辺2.40μmの正六角形の各頂点に位置し繰り返し配置されている。
 凸マスク直径:1.00μm
 凸マスク高さ:1.55μm
 凸マスクピッチ(Pn):1.20μm
 凸マスク間の平面部ピッチ(Pe):2.40μm
 つぎに、実施例1と同様にICPドライエッチング装置により、マスクパターンをマスクとしてサファイア基板をエッチングした後、洗浄した。
 得られたサファイア基板表面を電子顕微鏡で観察すると、凸マスクパターンと同一配置の凸部と平面部を有していた。
 凸部直径:1.19μm
 凸部高さ:0.65μm
 凸部ピッチ(Pn):1.20μm
 凸部間の平面部ピッチ(Pe):2.40μm
(電子顕微鏡)
 装置;HITACHI s-5500
 加速電圧;10kV
 MODE;Normal
 続いて、実施例5と同様にGaN層などを形成し、本発明のLEDを得た。
 上記のように、2インチ基板から得られた半導体発光素子のうち、20個について実装を行い、発光出力の平均を求めた。金メッキTO缶にAgペーストで接合し、ワイヤボンディングすることでp電極パッドとn電極パッドの間を接続し、屈折率1.46の樹脂で半球状に封止をした。この素子に電流を流し発光出力を測定した。なお、チップの大きさは350μm四方、電流は20mAとし、発光波長は450nmであった。
 また、アンドープGaN層の結晶品質を、GaN(102)のX線ロッキングカーブ半値幅(XRC-FWHM)を測定し、評価した。以下の表3に示す。
[比較例3]
 実施例4と同様の片面鏡面仕上げのC面を主面とするサファイア単結晶基板を用意し、ドライフィルムレジストインプリントリソグラフィ法により、凸形状のマスクパターンが形成されたドライフィルムレジスト層を形成した。
 形成されたマスクパターンは、単純六方格子の凸パターンであった。
 凸マスク直径:0.62μm
 凸マスク高さ:1.47μm
 凸マスクピッチ(Pn):0.70μm
 次に、実施例4と同様にICPドライエッチング装置により、マスクパターンをマスクとして、BCl3ガスとCl2ガスの混合ガスにより、反応性イオンエッチングを行い、サファイア基板をエッチングした。この時、サファイア基板上に得られる凸部の直径を実施例1よりも小さくなるよう、エッチング条件を調整した。
 エッチング加工したサファイア基板を、硫酸及び過酸化水素水を2:1の重量比にて混合したSPM溶液にて洗浄した。処理液の温度は、100℃以上に制御した。
 上記操作で得られたサファイア基板表面を電子顕微鏡で観察すると、凸マスクパターンと同一配置の凸部と平面部を有していた(図42B)。図43Bは、図42Bの一部を示す模式図である。
 凸部直径:0.60μm
 凸部高さ:0.34μm
 続いて、実施例5と同様にサファイア基板表面にMOCVD装置により、サファイア基板表面に、平坦なアンドープGaN層を形成した。得られたアンドープGaN層のXRC0FWHMの測定結果を表3に示す。
[比較例4]
 実施例4と同様の片面鏡面仕上げのC面を主面とするサファイア単結晶基板を用意し、ドライフィルムレジストインプリントリソグラフィ法により、凸形状のマスクパターンが形成されたドライフィルムレジスト層を形成した。
 形成されたマスクパターンは、実施例4と同一の凸パターンであり、ピッチ0.70μmの六方格子で凸部が六方格子に配置され、凸パターンが設けられていない平面部が、1辺1.40μmの正六角形の各頂点に位置している。
 凸マスク直径:0.62μm
 凸マスク高さ:1.47μm
 凸マスクピッチ(Pn):0.70μm
 凸マスク間の平面部ピッチ(Pe):1.40μm
 次に、実施例4と同様に、ICPドライエッチング装置により、マスクパターンをマスクとして、BClガスとClガスの混合ガスにより、反応性イオンエッチングを行い、サファイア基板をエッチングした。この時、実施例4よりも、サファイア基板上に形成する凸部の直径が小さくなるよう、エッチング条件を調整した。
 エッチング加工したサファイア基板を、硫酸及び過酸化水素水を2:1の重量比にて混合したSPM溶液にて洗浄した。処理液の温度は、100℃以上に制御した。
 上記操作で得られたサファイア基板表面を電子顕微鏡で観察すると、凸マスクパターンと同一配置の凸部と平面部を有していた(図42C)。図43Cは、図42Cの一部を示す模式図である。
 凸部直径:0.60μm
 凸部高さ:0.34μm
 凸部ピッチ(Pn):0.70μm
 凸部間の平面部ピッチ(Pe):1.40μm
 続いて、実施例5と同様にサファイア基板表面にMOCVD装置により、サファイア基板表面に、平坦なアンドープGaN層を形成した。得られたアンドープGaN層のXRC-FWHMの測定結果を以下の表3に示す。
[比較例5]
 実施例1と同様の片面鏡面仕上げのC面を主面とするサファイア単結晶基板を用意し、ドライフィルムレジストインプリントリソグラフィ法により、凸形状のマスクパターンが形成されたドライフィルムレジスト層を形成したのち、ドライエッチングによりつぎの凸部と平面部を有するサファイア基板を得た。
 凸部直径:1.19μm
 凸部高さ:0.65μm
 凸部ピッチ(Pn):1.20μm
 続いて、実施例6と同様にGaN層などを形成し、本発明のLEDを得た。
 さらに、実施例6と同様に、2インチ基板から得られた半導体発光素子のうち、20個について実装を行い、発光出力の平均を求めた。金メッキTO缶にAgペーストで接合し、ワイヤボンディングすることでp電極パッドとn電極パッドの間を接続し、屈折率1.46の樹脂で半球状に封止をした。この素子に電流を流し発光出力を測定した。なお、チップの大きさは350μm四方、電流は20mAとし、発光波長は450nmであった。
 また、アンドープGaN層の結晶品質を、GaN(102)のX線ロッキングカーブ半値幅(XRC-FWHM)を測定し、評価した。以下の表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表3から、本実施例の半導体発光素子用基板において、得られたアンドープGaN層のXRC-FWHMは、従来技術の半導体発光素子用基板で得られるGaN層のXRC-FWHMよりも格段に小さいことがわかった。XRCから得られるGaN(102)のFWHMと結晶転位欠陥密度には、相関がありその値が小さければ、結晶転位欠陥密度が少ない結晶品質の良好なGaN層といえ、概ねGaN(102)で350arcsecが良好な結晶品質を有するGaN層である。
 アンドープGaN層上に形成する積層半導体層においては、同一の結晶格子であるため、アンドープGaN層中に存在する結晶転位欠陥は消滅せず、ほぼ同一の結晶転位欠陥密度となる。つまり、結晶転位欠陥密度が少ないアンドープGaN層から、良好な結晶品質の積層半導体層が得られ、得られるLEDにおいては、高い内部量子効率を発現できる。
 また、表3から、本実施例の半導体発光素子用基板から得られるLEDにおいては、良好な結晶品質の積層半導体層が得られ、得られるLEDは高効率の発光出力を示した。
[実施例7~実施例9、及び、比較例6~比較例9]
 実施例1と同様に、サファイア基板の主面にパターンを形成した。パターンの形状(凸部底部の径φ、高さH)は、ナノ加工シートの第1レジスト層の充填径及び第2レジスト層の膜厚、及びドライエッチングの処理条件により、任意に調整できた。
 得られたサファイア基板上に、バッファ層として、AlGa1-xN(0≦x≦1)の低温成長バッファ層を100Å成膜した。なお、比較例として市販のパターン付サファイア基板も含めて以降の成膜は行った。次に、非ドープ第1半導体層として、アンドープのGaNを成膜した。
 この状態で基板を取出し、得られた半導体層の表面平坦性を、AFMによって200μmの視野で観察し、その際の自乗平均面粗さ(RMS)を測定して比較評価を行い、RMSが10nm以下であった場合を良好と判断とした。
 その後、得られた基板にドープ第1半導体層として、SiドープのGaNを成膜した。続いて歪吸収層を設け、その後、発光半導体層として、多重量子井戸の活性層を構成する井戸層(アンドープのInGaN)及び、障壁層(SiドープのGaN)を夫々(60Å、250Å)の膜厚として、井戸層が6層、障壁層が7層となるように交互に積層した。また、発光半導体層上に、第2半導体層として、エレクトロブロッキング層を含むようにMgドープのAlGaN、アンドープのGaN、MgドープのGaNを積層し、積層半導体層を得た。
 その後、透明導電膜としてITOを成膜し、電極形成工程の後、リーク電流の測定を行った。2インチのサファイア基板上に得られたLED素子3000個以上に対して、オートプローバを用いてp電極パッドとn電極パッドの間に-5V(逆バイアス)印加した際のリーク電流(Ir)を測定した。その際のリーク電流が、0.01mA未満であった素子の割合(%)を、歩留り(%)として測定した。
 内部量子効率IQEは、結晶欠陥の密度に大きく左右される。よってX線で結晶性評価を行った。すなわち、X線ロッキングカーブを取得し、GaN(102)に対する半値幅(XRC-FWHM)を取得した。
 その後、実装工程を行った。サファイア基材を厚さ160μmまで研磨して裏面に反射層を設けた。反射層は、Ag-Pd-Cu系の合金を成膜した。その後、裁断工程を経て得られた半導体発光素子について、前記した3000個の半導体発光素子のうち、20個について実装を行い、平均を求めた。金メッキTO缶にAgペーストで接合し、ワイヤボンディングすることでp電極パッドとn電極パッドの間に電流を流し発光出力を測定した。なお、チップの大きさは350μm四方、電流は20mAとし、発光波長は450nmであった。
 比較例6は市販のパターン付サファイア基板で作成した半導体発光素子である。結晶性、表面粗さともに良好で、リーク電流も小さく、歩留りは80%であった。以下の表4に示すように、この発光出力を1とし、各サンプルの発光出力を規格化した。
 比較例7は平均ピッチが700nmで、六方配列の場合である。凹凸構造の凸部3の底部径Dが450nmであり、デューティは0.64となった。平坦部が多いことから、結晶成長で核の会合が効果的に生じることで、結晶性、表面粗さともに良好で、リーク電流も小さく、歩留りは市販のパターン付サファイア基板と同等であった。しかしながら、半導体層の成長面に該当する光学基材側には、凹状部の底面に該当する平坦部が多いために、光取り出し効率LEEの向上が小さく、以下の表4に示すように、発光出力比は、市販のパターン付サファイア基板を下回っていることがわかった。
 比較例8は平均ピッチが700nmで、六方配列の場合であるが、比較例6よりも底部径が大きい場合である。具体的には、底部径を660nmとすることでデューティを0.94に上げている。光学基材の主面側での平坦部が少なくなることで光取り出し効率LEEの向上が期待されるが、半導体層の成膜時での結晶性の低下に伴い、比較例7に比べて内部量子効率IQEが低下しており、発光出力比は、以下の表4に示すように、市販のパターン付サファイア基板を下回っていることがわかった。
 なお上記した比較例7及び比較例8にはいずれも本実施例における歯抜け部は形成されていない。
 実施例7では、比較例7の形状をもとに、図5に示す配列で凹凸構造を形成した。すなわち図5に示すように歯抜け部を規則的に形成した。なお、半導体層の下面に形成される凸部の高さは30nmであった。また、単位格子(図5参照)の繰り返し周期Lは3P0となり、2100nmであった。表3に示すように、比較例7及び比較例8と比べて、結晶性を高く保ったまま、光取り出し効率LEEを向上させることで、発光出力が向上しており、また表面粗さも良好で歩留りも高いことがわかった。
 実施例8では、比較例7の形状をもとに、図25に示す配列で凹凸構造を形成した。すなわち図25に示すように歯抜け部を規則的に形成した。なお、半導体層の下面に形成される凸部の高さは30nmであった。また、単位格子(図5参照)の繰り返し周期Lは2P0となり、1400nmであった。表3に示すように、比較例7及び比較例8と比べて、結晶性を高く保ったまま、光取り出し効率LEEを向上させることで、発光出力が向上しており、また表面粗さも良好で歩留りも高いことがわかった。
 実施例9では、図17の配列で一辺の長さが2√3P0の場合である。なお、半導体層の下面に形成される凸部の高さは30nmであった。表4に示すように、結晶性を高く保ったまま、光取り出し効率LEEを向上させることで、発光出力が向上しており、また表面粗さも良好で歩留りも高いことがわかった。
 比較例9は、実施例7に基づいて、デューティを0.80と小さくした場合である。このとき、通常部の凸部間の狭平坦部上に結晶核が形成され易く、そのため歯抜け部からの選択的な結晶成長が十分に発揮されず、結晶性が低下している為、内部量子効率IQEが低下していると推定される。また、狭平坦部が占める割合が多いので、光取出し効率LEEの向上も小さいことがわかる。
Figure JPOXMLDOC01-appb-T000006
[実施例10~実施例13、及び、比較例10、比較例11]
 実施例1と同様に、成長基板を作成し、当該基板にCVD成膜を行い、下地層を形成した。その後、積層半導体を成膜し、電極を形成、半導体発光素子とした。
 作成した成長基板を表5に記載した。
Figure JPOXMLDOC01-appb-T000007
 実施例10に使用した基板は、以下の通りである。成長促進部が成長抑制部の廻りに点在する状態A-1である。成長促進部は、正三角格子の格子点に位置し、当該格子の辺である成長促進部の周期Peは3118nmであった。また、成長促進部の表面粗さRaは、0.17nmであった。成長促進部の外形は、正六角形に関し各角部が内側に弧を描くように陥没すると共に、各辺が内側に0個の弧を描く形状であって、図35Aに例示した形状であった。一方で、成長抑制部は複数の凸部から構成されており、表面粗さRaは98nmであった。成長抑制部を構成する凹凸構造のデューティは1.12であり、凹凸構造の周期Pnよりも凸部の径が大きい状態である。当該凸部は正三角格子の格子点に位置しており、凸部底部の外形は、角部が丸みを帯びた六角形であった。凸部断面の形状は、底部から頂部に向かい径が細くなる形状であって、凸部の頂部は丸みを帯びた角部であった。成長促進部の配置を定義する正三角形の方向と、成長抑制部の凸部の配列を決める正三角形の方向と、は30°異なっていた。なお、成長促進部の間隔Peと凸部の間隔Pnと、の比率(Pe/Pn)は、3.46であった。
 実施例11に使用した基板は、上記にて説明した実施例10の基板と、下記の内容のみ異なっている。すなわち、成長促進部の周期Peは6235nmであった。また、成長促進部の表面粗さRaは、0.15nmであった。また、成長抑制部の表面粗さRaは102nmであった。成長抑制部を構成する凹凸構造のデューティは1.14であった。比率(Pe/Pn)は、6.93であった。
 実施例12に使用した基板は、下記の通りである。成長促進部が成長抑制部の廻りを囲う状態A-2である。成長促進部は、正六角形が互いに辺のみを共有し最密充填する格子の格子点と辺に位置している。当該格子の辺である成長促進部の周期Peは1400nmであった。また、成長促進部の表面粗さRaは、0.19nmであった。また、各正六角形の辺は、中心から外側に向けて下に凸の形状である突出部を有しており、この数は、上下に各1つであり、図33Bにて参照した形状であった。一方で、成長抑制部は複数の凸部から構成されており、表面粗さRaは75nmであった。また、成長抑制部を構成する凹凸構造のデューティは0.97であり、凹凸構造の周期Pnよりも凸部の径が小さい状態であった。当該凸部は正三角格子の格子点に位置しており、凸部底部の外形は、正六角形と円の中間形状であった。凸部断面の形状は、底部から頂部に向かい径が細くなる形状であって、凸部の頂部は丸みを帯びた角部であった。成長促進部の配置を定義する六角形の方向と、成長抑制部の凸部の配列を決める正三角形による作られる六角形の方向とは、同一であった。比率(Pe/Pn)は、2であった。
 実施例13に使用した基板は、下記の通りである。成長促進部が成長抑制部の廻りに点在する状態A-1である。成長促進部は、正六角形が互いに辺のみを共有し最密充填する格子の格子点に位置している。当該格子の辺である成長促進部の周期Peは1400nmであった。また、成長促進部の表面粗さRaは、0.17nmであった。成長促進部の外形は、正六角形に関し各角部が内側に弧を描くように陥没すると共に、各辺が内側に0個の弧を描く形状であって、図35Aに例示した形状であった。一方で、成長抑制部は複数の凸部から構成されており、表面粗さRaは66nmであった。また、成長抑制部を構成する凹凸構造のデューティは1.06であり、凹凸構造の周期Pnよりも凸部の径が大きい状態であった。当該凸部は正三角格子の格子点に位置しており、角部が丸みを帯びた正六角形であった。凸部断面の形状は、底部から頂部に向かい径が細くなる形状であって、凸部の頂部は丸みを帯びた角部であった。成長促進部の配置を定義する六角形の方向と、成長抑制部の凸部の配列を決める正三角形による作られる六角形の方向とは、同一であった。比率(Pe/Pn)は、2であった。
 比較例10に使用した基板は、上記にて説明した実施例10の基板と、下記の内容のみ異なっている。すなわち、成長促進部の表面粗さRaは、1.60nmであった。また、成長抑制部の表面粗さRaは99nmであった。また、成長抑制部を構成する凹凸構造のデューティは0.96であった。
 比較例11に使用した基板は、上記にて説明した実施例10の基板と、下記の内容のみ異なっている。すなわち、成長促進部の表面粗さRaは、0.18nmであった。また、成長抑制部の表面粗さRaは4nmであった。また、成長抑制部を構成する凹凸構造のデューティは0.01であった。
 成長基板に対して、CVD工程を適用し、LEDを製造した。まず、AlGa1-xN(0≦x≦1)の低温成長バッファ層を、200Å成膜した。次に、アンドープのGaNを、1100~1200℃の温度で、V/III比を240~280の間で、そして、アンモニア流量を190~220sccmの間で成膜した。また、成膜圧力を400~600Torrから150~250Torrへと、成膜途中で切り替え、下地層の平坦性を向上させた。低温成長バッファ層とアンドープのGaNは、下地層とも呼ばれる。続いて、n型GaN層として、SiドープのGaNを成膜した。続いて、歪吸収層を設けた。その後、発光層として、多重量子井戸の活性層を成膜した。発光層は、井戸層と、アンドープのInGaN及びSiドープのGaNより構成される障壁層と、から構成した。また、それぞれの膜厚を25Å及び130Åとし、井戸層が6層、障壁層が7層となるように交互に積層した。発光層の上に、エレクトロブロッキング層を含むようにMgドープのAlGaN、アンドープのGaN、MgドープのGaNを積層した。続いて、ITOを成膜し、エッチング加工した後に電極パッドを取り付けた。
 結晶欠陥である転位については、X線ロッキングカーブと相関することを把握しているため、結晶欠陥をX線ロッキングカーブにて評価した。取得データは、GaN(102)に対する半値幅XRC-FWHMである。結果を表6に記載した。
Figure JPOXMLDOC01-appb-T000008
 表6から、本実施例の成長基板において、成長促進部及び成長抑制部の表面粗さRaを好適に制御することで、GaN層のXRC-FWHMが格段に小さくなることがわかった。XRCから得られるGaN(102)のFWHMと結晶の転位密度には相関があり、その値が小さければ、結晶欠陥が少ない結晶品質の良好なGaN層といえる。GaN(102)で350arcsecが良好な結晶品質を有するGaN層である。
 アンドープGaN層上に形成する積層半導体層は、同一の結晶格子である。アンドープGaN層中に存在する結晶欠陥は消滅せず、ほぼ同一の結晶欠陥密度となる。つまり、結晶欠陥の少ないアンドープGaN層から、良好な結晶品質の積層半導体層が得られる。よって、GaN(102)のXRC-FWHMが350arcsecを下回れば、高い内部量子効率を発現できる。
 実施例及び比較例の成長基板を使用し、エピタキシャル成膜を繰り返し実施した。上記した実施例からGaN(102)のXRC-FWHMが350arcsecを下回るのが一つの基準である。実施例の場合、標準偏差を加味しても250arcsecを下回ることが分かった。以上から、LED製造プロセスに耐えうる安定なエピタキシャル成長が可能とわかる。
 発光ダイオード内部における導波モードの破壊を評価することは困難である。別の検討では、成長基板に対する光散乱を濁度として評価した。結果、成長促進部の配列にもよるが、傾向として成長抑制部の表面粗さRaが大きい程、濁度が大きくなることを確認した。特に、成長抑制部の表面粗さRaが、5nm程度から濁度曲線が立ちあがり、70~100nmの範囲から飽和し始めた。よって、実施例に記載の成長基板は、光学散乱性が非常に強いことがわかった。即ち、発光ダイオード内部にて形成される導波モードを解消する効果が大きいといえる。
[実施例14~実施例17、及び、比較例12、比較例13]
 実施例1と同様に、成長基板を作成し、当該成長基板にCVD成膜を行い、下地層を形成した。その後、積層構造体を成膜、電極を形成し、半導体発光素子とした。
 製造した成長基板を、表7に記載した。
Figure JPOXMLDOC01-appb-T000009
 実施例14に使用した基板は、以下の通りである。成長促進部が成長抑制部の廻りに点在する状態A-1である。成長促進部は、正三角格子の格子点に位置し、当該格子の辺である成長促進部の周期Peは3118nmである。一方で、成長抑制部はピッチ900nmの複数の凸部から構成されている。デューティは0.99であり、凹凸構造の周期Pnよりも凸部の径が大きい状態である。当該凸部は正三角格子の格子点に位置しており、円形であった。凸部断面の形状は、底部から頂部に向かい径が細くなる形状であって、凸部の頂部は丸みを帯びた角部であった。成長促進部の配置を定義する正三角形の方向と、成長抑制部の凸部の配列を決める正三角形の方向と、は30°異なっていた。また、適合率は、0.93であった。
 実施例15に使用した基板は、上記説明した実施例14の基板と、適合率のみが異なり、適合率は、0.79であった。
 実施例16に使用した基板は、下記の通りである。成長促進部が成長抑制部の廻りを囲う状態A-2である。成長促進部は、正六角形が互いに辺のみを共有し最密充填する格子の格子点と辺に位置している。当該格子の辺である成長促進部の周期Peは1400nmである。成長抑制部はピッチ700nmの複数の凸部から構成されている。デューティは0.89であり、凹凸構造の周期Pnよりも凸部の径が小さい状態である。当該凸部は正三角格子の格子点に位置しており、凸部底部の外形は、円形であった。凸部断面の形状は、底部から頂部に向かい径が細くなる形状であって、凸部の頂部は丸みを帯びた角部であった。成長促進部の配置を定義する六角形の方向と、成長抑制部の凸部の配列を決める正三角形による作られる六角形の方向と、同一であった。また、適合率は、0.97であった。
 実施例17に使用した基板は、上記にて説明した実施例16の基板と、適合率のみが異なり、適合率は、0.71であった。
 比較例12に使用した基板は、上記にて説明した実施例14の基板と、適合率のみが異なり、適合率は、0.43であった。
 比較例13に使用した基板は、上記にて説明した実施例14の基板と、適合率のみが異なり、適合率は、0.49であった。
 つぎに、各々の基板に対して、実施例1と同様にCVD工程を適用し、半導体発光素子を作成した。さらに、各基板における結晶欠陥をX線ロッキングカーブにて評価した。取得データは、GaN(102)に対する半値幅XRC-FWHMである。結果を表8に記載した。
Figure JPOXMLDOC01-appb-T000010
 表8から、適合率が重要な因子であるとわかる。比較例のように適合率が0.43や0.49と小さい場合、XRC-FWHMは極端に大きくなる。エピタキシャル成膜過程の成長基板を取り出し、走査型電子顕微鏡観察を実施した。結果、比較例の成長基板を使用した場合、成長抑制部から突発的に結晶が成長しており、成長促進部から成長抑制部へと向かうエピタキシャル成長を阻害していることがわかった。実施例の場合、XRC-FWHMは小さい。XRCから得られるGaN(102)のFWHMと結晶の転位密度には相関があり、その値が小さければ、結晶欠陥が少ない結晶品質の良好なGaN層といえる。GaN(102)で350arcsecが良好な結晶品質を有するGaN層である。
 アンドープGaN層上に形成する積層半導体層は、同一の結晶格子である。アンドープGaN層中に存在する結晶欠陥は消滅せず、ほぼ同一の結晶欠陥密度となる。つまり、結晶欠陥の少ないアンドープGaN層から、良好な結晶品質の積層半導体層が得られる。よって、GaN(102)のXRC-FWHMが350arcsecを下回れば、高い内部量子効率を発現できる。
 実施例及び比較例の成長基板を使用し、エピタキシャル成膜を繰り返し実施した。上記例からGaN(102)のXRC-FWHMが350arcsecを下回るのが一つの基準である。実施例の場合、標準偏差を加味しても350arcsecを下回ることが分かった。以上から、LED製造プロセスに耐えうる安定なエピタキシャル成長が可能とわかる。
 発光ダイオード内部における導波モードの破壊を評価することは困難である。別の検討では、成長基板に対する光散乱を濁度として評価した。結果、成長促進部の配列にもよるが、一般的に使用されているPatterned Sapphire Substreateに比べ、遜色ない濁度であった。よって、光学散乱性が非常に強いことがわかる。即ち、発光ダイオード内部にて形成される導波モードを解消する効果が大きいといえる。
 次に、実施例16の形態に関し、デューティのみを変数に検討を行い、成長抑制部の凹凸構造の最適化を実施した。デューティを、0.5、0.6、0.7、0.8、0.85、0,9と変化させた。この結果、デューティが0.8と0.85と、の間にXRC-FWHMの大きな臨界性があることが判明した。より具体的には、XRC-FWHMが331から273へと大きく変化した。以上から、成長抑制部を構成する凹凸構造のデューティが0.85以上であるという要件をも、同時に満たすことで、よりIQEが改善することがわかった。
[実施例18~実施例21、及び、比較例14~比較例16]
 実施例1と同様に、成長基板を作成し、当該成長基板にCVD成膜を行い、下地層を形成した。その後、積層構造体を成膜、電極を形成し、半導体発光素子とした。
 製造した成長基板を、表9に記載した。
Figure JPOXMLDOC01-appb-T000011
 ITOの膜厚は、発光出力を測定後、実装に用いた素子のうち3個を、STEMで撮像、測長し、相加平均を得た。
 評価は以下の2項目で行った。まず、成長基板に第1半導体層を成膜した段階で取出し、X線ロッキングカーブを取得し、GaN(102)に対する半値幅(XRC-FWHM)を取得した。ここでは、350arcsec以下を良好と判定している。次に、得られた半導体発光素子について、その光出力を積分球で測定した。
 比較例14は平均ピッチ1200nmの六方配列の場合である。凸部底部間距離(平坦部の幅)が50nmと狭く、成長促進部がないことから結晶性が悪く、半導体発光素子としての性能が低いことが分かった。
 比較例15は、図39に示す配列で成長促進部を設けた素子で、透明導電膜層の厚みが200nmの場合である。この場合の光出力を1とした。成長促進部があることで、比較例14に対して、結晶性が向上していることが分かる。
 比較例16は、比較例15と同じ配列で、透明導電膜層の厚みが15nmの場合である。この場合の発光出力比は、比較例15より低下した。透明導電膜が薄い為に、効果的に電流を注入できていない為と推定される。
 実施例18は、比較例15と同じ成長促進部の配列だが、透明導電膜の厚みを所定の範囲としたものである。成長促進部があることで結晶性が向上しているとともに、透明導電膜の厚みが所定の範囲内にあることで、効果的に光取出し効率が向上することで、比較例よりも高い光出力が得られていることが分かる。
 実施例19は、図24に示す成長促進部の配列で、透明導電膜の厚みが所定の範囲のものである。実施例18と同様に、高い光出力が得られていることが分かる。
 実施例20、21はそれぞれ実施例18、19と同じ成長促進部の配列で、透明導電膜の厚みを変えたものである。実施例18、19と同様に、高い光出力が得られていることがわかる。
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、図面に図示されている大きさや形状等については、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。
 本発明によれば、半導体発光素子基板表面に設けられた複数のエピタキシャル成長促進部と複数のエピタキシャル成長抑制部により、基板表面に形成される半導体層中の結晶転移欠陥を減らすことにより結晶品質が向上し、内部量子効率IQEを改善し、且つ、光散乱により導波モードを解消して光取り出し効率LEEを高めることができる。その結果、LEDの発光効率を向上させることができる。したがって、本発明の半導体発光素子用基板及び半導体発光素子は、高い発光効率を有するため、電力の有効活用ができ、省エネルギーに大きく貢献できる。
 本出願は、2015年9月30日出願の特願2015-195310、特願2015-195311および特願2015-195314、2015年11月30日出願の特願2015-232931、特願2015-233916及び特願2015-233917、2015年12月21日出願の特願2015-248577、並びに、2016年6月24日出願の特願2016-125838に基づく。これらの内容は全てここに含めておく。
 

Claims (18)

  1.  主面の一部又は全面に凹凸構造が形成された光学基材であって、
     前記凹凸構造が規則的な歯抜け部を有している、ことを特徴とする光学基材。
  2.  前記凹凸構造は、凸部と凸部間底部と、当該凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部とで構成され、前記歯抜け部は、前記凹部であることを特徴とする請求項1に記載の光学基材。
  3.  前記凸部は平均ピッチP0で配置され、前記歯抜け部は、正多角形の頂点、又は、前記頂点間を結ぶ前記正多角形の辺上に配置され、前記正多角形の辺の長さは平均ピッチP0よりも長いことを特徴とする請求項1又は請求項2に記載の光学基材。
  4.  前記正多角形の辺の長さLが、平均ピッチP0の2倍以上、5倍以下であることを特徴とする請求項1から請求項3のいずれかに記載の光学基材。
  5.  前記凹凸構造を構成する複数の前記歯抜け部は、正三角形格子の各格子点に設定された配置位置上に、正六角形の新たな単位格子として設定されるとともに、前記正六角形の頂点、または辺に相当する位置に設けられることを特徴とする請求項1から請求項4のいずれかに記載の光学基材。
  6.  前記凹凸構造を構成する複数の前記歯抜け部は、正三角形格子の各格子点に設定された配置位置上に、新たな正三角形格子として設定されるとともに、前記新たに設定される正三角形の頂点に相当する位置に設けられていることを特徴とする請求項1から請求項4のいずれかに記載の光学基材。
  7.  前記歯抜け部は、前記歯抜け部同士を結ぶ直線が、前記光学基材上に成膜される半導体層の結晶面のうち、結晶成長初期に会合する結晶面と直交するように、配置されることを特徴とする請求項1から請求項6のいずれかに記載の光学基材。
  8.  請求項1に記載された光学基材を用いた、前記主面上に半導体結晶をエピタキシャル成長させるための半導体発光素子用基板であって、
     前記主面は複数のエピタキシャル成長促進部と、複数のエピタキシャル成長抑制部とを有して構成されており、前記エピタキシャル成長促進部は、その周囲を前記エピタキシャル成長抑制部で囲まれ、
     前記エピタキシャル成長抑制部は、少なくとも複数の凸部と凸部間底部とで構成されており、
     前記エピタキシャル成長促進部は、前記歯抜け部であり、前記主面と平行な平面を有することを特徴とする半導体発光素子用基板。
  9.  前記エピタキシャル成長促進部は、前記凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部であり、前記主面と平行な平面を底部とする凹部であることを特徴とする請求項8に記載の半導体発光素子用基板。
  10.  複数の前記エピタキシャル成長促進部は、最近接する複数のエピタキシャル成長促進部間距離Peが、互いに等しいことを特徴とする請求項8又は請求項9に記載の半導体発光素子用基板。
  11.  前記エピタキシャル成長促進部の最近接するエピタキシャル成長促進部間距離Peと、前記エピタキシャル成長抑制部を構成する複数の前記凸部の周期Pnは、下記式(1)を満たすことを特徴とする請求項10に記載の半導体発光素子用基板。
     1.5≦Pe/Pn≦30 式(1)
  12.  前記エピタキシャル成長促進部の前記主面に対する面積比は、0.001以上0.2以下であることを特徴とする請求項8から請求項11のいずれかに記載の半導体発光素子用基板。
  13.  請求項1に記載された光学基材を用いた、前記主面上に半導体結晶をエピタキシャル成長させるための半導体発光素子用基板であって、
     前記主面は複数のエピタキシャル成長促進部と、複数のエピタキシャル成長抑制部とを有して構成されており、前記エピタキシャル成長抑制部は、その周囲を前記エピタキシャル成長促進部で囲まれ、あるいは、前記エピタキシャル成長抑制部は、前記エピタキシャル成長促進部で挟まれ、
     前記エピタキシャル成長抑制部は、少なくとも複数の凸部と凸部間底部とで構成されており、
     前記エピタキシャル成長促進部は、前記歯抜け部であり、前記主面と平行な平面を有することを特徴とする半導体発光素子用基板。
  14.  前記エピタキシャル成長促進部は、前記凸部間底部で形成される主面よりも低い位置に平坦面を有する凹部であり、前記主面と平行な平面を底部とする凹部であることを特徴とする請求項13に記載の半導体発光素子用基板。
  15.  前記エピタキシャル成長抑制部の前記主面に対する面積比は、0.80以上0.999以下であることを特徴とする請求項13又は請求項14に記載の半導体発光素子用基板。
  16.  前記エピタキシャル成長抑制部は、少なくとも周期配置された複数の前記凸部で構成されていることを特徴とする請求項8から請求項15のいずれかに記載の半導体発光素子用基板。
  17.  前記半導体発光素子用基板が、六方晶系の結晶構造を有する単結晶基板であって、最近接する複数のエピタキシャル成長抑制部の最近接の方向と、前記半導体発光素子用基板の前記結晶構造のm面とが平行でないことを特徴とする請求項16に記載の半導体発光素子用基板。
  18.  請求項1から請求項7のいずれかに記載の光学基材、あるいは、請求項8から請求項17のいずれかに記載の半導体発光素子用基板と、前記主面側に積層された、少なくとも2層以上の半導体層と発光層とを積層して構成される積層半導体層と、を有することを特徴とする半導体発光素子。
     
PCT/JP2016/078748 2015-09-30 2016-09-29 光学基材、半導体発光素子用基板、及び半導体発光素子 WO2017057529A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680054272.7A CN108028299A (zh) 2015-09-30 2016-09-29 光学基材、半导体发光元件用基板及半导体发光元件
EP16851700.1A EP3358632A4 (en) 2015-09-30 2016-09-29 Optical substrate, substrate for semiconductor light emitting element, and semiconductor light emitting element
KR1020187006446A KR20180037038A (ko) 2015-09-30 2016-09-29 광학 기재, 반도체 발광 소자용 기판 및 반도체 발광 소자
JP2017543534A JPWO2017057529A1 (ja) 2015-09-30 2016-09-29 光学基材、半導体発光素子用基板、及び半導体発光素子
US15/760,024 US20180254380A1 (en) 2015-09-30 2016-09-29 Optical substrate, substrate for semiconductor light emitting device and semiconductor light emitting device

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2015-195310 2015-09-30
JP2015195310 2015-09-30
JP2015-195314 2015-09-30
JP2015195311 2015-09-30
JP2015-195311 2015-09-30
JP2015195314 2015-09-30
JP2015-232931 2015-11-30
JP2015-233917 2015-11-30
JP2015233916 2015-11-30
JP2015-233916 2015-11-30
JP2015233917 2015-11-30
JP2015232931 2015-11-30
JP2015-248577 2015-12-21
JP2015248577 2015-12-21
JP2016-125838 2016-06-24
JP2016125838 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017057529A1 true WO2017057529A1 (ja) 2017-04-06

Family

ID=58423746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078748 WO2017057529A1 (ja) 2015-09-30 2016-09-29 光学基材、半導体発光素子用基板、及び半導体発光素子

Country Status (7)

Country Link
US (1) US20180254380A1 (ja)
EP (1) EP3358632A4 (ja)
JP (1) JPWO2017057529A1 (ja)
KR (1) KR20180037038A (ja)
CN (1) CN108028299A (ja)
TW (1) TWI620345B (ja)
WO (1) WO2017057529A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774759B (zh) * 2018-04-30 2022-08-21 晶元光電股份有限公司 發光元件及其製造方法
JP7305428B2 (ja) * 2018-06-05 2023-07-10 株式会社小糸製作所 半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法
CN109103307A (zh) * 2018-08-17 2018-12-28 开发晶照明(厦门)有限公司 发光元件及其制造方法
JP6595689B1 (ja) * 2018-11-08 2019-10-23 株式会社サイオクス 窒化物半導体基板の製造方法、窒化物半導体基板および積層構造体
CN110148660B (zh) * 2019-06-24 2021-03-16 湘能华磊光电股份有限公司 一种图形化蓝宝石衬底及加工方法
CN111480241B (zh) * 2019-08-05 2024-08-30 厦门三安光电有限公司 一种倒装发光二极管
TWI708350B (zh) 2019-10-24 2020-10-21 錼創顯示科技股份有限公司 微型發光元件模組
US11728173B2 (en) * 2020-09-30 2023-08-15 Taiwan Semiconductor Manufacturing Co., Ltd. Masking layer with post treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577978B2 (ja) * 1976-09-03 1982-02-13
JP2003197961A (ja) * 2001-12-27 2003-07-11 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP2012109491A (ja) * 2010-11-19 2012-06-07 Kyocera Corp 発光素子
JP2012209294A (ja) * 2011-03-29 2012-10-25 Kyocera Corp 発光素子
JP2015110333A (ja) * 2011-08-31 2015-06-18 旭化成イーマテリアルズ株式会社 樹脂モールド

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882240B1 (ko) * 2008-09-11 2009-02-25 (주)플러스텍 질화물 반도체 발광소자 및 제조방법
JP5707978B2 (ja) * 2011-01-31 2015-04-30 日亜化学工業株式会社 半導体発光素子用基板およびその製造方法、並びにその基板を用いた半導体発光素子
EP3043392A1 (en) * 2012-10-12 2016-07-13 Asahi Kasei E-materials Corporation Optical substrate, semiconductor light emitting device and manufacturing method of the same
TWI543395B (zh) * 2013-04-01 2016-07-21 中國砂輪企業股份有限公司 圖案化光電基板及其製作方法
BR112015029641A2 (pt) * 2013-05-31 2017-07-25 Asahi Kasei E Mat Corporation wafer padrão para leds, wafer epitaxial para leds e método de fabricação de wafer epitaxial para leds
TWI632696B (zh) * 2013-10-11 2018-08-11 王子控股股份有限公司 半導體發光元件用基板之製造方法、半導體發光元件之製 造方法、半導體發光元件用基板、以及半導體發光元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577978B2 (ja) * 1976-09-03 1982-02-13
JP2003197961A (ja) * 2001-12-27 2003-07-11 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
JP2012109491A (ja) * 2010-11-19 2012-06-07 Kyocera Corp 発光素子
JP2012209294A (ja) * 2011-03-29 2012-10-25 Kyocera Corp 発光素子
JP2015110333A (ja) * 2011-08-31 2015-06-18 旭化成イーマテリアルズ株式会社 樹脂モールド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358632A4 *

Also Published As

Publication number Publication date
TWI620345B (zh) 2018-04-01
TW201724556A (zh) 2017-07-01
CN108028299A (zh) 2018-05-11
JPWO2017057529A1 (ja) 2018-07-12
EP3358632A1 (en) 2018-08-08
US20180254380A1 (en) 2018-09-06
EP3358632A4 (en) 2018-10-03
KR20180037038A (ko) 2018-04-10

Similar Documents

Publication Publication Date Title
WO2017057529A1 (ja) 光学基材、半導体発光素子用基板、及び半導体発光素子
US9660142B2 (en) Light emitting diode with nanostructured layer and methods of making and using
US9660141B2 (en) Pattern wafer for LEDs, epitaxial wafer for LEDs and method of manufacturing the epitaxial wafer for LEDs
US9711685B2 (en) Sapphire substrate and method for manufacturing the same and nitride semiconductor light emitting element
JP5673581B2 (ja) Iii族窒化物半導体発光素子の製造方法、iii族窒化物半導体発光素子、ランプ、並びに、レチクル
WO2009154215A1 (ja) Iii族窒化物半導体発光素子及びその製造方法、並びにランプ
US9099609B2 (en) Method of forming a non-polar/semi-polar semiconductor template layer on unevenly patterned substrate
JP6910341B2 (ja) 縦型紫外発光ダイオード
CN103155182A (zh) 氮化镓类半导体发光元件、光源和凹凸构造形成方法
JP2014195069A (ja) 半導体発光素子及びその製造方法並びに光学基材
WO2014035021A1 (en) Non-polar substrate having hetero-structure, method for manufacturing the same, and nitride-based light emitting device using the same
JP2019145629A (ja) 半導体発光素子
JP2019160902A (ja) 半導体発光素子用基材及び半導体発光素子
JP2017073511A (ja) 半導体発光素子
JP2016012684A (ja) 半導体発光素子
JP2011082248A (ja) 半導体発光素子及びその製造方法、並びにランプ
JP2019125649A (ja) 半導体発光素子用基材及び半導体発光素子
JP2019153759A (ja) 半導体発光素子用基材及び半導体発光素子
JP2018142632A (ja) 半導体発光素子用基材及び半導体発光素子
JP2019153620A (ja) 半導体発光素子
JP2016162871A (ja) 半導体発光素子及び照明デバイス
JP2013168493A (ja) 窒化物半導体発光素子およびその製造方法
JP2017045963A (ja) 光学基材、及びそれを用いた半導体発光素子
JP2017069463A (ja) 半導体発光素子及びその製造方法
KR20110096990A (ko) 반도체 소자의 패턴 형성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187006446

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017543534

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760024

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE