WO2017057497A1 - 合わせガラス用中間膜及び合わせガラス - Google Patents
合わせガラス用中間膜及び合わせガラス Download PDFInfo
- Publication number
- WO2017057497A1 WO2017057497A1 PCT/JP2016/078688 JP2016078688W WO2017057497A1 WO 2017057497 A1 WO2017057497 A1 WO 2017057497A1 JP 2016078688 W JP2016078688 W JP 2016078688W WO 2017057497 A1 WO2017057497 A1 WO 2017057497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- laminated glass
- intermediate film
- polyvinyl acetal
- interlayer film
- Prior art date
Links
- 239000005340 laminated glass Substances 0.000 title claims abstract description 171
- 239000011229 interlayer Substances 0.000 title claims abstract description 102
- 239000010410 layer Substances 0.000 claims description 244
- 239000011354 acetal resin Substances 0.000 claims description 105
- 229920006324 polyoxymethylene Polymers 0.000 claims description 105
- 229920002554 vinyl polymer Polymers 0.000 claims description 105
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 103
- 239000004014 plasticizer Substances 0.000 claims description 57
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 43
- 229920005992 thermoplastic resin Polymers 0.000 claims description 42
- 239000011521 glass Substances 0.000 claims description 34
- 239000002344 surface layer Substances 0.000 claims description 12
- 230000008602 contraction Effects 0.000 claims description 9
- 230000007547 defect Effects 0.000 abstract description 8
- 239000002245 particle Substances 0.000 description 89
- 239000003795 chemical substances by application Substances 0.000 description 50
- -1 alkali metal salts Chemical class 0.000 description 34
- 230000037303 wrinkles Effects 0.000 description 32
- 239000003963 antioxidant agent Substances 0.000 description 31
- 235000006708 antioxidants Nutrition 0.000 description 31
- 238000012360 testing method Methods 0.000 description 27
- 230000003078 antioxidant effect Effects 0.000 description 25
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 21
- 229910001930 tungsten oxide Inorganic materials 0.000 description 21
- 238000006359 acetalization reaction Methods 0.000 description 20
- 230000021736 acetylation Effects 0.000 description 19
- 238000006640 acetylation reaction Methods 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- 239000002356 single layer Substances 0.000 description 18
- 238000009413 insulation Methods 0.000 description 15
- 150000003839 salts Chemical class 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 description 11
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 11
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 10
- 150000004706 metal oxides Chemical class 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 150000007524 organic acids Chemical class 0.000 description 7
- AMIMRNSIRUDHCM-UHFFFAOYSA-N Isopropylaldehyde Chemical compound CC(C)C=O AMIMRNSIRUDHCM-UHFFFAOYSA-N 0.000 description 6
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 6
- 150000001299 aldehydes Chemical class 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000005357 flat glass Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- FRQDZJMEHSJOPU-UHFFFAOYSA-N Triethylene glycol bis(2-ethylhexanoate) Chemical compound CCCCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CCCC FRQDZJMEHSJOPU-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 5
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 150000002895 organic esters Chemical class 0.000 description 4
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- JEYLQCXBYFQJRO-UHFFFAOYSA-N 2-[2-[2-(2-ethylbutanoyloxy)ethoxy]ethoxy]ethyl 2-ethylbutanoate Chemical compound CCC(CC)C(=O)OCCOCCOCCOC(=O)C(CC)CC JEYLQCXBYFQJRO-UHFFFAOYSA-N 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 3
- 125000004036 acetal group Chemical group 0.000 description 3
- 235000010208 anthocyanin Nutrition 0.000 description 3
- 229930002877 anthocyanin Natural products 0.000 description 3
- 239000004410 anthocyanin Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical group OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical group C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 159000000003 magnesium salts Chemical class 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000002530 phenolic antioxidant Substances 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- OXQGTIUCKGYOAA-UHFFFAOYSA-N 2-Ethylbutanoic acid Chemical compound CCC(CC)C(O)=O OXQGTIUCKGYOAA-UHFFFAOYSA-N 0.000 description 2
- YJGHMLJGPSVSLF-UHFFFAOYSA-N 2-[2-(2-octanoyloxyethoxy)ethoxy]ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCCC YJGHMLJGPSVSLF-UHFFFAOYSA-N 0.000 description 2
- PQJZHMCWDKOPQG-UHFFFAOYSA-N 2-anilino-2-oxoacetic acid Chemical group OC(=O)C(=O)NC1=CC=CC=C1 PQJZHMCWDKOPQG-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- IYXGSMUGOJNHAZ-UHFFFAOYSA-N Ethyl malonate Chemical group CCOC(=O)CC(=O)OCC IYXGSMUGOJNHAZ-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001278 adipic acid derivatives Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 150000004636 anthocyanins Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- KJYSXRBJOSZLEL-UHFFFAOYSA-N (2,4-ditert-butylphenyl) 3,5-ditert-butyl-4-hydroxybenzoate Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OC(=O)C1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 KJYSXRBJOSZLEL-UHFFFAOYSA-N 0.000 description 1
- QFMZQPDHXULLKC-UHFFFAOYSA-N 1,2-bis(diphenylphosphino)ethane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 QFMZQPDHXULLKC-UHFFFAOYSA-N 0.000 description 1
- KZVBBTZJMSWGTK-UHFFFAOYSA-N 1-[2-(2-butoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOCCCC KZVBBTZJMSWGTK-UHFFFAOYSA-N 0.000 description 1
- DLZBUNUDESZERL-UHFFFAOYSA-N 1-o-heptyl 6-o-nonyl hexanedioate Chemical compound CCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCC DLZBUNUDESZERL-UHFFFAOYSA-N 0.000 description 1
- XCTNDJAFNBCVOM-UHFFFAOYSA-N 1h-imidazo[4,5-b]pyridin-2-ylmethanamine Chemical compound C1=CC=C2NC(CN)=NC2=N1 XCTNDJAFNBCVOM-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- BVUXDWXKPROUDO-UHFFFAOYSA-N 2,6-di-tert-butyl-4-ethylphenol Chemical compound CCC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 BVUXDWXKPROUDO-UHFFFAOYSA-N 0.000 description 1
- CKQNDABUGIXFCL-UHFFFAOYSA-N 2-(2-octanoyloxyethoxy)ethyl octanoate Chemical compound CCCCCCCC(=O)OCCOCCOC(=O)CCCCCCC CKQNDABUGIXFCL-UHFFFAOYSA-N 0.000 description 1
- LHPPDQUVECZQSW-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-ditert-butylphenol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(N2N=C3C=CC=CC3=N2)=C1O LHPPDQUVECZQSW-UHFFFAOYSA-N 0.000 description 1
- UNNGUFMVYQJGTD-UHFFFAOYSA-N 2-Ethylbutanal Chemical compound CCC(CC)C=O UNNGUFMVYQJGTD-UHFFFAOYSA-N 0.000 description 1
- GCDUWJFWXVRGSM-UHFFFAOYSA-N 2-[2-(2-heptanoyloxyethoxy)ethoxy]ethyl heptanoate Chemical compound CCCCCCC(=O)OCCOCCOCCOC(=O)CCCCCC GCDUWJFWXVRGSM-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- SSKNCQWPZQCABD-UHFFFAOYSA-N 2-[2-[2-(2-heptanoyloxyethoxy)ethoxy]ethoxy]ethyl heptanoate Chemical compound CCCCCCC(=O)OCCOCCOCCOCCOC(=O)CCCCCC SSKNCQWPZQCABD-UHFFFAOYSA-N 0.000 description 1
- QSRJVOOOWGXUDY-UHFFFAOYSA-N 2-[2-[2-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoyloxy]ethoxy]ethoxy]ethyl 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C)=CC(CCC(=O)OCCOCCOCCOC(=O)CCC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 QSRJVOOOWGXUDY-UHFFFAOYSA-N 0.000 description 1
- VWSWIUTWLQJWQH-UHFFFAOYSA-N 2-butyl-6-[(3-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CCCCC1=CC(C)=CC(CC=2C(=C(CCCC)C=C(C)C=2)O)=C1O VWSWIUTWLQJWQH-UHFFFAOYSA-N 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- PFANXOISJYKQRP-UHFFFAOYSA-N 2-tert-butyl-4-[1-(5-tert-butyl-4-hydroxy-2-methylphenyl)butyl]-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(CCC)C1=CC(C(C)(C)C)=C(O)C=C1C PFANXOISJYKQRP-UHFFFAOYSA-N 0.000 description 1
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 description 1
- FLZYQMOKBVFXJS-UHFFFAOYSA-N 3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propanoic acid Chemical compound CC1=CC(CCC(O)=O)=CC(C(C)(C)C)=C1O FLZYQMOKBVFXJS-UHFFFAOYSA-N 0.000 description 1
- QYBPUVGDDCVYPC-UHFFFAOYSA-N 3-[4,4-bis(5-tert-butyl-3-hydroxy-2-methylphenyl)butan-2-yl]-5-tert-butyl-2-methylphenol Chemical compound C=1C(C(C)(C)C)=CC(O)=C(C)C=1C(C)CC(C=1C(=C(O)C=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=CC(O)=C1C QYBPUVGDDCVYPC-UHFFFAOYSA-N 0.000 description 1
- VSAWBBYYMBQKIK-UHFFFAOYSA-N 4-[[3,5-bis[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-2,4,6-trimethylphenyl]methyl]-2,6-ditert-butylphenol Chemical compound CC1=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(C)=C1CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 VSAWBBYYMBQKIK-UHFFFAOYSA-N 0.000 description 1
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 description 1
- BJIUNQZHYLBUNL-UHFFFAOYSA-N 6-heptoxy-6-oxohexanoic acid Chemical compound CCCCCCCOC(=O)CCCCC(O)=O BJIUNQZHYLBUNL-UHFFFAOYSA-N 0.000 description 1
- OIUGWVWLEGLAGH-UHFFFAOYSA-N 6-nonoxy-6-oxohexanoic acid Chemical compound CCCCCCCCCOC(=O)CCCCC(O)=O OIUGWVWLEGLAGH-UHFFFAOYSA-N 0.000 description 1
- HUUJFOGLCYMPCS-UHFFFAOYSA-N C(C)(C)(C)C(CC(C(O[P])OC1=CC=CC=C1)CC)CCC(C)(C)C Chemical compound C(C)(C)(C)C(CC(C(O[P])OC1=CC=CC=C1)CC)CCC(C)(C)C HUUJFOGLCYMPCS-UHFFFAOYSA-N 0.000 description 1
- PPRZEPPKBKXKPD-UHFFFAOYSA-N C(CCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCC Chemical compound C(CCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCC PPRZEPPKBKXKPD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- MOABYHZDQQELLG-UHFFFAOYSA-N OP(O)OP(O)O.C(CCCCCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCCCCC Chemical compound OP(O)OP(O)O.C(CCCCCCCCCCCC)C(O)(C(CO)(CO)CO)CCCCCCCCCCCCC MOABYHZDQQELLG-UHFFFAOYSA-N 0.000 description 1
- 241001483078 Phyto Species 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- FSRKEDYWZHGEGG-UHFFFAOYSA-N [2-(8-methylnonyl)phenyl] dihydrogen phosphate Chemical compound CC(C)CCCCCCCC1=CC=CC=C1OP(O)(O)=O FSRKEDYWZHGEGG-UHFFFAOYSA-N 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- ZEFSGHVBJCEKAZ-UHFFFAOYSA-N bis(2,4-ditert-butyl-6-methylphenyl) ethyl phosphite Chemical compound CC=1C=C(C(C)(C)C)C=C(C(C)(C)C)C=1OP(OCC)OC1=C(C)C=C(C(C)(C)C)C=C1C(C)(C)C ZEFSGHVBJCEKAZ-UHFFFAOYSA-N 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000005690 diesters Chemical group 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- CQQJGTPWCKCEOQ-UHFFFAOYSA-L magnesium dipropionate Chemical compound [Mg+2].CCC([O-])=O.CCC([O-])=O CQQJGTPWCKCEOQ-UHFFFAOYSA-L 0.000 description 1
- OJXOOFXUHZAXLO-UHFFFAOYSA-M magnesium;1-bromo-3-methanidylbenzene;bromide Chemical compound [Mg+2].[Br-].[CH2-]C1=CC=CC(Br)=C1 OJXOOFXUHZAXLO-UHFFFAOYSA-M 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- WULHNIUKYXJEJE-UHFFFAOYSA-N n'-(2-ethoxyphenyl)oxamide Chemical compound CCOC1=CC=CC=C1NC(=O)C(N)=O WULHNIUKYXJEJE-UHFFFAOYSA-N 0.000 description 1
- FPZPOPVQWNRDHA-UHFFFAOYSA-N n'-(2-ethylphenyl)oxamide Chemical class CCC1=CC=CC=C1NC(=O)C(N)=O FPZPOPVQWNRDHA-UHFFFAOYSA-N 0.000 description 1
- ZBNMOUGFCKAGGQ-UHFFFAOYSA-N n'-(5-tert-butyl-2-ethoxyphenyl)-n-(2-ethylphenyl)oxamide Chemical compound CCOC1=CC=C(C(C)(C)C)C=C1NC(=O)C(=O)NC1=CC=CC=C1CC ZBNMOUGFCKAGGQ-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 1
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 1
- 229950002083 octabenzone Drugs 0.000 description 1
- NUJGJRNETVAIRJ-UHFFFAOYSA-N octanal Chemical compound CCCCCCCC=O NUJGJRNETVAIRJ-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 125000005461 organic phosphorous group Chemical group 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Chemical class 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- ZUFQCVZBBNZMKD-UHFFFAOYSA-M potassium 2-ethylhexanoate Chemical compound [K+].CCCCC(CC)C([O-])=O ZUFQCVZBBNZMKD-UHFFFAOYSA-M 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- BWILYWWHXDGKQA-UHFFFAOYSA-M potassium propanoate Chemical compound [K+].CCC([O-])=O BWILYWWHXDGKQA-UHFFFAOYSA-M 0.000 description 1
- 239000004331 potassium propionate Substances 0.000 description 1
- 235000010332 potassium propionate Nutrition 0.000 description 1
- LYWPJPGMDLOUDX-UHFFFAOYSA-M potassium;2-ethylbutanoate Chemical compound [K+].CCC(CC)C([O-])=O LYWPJPGMDLOUDX-UHFFFAOYSA-M 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- OXFUXNFMHFCELM-UHFFFAOYSA-N tripropan-2-yl phosphate Chemical compound CC(C)OP(=O)(OC(C)C)OC(C)C OXFUXNFMHFCELM-UHFFFAOYSA-N 0.000 description 1
- WTLBZVNBAKMVDP-UHFFFAOYSA-N tris(2-butoxyethyl) phosphate Chemical compound CCCCOCCOP(=O)(OCCOCCCC)OCCOCCCC WTLBZVNBAKMVDP-UHFFFAOYSA-N 0.000 description 1
- MGMXGCZJYUCMGY-UHFFFAOYSA-N tris(4-nonylphenyl) phosphite Chemical compound C1=CC(CCCCCCCCC)=CC=C1OP(OC=1C=CC(CCCCCCCCC)=CC=1)OC1=CC=C(CCCCCCCCC)C=C1 MGMXGCZJYUCMGY-UHFFFAOYSA-N 0.000 description 1
- QQBLOZGVRHAYGT-UHFFFAOYSA-N tris-decyl phosphite Chemical compound CCCCCCCCCCOP(OCCCCCCCCCC)OCCCCCCCCCC QQBLOZGVRHAYGT-UHFFFAOYSA-N 0.000 description 1
- PEXOFOFLXOCMDX-UHFFFAOYSA-N tritridecyl phosphite Chemical compound CCCCCCCCCCCCCOP(OCCCCCCCCCCCCC)OCCCCCCCCCCCCC PEXOFOFLXOCMDX-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10559—Shape of the cross-section
- B32B17/10568—Shape of the cross-section varying in thickness
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/13—Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/21—Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10541—Functional features of the laminated safety glass or glazing comprising a light source or a light guide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10614—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
- B32B17/10633—Infrared radiation absorbing or reflecting agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10651—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10678—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising UV absorbers or stabilizers, e.g. antioxidants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10761—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/22—Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/263—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J1/00—Windows; Windscreens; Accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J1/00—Windows; Windscreens; Accessories therefor
- B60J1/02—Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2031/00—Use of polyvinylesters or derivatives thereof as moulding material
- B29K2031/04—Polymers of vinyl acetate, e.g. PVAc, i.e. polyvinyl acetate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/30—Vehicles, e.g. ships or aircraft, or body parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/778—Windows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/03—3 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/10—Properties of the layers or laminate having particular acoustical properties
- B32B2307/102—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
- B32B2307/736—Shrinkable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/08—Dimensions, e.g. volume
- B32B2309/10—Dimensions, e.g. volume linear, e.g. length, distance, width
- B32B2309/105—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/006—Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K2360/00—Indexing scheme associated with groups B60K35/00 or B60K37/00 relating to details of instruments or dashboards
- B60K2360/20—Optical features of instruments
- B60K2360/33—Illumination features
- B60K2360/334—Projection means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K35/00—Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/14—Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/103—Esters; Ether-esters of monocarboxylic acids with polyalcohols
Definitions
- the present invention relates to an interlayer film for laminated glass used for obtaining laminated glass. Moreover, this invention relates to the laminated glass using the said intermediate film for laminated glasses.
- Laminated glass is generally excellent in safety because it has less scattering of glass fragments even if it is damaged by external impact. For this reason, the said laminated glass is widely used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc.
- the laminated glass is manufactured by sandwiching an interlayer film for laminated glass between two glass plates.
- the interlayer film for laminated glass includes a single-layer interlayer film having a single-layer structure and a multilayer interlayer film having a structure of two or more layers.
- Patent Document 1 As an example of the interlayer film for laminated glass, Patent Document 1 listed below discloses that 100 parts by weight of a polyvinyl acetal resin having a degree of acetalization of 60 to 85 mol% and at least one of alkali metal salts and alkaline earth metal salts. A sound insulating layer containing 0.001 to 1.0 parts by weight of a metal salt of the above and a plasticizer exceeding 30 parts by weight is disclosed. This sound insulation layer may be a single layer and used as an intermediate film.
- Patent Document 1 also describes a multilayer intermediate film in which the sound insulation layer and other layers are laminated.
- the other layer laminated on the sound insulation layer is composed of 100 parts by weight of a polyvinyl acetal resin having an acetalization degree of 60 to 85 mol%, and at least one metal salt of at least one of an alkali metal salt and an alkaline earth metal salt. 1.0 part by weight and a plasticizer that is 30 parts by weight or less are included.
- HUD head-up display
- measurement information such as speed, which is driving data of a car, can be displayed on the windshield of the car.
- Patent Document 2 discloses a laminated glass in which a wedge-shaped intermediate film having a predetermined wedge angle is sandwiched between a pair of glass plates.
- the display of measurement information reflected by one glass plate and the display of measurement information reflected by another glass plate can be performed in the driver's field of view. Can be tied to one point. For this reason, it is hard to see the display of measurement information double, and does not disturb a driver's field of view.
- JP 2007-070200 A Japanese National Publication No. 4-502525
- the thickness at one end and the other end is different. For this reason, wrinkles are likely to occur in the wedge-shaped intermediate film.
- the intermediate film is likely to be wrinkled. As a result, poor appearance of the laminated glass tends to occur.
- the interlayer film is heated during the production of the laminated glass. This heating may cause wrinkles in the intermediate film or increase wrinkles. When wrinkles increase in the interlayer film, the appearance defect of the laminated glass is more likely to occur.
- the present invention has an MD direction and a TD direction, has one end and the other end having a thickness thicker than the one end on the opposite side to the one end, and the one end and the other end. Is located on both sides of the intermediate film in the TD direction, and when the distance between the one end and the other end is X, a first position of 0.05X from the one end toward the other end.
- the first heat shrinkage rate at 150 ° C. in the MD direction of the second the second heat shrinkage rate at 150 ° C. in the MD direction of the second position 0.5X from the one end toward the other end,
- the third thermal contraction rate at 150 ° C. in the MD direction of the third position of 0.95 ⁇ from the one end toward the other end the maximum thermal contraction rate and the minimum thermal contraction
- An intermediate film for laminated glass (in this specification, “medium May be abbreviated as film ”) is provided.
- the maximum heat shrinkage rate among the three heat shrinkage rates is 50% or less.
- the interlayer film includes a thermoplastic resin.
- the intermediate film includes a first layer and a second layer disposed on a first surface side of the first layer, The second layer is a surface layer in the intermediate film.
- the first layer includes a thermoplastic resin
- the second layer includes a thermoplastic resin
- thermoplastic resin in the first layer is a polyvinyl acetal resin
- thermoplastic resin in the second layer is a polyvinyl acetal resin
- the content rate of the hydroxyl group of the said polyvinyl acetal resin in the said 1st layer is lower than the content rate of the hydroxyl group of the said polyvinyl acetal resin in the said 2nd layer.
- the first layer includes a plasticizer
- the second layer includes a plasticizer
- content of the said plasticizer in the said 1st layer with respect to 100 weight part of said polyvinyl acetal resins in the said 1st layer is in the said 2nd layer.
- the content of the plasticizer in the second layer is more than 100 parts by weight of the polyvinyl acetal resin.
- the said intermediate film is equipped with the 3rd layer arrange
- the said 3rd layer Is the surface layer in the intermediate film.
- the third layer includes a thermoplastic resin and a plasticizer.
- the intermediate film has a portion having a wedge-shaped cross-sectional shape in the thickness direction.
- the first laminated glass member, the second laminated glass member, and the interlayer film for laminated glass described above are provided, and the first laminated glass member and the second laminated glass are provided.
- the interlayer film for laminated glass according to the present invention has an MD direction and a TD direction, and has one end and the other end having a thickness thicker than the one end on the side opposite to the one end.
- the other end is located on both sides of the intermediate film in the TD direction, and when the distance between the one end and the other end is X, the first end of 0.05X from the one end toward the other end.
- FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the second embodiment of the present invention.
- FIG. 3 is a cross-sectional view showing a first modification of the cross-sectional shape in the thickness direction of the interlayer film for laminated glass.
- FIG. 4 is a cross-sectional view showing a second modification of the cross-sectional shape in the thickness direction of the interlayer film for laminated glass.
- FIG. 5 is a cross-sectional view showing a third modification of the cross-sectional shape in the thickness direction of the interlayer film for laminated glass.
- FIG. 6 is a cross-sectional view showing a fourth modification of the cross-sectional shape in the thickness direction of the interlayer film for laminated glass.
- FIG. 7 is a cross-sectional view showing a fifth modification of the cross-sectional shape in the thickness direction of the interlayer film for laminated glass.
- FIG. 8 is a cross-sectional view showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
- FIG. 9 is a perspective view schematically showing a roll body on which the interlayer film for laminated glass shown in FIG. 1 is wound.
- FIG. 10 is a diagram for explaining an intermediate film (test piece) for measuring the heat shrinkage rate.
- the interlayer film for laminated glass according to the present invention (sometimes abbreviated as “intermediate film” in this specification) has an MD direction and a TD direction.
- the intermediate film which concerns on this invention has one end and the other end which has thickness thicker than the said one end on the opposite side to the said one end.
- the one end and the other end are located on both sides of the intermediate film in the TD direction.
- X is a distance between the one end and the other end.
- Three heat shrinkage ratios with a heat shrinkage ratio of 3 are measured.
- the absolute value of the difference between the maximum heat shrinkage rate and the minimum heat shrinkage rate among the above three heat shrinkage rates is 15% or less.
- the intermediate film according to the present invention since the thickness of one end of the intermediate film is thinner than the thickness of the other end, for example, when laminated glass using the intermediate film is used for a head-up display (HUD), the driving data of the automobile Even if measurement information such as speed is displayed, it is possible to suppress the measurement information from appearing double.
- HUD head-up display
- the intermediate film may be wound before the laminated glass is obtained, and the intermediate film may be made into a roll body.
- the MD direction of the intermediate film is the length direction and the TD direction of the intermediate film is the width direction
- the intermediate film is wound along the MD direction (length direction) of the intermediate film.
- Both ends (one end and the other end) in the TD direction (width direction) of the intermediate film are located on both sides in the axial direction of the roll.
- the intermediate film since the thickness of the intermediate film is different on both sides in the axial direction of the roll, the intermediate film is likely to be wrinkled, and it is difficult to wind the intermediate film so that no wrinkle is generated. In particular, wrinkles are likely to occur in the intermediate film on one end side where the thickness is relatively thin.
- the intermediate film When an intermediate film is unwound from a roll body in which a wrinkle has occurred in the intermediate film to produce a laminated glass, the intermediate film is likely to be sandwiched between two laminated glass members in a wrinkled state. As a result, poor appearance of the laminated glass occurs. For example, poor deaeration may occur, and voids may be generated between the laminated glass member and the intermediate film. Furthermore, when the laminated film is manufactured, the intermediate film is heated, so that wrinkles of the intermediate film located between the two laminated glass members increase, and the laminated glass is more likely to have a poor appearance.
- the intermediate film since the above-described configuration is provided, even when the intermediate film is wound and the intermediate film is a roll body, wrinkles can be hardly generated in the intermediate film. Even when the intermediate film is not a roll body, it is desirable that the intermediate film does not wrinkle. In the present invention, even if the intermediate film is not a roll body, wrinkles can be hardly generated in the intermediate film.
- the intermediate film has an MD direction and a TD direction.
- the intermediate film is obtained by, for example, melt extrusion molding.
- the MD direction is the flow direction of the intermediate film during the production of the intermediate film.
- the TD direction is a direction orthogonal to the flow direction of the intermediate film at the time of manufacturing the intermediate film, and is a direction orthogonal to the thickness direction of the intermediate film.
- the thermal shrinkage rate in the MD direction tends to increase.
- the three heat shrinkage rates at 150 ° C. in the MD direction are controlled within the above range, and the intermediate film can be made less likely to wrinkle.
- the absolute value of the difference between the maximum heat shrinkage rate and the minimum heat shrinkage rate is preferably 13% or less, more preferably 11% or less, and even more preferably 10%. It is as follows.
- the lower limit of the absolute value of the difference between the maximum heat shrinkage rate and the minimum heat shrinkage rate is not particularly limited.
- the maximum heat shrinkage ratio among the three heat shrinkage ratios is preferably 50% or less, more preferably 48% or less, still more preferably 46% or less, and particularly preferably. Is 45% or less.
- the lower limit of the maximum heat shrinkage rate is not particularly limited.
- the maximum heat shrinkage rate is preferably more than 20%, more preferably 22% or more, and still more preferably 24% or more.
- the extruded intermediate film is held within a certain temperature range for a certain period of time, or the whole of the TD direction is produced during the production of the intermediate film. And a method of winding the intermediate film with a uniform tension.
- the above heat shrinkage rate is measured as follows.
- FIG. 10 is a view for explaining an intermediate film (test piece) for measuring the heat shrinkage rate.
- the obtained intermediate film is cut out in a dimension of 10 cm in the MD direction from one end to the other end in the TD direction.
- humidity control is performed at 20 ° C. and a humidity of 30% RH for 2 days for stabilization.
- Test pieces are cut out at a third position of 0.95X.
- the test piece is a square having an MD direction of 5 cm and a TD direction of 5 cm.
- the test piece is cut out at the center in the MD direction of the test piece.
- the test piece is cut out so that the first position, the second position, and the third position are the center.
- the test piece is cut out so that one end is one side of the test piece.
- the third position of 0.95X from one end to the other end is not 2.5 cm or more away from the other end, the test piece is cut out so that the other end is one side of the test piece.
- the thermal contraction rate in the MD direction of one test piece is measured at three locations, one on each side of the test piece in the TD direction and the center portion (three locations in the thick line portion in FIG. 10).
- the average value of the three measured values is defined as the thermal shrinkage rate in the MD direction of one test piece.
- Heat shrinkage rate (%) ((dimension in MD direction before heating ⁇ dimension in MD direction after heating) / dimension in MD direction before heating) ⁇ 100 (%)
- FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention.
- FIG. 1 shows a cross section in the thickness direction of the intermediate film 11.
- the thickness of each layer constituting the intermediate film and the intermediate film, and the wedge angle ⁇ are shown to be different from the actual thickness and the wedge angle.
- the intermediate film 11 includes a first layer 1 (intermediate layer), a second layer 2 (surface layer), and a third layer 3 (surface layer). On the first surface side of the first layer 1, the second layer 2 is disposed and laminated. On the second surface side opposite to the first surface of the first layer 1, the third layer 3 is disposed and laminated. The first layer 1 is arranged between the second layer 2 and the third layer 3 and is sandwiched between them.
- the intermediate film 11 is used to obtain a laminated glass.
- the intermediate film 11 is an intermediate film for laminated glass.
- the intermediate film 11 is a multilayer intermediate film. A laminated glass member is laminated on the surface layer.
- the intermediate film 11 has one end 11a and the other end 11b opposite to the one end 11a.
- the one end 1a and the other end 11b are opposite ends on opposite sides.
- the cross-sectional shape in the thickness direction of the second layer 2 and the third layer 3 is a wedge shape.
- the cross-sectional shape in the thickness direction of the first layer 1 is a rectangle.
- the thickness of the second layer 2 and the third layer 3 is thinner on the one end 11a side than on the other end 11b side. Accordingly, the thickness of the one end 11a of the intermediate film 11 is smaller than the thickness of the other end 11b. Therefore, the intermediate film 11 has a thin region and a thick region.
- the difference between the maximum thickness and the minimum thickness in the first layer 1 is smaller than the difference between the maximum thickness and the minimum thickness in the second layer 2.
- the difference between the maximum thickness and the minimum thickness in the first layer 1 is smaller than the difference between the maximum thickness and the minimum thickness in the third layer 3.
- the left-right direction is the TD direction
- the up-down direction is the thickness direction
- the direction connecting the near side and the far side is the MD direction.
- FIG. 9 is a perspective view schematically showing a roll body on which the interlayer film for laminated glass shown in FIG. 1 is wound.
- the intermediate film 11 may be wound to form a roll body 51 of the intermediate film 11.
- a roll body 51 shown in FIG. 9 includes a winding core 61 and an intermediate film 11.
- the intermediate film 11 is wound around the outer periphery of the winding core 61.
- FIG. 2 is a cross-sectional view schematically showing an interlayer film for laminated glass according to a second embodiment of the present invention.
- the intermediate film 11A shown in FIG. 2 includes the first layer 1A.
- the intermediate film 11A has a single-layer structure including only the first layer 1A, and is a single-layer intermediate film.
- the intermediate film 11A is the first layer 1A.
- the intermediate film 11A is used to obtain a laminated glass.
- the intermediate film 11A is an intermediate film for laminated glass.
- the cross-sectional shape in the thickness direction of the intermediate film 11A and the first layer 1A is a wedge shape.
- the intermediate film 11A has one end 11a and the other end 11b opposite to the one end 11a.
- the one end 11a and the other end 11b are opposite ends on opposite sides.
- the thickness of one end 11a of the intermediate film 11A is thinner than the thickness of the other end 11b. Accordingly, the intermediate film 11A and the first layer 1A have a thin region and a thick region.
- the intermediate film 11 shown in FIG. 1 has a structure in which a rectangular first layer 1 is sandwiched between a wedge-shaped second layer 2 and a third layer 3. 3 to 7 show first to fifth modifications in which the shape of each layer of the intermediate film is changed.
- the intermediate film 11B according to the first modification shown in FIG. 3 includes a first layer 1B having a wedge-shaped cross section in the thickness direction, a second layer 2B having a wedge-shaped cross section in the thickness direction, and a thickness direction. And a third layer 3B having a wedge-shaped cross section.
- the first layer 1B is disposed between the second layer 2B and the third layer 3B and is sandwiched.
- the thickness of the first layer 1B, the second layer 2B, and the third layer 3B is thinner on the one end 11a side than on the other end 11b side. Therefore, the intermediate film 11B has a thin region and a thick region.
- the thickness change amount of the first layer 1B is smaller than the thickness change amounts of the second layer 2B and the third layer 3B.
- the intermediate film 11C according to the second modification shown in FIG. 4 includes a first layer 1C having a rectangular cross-sectional shape in the thickness direction, a second layer 2C having a wedge-shaped cross-sectional shape in the thickness direction, and a thickness direction. And a third layer 3C having a rectangular cross-sectional shape.
- the first layer 1C is disposed between the second layer 2C and the third layer 3C and is sandwiched.
- the thickness of the second layer 2C is thinner on the one end 11a side than on the other end 11b side. Accordingly, the intermediate film 11C has a thin region and a thick region.
- the intermediate film may be a single layer in the shape of the intermediate film 11C.
- An intermediate film 11D according to the third modification shown in FIG. 5 includes a first layer 1D having a rectangular cross-sectional shape in the thickness direction, a second layer 2D having a wedge-shaped cross-sectional shape in the thickness direction, and a thickness direction.
- the second layer 2D is disposed between the first layer 1D and the third layer 3D, and is sandwiched between them.
- the thickness of the second layer 2D is thinner on the one end 11a side than on the other end 11b side. Therefore, the intermediate film 11D has a thin region and a thick region.
- the 6 includes a first layer 1E having a rectangular cross-sectional shape in the thickness direction and a second layer 2E having a wedge-shaped cross-sectional shape in the thickness direction.
- the second layer 2E is disposed on the first surface side of the first layer 1E and laminated.
- the thickness of the second layer 2E is thinner on the one end 11a side than on the other end 11b side. Therefore, the intermediate film 11E has a thin region and a thick region.
- the intermediate film 11F according to the fifth modification shown in FIG. 7 has a first layer 1F having a rectangular cross-sectional shape in the thickness direction, a portion 2Fa having a rectangular cross-sectional shape in the thickness direction, and a cross-sectional shape in the thickness direction. And a second layer 2F having a wedge-shaped portion 2Fb.
- the second layer 2F is disposed on the first surface side of the first layer 1F and stacked.
- the thickness of the second layer 2F is thinner on the one end 11a side than on the other end 11b side. Accordingly, the intermediate film 11F has a thin region and a thick region.
- the intermediate film may be a single layer.
- the intermediate film preferably has a portion having a wedge-shaped cross-sectional shape in the thickness direction.
- the intermediate film preferably has a portion where the thickness gradually increases from one end to the other end.
- the cross-sectional shape in the thickness direction of the intermediate film is preferably a wedge shape. Examples of the cross-sectional shape in the thickness direction of the intermediate film include a trapezoid, a triangle, and a pentagon.
- the wedge angle ⁇ of the interlayer film can be appropriately set according to the attachment angle of the laminated glass.
- the wedge angle ⁇ of the interlayer film is preferably 0.01 mrad (0.0006 degrees) or more, more preferably 0.2 mrad (0.0115 degrees) or more, preferably 2 mrad. (0.1146 degrees) or less, more preferably 0.7 mrad (0.0401 degrees) or less.
- the wedge angle ⁇ of the intermediate film is such that the straight line connecting the first surface portion of the intermediate film between the maximum thickness portion and the minimum thickness portion of the intermediate film and the intermediate film between the maximum thickness portion and the minimum thickness portion of the intermediate film This is the interior angle at the intersection with the straight line connecting the second surface portions.
- the intermediate film may have a colored band in a part of the area.
- the intermediate film may have a colored region in a partial region.
- the surface layer preferably has a colored band or a colored region.
- the intermediate layer may have a colored band or a colored region.
- the colored band or colored region can be formed, for example, by blending a colorant into a predetermined region when the intermediate film is extruded or when each layer of the intermediate film is extruded.
- the thickness of the intermediate film is not particularly limited.
- the thickness of the intermediate film indicates the total thickness of each layer constituting the intermediate film. Therefore, in the case of the multilayer intermediate film 11, the thickness of the intermediate film 11 indicates the total thickness of the first layer 1, the second layer 2, and the third layer 3.
- the maximum thickness of the interlayer film is preferably 0.1 mm or more, more preferably 0.25 mm or more, further preferably 0.5 mm or more, particularly preferably 0.8 mm or more, preferably 3 mm or less, more preferably 2 mm, still more preferably. It is 1.5 mm or less.
- the intermediate film has a minimum thickness in a region of a distance of 0X to 0.2X from one end to the inside, and 0X from the other end to the inside.
- the intermediate film has a maximum thickness in a region having a distance of ⁇ 0.2X
- the intermediate film has a minimum thickness in a region having a distance of 0X to 0.1X from one end to the inside, and from the other end to the inside. It is more preferable to have the maximum thickness in a region with a distance of 0X to 0.1X. It is preferable that one end of the intermediate film has a minimum thickness and the other end of the intermediate film has a maximum thickness.
- one end 11a has a minimum thickness and the other end 11b has a maximum thickness.
- the maximum thickness of the surface layer is preferably 0.001 mm or more, more preferably 0.2 mm or more, still more preferably 0.3 mm or more, preferably Is 1 mm or less, more preferably 0.8 mm or less.
- the maximum thickness of the layer (intermediate layer) disposed between the two surface layers is preferably 0.001 mm or more, more preferably 0.1 mm or more. More preferably, it is 0.2 mm or more, preferably 0.8 mm or less, more preferably 0.6 mm or less, and still more preferably 0.3 mm or less.
- the distance X between one end and the other end of the intermediate film is preferably 3 m or less, more preferably 2 m or less, particularly preferably 1.5 m or less, preferably 0.5 m or more, more preferably 0.8 m or more, Especially preferably, it is 1 m or more.
- the intermediate film according to the present invention has a single-layer structure or a two-layer structure.
- the intermediate film according to the present invention may have a single-layer structure, may have a structure of two or more layers, or may have a structure of three or more layers.
- the intermediate film according to the present invention includes a first layer.
- the intermediate film according to the present invention may be a single-layer intermediate film including only the first layer, or may be a multilayer intermediate film including the first layer and another layer.
- the intermediate film may have a structure of two or more layers, and may include a second layer in addition to the first layer.
- the intermediate film preferably includes the second layer as a surface layer in the intermediate film.
- the second layer is disposed on the first surface side of the first layer.
- the first layer and the second layer may be directly laminated, or another layer may be disposed between the first layer and the second layer. .
- the intermediate film may have a structure of three or more layers, and may include a third layer in addition to the first layer and the second layer.
- the intermediate film preferably includes the third layer as a surface layer in the intermediate film.
- the third layer is disposed on the second surface side opposite to the first surface of the first layer.
- the first layer is disposed between the second layer and the third layer.
- the first layer and the third layer may be directly laminated, or another layer may be disposed between the first layer and the third layer. .
- the intermediate film preferably includes a thermoplastic resin, and preferably includes a polyvinyl acetal resin as the thermoplastic resin.
- the first layer preferably includes a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (1)), and the thermoplastic resin (1) includes polyvinyl. It preferably contains an acetal resin (hereinafter sometimes referred to as polyvinyl acetal resin (1)).
- the second layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (2)), and a polyvinyl acetal resin (hereinafter referred to as a polyvinyl acetal resin (2) as the thermoplastic resin (2).
- the third layer preferably contains a thermoplastic resin (hereinafter sometimes referred to as a thermoplastic resin (3)), and as the thermoplastic resin (3), a polyvinyl acetal resin (hereinafter referred to as a polyvinyl acetal resin ( 3)) may be included.
- the thermoplastic resin (1), the thermoplastic resin (2), and the thermoplastic resin (3) may be the same or different.
- the said thermoplastic resin (1), the said thermoplastic resin (2), and the said thermoplastic resin (3) only 1 type may respectively be used and 2 or more types may be used together.
- the polyvinyl acetal resin (1), the polyvinyl acetal resin (2), and the polyvinyl acetal resin (3) may be the same or different.
- the said polyvinyl acetal resin (1), the said polyvinyl acetal resin (2), and the said polyvinyl acetal resin (3) only 1 type may respectively be used and 2 or more types may be used together.
- thermoplastic resin examples include polyvinyl acetal resin, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, and polyvinyl alcohol resin. Thermoplastic resins other than these may be used.
- thermoplastic resin is preferably a polyvinyl acetal resin.
- the adhesion of the interlayer film for laminated glass according to the present invention to the laminated glass member or other interlayer film is further increased.
- the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol (PVA) with an aldehyde.
- PVA polyvinyl alcohol
- the polyvinyl acetal resin is preferably an acetalized product of polyvinyl alcohol.
- the polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate.
- the saponification degree of the polyvinyl alcohol is generally 70 to 99.9 mol%.
- the average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, particularly preferably 2600 or more, most preferably 2700 or more, preferably It is 5000 or less, more preferably 4000 or less, and still more preferably 3500 or less.
- the average degree of polymerization is not less than the above lower limit, the penetration resistance of the laminated glass is further enhanced.
- the average degree of polymerization is not more than the above upper limit, the intermediate film can be easily molded.
- the average degree of polymerization of the polyvinyl alcohol is determined by a method based on JIS K6726 “Testing method for polyvinyl alcohol”.
- the carbon number of the acetal group contained in the polyvinyl acetal resin is not particularly limited.
- the aldehyde used when manufacturing the said polyvinyl acetal resin is not specifically limited.
- the acetal group in the polyvinyl acetal resin preferably has 3 to 5 carbon atoms, more preferably 3 or 4. When the carbon number of the acetal group in the polyvinyl acetal resin is 3 or more, the glass transition temperature of the intermediate film is sufficiently low.
- the aldehyde is not particularly limited. In general, aldehydes having 1 to 10 carbon atoms are preferably used. Examples of the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, Examples thereof include n-nonyl aldehyde, n-decyl aldehyde, formaldehyde, acetaldehyde and benzaldehyde.
- Propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde is preferred, propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferred, and n-butyraldehyde is still more preferred.
- the said aldehyde only 1 type may be used and 2 or more types may be used together.
- the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin (1) is preferably 17 mol% or more, more preferably 20 mol% or more, still more preferably 22 mol% or more, preferably 35 mol% or less, more preferably. Is 30 mol% or less, more preferably less than 27 mol%, particularly preferably 25 mol% or less.
- the hydroxyl group content is at least the above lower limit, the adhesive strength of the interlayer film is further increased.
- the hydroxyl group content of the polyvinyl acetal resin (1) is 20 mol% or more, the reaction efficiency is high and the productivity is excellent, and when it is less than 27 mol%, the sound insulation of the laminated glass is further enhanced.
- the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated.
- the content of each hydroxyl group in the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 25 mol% or more, more preferably 28 mol% or more, preferably 35 mol% or less, more preferably 32 mol. % Or less.
- the hydroxyl group content is at least the above lower limit, the adhesive strength of the interlayer film is further increased. Further, when the hydroxyl group content is not more than the above upper limit, the flexibility of the interlayer film is increased, and the handling of the interlayer film is facilitated.
- the hydroxyl group content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl group content of the polyvinyl acetal resin (2).
- the thermal contraction rate is controlled as described above. It is possible to make wrinkles in the intermediate film sufficiently difficult.
- the hydroxyl group content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl group content of the polyvinyl acetal resin (2). From the viewpoint of further increasing the sound insulation, the hydroxyl group content of the polyvinyl acetal resin (1) is preferably lower than the hydroxyl group content of the polyvinyl acetal resin (3).
- the absolute value of the difference between the hydroxyl group content of the polyvinyl acetal resin (1) and the hydroxyl group content of the polyvinyl acetal resin (2), and the polyvinyl acetal resin is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 9 mol%. Above, especially preferably 10 mol% or more, most preferably 12 mol% or more.
- the absolute value of the difference from the hydroxyl group content of the polyvinyl acetal resin (3) is preferably 20 mol% or less.
- the hydroxyl group content of the polyvinyl acetal resin is a value indicating the mole fraction obtained by dividing the amount of ethylene groups to which the hydroxyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
- the amount of the ethylene group to which the hydroxyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
- the degree of acetylation (acetyl group amount) of the polyvinyl acetal resin (1) is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 7 mol% or more, still more preferably 9 It is at least mol%, preferably at most 30 mol%, more preferably at most 25 mol%, still more preferably at most 15 mol%.
- the acetylation degree is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer is increased.
- the acetylation degree is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass is increased.
- the degree of acetylation of the polyvinyl acetal resin (1) is 0.1 mol% or more and 25 mol% or less, the penetration resistance is excellent.
- Each degree of acetylation of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 0.01 mol% or more, more preferably 0.5 mol% or more, preferably 10 mol% or less, more preferably. Is 2 mol% or less.
- the acetylation degree is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer is increased.
- the acetylation degree is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass is increased.
- the degree of acetylation is a value obtained by dividing the amount of ethylene groups to which the acetyl group is bonded by the total amount of ethylene groups in the main chain, as a percentage.
- the amount of ethylene group to which the acetyl group is bonded can be measured, for example, according to JIS K6728 “Testing method for polyvinyl butyral”.
- the degree of acetalization of the polyvinyl acetal resin (1) is preferably 47 mol% or more, more preferably 60 mol% or more, preferably 80 mol% or less, more preferably It is 70 mol% or less.
- the degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases.
- the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
- the degree of acetalization (degree of butyralization in the case of polyvinyl butyral resin) of the polyvinyl acetal resin (2) and the polyvinyl acetal resin (3) is preferably 55 mol% or more, more preferably 67 mol% or more, preferably Is 75 mol% or less, more preferably 71 mol% or less.
- degree of acetalization is not less than the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer increases.
- the degree of acetalization is less than or equal to the above upper limit, the reaction time required for producing a polyvinyl acetal resin is shortened.
- the degree of acetalization is the value obtained by subtracting the amount of ethylene groups bonded with hydroxyl groups and the amount of ethylene groups bonded with acetyl groups from the total amount of ethylene groups of the main chain. It is a value indicating the mole fraction obtained by dividing by the percentage.
- the hydroxyl group content (hydroxyl content), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from results measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. However, measurement by ASTM D1396-92 may be used.
- the polyvinyl acetal resin is a polyvinyl butyral resin
- the hydroxyl group content (hydroxyl amount), the acetalization degree (butyralization degree), and the acetylation degree are determined in accordance with JIS K6728 “Testing methods for polyvinyl butyral”. It can be calculated from the results measured by
- the polyvinyl acetal resin (1) has an acetylation degree (a) of 8 mol% or less and an acetalization degree (a) of 66 mol%.
- the polyvinyl acetal resin (A) as described above is preferable, or the polyvinyl acetal resin (B) having a degree of acetylation (b) exceeding 8 mol% is preferable.
- the polyvinyl acetal resin (1) may be the polyvinyl acetal resin (A) or the polyvinyl acetal resin (B).
- the degree of acetylation (a) of the polyvinyl acetal resin (A) is 8 mol% or less, preferably 7.5 mol% or less, more preferably 7 mol% or less, still more preferably 6.5 mol% or less, particularly preferably. It is 5 mol% or less, preferably 0.1 mol% or more, more preferably 0.5 mol% or more, still more preferably 0.8 mol% or more, and particularly preferably 1 mol% or more.
- the degree of acetylation (a) is not more than the above upper limit and not less than the above lower limit, the migration of the plasticizer can be easily controlled, and the sound insulation of the laminated glass is further enhanced.
- the degree of acetalization (a) of the polyvinyl acetal resin (A) is 66 mol% or more, preferably 67.5 mol% or more, more preferably 70.5 mol% or more, particularly preferably 71 mol% or more, still more preferably. It is 71.5 mol% or more, particularly preferably 72 mol% or more, preferably 85 mol% or less, more preferably 83 mol% or less, still more preferably 81 mol% or less, and particularly preferably 79 mol% or less.
- the acetalization degree (a) is not less than the above lower limit, the sound insulating properties of the laminated glass are further enhanced.
- the reaction time required in order to manufacture polyvinyl acetal resin (A) as the said acetalization degree (a) is below the said upper limit can be shortened.
- the hydroxyl group content (a) of the polyvinyl acetal resin (A) is preferably 18 mol% or more, more preferably 19 mol% or more, still more preferably 20 mol% or more, particularly preferably 21 mol% or more, preferably 31.
- the mol% or less more preferably 30 mol% or less, still more preferably 29 mol% or less, and particularly preferably 28 mol% or less.
- the hydroxyl group content (a) is not less than the above lower limit, the adhesive strength of the first layer is further increased.
- the hydroxyl group content (a) is not more than the above upper limit, the sound insulation of the laminated glass is further enhanced.
- the degree of acetylation (b) of the polyvinyl acetal resin (B) exceeds 8 mol%, preferably 9 mol% or more, more preferably 9.5 mol% or more, still more preferably 10 mol% or more, particularly preferably. 10.5 mol% or more, preferably 30 mol% or less, more preferably 28 mol% or less, still more preferably 26 mol% or less, and particularly preferably 24 mol% or less.
- the acetylation degree (b) is not less than the above lower limit, the sound insulation of the laminated glass is further enhanced.
- the reaction time required in order to manufacture polyvinyl acetal resin (B) as the said acetylation degree (b) is below the said upper limit can be shortened.
- the degree of acetalization (b) of the polyvinyl acetal resin (B) is preferably 50 mol% or more, more preferably 53 mol% or more, still more preferably 55 mol% or more, particularly preferably 60 mol% or more, preferably 80 mol%. % Or less, more preferably 78 mol% or less, still more preferably 76 mol% or less, and particularly preferably 74 mol% or less.
- the acetalization degree (b) is not less than the above lower limit, the sound insulating properties of the laminated glass are further enhanced.
- the reaction time required in order to manufacture polyvinyl acetal resin (B) as the said acetalization degree (b) is below the said upper limit can be shortened.
- the content (b) of the hydroxyl group in the polyvinyl acetal resin (B) is preferably 18 mol% or more, more preferably 19 mol% or more, still more preferably 20 mol% or more, particularly preferably 21 mol% or more, preferably 31.
- the hydroxyl group content (b) is not less than the above lower limit, the adhesive strength of the first layer is further increased.
- the hydroxyl group content (b) is not more than the above upper limit, the sound insulating properties of the laminated glass are further enhanced.
- the polyvinyl acetal resin (A) and the polyvinyl acetal resin (B) are each preferably a polyvinyl butyral resin.
- the interlayer film preferably contains a plasticizer.
- the first layer (including a single-layer interlayer) preferably includes a plasticizer (hereinafter sometimes referred to as a plasticizer (1)).
- the second layer preferably contains a plasticizer (hereinafter sometimes referred to as a plasticizer (2)).
- the third layer preferably contains a plasticizer (hereinafter may be referred to as a plasticizer (3)).
- the plasticizer is not particularly limited.
- the plasticizer (1), the plasticizer (2), and the plasticizer (3) may be the same or different. As for the said plasticizer, only 1 type may be used and 2 or more types may be used together.
- plasticizer examples include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphate plasticizers such as organic phosphoric acid plasticizers and organic phosphorous acid plasticizers. .
- organic ester plasticizers are preferred.
- the plasticizer is preferably a liquid plasticizer.
- Examples of the monobasic organic acid ester include glycol esters obtained by a reaction between glycol and a monobasic organic acid.
- Examples of the glycol include triethylene glycol, tetraethylene glycol, and tripropylene glycol.
- Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, n-nonylic acid, and decylic acid.
- polybasic organic acid ester examples include ester compounds of a polybasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
- polybasic organic acid examples include adipic acid, sebacic acid, and azelaic acid.
- organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, triethylene glycol dicaprylate, Triethylene glycol di-n-octanoate, triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate, 1,3-propylene glycol di-2-ethyl butyrate, 1,4-butylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl butyrate, diethylene glycol di-2-ethyl Hexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-eth
- organic phosphate plasticizer examples include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate, and the like.
- the plasticizer is preferably a diester plasticizer represented by the following formula (1).
- R1 and R2 each represent an organic group having 2 to 10 carbon atoms
- R3 represents an ethylene group, an isopropylene group or an n-propylene group
- p represents an integer of 3 to 10
- R1 and R2 in the above formula (1) are each preferably an organic group having 5 to 10 carbon atoms, and more preferably an organic group having 6 to 10 carbon atoms.
- the plasticizer preferably contains triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. More preferably, it contains triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and more preferably contains triethylene glycol di-2-ethylhexanoate.
- 3GO triethylene glycol di-2-ethylhexanoate
- GGH triethylene glycol di-2-ethylbutyrate
- triethylene glycol di-2-ethylpropanoate More preferably, it contains triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and more preferably contains triethylene glycol di-2-ethylhexanoate.
- the plasticizer (1) is preferably 35 parts by weight or more, more preferably 50 parts by weight or more, still more preferably 55 parts by weight or more, and particularly preferably 60 parts by weight or more.
- the amount is preferably 100 parts by weight or less, more preferably 90 parts by weight or less, still more preferably 85 parts by weight or less, and particularly preferably 80 parts by weight or less.
- Content of the plasticizer (2) with respect to 100 parts by weight of the thermoplastic resin (2) (when the thermoplastic resin (2) is a polyvinyl acetal resin (2), 100 parts by weight of the polyvinyl acetal resin (2)) (Hereinafter may be referred to as “content (2)”), and 100 parts by weight of the thermoplastic resin (3) (when the thermoplastic resin (3) is a polyvinyl acetal resin (3), a polyvinyl acetal resin)
- the content of the plasticizer (3) relative to (3) 100 parts by weight) (hereinafter sometimes referred to as the content (3)) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, The amount is preferably 45 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 35 parts by weight or less, and particularly preferably 32 parts by weight or less.
- the flexibility of the intermediate film is increased and the handling of the intermediate film is facilitated.
- the bending rigidity is further increased.
- the content (1) is preferably greater than the content (2), and the content (1) is preferably greater than the content (3). If the plasticizer content is controlled in such a relationship in order to enhance sound insulation, the interlayer film tends to be wrinkled. However, in the present invention, the heat shrinkage rate is controlled as described above. In addition, wrinkles can be sufficiently prevented from occurring in the intermediate film.
- the laminated glass using the intermediate film having the content (1) of 55 parts by weight or more tends to have low bending rigidity, but the structure of the present invention can remarkably improve the bending rigidity.
- the absolute value of the difference between the content (2) and the content (1), and the difference between the content (3) and the content (1) is preferably 10 parts by weight or more, more preferably 15 parts by weight or more, and still more preferably 20 parts by weight or more.
- the absolute value of the difference between the content (2) and the content (1) and the absolute value of the difference between the content (3) and the content (1) are each preferably 80 parts by weight or less. More preferably, it is 75 weight part or less, More preferably, it is 70 weight part or less.
- the intermediate film preferably contains a heat shielding compound.
- the first layer preferably contains a heat shielding compound.
- the second layer preferably contains a heat shielding compound.
- the third layer preferably includes a heat shielding compound.
- the said heat-shielding compound only 1 type may be used and 2 or more types may be used together.
- the thermal barrier compound preferably contains at least one component X among phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds, or preferably contains thermal barrier particles. In this case, both the component X and the heat shielding particles may be included.
- the intermediate film preferably includes at least one component X among a phthalocyanine compound, a naphthalocyanine compound, and an anthracocyanine compound.
- the first layer preferably contains the component X.
- the second layer preferably contains the component X.
- the third layer preferably contains the component X.
- the component X is a heat shielding compound. As for the said component X, only 1 type may be used and 2 or more types may be used together.
- the component X is not particularly limited.
- component X conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracocyanine compounds can be used.
- Examples of the component X include phthalocyanine, a derivative of phthalocyanine, naphthalocyanine, a derivative of naphthalocyanine, an anthocyanin, and an anthocyanin derivative.
- the phthalocyanine compound and the phthalocyanine derivative preferably each have a phthalocyanine skeleton.
- the naphthalocyanine compound and the naphthalocyanine derivative preferably each have a naphthalocyanine skeleton. It is preferable that each of the anthocyanin compound and the derivative of the anthracyanine has an anthracyanine skeleton.
- the component X is preferably at least one selected from the group consisting of phthalocyanine, phthalocyanine derivatives, naphthalocyanine, and naphthalocyanine derivatives. More preferably, it is at least one of phthalocyanine and phthalocyanine derivatives.
- the component X preferably contains a vanadium atom or a copper atom.
- the component X preferably contains a vanadium atom, and preferably contains a copper atom.
- the component X is more preferably at least one of a phthalocyanine containing a vanadium atom or a copper atom and a phthalocyanine derivative containing a vanadium atom or a copper atom.
- the component X preferably has a structural unit in which an oxygen atom is bonded to a vanadium atom.
- the content of the component X is preferably 0.001% by weight or more, more preferably 0.005. % By weight or more, more preferably 0.01% by weight or more, particularly preferably 0.02% by weight or more, preferably 0.2% by weight or less, more preferably 0.1% by weight or less, still more preferably 0.05% by weight. % Or less, particularly preferably 0.04% by weight or less.
- the content of the component X is not less than the above lower limit and not more than the above upper limit, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high.
- the visible light transmittance can be 70% or more.
- Thermal barrier particles The intermediate film preferably contains heat shielding particles.
- the first layer preferably contains the heat shielding particles.
- the second layer preferably includes the heat shielding particles.
- the third layer preferably contains the heat shielding particles.
- the heat shielding particles are heat shielding compounds. By using heat shielding particles, infrared rays (heat rays) can be effectively blocked. As for the said heat-shielding particle, only 1 type may be used and 2 or more types may be used together.
- the heat shielding particles are more preferably metal oxide particles.
- the heat shielding particles are preferably particles (metal oxide particles) formed of a metal oxide.
- Infrared rays having a wavelength longer than 780 nm longer than visible light have a smaller amount of energy than ultraviolet rays.
- infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are released as heat. For this reason, infrared rays are generally called heat rays.
- heat shielding particles By using the heat shielding particles, infrared rays (heat rays) can be effectively blocked.
- the heat shielding particles mean particles that can absorb infrared rays.
- heat shielding particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles).
- Aluminum doped zinc oxide particles (AZO particles), niobium doped titanium oxide particles, sodium doped tungsten oxide particles, cesium doped tungsten oxide particles, thallium doped tungsten oxide particles, rubidium doped tungsten oxide particles, tin doped indium oxide particles (ITO particles) And metal oxide particles such as tin-doped zinc oxide particles and silicon-doped zinc oxide particles, and lanthanum hexaboride (LaB 6 ) particles. Heat shielding particles other than these may be used.
- Metal oxide particles are preferred because of their high heat ray shielding function, ATO particles, GZO particles, IZO particles, ITO particles or tungsten oxide particles are more preferred, and ITO particles or tungsten oxide particles are particularly preferred.
- tin-doped indium oxide particles (ITO particles) are preferable, and tungsten oxide particles are also preferable because they have a high heat ray shielding function and are easily available.
- the tungsten oxide particles are generally represented by the following formula (X1) or the following formula (X2).
- tungsten oxide particles represented by the following formula (X1) or the following formula (X2) are preferably used.
- W represents tungsten
- O represents oxygen
- y and z satisfy 2.0 ⁇ z / y ⁇ 3.0.
- M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu , Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta
- the tungsten oxide particles are preferably metal-doped tungsten oxide particles.
- the “tungsten oxide particles” include metal-doped tungsten oxide particles. Specific examples of the metal-doped tungsten oxide particles include sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, thallium-doped tungsten oxide particles, and rubidium-doped tungsten oxide particles.
- cesium-doped tungsten oxide particles are particularly preferable.
- the cesium-doped tungsten oxide particles are preferably tungsten oxide particles represented by the formula: Cs 0.33 WO 3 .
- the average particle diameter of the heat shielding particles is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less.
- the average particle size is not less than the above lower limit, the heat ray shielding property is sufficiently increased.
- the average particle size is not more than the above upper limit, the dispersibility of the heat shielding particles is increased.
- the above “average particle diameter” indicates the volume average particle diameter.
- the average particle diameter can be measured using a particle size distribution measuring device (“UPA-EX150” manufactured by Nikkiso Co., Ltd.) or the like.
- the content of the heat shielding particles is preferably 0.01% by weight or more, more preferably 0%. 0.1% by weight or more, more preferably 1% by weight or more, particularly preferably 1.5% by weight or more, preferably 6% by weight or less, more preferably 5.5% by weight or less, still more preferably 4% by weight or less, Preferably it is 3.5 weight% or less, Most preferably, it is 3.0 weight% or less.
- the content of the heat shielding particles is not less than the above lower limit and not more than the above upper limit, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high.
- the layer (the first layer, the second layer, or the third layer) containing the heat shielding particles may contain the heat shielding particles at a ratio of 0.1 g / m 2 or more and 12 g / m 2 or less. preferable. When the ratio of the heat shielding particles is within the above range, the heat shielding property is sufficiently high and the visible light transmittance is sufficiently high.
- the proportion of the heat shielding particles is preferably 0.5 g / m 2 or more, more preferably 0.8 g / m 2 or more, still more preferably 1.5 g / m 2 or more, particularly preferably 3 g / m 2 or more, preferably Is 11 g / m 2 or less, more preferably 10 g / m 2 or less, still more preferably 9 g / m 2 or less, and particularly preferably 7 g / m 2 or less.
- the ratio is equal to or higher than the lower limit, the heat shielding property is further enhanced.
- the ratio is less than or equal to the upper limit, the visible light transmittance is further increased.
- the intermediate film preferably contains at least one metal salt (hereinafter sometimes referred to as metal salt M) among alkali metal salts, alkaline earth metal salts, and magnesium salts.
- the first layer preferably includes the metal salt M.
- the second layer preferably contains the metal salt M.
- the third layer preferably contains the metal salt M.
- Use of the metal salt M makes it easy to control the adhesion between the interlayer film and a laminated glass member such as a glass plate or the adhesion between the layers in the interlayer film.
- the said metal salt M only 1 type may be used and 2 or more types may be used together.
- the metal salt M preferably contains at least one metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
- the metal salt contained in the interlayer film preferably contains at least one metal of K and Mg.
- the metal salt M is an alkali metal salt of an organic acid having 2 to 16 carbon atoms, an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms, or a magnesium salt of an organic acid having 2 to 16 carbon atoms. Is more preferable, and it is more preferably a carboxylic acid magnesium salt having 2 to 16 carbon atoms or a carboxylic acid potassium salt having 2 to 16 carbon atoms.
- magnesium salt of carboxylic acid having 2 to 16 carbon atoms and the potassium salt of carboxylic acid having 2 to 16 carbon atoms include, but are not limited to, for example, magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, 2-ethylbutyric acid
- magnesium, potassium 2-ethylbutanoate, magnesium 2-ethylhexanoate and potassium 2-ethylhexanoate examples include magnesium, potassium 2-ethylbutanoate, magnesium 2-ethylhexanoate and potassium 2-ethylhexanoate.
- the total content of Mg and K in the layer containing the metal salt M is preferably 5 ppm or more, more preferably 10 ppm or more, and even more preferably 20 ppm or more. , Preferably 300 ppm or less, more preferably 250 ppm or less, still more preferably 200 ppm or less.
- the adhesion between the interlayer film and the laminated glass member or the adhesion between the layers in the interlayer film can be controlled even better.
- the intermediate film preferably contains an ultraviolet shielding agent.
- the first layer preferably contains an ultraviolet shielding agent.
- the second layer preferably contains an ultraviolet shielding agent.
- the third layer preferably contains an ultraviolet shielding agent.
- the ultraviolet shielding agent includes an ultraviolet absorber.
- the ultraviolet shielding agent is preferably an ultraviolet absorber.
- the ultraviolet shielding agent examples include an ultraviolet shielding agent containing a metal atom, an ultraviolet shielding agent containing a metal oxide, an ultraviolet shielding agent having a benzotriazole structure (benzotriazole compound), and an ultraviolet shielding agent having a benzophenone structure (benzophenone compound). ), UV screening agent having triazine structure (triazine compound), UV screening agent having malonate ester structure (malonic acid ester compound), UV screening agent having oxalic acid anilide structure (oxalic acid anilide compound) and benzoate structure Examples thereof include an ultraviolet shielding agent (benzoate compound).
- Examples of the ultraviolet shielding agent containing a metal atom include platinum particles, particles having platinum particles coated with silica, palladium particles, and particles having palladium particles coated with silica.
- the ultraviolet shielding agent is preferably not a heat shielding particle.
- the ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure, an ultraviolet shielding agent having a benzophenone structure, an ultraviolet shielding agent having a triazine structure or an ultraviolet shielding agent having a benzoate structure, more preferably a benzotriazole structure.
- an ultraviolet shielding agent having a benzotriazole structure more preferably an ultraviolet shielding agent having a benzotriazole structure.
- Examples of the ultraviolet shielding agent containing the metal oxide include zinc oxide, titanium oxide, and cerium oxide. Furthermore, the surface may be coat
- Examples of the ultraviolet screening agent having the benzotriazole structure include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole (“TinvinP” manufactured by BASF), 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole (“Tinvin 320” manufactured by BASF), 2- (2′-hydroxy-3′-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (BASF) And “Tinuvin 326” manufactured by BASF, etc.) and the like.
- the ultraviolet shielding agent is preferably an ultraviolet shielding agent having a benzotriazole structure containing a halogen atom, and may be an ultraviolet shielding agent having a benzotriazole structure containing a chlorine atom. More preferred.
- Examples of the ultraviolet shielding agent having the benzophenone structure include octabenzone (“Chimasorb 81” manufactured by BASF).
- UV shielding agent having the triazine structure examples include “LA-F70” manufactured by ADEKA and 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl). Oxy] -phenol (“Tinuvin 1577FF” manufactured by BASF) and the like.
- UV screening agent having a malonic ester structure examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
- 2- (p-methoxybenzylidene) malonate examples include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
- Examples of commercially available ultraviolet screening agents having a malonic ester structure include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant).
- Examples of the ultraviolet shielding agent having the oxalic anilide structure include N- (2-ethylphenyl) -N ′-(2-ethoxy-5-tert-butylphenyl) oxalic acid diamide, N- (2-ethylphenyl)- Oxalic acid diamides having an aryl group substituted on the nitrogen atom such as N ′-(2-ethoxy-phenyl) oxalic acid diamide, 2-ethyl-2′-ethoxy-oxyanilide (“SlandorVSU” manufactured by Clariant)kind.
- ultraviolet shielding agent having the benzoate structure examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (“Tinuvin 120” manufactured by BASF). .
- the ultraviolet shielding is performed in 100% by weight of the layer containing the ultraviolet shielding agent (first layer, second layer, or third layer).
- the content of the agent is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, further preferably 0.3% by weight or more, particularly preferably 0.5% by weight or more, preferably 2.5%.
- % By weight or less, more preferably 2% by weight or less, further preferably 1% by weight or less, and particularly preferably 0.8% by weight or less.
- the content of the ultraviolet shielding agent is 0.2% by weight or more, thereby reducing the visible light transmittance after the passage of the intermediate film and the laminated glass. Remarkably suppressed.
- the intermediate film preferably contains an antioxidant.
- the first layer preferably contains an antioxidant.
- the second layer preferably contains an antioxidant.
- the third layer preferably contains an antioxidant. As for the said antioxidant, only 1 type may be used and 2 or more types may be used together.
- antioxidants examples include phenol-based antioxidants, sulfur-based antioxidants, and phosphorus-based antioxidants.
- the phenolic antioxidant is an antioxidant having a phenol skeleton.
- the sulfur-based antioxidant is an antioxidant containing a sulfur atom.
- the phosphorus antioxidant is an antioxidant containing a phosphorus atom.
- the antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
- phenolic antioxidant examples include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2′-methylenebis- (4-methyl-6-butylphenol), 2,2′-methylenebis- (4-ethyl-6) -T-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-t-butylphenyl) butane Tetrakis [methylene-3- (3 ′, 5′-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4-hydro) Loxy-5-t-butylphenol) butane, 1,3,5-trimethyl-2,4,6
- Examples of the phosphorus antioxidant include tridecyl phosphite, tris (tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis (tridecyl) pentaerythritol diphosphite, bis (decyl) pentaerythritol diphos.
- antioxidants examples include “IRGANOX 245” manufactured by BASF, “IRGAFOS 168” manufactured by BASF, “IRGAFOS 38” manufactured by BASF, “Smilizer BHT” manufactured by Sumitomo Chemical, and “ IRGANOX 1010 ".
- a layer in 100% by weight of the interlayer film or containing an antioxidant.
- the content of the antioxidant is preferably 0.1% by weight or more.
- the content of the antioxidant is preferably 2% by weight or less in 100% by weight of the intermediate film or 100% by weight of the layer containing the antioxidant.
- the first layer, the second layer, and the third layer are each other than a coupling agent, a dispersant, a surfactant, a flame retardant, an antistatic agent, a pigment, a dye, and a metal salt, if necessary.
- Additives such as adhesive strength modifiers, dampproofing agents, fluorescent brighteners and infrared absorbers may be included. As for these additives, only 1 type may be used and 2 or more types may be used together.
- FIG. 8 is a cross-sectional view showing an example of laminated glass using the interlayer film for laminated glass shown in FIG.
- the intermediate film 8 includes the intermediate film 11, a first laminated glass member 22, and a second laminated glass member 23.
- the intermediate film 11 is disposed between the first laminated glass member 22 and the second laminated glass member 23 and is sandwiched.
- a first laminated glass member 22 is disposed on the first surface of the intermediate film 11.
- a second laminated glass member 23 is disposed on the second surface opposite to the first surface of the intermediate film 11.
- the laminated glass member examples include a glass plate and a PET (polyethylene terephthalate) film.
- the laminated glass includes not only laminated glass in which an intermediate film is sandwiched between two glass plates, but also laminated glass in which an intermediate film is sandwiched between a glass plate and a PET film or the like.
- Laminated glass is a laminated body provided with a glass plate, and preferably at least one glass plate is used.
- the first laminated glass member and the second laminated glass member are respectively a glass plate or a PET (polyethylene terephthalate) film, and the intermediate film is the first laminated glass member and the second laminated glass member. It is preferable that at least one glass plate is included. It is particularly preferable that both the first laminated glass member and the second laminated glass member are glass plates.
- the glass plate examples include inorganic glass and organic glass.
- the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, mold plate glass, wire-containing plate glass, and green glass.
- the organic glass is a synthetic resin glass substituted for inorganic glass.
- the organic glass examples include polycarbonate plates and poly (meth) acrylic resin plates.
- the poly (meth) acrylic resin plate examples include a polymethyl (meth) acrylate plate.
- the thicknesses of the first laminated glass member and the second laminated glass member are not particularly limited, but are preferably 1 mm or more and preferably 5 mm or less.
- the thickness of the glass plate is preferably 1 mm or more, and preferably 5 mm or less.
- the thickness of the PET film is preferably 0.03 mm or more, and preferably 0.5 mm or less.
- the method for producing the laminated glass is not particularly limited.
- the intermediate film is sandwiched between the first and second laminated glass members, passed through a pressing roll, or put into a rubber bag and sucked under reduced pressure.
- the air which remains between the 1st laminated glass member and an intermediate film, and the 2nd laminated glass member and an intermediate film is deaerated.
- it is pre-bonded at about 70 to 110 ° C. to obtain a laminate.
- the laminate is put in an autoclave or pressed and pressed at about 120 to 150 ° C. and a pressure of 1 to 1.5 MPa. In this way, a laminated glass can be obtained.
- the laminated glass can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
- the laminated glass is preferably laminated glass for buildings or vehicles, and more preferably laminated glass for vehicles.
- the laminated glass can be used for other purposes.
- the laminated glass can be used for an automobile windshield, side glass, rear glass, roof glass, or the like. Since the heat shielding property is high and the visible light transmittance is high, the laminated glass is suitably used for automobiles.
- the intermediate film and the laminated glass can suppress double images, they can be suitably used for an automobile windshield. It is preferable that the said intermediate film is used for the laminated glass which is a head up display (HUD).
- the laminated glass is preferably a head-up display (HUD).
- measurement information such as speed transmitted from the control unit can be displayed on the windshield from the display unit of the instrument panel. For this reason, the driver
- thermoplastic resin A polyvinyl acetal resin having a hydroxyl group content, an acetylation degree, and an acetalization degree (butyralization degree) shown in Table 1 below was used. Table 1 also shows the average degree of polymerization of PVA used for the polyvinyl acetal resin.
- Polyvinyl acetal resins are all polyvinyl butyral resins that are butyralized with n-butyraldehyde.
- hydroxyl group content, acetylation degree, and acetalization degree were measured by a method in accordance with JIS K6728 “Testing methods for polyvinyl butyral”.
- JIS K6728 “Testing methods for polyvinyl butyral”.
- ASTM D1396-92 the same numerical value as the method based on JIS K6728 “Testing method for polyvinyl butyral” was shown.
- Tinuvin 326 (2- (2′-hydroxy-3′-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, “Tinuvin 326” manufactured by BASF)
- H-BHT (2,6-di-t-butyl-4-methylphenol, “H-BHT” manufactured by Sakai Chemical Industry Co., Ltd.)
- Example 1 Preparation of a composition for forming the first layer: 100 parts by weight of a polyvinyl acetal resin shown in Table 1 below, 60 parts by weight of a plasticizer shown in Table 1 below, 0.2 part by weight of an ultraviolet shielding agent (Tinuvin 326), and 0% of an antioxidant (H-BHT). 2 parts by weight were sufficiently mixed with a mixing roll to obtain a composition for forming the first layer.
- compositions for forming the second and third layers 100 parts by weight of a polyvinyl acetal resin shown in Table 1 below, 38 parts by weight of a plasticizer shown in Table 1 below, 0.2 parts by weight of an ultraviolet shielding agent (Tinuvin 326), and 0% of an antioxidant (H-BHT). 2 parts by weight were sufficiently mixed with a mixing roll to obtain a composition for forming the second layer and the third layer.
- Preparation of interlayer film The composition for forming the first layer and the composition for forming the second layer and the third layer are coextruded using an extruder, and the intermediate film is heated to 100 ° C. to 150 ° C. After heating and holding for 1 minute, the temperature was lowered to 25 ° C., and the intermediate film was wound up to obtain a roll body.
- a three-layer intermediate film having a second layer / first layer / third layer structure having a wedge-shaped cross section in the thickness direction was produced.
- the thickness of the second layer: the first layer: the third layer is 35:10:35 at a first position of 0.05X from one end to the other end,
- the cross-sectional shapes in the thickness direction of the second layer and the third layer were both wedges. Moreover, the distance from one end to the other end was 1 m.
- Example 2 Preparation of a composition for forming an interlayer film: 100 parts by weight of a polyvinyl acetal resin shown in Table 1 below, 38 parts by weight of a plasticizer shown in Table 1 below, 0.2 parts by weight of an ultraviolet shielding agent (Tinuvin 326), and 0% of an antioxidant (H-BHT). 2 parts by weight were sufficiently mixed with a mixing roll to obtain a composition for forming an intermediate film.
- Preparation of interlayer film The composition for forming the intermediate film is extruded using an extruder, the intermediate film is heated to 100 ° C. to 150 ° C. and held for 1 minute, and then cooled to 25 ° C. Rolled up to obtain a roll body. A single-layer intermediate film having a wedge-shaped cross section in the thickness direction was produced. A first position of 0.05X from one end to the other end, a second position of 0.5X from one end to the other end, and a third position of 0.95X from one end to the other end The thickness of was the thickness shown in Table 1 below.
- Example 1 After co-extrusion, a three-layer interlayer film was obtained in the same manner as in Example 1, except that the interlayer film was heated to 100 ° C. to 150 ° C. and not held for 1 minute.
- Example 3 A three-layer interlayer film was obtained in the same manner as in Example 1 except that the mold temperature was changed and the thickness of the interlayer film was changed as shown in Table 1 below.
- Example 4 A single-layer intermediate film was obtained in the same manner as in Example 2 except that the mold temperature was changed and the thickness of the intermediate film was changed as shown in Table 1 below.
- Example 5 After the extrusion, a three-layer interlayer film was obtained in the same manner as in Example 1 except that it was heated to 100 ° C. to 150 ° C. and held for 30 seconds.
- Example 6 A single-layer interlayer film was obtained in the same manner as in Example 2 except that after extrusion, the mixture was heated to 100 ° C. to 150 ° C. and held for 30 seconds.
- the obtained intermediate film was cut out in a dimension of 10 cm in the MD direction from one end to the other end in the TD direction. After cutting, humidity control was performed at 20 ° C. and a humidity of 30% RH for 2 days. Then, as shown in FIG. 10, a first position of 0.05X from one end to the other end, a second position of 0.5X from one end to the other end, and from one end to the other end A test piece was cut out at a third position of 0.95X.
- the test piece is a square having an MD direction of 5 cm and a TD direction of 5 cm. The test piece was cut out at the center in the MD direction of the test piece. The test piece was cut out so that the first position, the second position, and the third position were at the center.
- test piece was placed horizontally on a fluororesin sheet and left at 150 ° C. for 0.5 hour.
- the dimension in the MD direction before and after standing was measured, and the thermal shrinkage after standing was determined.
- Heat shrinkage rate (%) ((dimension in MD direction before heating ⁇ dimension in MD direction after heating) / dimension in MD direction before heating) ⁇ 100 (%)
- Table 1 The details and results of the interlayer film are shown in Table 1 below.
- Table 1 the description of the content of blending components other than the polyvinyl acetal resin and the plasticizer is omitted.
- 0.2 parts by weight of an ultraviolet shielding agent (Tinuvin 326) and 0.2 parts by weight of an antioxidant (H-BHT) are used with respect to 100 parts by weight of the polyvinyl acetal resin. .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Joining Of Glass To Other Materials (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
上記中間膜は、熱可塑性樹脂を含むことが好ましく、熱可塑性樹脂として、ポリビニルアセタール樹脂を含むことが好ましい。上記第1の層(単層の中間膜を含む)は、熱可塑性樹脂(以下、熱可塑性樹脂(1)と記載することがある)を含むことが好ましく、熱可塑性樹脂(1)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(1)と記載することがある)を含むことが好ましい。上記第2の層は、熱可塑性樹脂(以下、熱可塑性樹脂(2)と記載することがある)を含むことが好ましく、熱可塑性樹脂(2)としてポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(2)と記載することがある)を含むことが好ましい。上記第3の層は、熱可塑性樹脂(以下、熱可塑性樹脂(3)と記載することがある)を含むことが好ましく、熱可塑性樹脂(3)として、ポリビニルアセタール樹脂(以下、ポリビニルアセタール樹脂(3)と記載することがある)を含むことが好ましい。上記熱可塑性樹脂(1)と上記熱可塑性樹脂(2)と上記熱可塑性樹脂(3)とは、同一であってもよく、異なっていてもよい。上記熱可塑性樹脂(1)、上記熱可塑性樹脂(2)及び上記熱可塑性樹脂(3)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。上記ポリビニルアセタール樹脂(1)と上記ポリビニルアセタール樹脂(2)と上記ポリビニルアセタール樹脂(3)とは、同一であってもよく、異なっていてもよい。上記ポリビニルアセタール樹脂(1)、上記ポリビニルアセタール樹脂(2)及び上記ポリビニルアセタール樹脂(3)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、可塑剤を含むことが好ましい。上記第1の層(単層の中間膜を含む)は、可塑剤(以下、可塑剤(1)と記載することがある)を含むことが好ましい。上記第2の層は、可塑剤(以下、可塑剤(2)と記載することがある)を含むことが好ましい。上記第3の層は、可塑剤(以下、可塑剤(3)と記載することがある)を含むことが好ましい。ポリビニルアセタール樹脂と可塑剤との併用により、ポリビニルアセタール樹脂と可塑剤とを含む層の合わせガラス部材又は他の層に対する接着力が適度に高くなる。上記可塑剤は特に限定されない。上記可塑剤(1)と上記可塑剤(2)と上記可塑剤(3)とは同一であってもよく、異なっていてもよい。上記可塑剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、遮熱性化合物を含むことが好ましい。上記第1の層は、遮熱性化合物を含むことが好ましい。上記第2の層は、遮熱性化合物を含むことが好ましい。上記第3の層は、遮熱性化合物を含むことが好ましい。上記遮熱性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種の成分Xを含むことが好ましい。上記第1の層は、上記成分Xを含むことが好ましい。上記第2の層は、上記成分Xを含むことが好ましい。上記第3の層は、上記成分Xを含むことが好ましい。上記成分Xは遮熱性化合物である。上記成分Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、遮熱粒子を含むことが好ましい。上記第1の層は、上記遮熱粒子を含むことが好ましい。上記第2の層は、上記遮熱粒子を含むことが好ましい。上記第3の層は、上記遮熱粒子を含むことが好ましい。上記遮熱粒子は遮熱性化合物である。遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。上記遮熱粒子は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、アルカリ金属塩、アルカリ土類金属塩及びマグネシウム塩の内の少なくとも1種の金属塩(以下、金属塩Mと記載することがある)を含むことが好ましい。上記第1の層は、上記金属塩Mを含むことが好ましい。上記第2の層は、上記金属塩Mを含むことが好ましい。上記第3の層は、上記金属塩Mを含むことが好ましい。上記金属塩Mの使用により、中間膜とガラス板などの合わせガラス部材との接着性又は中間膜における各層間の接着性を制御することが容易になる。上記金属塩Mは、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、紫外線遮蔽剤を含むことが好ましい。上記第1の層は、紫外線遮蔽剤を含むことが好ましい。上記第2の層は、紫外線遮蔽剤を含むことが好ましい。上記第3の層は、紫外線遮蔽剤を含むことが好ましい。紫外線遮蔽剤の使用により、中間膜及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。上記紫外線遮蔽剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記中間膜は、酸化防止剤を含むことが好ましい。上記第1の層は、酸化防止剤を含むことが好ましい。上記第2の層は、酸化防止剤を含むことが好ましい。上記第3の層は、酸化防止剤を含むことが好ましい。上記酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記第1の層、上記第2の層及び上記第3の層はそれぞれ、必要に応じて、カップリング剤、分散剤、界面活性剤、難燃剤、帯電防止剤、顔料、染料、金属塩以外の接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等の添加剤を含んでいてもよい。これらの添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
図8は、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を示す断面図である。
下記の表1に示す水酸基の含有率、アセチル化度及びアセタール化度(ブチラール化度)を有するポリビニルアセタール樹脂を用いた。表1に、ポリビニルアセタール樹脂に用いたPVAの平均重合度も記載した。ポリビニルアセタール樹脂は全て、n-ブチルアルデヒドによりブチラール化されたポリビニルブチラール樹脂である。
トリエチレングリコールジ-2-エチルヘキサノエート(3GO)
Tinuvin326(2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、BASF社製「Tinuvin326」)
H-BHT(2,6-ジ-t-ブチル-4-メチルフェノール、堺化学工業社製「H-BHT」)
第1の層を形成するための組成物の作製:
下記の表1に示すポリビニルアセタール樹脂100重量部と、下記の表1に示す可塑剤60重量部と、紫外線遮蔽剤(Tinuvin326)0.2重量部と、酸化防止剤(H-BHT)0.2重量部とをミキシングロールで充分に混合し、第1の層を形成するための組成物を得た。
下記の表1に示すポリビニルアセタール樹脂100重量部と、下記の表1に示す可塑剤38重量部と、紫外線遮蔽剤(Tinuvin326)0.2重量部と、酸化防止剤(H-BHT)0.2重量部とをミキシングロールで充分に混合し、第2の層及び第3の層を形成するための組成物を得た。
第1の層を形成するための組成物と、第2の層及び第3の層を形成するための組成物とを、押出機を用いて共押出して、中間膜を100℃~150℃に加熱して保持時間1分で保持した後、25℃に降温させて、中間膜を巻きとり、ロール体を得た。厚み方向の断面形状が楔状であり、第2の層/第1の層/第3の層の構造を有する3層の中間膜を作製した。なお、第2の層:第1の層:第3の層の厚みは、一端から他端に向かって0.05Xの第1の位置にて35:10:35であり、第1の層、第2の層及び第3の層の厚み方向の断面形状はいずれも楔状であった。また、一端から他端までの距離は1mであった。
中間膜を形成するための組成物の作製:
下記の表1に示すポリビニルアセタール樹脂100重量部と、下記の表1に示す可塑剤38重量部と、紫外線遮蔽剤(Tinuvin326)0.2重量部と、酸化防止剤(H-BHT)0.2重量部とをミキシングロールで充分に混合し、中間膜を形成するための組成物を得た。
中間膜を形成するための組成物を、押出機を用いて押出して、中間膜を100℃~150℃に加熱して保持時間1分で保持した後、25℃に降温させて、中間膜を巻きとり、ロール体を得た。厚み方向の断面形状が楔状である1層の中間膜を作製した。一端から他端に向かって0.05Xの第1の位置と、一端から他端に向かって0.5Xの第2の位置と、一端から他端に向かって0.95Xの第3の位置との厚みは、下記の表1に示す厚みであった。
共押出後に、中間膜を100℃~150℃に加熱して保持時間1分で保持しなかったこと以外は実施例1と同様にして、3層の中間膜を得た。
押出後に、中間膜を100℃~150℃に加熱して保持時間1分で保持しなかったこと以外は実施例2と同様にして、1層の中間膜を得た。
金型温度を変更して、中間膜の厚みを下記の表1に示すように変更したこと以外は実施例1と同様にして、3層の中間膜を得た。
金型温度を変更して、中間膜の厚みを下記の表1に示すように変更したこと以外は実施例2と同様にして、1層の中間膜を得た。
金型温度を変更して、中間膜の厚みを下記の表1に示すように変更したこと、並びに押出後に、中間膜を100℃~150℃に加熱して保持時間1分で保持しなかったこと以外は実施例1と同様にして、3層の中間膜を得た。
金型温度を変更して、中間膜の厚みを下記の表1に示すように変更したこと、並びに押出後に、中間膜を100℃~150℃に加熱して保持時間1分で保持しなかったこと以外は実施例2と同様にして、1層の中間膜を得た。
押出後に、100℃~150℃に加熱して保持時間30秒で保持したこと以外は実施例1と同様にして、3層の中間膜を得た。
押出後に、100℃~150℃に加熱して保持時間30秒で保持したこと以外は実施例2と同様にして、1層の中間膜を得た。
(1)中間膜の厚み
中間膜の厚み方向の断面を観察し、一端から他端に向かって0.05Xの第1の位置と、一端から他端に向かって0.5Xの第2の位置と、一端から他端に向かって0.95Xの第3の位置との厚みを評価した。
得られた中間膜を、TD方向の一端から他端まで、MD方向に10cmの寸法で切り出した。切断後、20℃及び湿度30%RHで2日間調湿を行った。その後、図10に示すように、一端から他端に向かって0.05Xの第1の位置と、一端から他端に向かって0.5Xの第2の位置と、一端から他端に向かって0.95Xの第3の位置とで、試験片を切り出した。試験片は、MD方向5cm及びTD方向5cmの正方形である。試験片は、試験片のMD方向の中央にて切り出した。試験片は、第1の位置、第2の位置及び第3の位置が中心となるように切り出した。
50℃雰囲気下の加熱炉を通過させて中間膜を加熱しながら、ロール体から中間膜を巻き出した後、合わせガラス作製前の中間膜のしわの有無を以下の基準で判定した。
○:しわがない
△:わずかにしわがある(合わせガラスに問題となる外観不良が生じない程度)
×:しわがある(合わせガラスに問題となる外観不良が生じる程度)
上記(3)合わせガラス作製前の中間膜のしわの評価で巻き出された中間膜をガラス板の大きさに対応する大きさに切断した。一対のガラス板(クリアガラス、510mm×910mmの大きさ、厚み2.0mm)を用意した。一対のガラス板の間に、ガラス板の大きさに対応する大きさの中間膜を挟み込んで、積層体を得た。得られた積層体を、EPDM製ゴムチューブ(枠部材)にはめ込んだ。ゴムチューブの幅は15mmである。次に、EPDM製ゴムチューブにはめ込まれた積層体を真空バッグ法により、予備圧着した。予備圧着された積層体を、オートクレーブを用いて、150℃及び1.2MPaの圧力で圧着することにより、合わせガラスを得た。合わせガラス作製後の中間膜のしわの有無を以下の基準で判定した。
○:しわがない
△:わずかにしわがある(合わせガラスに問題となる外観不良が生じていない)
×:しわがある(合わせガラスに問題となる外観不良が生じている)
2,2B,2C,2D,2E,2F…第2の層
2Fa…厚み方向の断面形状が矩形である部分
2Fb…厚み方向の断面形状が楔状である部分
3,3B,3C,3D…第3の層
11,11A,11B,11C,11D,11E,11F…中間膜
11a…一端
11b…他端
21…合わせガラス
22…合わせガラス部材
23…合わせガラス部材
51…ロール体
61…巻き芯
Claims (13)
- MD方向とTD方向とを有し、
一端と、前記一端とは反対側に前記一端よりも厚い厚みを有する他端とを有し、
前記一端及び前記他端は、中間膜のTD方向の両側に位置しており、
前記一端と前記他端との間の距離をXとしたときに、前記一端から前記他端に向かって0.05Xの第1の位置のMD方向における150℃での第1の熱収縮率と、前記一端から前記他端に向かって0.5Xの第2の位置のMD方向における150℃での第2の熱収縮率と、前記一端から前記他端に向かって0.95Xの第3の位置のMD方向における150℃での第3の熱収縮率との3つの熱収縮率のうち、最大の熱収縮率と最小の熱収縮率との差の絶対値が15%以下である、合わせガラス用中間膜。 - 前記3つの熱収縮率のうち、最大の熱収縮率が、50%以下である、請求項1に記載の合わせガラス用中間膜。
- 熱可塑性樹脂を含む、請求項1又は2に記載の合わせガラス用中間膜。
- 第1の層と、
前記第1の層の第1の表面側に配置されている第2の層とを備え、
前記第2の層が、中間膜における表面層である、請求項1~3のいずれか1項に記載の合わせガラス用中間膜。 - 前記第1の層が熱可塑性樹脂を含み、
前記第2の層が熱可塑性樹脂を含む、請求項4に記載の合わせガラス用中間膜。 - 前記第1の層中の前記熱可塑性樹脂がポリビニルアセタール樹脂であり、
前記第2の層中の前記熱可塑性樹脂がポリビニルアセタール樹脂である、請求項5に記載の合わせガラス用中間膜。 - 前記第1の層中の前記ポリビニルアセタール樹脂の水酸基の含有率が、前記第2の層中の前記ポリビニルアセタール樹脂の水酸基の含有率よりも低い、請求項6に記載の合わせガラス用中間膜。
- 前記第1の層が可塑剤を含み、
前記第2の層が可塑剤を含む、請求項5~7のいずれか1項に記載の合わせガラス用中間膜。 - 前記第1の層中の前記熱可塑性樹脂がポリビニルアセタール樹脂であり、
前記第2の層中の前記熱可塑性樹脂がポリビニルアセタール樹脂であり、
前記第1の層中の前記ポリビニルアセタール樹脂100重量部に対する前記第1の層中の前記可塑剤の含有量が、前記第2の層中の前記ポリビニルアセタール樹脂100重量部に対する前記第2の層中の前記可塑剤の含有量よりも多い、請求項8に記載の合わせガラス用中間膜。 - 前記第1の層の前記第1の表面側と反対側に配置されている第3の層を備え、
前記第3の層が、中間膜における表面層である、請求項4~9のいずれか1項に記載の合わせガラス用中間膜。 - 前記第3の層が、熱可塑性樹脂と可塑剤とを含む、請求項10に記載の合わせガラス用中間膜。
- 厚み方向の断面形状が楔状である部分を有する、請求項1~11のいずれか1項に記載の合わせガラス用中間膜。
- 第1の合わせガラス部材と、
第2の合わせガラス部材と、
請求項1~12のいずれか1項に記載の合わせガラス用中間膜とを備え、
前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラス。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680056929.3A CN108137404B (zh) | 2015-09-30 | 2016-09-28 | 夹层玻璃用中间膜及夹层玻璃 |
JP2016560936A JP6378358B2 (ja) | 2015-09-30 | 2016-09-28 | 合わせガラス用中間膜及び合わせガラス |
KR1020187037661A KR20190002737A (ko) | 2015-09-30 | 2016-09-28 | 접합 유리용 중간막 및 접합 유리 |
KR1020187008600A KR101935215B1 (ko) | 2015-09-30 | 2016-09-28 | 접합 유리용 중간막 및 접합 유리 |
AU2016329565A AU2016329565A1 (en) | 2015-09-30 | 2016-09-28 | Interlayer for laminated glass and laminated glass |
MX2018003748A MX2018003748A (es) | 2015-09-30 | 2016-09-28 | Pelicula intercalar para vidrio laminado y vidrio laminado. |
US15/761,803 US10913244B2 (en) | 2015-09-30 | 2016-09-28 | Interlayer for laminated glass and laminated glass |
RU2018111224A RU2715575C1 (ru) | 2015-09-30 | 2016-09-28 | Межслойная пленка для ламинированного стекла и ламинированное стекло |
EP16851668.0A EP3357888B1 (en) | 2015-09-30 | 2016-09-28 | Interlayer for laminated glass and laminated glass |
CN201911218737.XA CN110951197B (zh) | 2015-09-30 | 2016-09-28 | 夹层玻璃用中间膜及夹层玻璃 |
BR112018006153-0A BR112018006153B1 (pt) | 2015-09-30 | 2016-09-28 | Película de intercamadas para vidro laminado e vidro laminado |
ZA2018/02548A ZA201802548B (en) | 2015-09-30 | 2018-04-12 | Interlayer for laminated glass and lamitated glass |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015195408 | 2015-09-30 | ||
JP2015-195408 | 2015-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057497A1 true WO2017057497A1 (ja) | 2017-04-06 |
Family
ID=58423675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/078688 WO2017057497A1 (ja) | 2015-09-30 | 2016-09-28 | 合わせガラス用中間膜及び合わせガラス |
Country Status (12)
Country | Link |
---|---|
US (1) | US10913244B2 (ja) |
EP (1) | EP3357888B1 (ja) |
JP (3) | JP6378358B2 (ja) |
KR (2) | KR20190002737A (ja) |
CN (2) | CN108137404B (ja) |
AU (1) | AU2016329565A1 (ja) |
BR (1) | BR112018006153B1 (ja) |
MX (1) | MX2018003748A (ja) |
RU (1) | RU2715575C1 (ja) |
TW (1) | TWI712493B (ja) |
WO (1) | WO2017057497A1 (ja) |
ZA (1) | ZA201802548B (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020250939A1 (ja) * | 2019-06-14 | 2020-12-17 | 積水化学工業株式会社 | 合わせガラス用中間膜、ロール体及び合わせガラス |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6378358B2 (ja) * | 2015-09-30 | 2018-08-22 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
US20180326706A1 (en) * | 2015-11-05 | 2018-11-15 | Sekisui Chemical Co., Ltd. | Interlayer for laminated glass and laminated glass |
CN108883981B (zh) * | 2016-03-30 | 2021-09-24 | 积水化学工业株式会社 | 夹层玻璃用中间膜以及夹层玻璃 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3068525A (en) * | 1958-08-28 | 1962-12-18 | Du Pont | Process for the production of dimensionally stable polyvinyl resin sheeting |
JPS4851964A (ja) * | 1971-10-27 | 1973-07-21 | ||
JPS6021834A (ja) * | 1983-07-12 | 1985-02-04 | Mitsubishi Monsanto Chem Co | 合せガラス用切裁中間膜 |
JP2004203680A (ja) * | 2002-12-25 | 2004-07-22 | Sekisui Chem Co Ltd | 合わせガラス用中間膜及び合わせガラス。 |
JP2005068006A (ja) * | 1998-03-11 | 2005-03-17 | Sekisui Chem Co Ltd | 合わせガラス用中間膜ロール体及び合わせガラス用中間膜ロール体の製造方法 |
JP2012106932A (ja) * | 2010-09-01 | 2012-06-07 | Sekisui Chem Co Ltd | 合わせガラス用中間膜及び合わせガラス |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1421142A1 (de) | 1956-06-15 | 1969-01-23 | Detag | Verfahren zur Herstelung von flammenhemmendem,splittersicherem Verbundglas |
US3488715A (en) * | 1966-09-14 | 1970-01-06 | Dow Chemical Co | Laminated glass structures and method therefor |
US4226818A (en) * | 1979-06-08 | 1980-10-07 | Monsanto Company | Production of polyvinylbutyral sheet rolls |
JPS60225747A (ja) * | 1984-04-25 | 1985-11-11 | 帝人株式会社 | 機能性フイルム |
MX171971B (es) | 1989-10-16 | 1993-11-24 | Libbey Owens Ford Co | Panel exhibidor para un parabrisas de vehiculo |
US20040053006A1 (en) | 1998-03-11 | 2004-03-18 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass |
US7846532B2 (en) * | 2005-03-17 | 2010-12-07 | Solutia Incorporated | Sound reducing wedge shaped polymer interlayers |
JP2008544878A (ja) * | 2005-05-11 | 2008-12-11 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | くさび形プロファイルを有するポリマー中間層 |
JP2007070200A (ja) | 2005-09-09 | 2007-03-22 | Asahi Glass Co Ltd | 合わせガラス |
EP1795337A1 (de) * | 2005-12-09 | 2007-06-13 | Kuraray Europe GmbH | Polyvinylacetal-haltige Folie mit verbesserter Gleichmäßigkeit der Längenänderungen über die Breite |
WO2009154060A1 (ja) | 2008-06-16 | 2009-12-23 | セントラル硝子株式会社 | プラスチックフィルム挿入合わせガラスの製造方法およびプラスチックフィルム挿入合わせガラス |
JP5523136B2 (ja) | 2009-02-18 | 2014-06-18 | 三菱樹脂株式会社 | 合わせガラス用ポリエステルフィルム |
CN102666422A (zh) * | 2009-12-24 | 2012-09-12 | 旭硝子株式会社 | 夹层玻璃及其制造方法 |
EP2518032B1 (en) | 2009-12-25 | 2017-11-29 | Sekisui Chemical Co., Ltd. | Intermediate film for laminated glass, and laminated glass |
US20130337247A1 (en) * | 2011-02-23 | 2013-12-19 | Hirofumi Kitano | Intermediate film for laminated glasses, and laminated glass |
WO2012133668A1 (ja) * | 2011-03-29 | 2012-10-04 | 株式会社クラレ | ポリビニルアセタール系樹脂フィルムおよびそれを用いた多層構造体 |
US10173396B2 (en) * | 2012-03-09 | 2019-01-08 | Solutia Inc. | High rigidity interlayers and light weight laminated multiple layer panels |
CN104185547B (zh) * | 2012-03-16 | 2016-05-04 | 东丽株式会社 | 多层层叠膜 |
EP2905128A1 (de) * | 2014-02-05 | 2015-08-12 | Kuraray Europe GmbH | Verbundglaslaminate mit Wärmestrahlung abschirmenden Eigenschaften auf Basis von dünnen Folien aus weichmacherfreiem Polyvinylacetal |
GB201402815D0 (en) * | 2014-02-18 | 2014-04-02 | Pilkington Group Ltd | Laminated glazing |
JP2014210433A (ja) | 2014-05-19 | 2014-11-13 | 東洋紡株式会社 | ポリエステル樹脂成形フィルム |
JP6378358B2 (ja) * | 2015-09-30 | 2018-08-22 | 積水化学工業株式会社 | 合わせガラス用中間膜及び合わせガラス |
-
2016
- 2016-09-28 JP JP2016560936A patent/JP6378358B2/ja active Active
- 2016-09-28 MX MX2018003748A patent/MX2018003748A/es unknown
- 2016-09-28 CN CN201680056929.3A patent/CN108137404B/zh active Active
- 2016-09-28 BR BR112018006153-0A patent/BR112018006153B1/pt active IP Right Grant
- 2016-09-28 EP EP16851668.0A patent/EP3357888B1/en active Active
- 2016-09-28 KR KR1020187037661A patent/KR20190002737A/ko active Application Filing
- 2016-09-28 WO PCT/JP2016/078688 patent/WO2017057497A1/ja active Application Filing
- 2016-09-28 CN CN201911218737.XA patent/CN110951197B/zh active Active
- 2016-09-28 RU RU2018111224A patent/RU2715575C1/ru active
- 2016-09-28 AU AU2016329565A patent/AU2016329565A1/en not_active Abandoned
- 2016-09-28 KR KR1020187008600A patent/KR101935215B1/ko active IP Right Grant
- 2016-09-28 US US15/761,803 patent/US10913244B2/en active Active
- 2016-09-30 TW TW105131567A patent/TWI712493B/zh active
-
2018
- 2018-04-12 ZA ZA2018/02548A patent/ZA201802548B/en unknown
- 2018-07-11 JP JP2018131278A patent/JP7193260B2/ja active Active
-
2021
- 2021-05-24 JP JP2021087001A patent/JP7104216B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3068525A (en) * | 1958-08-28 | 1962-12-18 | Du Pont | Process for the production of dimensionally stable polyvinyl resin sheeting |
JPS4851964A (ja) * | 1971-10-27 | 1973-07-21 | ||
JPS6021834A (ja) * | 1983-07-12 | 1985-02-04 | Mitsubishi Monsanto Chem Co | 合せガラス用切裁中間膜 |
JP2005068006A (ja) * | 1998-03-11 | 2005-03-17 | Sekisui Chem Co Ltd | 合わせガラス用中間膜ロール体及び合わせガラス用中間膜ロール体の製造方法 |
JP2004203680A (ja) * | 2002-12-25 | 2004-07-22 | Sekisui Chem Co Ltd | 合わせガラス用中間膜及び合わせガラス。 |
JP2012106932A (ja) * | 2010-09-01 | 2012-06-07 | Sekisui Chem Co Ltd | 合わせガラス用中間膜及び合わせガラス |
Non-Patent Citations (1)
Title |
---|
See also references of EP3357888A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020250939A1 (ja) * | 2019-06-14 | 2020-12-17 | 積水化学工業株式会社 | 合わせガラス用中間膜、ロール体及び合わせガラス |
CN113993826A (zh) * | 2019-06-14 | 2022-01-28 | 积水化学工业株式会社 | 夹层玻璃用中间膜、卷体和夹层玻璃 |
CN113993826B (zh) * | 2019-06-14 | 2023-09-19 | 积水化学工业株式会社 | 夹层玻璃用中间膜、卷体和夹层玻璃 |
US11820107B2 (en) | 2019-06-14 | 2023-11-21 | Sekisui Chemical Co., Ltd. | Interlayer film for laminated glass, roll, and laminated glass |
Also Published As
Publication number | Publication date |
---|---|
CN108137404A (zh) | 2018-06-08 |
TW201726408A (zh) | 2017-08-01 |
EP3357888B1 (en) | 2022-01-26 |
MX2018003748A (es) | 2018-07-06 |
JPWO2017057497A1 (ja) | 2017-11-02 |
CN110951197A (zh) | 2020-04-03 |
CN110951197B (zh) | 2022-08-16 |
ZA201802548B (en) | 2019-07-31 |
JP7193260B2 (ja) | 2022-12-20 |
AU2016329565A1 (en) | 2018-03-15 |
BR112018006153B1 (pt) | 2022-06-14 |
TWI712493B (zh) | 2020-12-11 |
RU2715575C1 (ru) | 2020-03-02 |
KR20190002737A (ko) | 2019-01-08 |
JP7104216B2 (ja) | 2022-07-20 |
JP2021143122A (ja) | 2021-09-24 |
KR20180061188A (ko) | 2018-06-07 |
JP6378358B2 (ja) | 2018-08-22 |
EP3357888A4 (en) | 2019-05-01 |
US10913244B2 (en) | 2021-02-09 |
US20180264786A1 (en) | 2018-09-20 |
BR112018006153A2 (pt) | 2019-05-14 |
CN108137404B (zh) | 2019-12-31 |
KR101935215B1 (ko) | 2019-01-03 |
EP3357888A1 (en) | 2018-08-08 |
JP2018199615A (ja) | 2018-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6152496B1 (ja) | 合わせガラス用中間膜、ロール体及び合わせガラス | |
WO2017057630A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP6581596B2 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP7104216B2 (ja) | 合わせガラス用中間膜及び合わせガラス | |
WO2017170727A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP6449524B1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP6876602B2 (ja) | 合わせガラス用中間膜、ロール体及び合わせガラス | |
WO2017170728A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
WO2018181418A1 (ja) | 合わせガラス用中間膜、ロール体及び合わせガラス | |
WO2018181687A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
WO2019124374A1 (ja) | 合わせガラス | |
WO2019124373A1 (ja) | 合わせガラス | |
WO2018070461A1 (ja) | 合わせガラス用中間膜及び合わせガラス | |
JP6484351B2 (ja) | 合わせガラス用中間膜、ロール体及び合わせガラス | |
JP2019108253A (ja) | 合わせガラス | |
WO2019124375A1 (ja) | 合わせガラス用中間膜及び合わせガラス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016560936 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851668 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016329565 Country of ref document: AU Date of ref document: 20160928 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15761803 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2018/003748 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20187008600 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018006153 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018111224 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 112018006153 Country of ref document: BR Kind code of ref document: A2 Effective date: 20180327 |