WO2017057337A1 - 塩素発生用電極およびその製造方法 - Google Patents

塩素発生用電極およびその製造方法 Download PDF

Info

Publication number
WO2017057337A1
WO2017057337A1 PCT/JP2016/078404 JP2016078404W WO2017057337A1 WO 2017057337 A1 WO2017057337 A1 WO 2017057337A1 JP 2016078404 W JP2016078404 W JP 2016078404W WO 2017057337 A1 WO2017057337 A1 WO 2017057337A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
electrode
palladium
chlorine
conductive substrate
Prior art date
Application number
PCT/JP2016/078404
Other languages
English (en)
French (fr)
Inventor
聡 羽多野
弘喜 肥後橋
諭 角井
剛一 曽田
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to EP16851508.8A priority Critical patent/EP3358043A4/en
Priority to JP2017543417A priority patent/JP7073104B2/ja
Priority to CN201680050732.9A priority patent/CN107949663A/zh
Priority to KR1020187002346A priority patent/KR20180058702A/ko
Publication of WO2017057337A1 publication Critical patent/WO2017057337A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/1266Particles formed in situ
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings

Definitions

  • the present invention relates to an electrode for producing chlorine, particularly an electrode used for producing on-site sodium hypochlorite using dilute brine such as seawater electrolysis, and a method for producing the same.
  • Patent Document 1 platinum-palladium oxide-ruthenium dioxide having a composition of 3 to 42% by weight of platinum, 3 to 34% by weight of palladium oxide, and 42 to 94% by weight of ruthenium dioxide on titanium or a titanium alloy.
  • a platinum group metal ternary mixture and a mixture of 20 to 40% by weight of titanium dioxide based on the above mixture are disclosed.
  • an electrode for producing chlorine or hypochlorite is a coating of a mixed oxide of a platinum group metal oxide and a valve metal oxide, and platinum of ruthenium, palladium and iridium.
  • the molar ratio of the platinum group metal oxide to the valve metal oxide is 90:10 to 40:60
  • the molar ratio of ruthenium to iridium is 90:10 to 50:50. It is disclosed that the molar ratio of palladium oxide to ruthenium oxide and iridium oxide is 5:95 to 40:60.
  • Patent Document 3 as an anode for producing hypochlorite, 10 to 45% by weight of palladium oxide, 15 to 45% by weight of ruthenium oxide, 10 to 40% by weight of titanium dioxide, 10% It has been proposed to have a coating containing -20% by weight of platinum and further 2-10% by weight of an oxide of at least one metal selected from cobalt, lanthanum, cerium and yttrium.
  • Electrodes having platinum group oxides as described in Patent Documents 1 to 3 have high oxidation efficiency of chloride ions, and high concentration hypochlorite ions are generated with high chlorine generation efficiency exceeding 90%. It is possible, and it is possible to obtain a high concentration of hypochlorite with a lower power unit than a conventional anode.
  • the present invention provides a chlorine generating electrode having high chlorine generation efficiency and excellent long-term durability even when used for electrolysis of low-concentration salt water. Is the main purpose.
  • Another object of the present invention is to provide a method for producing the chlorine generating electrode, a method for producing hypochlorite using the chlorine generating electrode, and an electrolytic cell equipped with the electrode.
  • an electrode for chlorine generation comprising a conductive substrate and a catalyst layer provided on the conductive substrate, wherein the catalyst layer contains at least palladium oxide, ruthenium oxide, and titanium oxide.
  • the electrode for chlorine generation in which palladium oxide is particles having an average particle diameter of 5 ⁇ m or less has high chlorine generation efficiency and long-term durability even when used for electrolysis of low-concentration salt water. I found it excellent.
  • the present invention has been completed by further studies based on these findings.
  • a chlorine generating electrode comprising a conductive substrate and a catalyst layer provided on the conductive substrate, The catalyst layer contains at least palladium oxide, ruthenium oxide, and titanium oxide, The palladium oxide is a chlorine generating electrode, wherein the average particle size is 5 ⁇ m or less.
  • the electrode for chlorine generation as described in 1 or 2.
  • Item 4. Item 4. The chlorine generation according to any one of Items 1 to 3, wherein a proportion of palladium metal contained in the catalyst layer is 1 mol% or more when the metal element contained in the catalyst layer is 100 mol%. Electrode.
  • Item 5. Item 5.
  • a method for producing an electrode for chlorine generation comprising a conductive substrate and a catalyst layer provided on the conductive substrate, An application step of applying a solution containing at least a palladium compound, a ruthenium compound, and a titanium compound on a conductive substrate; A firing step of firing the conductive substrate coated with the solution; With The manufacturing method of the electrode for chlorine generation using the palladium oxide particle
  • a method for producing an electrode for chlorine generation comprising a conductive substrate and a catalyst layer provided on the conductive substrate, An application step of applying a solution containing at least a palladium compound, a ruthenium compound, and a titanium compound on a conductive substrate; A firing step of firing the conductive substrate coated with the solution; With As the palladium compound, at least one of palladium chloride and palladium nitrate is used, A method for producing a chlorine generating electrode, wherein in the firing step, palladium oxide particles having an average particle size of 5 ⁇ m or less are produced from the palladium chloride by heating at a temperature of 400 to 600 ° C. Item 8.
  • An electrolytic cell comprising the chlorine generating electrode according to any one of items 1 to 5.
  • Item 11 A method for producing hypochlorite, comprising a step of electrolyzing a metal chloride aqueous solution using the chlorine generating electrode according to any one of Items 1 to 5.
  • the present invention it is possible to provide a chlorine generating electrode having high chlorine generation efficiency and excellent long-term durability even when used for electrolysis of low-concentration salt water. Furthermore, according to this invention, the manufacturing method of the said electrode for chlorine generation, the manufacturing method of the hypochlorite using the said electrode for chlorine generation, and an electrolytic cell provided with the said electrode can also be provided.
  • 4 is a graph showing the relationship between 2 ⁇ (°) and peak intensity (cps) obtained by measuring X-ray diffraction for the anode catalyst layer obtained in Example 2.
  • 6 is a graph showing the relationship between 2 ⁇ (°) and peak intensity (cps) obtained by measuring X-ray diffraction for the anode catalyst layer obtained in Example 3.
  • 6 is a graph showing the relationship between 2 ⁇ (°) and peak intensity (cps) obtained by measuring X-ray diffraction for the anode catalyst layer obtained in Example 4. It is a graph which shows the relationship between the temperature in chlorine concentration 0.1%, and chlorine generation efficiency.
  • the electrode for generating chlorine of the present invention includes a conductive substrate and a catalyst layer provided on the conductive substrate.
  • the catalyst layer contains at least palladium oxide, ruthenium oxide, and titanium oxide, and the palladium oxide is particles having an average particle diameter of 5 ⁇ m or less.
  • the chlorine generating electrode of the present invention is used for electrolysis of low-concentration salt water (for example, salt water having a concentration of 1% or less) by providing such a specific catalyst layer (that is, electrolyte solution) Even in the case of low-concentration salt water), the chlorine generation efficiency is high and the long-term durability can be exhibited.
  • the electrode for chlorine generation of the present invention will be described in detail.
  • the electrode for chlorine generation of the present invention includes a conductive substrate and a catalyst layer.
  • the material of the conductive substrate is not particularly limited, and examples thereof include those used for known chlorine generating electrodes.
  • Specific examples of the material of the conductive substrate include valve metals such as titanium, tantalum, zirconium and niobium, and alloys of two or more kinds of valve metals.
  • the shape of the conductive substrate is not particularly limited, and examples thereof include a plate shape, a disk shape, a rod shape, a cylindrical shape, an expanded metal, and a punching metal.
  • the surface of the conductive substrate may be subjected to sandblasting (roughening treatment) or the like as necessary for the purpose of exerting an anchor effect on the catalyst layer.
  • Sandblasting is a surface treatment method in which high-pressure gas containing sand-like particles is blown onto the surface of a material.
  • the sandblast treatment can be performed by a known method.
  • the surface roughness of the conductive substrate can be controlled by adjusting the type of abrasive used, the processing time, and the like.
  • the material for the sand-like particles include alumina, glass, iron and the like.
  • a degreasing treatment or the like may be performed as necessary.
  • the surface roughness Ra (arithmetic mean roughness) of the surface of the conductive substrate subjected to the roughening treatment is, for example, in the range of about 0.5 to 10 ⁇ m, although it depends on the particle size used for the sandblasting treatment. It is done.
  • the surface roughness Ra can be set outside this range by changing the particle size used for the sandblast treatment.
  • the surface of the conductive substrate may be subjected to a surface treatment with acid or the like.
  • acid for example, a sulfuric acid, nitric acid, hydrochloric acid, oxalic acid, a hydrofluoric acid etc. can be mentioned.
  • the thickness of the conductive substrate is not particularly limited, and is appropriately set according to the size of the electrolytic cell in which the chlorine generating electrode is installed, and is, for example, about 0.5 to 10 mm.
  • a catalyst layer is provided on the conductive substrate.
  • the catalyst layer contains at least palladium oxide, ruthenium oxide, and titanium oxide. More specifically, a film composed of the catalyst layer is formed on the surface of the conductive substrate.
  • the average particle diameter of the palladium oxide particles contained in the catalyst layer is 5 ⁇ m or less.
  • the conventional electrode for generating chlorine for example, when low-concentration salt water is used as an electrolytic solution, there is a problem that chlorine generation efficiency is greatly reduced. Further, when low-concentration salt water is used as an electrolytic solution. However, since a high voltage is required for electrolysis of salt water, there is a problem that the load on the electrode is large and the life of the electrode is short.
  • the catalyst layer contains palladium oxide, ruthenium oxide, and titanium oxide, and the average particle diameter of palladium oxide is set to 5 ⁇ m or less, so that low concentration brine Even when it is used for electrolysis, the chlorine generation efficiency is high and the long-term durability is excellent.
  • the chlorine generating electrode of the present invention can exhibit high chlorine generation efficiency, particularly when used for electrolysis of a low concentration metal chloride aqueous solution (particularly salt water) of about 0.1 to 1%. .
  • the average particle diameter of palladium oxide may be 5 ⁇ m or less, but from the viewpoint of further improving the long-term durability of the electrode while further improving the chlorine generation efficiency of the electrode for chlorine generation of the present invention, it is preferably 0.01. About 5 to 5 ⁇ m, more preferably about 0.01 to 2.5 ⁇ m, and still more preferably about 0.1 to 1.8 ⁇ m.
  • the average particle diameter is measured under the following conditions.
  • Measuring instrument Laser scattering particle distribution measuring device LA-950 manufactured by Horiba, Ltd. Measurement method: Start suction to increase the dispersion force of the sample. Thereafter, forced dispersion is performed by supplying compressed air in the range of 0.4 to 0.8 MPa. The state without sample is measured as a blank. When the strength of the feeder is adjusted and the transmittance reaches 70 to 90%, the measurement is started. Measurement conditions: The transmittance is 70 to 90%, the number of repetitions is 30 times, and the particle diameter standard is volume.
  • the average particle size of palladium oxide, ruthenium oxide, and titanium oxide is measured by observing the catalyst layer of the chlorine generating electrode of the present invention.
  • the average particle size of these particles is The average value of the major axis of 20 particles existing in the field of view of the SEM image.
  • the proportion of palladium oxide contained in the catalyst layer is not particularly limited, but from the viewpoint of further improving the long-term durability of the electrode while further improving the chlorine generation efficiency of the chlorine generating electrode of the present invention.
  • the proportion of palladium metal contained in the catalyst layer is preferably 1 mol% or more, more preferably 1 to 90 mol%, more preferably 3 to 3 mol%. More preferably, it is 75 mol%, and particularly preferably 5 to 75 mol%.
  • the ratio of the ruthenium metal contained in the catalyst layer is preferably 1 mol% or more, more preferably 1 to 90 mol%, still more preferably 3 to 70 mol%, Particularly preferred is 3 to 50 mol%.
  • the proportion of titanium metal contained in the catalyst layer is preferably 1 mol% or more, more preferably 5 to 90 mol%, still more preferably 10 to 70 mol%, It is particularly preferably 15 to 60 mol%.
  • the catalyst layer may contain other components in addition to palladium oxide, ruthenium oxide, and titanium oxide.
  • Other components include platinum group metals or platinum group metal oxides, and specific examples include platinum, iridium oxide, and rhodium oxide.
  • transition metal oxides such as manganese oxide, cobalt oxide, and chromium oxide
  • valve metal oxides may include tantalum oxide, zirconium oxide, niobium oxide, and the like.
  • the ratio of the other components is preferably 60 mol% or less, more preferably 5 to 50 mol%, and further preferably 5 to 40 mol% as the ratio of the metal contained in the catalyst layer. preferable.
  • the catalyst layer is measured by an X-ray diffraction method using CuK ⁇ rays.
  • the peak intensity is 500 cps or more, stable chlorine generation efficiency can be suitably maintained.
  • the higher the peak intensity is the higher the crystallinity of palladium oxide is, so that the function as a catalyst can be suitably exhibited.
  • the X-ray diffraction of the catalyst layer is measured under the following conditions.
  • Measuring instrument Rigaku Corporation, Ultimate IV Measurement method: A measurement sample is installed so that X-rays can be irradiated from the measurement device body. After aging by applying current and voltage, X-rays are irradiated for measurement.
  • X-ray source CuK ⁇ ray output setting: 40 kV, 40 mA
  • the thickness of the catalyst layer is not particularly limited, and is appropriately set according to the size of the electrolytic cell in which the chlorine generating electrode is installed.
  • the thickness is about 0.1 to 10 ⁇ m.
  • the catalyst layer can be formed, for example, as follows. First, an application step of applying a solution containing at least a palladium compound, a ruthenium compound, and a titanium compound on a conductive substrate is performed. At this time, the ratio of the palladium compound, the ruthenium compound, and the titanium compound is adjusted to be the ratio of the palladium metal, the ruthenium metal, and the titanium metal in the catalyst layer. You may mix
  • the palladium compound is not particularly limited as long as it becomes palladium oxide in the catalyst layer after the below-described firing step, and examples thereof include palladium oxide, palladium chloride, and palladium nitrate. Among these, palladium oxide and palladium chloride are preferable.
  • the ruthenium compound is not particularly limited as long as it becomes ruthenium oxide in the catalyst layer after the below-described firing step, and examples thereof include ruthenium oxide, ruthenium chloride, ruthenium nitrate and the like. Among these, ruthenium oxide is preferable.
  • the titanium compound is not particularly limited as long as it becomes titanium oxide in the catalyst layer after the firing step described later, and examples thereof include butyl titanate, titanium alcoholate, and titanium trichloride. Of these, butyl titanate and titanium alcoholate are preferable.
  • the liquid used for the solution is not particularly limited, and examples thereof include organic solvents such as n-butanol, propanol, and hexanol.
  • palladium oxide in the catalyst layer, it is preferable to include palladium oxide in the solution.
  • palladium chloride, palladium nitrate, or the like palladium chloride, palladium nitrate, etc. May be converted to palladium oxide.
  • the coating process at least one of palladium chloride and palladium nitrate is used as the palladium compound, and in the baking process described later, the powder is heated at a temperature of 400 to 600 ° C., and the average particle diameter is 5 ⁇ m from palladium chloride, palladium nitrate, etc.
  • the following palladium oxide particles can be produced.
  • a firing step is performed for firing the conductive substrate coated with the solution.
  • a catalyst layer is formed on the surface of the conductive substrate.
  • the solution on the conductive substrate is preferably dried before firing.
  • the aforementioned coating process and baking process may be repeated a plurality of times. By repeating a plurality of times, the thickness of the catalyst layer can be increased.
  • the heating temperature in the firing step is not particularly limited, but is preferably about 400 to 650 ° C, more preferably about 450 to 650 ° C, and further preferably about 450 to 600 ° C.
  • the firing time is preferably about 5 to 60 minutes, more preferably about 5 to 40 minutes, and further preferably about 5 to 30 minutes.
  • the chlorine generating electrode of the present invention comprising a conductive substrate and a catalyst layer provided on the conductive substrate can be suitably produced.
  • the chlorine generating electrode of the present invention can be placed in an electrolytic cell. That is, the electrolytic cell of the present invention includes the above-described chlorine generating electrode.
  • the electrode for generating chlorine serves as an anode and further includes a cathode.
  • the material constituting the cathode is not particularly limited, and examples thereof include stainless steel and titanium.
  • hypochlorite can be suitably produced by electrolyzing a metal chloride aqueous solution using the chlorine generating electrode of the present invention.
  • a metal chloride aqueous solution Preferably salt water (for example, ballast water, seawater etc.), potassium chloride aqueous solution, etc. are mentioned.
  • hypochlorite include sodium hypochlorite and potassium hypochlorite.
  • the chlorine generating electrode of the present invention can be suitably used for electrolysis of salt water having a low concentration of, for example, 1% or less. That is, in the hypochlorite manufacturing method using the electrode for chlorine generation of the present invention, the concentration of metal chloride in the metal chloride aqueous solution is preferably 1% or less.
  • the temperature at the time of electrolysis is not particularly limited, but it is preferable from the viewpoint of high chlorine generation efficiency and long-term durability even when used for electrolysis of low-concentration salt water.
  • About 2 to 35 ° C., more preferably about 5 to 30 ° C. is mentioned.
  • the current density at the time of electrolysis is not particularly limited, but it is preferable from the viewpoint of high chlorine generation efficiency and improved long-term durability even when used for electrolysis of low-concentration salt water. Is about 1 to 20 A / dm 2 , more preferably about 1 to 15 A / dm 2 .
  • the average particle diameter of palladium oxide used as an average particle diameter measurement raw material was measured under the following conditions.
  • Measuring instrument Laser scattering particle distribution measuring device LA-950 manufactured by Horiba, Ltd.
  • Measurement method Start suction to increase the dispersion force of the sample. Thereafter, forced dispersion is performed by supplying compressed air in the range of 0.4 to 0.8 MPa. The state without sample is measured as a blank. When the strength of the feeder is adjusted and the transmittance reaches 70 to 90%, the measurement is started.
  • Measurement conditions The transmittance is 70 to 90%, the number of repetitions is 30 times, and the particle diameter standard is volume.
  • the surface of the catalyst layer is observed with an SEM, and the major axis is measured for 20 particles observed in the field of view, and the average value is obtained.
  • palladium oxide, ruthenium oxide, and titanium oxide differ greatly in particle diameter used as a raw material, and therefore, it is possible to distinguish palladium oxide particles from other particles by SEM images.
  • Measurement of X-ray diffraction The X-ray diffraction of the catalyst layer was measured under the following conditions. Measuring instrument: Rigaku Corporation, Ultimate IV Measurement method: A measurement sample is installed so that X-rays can be irradiated from the measurement device body. After aging by applying current and voltage, X-rays are irradiated for measurement.
  • X-ray source CuK ⁇ ray output setting: 40 kV, 40 mA
  • Example 1 The surface of a conductive substrate (thickness 1 mm) made of a titanium flat plate was sandblasted with # 36 alumina. On the surface of the conductive substrate roughened in this manner, palladium oxide, ruthenium chloride and butyl titanate having a predetermined average particle size as a raw material for the catalyst layer are n-butanol solution (the composition of the catalyst layer is shown in Table 1). (The value (mol%) shown in FIG. 4) was applied, and after drying treatment at 120 ° C. for 10 minutes, baking treatment was performed at 500 ° C. for 10 minutes. This coating-drying-firing process was repeated to produce an anode in which a catalyst layer was provided on the surface of the conductive substrate.
  • the average particle diameter of palladium oxide as a raw material was 0.52 ⁇ m.
  • the anode catalyst layer was measured for X-ray diffraction using CuK ⁇ rays, and the X-ray diffraction peak intensity and the half width at 2 ⁇ 34 ° were obtained. The results are shown in Table 1.
  • the SEM image (5,000 times) of the surface of the catalyst layer of the anode obtained in Example 1 is shown in FIG.
  • Example 2 The surface of a conductive substrate (thickness 1 mm) made of a titanium flat plate was sandblasted with # 36 alumina. On the surface of the conductive substrate roughened in this manner, palladium oxide, ruthenium chloride and butyl titanate having a predetermined average particle size as a raw material for the catalyst layer are n-butanol solution (the composition of the catalyst layer is shown in Table 1). (The value (mol%) shown in FIG. 4) was applied, and after drying treatment at 120 ° C. for 10 minutes, baking treatment was performed at 450 ° C. for 10 minutes. This coating-drying-firing process was repeated to produce an anode in which a catalyst layer was provided on the surface of the conductive substrate.
  • the average particle diameter of palladium oxide as a raw material was 0.17 ⁇ m.
  • the anode catalyst layer was measured for X-ray diffraction using CuK ⁇ rays, and the X-ray diffraction peak intensity and the half width at 2 ⁇ 34 ° were determined. The results are shown in Table 1.
  • An SEM image (5,000 times) of the surface of the catalyst layer of the anode obtained in Example 2 is shown in FIG.
  • FIG. 9 is a graph showing the relationship between 2 ⁇ (°) and peak intensity (cps) obtained by measuring X-ray diffraction for the anode catalyst layer obtained in Example 2.
  • Example 3 The surface of a conductive substrate (thickness 1 mm) made of a titanium flat plate was sandblasted with # 36 alumina. On the surface of the conductive substrate roughened in this manner, palladium oxide, ruthenium chloride and butyl titanate having a predetermined average particle size as a raw material of the catalyst layer are n-butanol solution (the composition of the catalyst layer is shown in Table 1). (The value (mol%) shown in FIG. 4) was applied, and after drying at 120 ° C. for 10 minutes, baking at 550 ° C. for 10 minutes was performed. This coating-drying-firing process was repeated to produce an anode in which a catalyst layer was provided on the surface of the conductive substrate.
  • the average particle diameter of palladium oxide used as a raw material was 1.53 ⁇ m.
  • the anode catalyst layer was measured for X-ray diffraction using CuK ⁇ rays, and the X-ray diffraction peak intensity and the half width at 2 ⁇ 34 ° were obtained. The results are shown in Table 1.
  • the SEM image (5,000 times) of the surface of the catalyst layer of the anode obtained in Example 3 is shown in FIG.
  • FIG. 10 shows a graph of the relationship between 2 ⁇ (°) and peak intensity (cps) obtained by measuring the X-ray diffraction of the anode catalyst layer obtained in Example 3.
  • Example 4 An anode was produced in the same manner as in Example 1 except that cobalt nitrate was added as a raw material for the catalyst layer so as to have the composition shown in Table 1.
  • the anode catalyst layer was measured for X-ray diffraction using CuK ⁇ rays, and the X-ray diffraction peak intensity and the half width at 2 ⁇ 34 ° were obtained. The results are shown in Table 1.
  • the SEM image (10,000 times) of the surface of the catalyst layer of the anode obtained in Example 4 is shown in FIG.
  • FIG. 11 shows a graph of the relationship between 2 ⁇ (°) and peak intensity (cps) obtained by measuring the X-ray diffraction of the anode catalyst layer obtained in Example 4.
  • Example 5 The surface of a conductive substrate (thickness 1 mm) made of a titanium flat plate was sandblasted with # 36 alumina. An n-butanol solution containing a predetermined amount of palladium chloride, ruthenium chloride and butyl titanate as catalyst raw materials on the surface of the conductive substrate roughened in this manner (values of the composition of the catalyst layer shown in Table 1) Mol%)) and a drying treatment at 120 ° C. for 10 minutes, followed by a baking treatment at 500 ° C. for 10 minutes. This coating-drying-firing process was repeated to produce an anode in which a catalyst layer was provided on the surface of the conductive substrate.
  • the anode anode catalyst layer was measured for X-ray diffraction. However, since the catalyst layer did not contain palladium, an X-ray diffraction peak at 2 ⁇ 34 ° was naturally not observed.
  • An SEM image (5,000 times) of the surface of the catalyst layer of the anode obtained in Comparative Example 2 is shown in FIG.
  • Example 3 An anode was produced in the same manner as in Example 1 except that the average particle diameter of palladium oxide as a raw material was 5.14 ⁇ m.
  • the anode catalyst layer was measured for X-ray diffraction using CuK ⁇ rays, and the X-ray diffraction peak intensity and the half width at 2 ⁇ 34 ° were obtained. The results are shown in Table 1.
  • the SEM image (5,000 times) of the surface of the catalyst layer of the anode obtained in Comparative Example 3 is shown in FIG.
  • the average particle diameter of palladium oxide of Example 5 is a value measured by observing the surface of the catalyst layer with an SEM.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Catalysts (AREA)

Abstract

低濃度の塩水の電気分解に使用される場合であっても、塩素発生効率が高く、かつ、長期耐久性に優れる塩素発生用電極を提供する。 導電性基体と、前記導電性基体の上に設けられた触媒層とを備える、塩素発生用電極であって、 前記触媒層は、少なくとも、酸化パラジウム、酸化ルテニウム、及び酸化チタンを含んでおり、 前記酸化パラジウムは、平均粒子径が5μm以下の粒子である、塩素発生用電極。

Description

塩素発生用電極およびその製造方法
 本発明は、塩素発生用電極、特に海水電解などの希薄塩水を用いてオンサイトの次亜塩素酸ナトリウムの生成に用いられる電極およびその製造方法に関する。
 従来、塩水の電気分解による次亜塩素酸塩の生成法が知られており、電極として混合金属酸化物の塗膜を使用することは、当業界において広く知られている。
 例えば、特許文献1では、陽極として、チタンまたはチタン合金上に、白金3~42重量%、酸化パラジウム3~34重量%、二酸化ルテニウム42~94重量%の組成を有する白金-酸化パラジウム-二酸化ルテニウムの白金族金属三元混合物と、前記混合物に対して20~40重量%の二酸化チタニウムとからなる混合物の被覆を施したものが開示されている。
 また、特許文献2において、特に塩素や次亜塩素酸塩を生産するための電極は、白金族金属酸化物と弁金属酸化物との混合酸化物の被膜であり、ルテニウム、パラジウムおよびイリジウムの白金族金属酸化物とチタンの酸化物からなり、白金族金属酸化物の弁金属酸化物に対するモル比は90:10~40:60であり、ルテニウムのイリジウムに対するモル比は90:10~50:50であり、酸化パラジウムの酸化ルテニウムと酸化イリジウムに対するモル比は5:95~40:60であることが開示されている。
 また、特許文献3には、次亜塩素酸塩製造用の陽極として、10~45重量%の酸化パラジウムと、15~45重量%の酸化ルテニウムと、10~40重量%の二酸化チタンと、10~20重量%の白金とともに、さらに2~10重量%のコバルト、ランタン、セリウムおよびイットリウムから選ばれる少なくとも1種の金属の酸化物を含有する被膜を有するものが提案されている。
特公昭59-24192号公報 特表第2008-528804号公報 特許第3319880号公報
 特許文献1~3に記載されているような、白金族酸化物を有する電極は塩化物イオンの酸化効率が高く、90%を超えるような高い塩素発生効率で高濃度次亜塩素酸イオンが生成可能であり、従来の陽極より低い電力原単位で高濃度の次亜塩素酸塩を得ることが可能ではある。
 しかしながら、これは、2.5~32%という高濃度の塩水(塩化ナトリウム水溶液)を電解液として用いることを前提としており、それよりも希薄な塩水、例えばバラスト水などに使用されうる1%以下の塩水を電解液とする場合には、塩素発生効率が著しく低下するという問題がある。
 さらに、このような低濃度の塩水を電解液とする場合には、塩水の電気分解に高電圧が必要となるため、電極にかかる負担が大きく、電極の寿命が短いという問題もある。
 以上のような事情を鑑み、本発明は、低濃度の塩水の電気分解に使用される場合であっても、塩素発生効率が高く、かつ、長期耐久性に優れる塩素発生用電極を提供することを主な目的とする。さらに、本発明は、当該塩素発生用電極の製造方法、当該塩素発生用電極を用いた次亜塩素酸塩の製造方法、及び当該電極を備える電解槽を提供することも目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、導電性基体と、当該導電性基体の上に設けられた触媒層とを備える塩素発生用電極であって、触媒層が、少なくとも、酸化パラジウム、酸化ルテニウム、及び酸化チタンを含んでおり、酸化パラジウムが、平均粒子径が5μm以下の粒子である塩素発生用電極は、低濃度の塩水の電気分解に使用される場合であっても、塩素発生効率が高く、かつ、長期耐久性に優れることを見出した。本発明は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 導電性基体と、前記導電性基体の上に設けられた触媒層とを備える、塩素発生用電極であって、
 前記触媒層は、少なくとも、酸化パラジウム、酸化ルテニウム、及び酸化チタンを含んでおり、
 前記酸化パラジウムは、平均粒子径が5μm以下の粒子である、塩素発生用電極。
項2. 前記触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク強度が、500cps以上である、項1に記載の塩素発生用電極。
項3. 前記触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク半値幅が、1.5deg以下である、項1または2に記載の塩素発生用電極。
項4. 前記触媒層に含まれる金属元素を100モル%とした場合に、前記触媒層に含まれるパラジウム金属の割合が、1モル%以上である、項1~3のいずれか1項に記載の塩素発生用電極。
項5. 濃度が1%以下の塩水の電気分解に用いられる、項1~4のいずれか1項に記載の塩素発生用電極。
項6. 導電性基体と、前記導電性基体の上に設けられた触媒層とを備える、塩素発生用電極の製造方法であって、
 少なくとも、パラジウム化合物、ルテニウム化合物、及びチタン化合物を含む溶液を導電性基体上に塗布する塗布工程と、
 前記溶液が塗布された前記導電性基体を焼成する焼成工程と、
を備えており、
 前記パラジウム化合物として、平均粒子径が5μm以下の酸化パラジウム粒子を用いる、塩素発生用電極の製造方法。
項7. 導電性基体と、前記導電性基体の上に設けられた触媒層とを備える、塩素発生用電極の製造方法であって、
 少なくとも、パラジウム化合物、ルテニウム化合物、及びチタン化合物を含む溶液を導電性基体上に塗布する塗布工程と、
 前記溶液が塗布された前記導電性基体を焼成する焼成工程と、
を備えており、
 前記パラジウム化合物として、塩化パラジウム及び硝酸パラジウムの少なくとも一方を用い、
 前記焼成工程において、400~600℃の温度で加熱して、前記塩化パラジウムから平均粒子径が5μm以下の酸化パラジウム粒子を生成させる、塩素発生用電極の製造方法。
項8. 前記焼成工程によって形成される触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク強度が、500cps以上である、項6または7に記載の塩素発生用電極の製造方法。
項9. 前記焼成工程によって形成される触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク半値幅が、1.5deg以下である、項6~8のいずれか1項に記載の塩素発生用電極の製造方法。
項10. 項1~5のいずれか1項に記載の塩素発生用電極を備える、電解槽。
項11. 項1~5のいずれか1項に記載の塩素発生用電極を用いて、金属塩化物水溶液を電気分解する工程を備える、次亜塩素酸塩の製造方法。
 本発明によれば、低濃度の塩水の電気分解に使用される場合であっても、塩素発生効率が高く、かつ、長期耐久性に優れる塩素発生用電極を提供することができる。さらに、本発明によれば、当該塩素発生用電極の製造方法、当該塩素発生用電極を用いた次亜塩素酸塩の製造方法、及び当該電極を備える電解槽を提供することもできる。
実施例1で得られた陽極の触媒層表面のSEM像である(5千倍)。 実施例2で得られた陽極の触媒層表面のSEM像である(5千倍)。 実施例3で得られた陽極の触媒層表面のSEM像である(5千倍)。 実施例4で得られた陽極の触媒層表面のSEM像である(1万倍)。 実施例5で得られた陽極の触媒層表面のSEM像である(1万倍)。 比較例1で得られた陽極の触媒層表面のSEM像である(5千倍)。 比較例2で得られた陽極の触媒層表面のSEM像である(5千倍)。 比較例3で得られた陽極の触媒層表面のSEM像である(5千倍)。 実施例2で得られた陽極の触媒層について、X線回折を測定して得られた2θ(°)とピーク強度(cps)との関係を示すグラフである。 実施例3で得られた陽極の触媒層について、X線回折を測定して得られた2θ(°)とピーク強度(cps)との関係を示すグラフである。 実施例4で得られた陽極の触媒層について、X線回折を測定して得られた2θ(°)とピーク強度(cps)との関係を示すグラフである。 塩水濃度0.1%における温度と塩素発生効率との関係を示すグラフである。 塩水濃度0.15%における温度と塩素発生効率との関係を示すグラフである。 塩水濃度0.5%における温度と塩素発生効率との関係を示すグラフである。 実施例4及び比較例1の陽極を用いた場合の電気分解時間と塩素発生効率の経時変化を示すグラフである。
 本発明の塩素発生用電極は、導電性基体と、当該導電性基体の上に設けられた触媒層とを備える。また、本発明の塩素発生用電極において、触媒層は、少なくとも、酸化パラジウム、酸化ルテニウム、及び酸化チタンを含んでおり、かつ、酸化パラジウムが、平均粒子径が5μm以下の粒子であることを特徴とする。本発明の塩素発生用電極は、このような特定の触媒層を備えていることにより、低濃度の塩水(例えば、濃度が1%以下の塩水)の電気分解に使用される(すなわち、電解液が、低濃度の塩水である)場合であっても、塩素発生効率が高く、かつ、長期耐久性に優れた効果を発揮することができる。以下、本発明の塩素発生用電極について、詳述する。
 本発明の塩素発生用電極は、導電性基体と触媒層とを備えている。導電性基体の材質としては、特に制限されず、公知の塩素発生用電極に用いられているものが挙げられる。導電性基体の材質の具体例としては、チタン、タンタル、ジルコニウム、ニオブ等のバルブ金属や、バルブ金属2種以上の合金を挙げることができる。また、導電性基体の形状としては、特に制限されず、例えば、板状、円板状、棒状、円筒状、エキスパンドメタル、パンチングメタルなどが挙げられる。
 導電性基体の表面には、触媒層に対するアンカー効果を発揮することなどを目的として、必要に応じて、サンドブラスト処理(粗面化処理)などが施されていてもよい。サンドブラスト処理は、砂状の粒子を含む高圧ガスを材料の表面に吹き付ける表面処理方法である。サンドブラスト処理は、公知の方法で行うことができる。例えば、使用する研磨剤の種類、処理時間などを調整することにより、導電性基体の表面粗さを制御することができる。砂状の粒子の材質としては、例えば、アルミナ、ガラス、鉄等が挙げられる。さらに、サンドブラスト処理の後に、必要に応じて、脱脂処理などを行ってもよい。
 サンドブラスト処理に用いる粒子サイズ等にもよるが、粗面化処理が施された導電性基体表面の表面粗さRa(算術平均粗さ)としては、例えば、0.5~10μm程度の範囲が挙げられる。サンドブラスト処理に用いる粒子サイズを変更することにより、表面粗さRaをこの範囲外に設定することもできる。
 また、導電性基体の表面には、酸などによる表面処理が施されていてもよい。酸としては、特に制限されないが、例えば、硫酸、硝酸、塩酸、シュウ酸、フッ酸等を挙げることができる。
 導電性基体の厚みとしては、特に制限されず、塩素発生用電極が設置される電解槽の大きさなどに応じて適宜設定されるが、例えば、0.5~10mm程度が挙げられる。
 本発明の塩素発生用電極において、導電性基体の上には、触媒層が設けられている。触媒層は、少なくとも、酸化パラジウム、酸化ルテニウム、及び酸化チタンを含んでいる。より具体的には、導電性基体の表面には、当該触媒層によって構成された被膜が形成されている。
 本発明の塩素発生用電極においては、触媒層に含まれる酸化パラジウム粒子の平均粒子径が、5μm以下である。前述の通り、従来の塩素発生用電極では、例えば低濃度の塩水を電解液とする場合には、塩素発生効率が大きく低下するという問題があり、さらに、低濃度の塩水を電解液とする場合には、塩水の電気分解に高電圧が必要となるため、電極にかかる負担が大きく、電極の寿命が短いという問題がある。これに対して、本発明においては、触媒層が酸化パラジウム、酸化ルテニウム、及び酸化チタンを含んでおり、かつ、酸化パラジウムの平均粒子径が5μm以下に設定されていることにより、低濃度の塩水の電気分解に使用される場合であっても、塩素発生効率が高く、かつ、長期耐久性に優れた効果を発揮することができる。
 この理由としては、例えば次のように考えることができる。すなわち、触媒層に同じモル比で分散した酸化パラジウムの表面積で比較すると、酸化パラジウム平均粒子径が小さいほどその表面積は大きくなり、活性点が増える。このため、触媒層に含まれる酸化パラジウムの平均粒子径が5μm以下であることにより、触媒としての機能が高められていると考えられる。本発明の塩素発生用電極は、特に、0.1~1%程度の低濃度の金属塩化物水溶液(特に、塩水)の電気分解に用いられる場合に、高い塩素発生効率を発揮することができる。
 酸化パラジウムの平均粒子径としては、5μm以下であればよいが、本発明の塩素発生用電極の塩素発生効率をさらに高めつつ、電極の長期耐久性をさらに高める観点からは、好ましくは0.01~5μm程度、より好ましくは0.01~2.5μm程度、さらに好ましくは0.1~1.8μm程度が挙げられる。
 なお、本発明の塩素発生用電極において、酸化パラジウム、酸化ルテニウム、及び酸化チタンをそれぞれ原料として用いる場合、これらの平均粒子径の測定は、次の条件で測定した値である。
(平均粒子径の測定)
測定機器:(株)堀場製作所製のレーザー散乱粒子分布測定装置 LA-950
測定方法:試料の分散力を高めるために吸引を開始する。その後、圧縮空気を0.4~0.8MPaの範囲で供給して強制分散を実施する。サンプルを入れていない状態をブランクとして測定する。フィーダの強度を調整して、透過率が70~90%になれば、測定を開始する。
測定条件:透過率を70~90%、反復回数を30回、粒子径基準を体積とする。
 一方、本発明の塩素発生用電極の触媒層を観察して、酸化パラジウム、酸化ルテニウム、及び酸化チタンの平均粒子径を測定する場合には、これらの粒子の平均粒子径は、それぞれ、触媒層のSEM像の視野内に存在する粒子20個の長径の平均値とする。
 本発明において、触媒層に含まれる酸化パラジウムの割合としては、特に制限されないが、本発明の塩素発生用電極の塩素発生効率をさらに高めつつ、電極の長期耐久性をさらに高める観点からは、触媒層に含まれる金属元素を100モル%とした場合に、触媒層に含まれるパラジウム金属の割合が、1モル%以上であることが好ましく、1~90モル%であることがより好ましく、3~75モル%であることがさらに好ましく、5~75モル%であることが特に好ましい。
 同様の観点から、触媒層に含まれるルテニウム金属の割合が、1モル%以上であることが好ましく、1~90モル%であることがより好ましく、3~70モル%であることがさらに好ましく、3~50モル%であることが特に好ましい。同様の観点から、触媒層に含まれるチタン金属の割合が、1モル%以上であることが好ましく、5~90モル%であることがより好ましく、10~70モル%であることがさらに好ましく、15~60モル%であることが特に好ましい。
 本発明において、触媒層には、酸化パラジウム、酸化ルテニウム、及び酸化チタンに加えて、他の成分が含まれていてもよい。他の成分としては、白金族金属または白金族金属酸化物が挙げられ、具体例としては、白金、酸化イリジウム、酸化ロジウムが挙げられる。また、酸化マンガン、酸化コバルト、酸化クロム等の遷移金属酸化物、バルブ金属酸化物として酸化タンタル、酸化ジルコニウム、酸化ニオブ等が含まれていてもよい。他の成分の割合としては、触媒層に含まれる金属の割合として、60モル%以下であることが好ましく、5~50モル%であることがより好ましく、5~40モル%であることがさらに好ましい。
 さらに、本発明の塩素発生用電極の塩素発生効率をさらに高めつつ、電極の長期耐久性をさらに高める観点からは、本発明において、触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク強度が、500cps以上であることが好ましく、500~4000cpsであることがより好ましく、1000~4000cpsであることがさらに好ましく、1300~4000cpsであることが特に好ましい。当該ピーク強度が500cps以上であると、安定な塩素発生効率を好適に維持することができる。また、当該ピーク強度が高いほど、酸化パラジウムの結晶性が高く、触媒としての機能を好適に発揮することができる。
 また、同様の観点から、触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク半値幅が、1.5deg以下であることが好ましく、0.1~1.0degであることがより好ましく、0.1~0.9degであることがさらに好ましく、0.1~0.8degであることが特に好ましい。当該ピーク幅が1.5deg以下であると、安定な塩素発生効率を好適に維持することができる。また、当該ピーク幅が狭いほど、酸化パラジウムの結晶性が高く、触媒としての機能を好適に発揮することができる。
 本発明において、触媒層のX線回折の測定は、以下の条件で行う。
(X線回折の測定)
測定機器:(株)リガク製、Ultima IV
測定方法:測定サンプルを設置して、測定機器本体からX線が照射可能な状態にする。電流、電圧を印加してエージングを実施後、X線を照射して測定する。
X線源:CuKα線
出力設定:40kV、40mA
測定時光学条件:
発散スリット=0.2mm
散乱スリット=2°
受光スリット=0.15mm
回折ピークの位置:2θ≒34°
測定範囲:5°~90°
スキャン速度:20°/min
試料の調製:35mm×50mm×1mmに電極を切断する。
 触媒層の厚みとしては、特に制限されず、塩素発生用電極が設置される電解槽の大きさなどに応じて適宜設定されるが、例えば、0.1~10μm程度が挙げられる。
 本発明において、触媒層は、例えば、次のようにして形成することができる。まず、少なくとも、パラジウム化合物、ルテニウム化合物、及びチタン化合物を含む溶液を導電性基体上に塗布する塗布工程を行う。このとき、パラジウム化合物、ルテニウム化合物、及びチタン化合物の割合は、前述の触媒層におけるパラジウム金属、ルテニウム金属、及びチタン金属の割合となるように調整する。当該溶液には、前述の他の成分を配合してもよい。
 パラジウム化合物としては、後述の焼成工程後に、触媒層内において酸化パラジウムとなっていれば特に制限されず、例えば、酸化パラジウム、塩化パラジウム、硝酸パラジウムなどが挙げられる。これらの中でも、酸化パラジウム、塩化パラジウムが好ましい。また、ルテニウム化合物としては、後述の焼成工程後に、触媒層内において酸化ルテニウムとなっていれば特に制限されず、例えば、酸化ルテニウム、塩化ルテニウム、硝酸ルテニウムなどが挙げられる。これらの中でも、酸化ルテニウムが好ましい。チタン化合物としては、後述の焼成工程後に、触媒層内において酸化チタンとなっていれば特に制限されず、例えば、ブチルチタネート、チタンアルコラート、三塩化チタンなどが挙げられる。これらの中でも、ブチルチタネート、チタンアルコラートが好ましい。また、溶液に用いる液体としては、特に制限されず、n-ブタノール、プロパノール、ヘキサノールなどの有機溶媒などが挙げられる。
 例えば、触媒層中に酸化パラジウムを含ませるためには、前記溶液に酸化パラジウムを含むことが好ましいが、塩化パラジウム、硝酸パラジウムなどを用いる場合にも、後述の焼成工程で塩化パラジウム、硝酸パラジウムなどを酸化パラジウムに変換すればよい。例えば、塗布工程において、パラジウム化合物として、塩化パラジウム及び硝酸パラジウムの少なくとも一方を用い、後述の焼成工程において、400~600℃の温度で加熱して、塩化パラジウム、硝酸パラジウムなどから平均粒子径が5μm以下の酸化パラジウム粒子を生成させることができる。
 次に、溶液が塗布された導電性基体を焼成する焼成工程を行う。これにより、導電性基体の表面に触媒層が形成される。なお、焼成を行う前に、導電性基体上の溶液を乾燥させることが好ましい。
 前述の塗布工程と焼成工程を複数回繰り返し行ってもよい。複数回繰り返すことにより、触媒層の厚みを厚くすることができる。
 焼成工程における加熱温度としては、特に制限されないが、好ましくは400~650℃程度、より好ましくは450~650℃程度、さらに好ましくは450~600℃程度が挙げられる。また、焼成時間としては、好ましくは5~60分間程度、より好ましくは5~40分間程度、さらに好ましくは5~30分間程度が挙げられる。
 以上の塗布工程及び焼成工程を行うことにより、導電性基体と、前記導電性基体の上に設けられた触媒層とを備える、本発明の塩素発生用電極を好適に製造することができる。
 本発明の塩素発生用電極の製造方法に用いることができる酸化パラジウム等の詳細については、前述の通りである。また、焼成工程によって形成される触媒層について、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク強度及びピーク幅も、前述の通りである。
 本発明の塩素発生用電極は、電解槽に配置することができる。すなわち、本発明の電解槽は、前述の塩素発生用電極を備えている。本発明の電解槽においては、塩素発生用電極が陽極となり、さらに陰極を備えている。陰極を構成する材料としては、特に制限されず、例えば、ステンレス鋼、チタンなどが挙げられる。
 また、本発明の塩素発生用電極を用いて、金属塩化物水溶液を電気分解することにより、次亜塩素酸塩を好適に製造することができる。なお、金属塩化物水溶液としては、好ましくは塩水(例えば、バラスト水、海水など)、塩化カリウム水溶液などが挙げられる。次亜塩素酸塩としては、次亜塩素酸ナトリウム、次亜塩素酸カリウムなどが挙げられる。
 前述の通り、本発明の塩素発生用電極は、例えば濃度が1%以下という低濃度の塩水の電気分解に好適に用いることができる。すなわち、本発明の塩素発生用電極を用いた次亜塩素酸塩の製造方法においては、金属塩化物水溶液中の金属塩化物の濃度が1%以下であることが好ましい。
 電気分解時の温度としては、特に制限されないが、低濃度の塩水の電気分解に使用される場合であっても、塩素発生効率が高く、かつ、長期耐久性を向上させる観点からは、好ましくは2~35℃程度、より好ましくは5~30℃程度が挙げられる。
 電気分解時の電流密度としては、特に制限されないが、低濃度の塩水の電気分解に使用される場合であっても、塩素発生効率が高く、かつ、長期耐久性を向上させる観点からは、好ましくは1~20A/dm2程度、より好ましくは1~15A/dm2程度が挙げられる。
 以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。以下の実施例及び比較例において、平均粒子径の測定及びX線回折測定は、以下の条件で行った。
平均粒子径測定
 原料として用いた酸化パラジウムの平均粒子径は、以下の条件で測定した。
測定機器:(株)堀場製作所製のレーザー散乱粒子分布測定装置 LA-950
測定方法:試料の分散力を高めるために吸引を開始する。その後、圧縮空気を0.4~0.8MPaの範囲で供給して強制分散を実施する。サンプルを入れていない状態をブランクとして測定する。フィーダの強度を調整して、透過率が70~90%になれば、測定を開始する。
測定条件:透過率を70~90%、反復回数を30回、粒子径基準を体積とする。
 また、触媒層に含まれる酸化パラジウムの平均粒子径については、触媒層の表面をSEMで観察し、視野内に観察される粒子20個について長径を測定し、その平均値とする。なお、酸化パラジウムと、酸化ルテニウム及び酸化チタンとは、原料として用いた粒子径が大きく異なっていることから、SEM像によって、酸化パラジウム粒子と他の粒子を見分けることが可能である。
X線回折の測定
 触媒層のX線回折の測定は、以下の条件で行った。
測定機器:(株)リガク製、Ultima IV
測定方法:測定サンプルを設置して、測定機器本体からX線が照射可能な状態にする。電流、電圧を印加してエージングを実施後、X線を照射して測定する。
X線源:CuKα線
出力設定:40kV、40mA
測定時光学条件:
発散スリット=0.2mm
散乱スリット=2°
受光スリット=0.15mm
回折ピークの位置:2θ≒34°
測定範囲:5°~90°
スキャン速度:20°/min
試料の調製:35mm×50mm×1mmに電極を切断する。
[実施例1]
 チタニウム製平板からなる導電性基体(厚み1mm)の表面を#36のアルミナでサンドブラスト処理した。このようにして粗面化された導電性基体の表面に、触媒層の原料として、所定の平均粒子径の酸化パラジウム、塩化ルテニウム、及びブチルチタネートをn-ブタノール溶液(触媒層の組成が表1に示される値(モル%)となる)を塗布し、120℃で10分間の乾燥処理を行った後、500℃で10分間の焼成処理を行った。この塗布-乾燥-焼成のプロセスを繰り返して、導電性基体の表面に触媒層が設けられた陽極を作製した。原料とした酸化パラジウムの平均粒子径は、0.52μmであった。また、陽極の触媒層について、CuKα線を用いたX線回折の測定を行い、2θ≒34°におけるX線回折ピーク強度と半値幅を求めた。結果を表1に示す。実施例1で得られた陽極の触媒層表面のSEM像(5千倍)を図1に示す。
[実施例2]
 チタニウム製平板からなる導電性基体(厚み1mm)の表面を#36のアルミナでサンドブラスト処理した。このようにして粗面化された導電性基体の表面に、触媒層の原料として、所定の平均粒子径の酸化パラジウム、塩化ルテニウム、及びブチルチタネートをn-ブタノール溶液(触媒層の組成が表1に示される値(モル%)となる)を塗布し、120℃で10分間の乾燥処理を行った後、450℃で10分間の焼成処理を行った。この塗布-乾燥-焼成のプロセスを繰り返して、導電性基体の表面に触媒層が設けられた陽極を作製した。原料とした酸化パラジウムの平均粒子径は、0.17μmであった。また、陽極の触媒層について、CuKα線を用いたX線回折の測定を行い、2θ≒34°におけるX線回折ピーク強度と半値幅を求めた。結果を表1に示す。実施例2で得られた陽極の触媒層表面のSEM像(5千倍)を図2に示す。また、実施例2で得られた陽極の触媒層について、X線回折を測定して得られた2θ(°)とピーク強度(cps)との関係のグラフを図9に示す。
[実施例3]
 チタニウム製平板からなる導電性基体(厚み1mm)の表面を#36のアルミナでサンドブラスト処理した。このようにして粗面化された導電性基体の表面に、触媒層の原料として、所定の平均粒子径の酸化パラジウム、塩化ルテニウム、及びブチルチタネートをn-ブタノール溶液(触媒層の組成が表1に示される値(モル%)となる)を塗布し、120℃で10分間の乾燥処理を行った後、550℃で10分間の焼成処理を行った。この塗布-乾燥-焼成のプロセスを繰り返して、導電性基体の表面に触媒層が設けられた陽極を作製した。原料とした酸化パラジウムの平均粒子径は、1.53μmであった。また、陽極の触媒層について、CuKα線を用いたX線回折の測定を行い、2θ≒34°におけるX線回折ピーク強度と半値幅を求めた。結果を表1に示す。実施例3で得られた陽極の触媒層表面のSEM像(5千倍)を図3に示す。また、実施例3で得られた陽極の触媒層について、X線回折を測定して得られた2θ(°)とピーク強度(cps)との関係のグラフを図10に示す。
[実施例4]
 触媒層の原料として、表1に記載の組成となるようにして、硝酸コバルトを加えたこと以外は、実施例1と同様にして陽極を作製した。また、陽極の触媒層について、CuKα線を用いたX線回折の測定を行い、2θ≒34°におけるX線回折ピーク強度と半値幅を求めた。結果を表1に示す。実施例4で得られた陽極の触媒層表面のSEM像(1万倍)を図4に示す。また、実施例4で得られた陽極の触媒層について、X線回折を測定して得られた2θ(°)とピーク強度(cps)との関係のグラフを図11に示す。
[実施例5]
 チタニウム製平板からなる導電性基体(厚み1mm)の表面を#36のアルミナでサンドブラスト処理した。このようにして粗面化された導電性基体の表面に、触媒原料として、塩化パラジウム、塩化ルテニウム、ブチルチタネートを所定量含む、n-ブタノール溶液(触媒層の組成が表1に示される値(モル%)となる)を塗布し、120℃で10分間の乾燥処理を行った後、500℃で10分間の焼成処理を行った。この塗布-乾燥-焼成のプロセスを繰り返して、導電性基体の表面に触媒層が設けられた陽極を作製した。得られた陽極の触媒層表面をSEMで観察したところ、0.4~0.5μm程度の酸化パラジウムの粒子が観察され、上記の方法で任意の20個について長径を測定し、平均粒子径を算出したところ、0.15μmであった。また、陽極の触媒層について、CuKα線を用いたX線回折の測定を行い、2θ≒34°におけるX線回折ピーク強度と半値幅を求めた。結果を表1に示す。実施例5で得られた陽極の触媒層表面のSEM像(1万倍)を図5に示す。
[比較例1]
 チタニウム製平板からなる導電性基体(厚み1mm)の表面を#36のアルミナでサンドブラスト処理した。このようにして粗面化された導電性基体の表面に、触媒原料として、塩化パラジウム、塩化ルテニウム、及びブチルチタネートを所定量含む、n-ブタノール溶液を塗布(触媒層の組成が表1に示される値(モル%)となる)し、120℃で10分間の乾燥処理を行った後、400℃で10分間の焼成処理を行った。この塗布-乾燥-焼成のプロセスを繰り返して、導電性基体の表面に触媒層が設けられた陽極を作製した。得られた陽極の触媒層表面をSEMで観察したところ、酸化パラジウムの粒子は観察されなかった。また、陽極の触媒層について、CuKα線を用いたX線回折の測定を行い、2θ≒34°におけるX線回折ピーク強度と半値幅を求めた。結果を表1に示す。比較例1で得られた陽極の触媒層表面のSEM像(5千倍)を図6に示す。
[比較例2]
 チタニウム製平板からなる導電性基体(厚み1mm)の表面を#36のアルミナでサンドブラスト処理した。このようにして粗面化された導電性基体の表面に、触媒原料として、塩化ルテニウム及びブチルチタネートを所定量含む、n-ブタノール溶液を塗布(触媒層の組成が表1に示される値(モル%)となる)し、120℃で10分間の乾燥処理を行った後、500℃で10分間の焼成処理を行った。この塗布-乾燥-焼成のプロセスを繰り返して、導電性基体の表面に触媒層が設けられた陽極を作製した。得られた陽極の触媒層について、X線回折の測定を行ったが、触媒層がパラジウムを含んでいないため、当然ながら2θ≒34°におけるX線回折ピークは見られなかった。比較例2で得られた陽極の触媒層表面のSEM像(5千倍)を図7に示す。
[比較例3]
 原料とした酸化パラジウムの平均粒子径が、5.14μmであったこと以外は、実施例1と同様にして、陽極を作製した。また、陽極の触媒層について、CuKα線を用いたX線回折の測定を行い、2θ≒34°におけるX線回折ピーク強度と半値幅を求めた。結果を表1に示す。比較例3で得られた陽極の触媒層表面のSEM像(5千倍)を図8に示す。
<0.1%塩水からの塩素発生効率の測定>
 それぞれ、実施例1~5及び比較例1~3で得られた陽極と、陰極としてステンレス鋼を使用し、電流密度3A/dm2、電解温度17℃で、0.1%塩水(塩化ナトリウム水溶液)を電気分解し、有効塩素濃度から塩素発生効率(1100時間経過後)を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
*表1において、実施例5の酸化パラジウムの平均粒子径は、触媒層の表面をSEMで観察して測定した値である。
<塩水濃度と塩素発生効率の関係の測定>
 実施例4で得られた陽極と、陰極としてステンレス鋼を使用し、各塩水濃度(0.1%、0.15%または0.5%)の塩水を電気分解し、有効塩素濃度から塩素発生効率を求めた。このとき、図12~14のグラフに示されるように、それぞれの塩水濃度において、電流密度を4.2A/dm2とした場合について、塩素発生効率(1100時間経過後)を求めた。温度と塩素発生効率との関係を示すグラフを図12~14に示す。なお、図12に示されるグラフから明らかなとおり、塩水濃度0.1%の場合、電解温度が10℃でも、塩素発生効率は50%以上であった。図13に示されるグラフから明らかなとおり、塩水濃度0.15%の場合、電解温度が5℃でも、塩素発生効率は50%以上であった。図14に示されるグラフから明らかなとおり、塩水濃度0.5%の場合、電解温度が2℃でも、塩素発生効率は70%以上であった。
<電気分解時間と塩素発生効率の経時変化>
 実施例4及び比較例1で得られた陽極と、陰極としてステンレス鋼を使用し、電流密度3A/dm2、電解温度2℃で、0.1%塩水(塩化ナトリウム水溶液)を電気分解し、有効塩素濃度から塩素発生効率を求めた。この電気分解を継続して行い、電気分解時間と塩素発生効率の経時変化を測定した。得られたグラフを図15に示す。図15に示されるグラフから明らかなとおり、実施例4の陽極を用いた場合、電気分解時間が4500時間を超えても、塩素発生効率があまり低下していなかった(電気分解0時間で塩素発生効率が46%、電気分解4573時間で塩素発生効率は42%であった)。一方、比較例1の陽極を用いた場合、初期の塩素発生効率は高い(電気分解0時間で塩素発生効率は46%)ものの、電気分化時間が1000時間を超えた際には、塩素発生効率がかなり低下した(1176時間で塩素発生効率は39%)。

Claims (11)

  1.  導電性基体と、前記導電性基体の上に設けられた触媒層とを備える、塩素発生用電極であって、
     前記触媒層は、少なくとも、酸化パラジウム、酸化ルテニウム、及び酸化チタンを含んでおり、
     前記酸化パラジウムは、平均粒子径が5μm以下の粒子である、塩素発生用電極。
  2.  前記触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク強度が、500cps以上である、請求項1に記載の塩素発生用電極。
  3.  前記触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク半値幅が、1.5deg以下である、請求項1または2に記載の塩素発生用電極。
  4.  前記触媒層に含まれる金属元素を100モル%とした場合に、前記触媒層に含まれるパラジウム金属の割合が、1モル%以上である、請求項1~3のいずれか1項に記載の塩素発生用電極。
  5.  濃度が1%以下の塩水の電気分解に用いられる、請求項1~4のいずれか1項に記載の塩素発生用電極。
  6.  導電性基体と、前記導電性基体の上に設けられた触媒層とを備える、塩素発生用電極の製造方法であって、
     少なくとも、パラジウム化合物、ルテニウム化合物、及びチタン化合物を含む溶液を導電性基体上に塗布する塗布工程と、
     前記溶液が塗布された前記導電性基体を焼成する焼成工程と、
    を備えており、
     前記パラジウム化合物として、平均粒子径が5μm以下の酸化パラジウム粒子を用いる、塩素発生用電極の製造方法。
  7.  導電性基体と、前記導電性基体の上に設けられた触媒層とを備える、塩素発生用電極の製造方法であって、
     少なくとも、パラジウム化合物、ルテニウム化合物、及びチタン化合物を含む溶液を導電性基体上に塗布する塗布工程と、
     前記溶液が塗布された前記導電性基体を焼成する焼成工程と、
    を備えており、
     前記パラジウム化合物として、塩化パラジウム及び硝酸パラジウムの少なくとも一方を用い、
     前記焼成工程において、400~600℃の温度で加熱して、前記塩化パラジウムから平均粒子径が5μm以下の酸化パラジウム粒子を生成させる、塩素発生用電極の製造方法。
  8.  前記焼成工程によって形成される触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク強度が、500cps以上である、請求項6または7に記載の塩素発生用電極の製造方法。
  9.  前記焼成工程によって形成される触媒層は、CuKα線を用いたX線回折法によって測定される、酸化パラジウムの回折ピーク2θ=33°~35°の範囲におけるX線回折ピーク半値幅が、1.5deg以下である、請求項6~8のいずれか1項に記載の塩素発生用電極の製造方法。
  10.  請求項1~5のいずれか1項に記載の塩素発生用電極を備える、電解槽。
  11.  請求項1~5のいずれか1項に記載の塩素発生用電極を用いて、金属塩化物水溶液を電気分解する工程を備える、次亜塩素酸塩の製造方法。
PCT/JP2016/078404 2015-09-28 2016-09-27 塩素発生用電極およびその製造方法 WO2017057337A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16851508.8A EP3358043A4 (en) 2015-09-28 2016-09-27 ELECTRODE FOR CHLORINE PRODUCTION AND METHOD FOR PRODUCING THE SAME
JP2017543417A JP7073104B2 (ja) 2015-09-28 2016-09-27 塩素発生用電極およびその製造方法
CN201680050732.9A CN107949663A (zh) 2015-09-28 2016-09-27 氯产生用电极及其制造方法
KR1020187002346A KR20180058702A (ko) 2015-09-28 2016-09-27 염소 발생용 전극 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015190314 2015-09-28
JP2015-190314 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017057337A1 true WO2017057337A1 (ja) 2017-04-06

Family

ID=58423826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078404 WO2017057337A1 (ja) 2015-09-28 2016-09-27 塩素発生用電極およびその製造方法

Country Status (5)

Country Link
EP (1) EP3358043A4 (ja)
JP (1) JP7073104B2 (ja)
KR (1) KR20180058702A (ja)
CN (1) CN107949663A (ja)
WO (1) WO2017057337A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190022333A (ko) * 2017-08-23 2019-03-06 주식회사 엘지화학 전기분해용 양극 및 이의 제조방법
KR102355824B1 (ko) * 2018-12-27 2022-01-26 코웨이 주식회사 팔라듐, 이리듐 및 탄탈럼으로 구성된 전극용 촉매층 및 상기 전극용 촉매가 코팅된 살균수 생성 모듈
KR102214152B1 (ko) * 2019-04-29 2021-02-09 포항공과대학교 산학협력단 선박평형수 처리시설의 부식방지를 위한 고선택성 M/Ru 염소 발생반응 촉매
KR102648323B1 (ko) * 2021-12-13 2024-03-14 경북대학교 산학협력단 선박평형수 전기분해용 Pt-Ru-Ti 촉매 전극

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116182A (en) * 1975-04-04 1976-10-13 Tdk Corp An electrode
JPS5535473B2 (ja) * 1978-07-21 1980-09-13

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137877A (en) * 1974-09-27 1976-03-30 Asahi Chemical Ind Denkaiyodenkyoku oyobi sonoseizoho
JPS5861286A (ja) * 1981-10-08 1983-04-12 Tdk Corp 電解用電極およびその製造方法
DE3227718A1 (de) 1982-07-24 1984-01-26 Erno Raumfahrttechnik Gmbh, 2800 Bremen Niedertemperaturwaermespeicher, insbesondere fuer gewaechshaeuser
JP3319880B2 (ja) 1994-07-22 2002-09-03 クロリンエンジニアズ株式会社 次亜塩素酸塩製造用の陽極およびその製造方法
JP3319887B2 (ja) * 1994-10-05 2002-09-03 クロリンエンジニアズ株式会社 次亜塩素酸塩の製造方法
US6572758B2 (en) * 2001-02-06 2003-06-03 United States Filter Corporation Electrode coating and method of use and preparation thereof
AU2005325733B2 (en) 2005-01-27 2010-06-10 Industrie De Nora S.P.A. High efficiency hypochlorite anode coating
JP4554542B2 (ja) 2006-03-09 2010-09-29 石福金属興業株式会社 電解用電極
JP4884333B2 (ja) 2007-08-24 2012-02-29 石福金属興業株式会社 電解用電極

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116182A (en) * 1975-04-04 1976-10-13 Tdk Corp An electrode
JPS5535473B2 (ja) * 1978-07-21 1980-09-13

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358043A4 *

Also Published As

Publication number Publication date
CN107949663A (zh) 2018-04-20
EP3358043A4 (en) 2019-06-26
JP7073104B2 (ja) 2022-05-23
JPWO2017057337A1 (ja) 2018-07-19
EP3358043A1 (en) 2018-08-08
KR20180058702A (ko) 2018-06-01

Similar Documents

Publication Publication Date Title
WO2017057337A1 (ja) 塩素発生用電極およびその製造方法
Hao et al. Preparation and characterization of PbO 2 electrodes from electro-deposition solutions with different copper concentration
AU2005325733B2 (en) High efficiency hypochlorite anode coating
TWI757535B (zh) 電解用陽極及其製法
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
JPH08104991A (ja) 次亜塩素酸塩の製造方法
RU2660362C1 (ru) Катод для электролиза и способ его изготовления, и электролитическая ячейка для электролиза
WO2011102431A1 (ja) 電極基体およびそれを用いた水溶液電気分解用陰極、およびそれらの製造方法
JP7121861B2 (ja) 電気分解用電極
RU2379380C2 (ru) Высокоэффективное анодное покрытие для получения гипохлорита
JP2017179583A (ja) 電解二酸化マンガン及びその製造方法並びにその用途
EA023083B1 (ru) Электрод для катодного выделения водорода в электролитическом процессе
JP2836840B2 (ja) 塩素発生用電極及びその製造方法
KR101317669B1 (ko) 선박 밸러스트 수 전해살균용 불용성 전극 및 그 제조방법
KR102576668B1 (ko) 전기분해용 전극
WO2022136455A1 (en) Electrolyser for electrochlorination processes and a self-cleaning electrochlorination system
JP6206382B2 (ja) 水酸化インジウム粉の製造方法
KR890003514B1 (ko) 전해용 음극과 그 제조방법
WO2017170240A1 (ja) 電解二酸化マンガン及びその製造方法並びにその用途
KR102358447B1 (ko) 전기분해 양극용 코팅액 조성물
RU2425176C2 (ru) Способ получения электрода, электрод (варианты) и электролитическая ячейка (варианты)
CN109415826B (zh) 电极
RU2818275C1 (ru) Электрод для генерации кислорода
JP6200882B2 (ja) 水素水生成用電極及び製造方法
KR20190037520A (ko) 전기분해 음극용 코팅액 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187002346

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017543417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851508

Country of ref document: EP