WO2017056382A1 - 情報処理装置、情報処理方法、及びプログラム - Google Patents

情報処理装置、情報処理方法、及びプログラム Download PDF

Info

Publication number
WO2017056382A1
WO2017056382A1 PCT/JP2016/003877 JP2016003877W WO2017056382A1 WO 2017056382 A1 WO2017056382 A1 WO 2017056382A1 JP 2016003877 W JP2016003877 W JP 2016003877W WO 2017056382 A1 WO2017056382 A1 WO 2017056382A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
processing apparatus
target object
driver
posture
Prior art date
Application number
PCT/JP2016/003877
Other languages
English (en)
French (fr)
Inventor
卓 青木
健人 赤間
小柳津 秀紀
康孝 平澤
雄飛 近藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP16850565.9A priority Critical patent/EP3358546A4/en
Priority to US15/760,380 priority patent/US10949656B2/en
Priority to CN201680055031.4A priority patent/CN108028021B/zh
Priority to JP2017542692A priority patent/JP6919567B2/ja
Publication of WO2017056382A1 publication Critical patent/WO2017056382A1/ja
Priority to US17/172,263 priority patent/US11915522B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/23Recognition of whole body movements, e.g. for sport training
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/23Recognition of whole body movements, e.g. for sport training
    • G06V40/25Recognition of walking or running movements, e.g. gait recognition
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/103Static body considered as a whole, e.g. static pedestrian or occupant recognition

Definitions

  • the present technology relates to an information processing apparatus, an information processing method, and a program for alerting a driver when driving a car, for example.
  • Patent Document 1 it is determined whether a bicycle traveling in front of the host vehicle is likely to fall over based on weather information and road information read from a database. When the bicycle in front is likely to fall down, a warning to that effect is given to the driver (paragraphs [0043]-[0049] etc. in the specification of Patent Document 1).
  • Patent Document 2 it is determined whether or not there is a pedestrian in an area where the host vehicle travels by analyzing an image in front of the vehicle taken by an infrared camera. Further, by detecting the movement of the pedestrian outside the traveling area, the degree of risk that the pedestrian enters the traveling area is determined. A narrow-directional warning sound is output to a pedestrian in the area or a pedestrian with a high degree of danger (for example, paragraphs [0051] [0052] [0068] in the specification of Patent Document 2).
  • an object of the present technology is to provide an information processing apparatus, an information processing method, and a program capable of providing effective information and calling attention.
  • an information processing apparatus includes a detection unit, an estimation unit, and a prediction unit.
  • the detection unit detects a target object from the input image.
  • the estimation unit estimates a posture of the detected target object.
  • the prediction unit predicts the motion of the target object based on the estimated posture.
  • This information processing apparatus can predict the motion of the target object with high accuracy based on the estimated posture. As a result, it is possible to alert the driver by providing effective information for preventing an accident or the like to the driver.
  • the detection unit may be able to detect a pedestrian from the input image.
  • the prediction unit may predict the movement of the pedestrian based on the estimated posture of the pedestrian. This makes it possible to prevent, for example, a contact accident with a pedestrian.
  • the detection unit may be able to detect a motorcycle and its driver from the input image.
  • the estimation unit may estimate at least the driver's posture.
  • the prediction unit may predict the operation of the two-wheeled vehicle and the driver based on the estimated posture of the driver. As a result, for example, a contact accident with a motorcycle can be prevented in advance.
  • the estimation unit may estimate a posture of the motorcycle.
  • the prediction unit may predict the operations of the two-wheeled vehicle and the driver based on the estimated postures of the two-wheeled vehicle and the driver. Thereby, the operation of the motorcycle and its driver can be predicted with high accuracy.
  • the prediction unit may calculate a feature point related to the target object based on the estimated posture, and may predict an operation of the target object based on the calculated position of the feature point. Thereby, the operation of the target object can be easily predicted.
  • the feature point may be a barycentric point of the target object. By using the position of the barycentric point, the motion of the target object can be predicted with high accuracy.
  • the detection unit may be able to detect a motorcycle and its driver from the input image.
  • the prediction unit may calculate the center of gravity of the driver or the center of gravity of the two-wheeled vehicle and the driver as the feature point.
  • the prediction unit calculates one or more contact points with the road surface of the target object based on the estimated posture, and based on a relative positional relationship between the feature points and the one or more contact points.
  • the operation may be predicted. Thereby, the operation of the target object can be predicted with high accuracy.
  • the prediction unit may predict a moving direction of the target object. As a result, contact accidents with the target object can be prevented in advance.
  • the prediction unit may predict sudden acceleration of the target object. As a result, contact accidents with the target object can be prevented in advance.
  • the estimation unit may estimate a skeleton of the detected target object. Thereby, the posture of the target object can be estimated with high accuracy.
  • the information processing apparatus is mounted on a mobile device, and further includes risk avoidance information for avoiding a risk related to the operation of the mobile device based on the predicted operation of the target object. You may provide the output part which produces
  • the output unit may determine the possibility of contact between the mobile device and the target object, and output information on the determined possibility. As a result, the driver's attention can be alerted, and contact accidents with pedestrians and the like can be prevented.
  • the prediction unit may be able to predict a moving direction of the target object.
  • the output unit may output an image including the predicted moving direction.
  • the output unit may output an image including a dangerous area where there is a possibility of contact between the mobile device and the target object. Thereby, for example, the driver can easily grasp a safe route or the like.
  • An information processing method is an information processing method executed by a computer, and includes detecting a target object from an input image.
  • the detected posture of the target object is estimated.
  • the motion of the target object is predicted based on the estimated posture.
  • a program causes a computer to execute the following steps. Detecting a target object from the input image; Estimating the posture of the detected target object; Predicting the motion of the target object based on the estimated posture.
  • FIG. 1 is an external view illustrating a configuration example of an automobile as an example of a mobile device on which a danger avoidance device according to a first embodiment is mounted. It is a block diagram which shows the structural example of the motor vehicle shown in FIG. It is a block diagram which shows the functional structural example of a danger avoidance apparatus. It is a figure for demonstrating an example of skeleton estimation. It is a schematic diagram which shows the attitude
  • FIG. 1 is an external view illustrating a configuration example of an automobile as an example of a mobile device on which the danger avoidance device according to the first embodiment of the present technology is mounted.
  • FIG. 2 is a block diagram thereof.
  • the automobile 100 includes a distance sensor 10, a front camera 11, and an in-vehicle shooting camera 12.
  • the automobile 100 includes a steering device 15, a braking device 16, a vehicle body acceleration device 17, a steering angle sensor 20, a wheel speed sensor 21, a brake switch 22, an accelerator sensor 23, a control unit 30, and a display device 35.
  • a danger avoidance device 40 is included in the automobile 100.
  • the distance sensor 10 is installed, for example, in the approximate center of the front portion of the automobile 100, and detects information related to the distance between the automobile 100 and an object existing in the moving direction thereof.
  • the distance sensor 10 is composed of various sensors using, for example, a millimeter wave radar or an infrared laser.
  • the front camera 11 is installed, for example, in the cabin or roof portion of the automobile 100, and photographs the front view of the automobile 100 at a predetermined frame rate.
  • the captured image captured by the front camera 11 is output to the danger avoidance device 40 via the control unit 30, and the motion of the target object existing in front of the host vehicle is predicted.
  • the front camera 11 is composed of an image sensor such as a CMOS or a CCD, for example.
  • a pedestrian 2, a bicycle 3 and a driver 4 thereof will be described as examples of the target object 1.
  • the present technology can also be applied to drivers of other two-wheeled vehicles such as motorcycles and automatic tricycles.
  • the in-vehicle camera 12 is installed in the cabin of the automobile 100, and images the interior of the cabin at a predetermined frame rate. For example, the presence / absence of a passenger and the boarding position of the passenger can be determined based on the image captured by the in-vehicle camera 12.
  • the distance sensor 10, the front camera 11, and the in-vehicle camera 12 are configured so that their outputs are supplied to the danger avoidance device 40 instead of being supplied to the control unit 30 as shown in FIG. 2. Also good.
  • Steering device 15 is typically composed of a power steering device, and transmits the steering operation of the driver to the steering wheel.
  • the braking device 16 includes a brake operating device attached to each wheel and a hydraulic circuit for operating them, and controls the braking force of each wheel.
  • the vehicle body acceleration device 17 includes a throttle valve, a fuel injection device, and the like, and controls the rotational acceleration of the drive wheels.
  • the control unit 30 controls the operation of each mechanism mounted on the automobile 100.
  • the control unit 30 controls braking, steering, acceleration, and the like of the automobile 100 based on the operation of the steering wheel and the accelerator by the driver.
  • the control unit 30 detects the steering amount and the steering direction based on the output of the steering angle sensor 20 that detects the driver's steering operation, and controls the steering device 15.
  • control unit 30 calculates the vehicle body speed of the vehicle based on the output of the wheel speed sensor 21 installed on all or some of the wheels, and the braking device 16 so as to prevent the wheels from being locked (slip). To control. Furthermore, the control unit 30 controls the vehicle body acceleration device 17 based on the output of the accelerator sensor 23 that detects the driver's accelerator pedal operation amount.
  • the brake switch 22 is for detecting a driver's brake operation (depressing the brake pedal) and is referred to during ABS control or the like.
  • the control unit 30 may coordinately control a plurality of these units as well as individually controlling the steering device 15, the braking device 16, and the vehicle body acceleration device 17. As a result, the vehicle 100 can be controlled to a desired posture during steering (turning), braking, acceleration, and the like.
  • control unit 30 is configured to be able to control the steering device 15, the braking device 16, and the vehicle body acceleration device 17 irrespective of the various operations of the driver described above.
  • the automobile 100 may have an automatic driving function, and in this case, the control unit 30 mainly controls each device based on the output of each sensor or camera.
  • the display device 35 has a display unit using, for example, liquid crystal or EL (Electro-Luminescence), and displays map information, navigation information, and the like on the display unit.
  • the display device 35 displays a danger avoidance image output from the danger avoidance device 35.
  • a car navigation device is typically used.
  • an apparatus that displays an AR (Augmented Reality) image at a predetermined position such as a windshield may be used.
  • the danger avoiding device 40 detects the target object 1 from the image captured by the front camera 11 and predicts the operation of the target object 1 as will be described in detail later. That is, the next operation of the target object 1 from the time of shooting to the future is predicted. For example, the moving direction of the target object 1 and the presence or absence of sudden acceleration can be predicted.
  • the danger avoidance device 40 corresponds to the information processing device according to the present embodiment, and includes hardware necessary for a computer such as a CPU, a RAM, and a ROM.
  • the risk avoiding method (information processing method) according to the present technology is executed when the CPU loads a program according to the present technology pre-recorded in the ROM to the RAM and executes the program.
  • the specific configuration of the danger avoidance device 40 is not limited, and a device such as PLD (Programmable Logic Device) such as FPGA (Field Programmable Gate Array) or other ASIC (Application Specific Integrated Circuit) may be used. Further, the danger avoidance device 40 may be configured as a part of the control unit 30.
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • FIG. 3 is a block diagram illustrating a functional configuration example of the danger avoidance device 40.
  • the danger avoidance device 40 includes an image acquisition unit 41, an object detection unit 42, a posture estimation unit 43, an object movement prediction unit 44, a host vehicle movement prediction unit 45, a risk level determination unit 46, and a warning output unit 47.
  • each functional block is configured by the CPU of the danger avoidance device 40 executing a predetermined program.
  • the image acquisition unit 41 acquires an image captured by the front camera 11 (hereinafter, this image is referred to as an input image).
  • the object detection unit 42 detects the pedestrian 2, the bicycle 3, and the driver 4 from the input image.
  • the detection of the pedestrian 2 or the bicycle 3 may be performed by any image analysis technique such as template matching or image scanning.
  • the posture estimation unit 43 estimates the detected postures of the pedestrian 2 and the driver 4.
  • the posture estimation unit 43 includes a parts estimation unit 48 and a skeleton detection unit 49. That is, in this embodiment, the posture is determined based on the positions of the skeletons of the pedestrian 2 and the driver 4.
  • FIG. 4 is a diagram for explaining an example of skeleton estimation.
  • the skeletons of the pedestrian 2 and the driver 4 are represented by the white circle 50 in FIG. 4, the line 51 connecting the white circle 50, and the head 52.
  • the center of gravity 55 of each of the pedestrian 2 and the driver 4 the grounding point 56 of the pedestrian 2 and the bicycle 3 with respect to the road surface R, and the xy coordinate system are illustrated. These are used when predicting the next movement of the pedestrian 2 or the like.
  • Skeletal estimation is also called bone estimation or skeleton estimation, and can be performed using a well-known technique. An example of this will be described with reference to the pedestrian 2.
  • a model of a skeleton to be calculated that is, a model such as the position and number of white circles 50 shown in FIG. 4 and a line 51 connecting them is set in advance.
  • the model of the skeleton is typically set according to the actual skeleton of the human body.For example, a plurality of main parts such as the head, thigh, and waist are set, and white circles are set at the center of gravity of the part and joints between the parts. 50 is set. A line 51 connecting the white circles 50 is set based on the position of the part.
  • the part estimation unit 48 calculates the position of each part set above for the pedestrian 2 in the input image based on the image (partial image) of the pedestrian 2 in the input image. For example, an image of each part in various postures is stored as a template image. By matching the template image and the image of the pedestrian 2, the position of each part of the pedestrian 2 can be calculated.
  • the skeleton detection unit 49 sets the white circle 50, the line 51, and the head 52 based on the calculated position of each part, and the skeleton of the pedestrian 2 is detected.
  • a depth sensor is mounted on the front part of the automobile 100, and the position of each part is estimated using parameters obtained by machine learning based on the depth image (distance image) of the pedestrian 2 obtained by the depth sensor. It is also possible. For example, one pixel in the image of the pedestrian 2 is selected, and depth information (distance information) of a predetermined area including the pixel is acquired. Based on this depth information, it is determined which part contains the selected pixel by using the above parameters. The position of each part of the pedestrian 2 can be calculated by executing the same process for each pixel in the image of the pedestrian 2. Thereby, the skeleton of the pedestrian 2 is estimated.
  • RGB information of the pixel may be used. That is, based on the RGB information around the selected pixel, it is possible to determine a part including the selected pixel using parameters obtained by machine learning.
  • the skeleton estimation may be executed by any technique such as a method using a stereo camera. The skeleton of the driver 4 of the bicycle 3 can be estimated in the same manner.
  • the object movement prediction unit 44 predicts the motion of the pedestrian 2 and the driver 4 riding the bicycle 3 from the estimated posture, that is, the skeleton shown in FIG.
  • the operations of the bicycle 3 and the driver 4 are predicted based on the postures of the bicycle 3 and the driver 4.
  • the posture of the bicycle 3 and the driver 4 can be estimated based on, for example, either the posture of the driver 4 or each posture of the bicycle 3 or both.
  • the next operation of the bicycle 3 and the driver 4 includes both the operation of the driver 4 such as a steering wheel operation and a pedal operation, and the operation of the bicycle 3 such as a straight drive, a curve, and a sudden start.
  • the posture and operation of the bicycle 3 and the driver 4 may be described by describing only the driver 4 or the bicycle 3 such as the posture of the driver 4 or the operation of the bicycle 3.
  • the own vehicle movement prediction unit 45 predicts the next operation of the automobile 100.
  • the own vehicle movement prediction unit 45 calculates a predicted route that the automobile 100 will travel from now on.
  • the predicted route is calculated from the current vehicle speed, the steering amount, the steering direction, the rotational acceleration of the drive wheels, or the like.
  • the predicted route may be calculated based on destination information set in the navigation device or the like, current location information acquired by GPS or the like, map information, road traffic information, or the like. Note that other operations of the automobile 100 may be predicted.
  • the risk determination unit 46 determines the risk based on the motion of the target object 1 predicted by the object movement prediction unit 44 and the predicted route predicted by the vehicle movement prediction unit 45. Typically, the possibility of a contact accident or a collision accident occurring between the pedestrian 1 or the bicycle 3 (driver 4) and the automobile 100 is determined. For example, if the predicted route of the automobile 100 overlaps or is very close to the front of the predicted movement direction of the pedestrian 2 or the like (on the extension), it is determined that the degree of risk is high.
  • the degree of risk is high. It may be determined to be high.
  • the predicted route of the pedestrian 2 or the like may be calculated by the object movement prediction unit 44.
  • the degree of danger may be determined to be high.
  • the risk determination similar to the above may be executed using the entire road predicted to travel by the automobile 100 as a predicted route.
  • the position of the automobile 100 and the position of the target object 1 at a predetermined future timing may be predicted, respectively, and the degree of risk may be determined.
  • the warning output unit 47 outputs danger avoidance information for avoiding danger related to driving the automobile 100 based on the determined degree of danger. That is, information for avoiding a contact accident with the pedestrian 2 or the like is output.
  • the danger avoidance information is output by, for example, an image or sound.
  • the risk determination unit 46 and the warning output unit 47 implement the output unit according to the present embodiment.
  • the present inventor paid attention to the center of gravity 55 of the target object 1 and the contact point 56 that is a contact point with the road surface R. That is, it has been found that the position of the center of gravity 55 and the relative positional relationship between the center of gravity 55 and the grounding point 56 change when switching to the next operation.
  • the change in the position of the center of gravity 55 is extracted as a feature related to the posture at the time of switching to the next motion, and motion prediction according to the present technology described below has been devised.
  • FIG. 5 is a schematic diagram showing a posture (skeleton) when the pedestrian 2 in a stationary state starts walking in a predetermined direction (right direction on the paper surface).
  • a posture skeleton
  • the center of gravity 55, the contact point 56L between the left foot FL and the road surface R, and the contact point 56R between the right foot FR and the road surface R are calculated.
  • ground point lines L1 and L2 are set in the vertical direction from the ground points 56L and 56R.
  • P1 in FIG. 5 is a state where the pedestrian 2 is standing still on both feet.
  • P5 in FIG. 5 is a state in which the right foot FR (back foot with respect to the traveling direction) is stepped forward and is a step in which the foot has started.
  • P2 to P4 in FIG. 5 are postures at the time of switching from the stationary state to the walking state, and are postures immediately before walking.
  • the barycentric point 55 is included in the region between the grounding point lines L1 and L2.
  • the position on the ground point line L1 and the position on L2 are also within the above-described region.
  • the barycentric point 55 moves toward the right side, that is, in the direction to start walking, in the region between the ground contact point lines L1 and L2.
  • the right foot FR back foot
  • the grounding point 56 becomes one.
  • the center-of-gravity point 55 is positioned substantially equal to the ground point 56L of the left foot FL (front foot), that is, the ground point line L1.
  • the right foot FR is put out in the traveling direction, the weight is moved, and the barycentric point 55 moves to the right side (front side) from the ground point line L1.
  • the right foot FR is stepped on, and the barycentric point 55 is included in the region between the grounding point lines L1 and L2.
  • FIG. 6 is a schematic diagram showing the posture of another pattern when walking from a stationary state.
  • FIG. 6A is a diagram in the case where the posture is tilted from the state of standing with both feet toward the advancing direction (right direction on the paper surface), and the center of gravity 55 moves from the region between the ground point lines L1 and L2 to the outside on the right side. is doing. That is, the barycentric point 55 deviates from the region between the ground point lines L1 and L2 in the traveling direction.
  • FIG. 6B is a diagram showing a case where the left foot (front foot) is stepped one step from a state where both feet are standing.
  • the left foot FL is lifted from the road surface R, the number of grounding points 56 is one, and the center of gravity 55 is displaced to the right of the grounding point line L2.
  • FIG. 6C is a diagram in the case where the posture is tilted from the state of standing with only the left foot FL toward the traveling direction (right direction on the paper), and the center of gravity point 55 moves to the right side of the grounding point line L1.
  • the inventor found the following points as the characteristics of the posture immediately before starting to walk from the stationary state.
  • There are two grounding points 56 (a state where both feet stand), and the center of gravity point 55 is out of the region between the grounding point lines L1 and L2.
  • the pedestrian 2 starts walking toward the side where the center of gravity 55 is off.
  • There is one ground point 56 (a state where one foot is standing), and the center of gravity point 55 is not on the ground point line (L1 or L2) and is off the ground point line. In this case, the pedestrian 2 starts walking toward the side where the center of gravity 55 is off.
  • the present invention is not limited to walking out from a stationary state, and it can be similarly predicted when the pedestrian 2 moving straight along the vertical direction of the paper changes direction to the left and right.
  • FIG. 7 is a schematic diagram showing the (skeleton) when the bicycle 3 and the driver 4 traveling straight forward change direction in a predetermined direction (right direction on the paper surface).
  • the center of gravity point 55 and the contact point 56 between the wheel 3a and the road surface R are calculated.
  • the contact point 56 can be calculated based on, for example, an image of the bicycle 3 detected from the input image. From the ground point 56, a ground point line L extending in the vertical direction is set.
  • P1 in FIG. 7 is a state in which the bicycle 3 is moving straight toward the front side in the direction perpendicular to the paper surface.
  • P4 in FIG. 7 is a state in which the steering wheel 3b is cut to the right side and to the left side when viewed from the driver 4, and is a state in which the direction has started to change to the right.
  • P2 to P3 in FIG. 7 are postures at the time of switching from the straight traveling state to the state in which the direction is changed, and are postures immediately before turning the handle 3b.
  • the barycentric point 55 is substantially equal to the grounding point line L. From P2 to P3 in the figure, the weight is moved in the traveling direction (rightward on the paper surface), and the center of gravity 55 moves to the right of the grounding point line L. Even when the handle 3b of P4 is started to be cut, the barycentric point 55 is located on the right side of the ground point line L.
  • the inventor Based on P2-P4 in FIG. 7, the inventor has found that the center of gravity 55 is deviated from the grounding point line L in the direction of travel as a characteristic of the posture immediately before the direction change of the bicycle 3. It was. The same applies to the turn to the left. In addition, a change in direction of the bicycle 3 traveling straight toward the back side of the page can be predicted in the same manner.
  • FIG. 8 is a flowchart showing an example of processing by the danger avoidance device 40.
  • the movement directions of the pedestrian 2 and the bicycle 3 (driver 4) are predicted by the object movement prediction unit 44 (step 101).
  • the movement direction (predicted route) of the automatic 100 is predicted by the own vehicle movement prediction unit 45 (step 102).
  • the risk determination unit 46 determines a risk level such as a collision, and the warning output unit 47 outputs risk avoidance information (step 103).
  • FIG. 9 is a flowchart showing an example of a predicting operation of the moving direction of the pedestrian 2 and the bicycle 3.
  • the pedestrian 2 and the bicycle 3 are detected by the object detection unit 42 (step 201).
  • postures of the pedestrian 2 and the bicycle 3 are estimated by the posture estimation unit 43 (step 202).
  • the center-of-gravity point 55 is calculated as a feature point of each of the pedestrian 2 and the driver 4 (step 203). If it demonstrates with reference to FIG. 4, the coordinate ( xave , yave ) of the gravity center point 55 will be calculated by the following formula
  • the mass Wi and the total mass W of each part are set in advance. For example, the average mass of each part of the human body is used. Note that the mass of each part may be stored separately for males, females, adults, children, and the like. For example, the type of the pedestrian 2 is determined from the input image, and the mass of each corresponding part is read out.
  • the position coordinates of each part are calculated based on the position of the part estimated by posture estimation, and typically the position of the center of gravity of each part is used.
  • the position coordinates of each part may be calculated based on the position coordinates of the white circle 51 representing the skeleton.
  • the center point of the white circle 51 of the joint part at both ends of the part may be used as the position coordinate of the part.
  • a contact point with the road surface R of the pedestrian 2 or the like, that is, a grounding point 56 is calculated (step 204).
  • the lowest point of the estimated skeleton is calculated as the contact point 56.
  • the lowest point of the wheel 3 a is calculated as the ground point 56.
  • Step 205 It is determined whether or not the detected target object 1 is a pedestrian 2 (step 205).
  • the target object 1 is the pedestrian 2 (Yes in Step 205)
  • the pedestrian both feet processing is executed ( Step 207).
  • a pedestrian one leg process is executed (Step 208).
  • step 206 If it is determined in step 206 that the target object 1 is not the pedestrian 2 (No), a bicycle process is executed (step 209).
  • FIG. 10 is a flowchart showing an example of the pedestrian both feet process.
  • the center of gravity is between both feet, that is, whether or not the center of gravity point 55 shown in FIG. 5 and the like is included in the region between the ground point lines L1 and L2 (step 301).
  • the center of gravity is between both feet (Yes in step 301)
  • step 302 when the movement history of the pedestrian 2 is known based on the past input image or the like, when the pedestrian 2 is walking straight, it may be determined in step 302 that the straight traveling is continued.
  • step 301 If the center of gravity is not between both feet (No in step 301), is the center of gravity left of both feet, that is, is the center of gravity 55 deviated to the left with respect to the area between the ground point lines L1 and L2? It is determined whether or not (step 303). When the center of gravity deviates to the left side (Yes at Step 303), it is determined that the pedestrian 2 turns left (Step 304).
  • step 305 If the center of gravity deviates to the right (No in step 303), it is determined that the pedestrian 2 turns right (step 305). That is, it is determined that the pedestrian 2 changes direction to the right in the front view of the automobile 100.
  • FIG. 11 is a flowchart showing an example of the pedestrian one leg process.
  • the center of gravity is on the foot standing on the road surface R, that is, whether the center of gravity point 55 shown in FIG. 5 and the like is on the grounding point line (L1 or L2) (step 401).
  • the center of gravity 55 is not limited to being strictly located on the grounding point line, and may be determined that the center of gravity is on the foot when close to the grounding point line.
  • a ground point region having a predetermined width (size in the x direction) around the ground point line and extending in the y axis direction is set.
  • step 401 If the center of gravity is on the foot (Yes in step 401), it is determined that the pedestrian 2 is stationary (step 402). If the center of gravity is not on the foot (No in step 401), the center of gravity is on the left side of the grounded foot, that is, the center of gravity point 55 is on the left side with respect to the grounding point line (or grounding point region). It is determined whether or not it is off (step 403). When the center of gravity deviates to the left (Yes in Step 403), it is determined that the pedestrian 2 turns left (Step 404). When the center of gravity deviates to the right side (No in step 403), it is determined that the pedestrian 2 turns right (step 405).
  • FIG. 12 is a flowchart showing an example of the bicycle process.
  • the center of gravity 55 is not limited to being strictly located on the grounding point line L, and may be determined to be on the grounding point 56 when close to the grounding point line L. That is, the above-described ground point area may be set.
  • step 502 If the center of gravity is above the ground contact point (Yes in step 501), it is determined that the bicycle 3 is traveling straight (step 502). If the center of gravity is not on the grounding point 56 (No in step 501), the center of gravity is on the left side of the grounding point 56, that is, the center of gravity point 55 is on the left side of the grounding point line L1 (or grounding point region). It is determined whether or not it falls outside (step 503). If the center of gravity deviates to the left (Yes in Step 503), it is determined that the bicycle 3 turns left (Step 504). If the center of gravity deviates to the right side (No in step 503), it is determined that the bicycle 3 turns right (step 505).
  • the operation of the target object 1 can be predicted easily and with high accuracy. Is possible.
  • FIG. 13 is a diagram illustrating an example of a danger avoidance image serving as danger avoidance information output by the warning output unit 47.
  • the danger avoidance image 60 includes the type of each target object 1 (pedestrian 2 / bicycle 3), the possibility of contact with each target object 1, the moving direction 61 of each target object 1, and the danger area 62 where there is a possibility of contact. And a danger avoidance route 63 are displayed.
  • the lower right diagonal direction is displayed as the moving direction 61 of the bicycle 3 and the driver 4 thereof.
  • an oblique direction may be calculated as the moving direction 61 as well as the lateral direction like the moving direction 61 of the pedestrian 2.
  • a detailed moving direction can be calculated based on the position of the barycentric point 55, the direction of the wheel, and the like.
  • the wheel direction can be calculated from the input image. It is also possible to calculate by estimating the skeleton of the bicycle 3 described later. A bicycle movement history that can be calculated based on past input images may be used as appropriate.
  • the danger area 62 is an area that may come into contact with the automobile 100 when the bicycle 3 or the like moves along the predicted movement direction 61.
  • the size of the dangerous area 62 is set in advance for each pedestrian 2 and bicycle 3, and the dangerous area 62 is set around the bicycle 3 and the like.
  • the dangerous area 62 may be dynamically set based on predictions such as the moving speed and acceleration of the bicycle 3 or the like.
  • the danger avoidance route 63 is an image showing a route for avoiding the danger area 62 displayed for each target object 1 that may collide.
  • the safe avoidance route 63 is calculated based on the predicted route predicted by the own vehicle movement prediction unit 45.
  • navigation information, current location information, road information, or the like may be used as appropriate.
  • the driver of the automobile 100 can be alerted to the bicycle 3 or the like that may collide, and a contact accident or the like can be prevented.
  • the danger area 62 and the danger avoidance route 63 are displayed, so that the driver can easily grasp the safe route and the like. Note that the direction of movement of each target object 1, the possibility of contact, the danger avoidance route 63, and the like may be notified to the driver by voice.
  • the operations of the pedestrian 2 and the bicycle 3 can be predicted with high accuracy based on the estimated posture. Accordingly, it is possible to alert the driver of the automobile 100 by providing effective danger avoidance information for preventing an accident or the like. As a result, even when a sudden change of direction is performed by the pedestrian 2 or the bicycle 3, for example, a contact accident or the like can be prevented in advance.
  • motion prediction may be performed by paying attention to the position of the center of gravity and the relative positional relationship with the ground contact point.
  • FIG. 14 is a diagram for explaining another embodiment of the motion prediction.
  • the body's center of gravity is lowered before the sudden acceleration, and the body is often bent. That is, as shown from P1 to P2 in FIG. 14, the center of gravity 55 is lowered downward and suddenly accelerated at P3. Focusing on the characteristic of the posture before sudden acceleration, when the center of gravity 55 is lowered, it is predicted that sudden acceleration will be performed.
  • the position of the skeleton of the foot part F or the back part B may be determined instead of or in addition to the position of the center of gravity point 55. That is, it may be determined whether or not the legs are bent or whether or not the body is bent with the back rolled up. By determining in combination with the left and right movement of the barycentric point 55, the direction of rapid acceleration can also be predicted. As a result, it is possible to prevent a contact accident with the pedestrian 2 or the bicycle 3 that suddenly starts running.
  • the inclination angle of the straight road surface R connecting the center of gravity 55 and the ground contact point 56 may be calculated.
  • the inclination angle ⁇ can be calculated using, for example, the coordinates (x ave , y ave ) of the center point 55 and the coordinates (x ground , y ground ) of the ground point 56.
  • the inclination angle ⁇ is small, it is possible to determine that the body is sufficiently inclined and predict that a sudden start or a sudden direction change will be performed.
  • FIG. 15 is a diagram for explaining another embodiment of the posture estimation of the bicycle 3 and the driver 4 thereof.
  • the skeleton may be detected not only for the driver 4 but also for the bicycle 3.
  • a plurality of parts are set in advance for the bicycle 3, and the position of each part of the bicycle 3 is estimated based on the input image.
  • the same technique as the skeleton estimation of the pedestrian 2 and the driver 4 may be used.
  • a white circle 51 and a line 52 set in advance corresponding to each part are set. Thereby, the posture of the bicycle 3 can be estimated. Based on the estimated postures of the bicycle 3 and the driver 4, the posture of the bicycle 3 and the driver 4 as a whole can be estimated with high accuracy.
  • the center of gravity 95 of the bicycle 3 and the driver 4 as a whole is calculated. Further, based on the skeleton of the bicycle 3, the lowest point is detected as a contact point 56 with the road surface R. Based on the barycentric point 95 and the ground contact point 56, the operation can be predicted with high accuracy. For example, the steering amount of the handle 3b can be estimated based on the white circles 51a-51e of the wheel portion of the bicycle 3, and the moving direction and the like can be predicted in detail. In addition, based on the combination of the posture of the driver 4 and the posture of the bicycle 3, it is possible to predict a motion with very high accuracy.
  • the center of gravity of the target object is calculated as a feature point for executing motion prediction.
  • the feature point is not limited to this, and the center of gravity of the head or waist may be used as the feature point.
  • the movement of the target object existing on the left and right or the rear of the vehicle may be predicted based on the captured images captured by the left and right side cameras and the rear camera.
  • a system including various cameras and sensors such as a front camera, a vehicle including a braking device and a steering device, and a danger avoidance device according to the present technology correspond to an embodiment of a risk avoidance system according to the present technology.
  • a front camera a vehicle including a braking device and a steering device
  • a danger avoidance device correspond to an embodiment of a risk avoidance system according to the present technology.
  • This technology can be applied not only to automobiles, but also to various mobile devices such as motorcycles and tricycles, and also to various technical fields such as simulation devices and games. Moreover, this technique is applicable not only to the case where it is applied to a mobile device, but also to a monitoring system or the like. For example, it is possible to predict the motion of a pedestrian or the like walking on a bridge or a platform of a station, and to notify the person or the surrounding people when there is a risk of falling.
  • this technique can also take the following structures.
  • a detection unit that detects a target object from an input image;
  • An estimation unit for estimating the posture of the detected target object;
  • An information processing apparatus comprising: a prediction unit that predicts a motion of the target object based on the estimated posture.
  • the detection unit can detect a pedestrian from the input image, The information processing apparatus predicts the movement of the pedestrian based on the estimated posture of the pedestrian.
  • the information processing apparatus according to (1) or (2), The detection unit can detect a motorcycle and its driver from the input image, The estimating unit estimates at least the posture of the driver;
  • the information processing apparatus predicts the operation of the two-wheeled vehicle and the driver based on the estimated posture of the driver.
  • the information processing apparatus estimates the posture of the motorcycle, The information processing apparatus predicts the operations of the motorcycle and the driver based on the estimated postures of the motorcycle and the driver.
  • the information processing apparatus calculates a feature point related to the target object based on the estimated posture, and predicts an operation of the target object based on the calculated position of the feature point.
  • the feature point is a center of gravity of the target object.
  • the detection unit can detect a motorcycle and its driver from the input image, The information processing apparatus calculates the center of gravity of the driver or the center of gravity of the motorcycle and the driver as the feature point.
  • the information processing apparatus calculates one or more contact points with the road surface of the target object based on the estimated posture, and based on a relative positional relationship between the feature points and the one or more contact points. And an information processing apparatus for predicting the operation.
  • the information processing apparatus predicts a moving direction of the target object.
  • the information processing apparatus predicts sudden acceleration of the target object.
  • the information processing apparatus estimates the skeleton of the detected target object.
  • the information processing apparatus according to any one of (1) to (11), The information processing apparatus is mounted on a mobile device, and further includes risk avoidance information for avoiding a risk related to the operation of the mobile device based on the predicted operation of the target object.
  • An information processing apparatus including an output unit that generates and outputs.
  • the information processing apparatus according to (12), The said output part determines the possibility of a contact with the said mobile body apparatus and the said target object, and outputs the information of the determined possibility.
  • Information processing apparatus (14)
  • the information processing apparatus according to (12) or (13), The prediction unit can predict the moving direction of the target object, The output unit outputs an image including the predicted moving direction.
  • the information processing apparatus according to any one of (12) to (14), The output unit outputs an image including a dangerous area where there is a possibility of contact between the mobile device and the target object.
  • R Road surface L, L1, L2 ... Ground line 1 ... Target object 2 ... Pedestrian 3 ... Bicycle 4 ... Bicycle driver 40 ... Danger avoidance device 41 ... Image acquisition unit 42 ... Object detection unit 43 ... Posture estimation unit 44 ... object movement prediction section 45 ... own vehicle movement prediction section 46 ... risk level determination section 47 ... warning output sections 55, 95 ... center of gravity points 56, 56L, 56R ... ground contact point 60 ... warning image 61 ... movement direction 62 ... danger area 63 ... Danger avoidance route 100 ... car

Abstract

本技術の一形態に係る情報処理装置は、検出部と、推定部と、予測部とを具備する。前記検出部は、入力画像から対象物体を検出する。前記推定部は、前記検出された対象物体の姿勢を推定する。前記予測部は、前記推定された姿勢をもとに前記対象物体の動作を予測する。

Description

情報処理装置、情報処理方法、及びプログラム
 本技術は、例えば自動車の運転時等において、運転者への注意喚起を行う情報処理装置、情報処理方法、及びプログラムに関する。
 自動緊急ブレーキや衝突回避システムなどの、緊急時の事故回避技術が一般的になってきている。また事故を回避するために運転者等に注意を喚起するシステムも開発されている。例えば特許文献1には、データベースから読み出された天気情報や道路情報をもとに、自車の前方を走行する自転車が転倒しやすいか否かが判定される。前方の自転車が転倒しやすい場合には、運転者にその旨の警告が行われる(特許文献1の明細書段落[0043]-[0049]等)。
 また特許文献2には、赤外線カメラにより撮影された車両前方の画像を解析することで、自車が進行する領域内に歩行者がいるか否かが判定される。また進行領域外の歩行者の移動を検出することで、歩行者が進行領域に侵入する危険度が判定される。領域内の歩行者や危険度が高い歩行者に対しては、狭指向性の警告音が出力される(特許文献2の明細書段落[0051][0052][0068]等)。
特開2009-122854号公報 特開2014-52883号公報
 このように事故等を未然に防ぐための有効な情報を運転者等に提供して、注意喚起を行うことが可能な技術が求められている。
 以上のような事情に鑑み、本技術の目的は、有効な情報を提供して注意喚起を行うことが可能となる情報処理装置、情報処理方法、及びプログラムを提供することにある。
 上記目的を達成するため、本技術の一形態に係る情報処理装置は、検出部と、推定部と、予測部とを具備する。
 前記検出部は、入力画像から対象物体を検出する。
 前記推定部は、前記検出された対象物体の姿勢を推定する。
 前記予測部は、前記推定された姿勢をもとに前記対象物体の動作を予測する。
 この情報処理装置では、推定された姿勢をもとに対象物体の動作を高精度に予測することができる。この結果、事故等を防止するための有効な情報を運転者等に提供して注意を喚起することが可能となる。
 前記検出部は、前記入力画像から歩行者を検出可能であってもよい。この場合、前記予測部は、推定された前記歩行者の姿勢をもとに、前記歩行者の動作を予測してもよい。
 これにより例えば歩行者との接触事故等を未然に防止することが可能となる。
 前記検出部は、前記入力画像から二輪車及びその運転者を検出可能であってもよい。この場合、前記推定部は、少なくとも前記運転者の姿勢を推定してもよい。また前記予測部は、前記推定された前記運転者の姿勢をもとに、前記二輪車及びその運転者の動作を予測してもよい。
 これにより例えば二輪車との接触事故等を未然に防止することが可能となる。
 前記推定部は、前記二輪車の姿勢を推定してもよい。この場合、前記予測部は、前記推定された前記二輪車及びその運転者の各々の姿勢をもとに、前記二輪車及びその運転者の動作を予測してもよい。
 これにより二輪車及びその運転者の動作を高精度に予測することができる。
 前記予測部は、前記推定された姿勢をもとに前記対象物体に関する特徴点を算出し、前記算出された特徴点の位置をもとに、前記対象物体の動作を予測してもよい。
 これにより対象物体の動作を容易に予測することができる。
 前記特徴点は、前記対象物体の重心点であってもよい。
 重心点の位置を用いることで対象物体の動作を高精度に予測することができる。
 前記検出部は、前記入力画像から二輪車及びその運転者を検出可能であってもよい。この場合、前記予測部は、前記特徴点として、前記運転者の重心点、又は前記二輪車及びその運転者の全体の重心点を算出してもよい。
 前記予測部は、前記推定された姿勢をもとに前記対象物体の路面との1以上の接触点を算出し、前記特徴点と前記1以上の接触点との相対的な位置関係をもとに、前記動作を予測してもよい。
 これにより対象物体の動作を高精度に予測することができる。
 前記予測部は、前記対象物体の移動方向を予測してもよい。
 これにより対象物体との接触事故等を未然に防止することができる。
 前記予測部は、前記対象物体の急加速を予測してもよい。
 これにより対象物体との接触事故等を未然に防止することができる。
 前記推定部は、前記検出された対象物体の骨格を推定してもよい。
 これにより対象物体の姿勢を高精度に推定することができる。
 前記情報処理装置は、移動体装置に搭載されるものであり、さらに、前記予測された前記対象物体の動作をもとに、前記移動体装置の運転に関する危険を回避するための危険回避情報を生成して出力する出力部を具備してもよい。
 これにより移動体装置の運転者の注意を喚起することが可能となり、歩行者等との接触事故等を防止することができる。
 前記出力部は、前記移動体装置と前記対象物体との接触の可能性を判定し、当該判定された可能性の情報を出力してもよい。
 これにより運転者の注意を喚起することが可能となり、歩行者等との接触事故等を防止することができる。
 前記予測部は、前記対象物体の移動方向を予測可能であってもよい。この場合、前記出力部は、前記予測された移動方向を含む画像を出力してもよい。
 これにより例えば移動体装置の経路に近づいてくる歩行者等に注意を向けさせることが可能となり、接触事故等を防止することが可能となる。
 前記出力部は、前記移動体装置と前記対象物体との接触の可能性がある危険領域を含む画像を出力してもよい。
 これにより例えば運転者は安全な経路等を容易に把握することが可能となる。
 本技術の一形態に係る情報処理方法は、コンピュータにより実行される情報処理方法であって、入力画像から対象物体を検出することを含む。
 前記検出された対象物体の姿勢が推定される。
 前記推定された姿勢をもとに前記対象物体の動作が予測される。
 本技術の一形態に係るプログラムは、コンピュータに以下のステップを実行させる。
 入力画像から対象物体を検出するステップ。
 前記検出された対象物体の姿勢を推定するステップ。
 前記推定された姿勢をもとに前記対象物体の動作を予測するステップ。
 以上のように、本技術によれば、有効な情報を提供して注意喚起を行うことが可能となる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
第1の実施形態に係る危険回避装置を搭載する移動体装置の一例としての自動車の構成例を示す外観図である。 図1に示す自動車の構成例を示すブロック図である。 危険回避装置の機能的な構成例を示すブロック図である。 骨格推定の一例を説明するための図である。 静止している状態の歩行者が所定の方向(紙面右方向)に歩き出す際の姿勢(骨格)を示す模式図である。 静止状態から歩き出す際の他のパターンの姿勢を示す模式図である。 直進している自転車及びその運転者が、所定の方向(紙面右方向)に方向転換する際の(骨格)を示す模式図である。 危険回避装置による処理例を示すフローチャートである。 歩行者及び自転車の移動方向の予測動作の一例を示すフローチャートである。 歩行者両足処理の一例を示すフローチャートである。 歩行者片足処理の一例を示すフローチャートである。 自転車処理の一例を示すフローチャートである。 警告出力部により出力される危険回避画像の一例を示す図である。 動作予測の他の実施形態を説明するための図である。 自転車及びその運転者の姿勢推定の他の実施形態を説明するための図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 <第1の実施形態>
 [自動車の構成]
 図1は、本技術の第1の実施形態に係る危険回避装置を搭載する移動体装置の一例としての自動車の構成例を示す外観図である。図2はそのブロック図である。
 図1に示すように、自動車100は、距離センサ10、フロントカメラ11、及び車内撮影カメラ12を有する。また図2に示すように、自動車100は、操舵装置15、制動装置16、車体加速装置17、舵角センサ20、車輪速センサ21、ブレーキスイッチ22、アクセルセンサ23、制御部30、表示装置35、及び危険回避装置40を有する。
 距離センサ10は、例えば自動車100のフロント部の略中央に設置され、自動車100とその移動方向に存在する物体との距離に関する情報を検出する。距離センサ10は、例えばミリ波レーダや赤外線レーザ等を用いた種々のセンサで構成される。
 フロントカメラ11は、例えば自動車100のキャビンまたはルーフ部に設置され、自動車100の前方視野を所定のフレームレートで撮影する。フロントカメラ11で撮影された撮影画像は制御部30を介して危険回避装置40へ出力され、自車の前方に存在する対象物体の動作が予測される。フロントカメラ11は、例えば、CMOSやCCD等のイメージセンサで構成される。
 図1に示すように、本実施形態では、対象物体1として、歩行者2と、自転車3及びその運転者4とを例に挙げて説明を行う。その他、バイク等の他の二輪車や自動三輪車等の運転者に対しても本技術は適用可能である。
 車内撮影カメラ12は、自動車100のキャビンに設置され、キャビン内部の様子を所定のフレームレートで撮影する。車内撮影カメラ12により撮影された画像により、例えば同乗者の有無やその乗車位置等が判定可能である。
 なお距離センサ10、フロントカメラ11及び車内撮影カメラ12は、それらの出力が図2に示すように制御部30へ供給される構成に代えて、危険回避装置40へ供給されるように構成されてもよい。
 操舵装置15は、典型的にはパワーステアリング装置で構成され、運転者のハンドル操作を操舵輪へ伝達する。制動装置16は、各車輪に取り付けられたブレーキ作動装置及びこれらを作動させる油圧回路を含み、各車輪の制動力を制御する。車体加速装置17は、スロットルバルブや燃料噴射装置等を含み、駆動輪の回転加速度を制御する。
 制御部30は、自動車100に搭載された各機構の動作を制御する。例えば制御部30は、運転者によるハンドルやアクセル等の操作をもとに、自動車100の制動、操舵、及び加速等を制御する。例えば制御部30は、運転者のハンドル操作を検出する舵角センサ20の出力に基づき、操舵量及び操舵方向を検出し、操舵装置15を制御する。
 また制御部30は、全車輪又は一部の車輪に設置された車輪速センサ21の出力に基づき、車両の車体速度を算出するとともに、車輪のロック(スリップ)が防止されるように制動装置16を制御する。さらに制御部30は、運転者のアクセルペダル操作量を検出するアクセルセンサ23の出力に基づき、車体加速装置17を制御する。
 ブレーキスイッチ22は、運転者のブレーキ操作(ブレーキペダルの踏み込み)を検出するためのもので、ABS制御等の際に参照される。
 制御部30は、操舵装置15、制動装置16、及び車体加速装置17を個別に制御する場合は勿論、これらの複数を協調制御してもよい。これにより、操舵(旋回)時、制動時、加速時等において、自動車100を所望とする姿勢に制御することが可能となる。
 また制御部30は、上述した運転者の各種操作とは無関係に、操舵装置15、制動装置16、及び車体加速装置17を制御することが可能に構成される。例えば、自動車100は自動運転機能を備えていてもよく、この場合、上記各センサやカメラの出力に基づき、制御部30が主体的に上記各装置を制御する。
 表示装置35は、例えば液晶やEL(Electro-Luminescence)等を用いた表示部を有し、地図情報やナビゲーション情報等を表示部に表示する。また表示装置35は、危険回避装置35から出力される危険回避画像を表示する。表示装置35としては、典型的には、カーナビゲーション装置が用いられる。またフロントガラス等の所定の位置に、AR(Augmented Reality:拡張現実)画像を表示させる装置が用いられてもよい。
 危険回避装置40は、後に詳しく説明するように、フロントカメラ11により撮影された画像から対象物体1を検出し、当該対象物体1の動作を予測する。すなわち撮影された時点から未来に向けての対象物体1の次の動作を予測する。例えば対象物体1の移動方向や急加速の有無等が予測可能である。
 危険回避装置40は、本実施形態に係る情報処理装置に相当し、例えばCPU、RAM、及びROM等のコンピュータに必要なハードウェアを有する。CPUがROMに予め記録されている本技術に係るプログラムをRAMにロードして実行することにより、本技術に係る危険回避方法(情報処理方法)が実行される。
 危険回避装置40の具体的な構成は限定されず、例えばFPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)、その他ASIC(Application Specific Integrated Circuit)等のデバイスが用いられてもよい。また危険回避装置40は、制御部30の一部として構成されてもよい。
 図3は、危険回避装置40の機能的な構成例を示すブロック図である。危険回避装置40は、画像取得部41、物体検出部42、姿勢推定部43、物体移動予測部44、自車移動予測部45、危険度判定部46、及び警告出力部47を有する。例えば危険回避装置40のCPUが所定のプログラムを実行することで、各機能ブロックが構成される。
 画像取得部41は、フロントカメラ11により撮影された画像を取得する(以下、当該画像を入力画像と記載する)。物体検出部42は、入力画像から歩行者2と、自転車3及びその運転者4とをそれぞれ検出する。歩行者2や自転車3の検出は、テンプレートマッチングや画像スキャニング等の、任意の画像解析技術により実行されてよい。
 姿勢推定部43は、検出された歩行者2及び運転者4の姿勢を推定する。姿勢推定部43は、パーツ推定部48及び骨格検出部49を有する。すなわち本実施形態では、歩行者2及び運転者4の骨格の位置をもとに姿勢が判定される。
 図4は、骨格推定の一例を説明するための図である。図4中の白丸50、これを結ぶ線51、及び頭部52により、歩行者2及び運転者4の各々の骨格が表現される。図4では、歩行者2及び運転者4の各々の重心点55と、路面Rに対する歩行者2及び自転車3の接地点56と、xy座標系が図示されている。これらは、歩行者2等の次の動作を予測する際に用いられる。
 骨格推定は、ボーン推定やスケルトン推定ともいわれ、周知の技術を用いて実行可能である。その一例を歩行者2を参照して説明すると、まず算出したい骨格のモデル、すなわち図4に示す白丸50の位置や数、それらを結ぶ線51等のモデルが予め設定される。
 骨格のモデルは、典型的には、人体の実際の骨格に準じて設定され、例えば頭、太もも、腰等の複数の主要パーツが設定され、当該パーツの重心点やパーツ間の関節部に白丸50が設定される。またパーツの位置に基づいて、白丸50を結ぶ線51が設定される。
 パーツ推定部48により、入力画像内の歩行者2の画像(部分画像)をもとに、入力画像内の歩行者2について、上記で設定された各パーツの位置が算出される。例えば種々の姿勢における各パーツの画像がテンプレート画像として記憶される。これらテンプレート画像と歩行者2の画像とをマッチングすることで、歩行者2の各パーツの位置を算出可能である。
 骨格検出部49により、算出された各パーツの位置をもとに、白丸50、線51、及び頭部52が設定されて、歩行者2の骨格が検出される。
 なお自動車100のフロント部にデプスセンサを搭載し、デプスセンサにより得られた歩行者2のデプス画像(距離画像)をもとに、機械学習で得られたパラメータを用いて、各パーツの位置を推定することも可能である。例えば歩行者2の画像内の画素が1つ選択され、当該画素を含む所定の領域のデプス情報(距離情報)が取得される。このデプス情報をもとに、上記パラメータを用いて、選択された画素がどのパーツに含まれるかが判定される。歩行者2の画像内の各画素について同じ処理が実行されることで、歩行者2の各パーツの位置を算出可能である。これにより歩行者2の骨格が推定される。
 デプス情報に代えて、画素のRGB情報が用いられてもよい。すなわち選択された画素の周囲のRGB情報をもとに、機械学習で得られたパラメータを用いて、選択画素が含まれるパーツを判定することが可能である。その他、ステレオカメラを用いた方法等、任意の技術により骨格推定が実行されてよい。なお自転車3の運転者4の骨格も同様に推定可能である。
 物体移動予測部44は、推定された姿勢、すなわち図4に示す骨格から、歩行者2及び自転車3に乗った運転者4の動作を予測する。なお対象物体1として自転車3及びその運転者4が検出された場合は、自転車3及びその運転者4の姿勢をもとに、自転車3及びその運転者4の動作を予測する。
 ここで自転車3及びその運転者4の姿勢は、例えば運転者4の姿勢や自転車3の各々の姿勢のいずれか、もしくは両方をもとに推定可能である。また自転車3及びその運転者4の次の動作とは、ハンドル操作やペダル操作等の運転者4の動作と、直進、カーブ、及び急発進等の自転車3の動作との両方を含む。以下、自転車3及びその運転者4の姿勢及び動作のことを、単に運転者4の姿勢や自転車3の動作等、運転者4又は自転車3のみを記載して説明する場合がある。
 自車移動予測部45は、自動車100の次の動作を予測する。典型的には、自車移動予測部45により、自動車100がこれから進む予測経路が算出される。例えば予測経路は、現状の車体速度、操舵量、操舵方向、又は駆動輪の回転加速度等から算出される。あるいはナビゲーション装置等に設定された目的地の情報、GPS等により取得した現在地情報、及び地図情報や道路交通情報等をもとに、予測経路が算出されてもよい。なお自動車100の他の動作が予測されてもよい。
 危険度判定部46は、物体移動予測部44により予測された対象物体1の動作と、自車移動予測部45により予測された予測経路等とをもとに、危険度を判定する。典型的には、歩行者1や自転車3(運転者4)と自動車100との間で接触事故や衝突事故等が起こる可能性が判定される。例えば予測された歩行者2等の移動方向の先に(延長上に)、自動車100の予測経路が重なる、あるいは非常に近接する場合には、危険度が高いと判定される。
 また予測された歩行者2等の移動方向等をもとに歩行者2等の予測経路が算出され、当該予測経路と自動車100の予測経路が重なる、あるいは非常に近接する場合に、危険度が高いと判定されてもよい。上記の歩行者2等の予測経路が、物体移動予測部44により算出されてもよい。
 また自転車3等の急加速が予測され、その急加速の方向が、自動車100の予測経路に向かう方向である場合に、危険度が高く判定されてもよい。なお自動車100が進むと予測される道路全体を予測経路として、上記と同様の危険度判定が実行されてもよい。
 予測経路に代えて、未来の所定のタイミング、典型的には撮影直後のタイミングにおける自動車100の位置、及び対象物体1の位置がそれぞれ予測され、危険度が判定されてもよい。
 警告出力部47は、判定された危険度をもとに、自動車100の運転に関する危険を回避するための危険回避情報を出力する。すなわち歩行者2等との接触事故等を回避するための情報が出力される。危険回避情報は、例えば画像や音声等により出力される。危険度判定部46及び警告出力部47により、本実施形態に係る出力部が実現される。
 [対象物体の動作予測]
 姿勢に基づいた次の動作の予測について詳しく説明する。例えば直進からの左右への方向転換、カーブ動作中の他の方向への転換、急発進や急停止等の静動の変化等、歩行者2や自転車3が取り得る動作として、種々の動作が考えられる。このような方向転換や急発進等の動作の切替え時、換言すると次の動作が開始する直前の歩行者2等の姿勢を検証する。そして種々の動作について、次の動作への切替え時の姿勢に関する特徴を抽出し、本実施形態に係る動作予測を実現する。
 そのために本発明者は、対象物体1の重心点55、及び路面Rとの接触点である接地点56に着目した。すなわち次の動作への切替え時に、重心点55の位置や、重心点55と接地点56との相対的な位置関係が変化することを見出した。この重心点55の位置の変化等を、次の動作への切替え時の姿勢に関する特徴として抽出し、以下に説明する本技術に係る動作予測を考案した。
 図5は、静止している状態の歩行者2が所定の方向(紙面右方向)に歩き出す際の姿勢(骨格)を示す模式図である。各姿勢において重心点55、左足FLと路面Rとの接地点56L、及び右足FRと路面Rとの接地点56Rが算出されている。なお各接地点56L及び56Rから鉛直方向に接地点ラインL1及びL2が設定されている。
 図5のP1は、歩行者2が両足で立ち静止している状態である。図5のP5は、右足FR(進行方向に対して後ろ足)を前に一歩踏み出した状態であり、歩き出しの状態である。図5のP2からP4は、静止状態から歩き出し状態への切替え時の姿勢であり、歩き出す直前の姿勢である。
 図5のP1では、重心点55が接地点ラインL1及びL2の間の領域に含まれる。なお接地点ラインL1上の位置及びL2上の位置も、上記の領域内とする。P2では、接地点ラインL1及びL2の間の領域内で、重心点55が右側、すなわち歩き出す方向に向けて移動する。P3では、右足FR(後ろ足)が上げられ、接地点56が1つになる。重心点55は、左足FL(前足)の接地点56L上、すなわち接地点ラインL1上と略等しい位置となる。
 図5のP4では、右足FRが進行方向に出されるとともに体重が移動され、重心点55が接地点ラインL1よりも右側(前方側)に移動する。P5では、右足FRが踏み出され、重心点55は接地点ラインL1及びL2の間の領域に含まれる。
 図6は、静止状態から歩き出す際の他のパターンの姿勢を示す模式図である。図6Aは、両足で立っている状態から進行方向(紙面右方向)に向けて姿勢を傾ける場合の図であり、重心点55が接地点ラインL1及びL2の間の領域から右側の外部に移動している。すなわち重心点55は進行方向に向けて、接地点ラインL1及びL2の間の領域から外れる。
 図6Bは、両足で立っている状態から左足(前足)を一歩踏み出す場合の図である。左足FLを路面Rから上げると接地点56は1つになり、重心点55は接地点ラインL2よりも右側に外れる。
 図6Cは、左足FLのみで立っている状態から進行方向(紙面右方向)に向けて姿勢を傾ける場合の図であり、重心点55は接地点ラインL1よりも右側に移動する。
 図5のP4、図6A-Cをもとに、発明者は、静止状態からの歩き出しに関して歩き出す直前の姿勢の特徴として、以下の点を見出した。
 接地点56が2つ(両足で立っている状態)であり、重心点55が接地点ラインL1及びL2の間の領域から外れている。この場合、重心点55が外れている側に向けて、歩行者2は歩き出す。
 接地点56が1つ(片足で立っている状態)であり、重心点55が接地点ライン(L1又はL2)上になく接地点ラインから外れている。この場合、重心点55が外れている側に向けて、歩行者2は歩き出す。
 なお上記では、紙面右方向に歩き出す場合を説明したが、紙面左方向に歩き出す場合も同様である。また静止状態からの歩き出しに限定されず、紙面垂直方向に沿って直進している歩行者2が左右に方向を転換する場合も、同様に予測可能である。
 図7は、直進している自転車3及びその運転者4が、所定の方向(紙面右方向)に方向転換する際の(骨格)を示す模式図である。各姿勢において重心点55、車輪3aと路面Rとの接地点56が算出されている。当該接地点56は、例えば入力画像から検出された自転車3の画像をもとに算出することが可能である。接地点56からは、鉛直方向に延在する接地点ラインLが設定されている。
 図7のP1は、自転車3が紙面垂直方向の手前側に向けて直進している状態である。P図7のP4は、ハンドル3bが右側、運転者4から見ると左側に切られた状態であり、方向を右方向に転換し始めた状態である。図7のP2からP3は、直進状態から方向を転換する状態への切替え時の姿勢であり、ハンドル3bを切る直前の姿勢である。
 図7のP1では、重心点55は、接地点ラインL上と略等しい位置となる。図のP2からP3にかけて、進行方向(紙面右方向)に向けて体重が移動され、重心点55が接地点ラインLよりも右側に移動する。P4のハンドル3bを切り始めた状態でも、重心点55は接地点ラインLよりも右側に位置している。
 図7のP2-P4をもとに、発明者は、自転車3の方向転換の直前の姿勢の特徴として、重心点55が接地点ラインLよりも進行方向に向けて外れているという点を見出した。なお左方向への転換も同様である。また紙面奥側に向けて直進している自転車3の方向転換も同様に予測可能である。
 図8は、危険回避装置40による処理例を示すフローチャートである。物体移動予測部44により、歩行者2及び自転車3(運転者4)の各々の移動方向が予測される(ステップ101)。自車移動予測部45により自動100の移動方向(予測経路)が予測される(ステップ102)。危険度判定部46により衝突等の危険度が判定され、警告出力部47により、危険回避情報が出力される(ステップ103)。
 図9は、歩行者2及び自転車3の移動方向の予測動作の一例を示すフローチャートである。まず物体検出部42により、歩行者2及び自転車3がそれぞれ検出される(ステップ201)。次に姿勢推定部43により、歩行者2及び自転車3の各々の姿勢が推定される(ステップ202)。
 歩行者2及び運転者4の各々の特徴点として、重心点55が算出される(ステップ203)。図4を参照して説明すると、重心点55の座標(xave,yave)は、以下の式により算出される。
Figure JPOXMLDOC01-appb-M000001
 なおパラメータは以下の通りである。
 N…骨格を推定する際に設定されたパーツの数
 Wi…各パーツの質量
 (xi,yi)…各パーツの位置座標
 W…歩行者及び運転者の総質量(=W1+・・・・+WN
 各パーツの質量Wi、及び総質量Wは、予め設定されている。例えば人体の各パーツの平均的な質量が用いられる。なお男性、女性、成人、子供等を区別して、各パーツの質量がそれぞれ記憶されていてもよい。例えば入力画像から歩行者2の種別が判定され、該当する各パーツの質量が読み出される。
 各パーツの位置座標は、姿勢推定により推定されたパーツの位置をもとに算出され、典型的には、各パーツの重心点の位置が用いられる。なお骨格を表す白丸51の位置座標をもとに、各パーツの位置座標が算出されてもよい。例えばパーツの両端の関節部分の白丸51の中心点が、当該パーツの位置座標として用いられてもよい。
 歩行者2等の路面Rとの接触点、すなわち接地点56が算出される(ステップ204)。歩行者2については、推定された骨格の最下点が接地点56として算出される。自転車3については、車輪3aの最下点が接地点56として算出される。
 検出された対象物体1が歩行者2であるか否か判定される(ステップ205)。対象物体1が歩行者2である場合には(ステップ205のYes)、歩行者2が両足で立っているか否か判定され(ステップ206)、Yesの場合は歩行者両足処理が実行される(ステップ207)。歩行者2が片足で立っている場合は(ステップ206のNo)、歩行者片足処理が実行される(ステップ208)。
 ステップ206にて対象物体1が歩行者2ではないと判定された場合には(No)、自転車処理が実行される(ステップ209)。
 図10は、歩行者両足処理の一例を示すフローチャートである。まず重心が両足の間にあるか、すなわち図5等に示す重心点55が接地点ラインL1及びL2の間の領域に含まれるか否か判定される(ステップ301)。重心が両足の間にある場合は(ステップ301のYes)、歩行者2は静止していると判定される(ステップ302)。
 なお過去の入力画像をもとに歩行者2の移動履歴がわかる場合等において、歩行者2がまっすぐ歩いている場合には、ステップ302にて、直進が継続されたと判定されてもよい。
 重心が両足の間に無い場合には(ステップ301のNo)、重心が両足よりも左側にあるか、すなわち重心点55が接地点ラインL1及びL2の間の領域に対して左側に外れているか否か判定される(ステップ303)。重心が左側に外れている場合は(ステップ303のYes)、歩行者2は左に曲がると判定される(ステップ304)。
 なおフロントカメラ11により歩行者2を撮影する方向から見ての左であり、すなわち自動車100の前方視野において歩行者2は左に方向を転換すると判定される。歩行者2が自動車100側に向けて歩いている場合には、歩行者2自身は右に曲がることになる。
 重心が右側に外れている場合は(ステップ303のNo)、歩行者2は右に曲がると判定される(ステップ305)。すなわち自動車100の前方視野において、歩行者2は右に方向を転換すると判定される。
 上記の処理を、座標を用いて表すと、以下のようになる。
 xground_r≦xave≦xground_lの場合は、静止状態と判定
 xave<xground_rの場合は、左方向に移動と判定
 xave>xground_lの場合は、右方向に移動と判定
 なおxground_l及びxground_rは、左右の足の接地点56L及び56Rの各々のx座標である。
 図11は、歩行者片足処理の一例を示すフローチャートである。まず重心が路面Rに立っている足の上にあるか、すなわち図5等に示す重心点55が接地点ライン(L1又はL2)上にあるか否か判定される(ステップ401)。なお重心点55が厳密に接地点ライン上に位置する場合に限定されず、接地点ラインと近接する場合に、重心が足の上にあると判定されてもよい。
 例えば接地点ラインを中心として、所定の幅(x方向での大きさ)を有し、y軸方向に延在する接地点領域が設定される。当該接地点領域内に重心点55が含まれる場合に、重心が足の上にあると判定される。
 重心が足の上にある場合には(ステップ401のYes)、歩行者2は静止していると判定される(ステップ402)。重心が足の上に無い場合には(ステップ401のNo)、重心が接地している足よりも左側にあるか、すなわち重心点55が接地点ライン(又は接地点領域)に対して左側に外れているか否か判定される(ステップ403)。重心が左側に外れている場合(ステップ403のYes)、歩行者2は左に曲がると判定される(ステップ404)。重心が右側に外れている場合は(ステップ403のNo)、歩行者2は右に曲がると判定される(ステップ405)。
 上記の処理を、座標を用いて表すと、以下のようになる。
 xave=xgroundの場合は、静止状態と判定
 xave<xgroundの場合は、左方向に移動と判定
 xave>xgroundの場合は、右方向に移動と判定
 なおxgroundは、片足の接地点(56L又は56R)のx座標である。また接地点領域が設定される場合には、接地点領域の最小x座標及び最大x座標を基準として判定が実行される。
 図12は、自転車処理の一例を示すフローチャートである。まず重心が車輪の接地点56の上にあるか、すなわち図7等に示す重心点55が接地点ラインL上にあるか否か判定される(ステップ501)。なお重心点55が厳密に接地点ラインL上に位置する場合に限定されず、接地点ラインLと近接する場合に、重心が接地点56上にあると判定されてもよい。すなわち上記した接地点領域が設定されてもよい。
 重心が接地点の上にある場合には(ステップ501のYes)、自転車3は直進していると判定される(ステップ502)。重心が接地点56の上に無い場合には(ステップ501のNo)、重心が接地点56よりも左側にあるか、すなわち重心点55が接地点ラインL1(又は接地点領域)に対して左側に外れているか否か判定される(ステップ503)。重心が左側に外れている場合(ステップ503のYes)、自転車3は左に曲がると判定される(ステップ504)。重心が右側に外れている場合は(ステップ503のNo)、自転車3は右に曲がると判定される(ステップ505)。
 上記の処理を、座標を用いて表すと、以下のようになる。
 xave=xgroundの場合は、静止状態と判定
 xave<xgroundの場合は、左方向に移動と判定
 xave>xgroundの場合は、右方向に移動と判定
 なおxgroundは、車輪の接地点56のx座標である。また接地点領域が設定される場合には、接地点領域の最小x座標及び最大x座標を基準として判定が実行される。
 このように対象物体1の重心点55の位置、及び重心点55と接地点56との相対的な位置関係に着目することで、対象物体1の動作を容易にまた高精度に予測することが可能である。
 図13は、警告出力部47により出力される危険回避情報としての危険回避画像の一例を示す図である。危険回避画像60は、各対象物体1の種別(歩行者2/自転車3)、各対象物体1との接触の可能性、各対象物体1の移動方向61、接触の可能性がある危険領域62、及び危険回避経路63が表示される。
 図13に示す例では、自転車3及びその運転者4の移動方向61として、右下斜め方向が表示されている。例えば歩行者2の移動方向61のように真横のみならず、斜め方向が移動方向61として算出されてもよい。例えば重心点55の位置や車輪の向き等をもとに、詳しい移動方向を算出可能である。
 なお車輪の向きは、入力画像から算出可能である。また後述する自転車3の骨格推定により算出することも可能である。また過去の入力画像をもとに算出可能な自転車の移動履歴が適宜利用されてもよい。
 危険領域62は、予測した移動方向61に沿って自転車3等が移動した場合に、自動車100と接触する可能性がある領域である。例えば歩行者2及び自転車3ごとに危険領域62のサイズが予め設定されており、自転車3等を中心に当該危険領域62が設定される。あるいは自転車3等の移動速度や加速等の予測に基づいて、動的に危険領域62が設定されてもよい。
 危険回避経路63は、衝突する可能性のある対象物体1ごとに表示される危険領域62を回避するルートを示す画像である。例えば自車移動予測部45により予測された予測経路を基準として、安全な回避経路63が算出される。危険回避経路63を算出するために、ナビゲーション情報や現在地情報、または道路情報等が適宜利用されてよい。
 危険回避画像60が表示されることで、自動車100の運転者に対して、衝突の可能性のある自転車3等に注意を向けさせることが可能となり、接触事故等を防止することが可能となる。また危険領域62や危険回避経路63が表示されることで、運転者は、安全な経路等を容易に把握することが可能となる。なお各対象物体1の移動方向や接触の可能性、危険回避経路63等が、音声により運転者に報知されてもよい。
 以上、本実施形態に係る危険回避装置40では、推定された姿勢をもとに歩行者2及び自転車3(運転者4)の動作を高精度の予測することができる。これにより事故等を防止するための有効な危険回避情報を自動車100の運転者等に提供して注意を喚起することが可能となる。この結果、例えば歩行者2や自転車3により急な方向転換等が行わる場合でも、接触事故等を未然に防止することができる。
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 例えば上記では、左右への方向転換を例にして、推定した姿勢をもとにした次の動作の予測について説明した。これに限定されず、種々の動作において、重心点の位置や接地点との相対的な位置関係に着目して、動作予測が行われてよい。
 図14は、動作予測の他の実施形態を説明するための図である。例えば歩行者2等が急加速する場合には、急加速する前に体の重心が下げられて体が屈められる場合が多い。すなわち図14のP1からP2にかけて示すように重心点55が下方に下げられ、P3にて一気に急加速される。この急加速前の姿勢の特徴に着目して、重心点55が下げられている場合には、急加速が行われると予測する。
 重心が下げられていると判定するために、重心点55の位置に代えて、あるいは加えて足の部分Fや背中の部分Bの骨格の位置が判定されてもよい。すなわち足が曲げられているか否か、あるいは背中を丸めて体を屈めているか否かが判定されてもよい。重心点55の左右の移動と組み合わせて判定することで、急加速する方向も予測可能である。これにより急に走り出す歩行者2や自転車3等との接触事故を防止することが可能となる。
 また重心点55と接地点56とを結ぶ直線の路面Rに対する傾斜角度が算出されてもよい。当該傾斜角度θは、例えば中心点55の座標(xave,yave)及び接地点56の座標(xground,yground)を用いて算出可能である。傾斜角度θが小さい場合には、体が十分に傾いていると判定し、急発進もしくは急な方向転換が行われると予測することが可能である。
 歩行者2の足の開きが大きい場合に、急発進もしくは急な方向転換を予測することも可能である。
 上でも述べたが、過去の入力画像から対象物体の動作の履歴を取得し、次の動作への予測に利用することで、高い精度で動作予測をすることが可能である。
 図15は、自転車3及びその運転者4の姿勢推定の他の実施形態を説明するための図である。図15に示すように、運転者4のみならず自転車3についても骨格が検出されてよい。例えば自転車3について予め複数のパーツが設定され、入力画像をもとに、自転車3の各パーツの位置が推定される。その際には、歩行者2や運転者4等の骨格推定と同様な技術が用いられてよい。
 自転車3の各パーツの位置が推定されれば、各パーツに対応して予め設定された白丸51及び線52が設定される。これにより自転車3の姿勢を推定することができる。推定された自転車3及び運転者4の各々の姿勢をもとに、自転車3及びその運転者4全体の姿勢が高精度に推定可能となる。
 次の動作の予測においては、自転車3及びその運転者4の全体の重心点95が算出される。また自転車3の骨格をもとに、その最下点が路面Rとの接地点56として検出される。これら重心点95及び接地点56をもとに、高精度に動作を予測することができる。例えば自転車3の車輪部分の白丸51a-51eをもとに、ハンドル3bの操舵量が推定可能となり、移動方向等を詳細に予測することが可能となる。また運転者4の姿勢と自転車3の姿勢との組み合わせをもとに、非常に精度の高い動作予測も可能となる。
 上記では、動作予測を実行するための特徴点として、対象物体の重心点が算出された。これに限定されず、特徴点として、頭部や腰部の重心点が用いられてもよい。
 左右のサイドカメラやリアカメラ等により撮影された撮影画像をもとに、自動車の左右や後方に存在する対象物体の動作が予測されてもよい。
 フロントカメラ等の各種カメラやセンサ、制動装置や操舵装置を含む自動車、及び本技術に係る危険回避装置を含むシステムは、本技術に係る危険回避システムの一実施形態に相当する。もちろんこれらの構成に限定されるわけではない。
 本技術は、自動車ばかりでなく、二輪車や自動三輪車等の種々の移動体装置に適用可能であり、またそれらのシミュレーション装置やゲームなどの様々な技術分野にも適用可能である。また本技術は、移動体装置に適用される場合にのみならず、監視システム等にも適用可能である。例えば橋の上や駅のホーム等を歩く歩行者等の動作を予測して、転落等の危険がある場合に、本人や周囲の人に報知するといったことも可能である。
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。
 なお、本技術は以下のような構成も採ることができる。
(1)入力画像から対象物体を検出する検出部と、
 前記検出された対象物体の姿勢を推定する推定部と、
 前記推定された姿勢をもとに前記対象物体の動作を予測する予測部と
 を具備する情報処理装置。
(2)(1)に記載の情報処理装置であって、
 前記検出部は、前記入力画像から歩行者を検出可能であり、
 前記予測部は、推定された前記歩行者の姿勢をもとに、前記歩行者の動作を予測する
 情報処理装置。
(3)(1)又は(2)に記載の情報処理装置であって、
 前記検出部は、前記入力画像から二輪車及びその運転者を検出可能であり、
 前記推定部は、少なくとも前記運転者の姿勢を推定し、
 前記予測部は、前記推定された前記運転者の姿勢をもとに、前記二輪車及びその運転者の動作を予測する
 情報処理装置。
(4)(3)に記載の情報処理装置であって、
 前記推定部は、前記二輪車の姿勢を推定し、
 前記予測部は、前記推定された前記二輪車及びその運転者の各々の姿勢をもとに、前記二輪車及びその運転者の動作を予測する
 情報処理装置。
(5)(1)から(4)のうちいずれか1つに記載の情報処理装置であって、
 前記予測部は、前記推定された姿勢をもとに前記対象物体に関する特徴点を算出し、前記算出された特徴点の位置をもとに、前記対象物体の動作を予測する
 情報処理装置。
(6)(5)に記載の情報処理装置であって、
 前記特徴点は、前記対象物体の重心点である
 情報処理装置。
(7)(5)に記載の情報処理装置であって、
 前記検出部は、前記入力画像から二輪車及びその運転者を検出可能であり、
 前記予測部は、前記特徴点として、前記運転者の重心点、又は前記二輪車及びその運転者の全体の重心点を算出する
 情報処理装置。
(8)(5)から(7)のうちいずれか1つに記載の情報処理装置であって、
 前記予測部は、前記推定された姿勢をもとに前記対象物体の路面との1以上の接触点を算出し、前記特徴点と前記1以上の接触点との相対的な位置関係をもとに、前記動作を予測する
 情報処理装置。
(9)(1)から(8)のうちいずれか1つに記載の情報処理装置であって、
 前記予測部は、前記対象物体の移動方向を予測する
 情報処理装置。
(10)(1)から(9)のうちいずれか1つに記載の情報処理装置であって、
 前記予測部は、前記対象物体の急加速を予測する
 情報処理装置。
(11)(1)から(10)のうちいずれか1つに記載の情報処理装置であって、
 前記推定部は、前記検出された対象物体の骨格を推定する
 情報処理装置。
(12)(1)から(11)のうちいずれか1つに記載の情報処理装置であって、
 前記情報処理装置は、移動体装置に搭載されるものであり、さらに、前記予測された前記対象物体の動作をもとに、前記移動体装置の運転に関する危険を回避するための危険回避情報を生成して出力する出力部を具備する
 情報処理装置。
(13)(12)に記載の情報処理装置であって、
 前記出力部は、前記移動体装置と前記対象物体との接触の可能性を判定し、当該判定された可能性の情報を出力する
 情報処理装置。
(14)(12)又は(13)に記載の情報処理装置であって、
 前記予測部は、前記対象物体の移動方向を予測可能であり、
 前記出力部は、前記予測された移動方向を含む画像を出力する
 情報処理装置。
(15)(12)から(14)のうちいずれか1つに記載の情報処理装置であって、
 前記出力部は、前記移動体装置と前記対象物体との接触の可能性がある危険領域を含む画像を出力する
 情報処理装置。
 R…路面
 L、L1、L2…接地点ライン
 1…対象物体
 2…歩行者
 3…自転車
 4…自転車の運転者
 40…危険回避装置
 41…画像取得部
 42…物体検出部
 43…姿勢推定部
 44…物体移動予測部
 45…自車移動予測部
 46…危険度判定部
 47…警告出力部
 55、95…重心点
 56、56L、56R…接地点
 60…警告画像
 61…移動方向
 62…危険領域
 63…危険回避経路
 100…自動車

Claims (17)

  1.  入力画像から対象物体を検出する検出部と、
     前記検出された対象物体の姿勢を推定する推定部と、
     前記推定された姿勢をもとに前記対象物体の動作を予測する予測部と
     を具備する情報処理装置。
  2.  請求項1に記載の情報処理装置であって、
     前記検出部は、前記入力画像から歩行者を検出可能であり、
     前記予測部は、推定された前記歩行者の姿勢をもとに、前記歩行者の動作を予測する
     情報処理装置。
  3.  請求項1に記載の情報処理装置であって、
     前記検出部は、前記入力画像から二輪車及びその運転者を検出可能であり、
     前記推定部は、少なくとも前記運転者の姿勢を推定し、
     前記予測部は、前記推定された前記運転者の姿勢をもとに、前記二輪車及びその運転者の動作を予測する
     情報処理装置。
  4.  請求項3に記載の情報処理装置であって、
     前記推定部は、前記二輪車の姿勢を推定し、
     前記予測部は、前記推定された前記二輪車及びその運転者の各々の姿勢をもとに、前記二輪車及びその運転者の動作を予測する
     情報処理装置。
  5.  請求項1に記載の情報処理装置であって、
     前記予測部は、前記推定された姿勢をもとに前記対象物体に関する特徴点を算出し、前記算出された特徴点の位置をもとに、前記対象物体の動作を予測する
     情報処理装置。
  6.  請求項5に記載の情報処理装置であって、
     前記特徴点は、前記対象物体の重心点である
     情報処理装置。
  7.  請求項5に記載の情報処理装置であって、
     前記検出部は、前記入力画像から二輪車及びその運転者を検出可能であり、
     前記予測部は、前記特徴点として、前記運転者の重心点、又は前記二輪車及びその運転者の全体の重心点を算出する
     情報処理装置。
  8.  請求項5に記載の情報処理装置であって、
     前記予測部は、前記推定された姿勢をもとに前記対象物体の路面との1以上の接触点を算出し、前記特徴点と前記1以上の接触点との相対的な位置関係をもとに、前記動作を予測する
     情報処理装置。
  9.  請求項1に記載の情報処理装置であって、
     前記予測部は、前記対象物体の移動方向を予測する
     情報処理装置。
  10.  請求項1に記載の情報処理装置であって、
     前記予測部は、前記対象物体の急加速を予測する
     情報処理装置。
  11.  請求項1に記載の情報処理装置であって、
     前記推定部は、前記検出された対象物体の骨格を推定する
     情報処理装置。
  12.  請求項1に記載の情報処理装置であって、
     前記情報処理装置は、移動体装置に搭載されるものであり、さらに、前記予測された前記対象物体の動作をもとに、前記移動体装置の運転に関する危険を回避するための危険回避情報を生成して出力する出力部を具備する
     情報処理装置。
  13.  請求項12に記載の情報処理装置であって、
     前記出力部は、前記移動体装置と前記対象物体との接触の可能性を判定し、当該判定された可能性の情報を出力する
     情報処理装置。
  14.  請求項12に記載の情報処理装置であって、
     前記予測部は、前記対象物体の移動方向を予測可能であり、
     前記出力部は、前記予測された移動方向を含む画像を出力する
     情報処理装置。
  15.  請求項12に記載の情報処理装置であって、
     前記出力部は、前記移動体装置と前記対象物体との接触の可能性がある危険領域を含む画像を出力する
     情報処理装置。
  16.  入力画像から対象物体を検出し、
     前記検出された対象物体の姿勢を推定し、
     前記推定された姿勢をもとに前記対象物体の動作を予測する
     ことをコンピュータが実行する情報処理方法。
  17.  入力画像から対象物体を検出するステップと、
     前記検出された対象物体の姿勢を推定するステップと、
     前記推定された姿勢をもとに前記対象物体の動作を予測するステップと
     をコンピュータに実行させるプログラム。
PCT/JP2016/003877 2015-09-29 2016-08-25 情報処理装置、情報処理方法、及びプログラム WO2017056382A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16850565.9A EP3358546A4 (en) 2015-09-29 2016-08-25 INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, AND PROGRAM
US15/760,380 US10949656B2 (en) 2015-09-29 2016-08-25 Information processing apparatus and information processing method
CN201680055031.4A CN108028021B (zh) 2015-09-29 2016-08-25 信息处理设备、信息处理方法和程序
JP2017542692A JP6919567B2 (ja) 2015-09-29 2016-08-25 情報処理装置、情報処理方法、及びプログラム
US17/172,263 US11915522B2 (en) 2015-09-29 2021-02-10 Information processing apparatus and information processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-191187 2015-09-29
JP2015191187 2015-09-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/760,380 A-371-Of-International US10949656B2 (en) 2015-09-29 2016-08-25 Information processing apparatus and information processing method
US17/172,263 Continuation US11915522B2 (en) 2015-09-29 2021-02-10 Information processing apparatus and information processing method

Publications (1)

Publication Number Publication Date
WO2017056382A1 true WO2017056382A1 (ja) 2017-04-06

Family

ID=58423168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003877 WO2017056382A1 (ja) 2015-09-29 2016-08-25 情報処理装置、情報処理方法、及びプログラム

Country Status (5)

Country Link
US (2) US10949656B2 (ja)
EP (1) EP3358546A4 (ja)
JP (1) JP6919567B2 (ja)
CN (1) CN108028021B (ja)
WO (1) WO2017056382A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187864A (ja) * 2016-04-01 2017-10-12 株式会社デンソー 車両制御装置、車両制御方法
WO2018190362A1 (ja) * 2017-04-12 2018-10-18 日立オートモティブシステムズ株式会社 車両周囲の歩行者を検出する方法及び装置
WO2019116099A1 (en) * 2017-12-13 2019-06-20 Humanising Autonomy Limited Systems and methods for predicting pedestrian intent
JP2020003936A (ja) * 2018-06-26 2020-01-09 株式会社デンソー 車両制御方法、車両制御システム、及び車両制御装置
WO2020020594A1 (de) * 2018-07-27 2020-01-30 Zf Friedrichshafen Ag Verfahren zur ausgabe eines signals in abhängigkeit von einem beschleunigungssignal sowie steuergerät zur ausgabe eines signals in abhängigkeit von einem beschleunigungssignal
WO2020194391A1 (ja) * 2019-03-22 2020-10-01 connectome.design株式会社 事故予測率算出コンピュータ、方法及びプログラム
JP2021068014A (ja) * 2019-10-18 2021-04-30 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
EP3754608A4 (en) * 2018-08-01 2021-08-18 Tencent Technology (Shenzhen) Company Limited TRACKING, COMPUTER DEVICE, AND STORAGE MEDIUM
WO2022269722A1 (ja) * 2021-06-21 2022-12-29 日本電信電話株式会社 描画動作予測装置、方法およびプログラム
WO2023095196A1 (ja) * 2021-11-24 2023-06-01 日本電気株式会社 乗客監視装置、乗客監視方法、及び非一時的なコンピュータ可読媒体
WO2023135781A1 (ja) * 2022-01-17 2023-07-20 日本電気株式会社 転倒検出装置、システム及び方法、並びに、コンピュータ可読媒体
WO2024075206A1 (ja) * 2022-10-05 2024-04-11 日本電信電話株式会社 ピックアンドプレース動作予測装置、予測方法、および予測プログラム
JP7480302B2 (ja) 2019-12-27 2024-05-09 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 交通弱者の意図を予測する方法および装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180065585A (ko) * 2016-12-08 2018-06-18 현대자동차주식회사 차량 및 그 제어방법
JP6796798B2 (ja) * 2017-01-23 2020-12-09 パナソニックIpマネジメント株式会社 イベント予測システム、イベント予測方法、プログラム、及び移動体
KR102624560B1 (ko) * 2017-01-31 2024-01-15 엘지전자 주식회사 청소기
JP6852534B2 (ja) * 2017-04-12 2021-03-31 アイシン精機株式会社 障害物検知報知装置、方法及びプログラム
EP3598259B1 (en) * 2018-07-19 2021-09-01 Panasonic Intellectual Property Management Co., Ltd. Information processing method and information processing system
KR20200017917A (ko) * 2018-08-10 2020-02-19 현대자동차주식회사 차량 및 그 제어 방법
FR3088279B1 (fr) 2018-11-12 2021-01-22 Alstom Transp Tech Procede d'envoi d'une information a un individu situe dans l'environnement d'un vehicule
CN109859527A (zh) * 2019-01-30 2019-06-07 杭州鸿泉物联网技术股份有限公司 一种非机动车转弯预警方法及装置
US10825196B2 (en) * 2019-02-15 2020-11-03 Universal City Studios Llc Object orientation detection system
CN111599214B (zh) * 2019-03-04 2020-12-15 安徽省华腾农业科技有限公司经开区分公司 交通路口动态大数据更新方法及存储介质
EP3996066A4 (en) * 2019-07-05 2023-05-03 Hitachi Astemo, Ltd. OBJECT IDENTIFICATION DEVICE
KR20210026248A (ko) * 2019-08-29 2021-03-10 현대자동차주식회사 차량 사고 통보 장치, 그를 포함한 시스템 및 그 방법
DE102019220009A1 (de) * 2019-12-18 2021-06-24 Conti Temic Microelectronic Gmbh Verfahren zur Erkennung von Verkehrsteilnehmern
US11535245B2 (en) * 2020-05-08 2022-12-27 The Boeing Company Systems and methods for reducing a severity of a collision
JP7347405B2 (ja) * 2020-11-30 2023-09-20 トヨタ自動車株式会社 運転支援システム
US11127131B1 (en) * 2021-02-22 2021-09-21 Marc Michael Thomas Systems and methods to assess abilities of two or more individuals to perform collective physical acts
CN113226885A (zh) * 2021-05-27 2021-08-06 华为技术有限公司 一种目标车辆转向意图的确定方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279808A (ja) * 2006-04-03 2007-10-25 Honda Motor Co Ltd 車両周辺監視装置
JP2010165003A (ja) * 2009-01-13 2010-07-29 Toyota Central R&D Labs Inc 歩行者認識支援装置および歩行者認識支援方法
JP2012118741A (ja) * 2010-11-30 2012-06-21 Toyota Central R&D Labs Inc 可動物の目標状態決定装置及びプログラム
JP2012226437A (ja) * 2011-04-15 2012-11-15 Toyota Motor Corp 運転支援装置
WO2012172629A1 (ja) * 2011-06-13 2012-12-20 トヨタ自動車株式会社 歩行者動作予測装置
WO2013042260A1 (ja) * 2011-09-22 2013-03-28 トヨタ自動車株式会社 運転支援装置
JP2013232080A (ja) * 2012-04-27 2013-11-14 Denso Corp 対象物識別装置
JP2014067269A (ja) * 2012-09-26 2014-04-17 Denso Corp 検出装置
WO2016092650A1 (ja) * 2014-12-10 2016-06-16 三菱電機株式会社 画像処理装置及び車載表示システム及び表示装置及び画像処理方法及び画像処理プログラム
WO2016098238A1 (ja) * 2014-12-19 2016-06-23 株式会社日立製作所 走行制御装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894714B2 (en) * 2000-12-05 2005-05-17 Koninklijke Philips Electronics N.V. Method and apparatus for predicting events in video conferencing and other applications
EP1504276B1 (en) * 2002-05-03 2012-08-08 Donnelly Corporation Object detection system for vehicle
JP4650327B2 (ja) * 2005-04-14 2011-03-16 トヨタ自動車株式会社 同軸二輪車
US7671725B2 (en) * 2006-03-24 2010-03-02 Honda Motor Co., Ltd. Vehicle surroundings monitoring apparatus, vehicle surroundings monitoring method, and vehicle surroundings monitoring program
JP4947414B2 (ja) * 2007-03-27 2012-06-06 株式会社エクォス・リサーチ 車両
US7831391B2 (en) * 2007-06-12 2010-11-09 Palo Alto Research Center Incorporated Using segmented cones for fast, conservative assessment of collision risk
ATE523864T1 (de) * 2007-09-20 2011-09-15 Delphi Tech Inc Verfahren zur objektverfolgung
JP2009122854A (ja) 2007-11-13 2009-06-04 Aisin Aw Co Ltd 注意喚起システム及びプログラム
WO2011026257A1 (zh) * 2009-09-03 2011-03-10 Yang Changming 利用织品感测器的步态分析系统及方法
JP5251800B2 (ja) * 2009-09-16 2013-07-31 株式会社豊田中央研究所 対象物追跡装置及びプログラム
TWI478835B (zh) * 2010-02-08 2015-04-01 Hon Hai Prec Ind Co Ltd 車輛防撞監控系統及方法
FR2964055B1 (fr) * 2010-08-27 2012-08-17 Aldebaran Robotics S A Robot humanoide dote de capacites de gestion de chutes et methode de gestion desdites chutes
JP5666987B2 (ja) * 2011-05-25 2015-02-12 株式会社デンソー 移動物体検出装置
JP5663411B2 (ja) * 2011-06-14 2015-02-04 本田技研工業株式会社 測距装置
JP5786947B2 (ja) 2011-09-20 2015-09-30 トヨタ自動車株式会社 歩行者行動予測装置および歩行者行動予測方法
CN103197671A (zh) * 2012-01-04 2013-07-10 中国人民解放军第二炮兵工程学院 一种仿人机器人步态规划及合成方法
US8903163B2 (en) * 2012-08-09 2014-12-02 Trimble Navigation Limited Using gravity measurements within a photogrammetric adjustment
JP5863607B2 (ja) 2012-09-07 2016-02-16 オートリブ ディベロップメント エービー 歩行者警告装置
KR101454153B1 (ko) * 2013-09-30 2014-11-03 국민대학교산학협력단 가상차선과 센서 융합을 통한 무인 자율주행 자동차의 항법시스템
KR101498114B1 (ko) * 2013-11-28 2015-03-05 현대모비스 주식회사 보행자를 검출하는 영상 처리 장치 및 그 방법
US10220569B2 (en) * 2013-12-03 2019-03-05 Autodesk, Inc. Generating support material for three-dimensional printing
JP5910647B2 (ja) * 2014-02-19 2016-04-27 トヨタ自動車株式会社 移動ロボットの移動制御方法
CN104865961B (zh) * 2014-02-24 2019-08-27 联想(北京)有限公司 控制方法、装置及电子设备
CN103886287B (zh) * 2014-03-12 2017-02-22 暨南大学 一种基于3d投影的跨视角步态识别方法
US20150336575A1 (en) * 2014-05-21 2015-11-26 GM Global Technology Operations LLC Collision avoidance with static targets in narrow spaces
GB201501510D0 (en) * 2015-01-29 2015-03-18 Apical Ltd System
US9836056B2 (en) * 2015-06-05 2017-12-05 Bao Tran Smart vehicle
KR102313026B1 (ko) * 2017-04-11 2021-10-15 현대자동차주식회사 차량 및 차량 후진 시 충돌방지 보조 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279808A (ja) * 2006-04-03 2007-10-25 Honda Motor Co Ltd 車両周辺監視装置
JP2010165003A (ja) * 2009-01-13 2010-07-29 Toyota Central R&D Labs Inc 歩行者認識支援装置および歩行者認識支援方法
JP2012118741A (ja) * 2010-11-30 2012-06-21 Toyota Central R&D Labs Inc 可動物の目標状態決定装置及びプログラム
JP2012226437A (ja) * 2011-04-15 2012-11-15 Toyota Motor Corp 運転支援装置
WO2012172629A1 (ja) * 2011-06-13 2012-12-20 トヨタ自動車株式会社 歩行者動作予測装置
WO2013042260A1 (ja) * 2011-09-22 2013-03-28 トヨタ自動車株式会社 運転支援装置
JP2013232080A (ja) * 2012-04-27 2013-11-14 Denso Corp 対象物識別装置
JP2014067269A (ja) * 2012-09-26 2014-04-17 Denso Corp 検出装置
WO2016092650A1 (ja) * 2014-12-10 2016-06-16 三菱電機株式会社 画像処理装置及び車載表示システム及び表示装置及び画像処理方法及び画像処理プログラム
WO2016098238A1 (ja) * 2014-12-19 2016-06-23 株式会社日立製作所 走行制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3358546A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187864A (ja) * 2016-04-01 2017-10-12 株式会社デンソー 車両制御装置、車両制御方法
WO2018190362A1 (ja) * 2017-04-12 2018-10-18 日立オートモティブシステムズ株式会社 車両周囲の歩行者を検出する方法及び装置
CN108694363A (zh) * 2017-04-12 2018-10-23 日立汽车系统株式会社 对车辆周围的行人进行检测的方法和装置
JPWO2018190362A1 (ja) * 2017-04-12 2020-01-16 日立オートモティブシステムズ株式会社 車両周囲の歩行者を検出する方法及び装置
WO2019116099A1 (en) * 2017-12-13 2019-06-20 Humanising Autonomy Limited Systems and methods for predicting pedestrian intent
US10913454B2 (en) 2017-12-13 2021-02-09 Humanising Autonomy Limited Systems and methods for predicting pedestrian intent
JP2021507434A (ja) * 2017-12-13 2021-02-22 ヒューマニシング オートノミー リミテッド 歩行者の意図を予測するためのシステムおよび方法
JP2020003936A (ja) * 2018-06-26 2020-01-09 株式会社デンソー 車両制御方法、車両制御システム、及び車両制御装置
WO2020020594A1 (de) * 2018-07-27 2020-01-30 Zf Friedrichshafen Ag Verfahren zur ausgabe eines signals in abhängigkeit von einem beschleunigungssignal sowie steuergerät zur ausgabe eines signals in abhängigkeit von einem beschleunigungssignal
US11961242B2 (en) 2018-08-01 2024-04-16 Tencent Technology (Shenzhen) Company Limited Target tracking method, computer device, and storage medium
EP3754608A4 (en) * 2018-08-01 2021-08-18 Tencent Technology (Shenzhen) Company Limited TRACKING, COMPUTER DEVICE, AND STORAGE MEDIUM
WO2020194391A1 (ja) * 2019-03-22 2020-10-01 connectome.design株式会社 事故予測率算出コンピュータ、方法及びプログラム
JP2021068014A (ja) * 2019-10-18 2021-04-30 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7236979B2 (ja) 2019-10-18 2023-03-10 本田技研工業株式会社 車両制御装置、および車両制御方法
US11628862B2 (en) 2019-10-18 2023-04-18 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and storage medium
JP7480302B2 (ja) 2019-12-27 2024-05-09 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 交通弱者の意図を予測する方法および装置
WO2022269722A1 (ja) * 2021-06-21 2022-12-29 日本電信電話株式会社 描画動作予測装置、方法およびプログラム
WO2023095196A1 (ja) * 2021-11-24 2023-06-01 日本電気株式会社 乗客監視装置、乗客監視方法、及び非一時的なコンピュータ可読媒体
WO2023135781A1 (ja) * 2022-01-17 2023-07-20 日本電気株式会社 転倒検出装置、システム及び方法、並びに、コンピュータ可読媒体
WO2024075206A1 (ja) * 2022-10-05 2024-04-11 日本電信電話株式会社 ピックアンドプレース動作予測装置、予測方法、および予測プログラム

Also Published As

Publication number Publication date
US11915522B2 (en) 2024-02-27
JP6919567B2 (ja) 2021-08-18
CN108028021A (zh) 2018-05-11
US20180253595A1 (en) 2018-09-06
EP3358546A1 (en) 2018-08-08
EP3358546A4 (en) 2019-05-01
US10949656B2 (en) 2021-03-16
JPWO2017056382A1 (ja) 2018-08-09
US20210166007A1 (en) 2021-06-03
CN108028021B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2017056382A1 (ja) 情報処理装置、情報処理方法、及びプログラム
US10589752B2 (en) Display system, display method, and storage medium
US11008016B2 (en) Display system, display method, and storage medium
US10131276B2 (en) Vehicle sightline guidance apparatus
EP3366540B1 (en) Information processing apparatus and non-transitory computer-readable recording medium
US8538629B2 (en) Bottleneck light and method of assisting a driver in steering a vehicle
US11524705B2 (en) Vehicle control system
JP7168509B2 (ja) 車両制御システム
KR20200016958A (ko) 주차 지원 방법 및 주차 지원 장치
US11772614B2 (en) Drive assistance device for saddle type vehicle
WO2017056385A1 (ja) 情報処理装置、情報処理方法、及びプログラム
JP5516988B2 (ja) 駐車支援装置
US11760380B2 (en) Vehicle control system
WO2017056381A1 (ja) 被害低減装置、被害低減方法、及びプログラム
US11377150B2 (en) Vehicle control apparatus, vehicle, and control method
US11679834B2 (en) Driving assistance device for saddle type vehicle
JP2019064301A (ja) 車両の制御装置及び車両の制御方法
JP2019053388A (ja) 運転支援表示方法及び運転支援表示装置
US11981323B2 (en) Drive assistance device for saddle type vehicle
WO2023194794A1 (ja) 情報提供装置及び情報提供方 法
WO2024043277A1 (ja) 周辺監視装置
JP7039503B2 (ja) 障害物報知装置および障害物報知方法
US20220169239A1 (en) Drive assistance device for saddle type vehicle
JP2019066919A (ja) 車両の制御装置及び車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542692

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760380

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE