WO2017051535A1 - 方向性電磁鋼板およびその製造方法 - Google Patents

方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2017051535A1
WO2017051535A1 PCT/JP2016/004311 JP2016004311W WO2017051535A1 WO 2017051535 A1 WO2017051535 A1 WO 2017051535A1 JP 2016004311 W JP2016004311 W JP 2016004311W WO 2017051535 A1 WO2017051535 A1 WO 2017051535A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
coating
grain
oriented electrical
electrical steel
Prior art date
Application number
PCT/JP2016/004311
Other languages
English (en)
French (fr)
Inventor
渡辺 誠
高宮 俊人
龍一 末廣
敬 寺島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202211253182.4A priority Critical patent/CN115627332A/zh
Priority to EP16848326.1A priority patent/EP3354768B1/en
Priority to MX2018003517A priority patent/MX2018003517A/es
Priority to US15/750,264 priority patent/US20180230565A1/en
Priority to KR1020187010303A priority patent/KR102070129B1/ko
Priority to CN201680054447.4A priority patent/CN108026644A/zh
Priority to RU2018113757A priority patent/RU2689170C1/ru
Publication of WO2017051535A1 publication Critical patent/WO2017051535A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet capable of suppressing deterioration of magnetic characteristics when processed into a transformer, and a method for manufacturing the grain-oriented electrical steel sheet.
  • a surface coating (hereinafter also referred to as coating) is applied in order to provide insulation, workability, rust prevention, and the like.
  • a coating include a phosphate-based topcoat film formed on a base film mainly composed of forsterite formed during final finish annealing in the production process of a grain-oriented electrical steel sheet. Since such a coating is formed at a high temperature and the coefficient of thermal expansion is low, when the temperature is lowered to room temperature after film formation, the difference in the coefficient of thermal expansion between the steel sheet (base steel sheet) and the coating results in the steel sheet. It has the effect of imparting tension and reducing iron loss.
  • Patent Document 1 discloses a coating formed by applying a coating treatment liquid mainly composed of magnesium phosphate, colloidal silica, and chromic anhydride to the surface of a steel sheet and baking it.
  • Patent Document 2 discloses a coating formed by applying a coating treatment liquid mainly composed of aluminum phosphate, colloidal silica, and chromic anhydride to the surface of a steel sheet and baking it.
  • the grain-oriented electrical steel sheet provided with the coating described in Patent Documents 1 and 2 has a problem that iron loss deteriorates when this is processed into a transformer iron core.
  • a method of improving the iron loss for example, a method of improving the iron loss by applying a large film tension to the steel plate as in Patent Document 3 or a precipitate in the steel plate as much as possible of Patent Document 4 is used.
  • a method of reducing and preventing iron loss deterioration due to strain relief annealing is disclosed.
  • Patent Documents 3 and 4 do not suppress the deterioration of the iron loss when the steel plate is processed into the iron core of the transformer as described above. For this reason, at present, it is desired to effectively suppress the deterioration of the iron loss when the grain-oriented electrical steel sheet is processed into the iron core of the transformer.
  • the present invention has been developed in view of the above-mentioned present situation, and a magnetic property when processing a directional electromagnetic steel sheet into a core of a transformer, particularly a directional electromagnetic steel sheet capable of suppressing deterioration of iron loss, It is intended to provide with an advantageous manufacturing method.
  • the present inventors have conducted intensive studies to achieve the above object.
  • the present inventors investigated and examined the cause of the large deterioration of iron loss of grain-oriented electrical steel sheets when processed into a transformer core.
  • the processing strain generated by rolling the grain-oriented electrical steel sheet with a measuring roll is the main factor of the above-described iron loss deterioration. That is, when processing a directional electrical steel sheet as a transformer core, the strip coil (steel sheet) is passed through a length measuring roll called a measuring roll, and then cut to a certain length with a shear, Assemble the iron core of the transformer by stacking the cut steel plates.
  • a measuring roll is made of a hard metal material.
  • the measuring length of the measuring roll is out of order when slip occurs between the measuring roll and the steel plate.
  • the strip coil is squeezed with a strong pressure by the measuring roll.
  • a processing strain may be introduced into the strip coil, and this processing strain deteriorates magnetic characteristics, particularly iron loss.
  • the inventors have further studied to suppress the deterioration of the iron loss due to the introduction of such processing strain.
  • the properties of the coating formed by baking on the surface of the grain-oriented electrical steel sheet, especially the composite elastic modulus and film thickness of the coating, and the tension applied to the steel sheet it is strongly reduced by a measuring roll.
  • the introduction of processing strain into the steel sheet can be suppressed and deterioration of iron loss can be effectively suppressed.
  • the present invention was completed after further studies based on the above findings.
  • the gist configuration of the present invention is as follows. 1.
  • a grain-oriented electrical steel sheet having a coating on the surface, The coating satisfies a composite elastic modulus: 60 to 95 GPa, a film thickness: 1.0 ⁇ m or more, and a tension applied to the grain-oriented electrical steel sheet: 6.0 MPa or more, and the grain-oriented electrical steel sheet has a linear pressure: 68.6 N /
  • a grain-oriented electrical steel sheet in which the amount of deterioration of iron loss before and after roll reduction in rolls in cm is 0.010 W / kg or less at W 17/50 .
  • a method for producing the grain-oriented electrical steel sheet according to 1 above A step of applying a coating treatment liquid to the directionally annealed grain-oriented electrical steel sheet; A step of performing planarization annealing also serving as baking of the coating on the directionally annealed grain-oriented electrical steel sheet coated with the coating treatment liquid; and
  • the coating treatment liquid contains at least one phosphate of Mg, Al, Ca and Sr, and the colloidal silica in terms of solid content with respect to 100 parts by mass of the phosphate. 50 to 150 parts by mass
  • the soaking temperature is set to 750 ° C. to 900 ° C.
  • the residence time in the temperature range of 750 ° C. or higher is set to 1 to 30 seconds
  • the atmosphere in the temperature range is an inert atmosphere having a dew point of 0 ° C. or lower.
  • the manufacturing method of a grain-oriented electrical steel sheet In the flattening annealing, the soaking temperature is set to 750 ° C. to 900 ° C
  • the coating treatment liquid further contains a total of 10 to 50 parts by mass of at least one additive of titanium compound, manganese sulfate and oxide colloid in terms of solid content with respect to 100 parts by mass of the phosphate.
  • the coating treatment solution further comprises 10 to 50 parts by mass of chromic anhydride in terms of solid content, or at least one of Mg, Ca, Al, and Sr in terms of solid content with respect to 100 parts by mass of the phosphate. 3.
  • the present invention since it is possible to effectively suppress the deterioration of iron loss when the grain-oriented electrical steel sheet is processed into the iron core of the transformer, even in the actual transformer, it is possible to utilize the characteristics of the grain-oriented electrical steel sheet before processing. It is possible to obtain iron loss characteristics.
  • FIG. 2 (a) shows the relationship between the residence time in the temperature range of 750 ° C. or higher in the flattening annealing and the composite elastic modulus of the coating.
  • FIG. 2 (b) shows the relationship between the residence time in the temperature range of 750 ° C. or higher in the flattening annealing and the applied tension of the coating.
  • the present invention appropriately controls the properties of the coating provided on the surface of the grain-oriented electrical steel sheet, in particular, the composite elastic modulus, the film thickness, and the tension applied to the steel sheet. This is based on the knowledge that even if it is strongly reduced, it is possible to effectively suppress deterioration of iron loss by suppressing the introduction of processing strain into the steel sheet. First, the experiment that led to this finding will be described.
  • Finished annealed grain-oriented electrical steel sheet was sheared into a sample of 300 mm length x 100 mm width and washed with phosphoric acid. Thereafter, a coating solution containing 100 parts by mass of magnesium phosphate and 100 parts by mass of colloidal silica in terms of solid content and 50 parts by mass of titanium lactate which is a titanium compound is applied to both sides of the sample after drying on both sides of the sample. The coating weight was 6 to 14 g / m 2 . Subsequently, these samples were subjected to planarization annealing that doubled as baking of the coating.
  • the dry N 2 atmosphere, the soaking temperature: 800 ° C., and the residence time in the temperature range of 750 ° C. or higher were variously changed in the range of 0.5 to 35 seconds.
  • the film thickness was 0.8 micrometer, 1.2 micrometer, and 2.3 micrometer, respectively.
  • the sample thus obtained was subjected to magnetic measurement using a single sheet magnetic property tester (Single Sheet Tester, hereinafter also referred to as SST method). After that, the sample width was reduced to 68.6N / cm (7kgf / cm) with a measuring roll with a width of 100mm, and then the sample was measured again by the SST method. The difference (deterioration amount of iron loss) ⁇ W 17/50 was calculated.
  • FIG. 1 the relationship between the residence time in the temperature range of 750 degreeC or more in planarization annealing and the amount of deterioration of the iron loss before and behind roll pressure is shown.
  • FIG. 2A shows the relationship between the residence time in the temperature range of 750 ° C. or higher and the composite elastic modulus of the coating in the flattening annealing.
  • FIG. 2B shows the relationship between the residence time in the temperature range of 750 ° C. or higher and the applied tension of the coating in the flattening annealing.
  • the composite elastic modulus of the coating increases as the residence time in the temperature region of 750 ° C. or higher in the flattening annealing becomes longer.
  • tensile_strength increases as the residence time in the temperature range of 750 degreeC or more in planarization annealing becomes long.
  • the inventors controlled the residence time in the temperature range of 750 ° C. or higher in the flattening annealing to a predetermined range, thereby causing the cause of the reduced amount of iron loss before and after the roll pressure was suppressed. investigated.
  • the flattening annealing is performed also as the baking of the coating, and the flattening annealing temperature corresponds to the baking temperature of the coating.
  • the baking of a coating is a temperature range from the glass transition point of the coating to the crystallization point (note that the glass transition point of most insulating coatings for grain-oriented electrical steel sheets is 750 ° C or higher, and the crystallization temperature.
  • the coating film thickness As shown in FIG. 1, by setting the coating film thickness to 1.0 ⁇ m or more, it is possible to effectively prevent plastic deformation of the steel sheet and suppress deterioration of iron loss. From the above experimental results and examination results, in the grain-oriented electrical steel sheet of the present invention, a coating having a composite elastic modulus of 60 to 95 GPa, a film thickness of 1.0 ⁇ m or more, and an applied tension of 6.0 MPa or more was formed on the surface. It is.
  • the coating here is usually a phosphate-based topcoat film formed on a base film mainly composed of forsterite.
  • a phosphate-based topcoat film is formed on the steel plate.
  • Composite elastic modulus of coating 60-95GPa
  • the composite elastic modulus of the coating is lower than 60 GPa, the applied tension of the coating is reduced, not only the iron loss in the grain-oriented electrical steel sheet before roll reduction is reduced, but also the deterioration of the iron loss after roll reduction is increased.
  • the composite elastic modulus of the coating exceeds 95 GPa, the stress sensitivity of the steel sheet increases, and the iron loss greatly deteriorates before and after the roll pressure.
  • the composite elastic modulus of the coating is in the range of 60 to 95 GPa.
  • it is 65 GPa or more and 90 GPa or less, More preferably, it is 70 GPa or more and 90 GPa or less.
  • the composite elastic modulus here refers to the load time at any three locations with respect to the coating on the surface of the steel sheet using a triangular pyramid indenter (Berkovic type, apex angle: 60 °) by the nanoindentation method. : 5 seconds, unloading time: 2 seconds, maximum load: 1000 ⁇ N.
  • the average value of the composite elastic modulus measured by a linear load addition method at room temperature with the indenter pushed in.
  • the nanoindentation method is a method in which the indentation of the indenter, the load and the depth are continuously measured, and the composite elastic modulus is calculated from the relationship between the indentation depth and the load.
  • the nanoindentation method is generally used when performing physical property tests on thin films because the indentation depth of the indenter is smaller than that of the micro Vickers method.
  • Coating film thickness 1.0 ⁇ m or more
  • the film thickness of a coating shall be 1.0 micrometer or more. Preferably it is 1.5 ⁇ m or more.
  • the upper limit of the coating film thickness is not particularly limited, but is usually about 3.5 ⁇ m.
  • the film thickness of a coating here is the film thickness of the coating per one surface.
  • Coating tension 6.0 MPa or more
  • the applied tension of the coating is 6.0 MPa or more.
  • it is 8.0 MPa or more.
  • the upper limit of the applied tension of the coating is not particularly limited, but is usually about 18.0 MPa.
  • tensile_strength can be calculated
  • the amount of warpage of the steel sheet was determined by removing the coating on either side from the steel sheet with coating on both sides, cutting out a sample with a length of 280 mm and a width of 30 mm parallel to the rolling direction, and setting the longitudinal direction to the horizontal direction.
  • the amount of displacement (mm) of the opposite end to the fixed end can be obtained. it can.
  • the applied tension of the coating can be obtained from the following equation from the warpage amount (displacement amount) of the steel plate obtained as described above.
  • [Coating tension] (Eta) / l 2
  • E Young's modulus of the steel plate (sample)
  • t Plate thickness (mm) of the steel plate (sample)
  • a Displacement amount (mm)
  • l Length of the steel plate (sample) of the unfixed portion ( mm) (in the above case, l: 250 mm).
  • the coating is basically formed on both sides of the steel plate surface.
  • a finish-annealed grain-oriented electrical steel sheet manufactured according to a conventional method can be used regardless of the type of steel.
  • the thickness of the grain-oriented electrical steel sheet (not including the coating thickness) is usually about 0.15 to 0.50 mm.
  • the method for producing a grain-oriented electrical steel sheet according to the present invention includes a step of applying a phosphate-based coating treatment liquid to a finish-annealed grain-oriented electrical steel sheet, and baking of the finish-annealed grain-oriented electrical steel sheet. And a step of performing flattening annealing.
  • the manufacturing conditions of the grain-oriented electrical steel sheet that has been subjected to finish annealing are not particularly limited. For example, a steel material is hot-rolled by a known method to form a hot-rolled sheet, and this hot-rolled sheet is subjected to one or more times.
  • the cold-rolled sheet After annealing and cold rolling to obtain a cold-rolled sheet with the final thickness, the cold-rolled sheet is subjected to primary recrystallization annealing, then applied with an annealing separator and subjected to finish annealing. it can.
  • the unreacted annealing separator is removed from the directional electrical steel sheet that has been subjected to finish annealing by washing with water or light pickling, and then a coating treatment liquid is applied to the steel sheet.
  • the coating treatment liquid conventionally known ones (for example, coating treatment liquids described in Patent Documents 1, 2, and 5) can be used as long as a coating having the above-described characteristics can be formed after baking.
  • a coating treatment liquid containing at least one phosphate selected from among phosphates of Mg, Al, Ca, and Sr is preferable to use.
  • the colloidal silica is less than 50 parts by mass in terms of solid content with respect to 100 parts by mass of phosphate, the composite elastic modulus decreases with the decrease in tension applied to the steel sheet.
  • the iron loss, especially the iron loss before and after the roll pressure may be deteriorated.
  • colloidal silica exceeds 150 parts by mass in terms of solid content with respect to 100 parts by mass of phosphate, fine cracks are generated on the surface of the coating and the corrosion resistance deteriorates. Moreover, with the fall of the tension
  • the amount of colloidal silica is 50 to 150 parts by mass in terms of conversion. Preferably they are 70 mass parts or more and 120 mass parts or less.
  • said coating processing liquid can further contain at least 1 sort (s) of additives of a titanium compound, manganese sulfate, and an oxide colloid.
  • s 1 sort of additives of a titanium compound, manganese sulfate, and an oxide colloid.
  • the coating treatment liquid contains at least one additive selected from the group consisting of a titanium compound, manganese sulfate, and an oxide colloid, the amount of phosphate: 100 parts by mass, in terms of solid content Add 10 to 50 parts by mass of the additive.
  • titanium compounds include titanium lactate, titanium tetraacetylacetonate, titanium sulfate, and titanium tetraacetate.
  • oxide colloids include antimony sol, zirconia sol, and iron oxide sol.
  • the above coating treatment liquid may contain chromic anhydride or at least one dichromate of Mg, Ca, Al and Sr instead of the above-mentioned additives.
  • chromic anhydride or at least one dichromate of Mg, Ca, Al and Sr instead of the above-mentioned additives.
  • phosphate When 100 parts by mass of chromic anhydride or dichromate in terms of solid content is less than 10 parts by mass, the tensile strength applied to the steel sheet is lowered and the composite elastic modulus is lowered. Further, there is a possibility that the iron loss is deteriorated, particularly the iron loss before and after the roll pressure is reduced. Further, the effect of improving the corrosion resistance cannot be sufficiently obtained.
  • the inorganic mineral particles such as silica and alumina are preferably 0.2 to 5.0 parts by mass in terms of solid content with respect to 100 parts by mass of phosphate.
  • the coating weight (weight per both surfaces) is 7 to 16 g / m 2 after drying. If the coating weight is less than 7 g / m 2 , it will be difficult to ensure the prescribed coating thickness, and the coating will absorb the stress applied during roll reduction, causing processing strain on the steel sheet. The prevention effect may be reduced. On the other hand, if the coating weight exceeds 16 g / m 2 , the space factor may decrease.
  • the grain-oriented electrical steel sheet is subjected to flattening annealing that also serves as baking of the coating.
  • Soaking temperature 750 ° C to 900 ° C
  • the soaking temperature is less than 750 ° C.
  • the coating is not sufficiently formed, and the corrosion resistance and magnetic properties are deteriorated.
  • the soaking temperature exceeds 900 ° C.
  • the composite elastic modulus of the coating becomes too high, the stress sensitivity of the steel sheet becomes high, and the iron loss may be deteriorated before and after the roll pressure. Therefore, the soaking temperature is in the range of 750 ° C to 900 ° C.
  • Residence time in the temperature range of 750 ° C. or higher 1 to 30 seconds
  • the residence time in the temperature region of 750 ° C. or higher in the flattening annealing (hereinafter also simply referred to as residence time) needs to be 1 to 30 seconds.
  • the stress sensitivity of the steel sheet can be reduced, and even when the steel sheet is subjected to a strong roll pressure by the measuring roll, it is possible to maintain excellent magnetic properties after processing.
  • the residence time is less than 1 second, the coating is not sufficiently formed, the corrosion resistance is deteriorated, and the iron loss is deteriorated before and after the roll pressure.
  • the residence time in the temperature range of 750 ° C. or higher in the flattening annealing is set to 1 to 30 seconds. Preferably they are 2 seconds or more and 25 seconds or less, More preferably, they are 3 seconds or more and 20 seconds or less.
  • Atmosphere in a temperature range of 750 ° C or higher Inert atmosphere with dew point of 0 ° C or lower
  • N 2 gas or Ar gas can be used.
  • an atmosphere mainly composed of N 2 gas is preferable in terms of cost and safety.
  • the atmosphere of N 2 gas mainly meant an atmosphere containing N 2 gas 50% by volume or more.
  • H 2 gas may be contained as long as it is 10% by volume or less.
  • the dew point is 0 ° C or less.
  • the minimum of a dew point is not specifically limited, Usually, it is -60 degreeC.
  • Example 1 A finish annealed grain-oriented electrical steel sheet (sheet thickness: 0.23 mm) produced according to a conventional method was prepared, the unreacted annealing separator was removed from the steel sheet, and pickling treatment with phosphoric acid was performed. After that, the various coating treatment liquids shown in Table 1 were applied to the steel sheet so that the basis weight per side after drying was 10 g / m 2, and after drying, flattening annealing that also served as baking was performed. did. At this time, soaking temperature: 800 ° C., the atmosphere in the temperature range of not lower than 750 ° C.: an inert atmosphere of N 2 gas mainly: at (N 2 gas 95 vol%), and was -1 ° C. dew point. Further, as shown in Table 2, the residence time in the temperature range of 750 ° C. or higher was variously changed within the range of 0.5 to 40 seconds.
  • the grain-oriented electrical steel sheet thus obtained was subjected to magnetic measurement by the SST method. Moreover, the composite elastic modulus, film thickness, and applied tension were measured for the coating formed on the steel sheet surface. The composite elastic modulus and applied tension of the coating were measured by the method described above. Then, these steel sheets were roll-rolled at a linear pressure of 68.6 N / cm (7 kgf / cm), and the steel sheets after roll-rolling were again magnetically measured by the SST method to examine the amount of change in iron loss. These results are also shown in Table 2.
  • Example 2 The same directionally annealed grain-oriented electrical steel sheet as in Example 1 was prepared, the unreacted annealing separator was removed from the steel sheet, and pickling treatment with phosphoric acid was performed. Then, apply the coating solution of No. 12 in Table 1 to the steel sheet so that the weight per unit area after drying is 15 g / m 2 on both sides of the steel sheet, and after drying, in a temperature range of 750 ° C. or higher.
  • the grain-oriented electrical steel sheet thus obtained was subjected to magnetic measurement by the SST method. Moreover, the composite elastic modulus, film thickness, and applied tension were measured for the coating formed on the steel sheet surface. The composite elastic modulus and applied tension of the coating were measured by the method described above. Then, these steel sheets were roll-rolled at a linear pressure of 68.6 N / cm (7 kgf / cm), and the steel sheets after roll-rolling were again magnetically measured by the SST method to examine the amount of change in iron loss. These results are also shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

表面にコーティングを有する方向性電磁鋼板であって、コーティングが、複合弾性率:60~95GPa、膜厚:1.0μm以上、および該方向性電磁鋼板への付与張力:6.0MPa以上を満足し、かつ方向性電磁鋼板を線圧:68.6N/cmでロール圧下した時のロール圧下前後での鉄損の劣化量を、W17/50で0.010W/kg以下とする。

Description

方向性電磁鋼板およびその製造方法
 本発明は、トランスに加工する際の磁気特性の劣化を抑制することができる方向性電磁鋼板およびその製造方法に関するものである。
 一般に、方向性電磁鋼板においては、絶縁性、加工性、防錆性等を付与するために表面被膜(以下、コーティングともいう)が施される。かかるコーティングとしては、例えば、方向性電磁鋼板の製造過程における最終仕上焼鈍時に形成されるフォルステライトを主体とする下地被膜の上に成膜されるリン酸塩系の上塗り被膜が挙げられる。
 このようなコーティングは高温で成膜され、しかも熱膨張率が低いことから、成膜後、室温まで温度を下げたときに、鋼板(素地鋼板)とコーティングの熱膨張率の違いにより、鋼板に張力を付与し、鉄損を低減させる効果がある。
 また、方向性電磁鋼板では、この他にも、耐食性や耐電圧性等、多岐にわたる要求特性を満足させる必要がある。このような多岐にわたる要求特性を満足させるため、従来から種々のコーティングが提案されている。
 例えば、特許文献1にはリン酸マグネシウムとコロイド状シリカと無水クロム酸を主体とするコーティング処理液を鋼板表面に塗布し、これを焼き付けることにより形成したコーティングが開示されている。また、特許文献2にはリン酸アルミニウムとコロイド状シリカと無水クロム酸を主体とするコーティング処理液を鋼板表面に塗布し、これを焼き付けることにより形成したコーティングが開示されている。
特公昭56-52117号公報 特公昭53-28375号公報 特許第3324633号公報 特開平9-184017号公報 特許第5104128号公報
 しかし、特許文献1および2に記載のコーティングを設けた方向性電磁鋼板では、これをトランスの鉄心に加工する際に鉄損が劣化するという問題がある。
 ここで、鉄損を改善する方法としては、例えば、特許文献3のように鋼板により大きな被膜張力を付与して鉄損を改善する方法や、特許文献4のように鋼板中の析出物を極力低減して歪取り焼鈍による鉄損劣化を防ぐ方法などが開示されている。
 しかし、特許文献3および4に記載の方法は、やはり上述したような、鋼板をトランスの鉄心に加工する際の鉄損の劣化を抑制するものではない。このため、方向性電磁鋼板をトランスの鉄心に加工する際の鉄損の劣化を有効に抑制することが望まれているのが現状である。
 本発明は上記の現状に鑑み開発されたものであって、方向性電磁鋼板をトランスの鉄心に加工する際の磁気特性、特に鉄損の劣化を抑制することができる方向性電磁鋼板を、その有利な製造方法とともに提供することを目的とする。
 さて、本発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。
 まず、本発明者らは、方向性電磁鋼板の鉄損がトランスの鉄心に加工する際に大きく劣化する原因について、調査・検討を行った。
 その結果、方向性電磁鋼板をメジャリングロールで圧下することによって生じる加工歪が、上記の鉄損劣化の主要因となることを見出した。
 すなわち、方向性電磁鋼板をトランスの鉄心として加工する場合には、ストリップコイル(鋼板)をメジャリングロールと呼ばれる長さ測定用のロールに通し、その後、シャーで一定の長さに切断して、切断した鋼板を重ねてトランスの鉄心を組み立てる。ここで、メジャリングロールは、圧力で径が変化すると測定長さが狂うため、金属製の硬い材質のロールが用いられる。また、メジャリングロールは、鋼板との間にすべりが生じると測定長さが狂う。この測定長さの狂いを防止するため、ストリップコイルは、メジャリングロールによって強い加圧力で圧下されることとなる。その結果、メジャリングロールによるストリップコイルの長さ測定の際に、ストリップコイルに加工歪が導入される場合があり、この加工歪によって、磁気特性、特に鉄損が劣化する。
 そこで発明者らは、このような加工歪の導入による鉄損の劣化を抑制すべく、さらに検討を重ねた。
 その結果、方向性電磁鋼板の表面に焼き付けて形成するコーティングの特性、特に、コーティングの複合弾性率や膜厚、鋼板への付与張力を適正に制御することにより、メジャリングロールなどによって強く圧下されても、鋼板への加工歪の導入を抑制して、鉄損の劣化を有効に抑制できるとの知見を得た。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.表面にコーティングを有する方向性電磁鋼板であって、
 該コーティングが、複合弾性率:60~95GPa、膜厚:1.0μm以上、および該方向性電磁鋼板への付与張力:6.0MPa以上を満足し、かつ
 該方向性電磁鋼板を線圧:68.6N/cmでロール圧下した時のロール圧下前後における鉄損の劣化量がW17/50で0.010W/kg以下である、方向性電磁鋼板。
2.前記1に記載の方向性電磁鋼板を製造するための方法であって、
 仕上焼鈍済みの方向性電磁鋼板にコーティング処理液を塗布する工程と、
 該コーティング処理液を塗布した該仕上焼鈍済みの方向性電磁鋼板に、コーティングの焼付けを兼ねた平坦化焼鈍を施す工程と、をそなえ、
 前記コーティング処理液は、Mg、Al、CaおよびSrのリン酸塩のうちの少なくとも1種のリン酸塩を含有するともに、該リン酸塩:100質量部に対し、固形分換算でコロイド状シリカを50~150質量部含有し、
 前記平坦化焼鈍では、均熱温度を750℃~900℃とし、また750℃以上の温度域における滞留時間を1~30秒とし、さらに該温度域における雰囲気を露点:0℃以下の不活性雰囲気とする、方向性電磁鋼板の製造方法。
3.前記コーティング処理液が、前記リン酸塩:100質量部に対し、さらに、固形分換算でチタン化合物、硫酸マンガンおよび酸化物コロイドのうちの少なくとも1種の添加剤を合計で10~50質量部含有する、前記2に記載の方向性電磁鋼板の製造方法。
4.前記コーティング処理液が、前記リン酸塩:100質量部に対し、さらに、固形分換算で無水クロム酸を10~50質量部、または固形分換算でMg、Ca、AlおよびSrうちの少なくとも1種の重クロム酸塩を合計で10~50質量部含有する、前記2に記載の方向性電磁鋼板の製造方法。
 本発明によれば、方向性電磁鋼板をトランスの鉄心に加工する際の鉄損の劣化を有効に抑制できるので、実機トランスにおいても、加工前の方向性電磁鋼板の特性を活かした、優れた鉄損特性を得ることが可能となる。
平坦化焼鈍における750℃以上の温度域での滞留時間と、ロール圧下前後での鉄損の劣化量との関係を示すものである。 図2(a)は、平坦化焼鈍における750℃以上の温度域での滞留時間と、コーティングの複合弾性率との関係を示すものである。また、図2(b)は、平坦化焼鈍における750℃以上の温度域での滞留時間と、コーティングの付与張力との関係を示すものである。
 以下、本発明を具体的に説明する。
 上述したように、本発明は、方向性電磁鋼板の表面に設けるコーティングの特性、特に、複合弾性率、膜厚および鋼板への付与張力を適正に制御することにより、鋼板がメジャリングロールなどにより強く圧下される場合であっても、鋼板への加工歪の導入を抑制して、鉄損の劣化を有効に抑制できるとの知見に基づくものである。
 まず、この知見を得るに至った実験について説明する。
 仕上焼鈍済みの方向性電磁鋼板を長さ300mm×幅100mmのサイズのサンプルにせん断し、リン酸酸洗を行なった。その後、リン酸マグネシウム:100質量部に対し、固形分換算でコロイド状シリカを100質量部、チタン化合物であるチタンラクテートを50質量部配合したコーティング処理液を、サンプル両面に乾燥後の両面あたりの目付け量で6~14g/m2となるように塗布した。ついで、これらのサンプルに、コーティングの焼付けを兼ねた平坦化焼鈍を行った。この平坦化焼鈍では、乾N2雰囲気、均熱温度:800℃とし、750℃以上の温度域における滞留時間を0.5~35秒の範囲で種々変化させた。なお、焼付け後のコーティング断面を光学顕微鏡により観察したところ、その膜厚はそれぞれ0.8μm、1.2μm、2.3μmであった。
 かくして得られたサンプルに対して、単板磁気特性試験機(Single Sheet Tester、以下SST法ともいう)で磁気測定を行った。その後、幅:100mmのメジャリングロールによって、線圧:68.6N/cm(7kgf/cm)でサンプル全幅をロール圧下した後、再びSST法でサンプルの磁気測定を行い、ロール圧下前後での鉄損差(鉄損の劣化量)ΔW17/50を算出した。
 図1に、平坦化焼鈍における750℃以上の温度域での滞留時間と、ロール圧下前後での鉄損の劣化量との関係を示す。
 図1に示すとおり、いずれのコーティング膜厚であっても、平坦化焼鈍における750℃以上の温度域での滞留時間が長過ぎたり短過ぎたりすると、ロール圧下前後での鉄損の劣化量は増大する。一方、750℃以上の温度域での滞留時間が1~30秒の範囲であれば、ロール圧下前後での鉄損の劣化量は小さく、鉄損の劣化が効果的に抑制される。
 そこで、発明者らは、図1の結果が得られた原因を調査するため、各種サンプルについて、種々の物性の測定を行った。まず、ナノインデンテーション法によりコーティングの複合弾性率を測定した。また、別途作製したサンプルについて、片面のコーティングを除去して鋼板の反り量を測定することにより、コーティングによる鋼板への付与張力(以下、単にコーティングの付与張力ともいう)を求めた。
 図2(a)に平坦化焼鈍における750℃以上の温度域での滞留時間と、コーティングの複合弾性率との関係を示す。また、図2(b)に平坦化焼鈍における750℃以上の温度域での滞留時間と、コーティングの付与張力との関係を示す。
 図2(a)に示すとおり、平坦化焼鈍における750℃以上の温度域での滞留時間が長くなるにつれ、コーティングの複合弾性率が増大することがわかる。また、図2(b)に示すように、平坦化焼鈍における750℃以上の温度域での滞留時間が長くなるにつれ、コーティングの付与張力も増大することがわかる。
 上述の結果から、発明者らは、平坦化焼鈍における750℃以上の温度域での滞留時間を所定の範囲に制御することにより、ロール圧下前後での鉄損の劣化量が抑制された原因を検討した。
 まず、通常の方向性電磁鋼板の製造工程においては、平坦化焼鈍はコーティングの焼付けを兼ねて行われ、平坦化焼鈍温度はコーティングの焼付け温度に相当するものとなる。従来、コーティングの焼付けは、そのコーティングのガラス転移点以上、結晶化点以下の温度域(なお、方向性電磁鋼板用のほとんどの絶縁コーティングのガラス転移点は750℃以上であり、また結晶化温度は900℃以上である)で行えば、コーティングとして問題ない品質のものが得られると考えられてきた。すなわち、この温度域でコーティングの焼付けを行えば、コーティングの品質は焼付け時間には依存しないものと考えられてきた。しかし、上述したように、同じ均熱温度でコーティングの焼付けを行った場合であっても、その焼付け時間、特に750℃以上の温度域での滞留時間によってコーティングの特性が変わることが明らかとなった。これは、コーティングの焼付け中に、コーティングの微細結合構造が強化されるためであると考えられる。
 すなわち、ガラス、例えばSiO2であれば、-Si-O-Si-といった形で、Siと酸素が不規則な三次元的な骨格を持った網目構造を形成している。しかし、一部には、例えば、Hと結合して、
 ・・・-Si-O-H  、 H-O-Si-・・・
、または不純物のNaと結合して
 ・・・-Si-O-Na 、 Na-O-Si-・・・
のように、結合が切断された部分が存在している。このような非架橋酸素が存在することにより、ガラスの弾性率は低下する。
 しかし、焼付け時間、特に750℃以上の温度域での滞留時間を長くすることにより、これらの非架橋部は消失して強固なガラス構造が形成され、コーティングの複合弾性率が増大する。特に、平坦化焼鈍における750℃以上の温度域での滞留時間が長くなって、コーティングの複合弾性率が95GPaを超える場合、コーティングにメジャリングロールなどでロール圧下によって強い応力が付加されると、その応力がコーティング内で吸収しきれなくなり、地鉄部にも強い応力が付加される。その結果、鋼板が塑性変形し、ロール圧下前後で鉄損が大きく劣化することとなる。
 一方、コーティングの複合弾性率が低くなりすぎても、コーティングが容易に変形する結果、ロール圧下による応力を十分に吸収できず、やはりロール圧下前後で鉄損が劣化する。
 また、図1に示すように、コーティング膜厚を1.0μm以上とすることによって、効果的に鋼板の塑性変形を防止して、鉄損の劣化を抑制することが可能となる。
 以上の実験結果および検討結果から、本発明の方向性電磁鋼板では、複合弾性率:60~95GPa、膜厚:1.0μm以上、付与張力:6.0MPa以上のコーティングをその表面に形成することとしたのである。
 次に、本発明の方向性電磁鋼板のコーティングについて、説明する。
 なお、ここでいうコーティングは、通常、フォルステライトを主体とする下地被膜の上に成膜されるリン酸塩系の上塗り被膜からなる。ただし、フォルステライトを主体とする下地被膜を除去した場合やこれを形成しない場合には、鋼板の地鉄上にリン酸塩系の上塗り被膜が成膜される。
コーティングの複合弾性率:60~95GPa
 コーティングの複合弾性率が60GPaよりも低いと、コーティングの付与張力が低下し、ロール圧下前の方向性電磁鋼板における鉄損が低下するだけでなく、ロール圧下後の鉄損の劣化も大きくなる。一方、コーティングの複合弾性率が95GPaを超えると、鋼板の応力感受性が高まり、ロール圧下前後で鉄損が大きく劣化する。このため、コーティングの複合弾性率は60~95GPaの範囲とする。好ましくは65GPa以上、90GPa以下、より好ましくは70GPa以上、90GPa以下である。
 また、ここでいう複合弾性率は、ナノインデンテーション法により、ダイヤモンド製の三角錐圧子(バーコビッチ型、頂角:60°)を用いて、鋼板表面のコーティングに対し、任意の3箇所で負荷時間:5秒、除荷時間:2秒、最大荷重:1000μNとして圧子を押し込み、室温にて線形荷重付加方式で測定した複合弾性率の平均値である。
 なお、ナノインデンテーション法とは、圧子の押し込み、荷重と深さを連続的に測定し、押し込み深さと荷重との関係から複合弾性率を算出する方法である。また、ナノインデンテーション法は、マイクロビッカース法と比較して圧子の押し込み深さが小さいため、薄膜の物性試験を行う際に一般的に用いられる。
コーティングの膜厚:1.0μm以上
 コーティングの膜厚を1.0μm以上とすることにより、鋼板に強い応力が付加される場合であっても、鋼板の塑性変形を効果的に防止して、ロール圧下前後での鉄損の劣化を抑制できる。このため、コーティングの膜厚は1.0μm以上とする。好ましくは1.5μm以上である。また、コーティングの膜厚の上限については特に限定されるものではないが、通常3.5μm程度である。なお、ここでいうコーティングの膜厚は、片面あたりのコーティングの膜厚である。
コーティングの付与張力:6.0MPa以上
 コーティングの付与張力が6.0MPa未満になると、元々の鉄損が劣化するだけでなく、同時に複合弾性率の過度の低下をもたらしやすくするため、ロール圧下前後で鉄損が劣化する。このため、コーティングの付与張力は6.0MPa以上とする。好ましくは8.0MPa以上である。また、コーティングの付与張力の上限については特に限定されるものではないが、通常18.0MPa程度である。
 なお、コーティングの付与張力は、鋼板の反り量から求めることができる。ここで、鋼板の反り量は、両面にコーティングを形成した鋼板からいずれか一方の面のコーティングを除去し、圧延方向と平行に長さ280mmおよび幅30mmとなる試料を切り出し、長手方向を水平方向に、かつ幅方向を鉛直方向にして、この試料を地面と垂直に載置し、圧延方向片端30mmを挟んで固定した際の、固定した端に対する反対端の変位量(mm)として求めることができる。
 なお、コーティングの付与張力は、上記のようにして求めた鋼板の反り量(変位量)から次式により求めることができる。
   [コーティングの付与張力]=(Eta)/l2
 ここで、E:鋼板(試料)のヤング率、t:鋼板(試料)の板厚(mm)、a:変位量(mm)、l:固定されていない部分の鋼板(試料)の長さ(mm)(上記の場合、l:250mm)である。
 上記したコーティングを鋼板表面に形成することにより、メジャリングロールなどでロール圧下した時のロール圧下前後における鉄損の劣化量をW17/50で0.010W/kg以下に抑制することが可能となる。なお、コーティングは基本的に鋼板表面の両側に形成する。
 また、表面にコーティングを形成する仕上焼鈍済みの方向性電磁鋼板については特に鋼種を問わず、常法に従い製造した仕上焼鈍済みの方向性電磁鋼板を使用することができる。さらに、方向性電磁鋼板の板厚(コーティングの厚みは含まず)は、通常0.15~0.50mm程度である。
 次に、本発明の方向性電磁鋼板の製造方法について、説明する。
 本発明の方向性電磁鋼板の製造方法は、仕上焼鈍済みの方向性電磁鋼板にリン酸塩系のコーティング処理液を塗布する工程と、前記仕上焼鈍済みの方向性電磁鋼板にコーティングの焼付けを兼ねた平坦化焼鈍を施す工程と、をそなえるものである。
 なお、仕上焼鈍済みの方向性電磁鋼板の製造条件などは特に限定されず、例えば、鋼素材を公知の方法で熱延して熱延板とし、この熱延板に、1回または複数回の焼鈍および冷延を施して最終板厚の冷延板としたのち、この冷延板に、一次再結晶焼鈍を施し、ついで焼鈍分離剤を塗布して仕上焼鈍を行うことにより、製造することができる。
 そして、必要に応じて未反応の焼鈍分離剤を水洗や軽酸洗などにより仕上焼鈍済みの方向性電磁鋼板から除去し、ついで、この鋼板にコーティング処理液を塗布する。
 ここで、コーティング処理液としては、焼き付け後に上記した特性を有するコーティングを形成できれば従来公知のもの(例えば、特許文献1、2および5などのコーティング処理液)を使用できる。例えば、Mg、Al、CaおよびSrのリン酸塩のうちから選ばれる少なくとも1種のリン酸塩を含有するコーティング処理液を用いることが好適である。ただし、かようなコーティング処理液を用いる場合、リン酸塩:100質量部に対し、固形分換算でコロイド状シリカが50質量部未満であると、鋼板への付与張力の低下とともに、複合弾性率の低下を招き、鉄損、特にロール圧下前後で鉄損が劣化するおそれがある。一方、リン酸塩:100質量部に対し、固形分換算でコロイド状シリカが150質量部を超えると、コーティングの表面に微細なクラックが発生して耐食性が劣化する。また、鋼板への付与張力の低下とともに、複合弾性率の低下を招き、鉄損、特にロール圧下前後で鉄損が劣化するおそれがある。このため、Mg、Al、CaおよびSrのリン酸塩のうちから選ばれる少なくとも1種のリン酸塩を含有するコーティング処理液を用いる場合には、リン酸塩:100質量部に対し、固形分換算でコロイド状シリカを50~150質量部とする。好ましくは70質量部以上、120質量部以下である。
 また、上記のコーティング処理液には、上記の成分に加えて、さらにチタン化合物、硫酸マンガンおよび酸化物コロイドのうちの少なくとも1種の添加剤を含有させることもできる。これにより、環境への負荷を軽減しつつ、耐食性を向上することが可能となる。この場合、リン酸塩:100質量部に対し、固形分換算で上記添加剤が10質量部未満であると、耐食性改善効果が小さく、また、鋼板への付与張力の低下とともに、複合弾性率の低下を招き、鉄損の劣化、特にロール圧下前後での鉄損の劣化を招くおそれがある。一方、リン酸塩:100質量部に対し、固形分換算で上記添加剤が50質量部を超えると、成膜が困難となって、吸湿性が劣化する場合がある。また、鋼板への付与張力の低下とともに、複合弾性率の低下を招き、鉄損の劣化、特にロール圧下前後での鉄損の劣化を招くおそれがある。このため、コーティング処理液に、チタン化合物、硫酸マンガンおよび酸化物コロイドのうちの少なくとも1種の添加剤を含有させる場合には、リン酸塩:100質量部に対し、固形分換算でかような添加剤を10~50質量部配合する。
 なお、チタン化合物としては、チタンラクテートやチタンテトラアセチルアセトネート、硫酸チタン、四酢酸チタンなどが挙げられ、また酸化物コロイドとしては、アンチモンゾルやジルコニアゾル、酸化鉄ゾルなどが挙げられる。
 さらに、上記のコーティング処理液には、上記した添加剤に代えて、無水クロム酸またはMg、Ca、AlおよびSrうちの少なくとも1種の重クロム酸塩を含有させることもできる。これにより、一層効果的に耐食性を高めることが可能となる。この点、リン酸塩:100質量部に対し、固形分換算で無水クロム酸または重クロム酸塩が10質量部未満であると、鋼板への付与張力の低下とともに、複合弾性率の低下を招き、鉄損の劣化、特にロール圧下前後での鉄損の劣化を招くおそれがある。また、耐食性の改善効果も十分には得られない。一方、リン酸塩:100質量部に対し、固形分換算で無水クロム酸または重クロム酸塩が50質量部を超えると、やはり鋼板への付与張力の低下とともに、複合弾性率の低下を招き、鉄損の劣化、特にロール圧下前後での鉄損の劣化を招くおそれがある。また、成膜が困難となって、吸湿性が劣化する場合もある。このため、コーティング処理液に、無水クロム酸またはMg、Ca、AlおよびSrうちの少なくとも1種の重クロム酸塩を含有させる場合には、リン酸塩:100質量部に対し、固形分換算で無水クロム酸または重クロム酸塩を10~50質量部とする。
 また、上記のコーティング処理液には、さらにシリカ、アルミナ等の無機鉱物粒子を添加して、耐熱性を改善することも可能である。この場合、シリカ、アルミナ等の無機鉱物粒子は、リン酸塩:100質量部に対し、固形分換算で0.2~5.0質量部とすることが好ましい。
 なお、コーティングの目付け量(両面あたりの目付け量)は、乾燥後に7~16g/m2となるようにすることが好ましい。コーティングの目付け量が、7g/m2未満であると、所定のコーティングの膜厚を確保することが難しくなり、ロール圧下時に付与される応力をコーティングが吸収して鋼板に加工歪が入るのを防止する効果が、低下するおそれがある。一方、コーティングの目付け量が16g/m2を超えると、占積率が低下するおそれがある。
 ついで、塗布したコーティング処理液を乾燥した後、方向性電磁鋼板にコーティングの焼付けを兼ねた平坦化焼鈍を施す。以下、この平坦化焼鈍の条件について説明する。
均熱温度:750℃~900℃
 均熱温度が750℃未満になると、コーティングが十分に形成されず、耐食性および磁気特性が劣化する。一方、均熱温度が900℃を超えるとコーティングの複合弾性率が高くなり過ぎ、鋼板の応力感受性が高くなってロール圧下前後で鉄損の劣化を招くおそれがある。このため、均熱温度は750℃~900℃の範囲とする。
750℃以上の温度域での滞留時間:1~30秒
 平坦化焼鈍における750℃以上の温度域での滞留時間(以下、単に滞留時間ともいう)は1~30秒とする必要がある。これにより鋼板の応力感受性を低減でき、鋼板がメジャリングロールにより強いロール圧下を受ける場合でも、加工後に優れた磁気特性を保持することが可能となる。ここに、滞留時間が1秒未満では、コーティングが十分に形成されず、耐食性が劣化するだけでなく、ロール圧下前後で鉄損が劣化する。一方、滞留時間が30秒を超えると、コーティングの複合弾性率が高くなりすぎ、鋼板の応力感受性が高まって、ロール圧下前後で鉄損が劣化する。このため、平坦化焼鈍における750℃以上の温度域での滞留時間は1~30秒とする。好ましくは2秒以上、25秒以下、より好ましくは3秒以上、20秒以下である。
750℃以上の温度域における雰囲気:露点が0℃以下の不活性雰囲気
 750℃以上の温度域における雰囲気は、不活性雰囲気であれば、N2ガスやArガス等のいずれを用いることも可能である。ただし、コスト面や安全面からN2ガス主体の雰囲気とすることが好ましい。ここで、N2ガス主体の雰囲気とは、N2ガスを50体積%以上含む雰囲気を意味する。なお、上記の不活性雰囲気では、10%体積%以下であれば、H2ガスを含有していてもよい。
 また、露点については、0℃以下とする。露点が0℃を超えると、コーティングの複合弾性率が高くなりすぎ、鋼板の応力感受性が高まって、ロール圧下前後で鉄損が劣化する。なお、露点の下限は特に限定されるものではないが、通常-60℃である。
 なお、上記以外の条件については特に限定されず、常法に従えばよい。
実施例1
 常法に従い製造した仕上焼鈍済みの方向性電磁鋼板(板厚:0.23mm)を準備し、該鋼板から未反応焼鈍分離剤を除去し、リン酸による酸洗処理を行った。その後、該鋼板に、表1に示す各種コーティング処理液を鋼板両面に乾燥後の両面あたりの目付け量で10g/m2となるように塗布し、乾燥後、焼付けを兼ねた平坦化焼鈍を施した。この際、均熱温度:800℃、750℃以上の温度域における雰囲気:N2ガス主体の不活性雰囲気(N2ガス:95体積%)で、かつ露点を-1℃とした。また、750℃以上の温度域での滞留時間については、表2に示すように、0.5~40秒の範囲で種々変化させた。
 かくして得られた方向性電磁鋼板について、SST法により、磁気測定を行った。また、鋼板表面に形成したコーティングについて、複合弾性率、膜厚および付与張力を測定した。なお、コーティングの複合弾性率および付与張力については、前述した方法により、測定を行ったものである。
 ついで、これらの鋼板を、線圧:68.6N/cm(7kgf/cm)でロール圧下し、ロール圧下後の鋼板を再びSST法で磁気測定し、鉄損の変化量を調べた。
 これらの結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2より、発明例ではいずれも、ロール圧下前後の鉄損の劣化量がW17/50で0.010W/kg以下となり、ロール圧下による磁気特性の劣化が有効に抑制されていることが判る。
実施例2
 実施例1と同じ仕上焼鈍済みの方向性電磁鋼板を準備し、該鋼板から未反応焼鈍分離剤を除去し、リン酸による酸洗処理を行った。その後、該鋼板に、表1のNo.12のコーティング処理液を鋼板両面に乾燥後の両面あたりの目付け量で15g/m2となるように塗布し、乾燥後、750℃以上の温度域における雰囲気:N2ガス主体の不活性雰囲気(N2ガス:99体積%)として、表3に示す条件で焼付けを兼ねた平坦化焼鈍を施した。
 かくして得られた方向性電磁鋼板について、SST法により、磁気測定を行った。また、鋼板表面に形成したコーティングについて、複合弾性率、膜厚および付与張力を測定した。なお、コーティングの複合弾性率および付与張力については、前述した方法により、測定を行ったものである。
 ついで、これらの鋼板を、線圧:68.6N/cm(7kgf/cm)でロール圧下し、ロール圧下後の鋼板を再びSST法で磁気測定し、鉄損の変化量を調べた。
 これらの結果を表3に併記する。
Figure JPOXMLDOC01-appb-T000003
 表3より、発明例ではいずれも、ロール圧下前後の鉄損の劣化量がW17/50で0.010W/kg以下となり、ロール圧下による磁気特性の劣化が抑制されていることが判る。

Claims (4)

  1.  表面にコーティングを有する方向性電磁鋼板であって、
     該コーティングが、複合弾性率:60~95GPa、膜厚:1.0μm以上、および該方向性電磁鋼板への付与張力:6.0MPa以上を満足し、かつ
     該方向性電磁鋼板を線圧:68.6N/cmでロール圧下した時のロール圧下前後における鉄損の劣化量がW17/50で0.010W/kg以下である、方向性電磁鋼板。
  2.  請求項1に記載の方向性電磁鋼板を製造するための方法であって、
     仕上焼鈍済みの方向性電磁鋼板にコーティング処理液を塗布する工程と、
     該コーティング処理液を塗布した該仕上焼鈍済みの方向性電磁鋼板に、コーティングの焼付けを兼ねた平坦化焼鈍を施す工程と、をそなえ、
     前記コーティング処理液は、Mg、Al、CaおよびSrのリン酸塩のうちの少なくとも1種のリン酸塩を含有するともに、該リン酸塩:100質量部に対し、固形分換算でコロイド状シリカを50~150質量部含有し、
     前記平坦化焼鈍では、均熱温度を750℃~900℃とし、また750℃以上の温度域における滞留時間を1~30秒とし、さらに該温度域における雰囲気を露点:0℃以下の不活性雰囲気とする、方向性電磁鋼板の製造方法。
  3.  前記コーティング処理液が、前記リン酸塩:100質量部に対し、さらに、固形分換算でチタン化合物、硫酸マンガンおよび酸化物コロイドのうちの少なくとも1種の添加剤を合計で10~50質量部含有する、請求項2に記載の方向性電磁鋼板の製造方法。
  4.  前記コーティング処理液が、前記リン酸塩:100質量部に対し、さらに、固形分換算で無水クロム酸を10~50質量部、または固形分換算でMg、Ca、AlおよびSrうちの少なくとも1種の重クロム酸塩を合計で10~50質量部含有する、請求項2に記載の方向性電磁鋼板の製造方法。
PCT/JP2016/004311 2015-09-25 2016-09-21 方向性電磁鋼板およびその製造方法 WO2017051535A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202211253182.4A CN115627332A (zh) 2015-09-25 2016-09-21 方向性电磁钢板及其制造方法
EP16848326.1A EP3354768B1 (en) 2015-09-25 2016-09-21 Grain-oriented electrical steel sheet and manufacturing method therefor
MX2018003517A MX2018003517A (es) 2015-09-25 2016-09-21 Lamina de acero electrico de grano orientado y metodo de fabricacion para la misma.
US15/750,264 US20180230565A1 (en) 2015-09-25 2016-09-21 Grain-oriented electrical steel sheet and manufacturing method therefor
KR1020187010303A KR102070129B1 (ko) 2015-09-25 2016-09-21 방향성 전자 강판 및 그의 제조 방법
CN201680054447.4A CN108026644A (zh) 2015-09-25 2016-09-21 方向性电磁钢板及其制造方法
RU2018113757A RU2689170C1 (ru) 2015-09-25 2016-09-21 Лист из текстурированной электротехнической стали и способ его изготовления

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015188671A JP6323423B2 (ja) 2015-09-25 2015-09-25 方向性電磁鋼板およびその製造方法
JP2015-188671 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051535A1 true WO2017051535A1 (ja) 2017-03-30

Family

ID=58385917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004311 WO2017051535A1 (ja) 2015-09-25 2016-09-21 方向性電磁鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US20180230565A1 (ja)
EP (1) EP3354768B1 (ja)
JP (1) JP6323423B2 (ja)
KR (1) KR102070129B1 (ja)
CN (2) CN115627332A (ja)
MX (1) MX2018003517A (ja)
RU (1) RU2689170C1 (ja)
WO (1) WO2017051535A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684106A (zh) * 2018-02-06 2020-09-18 杰富意钢铁株式会社 带有绝缘被膜的电磁钢板及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101774187B1 (ko) * 2014-01-31 2017-09-01 제이에프이 스틸 가부시키가이샤 크롬 프리 장력 피막용 처리액, 크롬 프리 장력 피막의 형성 방법, 및 크롬 프리 장력 피막 형성 방향성 전기 강판
CN109777160B (zh) * 2019-01-08 2020-02-14 南京宝淳新材料科技有限公司 一种方向性电磁钢板用涂料及其制备方法
US20230106127A1 (en) * 2020-02-28 2023-04-06 Jfe Steel Corporation Grain-oriented electrical steel sheet with insulating film and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126752A (ja) * 1993-11-09 1995-05-16 Nippon Steel Corp 鉄損の極めて優れた方向性電磁鋼板の製造法及びロール
JPH10183312A (ja) * 1996-10-21 1998-07-14 Kawasaki Steel Corp 鉄損が低く、耐歪特性および実機特性に優れた方向性電磁鋼板およびその製造方法
JP2003171773A (ja) * 2001-12-04 2003-06-20 Nippon Steel Corp 張力皮膜を有する一方向性珪素鋼板
JP2010168615A (ja) * 2009-01-21 2010-08-05 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2011099155A (ja) * 2009-11-09 2011-05-19 Nippon Steel Corp 薄手方向性電磁鋼板及び張力絶縁膜被覆薄手方向性電磁鋼板
WO2012017690A1 (ja) * 2010-08-06 2012-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) * 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS514128A (ja) 1974-06-27 1976-01-14 Nippon Oils & Fats Co Ltd Katekoorujudotainoseizohoho
ZA765233B (en) 1975-09-11 1977-08-31 J Rogers Steel metal web handling method apparatus and coil construct
JPS5328375A (en) 1976-08-11 1978-03-16 Fujitsu Ltd Inspecting method
JPS6141778A (ja) * 1984-08-02 1986-02-28 Nippon Steel Corp 張力付加性およびスベリ性の優れた方向性電磁鋼板の絶縁皮膜形成方法
CN1039915C (zh) * 1989-07-05 1998-09-23 新日本制铁株式会社 方向性电磁钢板上的绝缘皮膜成型方法
JP3539028B2 (ja) 1996-01-08 2004-06-14 Jfeスチール株式会社 高磁束密度一方向性けい素鋼板のフォルステライト被膜とその形成方法
JP3324633B2 (ja) 1996-04-09 2002-09-17 新日本製鐵株式会社 低鉄損一方向性電磁鋼板およびその製造方法
TWI272311B (en) * 2003-12-03 2007-02-01 Jfe Steel Corp Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet
BRPI0712594B1 (pt) * 2006-05-19 2018-07-10 Nippon Steel & Sumitomo Metal Corporation Chapa de aço elétrica com grão orientado tendo uma película de isolamento de alta resistência à tração e método de tratamento de tal película de isolamento.
JP5194641B2 (ja) * 2007-08-23 2013-05-08 Jfeスチール株式会社 方向性電磁鋼板用絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP5104128B2 (ja) * 2007-08-30 2012-12-19 Jfeスチール株式会社 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP4840518B2 (ja) * 2010-02-24 2011-12-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5991484B2 (ja) * 2011-12-06 2016-09-14 Jfeスチール株式会社 低鉄損方向性電磁鋼板の製造方法
CN104160043B (zh) * 2012-02-23 2015-12-30 杰富意钢铁株式会社 电磁钢板的制造方法
JP6004183B2 (ja) * 2013-02-28 2016-10-05 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR101774187B1 (ko) * 2014-01-31 2017-09-01 제이에프이 스틸 가부시키가이샤 크롬 프리 장력 피막용 처리액, 크롬 프리 장력 피막의 형성 방법, 및 크롬 프리 장력 피막 형성 방향성 전기 강판

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126752A (ja) * 1993-11-09 1995-05-16 Nippon Steel Corp 鉄損の極めて優れた方向性電磁鋼板の製造法及びロール
JPH10183312A (ja) * 1996-10-21 1998-07-14 Kawasaki Steel Corp 鉄損が低く、耐歪特性および実機特性に優れた方向性電磁鋼板およびその製造方法
JP2003171773A (ja) * 2001-12-04 2003-06-20 Nippon Steel Corp 張力皮膜を有する一方向性珪素鋼板
JP2010168615A (ja) * 2009-01-21 2010-08-05 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2011099155A (ja) * 2009-11-09 2011-05-19 Nippon Steel Corp 薄手方向性電磁鋼板及び張力絶縁膜被覆薄手方向性電磁鋼板
WO2012017690A1 (ja) * 2010-08-06 2012-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3354768A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684106A (zh) * 2018-02-06 2020-09-18 杰富意钢铁株式会社 带有绝缘被膜的电磁钢板及其制造方法
EP3722460A4 (en) * 2018-02-06 2020-11-11 JFE Steel Corporation INSULATED-COATED ELECTROMAGNETIC STEEL SHEET AND ITS PRODUCTION PROCESS
RU2749507C1 (ru) * 2018-02-06 2021-06-11 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из электротехнической стали с фиксированным изоляционным покрытием и способ его изготовления

Also Published As

Publication number Publication date
MX2018003517A (es) 2018-06-18
JP2017061732A (ja) 2017-03-30
CN108026644A (zh) 2018-05-11
EP3354768B1 (en) 2020-08-12
KR102070129B1 (ko) 2020-01-28
US20180230565A1 (en) 2018-08-16
EP3354768A1 (en) 2018-08-01
KR20180053353A (ko) 2018-05-21
RU2689170C1 (ru) 2019-05-24
CN115627332A (zh) 2023-01-20
EP3354768A4 (en) 2018-08-01
JP6323423B2 (ja) 2018-05-16

Similar Documents

Publication Publication Date Title
KR101677883B1 (ko) 방향성 전기 강판 및 그 제조 방법
RU2580778C2 (ru) Способ изготовления плоского изделия из электротехнической стали и плоское изделие из электротехнической стали
KR101620763B1 (ko) 방향성 전기 강판 및 그 제조 방법
US11572602B2 (en) Method for manufacturing a grain-oriented electrical steel sheet
JP6315084B2 (ja) 低鉄損で低磁歪の方向性電磁鋼板
WO2017051535A1 (ja) 方向性電磁鋼板およびその製造方法
WO2009020134A1 (ja) 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法
WO2009025389A1 (ja) 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法
KR20190065370A (ko) 방향성 전자 강판
JP6354076B1 (ja) 絶縁被膜を有する方向性電磁鋼板、変圧器の鉄心および変圧器ならびに変圧器の騒音の低減方法
JP6825681B2 (ja) 方向性電磁鋼板およびその製造方法
JP6558325B2 (ja) クロムフリー張力被膜形成用処理液、クロムフリー張力被膜付方向性電磁鋼板、クロムフリー張力被膜付方向性電磁鋼板の製造方法およびトランス用コア
JP5633401B2 (ja) クロムレス張力被膜用処理液およびクロムレス張力被膜の形成方法
JP4321181B2 (ja) クロムを含まない上塗絶縁被膜の形成方法
JP6056782B2 (ja) 方向性電磁鋼板およびその製造方法
JP3524058B2 (ja) 占積率と耐焼き付き性に優れる絶縁皮膜付き方向性珪素鋼板の製造方法
CN114555860B (zh) 带有绝缘覆膜的电磁钢板
JP3447697B2 (ja) 占積率と耐焼き付き性に優れる絶縁皮膜付き方向性珪素鋼板
KR20220067546A (ko) 피막 형성 방법 및 절연 피막 부착 전자 강판의 제조 방법
KR20230066067A (ko) 방향성 전기 강판, 방향성 전기 강판의 제조 방법 및 방향성 전기 강판의 평가 방법
JPH02267276A (ja) 磁気特性及び皮膜特性の優れた方向性電磁鋼板の絶縁皮膜処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15750264

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003517

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187010303

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018113757

Country of ref document: RU