WO2009020134A1 - 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2009020134A1
WO2009020134A1 PCT/JP2008/064075 JP2008064075W WO2009020134A1 WO 2009020134 A1 WO2009020134 A1 WO 2009020134A1 JP 2008064075 W JP2008064075 W JP 2008064075W WO 2009020134 A1 WO2009020134 A1 WO 2009020134A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
insulating coating
grain
electrical steel
oriented electrical
Prior art date
Application number
PCT/JP2008/064075
Other languages
English (en)
French (fr)
Inventor
Mineo Muraki
Tomofumi Shigekuni
Minoru Takashima
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40341366&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009020134(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP08792241.5A priority Critical patent/EP2180082B1/en
Priority to US12/671,972 priority patent/US8771795B2/en
Priority to KR1020137009259A priority patent/KR101422426B1/ko
Priority to CN2008801027108A priority patent/CN101778964B/zh
Publication of WO2009020134A1 publication Critical patent/WO2009020134A1/ja
Priority to US14/278,503 priority patent/US9011585B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • H01F41/024Manufacturing of magnetic circuits made from deformed sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • Insulating coating solution for grain-oriented electrical steel sheet and
  • the present invention relates to a grain oriented electrical steel sheet (insulation coating) having a coating characteristic equivalent to that obtained when a treatment solution for insulation coating containing a chromium compound is used.
  • the present invention relates to a chromium-free insulating film treatment solution that can be used to obtain a steel sheet.
  • the present invention also relates to a method for producing a grain-oriented electrical steel sheet having an insulating coating using this chromium-free insulating coating treatment solution.
  • noise generated from power transformers has become a problem as pollution.
  • the main cause of noise in power transformers is magnetostriction of grain-oriented electrical steel sheets used as transformer core materials.
  • an industrially advantageous solution is to coat the grain-oriented electrical steel sheet with an insulating film.
  • the properties required for the insulation coating of grain-oriented electrical steel sheets include tension induced by a coating, absorption resistance, and moisture-absorption resistance. Among these characteristics, it is important to secure the film tension in order to reduce magnetostriction, where the film tension is a grain-oriented electrical steel sheet formed by the formation of an insulating film.
  • the coating of grain-oriented electrical steel sheets is usually a ceramic forsterite film formed by secondary recrystallization annealing and a phosphor applied on the ceramic forsterite film.
  • Patent Document 1 JP-A 48-39338
  • JP-A 50-79442 Patent Document
  • the technology disclosed in 2) is known.
  • colloidal silica, phosphate, and chromium compounds for example, chromic anhydride, chromate, dichromate, etc.
  • a coating solution containing a seed or two or more) is coated on the steel sheet, and then baked.
  • the insulating coating formed by these methods has an effect of improving magnetostriction characteristics by applying tensile stress to the grain-oriented electrical steel sheet.
  • these insulating coating treatment liquids contain chromium such as chromic anhydride, chromate or dichromate as a component for maintaining good moisture absorption resistance of the insulating coating. Contains compounds and therefore contains hexavalent chromium derived therefrom.
  • Patent Document 2 discloses a technique that does not include a chromium compound, and the strength S and the viewpoint of moisture absorption resistance are extremely disadvantageous.
  • the hexavalent chromium contained in the insulation coating solution is reduced to trivalent chromium by baking and rendered harmless.
  • there is a problem that various burdens arise in handling in the waste liquid treatment work of the treatment liquid.
  • Patent Document 3 discloses colloidal silica, aluminum phosphate, and boric acid as a so-called chromium-free insulating coating treatment solution for grain-oriented electrical steel sheets that does not substantially contain chromium.
  • an insulating coating solution containing i type or two or more types selected from Mg, Al, Fe, Co, M and Zn sulfates is disclosed, and Japanese Patent Publication No. 58-44744 In the publication (Patent Document 4), an insulating coating containing colloidal silica magnesium phosphate and further containing one or more selected from sulfates of Mg, Al, Mn and Zn is used.
  • a processing solution is disclosed.
  • Patent Document 5 As an additive for insulation coating treatment liquid containing colloidal silica opiphosphate, Fe, Ca, Ba, Zn, Al, Ni, Sn, Cu, Cr, Cd, Nd, Mn, Mo, Si , Ti, W, Bi, Sr, V, acid, charcoal, honey, sulfide, boride, hydroxide, silicate, carbonate, borate, sulfate,
  • colloidal solution of nitrate and chloride particle size of 80 to 3000 nm
  • Patent Document 5 A colloidal solution of nitrate and chloride (particle size of 80 to 3000 nm) is disclosed in (Japan) Patent No. 2791812 (Patent Document 5).
  • the insulating coating treatment liquid of Patent Document 5 must contain a chromium compound, and does not disclose any special solution regarding the problems of addition of chromium already described and the workarounds thereof. Disclosure of the invention
  • the present invention has been developed in view of the above-described present situation, and aims at the following items.
  • the inventors of the present invention who solve the above-mentioned problems have made various studies in order to obtain a grain-oriented electrical steel sheet having a desired film tension and moisture absorption resistance using a chromium-free insulating film treatment solution. went.
  • the additive of the insulating coating treatment liquid disclosed in Patent Document 5 also includes a colloidal solution of a V compound (for example, V 2 0 5 ). This is different from this in that at least a water-soluble compound is used instead of a colloid, that is, the gist of the present invention is as follows.
  • colloidal silica is 0.5 to 10 mol in terms of SiO 2 and water-soluble vanadium compound is 0.1 to 2.0 mol in terms of V.
  • An insulating coating solution for grain-oriented electrical steel sheets characterized by comprising.
  • the insulating film treatment liquid is chromium-free and particularly contains substantially no Cr.
  • the treatment solution is preferably an aqueous solution! /.
  • colloidal silica is 0.5 to 10 mol in terms of SiO 2 and water-soluble vanadium compound is 0.1 to 2.0 mol in terms of V.
  • the production of a grain-oriented electrical steel sheet having an insulating coating characterized by using an insulating coating treatment liquid contained therein. Manufacturing method.
  • the insulating coating solution is chromium-free, and in particular does not substantially contain Cr.
  • the treatment liquid is preferably an aqueous solution.
  • one cold rolling or intermediate annealing (intermediate) It is preferable that the final thickness is finished by two or more cold rollings that sandwich the annealing). Further, after the primary recrystallization annealing, it is preferable to apply the secondary recrystallization annealing after applying an annealing separator containing MgO as a primary component.
  • Fig. 1 shows the amount of vanadium sulfate added to the insulation coating solution (horizontal axis: V vs. P0 4 lmol) on the moisture absorption resistance (vertical axis: P elution amount per 150 cm 2 , unit: ⁇ g). It is a graph which shows the influence of conversion addition amount and a unit: raol).
  • Fig. 2 is a graph showing the effect of the amount of vanadium sulfate added to the insulation coating solution (horizontal axis: the same as in Fig. 1) on the anti-mold properties (vertical axis: A to C three-step evaluation) of the insulating coating. .
  • Fig. 3 is a graph showing the influence of the amount of panadium sulfate added to the insulating coating solution (horizontal axis: the same as in Fig. 1) on the coating tension (vertical axis, unit: MPa) of the insulating coating.
  • Vanadium sulfate was supplied as a solid and dissolved in the treatment liquid.
  • the amount of the processing solution only the amount necessary for the following experiment was prepared while maintaining the above blending ratio.
  • Film tension ⁇ The length direction was the rolling direction, the steel sheet was sheared to width: 30 mm X length: 280 mm, and then the insulation film on one side was removed. The amount of curvature deformation of the steel sheet was measured with one end 30 mm in the length direction of the steel sheet fixed, and the film tension ⁇ was obtained from the following equation (1). In order to eliminate the influence of the weight of the steel plate, the amount of warpage was measured with the length direction of the steel plate in the horizontal direction and the width direction in the vertical direction.
  • ⁇ (MPa) 121520 (Pa) X thickness (mm) X warpage (mm) / 250 (mm) / 250 (mm) Equation (1)
  • Hygroscopic resistance Three test pieces of 50 mm ⁇ 50 mm were collected and immersed in distilled water at 100 ° C. for 5 minutes (dip and boil). Then, quantitative analysis of P eluted from the coating surface force was performed, and the average value was obtained as an index.
  • Antifungal property The steel plate was kept in air at a humidity of 50% and a dew point of 50 ° C for 50 hours, and then the steel plate surface was observed. Then, A was generated without rusting, B was generated with point cracks (discrete pointed wrinkles), and surface wrinkles (wrinkles with two-dimensional spread and continuity) were generated. Things were rated as C. The area ratio of ridges is generally less than 5% for evaluation A, approximately 5-10% for evaluation B, and approximately 10% for evaluation C.
  • FIG. 1 shows the amount of vanadium sulfate added to the insulation coating treatment solution on the moisture absorption resistance of the insulation coating (vertical axis: amount of elution of P per 150 cm 2 , unit: g) (horizontal axis: This shows the influence of V conversion amount (unit: mol) on P0 4 lmol.
  • Fig. 2 shows the effect of vanadium sulfate addition (horizontal axis) on antifungal properties (vertical axis: A to C three-stage evaluation).
  • Fig. 3 shows the effect of the amount of vanadium sulfate added (horizontal axis) on the film tension (vertical axis, unit: MPa).
  • Amount of vanadium sulfate (V conversion calculation) is, P0 4: For more than 0. I mol relative to I mol, moisture absorption resistance Contact Yopi proof ⁇ are both significantly improved. In addition, the film tension slightly increased, and a tendency to maintain a high level stably was observed. On the other hand, when the amount added exceeded 2 mol, although there was no problem with lightning hygroscopicity, the fender resistance deteriorated and the film tension tended to decrease slightly.
  • the insulating coating solution of the present invention is preferably an aqueous solution. That is, the insulating film treatment liquid of the present invention is preferably at least one selected from Mg, Ca, Ba, Sr, Zn, Al, and Mn phosphates using water as a solvent, colloidal silica, It contains a water-soluble vanadium compound.
  • the insulating coating treatment liquid of the present invention includes Mg, Ca, Ba, Sr, Zn, Al, and Mn phosphates. Contains seeds or more. This is because, in the case of phosphates other than these, when a chromium compound (for example, chromic anhydride) is not added, a film having good moisture absorption resistance cannot be obtained.
  • M g, Ca, Ba, Sr, Zn, Mg (H 2 P0 4) is the first phosphates of Al and Mn 2, Ca (H 2 P0 4) 2, Ba (H 2 P0 4) 2 , Sr (H 2 P0 4 ) 2 , Zn (H 2 P0 4 ) 2 , A1 (H 2 P0 4 ) 3 and Mn (H 2 P0 4 ) 2 are preferable because they are easily dissolved in water.
  • These primary phosphate hydrates are also suitable.
  • Colloidal silica is added in an amount of 0.5 to 10 mol in terms of SiO 2 with respect to P0 4 : lmol in the above phosphate.
  • Colloidal silica is an indispensable substance because it forms a film tension by forming a compound with a low coefficient of thermal expansion together with the above phosphate. Further, in order to exhibit the left effect, the amount, P0 4 in the phosphate: Si0 2 in terms of at 0.5mol or more relative to I mol, is preferably not greater than LOmol.
  • the type of colloidal silica is not particularly limited as long as the stability of the solution and the compatibility with the above-described phosphate are obtained.
  • a commercially available acidic type (acid- type) ST- O Nasan Chemical (Co.) (Nissan Chemical Industries, LTD) made, Si0 2 content:. 20 mass%), but it can be mentioned, colloids alkaline type Silica-like silica can also be used.
  • colloidal silica containing a sol containing aluminum (A1) can also be used.
  • the amount of A1 is preferably 1 or less in terms of Al 2 0 3 Si0 2 ratio.
  • in phosphate P0 4: relative I mol are particularly important to 0.1 ⁇ 2.0mol blending a water-soluble vanadium compound V in terms .
  • vanadium sulfate As powerful water-soluble vanadium compounds, vanadium sulfate, vanadium chloride, panadium bromide, potassium vanadate, sodium vanadate, ammonium vanadate, and lithium panadate are advantageously suitable. These hydrates can also be used. In particular, there is vanadium sulfate! /, Preferably contains ammonium vanadate and, if necessary, other water-soluble vanadium compounds.
  • a more preferable compounding amount of the vanadium compound is 1.0 to 2.0 mol in terms of V.
  • the concentration of the above main components in the insulating coating solution is not particularly limited.
  • concentration when the concentration is low, the insulating coating becomes thin, and when the concentration is high, the viscosity of the insulating coating treatment liquid increases and the workability of coating and the like decreases. In consideration of these, it is preferably in the range generally of about 0.02 ⁇ 20molZ liter P0 4 terms on the phosphate.
  • concentration range of the colloidal silica opivanadium compound is automatically determined once the phosphate concentration is determined.
  • the following substances may be added to the insulating coating solution of the present invention.
  • boric acid may be added to improve the heat resistance of the insulating coating.
  • the primary particle size 50 to 2000 nm Si0 2 , A1 2 0
  • One or more selected from 3 and Ti0 2 may be contained.
  • the reason why fusion resistance is required is as follows. When grain-oriented electrical steel sheets are used in a steel core type transformer, the steel sheets are rolled and formed into the shape of an iron core, followed by strain relief annealing (for example, about 800 ° CX for 3 hours). At that time, adjacent coatings may be fused. Such fusion reduces the interlayer insulation resistance of the iron core and causes the magnetic properties to deteriorate.
  • the insulating film treatment liquid is chromium-free and does not substantially contain any.
  • substantially does not contain means that the power derived from impurities contained in the raw material is not positively added.
  • many of the above components such as phosphate, colloidal silica, vanadium compounds are available as industrial commercial products, and any Cr amount of impurities contained in these commercial products is acceptable.
  • the reason why the vanadium compound is blended in the insulating film treatment liquid containing the chromium compound disclosed in Patent Document 5 is that the above-mentioned Si0 2 , A1 2 0 3 and the above in the chromium-free insulating film treatment liquid of the present invention. similar to ti0 2, it is to improve the core of manufacturability (Productivity).
  • the reason why the vanadium compound is blended in the insulating coating solution of the present invention is to improve the coating characteristics of the chromium-free insulating coating, and the purpose of both is greatly different.
  • the vanadium compound power colloid compounded in the insulating coating treatment liquid disclosed in Patent Document 5 is water-soluble.
  • Water-soluble Panadium compounds have an effect of improving the hygroscopicity of phosphoric acid when mixed with Mg, Ca, Ba, Sr, Zn, Al and Mn phosphates compared to colloidal vanadium compounds. There is a big difference in that it manifests.
  • the slab for grain-oriented electrical steel sheet is rolled to the final thickness, and after the primary recrystallization annealing and the secondary recrystallization annealing, the above-mentioned insulating coating treatment liquid is applied, and then the baking treatment I do.
  • the slab for grain-oriented electrical steel sheets is hot-rolled, hot-rolled sheet annealing is performed as necessary, and the final sheet thickness is obtained by cold rolling.
  • the component composition of the grain-oriented electrical steel sheet is not particularly limited, and any conventionally known component system is suitable.
  • the production method is not particularly limited, and any conventionally known production method can be used.
  • the main components of slabs for typical grain-oriented electrical steel sheets are: C: 0.10 mass% or less, 31: 2.0-4.51 ⁇ 33% ⁇ pi 1 ⁇ : 0.01-1.0111 & 83%, preferably C: 0.08 mass% or less, Si: 2.0 to 3.5 mass% Mn: 0.03 to 0.3 mass%.
  • various inhibitors are usually used for grain-oriented electrical steel sheets, and in addition to the main components, elements corresponding to the inhibitors are added. For example, as an inhibitor
  • sol.Al about 200ppm (ie about 100-300ppm)
  • MnSe and Sb When MnSe and Sb are used, Mn, Se (about 100 to 300 ppm) and Sb (about 0.01 to 0.2 mass%) can be added.
  • S, Al, N, and Se are generally extracted from the steel sheet in the secondary recrystallization annealing process and reduced to the impurity level.
  • the slab for grain-oriented electrical steel sheet thus manufactured is usually hot-rolled.
  • the plate thickness after hot rolling is preferably about 1.5 to 3.0 mm.
  • the hot-rolled sheet after hot rolling may be subjected to hot-rolled sheet annealing as necessary for further improvement of magnetic properties.
  • the hot-rolled sheet that has been hot-rolled or further subjected to hot-rolled sheet annealing is cold-rolled to a final thickness.
  • the cold rolling may be performed once or may be performed twice or more with intermediate annealing.
  • the cold-rolled sheet having the final thickness is then subjected to secondary recrystallization annealing (final annealing) after primary recrystallization annealing, and after applying an insulating coating solution, baking is performed.
  • the primary recrystallization annealing can be performed also as decarburization by controlling the atmosphere or the like.
  • the conditions for primary recrystallization annealing can be set according to the purpose, but it is desirable to perform continuous annealing at a temperature of 800 to 950 ° C for 10 to 600 seconds.
  • Nitriding treatment may be performed using ammonia gas or the like during or after the primary recrystallization annealing! / ⁇ .
  • Secondary recrystallization annealing is a crystal orientation that is obtained by primary recrystallization annealing (primary recrystallized grain), which has excellent magnetic properties in the rolling direction by secondary recrystallization, so-called goth orientation. This is a step of preferential growth in (Goss orientation).
  • the conditions for secondary recrystallization annealing are preferably set to a force S that can be set according to the purpose, etc., and a temperature of 800 to 1250 ° C for about 5 to 600 hours.
  • a forsterite film is formed. Generate on a steel plate.
  • the chromium-free insulating coating solution of the present invention can be applied regardless of the presence or absence of forsterite coating.
  • the chromium-free insulating coating treatment liquid of the present invention is applied to the grain-oriented electrical steel sheet after the secondary recrystallization manufactured through the series of steps as described above, and then a baking treatment is performed.
  • the chromium-free insulating coating solution may be diluted by adding water to adjust the density in order to improve the coating property. Further, at the time of coating are a roll coater (ro ll coater), it can be used known means.
  • the baking temperature is desirably 750 ° C or higher. This is because film tension is generated by baking at 750 ° C or higher. However, when grain-oriented electrical steel is used for the iron core of the transformer, the baking temperature should be 350 ° C or higher. This is because the core is often subjected to strain relief annealing for about 3 hours at a temperature of 800 ° C. In this case, the film tension is manifested during this strain relief annealing. Therefore, the lower limit of the baking temperature is preferably 350 ° C. The upper limit of the baking temperature is preferably 1100 ° C. The thickness of the insulating coating is not particularly limited, but is preferably about 1 to 5 ⁇ m.
  • the thickness of the insulating coating can be controlled to the target value by the concentration of the insulating coating treatment liquid, the coating amount, the coating conditions (for example, the pressing condition of the roll coater), and the like.
  • the steel sheet slab was hot-rolled to a thickness of 2.3 mm, and then subjected to hot-rolled sheet annealing at a temperature of 1050 ° C. for 60 seconds. Thereafter, the intermediate sheet thickness was set to 1.4 mm by the first cold rolling, followed by intermediate annealing at 1100 ° C. for 60 seconds, and then the final sheet thickness was set to 0.20 mm by the second cold rolling.
  • the cold-rolled sheet was subjected to primary recrystallization annealing also serving as decarburization at a temperature of 820 ° C for 150 seconds. Then, after applying MgO slurry as an annealing separator, secondary recrystallization annealing at 1200 ° C. for 12 hours was performed to obtain a grain-oriented electrical steel sheet having a forsterite coating.
  • the above chromium-free insulating coating treatment liquid does not contain a vanadium compound, magnesium sulfate heptahydrate instead of the vanadium compound: lmol (in terms of Mg), and V OJmol colloidal V 2 0 5 in terms of the (average particle diameter LOOOnm) using chromium-free insulation coating treatment solution 30ml formulation was prepared similarly insulation coating with oriented electrical steel sheets, respectively.
  • magnesium phosphate Mg (H 2 P0 4) P_ ⁇ in 2 4 For I mol (aq 500 ml), 3 mol with Si0 2 in terms of We prepared an insulating coating solution containing 700 ml of colloidal silica (aqueous) and O.lmol potassium dichromate in terms of Cr, and used this to produce a grain-oriented electrical steel sheet with an insulating coating. With respect to the obtained grain-oriented electrical steel sheet with an insulating coating, the coating tension, moisture absorption resistance, fender resistance and space factor were evaluated by the following methods. In all cases, the film thickness was 2 / xm (per side).
  • Film tension ⁇ The length direction was the rolling direction, the steel sheet was sheared to width: 30 mm X length: 280 mm, and then the insulation film on one side was removed.
  • the amount of warpage of the steel sheet was measured with one end 30 mm in the length direction of the steel sheet fixed, and the film tension ⁇ was obtained from Equation (1).
  • the amount of warpage was measured with the length direction of the steel sheet as the horizontal direction and the width direction as the vertical direction.
  • ⁇ (Pa) 121520 (MPa) X thickness (mm) X warpage (mm) / 250 (mm) / 250 (mm)
  • the film tension ⁇ on the steel sheet targeted in the present invention is a force S of 8 MPa or more, and ⁇ varies depending on the film thickness and the like.
  • Hygroscopic resistance Three test pieces of 50 mm x 50 mm were collected and boiled for 5 minutes in 100 ° C distilled water. Then, P eluted from the surface force of the coating was quantitatively analyzed, and the average value was obtained as an index.
  • the target P elution amount in the present invention is 80 / gZl50 cm 2 or less.
  • Antifungal property The steel plate was kept in air at a humidity of 50% and a dew point of 50 ° C for 50 hours, and then the steel plate surface was observed. Then, the evaluation was given as A with no rusting, B with slight cracking (dots), and C with severe wrinkles (comets).
  • the comparative example 5 is inferior in antifungal properties as compared with the present invention, and this is because the colloidal vanadium compound is added in the comparative example 5.
  • a slab for grain-oriented electrical steel sheets having a composition that is Fe and inevitable impurities was hot-rolled to form a hot-rolled sheet having a thickness of 1.8 mm, and then subjected to hot-rolled sheet annealing at 1050 ° C. for 60 seconds. Subsequently, the final sheet thickness was 0.40 mm by one cold rolling. Next, primary cold crystallization annealing was performed on the cold-rolled sheet having the final thickness of 850 ° C. for 60 seconds. Thereafter, MgO slurry was applied as an annealing separator, and secondary recrystallization annealing was performed at 880 ° C. for 50 hours to obtain a grain-oriented electrical steel sheet having a forsterite coating.
  • These insulating coating treatment liquids were applied to the surface of the above-mentioned grain-oriented electrical steel sheet and subjected to a baking treatment at 800 ° C. for 60 seconds.
  • the film thickness after baking was 3 ⁇ per side.
  • an insulating coating having excellent coating tension, moisture absorption resistance, weather resistance, and space factor can be formed on the surface of a grain-oriented electrical steel sheet. As a result, reduction of noise pollution can be achieved.
  • chromium-free insulating film treatment liquid of the present invention excellent film characteristics comparable to those obtained when an absolute film treatment liquid containing a chromium compound is used without generating harmful liquid waste of chromium compounds.
  • a grain-oriented electrical steel sheet with an insulating coating can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

Mg、Ca、Ba、Sr、Zn、AlおよびMnのリン酸塩のうちから選ばれる1種または2種以上を含有し、この選択した該リン酸塩中のPO4を基準とし、該PO4:1molに対し、コロイド状シリカをSiO2換算で0.5~10molおよび水溶性のバナジウム化合物をV換算で0.1~2.0mol配合した処理液とすることにより、絶縁被膜処理液をクロムフリーとした場合に問題となる被膜張力および耐吸湿性の低下を防止し、方向性電磁鋼板の絶縁被膜として必要な特性、すなわち被膜張力、耐吸湿性、防錆性および占積率が、クロム化合物を含有する絶縁被膜処理液を用いた場合に匹敵する、方向性電磁鋼板用クロムフリー絶縁被膜処理液を得る。

Description

方向性電磁鋼板用絶縁被膜処理液、および
絶縁被膜を有する方向性電磁鋼板の製造方法 技術分野
本発明は、クロム化合物を含有する絶縁被膜処理液(treatment solution for insulation coating)を用レ、た場合と同等の被膜特性を有する、絶縁被膜 (insulation coating)を有する方向 性電磁鋼板 (grain oriented electrical steel sheet)が得られるクロムフリー (chromium-free)の絶縁 被膜処理液に関するものである。 本発明はまた、このクロムフリーの絶縁被膜処理液を用いた、 絶縁被膜を有する方向性電磁鋼板の製造方法に関するものである。 背景技術
近年、電力用変圧器から発生する騒音が公害として問題となっている。 電力用変圧器の騒 音の主原因は、変圧器の鉄心材料として用いられる方向性電磁鋼板の磁歪(magnetostriction) である。 変圧器の騒音を減らすためには、方向性電磁鋼板の磁歪を小さくすることが必要であり、 工業上有利な解決方法は、方向性電磁鋼板に絶縁被膜を被覆することである。
方向性電磁鋼板の絶縁被膜に必要とされる特性として、被膜張力(tension induced by a coating)、耐吸¾'| "生、 moisture—absorption resistanceリ、防鲭 'I4、rust resistance)ぉょぴ占積率 (lamination factor)がある。 これらの特性のなかで、磁歪の低減には、被膜張力を確保すること が重要である。 ここで、被膜張力とは、絶縁被膜の形成によって方向性電磁鋼板に付与される 張力のことである。 方向性電磁鋼板の被膜は、通常、二次再結晶焼鈍(secondary recrystallization annealing)に より形成されたセラミック質のフォルステライト被膜と、その上に施されるリン酸塩系 (phosphate-based)の絶縁被膜力 成り立っている。 この絶縁被膜を形成する方法として、特開 昭 48- 39338号公報 (特許文献 1)および特開昭 50- 79442号公報 (特許文献 2)に開示された技術 が知られている。 これらの技術においては、コロイド状シリカ(colloidal silica)と、リン酸塩と、クロ ム化合物(chromium compound) (例えば無水クロム酸、クロム酸塩、重クロム酸塩のうちか,ら選ば れる 1種または 2種以上)とを含有する絶縁被膜処理液を鋼板に塗布(coating)し、その後、焼付 け(baking)をする。
これらの方法によって形成される絶縁被膜は、方向性電磁鋼板に引張応力を与えることにより、 磁歪特性を改善する効果を有する。 しかし、これらの絶縁被膜処理液は、絶縁被膜の耐吸湿性 を良好に維持するための成分として、無水クロム酸、クロム酸塩または重クロム酸塩などのクロム 化合物を含み、レたがって、これらに由来する 6価クロムを含有する。 特許文献 2にはクロム化合 物を添カ卩しない技術も開示されている力 S、耐吸湿性の観点力 は極めて不利である。 ここで、 '絶 縁被膜処理液中に含まれる 6価クロムは、焼付けにより 3価クロムに還元されて無害化される。 し かし、処理液の廃液処理作業において取り扱いに種々の負担が生じるという問題がある。
一方、クロムを実質上含有しない、いわゆるクロムフリーの方向性電磁鋼板用絶縁被膜処理液 として、特公昭 57- 9631号公報 (特許文献 3)には、コロイド状シリカ、リン酸アルミニウムおよびホウ 酸を含有し、さらに Mg、 Al、 Fe、 Co、 Mおよび Znの硫酸塩のうちから選ばれる i種または 2種以上 を含有する絶縁被膜処理液が開示されており、また、特公昭 58-44744号公報 (特許文献 4)には、 コロイド状シリカおょぴリン酸マグネシウムを含有し、さらに Mg、 Al、 Mnおよび Znの硫酸塩のうちか ら選ばれる 1種または 2種以上を含有する絶縁被膜処理液が開示されている。 しかしながら、特 許文献 3および特許文献 4の絶縁被膜処理液を用いた場合には、近年の被膜特性に対する要 求に対して、被膜張力、耐吸湿' I生の点で問題があった。 なお、コロイド状シリカおょぴリン酸塩を含有する絶縁被膜処理液の添加物として、 Fe、 Ca、 Ba、 Zn、 Al、 Ni、 Sn、 Cu、 Cr、 Cd、 Nd、 Mn、 Mo、 Si、 Ti、 W、 Bi、 Sr、 V力らなる酸ィ匕物、炭ィ匕物、蜜ィ匕物、 硫化物、硼化物、水酸化物、珪酸塩、炭酸塩、硼酸塩、硫酸塩、硝酸塩、塩化物のコロイド溶液 (粒子径 80〜3000nm)が(日本国)特許第 2791812号公報(特許文献 5)に開示されている。 こ れらの添加物は、絶縁被膜の滑り性(耐ステイツキング性(耐融着性): removal property of stiction)および潤滑性を改善し、もって鉄心に加工する際のトラブルを回避するなどのために添 加されている。 ただし、特許文献 5の絶縁被膜処理液はクロム化合物の含有が必須であり、既に 述べたクロム添加の問題点や、その回避策について、特別な解決策を開示するものではない。 発明の開示
〔発明が解決しょうとする課題〕
本発明は、上記の現状に鑑み開発されたもので、以下の各項を目的とする。
-絶縁被膜処理液をクロムフリー化した場合に問題となる被膜張力おょぴ耐吸湿性の低下を 防止すること
•方向性電磁鋼板の絶縁被膜として必要な特性、すなわち被膜張力、耐吸湿性、防鲭性およ ぴ占積率力 S、クロム化合物を含有する絶縁被膜処理液を用いた場合と遜色のないものが得られ る、方向性電磁鋼板用クロムフリー絶縁被膜処理液を提供すること
-上記の方向性電磁鋼板用クロムフリー絶縁被膜処理液を用 Vヽた、絶縁被膜付方向性電磁鋼 板の製造方法を提供する。 〔課題を解決するための手段〕
さて、上記の課題を解決すベぐ発明者らは、クロムフリー絶縁被膜処理液を用いて、所望の 被膜張力おょぴ耐吸湿性を有する方向性電磁鋼板を得るために、種々の検討を行った。
すなわち、リン酸塩およびコロイド状シリカを含有した絶縁被膜処理液に種々の金属化合物を 添加し、二次再結晶焼鈍後の方向性電磁鋼板に塗布し、その後焼付けした。 そして得られた被 膜の特性について調査した。
その結果、金属化合物として、水溶性 (water-soluble)のバナジウム化合物を添加することによ り、所期した目的が有利に達成することを見出した。 本発明は、上記知見に立脚するものである ( なお、特許文献 5に開示の絶縁被膜処理液の添加物としては V化合物(例えば V205)のコロイド 溶液も含まれる力 本願発明においては少なくとも、コロイドではなく水溶性化合物を用いる点で これと相違する。 すなわち、本発明の要旨構成は、次のとおりである。
(1)
•Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうち力 選ばれる少なくとも 1種と、
'該リン酸塩中の P04: lmolに対し、コロイド状シリカを Si02換算で 0.5〜10molおよび水溶性の バナジウム化合物を V換算で 0.1〜2.0molとを、 '
含有することを特徴とする方向性電磁鋼板用絶縁被膜処理液。 ここで、絶縁被膜処理液はクロムフリーであり、とくに Crを実質的に含有しないことが望ましい。 なお、処理液は水性溶液であることが望まし!/、。
(2)方向性電磁鋼板用スラブを、圧延により最終板厚(final sheet thickness)に仕上げ、つい で一次再結晶焼鈍 (primary recrystallization annealing)後、二次再結晶焼鈍を施し、さらに絶縁 被膜処理液を塗布したのち、焼付け処理を行う一連の工程により、方向性電磁鋼板を製造する に際し、
前記絶縁被膜処理液として、
•Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうちから選ばれる少なくとも 1種と、
'該リン酸塩中の P04: lmolに対し、コロイド状シリカを Si02換算で 0.5〜10molおよび水溶性の バナジウム化合物を V換算で 0.1〜2.0molとを、
含有する絶縁被膜処理液を用いることを特徴とする、絶縁被膜を有する方向性電磁鋼板の製 造方法。 ここで、絶縁被膜処理液はクロムフリーであり、とくに Crを実質的に含有しなレ、ことが望ましい。 なお、処理液は水性溶液であることが望ましレ、。
また、上記の圧延としては、熱間圧延 (hot rolling)を施し、その後、あるいはさらに熱延板焼鈍 ( normalizing annealing )を施したのち、 1回の冷間圧延( cold rolling )または中間焼鈍 (intermediate annealing)を挟む 2回以上の冷間圧延により前記最終板厚に仕上げることが好適 である。 さらに、上記一次再結晶焼鈍後、 MgOを主体とする(containing MgO as a primary component)焼鈍分離剤 (annealing separator)を塗布してから上記二次再結晶焼鈍を施すことが 好ましい。 図面の簡単な説明
図 1は、絶縁被膜の耐吸湿性 (縦軸: 150cm2当たりの P溶出量、単位: μ g)に及ぼす、絶縁被 膜処理液への硫酸バナジウム添加量 (横軸: P04 lmolに対する V換算添加量、単位: raol)の影 響を示すグラフである。
図 2は、絶縁被膜の防鲭性 (縦軸: A〜C 3段階評価)に及ぼす、絶縁被膜処理液への硫酸 バナジウム添加量 (横軸:図 1に同じ)の影響を示すグラフである。
図 3は、絶縁被膜の被膜張力(縦軸、単位: MPa)に及ぼす、絶縁被膜処理液への硫酸パナジ ゥム添加量 (横軸:図 1に同じ)の影響を示すグラフである。 発明を実施するための最良の形態
以下、本発明の基礎となった実験結果について説明する。
まず、絶縁被膜処理液として、
'リン酸マグネシウム(Mg(H2P04)2)の 24mass%zk溶液: 450ml (P04: lmol)に対して、 •Si02 : 27mass%のコロイド状シリカ(水性) 450ml (Si02: 2mol)、および、
'硫酸バナジウム:種々の割合 (V換算で 0.05〜3mol)
を配合したものを用意した。 なお、硫酸バナジウムは固体で供給し、処理液に溶解させた。 また処理液の液量としては、上記配合比率を維持しつつ、以下の実験に必要な量だけ用意し た。
これらの絶縁被膜処理液を、フォルステライト被膜を有する二次再結晶焼鈍後の方向性電磁 鋼板(板厚: 0.20mm)に塗布し、 800°Cの温度で 60秒の焼付け処理を施した。 焼付け処理後の 被膜厚さはいずれも、 2 i m (片面当り)とした。 力べして得られた方向性電磁鋼板について、次 に示す方法により、被膜張力、耐吸湿性およぴ防鲭性を評価した。
被膜張力 σ:長さ方向を圧延方向として、鋼板を幅:30mm X長さ: 280mmにせん断し、その後、 片面の絶縁被膜を除去した。 鋼板の長さ方向の片端 30mmを固定して鋼板の反り量 (amount of curvature deformation)を測定し、以下の式(1)から被膜張力 σを求めた。 なお、鋼板の自重の 影響を排除するため、水平方向に鋼板の長さ方向を、鉛直方向に幅方向をそれぞれ向けて、反 り量を測定した。
σ (MPa)= 121520( Pa) X板厚 (mm) X反り (mm)/250(mm)/250(mm) · · ·式 (1)
耐吸湿性: 50mm X 50mmの試験片 3枚を採取し、 100°Cの蒸留水中で 5分間浸漬煮沸(dip and boil)した。 そして、被膜表面力 溶出した Pを定量分析し、その平均値を求めて指標とした。 防鲭性:湿度 50%、露点 50°Cの空気中に鋼板を 50時間保持したのち、鋼板表面を観察した。 そして、さびの発生がないものを A、点鲭び (離散的な点状の鲭)が発生したものを B、面鲭 (二次 元的な広がりと連続性をもった鲭)が発生したものを Cとして評価した。 なお鲭の面積率は、評価 Aの場合概ね 5%未満、評価 Bの場合概ね 5〜10%、評価 Cの場合概ね 10%超えとなる。
結果を、図 1〜3に示す。 図 1に、絶縁被膜の耐吸湿性(縦軸: 150cm2当たりの P溶出量(amount of elution of P)、単 位: g)に及ぼす絶縁被膜処理液への硫酸バナジウム添加量 (横軸: P04 lmolに対する V換算 添加量、単位: mol)の影響を示す。 また、図 2に、防鲭性 (縦軸: A〜C 3段階評価)に及ぼす 硫酸バナジウム添加量 (横軸)の影響を示す。 さらに、図 3に、被膜張力(縦軸、単位: MPa)に 及ぼす硫酸バナジウム添加量 (横軸)の影響をそれぞれ示す。 硫酸バナジウムの添加量 (V換 算)が、 P04 : lmolに対して 0. lmol以上の場合、耐吸湿性およぴ防鲭性が共に著しく改善された。 また、被膜張力もわずかに増加し、安定して高位を保つ傾向が見られた。 一方、添加量が 2mol を超えた場合には、雷吸湿性は問題なかったものの、防鲭性が劣化し、また被膜張力も若干減 少する傾向を示した。
(絶縁被膜処理液)
次に、本発明の絶縁被膜処理液の限定理由について説明する。
本発明の絶縁被膜処理液は水性溶液とすることが好ましい。 すなわち、本発明の絶縁被膜 処理液は、好ましくは水を溶媒として、 Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうちから選 ばれる少なくとも 1種と、コロイド状シリカと、水溶性のバナジウム化合物とを含有して構成される。 まず、本発明の絶縁被膜処理液は、 Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうちから 1 種または 2種以上を含有する。 これら以外のリン酸塩では、クロム化合物(例えば無水クロム酸 類)を添加しない場合に、耐吸湿性の良好な被膜が得られなレ、からである。 特に、 Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnの第一リン酸塩である Mg(H2P04)2、 Ca(H2P04)2、 Ba(H2P04)2、 Sr(H2P04)2、 Zn(H2P04)2、 A1(H2P04)3および Mn(H2P04)2は、水に容易に溶解するため好適である。 また、こ れらの第一リン酸塩の水和物も同様に好適である。 上記のリン酸塩中の P04 : lmolに対して、コロイド状シリカを Si02換算で 0.5〜10mol配合する。 コロイド状シリカは、上記リン酸塩と共に低熱膨張率の化合物 (compound)を形成して被膜張力を 発生するため、必須の物質である。 また、左記効果を発揮するためには、配合量を、上記リン酸 塩中の P04 : lmolに対して Si02換算で 0.5mol以上、 lOmol以下とすることが好ましい。
コロイド状シリカの種類は、溶液の安定性や、上記リン酸塩等との相溶性が得られる限り、特に 限定はされない。 例えば、市販の酸性タイプ(acid- type)である ST- O (日産化学(株)(Nissan Chemical Industries, LTD.)製、 Si02含有量: 20mass%)が挙げられるが、アルカリ性タイプのコロイ ド状シリカでも使用することができる。
なお、絶縁被膜の外観を改善するため、アルミニウム (A1)を含有するゾルを含んだコロイド状 シリカを使用することもできる。 この場合、 A1量は Al203 Si02比に換算して 1以下とすることが好 ましい。 本発明では、絶縁被膜の耐吸湿性を改善するために、リン酸塩中の P04: lmolに対して、水溶 性のバナジウム化合物を V換算で 0.1〜2.0mol配合することが特に重要である。
力 うな水溶性のバナジウム化合物としては、硫酸バナジウム、塩化バナジウム、臭化パナジゥ ム、バナジン酸カリウム、バナジン酸ナトリウム、バナジン酸アンモニゥムおよぴパナジン酸リチウ ムなどが有利に適合する。 またこれらの水和物を用いることもできる。 なお、とくに硫酸バナジ ゥムある!/、はバナジン酸アンモ-ゥムを含み、必要に応じて他の水溶性バナジウム化合物を含む ことが好ましい。
良好な耐吸湿性を得るためには、絶縁被膜処理液に含まれる上記リン酸塩中の P04 : lmolに 対して、水溶性のバナジウム化合物を V換算で O.lmol以上配合することが必要である。 一方 2.0molを超えて配合すると、防鲭性が劣化する。 これは、被膜の微小クラック (microcrack)が原 因であると推定される。 バナジウム化合物の、より好適な配合量は、 V換算で 1.0〜2.0molであ る。 以上の主要成分の、絶縁被膜処理液中の濃度はとくに限定する必要は無い。 しかし、濃度 が低レ、と絶縁被膜が薄くなり、また濃度が高いと絶縁被膜処理液の粘性が大きくなつて塗布等の 作業性が低下する。 これらを考慮すると、上記リン酸塩について P04換算で概ね 0.02〜20molZ リットル程度の範囲内とすることが好ましい。 コロイド状シリカおょぴバナジウム化合物の濃度は、リ ン酸塩の濃度が決まれば、自ずから濃度範囲が決定される。 上記の他、本発明の絶縁被膜処理液には、以下の物質を添加してもよい。
まず、絶縁被膜の耐熱性を向上させるために、硼酸を添加してもよい。
また、本発明の絶縁被膜処理液に、方向性電磁鋼板の耐融着性(removal property of stiction)や滑り性を向上させるために、 1次粒径: 50〜2000nmの Si02、 A1203および Ti02のうちか ら選ばれる 1種または 2種以上を含有しても良い。 なお、耐融着性が求められる理由は下記の 通りである。 方向性電磁鋼板が卷鉄心型の変圧機に用いられる場合、鋼板が卷かれ、鉄心の 形に成形された後、歪取焼鈍 (例えば 800°C X 3時間程度)が施される。 その際、隣接する被膜 同士で融着することがある。 このような融着は、鉄心の層間絶縁抵抗を低下させることになり、磁 気特性を劣化させる原因となる。 このため、絶縁被膜には、耐融着性を付与させることが望まし い。 また、滑り性については、方向性電磁鋼板が積鉄心(stacked core)型の変圧器に用いられ る場合、積み作業を円滑に行うためには、鋼板同士の滑り性を良好にすることが望ましい。
以上の他にも、絶縁被膜処理液に用いられることのある、種々の添加物を加えることができる。 以上の、硼酸 · 02等およびその他の添加物については合計で、含有量が 30mass%以下となる 程度とすることが好ましい。 絶縁被膜処理液はクロムフリーであり、とくに を実質的に含有しないことが望ましい。 ここで 「実質的に含有しない」とは、原料に含まれた不純物を由来とする は許容する力 積極的に添 加しないという意味である。 例えば上記リン酸塩、コロイド状シリカ、バナジウム化合物等の各成 分の多くは、工業用の市販品として入手可能であり、これら市販品に含まれる不純物程度の Cr量 であれば許容される。 なお、前記特許文献 5に開示のクロム化合物を含有する絶縁被膜処理液において、バナジゥ ム化合物を配合する理由は、本発明のクロムフリー絶縁被膜処理液における、上記の Si02、 A120 3および Ti02と同様に、鉄心の製造性 (productivity)を向上させるためである。 これに対し、本発 明の絶縁被膜処理液において、バナジウム化合物を配合する理由は、クロムフリー絶縁被膜の 被膜特性を改善するためであり、両者でその目的が大きく異なる。
また、特許文献 5に開示されている絶縁被膜処理液に配合されるバナジウム化合物力 コロイ ド状であるのに対して、本発明で配合されるバナジウム化合物は、水溶性である。 水溶性のパ ナジゥム化合物は、コロイド状のバナジウム化合物に比べて Mg、 Ca、 Ba、 Sr、 Zn、 Alおよぴ Mnのリ ン酸塩と混合した時点でリン酸の吸湿性の改善効果が発現するという点で大きな違いがある。
(方向性電磁鋼板の製造方法)
次に、本発明のクロムフリー絶縁被膜処理液を用いた方向性電磁鋼板の製造方法について 説明する。
本発明では、方向性電磁鋼板用スラブに圧延を施して最終板厚とし、一次再結晶焼鈍おょぴ 二次再結晶焼鈍を施した後、上述の絶縁被膜処理液を塗布し、次いで焼付け処理を行う。 一 般的には、前記方向性電磁鋼板用スラブに熱間圧延を施し、必要に応じて熱延板焼鈍を施し、 さらに冷間圧延によつて前記最終板厚とする。
本発明において、方向性電磁鋼板の成分組成は、特に制限されることはなぐ従来公知の成 分系いずれもが適合する。 また、製造方法についても特に制限されることはなぐ従来公知の製 造方法いずれをも使用することができる。 ちなみに、代表的な方向性電磁鋼板用スラブの主要 成分は、 C : 0.10mass%以下、 31 : 2.0〜4.51^33%ぉょぴ1^ : 0.01〜1.0111&83%でぁり、好ましくは C : 0.08mass%以下、 Si: 2.0〜3.5mass% Mn : 0.03〜0.3mass%である。 また、方向性電磁鋼板では 種々のインヒビターが用いられるのが通常であり、前記主要成分の他に、インヒビターに応じた元 素が添加される。 例えば、インヒビターとして
•MnSを用いる場合は、 S : 200ppm程度(すなわち約 100〜300ppm :以下 ppmは mass ppmを意 味する)、
•A1Nを用いる場合は、 sol.Al: 200ppm程度(すなわち約 100〜300ppm)、
.MnSeと Sbを用いる場合は、 Mn、 Se (約 100〜300ppm)および Sb (約 0.01〜0.2mass%) を添加することができる。
なお、上記組成中、 S、 Al、 Nおよび Seは、一般に二次再結晶焼鈍工程で鋼板から大部分が抜 け、不純物レベルまで低減される。 このようにして製作された方向性電磁鋼板用スラブは、通常、熱間圧延される。 熱間圧延後 の板厚は、 1.5〜3.0mm程度とするのが望ましい。 熱間圧延後の熱延板には、磁気特性のさらな る改善などの必要に応じて熱延板焼鈍を施してよい。
その後、熱間圧延またはさらに熱延板焼鈍を施された前記熱延板に、冷間圧延を施し、最終 板厚に仕上げる。 冷間圧延は 1回としてもよぐまた、中間焼鈍を挟む 2回以上の冷間圧延であ つてもよい。 最終板厚とした冷延板に、ついで一次再結晶焼鈍後、二次再結晶焼鈍(最終仕上げ焼鈍 (final annealing) )を施し、さらに絶縁被膜処理液を塗布したのち、焼付け処理を行う。 一次再結晶焼鈍は、雰囲気等の制御により、脱炭を兼ねて行うことができる。 一次再結晶焼 鈍の条件は、目的等に応じて設定が可能であるが、 800〜950°Cの温度で 10〜600秒間、連続焼 鈍をすることが望ましい。 一次再結晶焼鈍中、あるいは一次再結晶焼鈍後に、アンモニアガス 等を用いて窒化処理 (nitriding treatment)を施してもよ!/ヽ。
二次再結晶焼鈍は、一次再結晶焼鈍で得た結晶粒(crystal grain) (一次再結晶粒: primary recrystallized grain)を、二次再結晶によって圧延方向に磁気特性が優れる結晶方位、いわゆる ゴス方位(Goss orientation)に優先的に成長(preferential growth)させる工程である。 二次再結 晶焼鈍の条件は、目的等に応じて設定が可能である力 S、 800〜1250°Cの温度で 5〜600時間程度 とすることが望ましい。
ここで、一般には前記一次再結晶焼鈍後、 MgOを主体とする(すなわち十分に MgOを含有す る)焼鈍分離剤を塗布してから前記二次再結晶焼鈍を施すことにより、フォルステライト被膜を鋼 板上に生成させる。
なお、近年では、方向性電磁鋼板の鉄損を、より一層改善することを目的として、フォルステラ イト被膜が形成されて!/、なレ、状態で絶縁被膜処理をすることも検討されてレ、る。 フォルステライト 被膜を形成させない場合は、焼鈍分離剤を塗布しないか、 MgOを主体としない(例えばアルミナ 系など)焼鈍分離剤を塗布する。
本発明のクロムフリー絶縁処理被膜処理液は、フォルステライト被膜の有無にかかわらず適用 することがでさる。 上記のような一連の工程を経て製作した二次再結晶後の方向性電磁鋼板に、本発明のクロム フリー絶縁被膜処理液を塗布し、その後焼付け処理を行う。
クロムフリー絶縁被膜処理液は、塗布性の向上のために、水等を加えて希釈し密度を調整し ても良い。 また、塗布する際には、ロールコーター (roll coater)など、公知の手段を使用すること ができる。
焼付け温度は、 750°C以上であることが望ましい。 これは、 750°C以上で焼付けることによって、 被膜張力が発生するからである。 ただし、方向性電磁鋼板が変圧器の鉄心に使用される場合、 焼付け温度は、 350°C以上であれば良い。 これは、鉄心の製造に際しては、 800°Cの温度で 3時 間程度の歪取焼鈍が施されることが多ぐこの場合、被膜張力はこの歪取焼鈍時に発現するから である。 したがって、焼き付け温度の下限は 350°Cとすることが好ましい。 なお、焼付け温度の上限は 1100°Cとすることが好まし 絶縁被膜の厚さは、特に限定されないが、 1〜5 μ m程度が好適である。 被膜張力は被膜の 厚さに比例するため、 1 μ m未満では、目的によっては被膜張力が不足することがある。 一方、 5 μ mを超えると占積率が必要以上に低下する場合がある。 絶縁被膜の厚さは、絶縁被膜処理液 の濃度、塗布量、塗布条件 (例えばロールコーターの押し付け条件)などにより目標値に制御す ることがでさる。
〔実施例〕
(実施例 1)
C : 0.06mass%、 Si: 3.4mass%、 sol.Al: 0.03mass%、 Mn: 0.06mass%および Se: 0.02mass%を含有し、 残部は Feおよび不可避的不純物である組成を有する方向性電磁鋼板用スラブを、熱間圧延して 板厚: 2.3mmとし、その後、 1050°Cの温度で 60秒の熱延板焼鈍を施した。 その後、 1回目の冷間 圧延により中間板厚: 1.4mmとし、次いで 1100°C、 60秒の中間焼鈍を施し、その後、 2回目の冷間 圧延により最終板厚:0.20mmとした。 この冷間圧延板に、脱炭を兼ねた一次再結晶焼鈍を 820°Cの温度で 150秒施した。 その後、焼鈍分離剤である MgOスラリーを塗布してから、 1200°C、 12時間の二次再結晶焼鈍を施すことにより、フォルステライト被膜を有する方向性電磁鋼板を得 た。
次に、リン酸マグネシウム Mg(H2P04)2を P〇4換算で lmol含有する水溶液 500mlに対して、 Si02 換算で 3molを含有するコロイド状シリカ(水性) 700ml、および表 1に示す各種バナジウム化合物を 配合したクロムフリー絶縁被膜処理液を用意した。 なお、液量としては、上記配合比率を維持し つつ、以下の実験に必要な量だけ用意した。 以下同様である。 これらの絶縁被膜処理液を、 二次再結晶焼鈍後の方向性電磁鋼板に塗布し、焼付け処理を 850°Cの温度で 1分間施した。 また、比較例として、上記のクロムフリー絶縁被膜処理液中にバナジウム化合物を配合しなか つたもの、バナジウム化合物の代わりに硫酸マグネシウムの七水和物: lmol (Mg換算)を配合した もの、および V換算で OJmolのコロイド状 V205 (平均粒径 lOOOnm)を 30ml配合したクロムフリー絶 縁被膜処理液を用いて、それぞれ同様に絶縁被膜付方向性電磁鋼板を製作した。
さらに、クロム化合物を含有する絶縁被膜処理液を用いた従来例として、リン酸マグネシウム Mg(H2P04)2中の P〇4 : lmol (水溶液 500ml)に対して、 Si02換算で 3molのコロイド状シリカ(水性) 700ml、 Cr換算で O.lmolの重クロム酸カリウムを配合した絶縁被膜処理液を用意し、これを用いて 絶縁被膜付方向性電磁鋼板を製作した。 得られた絶縁被膜付方向性電磁鋼板について、次に示す方法により、被膜張力、耐吸湿性、 防鲭性および占積率を評価した。なお、いずれの場合も被膜厚さは 2 /x m (片面当り)であった。 被膜張力 σ:長さ方向を圧延方向として、鋼板を幅: 30mm X長さ: 280mmにせん断し、その後、 片面の絶縁被膜を除去した。 鋼板の長さ方向の片端 30mmを固定して鋼板の反り量を測定し、 式(1)から被膜張力 σを求めた。 ここで、反り量は鋼板の長さ方向を水平方向、幅方向を鉛直 方向として測定した。
σ ( Pa)= 121520(MPa) X板厚 (mm) X反り (mm)/250(mm)/250(mm) · · '式 (1)
なお、本発明で目標とする鋼板への被膜張力 σは、 8MPa以上である力 S、 σは被膜厚等により変 化するので、同一被膜厚さにて比較した。
耐吸湿性: 50mm X 50mmの試験片 3枚を採取し、 100°Cの蒸留水中で 5分間浸漬煮沸した。 そして、被膜表面力ゝら溶出した Pを定量分析し、その平均値を求めて指標とした。 本発明で目標 とする P溶出量は、 80 / gZl50cm2以下である。
防鲭性:湿度 50%、露点 50°Cの空気中に鋼板を 50時間保持したのち、鋼板表面を観察した。 そして、さびの発生がないものを A、若干鲭ぴが発生したもの(点鲭)を B、鲭が激しいもの(面鲭) を Cとして評価した。
占積率: JIS C 2550に準拠する方法で評価した。結果を表 1に示す。
ハ 'ナジ'ゥ 匕合物 その他 耐吸湿
被膜
添加量 性 *2 占積
防鲭
No. 張力 率
種類 (V換算 種類 添加量 *1 g 性 *3 備考
( Pa) (%)
mol)*1 /150cm2)
硫酸 ― ― 発明
1 1.2 8.4 51 A 97.3
Aナシ'ゥム 例 1 塩化 ― 発明
2 1.0 8.4 53 A 97.5
Aナシ'ゥム ―
例 2 臭化 ― 発明
3 1.5 8.8 58 A 97.2
Aナシ'ゥム ―
例 3 ハ'ナジ'ン酸 発明
4 0.2 9.8 60 A 97.3
か Jゥム ― ―
例 4
Λ'ナシ'ン酸 発明
5 0.1 ― ― 8.2 60 A 97.2
ナトリウム 例 5
Λ'ナシ'ン酸 発明
6 0.5 48 A 97.4
アンモニゥム ― ― 9.8
例 6
Λナジ'ン酸 発明
7 0.2 ― ― 8.6 62 A 97.7
リチウム 例 7 硫酸
0.8 クロム ハ 'ナジ'ゥム、 ― 発明
8 ― 8.7 59 A 97.4
塩化 例 8 フリー
0.4
ハ'ナシ'ゥム
硫酸 硼酸、 0.1 mol、 発明
9 1.2 8.6 49 A 97.5
ハ 'ナシ 'ゥム A!203 0.3mol 例 9 硫酸 比較
10 0.05
ハ'ナシ ム ― ― 6.2 101 B 97.2
例 1 硫酸 比較
1 1 2.5 ― 8.1 52 B 97.4
ハ'ナシ'ゥム ―
例 2
― ― ― ― 比較
12 7.9 1300 C 97.4
例 3 硫酸
― ― 比較
13 マゲネシゥム LOmol 6.7 98 A 97.1
例 4 7水和物
V205
14 0.2 ― ― 比較
8.9 220 C 97.2
(コロ仆') 例 5
15 ― ― 重クロム酸 従来 クロム
0.1 mol 9.1 48 A 97.4
ίιリウム 例 含有
*D P04 : 1 mol に対する 数 (V化合物: V換算、硫酸マゲネシゥム 7水和物: Mg換算、
重クロム酸 ίΐリウム: Gr換算)
*2) P溶出量で評価
*3) 3段階評価 (優 A B C →劣)
同表に示したとおり、本発明に従い水溶性バナジウム化合物を V換算で 0.1〜2.0mol配合した クロムフリー絶縁被膜処理液を用いた場合には、従来のクロムフリー絶縁被膜処理液において課 題であった被膜張力おょぴ耐吸湿性が著しく改善され、クロムを含有する絶縁被膜処理液の場 合に匹敵する特性となった。 また、防鲭性おょぴ占積率にも優れていた。
なお、比較例 5は、本発明に比べると防鲭性に劣ってレ、る力 この理由は、比較例 5では、コロ イド状のバナジウム化合物を添加して 、るためと考えられる。
(実施例 2)
C:0.03mass%、 Si: 3mass%、 sol.Al:0.01mass%未満、 Mn:0.04mass%、 S:0.01mass%未満、 Se:0.02mass%および Sb:0.03mass%を含有し、残部は Feおよび不可避的不純物である組成を有 する方向性電磁鋼板用スラブを熱間圧延し、板厚: 1.8mmの熱延板としたのち、 1050°C X 60秒の 熱延板焼鈍を施した。 次いで、 1回の冷間圧延により最終板厚: 0.40mmとした。 次いで、この 最終板厚の冷延板に 850°C X 60秒の一次再結晶焼鈍を施した。 その後、焼鈍分離剤として MgOスラリーを塗布し、 880°C X 50時間の二次再結晶焼鈍を施すことにより、フォルステライト被膜 を有する方向性電磁鋼板を得た。
次に、表 2に示す種々のリン酸塩を P04換算で lmol (複数添加した Νο·9では 0.5molずつ, あわせて lmol)含有する水溶液 500mlをそれぞれ用意し、これに、 Si02換算で表 2に示す量を 含有するコロイド状シリカ(水性) 700ml、および V換算で硫酸バナジウムを 0.7mol配合したクロムフ リー絶縁被膜処理液を用意した。
これらの絶縁被膜処理液を上記の方向性電磁鋼板の表面に塗布して、 800°C X 60秒の焼付 け処理を施した。なお、焼付け処理後の被膜厚さは、片面あたり 3 μ πιとした。
この焼付け処理後の方向性電磁鋼板について、実施例 1と同様の方法で、被膜張力、耐吸湿 性、防鲭性おょぴ占積率を評価した。
結果を表 2に示す。
表 2
Figure imgf000016_0001
*1) P04: 1 molに対する mol数
*2) P溶出量で評価
*3) 3段階評価 (優— A B C 同表に示したとおり、本発明で規定したリン酸塩とコロイド状シリカを適量含有したものに、水溶 性バナジウム化合物を適量含有させた絶縁被膜処理液を用いた場合、被膜張力、耐吸湿性、防 鲭性および占積率のすべてについて優れた特性を得ることができた。 産業上の利用の可能性
本発明によれば、方向性電磁鋼板の表面に、被膜張力、耐吸湿性、防鲭性および占積率が 共に優れた絶縁被膜を形成することができるので、方向性電磁鋼板の磁歪の低減、ひいては騷 音公害の低減を達成することができる。
また、本発明のクロムフリー絶縁被膜処理液によれば、有害なクロム化合物の廃液を発生させ ることなく、クロム化合物を含有する絶緣被膜処理液を用いた場合に匹敵する、優れた被膜特性 を有する絶縁被膜付方向性電磁鋼板を製造することができる。

Claims

請求の範囲
1. -Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうち力 選ばれる少なくとも 1種と、
*該リン酸塩中の P04 : lmolに対し、コロイド状シリカを Si02換算で 0.5〜10molおよび水溶性の バナジウム化合物を V換算で 0.1〜2,0molとを '
含有する方向性電磁鋼板用絶縁被膜処理液。
2. Crを実質的に含有しない、請求項 1に記載の方向性電磁鋼板用絶縁被膜処理液。
3. 方向性電磁鋼板用スラブを、圧延により最終板厚に仕上げ、ついで一次再結晶焼鈍後、 二次再結晶焼鈍を施し、さらに絶縁被膜処理液を塗布したのち、焼付け処理を行う一連の工程 により、絶縁被膜を有する方向性電磁鋼板を製造する方法であって、
前記絶縁被膜処理液として、 Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうちから選ばれる 少なくとも 1種と、該リン酸塩中の P04 : lmolに対し、コロイド状シリカを Si02換算で 0.5〜10molおよ ぴ水溶性のバナジウム化合物を V換算で 0.1〜2.0molとを、含有する絶縁被膜処理液を用いる絶 縁被膜を有する方向性電磁鋼板の製造方法。
4. 請求項 3に記載の方向性電磁鋼板の製造方法であって、
前記絶縁被膜処理液が Crを実質的に含有しない、絶縁被膜を有する方向性電磁鋼板 の製造方法。
5. 請求項 3または 4に記載の方向 '性電磁鋼板の製造方法であって、
前記方向性電磁鋼板用スラブを、熱間圧延後、あるいはさらに熱延板焼鈍を施したのち、
1回の冷間圧延または中間焼鈍を挟む 2回以上の冷間圧延により前記最終板厚に仕上げる、 絶縁被膜を有する方向性電磁鋼板の製造方法。
6. 請求項 3または 4に記載の方向性電磁鋼板の製造方法であって、
前記一次再結晶焼鈍後、 MgOを主体とする焼鈍分離剤を塗布してから前記二次再結晶焼鈍 を施す、絶縁被膜を有する方向性電磁鋼板の製造方法
7. 請求項 5に記載の方向性電磁鋼板の製造方法であって、
前記一次再結晶焼鈍後、 MgOを主体とする焼鈍分離剤を塗布してから前記二次再結晶焼鈍 を施す、絶縁被膜を有する方向性電磁鋼板の製造方法
PCT/JP2008/064075 2007-08-09 2008-07-30 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法 WO2009020134A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08792241.5A EP2180082B1 (en) 2007-08-09 2008-07-30 Insulating coating treatment liquid for grain oriented electromagnetic steel sheet and process for manufacturing grain oriented electromagnetic steel sheet with insulating coating
US12/671,972 US8771795B2 (en) 2007-08-09 2008-07-30 Treatment solution for insulation coating for grain-oriented electrical steel sheets and method for producing grain-oriented electrical steel sheet having insulation coating
KR1020137009259A KR101422426B1 (ko) 2007-08-09 2008-07-30 방향성 전기 강판용 절연 피막 처리액, 및 절연 피막을 갖는 방향성 전기 강판의 제조 방법
CN2008801027108A CN101778964B (zh) 2007-08-09 2008-07-30 方向性电磁钢板用绝缘覆膜处理液以及具有绝缘覆膜的方向性电磁钢板的制造方法
US14/278,503 US9011585B2 (en) 2007-08-09 2014-05-15 Treatment solution for insulation coating for grain-oriented electrical steel sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007207674A JP5181571B2 (ja) 2007-08-09 2007-08-09 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP2007-207674 2007-08-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/671,972 A-371-Of-International US8771795B2 (en) 2007-08-09 2008-07-30 Treatment solution for insulation coating for grain-oriented electrical steel sheets and method for producing grain-oriented electrical steel sheet having insulation coating
US14/278,503 Division US9011585B2 (en) 2007-08-09 2014-05-15 Treatment solution for insulation coating for grain-oriented electrical steel sheets

Publications (1)

Publication Number Publication Date
WO2009020134A1 true WO2009020134A1 (ja) 2009-02-12

Family

ID=40341366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/064075 WO2009020134A1 (ja) 2007-08-09 2008-07-30 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US8771795B2 (ja)
EP (1) EP2180082B1 (ja)
JP (1) JP5181571B2 (ja)
KR (2) KR101422426B1 (ja)
CN (1) CN101778964B (ja)
RU (1) RU2430165C1 (ja)
WO (1) WO2009020134A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130177743A1 (en) * 2010-09-28 2013-07-11 Jfe Steel Corporation Grain oriented electrical steel sheet
RU2489518C1 (ru) * 2012-04-19 2013-08-10 Закрытое акционерное общество "ФК" Состав для получения электроизоляционного покрытия

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084351B2 (ja) 2010-06-30 2017-02-22 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5593942B2 (ja) * 2010-08-06 2014-09-24 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
BR112013001358B1 (pt) * 2010-08-06 2019-07-02 Jfe Steel Corporation Chapa de aço elétrico de grãos orientados e método para a fabricação da mesma
DE102010054509A1 (de) * 2010-12-14 2012-06-14 Thyssenkrupp Electrical Steel Gmbh Verfahren zur Herstellung eines kornorientierten Elektrobands
JP5994981B2 (ja) 2011-08-12 2016-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
IN2014CN04062A (ja) * 2011-11-04 2015-09-04 Tata Steel Uk Ltd
CN104024474A (zh) * 2011-12-28 2014-09-03 杰富意钢铁株式会社 具有涂层的取向性电磁钢板及其制造方法
EP2902508B1 (en) * 2012-09-27 2017-04-05 JFE Steel Corporation Method for producing grain-oriented electrical steel sheet
RU2639905C2 (ru) * 2013-02-08 2017-12-25 Тиссенкрупп Илектрикел Стил Гмбх Раствор для образования изоляционного покрытия и лист текстурированной электротехнической стали
DE102013208618A1 (de) 2013-05-10 2014-11-13 Henkel Ag & Co. Kgaa Chromfreie Beschichtung zur elektrischen Isolierung von kornorientiertem Elektroband
EP2902509B1 (en) * 2014-01-30 2018-08-29 Thyssenkrupp Electrical Steel Gmbh Grain oriented electrical steel flat product comprising an insulation coating
KR102177038B1 (ko) * 2014-11-14 2020-11-10 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 이를 이용하여 표면에 절연피막이 형성된 방향성 전기강판 및 이의 제조방법
CN107109563B (zh) * 2014-12-24 2019-10-22 杰富意钢铁株式会社 取向性电磁钢板及其制造方法
CN107210109B (zh) * 2015-02-05 2019-09-24 杰富意钢铁株式会社 取向性电磁钢板及其制造方法以及变压器噪声特性的预测方法
BR112017020757B1 (pt) 2015-03-27 2022-11-01 Jfe Steel Corporation Métodos de fabricar uma chapa de aço elétrico de grão orientado com um revestimento isolante
KR20170073311A (ko) * 2015-12-18 2017-06-28 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 방향성 전기강판의 절연피막 형성 방법, 및 절연피막이 형성된 방향성 전기강판
CN109563626B (zh) * 2016-09-13 2021-04-13 杰富意钢铁株式会社 带无铬绝缘张力被膜的取向性电磁钢板及其制造方法
KR101850133B1 (ko) 2016-10-26 2018-04-19 주식회사 포스코 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 방향성 전기강판의 제조방법
EP3570305A4 (en) * 2017-01-10 2020-08-19 Nippon Steel Corporation COILED CORE AND METHOD FOR MANUFACTURING THE SAME
CN107190252B (zh) * 2017-06-13 2018-04-03 武汉圆融科技有限责任公司 一种无铬绝缘涂层组合物及其制备方法与取向硅钢板
US20210002738A1 (en) * 2018-03-28 2021-01-07 Nippon Steel Corporation Coating liquid for forming insulation coating for grain-oriented electrical steel sheet, method of manufacturing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
CN112204170B (zh) * 2018-05-30 2022-04-19 杰富意钢铁株式会社 带有绝缘被膜的电磁钢板及其制造方法
EP3822386A4 (en) * 2018-07-13 2022-01-19 Nippon Steel Corporation GRAIN ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MAKING THE SAME
JP6939767B2 (ja) * 2018-12-27 2021-09-22 Jfeスチール株式会社 方向性電磁鋼板用焼鈍分離剤および方向性電磁鋼板の製造方法
RU2706082C1 (ru) * 2019-01-17 2019-11-13 Общество с ограниченной ответственностью "ВИЗ-Сталь" Электроизоляционное покрытие для электротехнической анизотропной стали, не содержащее в составе соединений хрома
KR20240000581A (ko) * 2021-05-28 2024-01-02 닛폰세이테츠 가부시키가이샤 방향성 전자 강판
RU2765555C1 (ru) 2021-05-31 2022-02-01 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Электроизоляционное покрытие для электротехнической анизотропной стали, не содержащее в составе соединений хрома и обладающее высокими потребительскими характеристиками
WO2024096761A1 (en) 2022-10-31 2024-05-10 Public Joint-stock Company "Novolipetsk Steel" An electrical insulating coating сomposition providing high commercial properties to grain oriented electrical steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS579631B2 (ja) 1978-04-28 1982-02-22
JP2791812B2 (ja) 1989-12-30 1998-08-27 新日本製鐵株式会社 鉄心加工性、耐熱性および張力付与性の優れた方向性電磁鋼板の絶縁皮膜形成方法及び方向性電磁鋼板
JP2004143532A (ja) * 2002-10-24 2004-05-20 Jfe Steel Kk 絶縁被膜密着性に優れたフォルステライト被膜を有しない方向性電磁鋼板とその製造方法
JP2004232040A (ja) * 2003-01-31 2004-08-19 Nippon Steel Corp 耐食性、塗装性及び加工性に優れるアルミめっき鋼板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844744B2 (ja) 1979-11-22 1983-10-05 川崎製鉄株式会社 方向性珪素鋼板にクロム酸化物を含まない張力付加型の上塗り絶縁被膜を形成する方法
US4347085A (en) * 1981-04-23 1982-08-31 Armco Inc. Insulative coatings for electrical steels
CN1039915C (zh) 1989-07-05 1998-09-23 新日本制铁株式会社 方向性电磁钢板上的绝缘皮膜成型方法
JP2654862B2 (ja) * 1990-10-27 1997-09-17 新日本製鐵株式会社 鉄心加工性および耐粉塵化性が優れた方向性電磁鋼板の絶縁皮膜形成方法
TW278137B (ja) 1993-12-21 1996-06-11 House Food Industrial Co
JP3279451B2 (ja) * 1995-03-01 2002-04-30 新日本製鐵株式会社 電磁鋼板の絶縁被膜形成用の被覆剤及び方向性電磁鋼板
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
JP2003163089A (ja) * 2001-11-28 2003-06-06 Asahi Matsushita Electric Works Ltd 照明装置
WO2005010235A1 (ja) * 2003-07-29 2005-02-03 Jfe Steel Corporation 表面処理鋼板およびその製造方法
WO2005049314A1 (ja) * 2003-11-21 2005-06-02 Jfe Steel Corporation 耐食性、導電性および皮膜外観に優れた表面処理鋼板
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS579631B2 (ja) 1978-04-28 1982-02-22
JP2791812B2 (ja) 1989-12-30 1998-08-27 新日本製鐵株式会社 鉄心加工性、耐熱性および張力付与性の優れた方向性電磁鋼板の絶縁皮膜形成方法及び方向性電磁鋼板
JP2004143532A (ja) * 2002-10-24 2004-05-20 Jfe Steel Kk 絶縁被膜密着性に優れたフォルステライト被膜を有しない方向性電磁鋼板とその製造方法
JP2004232040A (ja) * 2003-01-31 2004-08-19 Nippon Steel Corp 耐食性、塗装性及び加工性に優れるアルミめっき鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2180082A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130177743A1 (en) * 2010-09-28 2013-07-11 Jfe Steel Corporation Grain oriented electrical steel sheet
RU2489518C1 (ru) * 2012-04-19 2013-08-10 Закрытое акционерное общество "ФК" Состав для получения электроизоляционного покрытия

Also Published As

Publication number Publication date
KR20130045420A (ko) 2013-05-03
EP2180082A4 (en) 2011-08-17
CN101778964A (zh) 2010-07-14
EP2180082A1 (en) 2010-04-28
KR20100053610A (ko) 2010-05-20
CN101778964B (zh) 2012-03-07
KR101422426B1 (ko) 2014-07-22
RU2430165C1 (ru) 2011-09-27
US20110236581A1 (en) 2011-09-29
JP5181571B2 (ja) 2013-04-10
EP2180082B1 (en) 2014-04-02
US8771795B2 (en) 2014-07-08
JP2009041074A (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
WO2009020134A1 (ja) 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法
JP5194641B2 (ja) 方向性電磁鋼板用絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
KR101175059B1 (ko) 방향성 전기 강판용 절연 피막 처리액, 및 절연 피막을 갖는 방향성 전기 강판의 제조 방법
JP5026414B2 (ja) 高張力絶縁被膜を有する方向性電磁鋼板及びその絶縁被膜処理方法
JP6031951B2 (ja) 方向性電磁鋼板およびその製造方法
WO2013099455A1 (ja) コーティング付き方向性電磁鋼板およびその製造方法
US9011585B2 (en) Treatment solution for insulation coating for grain-oriented electrical steel sheets
JP6558325B2 (ja) クロムフリー張力被膜形成用処理液、クロムフリー張力被膜付方向性電磁鋼板、クロムフリー張力被膜付方向性電磁鋼板の製造方法およびトランス用コア
WO2018051902A1 (ja) クロムフリー絶縁張力被膜付き方向性電磁鋼板およびその製造方法
JP4983334B2 (ja) 方向性電磁鋼板用絶縁被膜処理液および方向性電磁鋼板の製造方法
WO2020138069A1 (ja) 方向性電磁鋼板及びその製造方法
JPWO2020066469A1 (ja) クロムフリー絶縁被膜形成用処理剤、絶縁被膜付き方向性電磁鋼板およびその製造方法
CN112771203B (zh) 无铬绝缘被膜形成用处理剂、带绝缘被膜的方向性电磁钢板及其制造方法
JP7392848B2 (ja) 方向性電磁鋼板の製造方法およびそれに用いる焼鈍分離剤
WO2023139847A1 (ja) 前処理液および絶縁被膜付き電磁鋼板の製造方法
JP4677765B2 (ja) クロムレス被膜付き方向性電磁鋼板およびその製造方法
WO2023188594A1 (ja) 前処理液および絶縁被膜付き電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880102710.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12671972

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008792241

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107004880

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010108330

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12671972

Country of ref document: US