WO2023139847A1 - 前処理液および絶縁被膜付き電磁鋼板の製造方法 - Google Patents

前処理液および絶縁被膜付き電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2023139847A1
WO2023139847A1 PCT/JP2022/036059 JP2022036059W WO2023139847A1 WO 2023139847 A1 WO2023139847 A1 WO 2023139847A1 JP 2022036059 W JP2022036059 W JP 2022036059W WO 2023139847 A1 WO2023139847 A1 WO 2023139847A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
insulating coating
coating
treatment liquid
pretreatment
Prior art date
Application number
PCT/JP2022/036059
Other languages
English (en)
French (fr)
Inventor
敬 寺島
花梨 國府
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2022573785A priority Critical patent/JP7222450B1/ja
Publication of WO2023139847A1 publication Critical patent/WO2023139847A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present invention relates to a pretreatment liquid and a method for manufacturing an electrical steel sheet with an insulating coating.
  • an electrical steel sheet has a coating on its surface that imparts properties such as insulation, seizure resistance, and rust prevention.
  • a grain-oriented electrical steel sheet has a forsterite-containing coating (forsterite coating) formed on the surface of the steel sheet during final annealing, and an insulating coating formed thereon.
  • a phosphate-based insulating coating used for grain-oriented electrical steel sheets is formed by coating a forsterite coating with a phosphate-containing treatment liquid (insulating coating treatment liquid) and baking the forsterite coating at a high temperature.
  • This insulating coating has a lower coefficient of thermal expansion than the steel plate. Therefore, when the steel sheet is cooled down to room temperature after baking, tension is applied to the steel sheet by the insulating coating, and iron loss is reduced.
  • Patent Document 1 describes an insulating coating formed using a treatment liquid containing magnesium phosphate, colloidal silica and chromic anhydride.
  • Patent Document 2 describes an insulating coating formed using a treatment liquid containing aluminum phosphate, colloidal silica and chromic anhydride.
  • an insulating coating is formed by applying an insulating coating treatment liquid containing a phosphate to an electrical steel sheet having a forsterite coating and then baking.
  • an insulating coating treatment liquid containing a phosphate is insufficient, repelling of the insulating coating treatment liquid (liquid repelling) or the like may occur, and a portion without an insulating coating may be formed, or the thickness of the formed insulating coating may become uneven, resulting in uneven insulation.
  • liquid repelling occurs, the insulating property of that portion is lost, and a short circuit may occur. Further, in this case, since the tension applied to the steel sheet (applied tension) is reduced, the iron loss tends to be insufficiently reduced.
  • an insulating coating formed with liquid repelling (insulating coating having a repelling pattern) has a good appearance.
  • a plurality of electromagnetic steel sheets are often laminated and used as an iron core, and when used as an iron core, they are often used in a state where the appearance cannot be seen.
  • the performance of the formed insulating coating may deteriorate. Therefore, the insulating coating of the electrical steel sheet is strongly required to have a uniform, beautiful and good appearance.
  • the poor appearance of the insulating coating caused by such liquid repelling can also occur in a phosphate-based insulating coating containing a chromium compound, but it tends to occur more easily in a phosphate-based insulating coating that does not contain a chromium compound.
  • the present invention has been made in view of the above points, and an object of the present invention is to obtain an electrical steel sheet with an insulating coating that has excellent appearance, high applied tension, low iron loss, and excellent insulation.
  • the present inventors have made extensive studies to achieve the above objectives. As a result, the present inventors have found that the wettability of the insulating coating treatment liquid to the forsterite coating is improved by pretreating with a specific pretreatment liquid before applying the insulating coating treatment liquid to the forsterite coating, thereby completing the present invention.
  • the present invention provides the following [1] to [7].
  • [1] A pretreatment liquid used before coating an electrical steel sheet having a forsterite film on its surface with an insulating coating treatment liquid containing a phosphate, wherein the pretreatment liquid has a refractive index R satisfying the following formula (1) when the phosphoric acid concentration of the pretreatment liquid is A mass% in terms of H PO4 . 9.0 ⁇ 10 ⁇ 4 ⁇ A+1.3340 ⁇ R (1)
  • an electrical steel sheet with an insulating coating that has excellent appearance, high applied tension, low iron loss, and excellent insulation.
  • the present inventors have conducted various investigations in order to find out the factors that affect the appearance of the insulating coating in the production line. At that time, the insulating film treatment liquid was applied again to the dummy coils on which the same insulating film as that of the product had already been formed, which was used for connecting the product coils, and baking was performed. As a result, it was found that the external appearance of the dummy coil was remarkably good.
  • the present inventors prepared Steel Plate 1 and Steel Plate 2 below. Then, the insulating coating treatment liquid containing magnesium phosphate, colloidal silica and chromic anhydride described in Patent Document 1 was applied to the surface of each steel plate, and the contact angle was measured.
  • Steel sheet 1 An electrical steel sheet having a forsterite coating (that is, an electrical steel sheet immediately before application of the insulating coating treatment liquid), which was subjected to pretreatment at 60°C for 10 seconds using a 5% by mass phosphoric acid aqueous solution after removing the annealing separator by water washing.
  • Steel plate 2 Dummy coil (Once passed through the production line, the insulation coating treatment liquid described in Patent Document 1 has already been applied to the surface, and then baked to form an insulation coating.)
  • the contact angle between the steel plate 1 and the insulating coating treatment liquid was 85°, whereas the contact angle between the steel plate 2 and the insulating coating treatment solution was as small as 50°, indicating good wettability. If the wettability is good, even if coating unevenness or the like occurs, the insulating coating treatment liquid can be easily uniformed by leveling before baking. For this reason, it is believed that the dummy coil came to have a better appearance than the product coil.
  • an electrical steel sheet with an insulation coating having a good appearance can be obtained by applying and baking the treatment liquid for the insulation coating two or more times.
  • applying and baking the insulating coating treatment solution multiple times increases the cost of baking and consumes energy, which may not be desirable.
  • the present inventors investigated the pretreatment conditions before applying the insulating film treatment liquid. Specifically, various ions were further added to the phosphoric acid aqueous solution used for pickling and the like to adjust the amount of ions. Then, the inventors found that the contact angle with the forsterite coating can sometimes be reduced by contacting the surface of the forsterite coating with an aqueous solution of phosphoric acid with an adjusted amount of ions and then applying the insulating coating treatment solution.
  • an insulating coating is formed by applying an insulating coating treatment liquid containing a phosphate to an electrical steel sheet having a forsterite coating and then baking.
  • an electrical steel sheet with an insulating coating is obtained.
  • pretreatment is carried out using the pretreatment liquid of the present invention before applying the insulating coating treatment liquid. Specifically, the pretreatment liquid of the present invention is brought into contact with the surface of the forsterite coating.
  • the refractive index R of the pretreatment liquid of the present invention satisfies the following formula (1). 9.0 ⁇ 10 ⁇ 4 ⁇ A+1.3340 ⁇ R (1)
  • the obtained electrical steel sheet with an insulating coating has a uniform film thickness of the insulating coating, excellent insulating properties, high applied tension, and low iron loss.
  • the formation of a pattern derived from liquid repellency (repellent pattern) is suppressed, and the appearance is also excellent.
  • the adhesion between the insulating coating and the forsterite coating is also excellent. This is presumed to be because the pretreatment causes ions in the pretreatment solution to adsorb to the surface of the forsterite film, and as a result, the wettability between the insulation film treatment solution and the forsterite film is improved.
  • the refractive index R is proportional to the amount of ions in the pretreatment liquid. Therefore, by adjusting the refractive index R, it is possible to control the amount of ions in the pretreatment liquid that are adsorbed to the surface of the forsterite coating, and thus to control the wettability between the insulating coating treatment liquid and the forsterite coating.
  • the refractive index R of the pretreatment liquid of the present invention preferably satisfies the following formula (2), and more preferably satisfies the following formula (3).
  • the wettability between the insulating coating treatment liquid and the forsterite coating is improved, and the resulting electrical steel sheet with an insulating coating has excellent insulating properties and appearance, and a higher applied tension (low iron loss). 9.0 ⁇ 10 ⁇ 4 ⁇ A+1.3360 ⁇ R (2) 9.0 ⁇ 10 ⁇ 4 ⁇ A+1.3370 ⁇ R (3)
  • the refractive index R of the pretreatment liquid is determined using Atago's digital refractometer RX-5000i under the condition of a liquid temperature of 20°C.
  • the H 3 PO 4 equivalent phosphoric acid concentration A (unit: % by mass) of the pretreatment liquid is obtained as follows. First, 90 mL of pure water is added to 10 mL of the specimen of the pretreatment liquid to prepare a 100 mL sample. Remove 10 mL from the prepared 100 mL sample, add dropwise methyl orange, and then titrate with 0.1 M NaOH. Then, the titration amount (unit: mL) of NaOH is defined as the phosphoric acid concentration A (unit: mass %) in terms of H 3 PO 4 of the pretreatment liquid that is the sample.
  • the pretreatment liquid of the present invention preferably contains phosphoric acid.
  • the phosphoric acid concentration A (in terms of H 3 PO 4 ) of the pretreatment liquid of the present invention is preferably 0.2% by mass or more, more preferably 0.5% by mass or more.
  • the concentration of phosphoric acid is too high, although the refractive index R increases, it may be difficult to obtain the effect of improving the wettability. This is considered to be due to the increase in hydrogen ions in balance with phosphate ions. Therefore, the phosphoric acid concentration A (in terms of H 3 PO 4 ) of the pretreatment liquid of the present invention is preferably 30.0% by mass or less, more preferably 25.0% by mass or less.
  • the refractive index R of the pretreatment liquid of the present invention is preferably 1.3600 or less, more preferably 1.3500 or less, because the adhesion between the insulating coating and the forsterite coating is excellent.
  • the pretreatment liquid of the present invention preferably contains ions such as alkali metal ions such as Na and K; alkaline earth metal ions such as Mg, Ca and Sr; cations such as Al 3+ and Mn 2+ ; anions such as PO 4 3 ⁇ , SO 4 2 ⁇ and Cl ⁇ .
  • alkali metal ions such as Na and K
  • alkaline earth metal ions such as Mg, Ca and Sr
  • cations such as Al 3+ and Mn 2+
  • anions such as PO 4 3 ⁇ , SO 4 2 ⁇ and Cl ⁇ .
  • the content of these ions in the pretreatment liquid of the present invention is appropriately adjusted according to the desired refractive index R. That is, the value of the refractive index R is controlled by adjusting the content of these ions.
  • Water is preferable as the solvent for the pretreatment liquid of the present invention.
  • the pretreatment temperature (temperature of the pretreatment liquid) is preferably 30° C. or higher, more preferably 40° C. or higher.
  • the pretreatment time (contact time between the pretreatment liquid and the forsterite coating) is preferably 1 second or longer, more preferably 2 seconds or longer.
  • the pretreatment temperature is preferably 95° C. or lower, more preferably 90° C. or lower.
  • the pretreatment time is preferably 40 seconds or less, more preferably 30 seconds or less.
  • the pretreatment method is not particularly limited as long as the pretreatment liquid of the present invention can be brought into contact with the forsterite coating.
  • the forsterite coating after contact with the pretreatment liquid is preferably washed with water. Although it is not essential to dry the forsterite coating before applying the insulating coating treatment liquid, drying is preferable from the viewpoint of easiness in controlling the thickness of the insulating coating.
  • the insulating coating treatment liquid of the present invention contains at least a phosphate.
  • the phosphate preferably contains at least one metal element selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al and Mn. Phosphates are generally used alone, but may be used in combination of two or more. By using two or more phosphates in combination, the physical properties of the insulating coating can be precisely controlled. As the phosphate, monophosphate (biphosphate) is preferred because it is readily available.
  • the insulating coating treatment liquid of the present invention preferably further contains colloidal silica.
  • the content of colloidal silica is preferably 50 parts by mass or more, more preferably 60 parts by mass or more in terms of SiO 2 solid content, based on 100 parts by mass of the phosphate. If the content of colloidal silica is within this range, the effect of reducing the coefficient of thermal expansion of the insulating coating increases, and the tension applied to the steel sheet increases.
  • the content of colloidal silica is preferably 120 parts by mass or less, more preferably 100 parts by mass or less in terms of SiO 2 solid content, based on 100 parts by mass of the phosphate, because the moisture absorption resistance of the insulating coating is enhanced.
  • the insulating coating treatment liquid of the present invention may contain a chromium compound.
  • a so-called chromium-free insulating coating treatment solution that does not contain a chromium compound is more likely to cause poor appearance due to repelling of the solution, so the effect of the present invention that the resulting insulating coating has an excellent appearance is exhibited more remarkably.
  • the content of chromium compounds such as chromic anhydride (chromium trioxide), chromate, and dichromate is preferably 1.0 parts by mass or less, more preferably 0.1 parts by mass or less, and even more preferably 0.01 parts by mass or less in terms of chromium element (Cr) with respect to 100 parts by mass of phosphate.
  • the insulating coating treatment liquid of the present invention is chromium-free
  • the insulating coating treatment liquid of the present invention contain a compound containing a metal element (hereinafter also referred to as a "metal compound" for convenience).
  • the content of the metal compound is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, in terms of the metal element with respect to 100 parts by mass of the phosphate.
  • the content of the metal compound is preferably 60 parts by mass or less, more preferably 40 parts by mass or less, in terms of metal element with respect to 100 parts by mass of the phosphate. If the content of the metal compound is within this range, the insulating coating treatment liquid of the present invention can be kept at a low viscosity, so that an insulating coating with a more uniform film thickness can be obtained.
  • the metal element contained in the metal compound at least one selected from the group consisting of Ti, Zr, Hf, V, Mg, Zn and Nb is preferable because of its excellent moisture absorption resistance.
  • the metal compounds are oxides, nitrides, etc. containing these metal elements, and are in the form of particles, for example.
  • Water is preferable as the solvent for the insulating coating treatment liquid of the present invention.
  • the electrical steel sheet having a forsterite coating is not particularly limited as long as it has a steel sheet and a forsterite coating (coating containing forsterite) disposed on the surface of the steel sheet, and an example is a grain-oriented electrical steel sheet.
  • C (C: 0.001 to 0.10%) C is useful for generating Goss-oriented grains.
  • the C content is preferably 0.001% or more.
  • the C content is preferably 0.10% or less.
  • Si 1.0 to 5.0% Si increases electrical resistance to reduce iron loss, and stabilizes the BCC structure of iron to enable high-temperature heat treatment. Therefore, the Si content is preferably 1.0% or more, more preferably 2.0% or more. On the other hand, if the Si content is too high, cold rolling becomes difficult. Therefore, the Si content is preferably 5.0% or less.
  • Mn effectively contributes to improving the hot shortness of steel. Furthermore, when S and Se are mixed, Mn forms precipitates such as MnS and MnSe, and functions as an inhibitor of grain growth. Therefore, the Mn content is preferably 0.01% or more. On the other hand, if the Mn content is too high, the grain size of precipitates such as MnSe may become coarse, and the function as an inhibitor may be lost. Therefore, the Mn content is preferably 1.0% or less.
  • Al forms AlN in the steel, becomes a dispersed second phase, and functions as an inhibitor. Therefore, the Al content is sol. As Al, 0.003% or more is preferable. On the other hand, if the Al content is too high, AlN may precipitate coarsely and lose its function as an inhibitor. Therefore, the Al content is sol. As Al, 0.050% or less is preferable.
  • N (N: 0.001 to 0.020%) N forms AlN in the presence of Al. Therefore, the N content is preferably 0.001% or more. On the other hand, if the N content is too high, swelling or the like may occur during slab heating. Therefore, the N content is preferably 0.020% or less.
  • the total content of at least one of S and Se is preferably 0.001% or more.
  • the total content of at least one of S and Se is preferably 0.05% or less.
  • the component composition described above may further contain at least one element selected from the group consisting of Cu: 0.20% or less, Ni: 0.50% or less, Cr: 0.50% or less, Sb: 0.10% or less, Sn: 0.50% or less, Mo: 0.50% or less, and Bi: 0.10% or less (referred to as "element A" for convenience).
  • element A tend to segregate at grain boundaries and function as auxiliary inhibitors, thereby further improving the magnetism.
  • the content of element A is preferably not more than the upper limit of the above range.
  • the contents of Cu, Ni, Cr, Sb, Sn and Mo are each preferably 0.01% or more, and the content of Bi is preferably 0.001% or more.
  • the component composition described above may further contain at least one element selected from the group consisting of B: 0.010% or less, Ge: 0.10% or less, As: 0.10% or less, P: 0.10% or less, Te: 0.10% or less, Nb: 0.10% or less, Ti: 0.10% or less, and V: 0.10% or less.
  • B 0.010% or less
  • Ge Ge: 0.10% or less
  • As: 0.10% or less As: 0.10% or less
  • P 0.10% or less
  • Te 0.10% or less
  • Nb 0.10% or less
  • Ti 0.10% or less
  • V 0.10% or less.
  • the contents of B and Ge are preferably 0.001% or more
  • the contents of As, P, Te, Nb, Ti and V are preferably 0.005% or more.
  • the remainder of the above composition consists of Fe and unavoidable impurities.
  • the obtained cold-rolled sheet is subjected to primary recrystallization annealing and decarburization annealing, then coated with an annealing separator containing MgO, and then subjected to final finish annealing.
  • an electrical steel sheet having a coating containing forsterite (forsterite coating) formed on the surface is obtained.
  • An electrical steel sheet having a forsterite coating is pretreated using the pretreatment liquid of the present invention. Specifically, the forsterite film is brought into contact with the pretreatment liquid of the present invention. Next, the forsterite film that has been brought into contact with the pretreatment liquid of the present invention is coated with the insulating film treatment liquid of the present invention, dried if necessary, and then baked. Flattening annealing that also serves as baking may be performed instead of baking. Thus, an insulating coating is formed on the forsterite coating. That is, an electrical steel sheet with an insulating coating is obtained.
  • insulating coating treatment solutions A to O having component compositions shown in Table 1 below were prepared.
  • phosphate primary phosphate was used in each case.
  • monomagnesium phosphate is described as "Mg phosphate”. The same is true for other monophosphates.
  • Snowtex C manufactured by Nissan Chemical Industries, Ltd. was used as colloidal silica.
  • metal compounds compounds containing metal elements
  • water-soluble CrO 3 , TiO 2 , ZrO 2 , HfO 2 , Nb 2 O 5 , VN, MgO or ZnO was used.
  • Table 1 below shows the contents in terms of metal elements (simply referred to as "contents” in Table 1 below).
  • the particle size of each metal compound was in the range of 0.1 to 0.8 ⁇ m.
  • the particle size was measured using a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation.
  • SALD-3100 manufactured by Shimadzu Corporation.
  • the particle size is the average particle size and indicates the particle size of 50% by volume, ie, the median size.
  • Preparation of pretreatment solution As a pretreatment liquid containing phosphoric acid, No. 1 shown in Tables 2 and 3 below was used. 1 to 47 pretreatment solutions were prepared. Specifically, an appropriate amount of liquid phosphoric acid (concentration: 85% by mass) is added to 1000 mL of pure water, and if necessary, compounds such as magnesium phosphate shown in Tables 2 and 3 below (referred to as "Mg phosphate" in Tables 2 and 3 below) were added to adjust the phosphoric acid concentration A and the refractive index R. The phosphoric acid concentration A and the refractive index R determined by the method described above are shown in Tables 2 and 3 below.
  • Mg phosphate magnesium phosphate
  • Preprocessing The prepared finish-annealed grain-oriented electrical steel sheets were washed with water to remove the unreacted annealing separator, and then immersed in a pretreatment liquid bath under the pretreatment conditions (pretreatment temperature and pretreatment time) shown in Tables 2 and 3 below, then washed with water and dried. Thus, the pretreatment was carried out.
  • the contact angle between the insulating coating treatment liquid and the forsterite coating was measured using DMo-501 manufactured by Kyowa Interface Chemical Co., Ltd. The measurement was performed 1 second after the insulating coating treatment liquid was dropped onto the forsterite coating. The results are shown in Tables 2 and 3 below. When the contact angle was less than 80°, it was evaluated that the wettability between the insulating coating treatment liquid and the forsterite coating was good.
  • the magnetic flux density B 8 (magnetic flux density at a magnetizing force of 800 A/m) of the obtained electrical steel sheet with an insulating coating was 1.920T.
  • the tension applied to the steel sheet by the insulating coating is the tension in the rolling direction, and specifically, it was determined as follows. First, a test piece of 30 mm (length perpendicular to rolling direction) ⁇ 280 mm (length in rolling direction) was cut out from the obtained electrical steel sheet with an insulating coating. After masking one side of the cut test piece with an adhesive tape, the insulating coating on the other side was removed using alkali, acid, or the like. Next, one end of the test piece was fixed at 30 mm in the longitudinal direction, and the remaining 250 mm portion was used as the measurement length (warp measurement length) to measure the amount of warpage, and the applied tension was obtained from the following formula.
  • the steel plate Young's modulus was 132 GPa.
  • the applied tension is preferably 10.0 MPa or more.
  • Applied tension [MPa] Young's modulus of steel sheet [GPa] x plate thickness [mm] x warpage amount [mm] ⁇ (warpage measurement length [mm]) 2 ⁇ 10 3
  • Iron loss (W 17/50 ) (loss per mass at a magnetic flux density amplitude of 1.7 T and a frequency of 50 Hz) was measured using the cut test piece according to the method described in JIS C 2550. Iron loss (W 17/50 ) is preferably 0.80 W/kg or less.
  • the obtained electrical steel sheet with an insulating coating was subjected to stress relief annealing at 820° C. for 3 hours in a nitrogen atmosphere.
  • the electrical steel sheet with an insulation coating after strain relief annealing was wound around round bars having different diameters at 5 mm intervals, such as 5 mm, 10 mm, etc., and the minimum diameter at which the insulation coating did not peel was determined. When this diameter was 30 mm or less, it was evaluated that the adhesion of the insulating coating was excellent.

Abstract

外観に優れ、付与張力が高く低鉄損であり、かつ、絶縁性に優れる絶縁被膜付き電磁鋼板を得る。そのために、フォルステライト被膜を表面に有する電磁鋼板に、リン酸塩を含有する絶縁被膜処理液を塗布する前に用いる前処理液を提供する。上記前処理液のリン酸濃度をHPO換算でA質量%とするとき、上記前処理液の屈折率Rが式(1):9.0×10-4×A+1.3340≦Rを満たす。

Description

前処理液および絶縁被膜付き電磁鋼板の製造方法
 本発明は、前処理液および絶縁被膜付き電磁鋼板の製造方法に関する。
 一般に、電磁鋼板は、その表面に、絶縁性、耐焼付性、防錆性などの特性を付与する被膜を有する。例えば、方向性電磁鋼板は、最終仕上げ焼鈍の際に鋼板表面に形成されるフォルステライトを含有する被膜(フォルステライト被膜)と、その上に形成される絶縁被膜とを有する。
 方向性電磁鋼板に用いられるリン酸塩系の絶縁被膜は、リン酸塩を含有する処理液(絶縁被膜処理液)を、フォルステライト被膜の上に塗布し、高温で焼付することにより形成される。
 この絶縁被膜は、鋼板よりも低い熱膨張率を有する。このため、焼付後に室温まで低下したときに、絶縁被膜によって鋼板に張力が付与されて、鉄損が低減する。
 従来、種々の絶縁被膜が提案されている。
 例えば、特許文献1には、リン酸マグネシウム、コロイド状シリカおよび無水クロム酸を含有する処理液を用いて形成される絶縁被膜が記載されている。
 また、特許文献2には、リン酸アルミニウム、コロイド状シリカおよび無水クロム酸を含有する処理液を用いて形成される絶縁被膜が記載されている。
特開昭50-79442号公報 特開昭48-39338号公報
 上述したように、フォルステライト被膜を有する電磁鋼板に、リン酸塩を含む絶縁被膜処理液を塗布してから焼付することにより、絶縁被膜を形成する。
 このとき、絶縁被膜処理液とフォルステライト被膜との濡れ性が不十分であると、絶縁被膜処理液のはじき(液はじき)等が生じて、一部に絶縁被膜が無い部分が形成されたり、形成される絶縁被膜の膜厚が不均一となったりして、絶縁性が不均一となる場合がある。液はじきが生じると、その部分の絶縁性が無くなり、短絡も生じ得る。
 また、この場合、鋼板に付与される張力(付与張力)が低下するため、鉄損の低減が不十分になりやすい。
 更に、液はじきが生じたまま形成された絶縁被膜(はじき模様を有する絶縁被膜)は、外観が良好とは言えない。電磁鋼板は、複数枚が積層されて鉄心として使用されることが多く、鉄心として使用される際には外観が見えない状態で使用されることが多い。
 しかし、液はじきの程度によっては、形成される絶縁被膜の性能が劣化するおそれがあることから、電磁鋼板の絶縁被膜には、均一美麗で良好な外観が強く求められる。
 このような液はじきにより生じる絶縁被膜の外観不良は、クロム化合物を含有するリン酸塩系の絶縁被膜にも起こり得るが、クロム化合物を含有しないリン酸塩系の絶縁被膜の方が、発生しやすい傾向にある。
 本発明は、以上の点を鑑みてなされたものであり、外観に優れ、付与張力が高く低鉄損であり、かつ、絶縁性に優れる絶縁被膜付き電磁鋼板を得ることを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討した。その結果、絶縁被膜処理液をフォルステライト被膜に塗布する前に、特定の前処理液を用いて前処理することにより、絶縁被膜処理液のフォルステライト被膜に対する濡れ性が良好になることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[7]を提供する。
 [1]フォルステライト被膜を表面に有する電磁鋼板に、リン酸塩を含有する絶縁被膜処理液を塗布する前に用いる前処理液であって、上記前処理液のリン酸濃度をHPO換算でA質量%とするとき、上記前処理液の屈折率Rが下記式(1)を満たす、前処理液。
 9.0×10-4×A+1.3340≦R・・・(1)
 [2]上記屈折率Rが、1.3600以下である、上記[1]に記載の前処理液。
 [3]上記前処理液のリン酸濃度が、HPO換算で、0.2質量%以上30.0質量%以下である、上記[1]または[2]に記載の前処理液。
 [4]フォルステライト被膜を表面に有する電磁鋼板に対して、上記[1]~[3]のいずれかに記載の前処理液を用いて前処理し、次いで、リン酸塩を含有する絶縁被膜処理液を塗布してから焼付することにより、絶縁被膜を形成する、絶縁被膜付き電磁鋼板の製造方法。
 [5]上記前処理が、上記フォルステライト被膜に上記前処理液を接触させる処理である、上記[4]に記載の絶縁被膜付き電磁鋼板の製造方法。
 [6]上記前処理液の温度が、30℃以上95℃以下であり、上記前処理液と上記フォルステライト被膜との接触時間が、1秒以上40秒以下である、上記[5]に記載の絶縁被膜付き電磁鋼板の製造方法。
 [7]上記絶縁被膜処理液におけるクロム化合物の含有量が、上記リン酸塩100質量部に対して、クロム元素換算で、1.0質量部以下である、上記[4]~[6]のいずれかに記載の絶縁被膜付き電磁鋼板の製造方法。
 本発明によれば、外観に優れ、付与張力が高く低鉄損であり、かつ、絶縁性に優れる絶縁被膜付き電磁鋼板が得られる。
No.23(発明例)のPマッピング画像である。 No.14(比較例)のPマッピング画像である。
 〈本発明に至った経緯〉
 本発明者らは、製造ラインにおいて、絶縁被膜の外観に影響を及ぼす要因を見つけるために各種調査を実施していた。その際に、製品コイル同士のつなぎに使用する、製品と同様の絶縁被膜が形成済みであるダミーコイルに、絶縁被膜処理液を再び塗布し、焼付を実施した。その結果、そのダミーコイルの外観が著しく良好であることを発見した。
 そこで、本発明者らは、以下の鋼板1および鋼板2を準備した。そして、各鋼板の表面に、特許文献1に記載されたリン酸マグネシウム、コロイド状シリカおよび無水クロム酸を含有する絶縁被膜処理液を塗布し、接触角を計測した。
 鋼板1:焼鈍分離剤を水洗によって除去し、その後、5質量%のリン酸水溶液を用いて60℃で10秒間の前処理を施した、フォルステライト被膜を有する電磁鋼板(つまり、絶縁被膜処理液を塗布する直前の電磁鋼板)
 鋼板2:ダミーコイル(一度、製造ラインに通板されて、すでに、表面に特許文献1に記載の絶縁被膜処理液が塗布された後に焼付が実施され、絶縁被膜が形成されている)
 その結果、鋼板1と絶縁被膜処理液との接触角が85°であったのに対し、鋼板2と絶縁被膜処理液との接触角は50°と小さく、濡れ性が良好であった。
 濡れ性が良好であれば、塗布ムラ等が生じても、焼付までの間のレベリングにより、絶縁被膜処理液は、容易に均一化する。このため、ダミーコイルは、製品コイルよりも優れた外観を有するに至ったと考えられる。
 このことから、絶縁被膜処理液の塗布および焼付を2度以上実施すれば、外観が良好な絶縁被膜付き電磁鋼板が得られると考えられる。
 しかし、絶縁被膜処理液の塗布および焼付を複数回実施するのは、その分だけ焼付のコストがかかり、またエネルギーも消費するため、好ましくない場合がある。
 そこで、本発明者らは、絶縁被膜処理液を塗布する前の前処理の条件を検討した。
 具体的には、酸洗などに用いるリン酸水溶液に、更に各種イオンを添加し、イオン量を調整した。
 そして、イオン量を調整したリン酸水溶液をフォルステライト被膜の表面に接触させ、その後、絶縁被膜処理液を塗布したところ、フォルステライト被膜との接触角を小さくできる場合があることを見出した。
 このような知見に基づいて成された本発明について、以下、より詳細に説明する。
 〈前処理液〉
 まず、本発明の前処理液を説明する。なお、以下の説明は、本発明の前処理液を用いた前処理の説明も兼ねる。
 上述したように、フォルステライト被膜を有する電磁鋼板に、リン酸塩を含む絶縁被膜処理液を塗布してから焼付することにより、絶縁被膜を形成する。こうして、絶縁被膜付き電磁鋼板を得る。
 本発明においては、絶縁被膜処理液の塗布前に、本発明の前処理液を用いて、前処理を実施する。具体的には、本発明の前処理液をフォルステライト被膜の表面に接触させる。
 ここで、本発明の前処理液のリン酸濃度(HPO換算)をA(単位:質量%)とするとき、本発明の前処理液の屈折率Rは、下記式(1)を満たす。
 9.0×10-4×A+1.3340≦R・・・(1)
 これにより、得られる絶縁被膜付き電磁鋼板においては、絶縁被膜の膜厚が均一となり、絶縁性に優れ、付与張力が高くなり低鉄損が得られる。また、液はじきに由来する模様(はじき模様)の形成が抑制され、外観にも優れる。更に、絶縁被膜とフォルステライト被膜との密着性にも優れる。
 これは、前処理を実施することにより、前処理液中のイオンがフォルステライト被膜の表面に吸着して、その結果、絶縁被膜処理液とフォルステライト被膜との濡れ性が良好になるためと推測される。
 屈折率Rは、前処理液中のイオン量に比例する。このため、屈折率Rを調整することにより、前処理液中のイオンがフォルステライト被膜の表面に吸着する量を制御でき、ひいては、絶縁被膜処理液とフォルステライト被膜との濡れ性を制御できる。
 本発明の前処理液の屈折率Rは、下記式(2)を満たすことが好ましく、下記式(3)を満たすことがより好ましい。これにより、絶縁被膜処理液とフォルステライト被膜との濡れ性がより良好になり、得られる絶縁被膜付き電磁鋼板の絶縁性および外観がより優れ、より高い付与張力(低鉄損)が得られる。
 9.0×10-4×A+1.3360≦R・・・(2)
 9.0×10-4×A+1.3370≦R・・・(3)
 前処理液の屈折率Rは、液温20℃の条件下で、アタゴ社製デジタル屈折計RX-5000iを用いて求める。
 なお、純粋なリン酸水溶液の屈折率Rは、下記式(X)を満たす。
 R=9.0×10-4×A+1.3330・・・(X)
 前処理液のHPO換算のリン酸濃度A(単位:質量%)は、次のとおり求める。
 まず、前処理液の検体10mLに、純水90mLを加えて、100mLの試料を調製する。調製した100mLの試料から10mLを取り出して、メチルオレンジを滴下し、その後、0.1MのNaOHを用いて滴定する。そして、NaOHの滴定量(単位:mL)を、検体である前処理液のHPO換算のリン酸濃度A(単位:質量%)とする。
 本発明の前処理液は、リン酸を含有することが好ましい。
 本発明の前処理液のリン酸濃度A(HPO換算)は、0.2質量%以上が好ましく、0.5質量%以上がより好ましい。
 一方、リン酸濃度が高くなりすぎると、屈折率Rは高くなるが、濡れ性を改善する効果が得られにくい場合がある。これは、リン酸イオンとバランスして水素イオンが増える影響と考えられる。
 このため、本発明の前処理液のリン酸濃度A(HPO換算)は、30.0質量%以下が好ましく、25.0質量%以下がより好ましい。
 前処理液の屈折率Rが高すぎると、リン酸濃度が高くなりすぎてオーバーエッチングが生じたり、フォルステライト被膜の表面上に付着するイオンが過多になったりする場合がある。この場合、絶縁被膜とフォルステライト被膜との密着性が不十分となりやすい。
 このため、絶縁被膜とフォルステライト被膜との密着性に優れるという理由から、本発明の前処理液の屈折率Rは、1.3600以下が好ましく、1.3500以下がより好ましい。
 本発明の前処理液は、リン酸のほか、更に、Na、Kなどのアルカリ金属のイオン;Mg、Ca、Srなどのアルカリ土類金属のイオン;Al3+、Mn2+などのカチオン;PO 3-、SO 2-、Clなどのアニオン;等のイオンを含有することが好ましい。
 これにより、絶縁被膜処理液とフォルステライト被膜との濡れ性がより良好になる。
 その理由は明らかではないが、これらのイオンが、リン酸イオンのフォルステライト被膜に対する吸着状態を安定化させたり、リン酸イオンの吸着量を増加させたりする効果があるためと考えられる。
 本発明の前処理液におけるこれらのイオンの含有量は、所望する屈折率Rに応じて適宜調整する。すなわち、これらのイオンの含有量を調整することにより、屈折率Rの値を制御する。
 本発明の前処理液の溶媒としては、水が好ましい。
 前処理による効果を十分に得るため、前処理温度(前処理液の温度)は、30℃以上が好ましく、40℃以上がより好ましい。
 同様の理由から、前処理時間(前処理液とフォルステライト被膜との接触時間)は、1秒以上が好ましく、2秒以上がより好ましい。
 一方、前処理温度が高すぎると、酸ヒューム対策が必要になる場合があり、また、前処理時間が長すぎると、前処理に用いる装置が長大となる場合があり、いずれの場合も不経済となり得る。
 このため、前処理温度は、95℃以下が好ましく、90℃以下がより好ましい。
 同様に、前処理時間は、40秒以下が好ましく、30秒以下がより好ましい。
 前処理の方法としては、本発明の前処理液をフォルステライト被膜に接触できれば、特に限定されない。
 例えば、フォルステライト被膜を有する電磁鋼板を、本発明の前処理液の浴に浸漬させる方法が挙げられる。このとき、上述した前処理温度および前処理時間を満たすことが好ましい。
 前処理液に接触させた後のフォルステライト被膜は、水洗することが好ましい。
 なお、次いで絶縁被膜処理液を塗布する前に、フォルステライト被膜を乾燥することは必須ではないが、絶縁被膜の膜厚制御のしやすさの観点から、乾燥することが好ましい。
 〈絶縁被膜処理液〉
 次に、上述した前処理の後に用いる絶縁被膜処理液(以下、便宜的に「本発明の絶縁被膜処理液」ともいう)を説明する。
 本発明の絶縁被膜処理液は、少なくとも、リン酸塩を含有する。
 リン酸塩は、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種の金属元素を含有することが好ましい。
 リン酸塩は、一般的には1種単独で用いるが、2種以上を併用してもよい。リン酸塩を2種以上併用することにより、絶縁被膜の物性値を緻密に制御できる。
 リン酸塩としては、入手容易であるという理由から、第一リン酸塩(重リン酸塩)が好ましい。
 本発明の絶縁被膜処理液は、更に、コロイド状シリカを含有することが好ましい。
 コロイド状シリカの含有量は、リン酸塩100質量部に対して、SiO固形分換算で、50質量部以上が好ましく、60質量部以上がより好ましい。コロイド状シリカの含有量がこの範囲であれば、絶縁被膜の熱膨張係数を低減する効果が大きくなり、鋼板に付与される張力がより高まる。
 一方、絶縁被膜の耐吸湿性が高くなるという理由から、コロイド状シリカの含有量は、リン酸塩100質量部に対して、SiO固形分換算で、120質量部以下が好ましく、100質量部以下がより好ましい。
 本発明の絶縁被膜処理液は、クロム化合物を含有してもよい。
 もっとも、クロム化合物を含有しない、いわゆるクロムフリーの絶縁被膜処理液の方が、液はじきによる外観不良が発生しやすいため、得られる絶縁被膜の外観に優れるという本発明の効果がより顕著に発揮される。
 具体的には、本発明の絶縁被膜処理液において、無水クロム酸(三酸化クロム)、クロム酸塩、重クロム酸塩などのクロム化合物の含有量は、リン酸塩100質量部に対して、クロム元素(Cr)換算で、1.0質量部以下が好ましく、0.1質量部以下がより好ましく、0.01質量部以下が更に好ましい。
 本発明の絶縁被膜処理液がクロムフリーである場合、本発明の絶縁被膜処理液には、金属元素を含有する化合物(以下、便宜的に「金属化合物」ともいう)を含有させることが好ましい。
 具体的には、金属化合物の含有量は、リン酸塩100質量部に対して、金属元素換算で、5質量部以上が好ましく、10質量部以上がより好ましい。これにより、得られる絶縁被膜は、耐吸湿性、耐食性などが良好となり、鋼板に付与される張力がより高まる。
 一方、金属化合物の含有量は、リン酸塩100質量部に対して、金属元素換算で、60質量部以下が好ましく、40質量部以下がより好ましい。金属化合物の含有量がこの範囲であれば、本発明の絶縁被膜処理液を低粘度に保てるため、膜厚がより均一な絶縁被膜が得られる。
 金属化合物が含有する金属元素としては、耐吸湿性に優れるという理由から、Ti、Zr、Hf、V、Mg、ZnおよびNbからなる群から選ばれる少なくとも1種が好ましい。金属化合物は、これらの金属元素を含有する酸化物、窒化物などであり、その形態は、例えば、粒子である。
 本発明の絶縁被膜処理液の溶媒としては、水が好ましい。
 〈フォルステライト被膜を有する電磁鋼板〉
 フォルステライト被膜を有する電磁鋼板は、鋼板と、その鋼板表面に配置されたフォルステライト被膜(フォルステライトを含有する被膜)とを有するものであれば、特に限定されず、一例として、方向性電磁鋼板である。
 《鋼の成分組成》
 まず、好ましい鋼の成分組成を説明する。以下、特に断らない限り、各元素の含有量の単位「%」は、「質量%」を意味する。
 (C:0.001~0.10%)
 Cは、ゴス方位結晶粒の発生に有用である。この作用を有効に発揮させるためには、C含有量は、0.001%以上が好ましい。
 一方、C含有量が多すぎると、脱炭焼鈍によっても脱炭不良を起こす場合がある。このため、C含有量は、0.10%以下が好ましい。
 (Si:1.0~5.0%)
 Siは、電気抵抗を高めて鉄損を低下させるとともに、鉄のBCC組織を安定化させて高温の熱処理を可能とする。このため、Si含有量は、1.0%以上が好ましく、2.0%以上がより好ましい。
 一方、Si含有量が多すぎると冷間圧延が困難となる。このため、Si含有量は、5.0%以下が好ましい。
 (Mn:0.01~1.0%)
 Mnは、鋼の熱間脆性の改善に有効に寄与する。更に、Mnは、SやSeが混在している場合には、MnSやMnSe等の析出物を形成して、結晶粒成長の抑制剤(インヒビター)として機能する。このため、Mn含有量は、0.01%以上が好ましい。
 一方、Mn含有量が多すぎると、MnSe等の析出物の粒径が粗大化して、インヒビターとしての機能が失われる場合がある。このため、Mn含有量は、1.0%以下が好ましい。
 (sol.Al:0.003~0.050%)
 Alは、鋼中でAlNを形成して、分散第二相となり、インヒビターとして機能する。このため、Al含有量は、sol.Alとして、0.003%以上が好ましい。
 一方、Al含有量が多すぎると、AlNが粗大に析出して、インヒビターとしての機能が失われる場合がある。このため、Al含有量は、sol.Alとして、0.050%以下が好ましい。
 (N:0.001~0.020%)
 Nは、Alの存在下で、AlNを形成する。このため、N含有量は、0.001%以上が好ましい。
 一方、N含有量が多すぎると、スラブ加熱時にふくれ等を生じる場合がある。このため、N含有量は、0.020%以下が好ましい。
 (SおよびSeの少なくとも1種:0.001~0.05%)
 SおよびSeは、MnやCuと結合して、MnSe、MnS、Cu-xSe、Cu-xSを形成し、鋼中の分散第二相となり、インヒビターとして機能する。このため、SおよびSeの少なくとも1種の合計含有量は、0.001%以上が好ましい。
 一方、SおよびSeの含有量が多すぎると、スラブ加熱時の固溶が不完全となるだけでなく、製品表面の欠陥が発生する場合もある。このため、SおよびSeの少なくとも1種の合計含有量は、0.05%以下が好ましい。
 (その他の元素)
 上述した成分組成は、更に、Cu:0.20%以下、Ni:0.50%以下、Cr:0.50%以下、Sb:0.10%以下、Sn:0.50%以下、Mo:0.50%以下、および、Bi:0.10%以下からなる群から選ばれる少なくとも1種の元素(便宜的に「元素A」と呼ぶ)を含有してもよい。
 これらの元素Aは、結晶粒界に偏析しやすく、補助的なインヒビターとして機能することで、更に磁性を向上できる。しかし、元素Aが多すぎると、二次再結晶の不良が発生しやすくなる場合がある。このため、元素Aの含有量は、上記範囲の上限値以下が好ましい。また、このような有用な効果を得るためには、Cu、Ni、Cr、Sb、SnおよびMoの含有量は、それぞれ、0.01%以上が好ましく、Biの含有量は、0.001%以上が好ましい。
 上述した成分組成は、更に、B:0.010%以下、Ge:0.10%以下、As:0.10%以下、P:0.10%以下、Te:0.10%以下、Nb:0.10%以下、Ti:0.10%以下、および、V:0.10%以下からなる群から選ばれる少なくとも1種の元素を含有してもよい。
 これにより、結晶粒成長の抑制力が更に強化されて、より高い磁束密度が安定的に得られる。また、このような有用な効果を得るためには、BおよびGeの含有量は、それぞれ、0.001%以上が好ましく、As、P、Te、Nb、TiおよびVの含有量は、0.005%以上が好ましい。
 (残部)
 上述した成分組成の残部は、Feおよび不可避的不純物からなる。
 《製造方法》
 次に、フォルステライト被膜を有する電磁鋼板を製造する方法の一例を説明する。
 まず、上述した成分組成を有する鋼を、従来公知の精錬プロセスによって溶製し、連続鋳造法または造塊-分塊圧延法を用いて、鋼スラブを得る。
 次いで、得られた鋼スラブに熱間圧延を施して熱延板とし、必要に応じて熱延板焼鈍を施す。その後、1回または中間焼鈍を挟む2回以上の冷間圧延を実施して、最終板厚の冷延板を得る。そして、得られた冷延板に対して、一次再結晶焼鈍および脱炭焼鈍を施し、その後、MgOを含有する焼鈍分離剤を塗布してから、最終仕上げ焼鈍を実施する。
 こうして、フォルステライトを含有する被膜(フォルステライト被膜)が表面に形成された電磁鋼板が得られる。
 〈絶縁被膜付き電磁鋼板の製造方法〉
 フォルステライト被膜を有する電磁鋼板に対して、本発明の前処理液を用いて前処理を実施する。具体的には、フォルステライト被膜に、本発明の前処理液を接触させる。
 次いで、本発明の前処理液を接触させた後のフォルステライト被膜に、本発明の絶縁被膜処理液を塗布し、必要に応じて乾燥してから、焼付する。焼付に代えて、焼付を兼ねた平坦化焼鈍を実施してもよい。
 こうして、フォルステライト被膜の上に、絶縁被膜が形成される。すなわち、絶縁被膜付き電磁鋼板が得られる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。
 〈絶縁被膜付き電磁鋼板の製造〉
 以下のようにして、絶縁被膜付き電磁鋼板を製造した。
 《フォルステライト被膜を有する電磁鋼板の準備》
 まず、板厚が0.20mmである仕上げ焼鈍済みの方向性電磁鋼板を準備した。仕上げ焼鈍済みであることから、その表面には、フォルステライト被膜が形成されていた。
 《絶縁被膜処理液の準備》
 リン酸塩を含有する絶縁被膜処理液として、下記表1に示す成分組成を有する絶縁被膜処理液A~Oを調製した。
 リン酸塩としては、それぞれ、第一リン酸塩を使用した。なお、下記表1では、第一リン酸マグネシウムを「リン酸Mg」と表記している。他の第一リン酸塩も同様である。
 コロイド状シリカとしては、日産化学社製のスノーテックスCを用いた。
 金属化合物(金属元素を含有する化合物)としては、水溶性のCrOのほか、TiO、ZrO、HfO、Nb、VN、MgOまたはZnOを使用した。下記表1には、金属元素換算した含有量(下記表1では、単に「含有量」と表記)を記載した。
 なお、金属化合物の粒径は、いずれも、0.1~0.8μmの範囲であった。粒径は、島津製作所社製のレーザ回折式粒度分布測定装置SALD-3100を用いて計測した。粒径は、平均粒径であり、体積基準で50%の粒子径つまり、メディアン径を示す。
 《前処理液の準備》
 リン酸を含有する前処理液として、下記表2~表3に示すNo.1~47の前処理液を調製した。具体的には、1000mLの純水に、液体であるリン酸(濃度:85質量%)を適量添加し、更に、必要に応じて、下記表2~表3に示すリン酸マグネシウムなどの化合物(下記表2~表3では「リン酸Mg」等と表記)を添加して、リン酸濃度Aおよび屈折率Rを調整した。上述した方法により求めたリン酸濃度Aおよび屈折率Rを、下記表2~表3に示す。
 《前処理》
 準備した仕上げ焼鈍済みの方向性電磁鋼板を、水洗によって未反応の焼鈍分離剤を除去してから、下記表2~表3に示す前処理条件(前処理温度および前処理時間)で、前処理液の浴に浸漬させ、その後、水洗し、乾燥した。こうして、前処理を実施した。
 《絶縁被膜処理液の塗布、接触角の測定および焼付》
 前処理の実施後、仕上げ焼鈍済みの方向性電磁鋼板の表面(つまり、フォルステライト被膜)に、下記表2~表3に示す絶縁被膜処理液を、焼付後の付着量が両面合計で10.0g/mとなるように、ロールコーターを用いて塗布した。
 このとき、絶縁被膜処理液とフォルステライト被膜との接触角を、協和界面化学社製のDMo-501を用いて計測した。計測は、絶縁被膜処理液をフォルステライト被膜に着滴してから1秒後に実施した。結果を下記表2~表3に示す。接触角が80°未満の場合、絶縁被膜処理液とフォルステライト被膜との濡れ性が良好であると評価した。
 その後、N:100体積%雰囲気下、820℃、30秒の条件で焼付を実施して、絶縁被膜を形成した。すなわち、絶縁被膜付き電磁鋼板を得た。
 得られた絶縁被膜付き電磁鋼板の磁束密度B(磁化力800A/mにおける磁束密度)は、1.920Tであった。
 〈評価〉
 得られた絶縁被膜付き電磁鋼板を、以下の方法により評価した。評価結果を下記表2~表3に示す。
 《外観》
 得られた絶縁被膜付き電磁鋼板から、30mm×30mmの試験片を切り出した。切り出した試験片について、日本電子社製の電子線マイクロアナライザー(EPMA)JXA-8230を用いて、P元素のマッピング画像(Pマッピング画像)を得た。
 一例として、図1はNo.23(発明例)のPマッピング画像であり、図2はNo.14(比較例)のPマッピング画像である。
 得られたPマッピング画像について、20mm×20mmの範囲におけるP強度のばらつきを目視で確認した。P強度が均一な領域が80%以上であった場合は「○」を、P強度が均一な領域が80%未満で、かつ、はじき模様が無かった場合は「△」を、P強度が均一な領域が80%未満で、かつ、はじき模様が見られた場合は「×」を下記表2~表3に記載した。P強度に関して、カラーマップの強度レベルが視野内の平均値に対して±10%の範囲に収まる領域を、P強度が均一な領域とした。なお、「○」の場合、はじき模様は見られなかった。「○」の場合は外観に優れると評価した。
 《付与張力》
 絶縁被膜が鋼板に付与する張力(付与張力)は、圧延方向の張力であり、具体的には、次のように求めた。
 まず、得られた絶縁被膜付き電磁鋼板から、30mm(圧延直角方向長さ)×280mm(圧延方向長さ)の試験片を切り出した。
 切り出した試験片の一面側を粘着テープでマスキングしてから、他面側の絶縁被膜をアルカリ、酸などを用いて除去した。
 次いで、この試験片における長手方向の片端30mm部分を固定し、残りの250mm部分を測定長さ(反り測定長さ)として、反り量を測定し、下記式から付与張力を求めた。鋼板ヤング率は、132GPaとした。付与張力は、10.0MPa以上が好ましい。
 付与張力[MPa]=鋼板ヤング率[GPa]×板厚[mm]×反り量[mm]÷(反り測定長さ[mm])×10
 《鉄損》
 得られた絶縁被膜付き電磁鋼板から、幅30mm×長さ280mmの試験片を切り出した。切り出した試験片を用いて、JIS C 2550に記載された方法に準拠して、鉄損(W17/50)(磁束密度の振幅1.7T、周波数50Hzにおける質量あたりの損失)を計測した。鉄損(W17/50)は、0.80W/kg以下が好ましい。
 《絶縁性》
 得られた絶縁被膜付き電磁鋼板について、JIS C 2550-4に記載された方法(表面絶縁抵抗の測定方法)に準拠して、電流値(フランクリン電流値)を計測した。電流値が0.2A以下の場合、絶縁性が良好であると評価した。
 《密着性》
 得られた絶縁被膜付き電磁鋼板に対して、窒素雰囲気中で、820℃×3時間の歪取焼鈍を実施した。歪取焼鈍後の絶縁被膜付き電磁鋼板を、5mm、10mm…のように5mm間隔で直径が異なる丸棒に巻き付けていき、絶縁被膜が剥離しない最小の直径を求めた。この直径が30mm以下の場合、絶縁被膜の密着性に優れると評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 〈評価結果まとめ〉
 上記表2~表3に示すように、式(1)を満たす前処理液を用いて前処理を実施した発明例は、これを満たさない比較例と比べて、絶縁被膜処理液の接触角が小さく濡れ性が良好で、かつ、外観が良好であり、付与張力が高く低鉄損であり、絶縁性も良好であった。
 また、式(1)を満たす発明例どうしを対比すると、屈折率Rが1.3600以下である発明例は、これを満たさない発明例よりも、絶縁被膜の密着性が良好であった。
 

Claims (7)

  1.  フォルステライト被膜を表面に有する電磁鋼板に、リン酸塩を含有する絶縁被膜処理液を塗布する前に用いる前処理液であって、
     前記前処理液のリン酸濃度をHPO換算でA質量%とするとき、前記前処理液の屈折率Rが下記式(1)を満たす、前処理液。
     9.0×10-4×A+1.3340≦R・・・(1)
  2.  前記屈折率Rが、1.3600以下である、請求項1に記載の前処理液。
  3.  前記前処理液のリン酸濃度が、HPO換算で、0.2質量%以上30.0質量%以下である、請求項1または2に記載の前処理液。
  4.  フォルステライト被膜を表面に有する電磁鋼板に対して、請求項1~3のいずれか1項に記載の前処理液を用いて前処理し、次いで、リン酸塩を含有する絶縁被膜処理液を塗布してから焼付することにより、絶縁被膜を形成する、絶縁被膜付き電磁鋼板の製造方法。
  5.  前記前処理が、前記フォルステライト被膜に前記前処理液を接触させる処理である、請求項4に記載の絶縁被膜付き電磁鋼板の製造方法。
  6.  前記前処理液の温度が、30℃以上95℃以下であり、
     前記前処理液と前記フォルステライト被膜との接触時間が、1秒以上40秒以下である、請求項5に記載の絶縁被膜付き電磁鋼板の製造方法。
  7.  前記絶縁被膜処理液におけるクロム化合物の含有量が、前記リン酸塩100質量部に対して、クロム元素換算で、1.0質量部以下である、請求項4~6のいずれか1項に記載の絶縁被膜付き電磁鋼板の製造方法。
     
PCT/JP2022/036059 2022-01-21 2022-09-28 前処理液および絶縁被膜付き電磁鋼板の製造方法 WO2023139847A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022573785A JP7222450B1 (ja) 2022-01-21 2022-09-28 前処理液および絶縁被膜付き電磁鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007595 2022-01-21
JP2022-007595 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023139847A1 true WO2023139847A1 (ja) 2023-07-27

Family

ID=87348591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036059 WO2023139847A1 (ja) 2022-01-21 2022-09-28 前処理液および絶縁被膜付き電磁鋼板の製造方法

Country Status (1)

Country Link
WO (1) WO2023139847A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311453A (ja) * 1992-05-08 1993-11-22 Nippon Steel Corp 超低鉄損一方向性電磁鋼板の製造方法
JP2017532438A (ja) * 2014-08-07 2017-11-02 ポスコPosco 方向性電磁鋼板用予備コーティング剤組成物、これを含む方向性電磁鋼板およびその製造方法
WO2018123339A1 (ja) * 2016-12-28 2018-07-05 Jfeスチール株式会社 方向性電磁鋼板、変圧器の鉄心および変圧器ならびに変圧器の騒音の低減方法
WO2020036006A1 (ja) * 2018-08-17 2020-02-20 Jfeスチール株式会社 絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置
JP2020111815A (ja) * 2019-01-16 2020-07-27 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311453A (ja) * 1992-05-08 1993-11-22 Nippon Steel Corp 超低鉄損一方向性電磁鋼板の製造方法
JP2017532438A (ja) * 2014-08-07 2017-11-02 ポスコPosco 方向性電磁鋼板用予備コーティング剤組成物、これを含む方向性電磁鋼板およびその製造方法
WO2018123339A1 (ja) * 2016-12-28 2018-07-05 Jfeスチール株式会社 方向性電磁鋼板、変圧器の鉄心および変圧器ならびに変圧器の騒音の低減方法
WO2020036006A1 (ja) * 2018-08-17 2020-02-20 Jfeスチール株式会社 絶縁被膜形成用処理液の製造方法および絶縁被膜付き鋼板の製造方法ならびに絶縁被膜形成用処理液の製造装置
JP2020111815A (ja) * 2019-01-16 2020-07-27 日本製鉄株式会社 方向性電磁鋼板及び方向性電磁鋼板の製造方法

Similar Documents

Publication Publication Date Title
KR101169236B1 (ko) 방향성 전기 강판용 절연 피막 처리액 및 절연 피막을 갖는 방향성 전기 강판의 제조 방법
JP5181571B2 (ja) 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
KR100973071B1 (ko) 크롬을 함유하지 않는 절연 피막을 가진 방향성 전자강판및 그 절연 피막제
KR101896046B1 (ko) 방향성 전자 강판 제품에 절연 코팅을 형성하기 위한 방법 및 절연 코팅으로 피복된 전자 강판 제품
US5174833A (en) Production of grain-oriented silicon steel sheets having an insulating film formed thereon
US4497850A (en) Method for surface treatment of a magnetic amorphous alloy
KR20100049617A (ko) 방향성 전기 강판용 절연 피막 처리액, 및 절연 피막을 갖는 방향성 전기 강판의 제조 방법
KR20130045938A (ko) 방향성 전기 강판
JP6682888B2 (ja) 方向性電磁鋼板の絶縁被膜用処理剤、方向性電磁鋼板、及び、方向性電磁鋼板の絶縁被膜処理方法
US20140245926A1 (en) Treatment solution for insulation coating for grain-oriented electrical steel sheets
JP6558325B2 (ja) クロムフリー張力被膜形成用処理液、クロムフリー張力被膜付方向性電磁鋼板、クロムフリー張力被膜付方向性電磁鋼板の製造方法およびトランス用コア
KR102601325B1 (ko) 절연 피막 처리액, 절연 피막이 형성된 방향성 전기 강판 및 그 제조 방법
WO2023139847A1 (ja) 前処理液および絶縁被膜付き電磁鋼板の製造方法
WO2019106976A1 (ja) 方向性電磁鋼板およびその製造方法
JP7222450B1 (ja) 前処理液および絶縁被膜付き電磁鋼板の製造方法
JP4635457B2 (ja) クロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜を有する方向性電磁鋼板およびクロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜の被成方法。
WO2019013355A9 (ja) 方向性電磁鋼板
CN101925693A (zh) 磁特性优良的方向性电磁钢板
CN114106593B (zh) 一种用于取向硅钢表面涂层的涂料、取向硅钢板及其制造方法
JP7311075B1 (ja) 前処理液および絶縁被膜付き電磁鋼板の製造方法
CN115851004B (zh) 一种耐热刻痕型取向硅钢涂层用涂液、取向硅钢板及其制造方法
WO2023188594A1 (ja) 前処理液および絶縁被膜付き電磁鋼板の製造方法
WO2023195517A1 (ja) 方向性電磁鋼板及び絶縁被膜の形成方法
US11981821B2 (en) Insulating coating treatment liquid, and grain-oriented electrical steel sheet having insulating coating and method for producing the same
JP2003034880A (ja) 方向性電磁鋼板の表面上に密着性に優れた絶縁被膜を形成する方法および方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022573785

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922000

Country of ref document: EP

Kind code of ref document: A1